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Abstract

Accurately predicting fuel blends' lower heating values (LHV) is crucial for

optimizing a power plant. In this paper, we employ multiple artificial

intelligence (AI) and machine learning‐based models for predicting the LHV

of various fuel blends. Coal of two different ranks and two types of biomass

is used in this study. One was the South African imported bituminous coal,

and the other was lignite thar coal extracted from the Thar Coal Block‐2 mine

by Sind Engro Coal Mining Company, Pakistan. Two types of biomass, that is,

sugarcane bagasse and rice husk, were obtained locally from a sugar mill and

rice mill located in the vicinity of Sahiwal, Punjab. Bituminous coal mixture

with other coal types and both types of biomass are used with 10%, 20%, 30%,

40%, and 50% weight fractions, respectively. The calculation and model

development procedure resulted in 91 different AI‐based models. The best is

the Ridge Regressor, a high‐level end‐to‐end approach for fitting the model.

The model can predict the LHV of the bituminous coal with lignite and

biomass under a vast share of fuel blends.
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1 | INTRODUCTION

Economic growth is marked by massive electricity
consumption, making it a key indicator of economics.
Increased population and industrialization have also
taken the demands for power to a new high surge in
postcovid economy and have also led to a greater need
for electricity which is provided by majorly coal‐fired

power plants, mainly in Asia, with coal standing out
among all with 36.7% share in global power generation.

In 2021, high gas prices also increased the demand for
coal power generation. According to IEA, tracking report
—November 2021, compared with the first quarter of
2020, coal generation in the first quarter of 2021 increased
by 15%, and the higher consumption of coal increases
carbon emissions and enhances global warming.
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The UN Climate Change Conference 2021, also called
COP26, emphasized reducing greenhouse gas emissions
so the global temperature rise can be restricted to 1.5°C.
Nations are directed to phase down unabated coal power.
IEA report suggested a few methods toward net zero
emissions, namely electrification of transport, deploy-
ment of CCUS, hydrogen‐derived fuels, and use of
bioenergy for power generation. Biofuels are low‐
carbon fuels available in underdeveloped countries, for
example, South Asian countries. Pakistan, India, and
Bangladesh's economies are agriculture‐based due to the
vast fertile lands of sugarcane, rice, wheat, and cotton.
The residue of these grains has considerable potential to
be recognized as biomass.1

Biomass blending with nonrenewable fuels has many
advantages in fuel flexibility, less pollutant emission,
high combustion efficiency, and carbon neutrality or at
least a reduction of carbon footprint.2–4 This also solves
the problem of green waste handling. Combusting
biomass in cofiring modes is the most inexpensive
method of converting biomass into fuel.5–8 Besides
economic and environmental issues, other technological
constraints should also be considered in fuel blending
fuels, such as flame stability. For wet coal events,
biomass can help boost the plant's capacity and increase
flame stability.2

A comprehensive evaluation of low‐rank fuel compo-
sitions obtained using multicriteria decision‐making
methods can be found in Dorokhov et al.9 The authors
confirmed that adding a small amount of plant biomass
(2%–5%) can be considered the most effective way to
improve the emission performance of the slurry based on
coal slime.

According to the literature, coal plays a minor role in
Pakistan's energy mix. Although the country contains an
estimated 180 billion tons of proven recoverable reserves,
the coal imports are high. In the province of Sindh
(Pakistan), the desert of Tharparker, a large deposit of
coal reserves with 175 billion tons of good quality has
been found. However, several factors have hindered the
development of the thar coal reserves, including the
depth and moisture level of the lignite reserves, a scarcity
of fresh water, and a lack of road and power infra-
structure.10,11 Khan and Dessouky noted that biomass in
Pakistan is gaining interest because it produces a similar
type of fuel extracted from crude oil. Since biomass
energy only depends on the availability of cheap raw
materials.

According to Rehman et al., at present, the share of
coal in the power generation of Pakistan is lower than
1%. Therefore, the percentage of coal in the Pakistan
energy mix could be increased considerably using low‐
grade coals such as sub‐bituminous ones in the Salt

Range, Trans Indus Range in Punjab and Baluchistan,
and lignites in Thar and Lakhra (Sindh). These low‐grade
local coals can be blended with better‐quality imported
coals for higher performance and compliance with
environmental regulations. The authors underlined that
fluidized bed combustion is one feasible method for
small to medium‐scale power production. It is flexible
enough to utilize low‐grade coal while maintaining low
sulfur and nitrogen oxide emissions.12 In the Sahiwal
power plant, two types of coal are used, that is, 50% sub‐
bituminous coal imported from Indonesia and 50%
bituminous coal from South Africa. Therefore, shifting
toward renewables like biomass might improve the air
quality and the ecosystem.13

Several techniques have been used to model and
predict blended fuel properties. Wang et al.14 developed
models based on linear regression and artificial neural
networks (ANN) for estimating the lower heating value
(LHV) of municipal solid wastes (MSW). Despite models
generated using the two methods showing acceptable
performance levels in predicting LHV, the ANN models
were more robust in handling data sets of diverse quality.

An interesting ANN‐based model with 14 input
layers, 26 hidden layers, and 1 output layer was
developed for predicting the enthalpy of combustion for
various oxygenated fuels.15 In predicting the enthalpy of
combustion, 96.3% accuracy was achieved, so the
developed model can be successfully employed to predict
the enthalpies of neat compounds and mixtures.

An LHV and higher heating value (HHV) prediction
model using regression analysis with the help of bond
energies for biodiesel was developed by Erdogan.16 The
model obtained excellent accuracy, and LHV and HHV
were estimated with less than 1% error. Li et al. used
machine learning (ML) and deep learning in typical fuel
property prediction regression problems and compared
their predictive performance. The authors underlined
that adding too many layers into CNN decreases
predictive accuracy because the multiple activation
operations result in a vanishing gradient.17

In this work, coal of two different ranks and two types
of biomass are used in this study. One was the South
African imported bituminous coal, and the other was
lignite thar coal extracted from the Thar Coal Block‐2
mine by Sind Engro Coal Mining Company (SECMC),
Pakistan. Two types of biomass, that is, sugarcane
bagasse and rice husk, were obtained locally from a
sugar mill and rice mill located in the vicinity of Sahiwal,
Punjab. Bituminous coal mixture with other coal types
and both types of biomass are used with 10%, 20%, 30%,
40%, and 50% weight fractions, respectively.

Three data‐driven modeling algorithms, namely
Ridge Regressor, Nystroem Kernel SVM Regressor, and
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Linear Regressor, are deployed for modeling the lower
heat value of the fuel blends against their characterized
properties, for example, air‐dried moisture (%), ash (%),
volatile matter (%), fixed carbon (%) and hydrogen (%).
The fuels used in the study, that is, coal of two different
ranks and two types of biomass, and the tools used in this
study constitute the paper's novelty. The algorithms have
demonstrated excellent performance in modeling both
lab‐scale and enterprise‐level systems.

The paper's novelty consists of the selected fuels used
in the study and the application of the automated
machine learning (AutoML) approach. We utilized the
DataRobot application as one of the best software among
AutoML tools. To the best of our knowledge, this is the
first time this approach and the selected fuels were
employed to predict the lower heat value of the fuel
blends, contributing to the sustainable development and
zero‐emissions concepts of the energy processes.

We can test the heating values of pure samples in a
bomb calorimeter but cannot test the blended sample of
every fraction. Hence, we fit the model to the available
data. Without complete elemental analysis (C, H, N, O,
and S), we can estimate the accurate heating value of the
considered biomass and fuel blend with the developed
AI‐based model, thereby reducing the testing cost, time‐
saving approach, and digitalization of the process.

2 | MATERIALS AND METHODS

Zero emissions optimization can be achieved by blending
biomass with fossil fuel, which will reduce carbon
emissions because of the introduction of green fuels.
Therefore we must predict the heating value of the fuel
as blending fuels of different natures will have a different
heating value compared to the original heating values
combined. The constraint we kept in this work is that the
power output should be kept the same, so we had a
bracket of heating value to work, and based on this
heating values prediction, we could suggest the most
suitable blend that will help us in reducing the carbon
footprint.

Coal of two different ranks and two types of biomass
are used in this study. One was the South African
imported bituminous coal, and the other was lignite thar
coal extracted from the Thar Coal Block‐2 mine by
SECMC, Pakistan. Two types of biomass, that is,
sugarcane bagasse and rice husk, were obtained locally
from a sugar mill and rice mill located in the vicinity of
Sahiwal, Punjab.

Raw coal and biomass samples were dried in an oven
(Laboratory Blast drying oven FFL‐70) at 105°C for
60 min. Biomass samples were then chopped (Disc Mill

Pulverizer 5S‐PC1*100) to reduce their size. After
grinding, the samples were passed through standard
sieves of mesh number 70 (210 µm) to obtain an average
particle size of <0.2 mm. Five samples with different
blending ratios were prepared, and to achieve proximate
homogeneity, samples were tumbled for 30 min. The
standard sample preparation method was followed, as
mentioned in the literature.18,19

The infrared carbon and hydrogen analyzer SDCHN435,
proximate analyzer SDTGA5000a, and sulfur analyzer
SDS516 are the main components of the experimental setup
(Table 1).

The BSA224S Sartorius weigh balance with a weigh-
ing capacity of 220 g was used for sample weighing in
different tests. The repeatability of the weighing balance
is 0.00001 g (0.1 mg). Balance was placed on a nonmove-
able marble table in a room with no interference from the
external environment, for example, strong winds or an
air conditioner.

The SDTGA5000a Proximate Analyzer consists of the
host (internally equipped with Sartorius analytical
balance module, gas supplying unit, computer (including
display), and printer. The host consists of a sample
weighing room, combustion furnace, analytical balance
module, and sample introduction device. The analytical
balance module (Model: XX85‐001) was used for weigh-
ing the samples with a measuring range of 0–120 g and a
sensitivity of 0.0001 g.

A conventional combustion environment with air
provided with a centrifugal fan was used. Coal mixture
with other coal types and both types of biomass was used
with 10%, 20%, 30%, 40%, and 50% weight fractions,
respectively. Samples weighing 1 ± 0.01 g of mixtures
were used in testing.

The infrared absorption analytical method is used to
measure carbon and hydrogen content. Sample analysis
consists of three steps: gas circuit, combustion, and
analysis. In the combustion process, the sample is
delivered into the combustion tube for oxygen‐excess
combustion. Generated gases after secondary combustion
pass through multistage filtration, collected in a gas
collection chamber. During analysis, collected gases flow
into the CO2 infrared sensor and H2O infrared sensor to
detect carbon and hydrogen, respectively.

A synthetic combustion environment with oxygen
purity ≥99.5% and pressure 0.18 ± 0.01MPa and nitrogen
gas with pressure range 0.18 ± 0.01MPa is used during
this analysis. Samples weighing 100mg were used with a
precision of ±0.1 mg, and all the samples were tested
twice.

The SDACM4000 Bomb Calorimeter (resolution:
0.0001 K) was used to measure the calorific values of
solid and liquid combustibles. The 1 g ± 0.001 g sample
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weight was used for all the samples tested with high
precision in bombs filled with 99.5% pure oxygen at
pressure 2.8–3.2MPa for 15–60 s. LHVs were measured
with the change in water temperature, and LHVs were
calculated by adding the required values to the control
program.

Proximate, ultimate, and heating value analyses were
performed in the quality control lab of a 660MWe

supercritical coal‐fired power generating unit.20–22 The
proximate analyzer was used with a strict temperature
resolution. The analysis includes the moisture content
(Mad, air‐dried basis), the ash content (Aad, air‐dried
basis), volatile matter (Vad, air‐dried basis), and sulfur
content (Sad, air‐dried basis). The fixed carbon content
(F.C.ad, air‐dried basis) was not directly obtained but was
calculated by linear calculation through constituents
because of the correlation with other air‐dried constitu-
ents. The standard for the volatile matter was ISO 562‐
12010, and no air/gas was supplied during the tests by
the proximate analyzer.

Infrared Carbon and Hydrogen Analyzer with oxygen
and nitrogen supply valves were used for measuring
carbon content (Cad, air‐dried basis) and hydrogen
content (Had, air‐dried basis), while sulfur content (Sad,
air‐dried basis) was measured by coulometric titration in
the sulfur analyzer. HHV was obtained first by the bomb
calorimeter. with a bomb attached to an oxygen cylinder
for oxygen filling. LHV was obtained later by eliminating
the latent heat of water vaporization generated during
the GCV test using the standard ISO 1928–2009.

The experimental data collected from the chemical
characterization of the fuel blends is deployed for
constructing an ML model to predict their LHV. ML
algorithms can mine the nonlinear and complex depen-
dencies among the observations of the input and output
variables which are sometimes difficult to develop by
conventional mathematical techniques. The superior
modeling capacity of the ML algorithms makes them
suitable for experimental studies where the well‐
developed and robust models backed by domain knowl-
edge provide valuable insight into the relationships and
working physics of the operating systems.22–24

The measurement and modeling methodology
applied in the study is shown in Figure 1.

3 | RESULTS AND DISCUSSION

3.1 | Data analysis

The results of the measurements are shown in Table 2.
The air‐dried moisture (Mad) of imported coal, thar coal,
and biomass samples were tested on the ProximateT
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FIGURE 1 The methodology adopted to construct the experiments and modeling of the fuel blends.

TABLE 2 Results of the proximate analysis of the fuel blends.

Sample Weight fractions (%) Mad Aad Vad FCad Had Sad IDf LHV

Imported coal 100 4.58 15.94 23.96 55.52 3.71 0.55 1.00 24.36

Thar coal 100 35.54 6.02 35.06 23.88 5.09 0.68 2.00 13.05

Thar coal + Imported coal 10 5.63 15.22 25.48 53.67 3.77 0.54 2.10 23.20

20 8.74 14.31 27.12 49.83 3.98 0.58 2.20 22.04

30 12.75 13.18 27.42 46.65 4.40 0.57 2.30 21.01

40 16.21 11.96 28.33 43.50 4.70 0.57 2.40 19.80

50 19.57 11.02 29.19 40.22 4.99 0.60 2.50 18.64

Rice husk 100 6.92 14.87 65.90 12.31 4.98 0.07 3.00 13.70

Rice husk + Imported coal 10 2.94 15.64 28.83 52.59 3.27 0.50 3.10 23.33

20 3.56 14.96 33.53 47.95 3.51 0.46 3.20 22.10

30 4.22 14.16 38.16 43.46 3.69 0.43 3.30 21.00

40 6.42 12.96 42.19 38.43 4.02 0.38 3.40 19.93

50 6.80 12.28 47.00 33.92 4.23 0.33 3.50 18.775

Bagasse 100 6.05 2.49 84.38 14.29 5.85 0.14 4.00 15.03

Bagasse + Imported coal 10 2.63 14.93 29.33 53.11 3.49 0.51 4.10 23.36

20 3.09 13.66 34.34 48.91 3.78 0.46 4.20 22.15

30 3.58 12.33 39.52 44.57 4.00 0.42 4.30 21.070

40 4.14 10.97 44.70 40.19 4.25 0.39 4.40 20.09

50 4.33 9.56 54.34 31.77 4.52 0.34 4.50 18.79

AMJAD ET AL. | 5

 20500505, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ese3.1499 by U

niversity C
ollege L

ondon U
C

L
 L

ibrary Services, W
iley O

nline L
ibrary on [28/06/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Analyser, and it was found that thar coal has the highest
moisture content among all other samples. In contrast,
imported bituminous coal has the least moisture content
among other fuels. The additional IDf fuel tag in Table 2
identifies the fuel type allowing consideration of the fuel
mixture during calculations. The biomass samples,
bagasse, and rice husk have almost the same moisture
content.

Therefore, when the blended samples of imported
coal and thar coal were tested, the moisture content of
the composite samples increased along with the increas-
ing content of thar coal (Figure 2). There is a linear trend
in the moisture content. The blended sample of imported
coal and bagasse, as well as imported coal and rice husk,
also possess an increasing trend in the moisture content
but the change in moisture content is not too large as the
difference in coal moisture content, bagasse, and rice
husk is not significant.

The air‐dried ash (Aad) content of all the samples
tested on the proximate analyzer indicated that imported
coal and Rice husk have the highest ash content. At the
same time, bagasse has the least ash content (Table 2). As

a result, the ash content of imported coal blends with
other fuels showed a decreasing trend in the blended
mixtures as the average ash content of all row blended
fuels is lower than that of imported coal (Figure 3).

The volatile matter test indicated that biomass
samples contain a high content of volatile matter (Vad),
with bagasse having the highest among the two
(Figure 4). In contrast, imported parent coal has the
least amount among all considered fuels. Consequently,
the Vad of all fuel blends increases with the blending ratio
of all constituent fuels.

The highest volatile matter content equal to 54.34%
can be obtained for Important coal with 50% of bagasse.

Fixed carbon (FCad), performed on an elemental
analyser, showed that the imported coal has the highest
content while the other three fuels have quite less, and
that of bagasse and rice husk is close. Since all doped
fuels have lower FC than parent bituminous coal, the
increase in the blending ratio leads to a decrease in
blended fuels (Figure 5).

The elemental analysis depicted that the parent
bituminous coal has the lowest hydrogen content among

FIGURE 2 The moisture content of
blended fuel samples.

FIGURE 3 The ash content of blended
fuels samples.

6 | AMJAD ET AL.
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all the considered fuels. Therefore the increase in the
blending ratio leads to an increase in the hydrogen
content of fuel blends (Figure 6).

Finally, the elemental analysis shows that lignite coal
has the highest S content of all the considered fuels. On
the other hand, the sulfur content of biomass is lower than
that of the parent bituminous coal. That is why the sulfur
content of a fuel blend increases with thar and decreases
with the biomass fuels blending ratio (Figure 7).

The coal heating value test on the bomb calorimeter
indicated that imported coal (bituminous coal) has the
highest LHV. At the same time, the other three fuels are
close in heating value lower than that of bituminous coal
(Table 2). Consequently, the increase in the blending
ratio leads to a decrease in blended fuels (Figure 8).

Blending 10%–20% thar coal with imported coal keeps
us within the prescribed limits of boiler design with a
small decrease in calorific fuel value and ash content,
which decreases the ash loading in the fuel gas, but an

increase in hydrogen content (almost 5%) and volatile
matter. When a fuel with high volatile matter is blended
with a fuel with moderate volatile matter, care must be
practiced while dealing with coal mill outlet tempera-
tures as such fuels are vulnerable to catching fire on their
own.1 With this much blending, a considerable decrease
in coal imports will be observed, eventually decreasing
coal shipping and transportation.

Coal transportation in the world from dock to the
power station is majorly done by railway network
because of the advantages over road transportation.2

Still, this transportation leads to a rise in air pollution
comprising particulate matter and trace metals, which
pose a significant threat to the health of people lodging in
the vicinity of these rail tracks. Fuel blending will lessen
the transportation of coal, eventually leading to a
reduction in the pollutants emitted.

Biomass has a big advantage of very little sulfur
content and less ash content in bagasse than coal. The

FIGURE 4 The volatile matter content
of blended fuel samples.

FIGURE 5 The fixed carbon content of
blended fuel samples.
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FIGURE 6 The hydrogen content of
blended fuel samples.

FIGURE 7 The sulfur content of
blended fuel samples.

FIGURE 8 The lower heating value
(LHV) of blended fuel samples.
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blend of biomass with imported coal will not only lessen
the sulfur dioxide emissions but also decrease the load on
the sulfur desulphurization unit of the power plant. The
blending proportion of 20% biomass with coal will be
deemed appropriate for the boiler requirements without
affecting the power generation. The fuel ratio, which is
the ratio of fixed carbon to volatile matter, is an
indication of flame stability, the lower the value higher
will be the combustion efficiency. The fuel ratio of 20%
bagasse blended with coal is 1.42, which is much lower
than the pure coal fuel ratio of 2.32, indicating high
combustion efficiency when biomass is mixed with coal.

3.2 | Development of a ML model

In this work, three data‐driven modeling algorithms,
namely Ridge Regressor, Nystroem Kernel SVM Regres-
sor, and Linear Regressor, are deployed for modeling the
lower heat value of the fuel blends against their
characterized properties, for example, air‐dried moisture
(%), ash (%), volatile matter (%), fixed carbon (%)
and hydrogen (%). The algorithms have demonstrated
excellent performance in modeling lab‐scale and
enterprise‐level systems.25 Furthermore, the comparative
performance analysis would enable the selection of the
better‐working model for the present study.26

Ridge Regressor is a high‐level end‐to‐end procedure.
It is an elastic net model based on block coordinate
descent—a common form of derivative‐free optimization.
ElasticNet is a linear regression model trained with L1
and L2 as regularisers. This combination allows for
learning a sparse model where few of the weights are
nonzero like Lasso while still maintaining the regular-
ization properties of Ridge. The model is named either
Elastic‐Net, Ridge or Lasso Regressor, depending on the
value of the alpha parameter. ElasticNet is useful when
there are multiple correlated features. While Lasso is
likely to pick one feature randomly, ElasticNet is likely to
pick both.26

Nystroem Kernel SVM Regressor and Linear Regres-
sor are other interesting models considered in the study.
Support vector machines are a class of “maximum
margin” classifiers as they seek to maximize the
separation they find between classes and can optionally
include a penalty function that allows them to misclassify
some observations for the sake of wider margins between
the classes for the rest of the observations. Such an
approach makes support vector machines a very robust
class of ML models. SVMs are very efficient in high‐
dimensional spaces, and it also includes cases where the
number of dimensions exceeds the number of observa-
tions. The model approximates the feature mappings,

which can significantly reduce learning costs with large
data sets.26

The generalized linear model (GLM) is a flexible
generalization of ordinary linear regression, and it allows
for response variables with error distribution models
other than a normal distribution. The GLM generalizes
linear regression by permitting the linear model to be
related to the response variable via a link function and by
allowing the magnitude of the variance of each
measurement to be a function of its predicted value.26

Among the dozen artificial intelligence modeling
approaches,24 AutoML or AML appears to be the most
promising as it offers the ability to explore optimal hyper‐
parameters during the training process, known as hyper‐
parameter optimization (HPO), feature engineering and
architecture search as the response to the traditional
deep learning models, which performance highly
depends on the neural networks topology.22,27,28 To this
end, we utilized the DataRobot platform (https://www.
datarobot.com/), which employs an AutoML approach.26

DataRobot uses AutoML to build models that solve
real‐world problems across domains and industries.
DataRobot takes the data you provide, generates multiple
ML models, and recommends the best model to put into
use. You do not need to be a data scientist to build ML
models using DataRobot, but an understanding of the
basics will help you build better models. DataRobot
supports many different approaches to ML modeling—
supervised learning, unsupervised learning, time series
modeling, segmented modeling, multimodal modeling,
and more.

This paper deals with supervised learning providing
inputs and output data. In a regression project, the
output, that is, the target is a numeric value. A regression
model estimates a continuous dependent variable given a
list of input variables (also referred to as features or
columns).

DataRobot can simultaneously run numerous state‐
of‐the‐art open‐source algorithms and deploy the best
models in real‐time. The system searches through
various combinations of modeling approaches and selects
the top models for implementation. A unique sequence
of data processing, feature engineering, algorithm train-
ing, and algorithm tuning is termed a blueprint, which
defines the selected modeling approach.26 The software is
capable of running multiple predictive models concur-
rently, thereby automating time‐consuming model build-
ing and enabling the selection of high‐quality, highly
scalable models.27,29–31

The DataRobot software (https://www.datarobot.
com/) belonging to the AutoML platform is used in the
study.26 The building process of predictive models covers
several versions of each algorithm and loads of possible
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data settings and preprocessing combinations. As a
result, a Ridge Regressor was developed as a high‐level
end‐to‐end procedure for fitting the model. It stands for
the elastic model using block coordinate descent—a
common form of derivative‐free optimization.26

Since better features make better models, feature
engineering is one of the most critical steps in building a
great ML model. The procedure allows for determining
the essential features with mutual information (MI).32

Consequently, feature engineering permits improving a
model's predictive performance, reducing computational
or/and data demands, and improving the results'
interpretability.

During the first step, we construct a ranking of
features with a feature utility metric. It is a general‐
purpose metric, that is, a function measuring associations
between a feature and the target. This procedure allows
us to choose a smaller set of the most valuable features to
develop initially and lower computing time. The “MI”
metric is more than a correlation as it can detect any
relationship, while correlation only detects linear rela-
tionships. It is also easy to use and interpret, computa-
tionally efficient, theoretically well‐founded, resistant to
overfitting, and able to detect any relationship.32 Roughly
speaking, MI expresses how many questions one expects
the feature to answer about the target. To be more
precise, MI describes relationships between a feature and
the target in terms of uncertainty. It is considered to
measure the extent to which knowledge of one quantity
reduces uncertainty about the other. This uncertainty is
here measured using a quantity from information theory
known as “entropy,” where the entropy of a variable
means roughly: “how many yes‐or‐no questions one
would need to describe an occurrence of a variable, on
average”; in other words, the more questions one has to
ask, the more uncertain one must be about the variable.32

Since the target is the real‐valued function, we use the
mutual_info_regression metric in the feature selection
module of the Scikit‐learn library to compute the MI

scores, in contrast to the mutual info_classif metric
dedicated to categorical targets. The results, given in
Figure 9, reveal that C (fixed carbon [%]) and S (sulfur
[%]) content are the most important features, followed by
A (ash [%]), H (hydrogen [%]), V (volatile matter [%]), M
(air‐dried moisture [%]). All six features exhibit a strong
relationship with LHV and are selected for developing
ML models.

The performance matrix is built on three parameters,
namely, coefficient of determination (R2), root mean
squared error (RMSE) and mean absolute error (MAE).
The performance indicators are introduced to evaluate
the effectiveness of the models in modeling the LHV
against the different combinations of the fuel blends,
thereby selecting a better‐performing model. The
mathematical expression of the performance indices is
defined as:


R

y y

y y
= 1 −

( − ˆ )

( − ̅ )
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i i

i
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i i
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here, yi and ŷi are the actual and model predicted values
for i= 1, 2, 3,…,N. Similarly, yi̅ is the average of the
actual value of the output variable. R2 varies from zero to
one, which signifies the no‐correlation or perfect
correlation among the actual and model‐predicted
responses. Similarly, RSME and MAE are the error
terms calculated to estimate the error present in the
model's responses.

The calculation and model development procedure
generated 91 different AI models. The above‐described
metrics, that is, R2, RMSE, and MAE measured for
the Linear Regressor, Nystroem Kernel SVM, and
Ridge Regressor models under the validation, cross‐
validation, and holdout are computed and presented in
Figure 10A–C, respectively. The data‐distribution curves
are also constructed along the axes of Figure 10A–C
depicting the modeling performance and learning the
distribution profiles of the target variable by the models.

The true and model‐based responses to predict the
LHVs of the fuel blends are presented in Figure 10A–C.
Closely observing the performance metrics of the three
models, it is found that the Ridge Regressor model has
presented better performance than the Linear Regressor
and Nystroem Kernel SVM. The R2 value for validation

FIGURE 9 Mutual information scores for the input data sets.
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(R2_Val.), cross‐validation (R2_Cross‐Val.) and holdout
(R2_Holdout) are 0.993, 0.979, and 0.983, respectively
which is quite close to those of the Linear Regressor and
Nystroem Kernel SVM. Similarly, the residuals for the
three model‐based predictions are also calculated and
presented in Figure 10D. The residuals are the highest for

the Nystroem Kernel SVM model. In contrast, linear and
Ridge Regressor‐based models have nearly the same
distribution of residuals around zero depicting the good
predictive performance of the models. To compute the
error among the model simulated responses and the
actual values, RMSE and MAE are calculated and

(A) (B)

(C) (D)

(E) (F)

FIGURE 10 Modeling performance comparison of Linear Regressor, Nystroem Kernel SVM, and Ridge Regressor. The modeling
performance is measured for three different data sets, that is, Validation, Cross Validation and Holdout. The coefficient of determination
(R2) is measured between the actual and model simulated responses and presented for (A) Linear Regressor, (B) Nystroem Kernel SVM, and
(C) Ridge Regressor. The residual measured for the model‐predicted responses are shown in (D). Similarly, RMSE and MAE calculated for
the three models' responses are presented in (E) and (F), respectively.

AMJAD ET AL. | 11
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presented in Figure 10E,F, respectively. Comparing the
RMSE and MAE of the three models for validation, cross‐
validation, and holdout data sets, it is found that Ridge
Regressor has presented the superior performance in
terms of comparatively the lower errors measured for its
predictions. The errors computed for the Ridge Regres-
sor, that is, RMSE and MAE under validation, cross‐
validation, and holdout data sets are 0.2550, 0.3067,
0.4618, and 0.1893, 0.2203, 0.3870MJ/kg, respectively
which are comparatively lower than those of Linear
Regressor and Nystroem Kernel SVM. The superior
modeling performance of Ridge Regressor to predict the
LHV of the fuel blends in demonstrated, and the model
can be applied to conduct the model‐based simulation
and optimization analysis for the design of optimum fuel
blends to support the zero emissions optimization of the
power plant. Thus, in future work, comprehensive
model‐based optimization analysis using mechanistic
and evolutionary optimization techniques would be
conducted to select an optimum fuel blend that can
support the power generation as demanded from the grid
and reduces the emissions discharge as well.

4 | CONCLUSIONS

In the paper, we employ ML models to predict the LHV
of bituminous fuel blends with lignite and biomass of
different shares. The South African imported bituminous
coal, lignite thar coal extracted from the Thar Coal Block‐
2 mine, sugarcane bagasse and rice husk are analyzed in
the paper. The results show that models generated using
the AutoML platform exhibited acceptable performance
levels in predicting LHV. However, the best model is the
Ridge Regressor with the R2 value for validation, cross‐
validation and holdout equal to 0.993, 0.979, and 0.983,
respectively. The model can be easily applied to predict
the LHV of the considered fuel blends.

Using biomass, we can quickly deal with evolving
anthropogenic issues, that is, greenhouse gases and
organic pollutants emissions.33–35 It will also be advanta-
geous for the environment as it is a green waste which
will replace fossil fuels. Its abundance near the power
plant will resolve the availability issues, and its storage in
the fuel yard can also offset the seasonal changes.
Furthermore, model‐based optimization analysis would
be conducted to design the optimum fuel blends
supporting the power generation and emissions dis-
charge from the plant.

NOMENCLATURE
A ash content (wt.%)
FC fixed carbon content (wt.%)

H hydrogen content (wt.%)
M moisture content (wt.%)
S Sulfur content (wt.%)
V volatile matter content (wt.%)

SUPERSCRIPTS
ad air‐dried basis
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