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Abstract 

Paraphrase plagiarism occurs when text is deliberately obfuscated to evade detection, deliberate 

alteration increases the complexity of plagiarism and the difficulty in detecting paraphrase plagiarism. 

In paraphrase plagiarism, copied texts often contain little or no matching words, and conventional 

plagiarism detectors, most of which are designed to detect matching stings are ineffective under such 

condition. The problem of plagiarism detection has been widely researched in recent years with 

significant progress made particularly in the platform of Pan@Clef competition on plagiarism detection. 

However further research is required specifically in the area of paraphrase and translation (obfuscation) 

plagiarism detection as studies show that the state-of-the-art is unsatisfactory. A rational solution to the 

problem is to apply models that detect plagiarism using semantic features in texts, rather than matching 

strings. Deep contextualised learning models (DCLMs) have the ability to learn deep textual features 

that can be used to compare text for semantic similarity. They have been remarkably effective in many 

natural language processing (NLP) tasks, but have not yet been tested in paraphrase plagiarism 

detection. The second problem facing conventional plagiarism detection is translation plagiarism, which 

occurs when copied text is translated to a different language and sometimes paraphrased and used 

without acknowledging the original sources. The most common method used for detecting cross-lingual 

plagiarism (CLP) require internet translation services, which is limiting to the detection process in many 

ways. A rational solution to the problem is to use detection models that do not utilise internet translation 

services. In this thesis we addressed these ongoing challenges facing conventional plagiarism detection 

by applying some of the most advanced methods in NLP, which includes contextualised and non-

contextualised deep learning models. To address the problem of paraphrased plagiarism, we proposed 

a novel paraphrase plagiarism detector that integrates deep contextualised learning (DCL) into a generic 

plagiarism detection framework. Evaluation results revealed that our proposed paraphrase detector 

outperformed a state-of-art model, and a number of standard baselines in the task of paraphrase 

plagiarism detection. With respect to CLP detection, we propose a novel multilingual translation model 

(MTM) based on the Word2Vec (word embedding) model that can effectively translate text across a 

number of languages, it is independent of the internet and performs comparably, and in many cases 

better than a common cross-lingual plagiarism detection model that rely on online machine translator. 

The MTM does not require parallel or comparable corpora, it is therefore designed to resolve the 

problem of CLPD in low resource languages. The solutions provided in this research advance the state-

of-the-art and contribute to the existing body of knowledge in plagiarism detection, and would also have 

a positive impact on academic integrity that has been under threat for a while by plagiarism. 
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1 Introduction 

 

1.1 Background 

This thesis presents new methods for external (extrinsic) plagiarism detection that combine 

state-of-the-art models used in natural language processing (NLP) with existing plagiarism 

detection methods to address important challenges facing conventional plagiarism detectors. 

External plagiarism detection involves searching for plagiarism in documents by making 

comparison with other (reference) documents (Potthast et al., 2013; Stamatatos et al., 2015; 

Foltýnek et al., 2019). Plagiarism is the act of using other people’s work for one’s own benefits 

without acknowledging the original authors (Meuschke and Gipp, 2013; Foltýnek et al., 2019). 

Plagiarism is a type of text reuse, and as with all text reuse there is always a clear similarity 

between plagiarised (copied) text and their sources (Gienapp et al., 2023). However it is worth 

pointing out that not all text reuse is plagiarism. The main difference lies in the intent of the 

user, plagiarism is often carried out with an intention to evade detection, while text reuse such 

as Journalistic text reuse (Clough et al., 2001) is done without any intentions to evade detection, 

but for plain journalistic purposes. Just because a pair of text are similar does not necessarily 

mean that plagiarism has taken place, the actual intent must be proven independently. 

Plagiarism can also occur when an author recycles (reuses) his previous work (self-plagiarism) 

without proper referencing (Krokoscz, 2021) or when someone’s idea is used (idea plagiarism) 

without proper acknowledgement (Clough and Stevenson, 2011; Vani and Gupta, 2017).  

Plagiarism is one of the most common types of academic misconducts, other types of 

misconducts related to plagiarism include contract writing (Draper et al., 2021), falsification 

and fabrication (Vaux, 2016). Contract writing involves using a third party to complete an 

academic work, it could take the form of ghost-writing or essay mill (Lancaster, 2020; Draper 

et al., 2021). Ghost writing involves outsourcing the writing of an academic work to someone 

else that is not one of the authors, this could be paid for or not paid for, while essay mills/banks 

are collection of already written essays that could be bought and used for ones’ own benefit.  

Falsification and fabrication are more common in scientific research and involve presenting 

false (fabricated or manipulated) information (i.e. results) from a research work (Dal-Ré et al., 

2020). Falsified and fabricated information are not reproducible and result in waste of resources 

(time, money and man-power). Falsification, fabrication and plagiarism are regarded as the 
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worst types of academic misconduct (dishonesty) (Bülow and Helgesson, 2019), some have 

advocated criminalising plagiarism given the damage it causes to academic integrity (and to 

research domains such as in the field of medicine where human lives are involved ), while 

others argue that criminalising one type of academic misconduct will only encourage other 

types of academic dishonesty that are not criminalised (Bülow and Helgesson, 2019). In 

general, some form of retribution should be put in place to deter all types of academic 

misconducts, and the degree of punishment should vary depending on the type of misconduct. 

Plagiarism has been in existence for a long time, but the situation has been made worse by 

recent advancement in internet technology that allows for easy access and movement of large 

amount of information over the internet. Plagiarism is a problem because it discourages 

innovation and creativity, it also misrepresents the originality (efforts) of a submission (Perkins 

et al., 2020), and infringes on the ownership of an author (Clough et al., 2003; Mosco, 2021). 

Plagiarism is prevalent in academic environments (Hopp and Speil, 2021), and has a negative 

impact on academic integrity. Experts on plagiarism recommends a comprehensive approach 

to addressing the problem of plagiarism that includes prevention and detection. Plagiarism 

prevention involves using deterrent measures such as educating students on proper referencing 

and the consequences of being caught, using detection software to check assignments before 

submission, and other preventive measures to discourage students from plagiarizing (Halak 

and El-Hajjar, 2018; Foltýnek et al., 2019). This thesis focuses on plagiarism detection which 

could be carried out manually or automatically. Detecting plagiarism often require large 

amount of document comparison, and processing such amount of documents manually is not 

practical or suitable for real time plagiarism detection. Hence the use of automated systems 

that can quickly search large collections of documents to detect plagiarism is required. The 

main challenge facing conventional plagiarism detection is different obfuscation strategies 

used by plagiarist to evade detection (Potthast et al., 2013; Clough et al., 2015). Obfuscation is 

a technique used to disguise the act of plagiarism, it can take the form of lexical, semantic or 

syntactic changes to texts, such as replacing words with their synonyms (lexical substitutions), 

reordering a text passage, replacing phrases with their semantic equivalent, rewriting passages 

using other words (Clough et al., 2003; Mozgovoy et al., 2010; Clough and Stevenson, 2011; 

Alvi et al., 2021). Another challenging, but less common obfuscation strategy is technical 

disguise, which can occur when text is altered by substituting characters with visually identical 

characters (homoglyphs or foreign characters) or white space characters (Meuschke and Gipp, 

2013, Alvi et al, 2017). Substituted characters are interpreted differently by computers and can 
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alter an entire sequence of text leading to evasion of plagiarism. Technical disguise plagiarism 

could also take the form of replacing text with images/photos (of the replaced text), 

conventional detectors are rendered ineffective in such situations. 

Studies reveal that paraphrase (disguise) plagiarism in the form of summary and translation 

obfuscation are ongoing challenges facing conventional plagiarism detectors (Meuschke and 

Gipp, 2013; Potthast et al., 2013, Meuschke et al., 2018). Summary obfuscation is characterised 

by semantic, syntactic and lexical alterations, while translation (or cross-lingual) obfuscation 

occurs when text expressed in one language is translated to another language and used without 

proper acknowledgement, translating text across languages often result in lexical and syntactic 

changes (Potthast et al., 2013; Clough et al., 2015; Dougherty, 2020). These changes are all 

features of paraphrase expressions. What makes paraphrase plagiarism difficult to detect is that 

in most cases, alterations carried out on copied texts often result in little or no overlapping 

features (e.g. lexicons) to be used as measurement parameters for similarity estimation. This 

research therefore proposed new plagiarism detection methods that addressed these challenging 

types of obfuscation plagiarism. 

The methods proposed in this thesis are designed for monolingual and cross-lingual plagiarism 

detection; for monolingual plagiarism detection which involves searching for plagiarism by 

comparing documents of the same language, this thesis proposes a plagiarism detector that 

combines deep contextual learning with existing plagiarism detection tools to enhance the 

detection of paraphrased (obfuscated) plagiarism. In terms of cross-lingual plagiarism 

detection (CLPD) which involves searching for plagiarism by comparing documents of 

different languages, this research addresses a problem that is more likely to limit CLPD in 

underdeveloped nations, which is their reliance on internet translation services (such as Google 

and Microsoft translates) that is limited in many ways, notably: frequent disconnection and 

slow speed due to high traffic on servers, internet connections (network) not always available, 

not suitable (feasible) for large scale plagiarism detection given the large amount of translation 

required over the web etc. Most underdeveloped nations do surfer from poor internet and (or) 

electricity/power supply to establish steady and reliable connection to the cloud for plagiarism 

detection. To address this problem, this research proposes a multilingual translation model 

(MTM) based on a state-of-the-art neural word embedding model known as the Word2Vec 

model (Mikolov et al., 2013a; 2013b; 2017). The propose MTM is capable of translating words 

across languages with similar accuracy to an online machine translator, but without connecting 

to the internet, and given that the rise of cross lingual plagiarism is mainly due to easy access 
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to common internet translation tools (Ehsan, 2016), the MTM is designed to reproduce the 

output of a common internet translation tool with good accuracy so as to improve precision in 

CLP detection.  

While there are many standalone machine translation (MT) models, most of them are built for 

bilingual translation (Wu et al., 2017; Matusov, 2019) and with parallel corpora which are 

difficult to obtain or create in sufficient amount, especially for low resource languages. Hence 

MT (or neural machine translation (NMT)) models tend to perform poorly on low resource 

languages (Koehn and Knowles, 2017) and cannot be applied in multilingual settings. The 

proposed MTM is designed to be used for multilingual translation, and does not require parallel 

corpora, hence it can be used to detect CLP in multiple languages, and also on low resource 

languages which is still a challenge because of their lack of representation on the internet. Most 

NMT models also struggle with long sentences, and also on short sentences that lack context 

(Koehn and Knowles, 2017; Wan et al., 2022). 

 

1.2 Research Questions and Objectives 

Here are the questions addressed in this research; 

 

1. What are the best performing combination of surface similarity measurement 

tools/techniques (as measured by precision, recall and F1-score) from those described 

in the literature for detecting similar and near similar text?  

 To determine the best combination of surface similarity measurement 

tools/techniques for detecting plagiarised text that have been obfuscated to varying 

degrees of complexity.  

Hypothesis: Since plagiarized text often contain fragments of unaltered texts that 

could link them to their sources, it is therefore possible that with the right 

combination of tools used for detecting surface level similarity which includes 

similarity measures, ngram textual features and tem weight methods, different 

formation of plagiarized text could easily be detected, including cases with high 

degree of obfuscation. 
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2. Can deep contextual learning models be used to enhance the detection of paraphrase 

plagiarism with performances comparable to, or even better than the current state-of-

the-art (SOTA)? 

 To determine whether the application of a DCLM in paraphrased plagiarism 

detection could result in performances comparable to, or even better than the current 

state-of-the-art. 

 

3. Can a multilingual translation model that is independent of internet translation services 

be built using a Word2Vec (word embedding) model and applied to effectively detect 

cross- lingual plagiarism (CLP) with performances comparable to a state-of-the-art 

CLPD model? 

 To determine whether a multilingual translation model can be built by leveraging 

the predictive power of word embedding (particularly the Word2Vec model) and 

applied in CLPD to achieve performances comparable to a state-of-the-art CLPD 

model (based on the T +MA model). 

 To determine whether a Word2Vec model could be trained to reproduce the output 

of an online machine translator and used in CLPD to produce similar performance 

to a commonly used CLPD model (T+ MA) which is dependent (and limited) by its 

reliance on internet translation services. 
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1.3 Research motivations 

Plagiarism detection is a problem (challenge) that has received considerable attention 

particularly in the field of NLP and IR. While significant progress has been made in recent 

years (in plagiarism detection) more still need to be done in terms of improving performance 

on high obfuscation plagiarism detection.  

Common methods used in detecting plagiarism are based on string (or lexical) matching and 

semantic similarity measurement methods (Foltýnek et al., 2019; 2020), in combination with 

text alignment. The string/lexical matching approach searches for overlapping strings in a pair 

of texts and merges nearby overlaps at close proximity  (not more than certain distance apart) 

into a potential plagiarised passage (a process known as text alignment). This approach can be 

implemented using common surface tools such as surface similarity measures, ngrams 

(sequence of words or characters) and term weighing methods (Thompson et al., 2015; 

Sánchez-Vega et al., 2019), and has shown to be effective in detecting verbatim (cut and paste) 

and moderately altered plagiarism cases, but not effective in detecting heavy obfuscation 

plagiarism (with little or no overlapping features for alignment), such as in summary 

obfuscation plagiarism (Vani and Gupta, 2017). However, it is important to note that different 

surface similarity measurement tools capture different dimensions of surface textual features 

that can influence intertextual similarity in different ways, it would therefore be interesting to 

know how combining different textual features along these dimensions would perform in 

detecting plagiarised text with different formation of intertextual similarity ranging from 

verbatim to heavily altered cases.  

In view of the above limitations of string matching methods, several attempts have been made 

to improve their performance by addressing a common strategy used in obfuscating texts called 

lexical substitution (Barrón-Cedeño et al., 2013; Sun and Yang, 2015; Alvi et al., 2021). These 

attempts basically involved the application of semantic methods, including the use of semantic 

relationships in a lexical database (i.e. WordNet) to detect words that were replaced with their 

synonyms in the act of plagiarism, the idea is to increase the amount of matching words for 

better alignment of texts and detection of plagiarism. While this approach seems promising in 

theory, in practice, it does not bring about significant improvement in performance (Ceska and 

Fox, 2011; Nawab et al, 2012), likely due to reliance on lexical databases (i.e. WordNet) which 

are limited in vocabulary size (Achananuparp and Shen, 2008; Manning, 2011; Álvarez-

Carmona et al., 2018), and to words of only certain part-of-speech (POS: nouns, pronouns, 
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verbs and adverbs). Semantic relationships such as path-length in a semantic network (i.e. 

WordNet) has also been applied in plagiarism detection to compute word level semantic 

similarity (Bär et al., 2012; Álvarez-Carmona et al., 2018; Sánchez-Vega et al., 2019). Vocabulary 

size limitation, as well as absence of contextualised information are limiting to this approach. 

Word embedding models such as the Word2Vec have also been used to detect plagiarism with 

promising results (Álvarez-Carmona et al., 2018; Alvi et al., 2021), however absence of 

contextualised information limits the effectiveness of such non-contextualised models. 

High obfuscation plagiarism such as summary and paraphrase plagiarism are characterised by 

semantic, syntactic and lexical changes such as replacing phrases with single words (semantic 

equivalents), changing the order of a text passage, deleting and inserting words in a passage. 

These alterations are difficult to detect by conventional plagiarism detectors, and would require 

models that are designed to learn deep characteristics in texts, including semantic and syntactic 

patterns. 

Recent advancement in deep learning (DL), particularly in contextualised (sequence) learning 

(McCanan et al., 2017; Ethayarajh, 2019) resulted in state-of-the-art performances in many 

NLP tasks including text classification, sentiment analysis, entailment, text summarisation etc. 

(Devlin et al., 2018; Reimers and Gurevych, 2019; Miller, 2019). Different deep contextual 

learning models (DCLM) such as ELMo (Embeddings from language model; Peters et al., 

2017), Bert (Bidirectional encoder representation from transformers; Devlin et al., 2018), 

Generative pre-training (GPT; Radford et al., 2018; 2019) have been proposed in the literature. 

These models have different abilities in learning the context of a word (relationship between 

words in context), and can even capture long distance dependencies between words and 

sequences, which is particularly useful in comparing pairs of texts that are similar but appear 

lexically and syntactically different; a typical characteristics seen in paraphrase and summary 

obfuscation plagiarism. CLM are pre-trained on large datasets with a language model objective 

(next word prediction), and are designed to be fine-tuned to specific NLP tasks (for transfer 

learning) (Ethayarajh, 2019) with minimal architectural modification. DCLMs have the ability 

to learn deep semantic and syntactic features in texts, which can be used to estimate the 

semantic similarity between text sequences. The task of plagiarism detection can be reduced to 

searching for semantically similar texts in pairs of documents, a common practice is to make 

comparison at sentence level (Burrows et al., 2013; Farouk, 2019). Hence applying context 

learning models (seq2seq) to an existing plagiarism detection model would not require much 

modifications, given that a sentence is a sequence of words. The ease with which contextualised 
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learning models fits into the plagiarism detection process, and their ability to extract deep 

semantic and syntactic features in texts make them promising for detecting obfuscation 

plagiarism. In addition, most of the NLP tasks which DCLMs have demonstrated remarkable 

effectiveness are similar to plagiarism detection as they all require the computation of semantic 

text similarity in order to achieve their individual objectives (Eneko et al., 2016; 2017). Given 

the differences in abilities of these models in context learning, it is therefore reasonable to 

investigate how well deep contextual learners from these two architectures would perform in 

terms of detecting high obfuscation plagiarism, their relative performances, and also their 

comparison to existing plagiarism detection tools (to the state-of-the-art). 

The other challenge addressed in this research is the reliance of common CLP detectors on 

internet translation services that is limited in many ways as stated in section 1.1. The main 

challenge in CLPD arises from the fact that comparison is made between languages that do not 

have the same semantic, syntactic and lexical features for establishing similarity (via overlaps). 

Hence translating text across languages is necessary for many CLP detectors, although models 

based on statistical machine translation (MT) do not require such translations, but their reliance 

on parallel corpora which are often insufficient or not available for languages that are not well 

represented on the internet limits their use, MT methods are not well developed for efficient 

CLPD. The most common method used in detecting CLP is the translation monolingual 

analysis (T+MA) method (Barrón-Cedeño et al., 2013) which involves translating texts to a 

uniform language and applying a monolingual plagiarism detection method to detect 

plagiarism. Most implementation of the T+MA method require the use of internet translation 

tools, which are limited in many ways as stated earlier. To address this problem, this research 

experimented on building a language translation model (that is independent of the internet) by 

leveraging the learning and predictive capability of a Word2Vec (Mikolov et al., 2013) neural 

embedding model. 

The Word2Vec model is a neural word representation model (word embedding model) that 

learns the context of a word with the objective of generating similar vector representations for 

words that occur frequently in the same context. Comparing vector representations using a 

similarity function such as the cosine measure usually results in similarity values that decreases 

progressively (from the maximum score:1, to the minimum score:0) with decrease in similarity 

of vector representations (1 represents perfect similarity, while 0-means completely dissimilar). 
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Considering the way the Word2Vec model works, it may be possible to modify the model to 

compute similar word representations to semantically similar words in different languages as 

opposed to non-semantically similar words, and apply the modified model in the T+MA model 

for translating texts across languages. How the resultant model will perform in comparison to 

the state-of-the-art in CLPD remains to be seen. 

The next section outlines the contributions of this thesis to knowledge. 

 

1.4 Research contributions 

1. We proposed a paraphrase plagiarism detection model that integrates a deep 

contextualised learning model into an existing framework used in plagiarism detection 

to enhance the detection of paraphrase plagiarism. The proposed model is novel and 

original; unlike existing methods that either rely on surface features (i.e. string 

matching) or context independent semantic features (i.e. WordNet, Word2Vec), the 

proposed model advances the-state-of-the-art by using features deeply embedded in the 

context of texts to measure semantic similarity between text sequences, which is at the 

core of paraphrase plagiarism detection. The proposed model goes a long way to 

address the problem of paraphrase plagiarism which is one of the major challenges 

facing conventional plagiarism detection, and encourages future research in the 

application of DCLMs in plagiarism detection. 

 

2. We proposed a cross lingual plagiarism detection (CLPD) model that uses a novel yet 

simple and effective multilingual translation model (MTM) for translating text across 

multiple languages in CLPD. The MTM is novel; it uses a Word2Vec model trained on 

a multilingual embedding space that maps semantically similar words in different 

languages into the same context, and can be directly used in candidate selection and 

text alignment in CLPD, which are two of the most important stages in plagiarism 

detection. The application of the MTM in the proposed CLPD model makes it novel 

and original. Furthermore, the MTM does not require parallel or comparable corpora to 

be trained, which as mentioned earlier, are difficult to obtain especially for low resource 

languages that are underrepresented in the internet, the proposed CLPD model can 

therefore be used for CLPD in low resource languages which is an ongoing challenge. 

The proposed model could also be used as standalone for detecting CLP in 
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underdeveloped countries where either internet connection and (or) electricity supply 

are unreliable to establish stable connection to the cloud for plagiarism detection. 

 

3. Findings from our experiments revealed important details regarding specific 

paraphrased types (or expressions) embedded in plagiarised texts that could be detected 

by the application of DCLMs, and a few others that are challenging to detect; this 

finding is novel and could inform developers of where to focus their attention so as to 

build DCLMs with good quality representations for a wider range of downstream NLP 

tasks. 

 

4. We proposed the best combinations of common surface similarity measurement 

techniques/tools for detecting plagiarised texts that have been obfuscated to varying 

degrees of complexity, in addition, findings from our experiments revealed specific 

characteristics of surface tools with respect to different complexity (features) in 

obfuscated text. The proposed combinations and findings are novel, and provide users 

with vital information about when best to use surface similarity measurement tools, 

what tools to use and the best combinations to accomplish specific textual similarity 

measurement tasks with optimal performance.  

The next section contains overview of the remaining chapters in the thesis. 

 

1.5 Overview of the Remaining Chapters 

In order to answer the research questions (and address the above stated problems), several steps 

were taken which are broken down into chapters. Each chapter is a concise description of a 

step taken and how each step contributes to the end goal of this research. The rest of this thesis 

is organised as follows: 

Chapter 2: reviews the relevant literature on plagiarism and plagiarism detection, including 

current challenges facing plagiarism detection such as paraphrase and translation 

obfuscation. The chapter discusses information retrieval (IR), natural language 

processing (NLP) and machine learning tools relevant to this research,  including 

common IR and NLP techniques such as data pre-processing techniques, term 

weighting methods and ngram document models, intertextual similarity 
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measurement techniques and tools used in the literature for computing lexical, 

semantic and syntactic similarity, and state-of-the-art deep learning models used for 

contextualised and non-contextualised learning, such as transformers, LSTMs and 

Word2Vec. The chapter also reviews current methods proposed in the literature for 

detecting cross lingual plagiarism, and relevant evaluation metrics used for 

plagiarism detection systems, and concludes with description of the research 

problems, and a number of tools relevant to the problems.  

Chapter 3: covers specific tools, techniques and methods used in this research to address the 

problems identified in the literature. This chapter discusses the relevance of the 

chosen methods to the research problems, the specific way they were implemented 

in this research, and the rationale for the choices made compared to other relevant 

methods. The chapter describes the implementation of selected NLP tools and 

techniques such as text pre-processing techniques, n-gram models, and deep learning 

models, including contextualised and non-contextualised learning models. Also 

described are IR term weighting methods, candidate selection and document 

retrieval methods, and surface similarity measures. The chapter also describes the 

corpora and evaluation methods used in this research for building plagiarism 

detection systems and evaluating the performance.  

Chapter 4: addresses the first research question, and contains experiments carried out to 

determine the best performing combinations of surface similarity measurement 

tools/techniques for detecting plagiarised text that have been obfuscated to different 

levels of complexity. The chapter describes evaluation of the performance of 

different combinations of common surface similarity measurement tools/techniques 

including term weighting methods, ngram document representation models and 

selected surface similarity measures. 

Chapter 5: addresses research question two, which investigates whether DCLMs could be used 

to detect paraphrase plagiarism with performance comparable to, or better than a 

state-of-the-art model. The chapter describes experiments carried out to evaluate the 

performance of two common state-of-the-art DCLMs in the task of paraphrase 

plagiarism detection using corpora that contains paraphrase plagiarism and standard 

evaluation metrics. The chapter also discusses results obtained from comparative 
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evaluation of the performance of the models against standard baselines and a state-

of-the-art paraphrase plagiarism detection model. 

Chapter 6: addresses the third research question, which investigates whether a language 

translation model that performs comparably to an online machine translator could be 

built and used in CLPD without connecting to internet translation services. The 

chapter contains evaluation of a proposed multilingual translation model (MTM) that 

uses a Word2Vec model that is trained to predict the semantic equivalent of a word 

in other languages with similar accuracy to an online machine translator. The chapter 

describes evaluation of the performance of a CLPD model (that uses the MTM) for 

CLPD without connecting to internet, using datasets that contain CLP and standard 

evaluation methods that involves performance comparison against baselines and 

previous studies. The chapter also describes experiments carried out to evaluate the 

performance of the proposed CLPD model on low resource languages. 

Chapter 7: discusses the main findings of this research and relates the findings to the research 

questions and objectives, and to previous (related) research work on plagiarism 

detection. The chapter also discusses the relevance of the contributions of this 

research, the limitations, and proposes areas of future work. 

1.6 Summary 

This chapter introduces a research on external plagiarism detection that addressed existing 

problems on mono and cross lingual plagiarism detection. In regards to monolingual 

plagiarism, the problem addressed includes the poor performance of conventional plagiarism 

detector with respect to paraphrase plagiarism detection, which is an ongoing challenge. In 

terms of cross lingual plagiarism, the problem addressed is the reliance of common CLPD 

models on online machine translation services which is limiting in many ways (as stated in 

section 1.3). The solutions proposed involve using state-of-the-art methods in NLP such as 

contextualised and non-contextualised deep learning models relevant to the research problems, 

and several contributions were made to the body of knowledge in plagiarism detection as a 

result, see section 1.4 for details of the contributions made. This chapter concludes with an 

overview of the remaining chapters in the thesis. 

The next chapter reviews the relevant literature on plagiarism detection. 
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2 Literature Review 

 

2.1 Introduction 

In the last chapter, the background of this research was briefly discussed, which includes the 

research questions, aims/objectives, contributions and motivations. This chapter reviews the 

relevant literature on plagiarism and plagiarism detection; the aim here is to review state-of-

the-art information retrieval (IR) and natural language processing (NLP) methods and tools 

that have been proposed in the literature for addressing the problem of plagiarism detection, 

and related textual similarity measurement problems so as to identify the most suitable set of 

tools to build models for addressing the problems raised in this research. 

The scope of this literature is limited to plagiarism detection in natural language (plain text), 

and does not include plagiarism in programming language. The literature covers plagiarism 

and common types/forms of plagiarism, plagiarism detection and common methods used in the 

literature to detect plagiarism (including newer methods based on word embeddngs), surface 

similarity measures and term weighting methods that have been successfully used in the 

literature to detect plagiarism and related textual similarity measurement tasks, cross-lingual 

plagiarism and common methods used in the literature to detect cross-lingual plagiarism 

(including newer methods based on graphs and word embeddings). The literature also covers 

challenges facing conventional plagiarism detection, and common methods used in the 

literature to evaluate plagiarism detection and classification systems. 

The next section reviews the literature on common types/form of plagiarism. 

 

2.2 Types/Forms of Plagiarism 

Plagiarism is the use of other people’s work without referencing the sources. There are different 

ways in which a text passage can be plagiarised, common forms of plagiarism includes; 

verbatim copy (copy and paste), paraphrase plagiarism and plagiarism of ideas (Vani and 

Gupta, 2017), technical disguise (Eisa et al., 2015; Velásquez et al., 2016; Gupta, 2016; Alvi 

et al., 2017; Foltýnek et al., 2019) and self-plagiarism (recycling) (Foltýnek et al., 2019; 

Gregory and Leeman, 2021; Krokoscz, 2021). 
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 Verbatim Plagiarism (cut and paste) 

In copy and paste plagiarism, large chunks of texts from one or more reference documents are 

lifted and used without any alterations to the copied text. This form of plagiarism does not 

require much effort from a plagiarist and can easily be detected using simple text matching 

techniques such as longest common subsequence and n-gram overlap (Clough and Stevenson, 

2011; Oberteran, 2013). Verbatim plagiarism is the easiest to detect because they contain no 

alterations. 

 Paraphrase Plagiarism 

In paraphrase plagiarism, plagiarist may alter one or more passages taking from one or more 

source documents before using them. The aim of the plagiarist in this case is to disguise the 

plagiarised passages in ways that would mislead a reader to believe that the suspicious 

document was solely written by the plagiarist. Popular alteration techniques used by plagiarist 

includes shuffling of words and sentences, complete removal of words and phrases, swapping 

of words with their synonyms etc. Paraphrase plagiarism is the most widely used by plagiarists, 

and varies in complexity. Clough and Stevenson described two types of paraphrases, they 

include word and sentence paraphrase. In word paraphrase, one or more words in a passage are 

replaced or re-written using other words, while sentence paraphrase involves re-writing one or 

more sentences in a passage in one’s own words before using the passage. Paraphrase 

plagiarism is an ongoing challenge (Foltýnek et al., 2019; Meuschke et al., 2019) to plagiarism 

detection, current detection systems are not well equipped to deal with the variety of paraphrase 

expressions found in texts, and hence their performance has been unsatisfactory. 

A comprehensive study by Barrón-Cedeñoet al., (2013) revealed about 20 types of paraphrase 

expressions found in plagiarized text grouped into the following categories: 

 Morphological changes: include all changes that affect the form in which a lexical unit 

appear in text, this include inflectional, derivational and modal verb changes. 

 Lexical changes: include all changes that involves substituting one lexical unit with 

another, or altering the structure of a unit, changes under this category include spelling 

and format changes, converse, opposite-polarity, synthetic/analytic and same-polarity 

substitutions. 

 Semantic changes: all changes that involves rewriting portion of text without semantic 

changes to the text. 
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 Syntax based changes: include all changes that affect the structure of texts such as 

moving lexical units around, they include coordination changes, subordination and 

nesting changes, ellipsis, negation switching and diathesis.  

 Discourse changes: all changes that affect the style, format, or mode in which text is 

presented, they include punctuation and format changes, direct/indirect style 

alterations, sentence modality changes and syntax discourse structure changes.  

 Miscellaneous changes: includes all change to text that involves reordering, insertion 

or deletion of one or more lexical units. 

It is worth noting that paraphrase plagiarism is similar to paraphrasing in general as similar 

alteration techniques are typically employed, and they both retain semantic similarity between 

altered texts and their sources. However studies reveal that lexical substitution is by far the 

most common paraphrase technique found in plagiarized text (Barrón-Cedeñoet al., 2013), it 

is therefore important for this to be reflected in a paraphrase plagiarism corpus. In addition, 

unlike in general paraphrasing where a pair of text has to be semantically similar, in paraphrase 

plagiarism a pair of documents may not be semantically (or thematically) similar, but may 

contain one or more semantically similar passages.. Taking the above into account, it is 

reasonable to say that in the absence of paraphrase plagiarism corpus, a corpus created for the 

task of paraphrase identification could be used for training and evaluating paraphrase 

plagiarism detection models, especially when the only task is to compare a pair of text passages 

for semantic similarity, and when other important stages in plagiarism detection such as 

candidate document selection and post processing (that require details of actual plagiarized text 

and their sources (offset and length of copied passages)) are not required.  

Given that paraphrase plagiarism is an ongoing challenge facing plagiarism detection, this 

thesis therefore explore the possibility of addressing paraphrase plagiarism using state-of-the-

art NLP tools. 
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 Idea Plagiarism 

Plagiarism of idea involves representing other people’s ideas in one’s own words, contrary to 

the types of plagiarism described above, this form of plagiarism cannot be detected by matching 

texts in two documents as an idea could be expressed in entirely different words from their 

sources rendering conventional detection algorithms ineffective. Idea plagiarism is common in 

the academia, ideas from unpublished work, as well as unpublished methodologies could be 

plagiarised (Zimba and Gasparyan, 2021). Summary plagiarism to some extent is regarded as 

idea plagiarism (Vani and Gupta, 2017) as it involves high level of paraphrasing that render a 

plagiarised passage completely different from it source. 

 Technical Disguise Plagiarism 

Technical disguise are obfuscation strategies carried out to render a plagiarised text 

unrecognizable to computational machines, common ones include the use of foreign characters, 

inserting white spaces in between the characters of a word, and submitting images of text in 

place of the actual text. A plagiarism detector designed for a particular language is unlikely to 

recognize foreign characters of other languages, for example a system designed to detect 

plagiarism in English text will be unable to recognize non-ascii characters. In addition, 

inserting white spaces in between characters in a word renders the word lexically unmatchable 

(undetectable). Research on plain text and computer code plagiarism detection have been well 

establish, image plagiarism detection is still in its infancy. Using images of text in place of the 

actual text renders most conventional plagiarism detectors ineffective. 
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Table 2.1: Types of Plagiarism, their Features and Examples 

Plagiarism 

type 

Attribute/features Example 

Source (original)text                    Suspect text 

Copy and 

paste 

(verbatim) 

plagiarism  

Characterized by unaltered text 

sequences; cut from a source 

document and paste on suspect 

document without any form of 

alteration. 

In object-oriented 

programming, inheritance is a 

way to form new classes 

(instances of which are called 

objects) using classes that have 

already been defined. The 

inheritance concept was 

invented in 1967 for Simula. 

 

In object-oriented 

programming, inheritance is 

a way to form new classes 

(instances of which are called 

objects) using classes that 

have already been defined. 

The inheritance concept was 

invented in 1967 for Simula. 

 

Paraphrase 

plagiarism 

Characterised by lexical, semantic, 

syntactic or miscellaneous 

alterations to copied text. 

 

Form by removing text from a 

source document and altering it 

using different paraphrase 

techniques, followed by pasting the 

altered text in a suspect document 

without referencing the original 

source. 

These classes have some of the 

behaviour and attributes which 

are in existent in the classes that 

it inherited from. The purpose 

of inheritance in object oriented 

programming is to minimize 

the reuse of existing code 

without modification. 

 

The new classes, known as 

derived classes, take over (or 

inherit) attributes and 

behavior of the pre-existing 

classes, which are referred to 

as base classes (or ancestor 

classes). It is intended to help 

reuse existing code with little 

or no modification. 

 

Plagiarism of 

ideas 

Formed by rewriting ideas taken 

from a source passage using mostly 

different words and syntax so that 

the altered passage has no surface 

resemblance to its original but 

retain semantic similarity i.e. such 

as in summary plagiarism.   

 

Matching words are more likely to 

be name entities or technical 

terminologies that cannot be 

altered. 

There are different types of 

paraphrase plagiarism, one 

common but not well known 

type is idea plagiarism which 

involves using other people’s 

ideas without referencing them. 

 

 

Applying concepts derived 

from external sources 

without acknowledge is an 

academic misconduct that’s 

not often talked about. 

 

Technical 

disguise 

Characterized by foreign words and 

white characters that are not 

recognized by detection algorithm. 

Formed by inserting white or 

foreign characters in source text, 

and inserting the altered text into a 

suspect document. 

The purpose of inheritance in 

object oriented programming is 

to minimize the reuse of 

existing code without 

modification. 

 

The puŕpose of inheŕitance in 

óbject oriented ƥrogramming 

is to minimise the reūse of 

èxisting code without 

modification. 

 

 

Table 2.1 contains summary of common plagiarism types identified in the literature, including 

brief description of their main features/characteristics and examples of how they may appear 

as passages in text documents. 

The next section reviews plagiarism detection and common methods used in the literature to 

detect plagiarism. 
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2.3 Plagiarism Detection 

Plagiarism detection is the task of searching for reused texts in a suspect document, in simpler 

terms, plagiarism detection involves searching for passages of texts that are similar in two 

documents using similarity measurement techniques (Meuschke and Gipp, 2013; Foltýnek et 

al., 2020). Given a suspicious document SPd and a collection of source (reference) documents 

,}.,.,...,{ 21 SCnSCSCSC dddD  the task of plagiarism detection is to find portions of plagiarised 

texts in the suspicious document SPd that have been removed from one or more source 

documents SCD by comparing SPd with each source document in  SCD . Plagiarism detection 

can be carried out in natural language and programming language/source code (Devore-

McDonald and Berger, 2020). This review is about plagiarism detection in natural language. 

There are basically two types of plagiarism analysis, they include external (extrinsic) and 

intrinsic plagiarism analysis (Oberreuter et al., 2011; Hagen et al., 2015; Potthast et al., 2019). 

External plagiarism analysis involves searching for plagiarism in a suspect document by 

comparing the suspect document with a reference document (Gupta, 2016; Foltýnek et al., 

2019), while intrinsic plagiarism analysis involves searching for plagiarism in a suspect 

document using stylometric techniques to find variations or inconsistencies in writing style, it 

is usually carried out in the absence of reference documents, and very similar to authorship 

attribution as they both involve searching for inconsistencies in writing in a document 

(Stamatatos et al., 2016; Potthast et al., 2019). analysis is Intrinsic plagiarism was first 

introduced in Zu Eissen and Stein (2006) and has since become a widely accepted type of 

plagiarism analysis, and of the two types of plagiarism analysis, the external one is more 

common; it has been in existence much longer and has been well researched upon. Since this 

research is focused on external plagiarism detection, the discussion will mainly be focused on 

external plagiarism analysis. Much of the earlier research on external plagiarism detection 

involves searching for plagiarism in documents of the same language (monolingual), in more 

recent studies, the scope have been expanded to include searching for plagiarism in documents 

of different languages, also known as cross-lingual (translation) plagiarism detection (Barrón-

Cedeno and Rosso, 2009; Potthast et al., 2011; Franco-Salvador et al., 2016; Stegmüller et al., 

2020). Cross lingual plagiarism (CLP) occurs when text original expressed in a given language 

is translated into a different language and used without properly referencing the original source. 

Searching for CLP usually involves translating texts to their original sources using a language 

translation tool such as Google translate and applying a standard monolingual detection method 
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to detect plagiarized passages. This research focuses on improving both mono and cross lingual 

plagiarism detection. 

2.4 Monolingual Plagiarism Detection 

Monolingual plagiarism (MLP) detection involves searching for plagiarism by comparing texts 

of the same language. The task of detecting plagiarism in text documents can be divided into 

three subtasks, namely data pre-processing, candidate source retrieval and exhaustive 

document comparison and post-processing [text alignment] (Stamatatos et al., 2015; Gupta, 

2016; Hourrane and Benlahmar, 2017; Potthast et al., 2019). Figure 2.1 is schematic of a 

traditional plagiarism detection system showing the main stages involved. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematics of a generic plagiarism detection system showing the main processes involved 

in plagiarism detection. 

The diagram in fig 2.1 shows the stages involved in plagiarism detection following the 

introduction of suspect document. The first stage is data pre-processing which involves using 

NLP techniques to transform a suspect and a collection of source documents into uniform 

comparable format, and to remove noisy unwanted elements that may interfere with the 

detection process. The second stage is a typical information retrieval (IR) stage known as 

candidate selection, and involves (transforming the pre-processed source document) using the 

pre-processed suspect documents as query to retrieve a few number of source documents as 

candidates from the source document repository; these are usually documents that contain 

significant amount of query terms. A vital part of candidate selection is query formulation; 

queries have to be formulated so as to increase the chance of retrieving potential plagiarised 

Candidate doc search 

Retrieved candidates 

documents 

Pairwise document similarity 

search (suspect & candidate) 

source) 

Source documents 

collection 

Suspect document 

(Pre-process) 

Post-process plagiarised fragments 

(seeding, merging, filtering) 
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candidates with high accuracy and at a low computational cost, a common technique is to use 

sequence of text (ie. words/characters/ngrams) as queries, the rationale is that significant 

amount of matching sequence between a suspect and a source document is more indicative of 

plagiarism than single words, see the section on candidate selection for more on query 

formulation. The next stage is pairwise document comparison between the suspect document 

and each candidate, this process involves searching for plagiarised text fragments by comparing 

fragments of text in the pair for similarity using a similarity function (i.e. string (e.g. cosine 

measure) or semantic based). The final stage is post-processing (seeding, merging and filtering) 

which involves retrieving matching fragments (seeding), merging nearby fragments at close 

proximity into plagiarised passages, and filtering off all passages that do not satisfy certain 

conditions, such as size (length). These stages are explained in more details in the literature 

below:  

 Data Preprocessing 

Data pre-processing removes noisy and unwanted features from texts that may interfere with a 

comparison algorithm, it also presents documents in uniform comparable format. Typical pre-

processing steps used in NLP and IR include tokenization, stop-word removal, case 

normalization (all characters are nomalised to the same case) and stemming (Chong et al., 

2010; Gupta, 2016; Foltýnek et al., 2019). Tokenization parses documents into individual 

words; in effect a document is broken down into bag-of-words (index terms) enabling detailed 

document comparison to be carried using individual terms as features. The word ‘term’ is used 

to describe a word or sequence of words (or characters) in a document. Stop-words are words 

with low discriminating power usually present in most documents (e.g. the, she, who etc.); they 

are misleading to a comparison algorithm and increase chances of false matches, hence they 

are often removed prior to document comparison. There are arguments about whether stop-

words should be removed or not before document comparison, such as when stop-words are 

the primary discriminators and removing them will result in error or false positives (Turney, 

2010). Hence some experts are against the removal of stop-words. One notable effect of stop-

word removal is that it speeds up comparison (Saiyed and Sajja, 2022) because it results in 

fewer words to be compared. Case normalization (case folding) is often carried to normalize 

all characters to the same alphabetic case; upper or lower case. Case folding (normalization) 

helps in eliminating discrepancies (Alvi, 2020) that may arise when a term co-occur in a pair 

of text in different cases (such as ‘Fan’ and ‘fan’), a term that occurs in different cases is 
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considered different by a comparison algorithm, however there situations where it is best not 

to case normalize, especially when dealing with abbreviations as it could result in false 

matches, for example the abbreviation ‘USA’ and a person’s name; ‘Usa’ would result in a 

false match if they are both nomalised to the same alphabetic case. Stemming reduces words 

to their root form and increases chances of overlaps (for example: ‘friendly’, ‘friendship’, 

‘friend’ are all reduced to ‘friend’). Stemming can increase efficiency and recall of a 

comparison algorithm (Ceska and Fox, 2011). However, there are times when it is best to leave 

words in the original form in which they occur in texts, as they may be more discriminatory 

that way. 

 Candidate Source Document Retrieval 

Candidate source documents are potential documents from a collection of source/reference 

documents from which one or more text passages have been removed and used for plagiarism. 

Candidate retrieval in plagiarism detection is a typical IR task similar to web search (Potthast 

et al., 2013; Vani and Gupta, 2016; Foltýnek et al., 2019). To ensure efficiency when dealing 

with large document collections, a search engine (such as Apache Lucene) may be required to, 

otherwise a simple database is fine for small document collections. Candidate retrieval involves 

querying a database of source documents and retrieving a handful of potential candidate 

documents using IR techniques such as keyword search and document ranking. The aim of 

candidate retrieval is to reduce the search space of the subsequent plagiarism detection phase, 

which is computationally intensive (Potthast et al., 2014; Vani and Gupta, 2016; Meuschke et 

al., 2018; Foltýnek et al., 2019). Candidate retrieval is not necessary on small source document 

collections, applying candidate selection in such case would not result in any significant 

performance gain. The main component of a candidate retrieval system includes a query and a 

search engine (an inverted index data structure and a ranking method). In the context of 

plagiarism detection, a query is a suspect document, a source document collection is stored in 

an inverted index structure in a database/file, and ranking ensures only the most relevant 

documents to a query are retrieved as candidates.   
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Figure 2.2: A Simple Inverted Index Data Storage Structure 

Fig 2.2 is an inverted index table built with terms in doc1, doc2 and doc3. The table itself 

comprises of three columns namely; index, Document-ID and term frequency.  To retrieve all 

documents that contain the word sea, simply query the table with the word sea and all 

documents that contain the word sea will be retrieved, in this case, Doc1 and Doc3 will be 

retrieved along with their term frequencies. 

The main objective of a candidate retrieval system in plagiarism detection is to retrieve 

plagiarised sources at a low retrieval cost (Potthast et al., 2013; 2014; Kong et al., 2019). 

Keyword/phrase selection and query formulation is quite important to ensure good 

performance, using all keywords/phrases as queries for candidate retrieval is quite expensive 

and may defeat the objective of candidate retrieval. A proper query selection methods is 

necessary to ensure that the most relevant plagiarised sources are retrieved at minimal 

computational cost. A common method is to select keywords using term frequency inverse 

document frequency (TFIDF: Robertson, 2004) relevance weighting scheme. Kong et al., 

(2012) used only terms with high TFIDF as queries to retrieve candidate documents. Ravi and 

Gupta (2015) combined POS tagging and TFIDF to select keywords for candidate retrieval. 

While using IR methods such as TFIDF could result in the retrieval of relevant documents, it 

is important to note that relevance in IR is defined in terms of topic similarity, but a pair of 

documents (query and candidate) of similar topic (with similar terms) may not necessary be 

plagiarized. To increase the chances of retrieving potential plagiarized documents, candidate 

selection in plagiarism detection focusses more on query formulation, which is the creation of 
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queries from suspect text to maximize the retrieval of plagiarized documents. One of the best 

indicators of plagiarism is matching sequence of text, and the longer such matching sequences 

(ie n-grams), the higher the chances of plagiarism (Thompson et al., 2015). This is clear from 

previous studies, for example Grozea and Popescu (2012) applied character sequence (16-

grams) to detect plagiarism and proposed encoplot (Grozea and Popescu 2012; Amzuloiu et 

al., 2021) which emerged as the best performing system in the Pan@clef 2012 (Potthast et al., 

2012) on plagiarism, similarly Stamatatos (2011) used stop-word ngram (size=8) as query to 

retrieve candidate source documents. In a more recent study, Kong et al., (2019) reiterated a 

fact about the lack of guarantee that candidate documents retrieved from a search engine would 

be true plagiarised sources given the heuristic nature of query formulation and aggregation of 

query results, and proposed a method that uses logistic regression to ensure queries from a 

suspect document closely correlate for better aggregation of query results. Candidate retrieval 

is one of the most important stages in plagiarism detection, poor execution of this stage could 

result in potential plagiarised source being left from the subsequent stages. High recall is 

therefore essential, but at a low cost (Hagen et al., 2015). When potential source documents 

are retrieved, the next stage is to search and extract plagiarized text passages and their 

respective sources from suspect and source documents using text alignment techniques. 

 Exhaustive Document Comparison and Plagiarism Detection 

This subsection is divided into two, the first part reviews state-of-the-art methods used in the 

literature to detect plagiarised texts, and the second part reviews methods that are used for post-

processing (seeding, merging and filtering). Common methods used in the literature to detect 

plagiarised texts are: string (lexical) matching, syntactic and semantic similarity detection 

methods (Eisa et al., 2015; Gupta, 2016; Foltýnek et al., 2019). Each method comprises of a 

number of techniques designed to compare texts for similarity, details of these methods and 

their respective techniques are described below. 

 Lexical (String) Matching Method 

This method comprises of all plagiarism detection approaches that use string overlaps to 

determine intertextual similarity. Approaches under this category are ngram overlap, Vector 

space method, fingerprinting (Gupta, 2016; HaCohen-Kerner and Tayeb, 2017; Foltýnek et al., 

2019) and Karp Rabin Greedy Sting Tilling (Clough et al., 2002; Jayapal, 2012; Alvi et al., 

2021). Details of these approaches are described below. 
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 The Vector Space Document Ranking Approach  

A vector space document ranking model is any information retrieval model that represents 

documents as vectors and ranks them based on their similarity to a query vector. The vector 

space model (VSM) is the most common IR model used for ranking documents based on 

relevance to a user’s information need (Turney, 2010; Marcos-Pablos and García-Peñalvo, 

2020). In the VSM approach, documents and queries are represented as vectors in a multi-

dimensional space, the queries are then compared with the document vectors (pairwise) using 

a similarity function (cosine similarity in many cases) and the documents are ranked by 

decreasing order of similarity based on their similarity scores. The intuition here in terms of 

plagiarism detection is that, higher ranking documents are more similar to a query, and are 

considered likely plagiarised sources. However, unlike in IR where relevance is based on 

matching terms between queries and documents, in plagiarism detection relevance is based on 

matching features (e.g. substrings), and not limited to terms alone. 

When implementing the VSM, text must first be transformed to vectors by tokenization to 

either characters, words or sentences, and weights are assigned to tokens/terms. Term 

weighting is commonly done by assigning weights to terms either by their term frequency (TF) 

count, term frequency inverse document frequency (TFIDF), which is a relevant weighting 

scheme that assigns higher weights to relevant terms, where relevance depends on the rarity of 

a word in a document as opposed to a collection. Binary weighing is also common and involves 

assigning equal weights to all terms present in a document, and a value of zero to terms not 

present. Details of these common term weighing methods are described in section 2.5.3. In 

NLP, newer methods have been proposed for vectorising texts by transforming words in text 

sequences to vectors of real numbers, and aggregating word vectors into a single vector 

representation for a text sequence. The two most common NLP methods used in vectorising 

words are one hot vector encoding and word embeddings (Salim and Mustafa, 2022; Lauriola 

et al., 2022). In one hot vector encodings, words are transformed to vectors using a binary 

system that assigns a value of 1 to represent the position of a word in the vocabulary of a model, 

and zero to all other dimension of the vector. The problem with one hot vector encoding is that 

it can easily result in extremely large vectors with length equal to the size of the vocabulary of 

a model, it also ignores vital contextualised information that captures the real meaning of words 

in context, and results in orthogonal vectors (perpendicular with dot product of zero) for 

different terms (Lauriola et al., 2022). Below is an example of how a sequence of text could be 

encoded using a one hot vector encoding;  
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The text sequence: ‘one hot vector encoding’ is encoded as follows: 

 

one          [0, 0,1,0,….0]  

hot           [0,1,0,0,….0] 

vector      [0,0,0,0,….1] 

encoding [1,0,0,0,.…0] 

 

[[0,0,1,0,….0],     [0,1,0,0,….0],   [0,0,0,0,….1],    [1,0,0,0,….0]] 

Word embeddings on the other hand addressed most of the problems with one hot vector 

encoding by taking into account contextualized information using a fixed size window to 

capture the context of words, and specifying fixed size length for all vectors irrespective of 

vocabulary size. 

For a window size of four word sequence, the above text sequence could be represented using 

word embeddings as follows: 

 

 

one          [1,0,0,0]  

hot           [0,1,0,0] 

vector      [0,0,1,0] 

encoding [0,0.0,1] 

 

[[1,0,0,0], [0,1,0,0], [0,0,1,0], [0,0,0,1]] 

The above example shows word representations using word embeddings to capture the context 

of the text sequence in a window size of four word sequence. 
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The VSM in combination with term weighing and similarity function are often used for both 

candidate retrieval and detection of plagiarised texts (exhaustive comparison stage). Zechner 

et al., (2009), Ekbal et al., (2012), Kong et al., (2013) and Vani and Gupta (2017 applied the 

VSM and TFIDF weighting to rank and retrieve candidate source documents. Sánchez-Vega-

Perez et al., (2014) applied the VSM and TFISF (term frequency inverse sentence frequency) 

with a combination of Cosine and Dice similarity measures for candidate retrieval and 

exhaustive comparison for plagiarism detection at sentence level.  Ehsan and Shakery (2016) 

applied the VSM and binary weighting at the exhaustive comparison stage to detect plagiarised 

passages.  

The VSM is very efficient and captures some degree of semantic similarity, hence its wide 

application for candidate document retrieval in plagiarism detection.  

2.4.3.2.1 The N-gram Overlap Approach 

One other technique that has been successfully used for document similarity analysis and 

plagiarism detection is n-gram overlap. The idea is to use the proportion of overlapping n-

grams (sequence of words or characters) in a pair of texts as a measure of similarity. Similarity 

measures are usually used to transform the proportion of overlaps into similarity scores, 

commonly used ones include Dice coefficient, Jaccard index and containment (overlap) 

measure. Some previous research where this approach was used for document similarity 

analysis and plagiarism detection are (Clough, 2002; Clough and Stevenson, 2011; Sánchez-

Vega et al., 2019; Bensalem et al., 2019).  

Lyon et al., (2004) built a moderate scale plagiarism detection system based on shared word-

trigrams and Jaccard index and obtained promising results that became standard baselines for 

plagiarism detection systems. Lyon et al., argue that trigrams are best for measuring document 

similarity, and that ngrams longer than three word sequence are likely to bypass shorter 

overlaps (plagiarised sections), while ngrams shorter than 3-grams are unlikely to capture long 

plagiarized fragments of varying sizes. Containment measure is based on set theory, it measures 

how much of a document is contained in another. The implementation of n-gram overlap 

method using containment is carried out by transforming texts to set of n-grams (i.e. set A and 

set B), and computing similarity as the intersection of sets A, B, normalized by the length of A, 

where A is the suspect document. The output is in the range of 0 and 1.  
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        Equation 2.1 

Where A and B are two documents represented as set of unique ngrams 

Barrón-Cedeño and Rose (2009) proposed an approach for detecting plagiarised texts that have 

been altered by reordering using n-gram overlap and the containment measure, and sentence 

level comparison, experimented results from Barrón-Cedeño and Rose study revealed that 2-

3-grams are the best ngram sizes for detecting reordered plagiarised texts.  

Clough et al., (2002) used n-gram overlap method to measure journalistic text reuse and 

obtained encouraging results. Clough and Stevenson (2011) also applied n-gram overlap to 

detect plagiarized texts that have been altered to different levels (degree) of obfuscation. In 

more recent study, Sánchez-Vega et al., (2019) applied character ngrams to detect similarity in 

writing style and content in paraphrased plagiarised text and outperformed a number of 

baselines including a knowledge based model (based on the application of WordNet). In 

addition, Sánchez-Vega et al., proposed ngrams of size 3-4 as best for detecting paraphrase 

plagiarism. 

Both word and character ngrams have been used to detect plagiarism, word ngrams are more 

efficient and are very effective for detecting verbatim plagiarism. Character ngrams are able 

detect similarity in writing style and content, spelling errors and morphological changes via 

substring matching (Liao et al., 2017; Sánchez-Vega et al., 2019).  N-gram overlap method is 

quite effective for verbatim (word for word) similarity analysis (Eisa et al., 2015; Bensalem et 

al., 2019), easy to implement and quite efficient for comparing documents.  However, one 

drawback of the n-gram overlap method is that it is ineffective for uncovering high obfuscation 

plagiarism when there is little or no overlapping strings. 

2.4.3.2.2 The Fingerprinting Approach 

Fingerprinting was first used to address the challenge of identifying similar files in a large file 

system. Fingerprinting is one of the most common approaches used for plagiarism detection, 

the idea is to represent documents as fingerprints, and use the amount of overlaps in their 

fingerprints as a measure of similarity. Overlapping sections of fingerprints indicate areas of 

copy (or plagiarism). In practice, the fingerprinting approach could be implemented in the 

following steps; 
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 Document pre-processing: this step removes unwanted noisy elements and transforms 

documents into comparable formats; see section 2.5.1 for details about common NLP 

data pre-processing steps. 

 Transformation to substrings: this step transforms the pre-processed documents into 

substrings such as sequence of characters or words of a specific length, or even whole 

sentences. The specific size or granularity of substrings has a direct bearing on the 

effectiveness of fingerprinting; the larger the granularity, the more efficient and less 

effective the comparison process will be, and the smaller the granularity, the less 

efficient and more effective the process will be. Hence finding the right substring size 

(granularity) is crucial. Experimental results on fingerprinting strategies by Hoard and 

Zobel (2003) revealed that grain sizes between 3 and 5-word sequences are the best 

substring sizes for an effective implementation of fingerprinting. 

 Substring selection: to ensure efficiency in document fingerprint comparison, it is vital 

to retain only the most informative substrings for fingerprinting generation. However, 

the fingerprinting approach is most effective when all substrings are retained (full 

resolution) and used for document comparison, as all information will be used in 

document comparison. Full substring selection comes with the cost of large storage 

requirement, and low efficiency during comparison. 

 Substrings encoding (Hashing): this step involves using a hash function (such as MD5) 

to assign hash values/codes (minutia) to the selected substrings. The most important 

thing to note here is that each unique substring in a document collection must be 

assigned a unique hash code to avoid collision, which can occurs when two or more 

substrings share the same hash code. 

 Indexing of fingerprints: this step involves indexing the collection’s fingerprints in a 

database for quick querying and retrieval of similar texts and their respective document 

IDs. 

Many studies on plagiarism, duplicates and near duplicates detection (Manku et al; 2003; 

Henzinger, 2006) are based on fingerprinting; this is because of its relative high efficiency on 

large data collections. However, it is worth noting that fingerprinting itself does not necessarily 

bring about improvement in accuracy of detection, its main benefit is efficiency in plagiarism 

detection. One major drawback of the fingerprinting technique is that in practice not all chunks 

(substrings) are used in fingerprint generation as this can result in reduction in efficiency and 

ultimately defeat the very essence of using fingerprints for plagiarism detection. To completely 



  

29 

 

avoid information loss and achieve the best outcome, full document fingerprints would have to 

be used. However, this will require large storage space and memory to store documents’ 

fingerprints, and to compare documents fingerprints efficiently in-memory. Hence the question 

of which chunk to retain and which to discard remains an issue as important chunks that may 

overlap with other documents may easily be discarded which can result in inaccuracy in 

documents comparison (Metzler et al., 2005).  

The application of fingerprinting is not very common in the current literature of plagiarism 

detection, however in a recent study, HaCohen-Kerner and Tayeb (2017) proposed a 

fingerprinting model that uses random parameters to rapidly detect similar scientific documents 

in a collection with encouraging results. 

2.4.3.2.3 Karp-Rabin Greedy String Tiling (KRGST) 

The Karp-Rabin Greedy String Tiling (KRGST) is a matching algorithm that searches for the 

longest common substring between two strings. The KRGST is commonly used in DNA 

sequence alignment (Wise, 1993) and for source code plagiarism detection (Agrawal and 

Sharma, 2016 Foltýnek et al., 2020), and more recently in plagiarism detection in natural 

language (Clough et al., 2002; Jayapal, 2012; Alvi et al., 2021). Unlike similar algorithms such 

as the Levenshtein distance or the longest common subsequence, the KRGST addresses the 

problem of transposition in string alignment. Transposition occurs when the original order of 

a string or sentence is changed or when one or more strings or tokens are out of place. The 

basic idea of the greedy string tiling is to capture matched substrings (known as tiles) between 

two strings, and extend the matched substrings to maximum length using the Karp-Rabin 

algorithm.  

The Karp-Rabin algorithm takes a string of a specific length, and searches in a document for 

strings of similar length, when it finds one, it compares the two strings character by character 

and continues until there is a character mismatch. The algorithm then marks and isolates the 

matched string from subsequent comparison. One major drawback of the KRGST is that it 

ignores short matching substrings, and the implication of this in plagiarism detection is that 

highly altered cases of plagiarism with short plagiarised fragments will evade the KRGST 

algorithm. In addition, KRGST rely on matching stings to function, and in the absence of such 

strings, such as in high obfuscation plagiarism where a plagiarised text is altered so that there 

is little or no matching strings between the text and its source (original), the application of GST 

will likely fail in such situation because of the absence of matching strings (or tiles). 
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Jayapal (2012) applied the KRGST with varying tile length in aligning plagiarised texts in 

Pan@Clef 2012 text alignment competition.  However the results obtained was not impressive, 

after having had the best performance in the source retrieval task.  GST was also used in 

(Clough et al., 2002) for detecting Journalistic text reuse; however the use of GST in plagiarism 

detection has mostly been focused on the detection of plagiarism in programming code. In more 

recent study Alvi et al., (2021) applied GST to similar text fragments in a pair of sentences for 

paraphrase type detection. 

2.4.3.2.4 Semantic Similarity Measurement Methods 

One of the most difficult types of plagiarism to detect is obfuscation plagiarism, this is largely 

due to semantic, syntactic and lexical changes in obfuscated text that evade detection. 

Obfuscation as mentioned earlier is used to disguise plagiarism and evade detection, studies 

have characterized plagiarised texts by intensity or degree of obfuscation (alterations), this 

include no-obfuscation, light and heavy obfuscation (Cloughs and Stevenson, 2013; Potthast 

et al., 2012; 2013); studies show the difficulty in plagiarism detection increases with increase 

in obfuscation from no-obfuscation to heavy obfuscation plagiarism (Clough and Stevenson, 

2013; Thompson et al., 2015). Plagiarism have also been characterized by different obfuscation 

strategies, which are alteration techniques employed by plagiarist to disguise plagiarism, 

common obfuscation plagiarism described in the literature include translation obfuscation, 

cyclic translation obfuscation, summary obfuscation (Potthast et al., 2013; Foltýnek et al., 

2020). Cyclic translation occurs when text written in one language is translated to another 

language and then back to the original language. Difference in syntax and slight variations in 

the meaning of words between languages introduce alterations in translated text so that they 

differ from their original, but remain semantically similar. Summary obfuscation was described 

under idea plagiarism in section 2.3, it occurs when an original idea is rewritten in different 

wordings and syntax so that the summarized texts appear different lexically and syntactically, 

but retain the semantic of the original text. To enhance the detection of obfuscated text, 

semantic similarity measurement methods developed in the field of NLP and computational 

linguistic were proposed. Virtually all semantic similarity measurement methods rely on 

external resources to function. Common semantic similarity measures are grouped into two 

namely, corpus and knowledge based semantic similarity measures (Eisa et al., 2015; Foltýnek 

et al., 2019; Salloum et al., 2020). 
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2.4.3.2.5 Corpus Based Semantic Measures 

Corpus based semantic measures obtain sematic information from large corpus such as 

Wikipedia dump. Common corpus based semantic measures include word embeddings, latent 

semantic analaysis (LSA) and explicit semantic analysis (ESA). ESA is based on Wikipedia 

concept (Gabrilovich and Markovitch, 2007; Eisa et al., 2015; Salloum et al., 2020), the basic 

idea is that a pair of text that map to similar Wikipedia concepts are semantically related, 

however not much is said about LSA in the literature of monolingual plagiarism detection. The 

review on semantic measurement methods will be focused on word embeddings because they 

have been recently used in both mono and cross lingual plagiarism detection, and represent the 

state-the-art in many NLP applications. 

2.4.3.2.5.1 Word Embeddings  

Word embedding is the mapping of words to vectors of real numbers (vector representation of 

words). The application of word embeddings for measuring degree of semantic similarity 

between texts follows the concept of distributional hypothesis where similarity between words 

is a measure of the number of contexts they share in common. Words that occur more 

frequently in similar contexts are considered similar. This idea could be justified by the fact 

that words that occur frequently in similar contexts can be easily substituted without changing 

the meaning of the contexts, for example the word smart and intelligent share similar contexts 

and can be substituted without changing the meaning of the context in which they occur. Word 

embedding models are trained to learn the semantics of words from a large corpus so that 

semantically related words are assigned similar vector representations; training of models is 

usually carried out using both shallow and deep neural networks (Kumar and Garg, 2019). 

Word embedding models are either contextualised or non-contextualised learners, non-

contextualised learning models (NCLMs) are trained to learn the semantic (meaning) of a word 

in context, and do not take contextualised relationship into account, which means the actual 

sense of a word in context is disregarded when training, hence disambiguating the true sense 

of a word in context is not possible with such models. Non-contextualised or static embeddings 

do not change irrespective of the context they occur, for example the word bats in sentence1 

below will have the same representation as the word bats in sentence2, even though they are 

not semantically similar; the word bats mean different things in both sentences (contexts).  

Sentence 1: ‘baseball bats are easy to swing’ 

Sentence 2: ‘bats are scary looking birds’ 
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Contextualised learning models (CLMs) on the other hand are trained to learn the relationships 

between words in context, which includes semantic, syntactic, lexical and miscellaneous 

relationships, they learn actual meaning or sense of words in context, and therefore generates 

different representations for a given word based on its context (Ethayarajh, 2019). 

Contextualised embeddings change when the context they occurs change, from the above 

example, the word bats will have different representations for both sentences. Unlike static 

embeddings, contextualised embeddings attempt to capture the true sense of a word in context, 

and are therefore more likely to perform better on sequence level semantic similarity 

measurement tasks. Words with more than one meaning (polysemy) are better handled by 

CLMs than static embedding models. Contextualised learning models were proposed to address 

the limitation of static embeddings including their inability to disambiguate the real meaning 

of words in context. A recent study on detecting machine generated paraphrase plagiarism 

revealed that CLMs significantly outperformed non-contextualised learners (Wahle et al., 

2022). 

Non-Contextualised Learning (Context Independent) Models 

Common non-contextualised word embedding models such as the Word2Vec (Mikolov et al., 

2013a; 2013b; 2017) and GloVe (global vectors: Pennington et al., 2014) have been 

successfully used in many NLP tasks to estimate the degree of semantic similarity between 

texts. GloVe was proposed shortly after the Word2Vec model based on the argument that the 

Word2Vec model does not take into account global count statistics when building word 

vectors, in particular global co-occurrence statistics. However in practice, there is little or no 

difference in the performance between the Word2Vec and GloVe. The Word2Vec model is 

more common than GloVe, probably because it was first proposed and well-studied, and there 

are many off the shelf tools that allow for easy implementation of the Word2Vec model. Hence 

much of this literature is focused on the Word2Vec model. 

Word2Vec (Word to Vector) Model 

There are two architectures associated with the Word2Vec model, they are the skip-gram and 

the continuous bag-of-word (CBOW) architecture.  The skip-gram model is however more 

common in many studies, partly because it does not require huge amount of training data to 

achieve reasonable performance, as opposed to the continuous CBOW architecture that 

requires huge amount of training data to perform optimally. A Word2Vec model is trained with 
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the objective of maximising the log probability of predicting a context word (Cw) given an 

input word (Iw) i.e. logP(Cw I Iw)1 

 

 

Figure 2.3: The two Architectures of the Word2Vec model. 

 

Training a Word2Vec model begins with the creation of contexts for words (of a specific 

window size using the CBOW or Skip-gram model) and mapping contextual words to vectors 

of real numbers (one hot encoding), followed by learning word representations (word vectors) 

using a feed forward deep neural network with one hidden layer. The Word2Vec model was 

originally designed for word level similarity computation, many variants now exist for 

computing sequence level similarity. The basic idea is to average the embeddings of words in 

a sentence, paragraphs or document embeddings and train a feed forward neural network to 

generate fixed length representation for the input sequence (sentences, paragraphs or 

documents). The argument for sentence embeddings is that sequence level representations 

retains word order and semantics which are not captured in word representations (Le and 

Mikolov, 2014). A Common variant include Doc2Vec which is trained to generate fixed length 

representation for an entire document. Fasttext (Joulin et al., 2016) is another variant that is 

based on character ngrams, it handles sub-words and out of vocabulary words better, and it is 

trained much faster than the other models. 

                                                 
1 In figure 3, the CBOW model learns to predict a word w(t) given a context, while the Skip-gram model 

learns to predict contextualised words given a word w(t). 
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Word2Vec models have been used in the literature to detect both cross-lingual (CL) and 

paraphrase plagiarism. Ferror et al., (2017a) applied the Word2Vec to detect CL plagiarism 

with remarkable performance, Álvarez-Carmona et al., (2018) combined a Word2Vec model 

with string similarity measures to detect paraphrase plagiarism. In a similar study Alvi et al., 

(2021) combined the Word2Vec model with Smith-Waterman distance to detect paraphrase 

plagiarism. Many of the participants in the STS competition (Cer et al., 2017) built systems 

around the Word2Vec model. 

Contextualised Learning Models (Context Dependent) 

Contextualised learning models (CLMs) can be subdivided into two basic architecture, namely 

the LSTM and the transformer architectures (Han et al., 2021). An LSTM is a type of recurrent 

neural network (RNN) that is designed to capture long term dependencies much better than a 

traditional (or vanilla) RNN. A RNN learns the context of a word (sequence) by learning to 

predict the next word in a text sequence using information from previously seen words. 

Contextualized learning models based on the LSTM architecture include CoVe (McCanan et 

al., 2017) and ELMo (embeddings from language model) (Peters et al., (2017).  On the other 

hand, models based on the transformer architecture do not follow the sequential learning 

structure of the recurrent model, but applies what is known as attention mechanism (Vaswani 

et al., 2017) to learn different aspects (context) of an input sequence concurrently, and can even 

access all previous states of the network to capture long distance dependencies, this feature 

allows for parallelization and training on large datasets much faster than a recurrent network. 

Transformers comprise of an encoder and decoder attention mechanisms. Common 

contextualised learning models based on the transformer architecture include BERT (Devlin et 

al., 2018), GPT (Radford et al., 2018), XLNet (Yang et al., 2019) etc. From the two common 

architecture, ELMo (LSTM) and BERT (Transformers) are the two most common CLMs, and 

both models were implemented in this research in the task of paraphrase plagiarism detection. 

Relevant research and details of ELMo and BERT are described below. 

Relevant work on ELMo  

In an attempt to generate vector representations for word sequences where the sense of a word 

is context dependent, McCanan et al., (2017) proposed contextualized vectors (CoVe), which 

are representations from the encoder of a trained MT-LSTM (machine translation-LSTM), 

evaluation of CoVe on a number of NLP tasks results in state-of-the-art performances. Peters 

et al., (2017) argue that a contextualized learning models should be able to learn complex 

https://scholar.google.com/citations?user=RMjECAsAAAAJ&hl=en&oi=sra
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relationship between words (semantic and syntactic), including the actual sense of a word in 

context (polysemy) and proposed ELMo (Embeddings form language model), a bidirectional 

LSTM trained with a language model objective (next word prediction). Analysis of the hidden 

state of an ELMo LSTM model revealed that the uppermost layer captures semantic 

relationship between words and the lower layers capture syntactic relationships. Unlike CoVe 

(McCanan et al., 2017) that uses only the last hidden layer representation, ELMo learns a linear 

combination of all hidden units to generate deep contextualised representations for text 

sequences. Evaluation of ELMo on a number of NLP tasks revealed state-of-the art 

performances. 

Architecture of ELMo  

ELMo is a bidirectional LSTM trained with a language model objective (for next word 

prediction). An LSTM is a RNN that is designed to better handle long term dependencies using 

gates to control what inputs to accept and which ones to reject during training. Similar to an 

RNN, inputs to an LSTM are sequences (i.e. sentences), an LSTM learns to predict a token (in 

an input sequence) using information from previous tokens (see Fig 2.4 below), a bidirectional 

LSTM learns contextualised representations of an input sequence using forward and backward 

passes (bidirectional), and concatenate the outputs from both passes. 

 

Figure 2.4: Folded and Unfolded/unrolled RNN showing the interaction between input and output 

tokens 

The RNN in fig 2.4 shows input (x0, x1..xn) and output (h0, h1..hn) sequences, and how an input 

token (i.e. x1) relies on the hidden state [A] of the previous token (i.e.  x1).  

ELMo convert input text to characters, this ensures that representations are generated for all 

types of input text, and addresses the problem of out of vocabulary (OOV) words that limits 

earlier word embedding models such as the Word2Vec and GloVe. An ELMo model learns 

representations for tokens from an input sequence using a linear combination of the hidden 

states of an LSTM to generate deep contextualised representations. Representations from an 

ELMo model are context dependent; for example, a word that occurs in two different sentences 

would have different representations based on its context.  
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Figure 2.5: An ELMo model showing bidirectional context learning 

The diagram in figure 5 shows the flow of input in an ELMo embedding model, the network includes 

an input embedding layer, forward and backward LSTMs and a concatenated output layer. 

The input embedding layer is usually one hot encoding for tokens in an input text, while the 

output contains contextualised representations of input tokens that can be used for word level 

semantic similarity measurement or averaged into a contextualised sentence embeddings for 

comparing sentences. In this way, sentence embeddings from an ELMo model could be 

compared for semantic similarity and applied in plagiarism detection to detect obfuscated 

cases. 

Relevant Work on BERT 

Devlin et al., (2017) propose BERT (Bidirectional encoder from transformers), a stack of 

encoder only transformers built upon existing sequential models (such as ELMo and GPT), 

with an objective to improve transfer learning. Similar to the GPT and ELMo, BERT is 

designed to learn bidirectional contexts so as to capture deep syntactic and semantic 

relationship, and also to produce context dependent representations. However unlike the 

previous models that are trained using LM objective, BERT is trained using mask language 

modelling (MLM) and next sentence prediction. Experimental results revealed state-of-the-art 

performances on a number of NLP tasks, including semantic text similarity, question and 

answer, text entailment etc.  Several variants of the BERT model have been proposed in the 

literature, two common variants that are relevant to this work are RoBERTa and SBERT. Liu 

et al., (2019) argues that the BERT model could perform better by adjusting certain parameters 

when training, and therefore proposed RoBERTa, which is a BERT model retrained with much 

larger iterations (from 100 to about 500) and dataset, dynamically changing masking pattern, 

with the exclusion of the next sentence prediction objective. RoBERTa significantly 

outperformed BERT on a number of NLP tasks. While BERT is currently one of the best 
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performing DCLM, applying BERT for tasks such as semantic text similarity comes with huge 

overhead as requires sentences are required to be fed in pairs followed by a similarity 

computation between every possible combination which is extremely time consuming. To 

address this problem,  

Reimers et al., (2019) proposed sentence BERT (SBERT), which is a RoBERTa model fine-

tuned to generate fixed size embeddings for sentences that can be compared for similarity using 

a measure such as cosine similarity. Sentence BERT comprises of a Siamese network (which 

are two identical BERT heads) and an average pooling layer, the BERT heads generate 

embeddings for a pair of sentences, and pass them to a pooling layer, with an object to minimize 

a cosine loss (mean squared error loss). Results from evaluation revealed that it takes 

significantly less time to fine-tune SBERT than RoBERTa, while maintaining the same level 

of performance. SBERT also outperformed two common sentence embedding methods namely 

inferSent (Conneau et al., 2017) and the universal sentence encoder (Cer et al., 2018) on a 

number of semantic text similarity tasks, and produced  state-of-the-art on the STS benchmark 

dataset (Cer et al., 2017).  

Yang et al., (2019) argues that masking in BERT could result in discrepancy between training 

and fine tuning representations and therefore propose XLNet, an encoder only transformer that 

learns bidirectional contexts just like BERT, but uses random permutation for mask language 

modeling (MLM). To further enhance performance, XLNet adopted the recurrence feature (and 

position encoding) of transformerXL (Dai et al., 2019) to capture long distance dependencies. 

Evaluation results revealed state-of-the-art performance on a number of NLP tasks. However 

evaluation on semantic text similarity revealed that XLNet performed even lower than GloVe 

(Reimers et al., 2019). 

Architecture of BERT 

BERT is a stack of encoder only transformers with multi-head attention mechanisms. A 

transformer is a deep learning model that comprises of an encoder and a decoder, and an 

attention mechanism. The encoder mechanism encodes input text sequences by transforming 

input tokens into contextualised representations, and at the other end, the decoder transforms 

the encoded sequence element wise into the original input sequence, but in a different format, 

for example the encoded sequence could be decoded in a different language (e.g. English to 

French) or from text to speech (speech recognition). The attention mechanism allows the model 

to focus on different parts of an input sequence without losing contextualised information.  
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Figure 2.6: A transformer encoder showing input text sequence and encoded output 

Mask language modelling (MLM) is a training objective that involves predicting mask words; 

usually 15% of an input sequence is masked and the model is trained to predict the mask words. 

Similar to ELMo, training in BERT is bidirectional and contextualised representations from 

forward and backward passes are averaged for input tokens. See the diagram below for an 

example of MLM.  

 

Figure 2.7: A BERT model showing mask language modeling objective 

CLS is a special token that does not only act as an identifier, but summarises the token embeddings for 

an input sequence (Devlin et al., 2019; Zang et al., 2020). SEP is also a special token that separates 

input sequences (i.e. marks the end of an input sequence). 
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Next sentence prediction on the other hand involves training a model to predict whether a pair 

of sentences are (next to each other) in sequence in a corpus, this objective helps to determine 

how semantically related a pair of sentences is, which can be effective theoretically for 

addressing NLP tasks such as question and answer. The model of interest in this research is 

RoBERTa because it is currently the most effective BERT model trained with only MLM 

objective. BERT comes in two different sizes, they are BERT base which is a stack of 12 

encoders, and BERT large which is a stack of 24 encoders and trained with much larger corpus 

than BERT base. The maximum input size of a BERT model is 512 tokens, and output 

representations for input tokens is a fixed length vector of 768 dimensions for one token.  

Word embedding models come pre-trained, and are designed to be fine-tuned to specific 

downstream NLP tasks (i.e. sentiment analysis, text classification, entailment etc.) with 

minimal architectural modifications. In terms of application in plagiarism detection, 

contextualised word embeddings could be used to detect semantic, syntactic, lexical and 

miscellaneous changes in plagiarised texts that cannot be detected using string matching 

methods. 

2.4.3.2.5.1.1 Handling Out-of-Vocabulary (OOV) words 

One of the challenges facing word embeddings is dealing with out-of-vocabulary words, which 

are words that do not occurs in the vocabulary of a model. Earlier word embedding models 

such as the Word2Vec and GloVe typically output error messages when presented with an 

OOV. In more recent studies, several methods have proposed for handling OOV words, Joulin 

et al., (2016) proposed fasttext, a variant of the Word2Vec model based on character 

embeddnigs. Fasttext is able to deal with OOV by tokenising words into characters and 

generating embeddings for every character in a word which can be aggregated into a single 

embedding for the word. Similar to fasttext, the ELMo model as described in section …..  is 

based on character embeddings. A different approach was proposed by Devlin et al., (2018) for 

the BERT model, when presented with an OOV word, the BERT model tokenises the word 

into sub-words and attempt to generate embeddings for the sub-words, when a sub-word is an 

OOV, the model tokenises the word further and repeats the process until sub-words becomes 

characters and embeddings are generated for each character. The BERT approach does not only 

dealing with OOV, but can also detect morphological changes and generate embeddings for 

sub-words, which is important in semantic similarity measurement.  
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2.4.3.2.5.2 Explicit Semantic Analysis 

Explicit semantic analysis (ESA) is a corpus based method proposed by (Gabrilovich and 

Markovitch, 2007), it is based on the idea that texts that map to similar Wikipedia concepts are 

semantically related. ESA assumes that each article in Wikipedia is a concept, and transforms 

concepts into tf-idf (term frequency inverse document frequency) weighted vectors in an n-

dimensional vector space and indexed in an inverted index data structure that links indexed 

terms to their Wikipedia concepts. The number of dimensions in the vector space is equal to 

the number of unique terms in Wikipedia knowledge base (N-dimensional vector space), and 

the entire index structure is referred to as semantic interpreter (SI). See the diagram in figure 

2.8 for how SI is built by indexing Wikipedia concepts, and transformed to Wikipedia concept 

vectors to compute semantic relatedness. 

 

Figure 2.8: Semantic interpreter built from Wikipedia concepts (Gabrilovich and Markovitch, 2007) 

The diagram in figure 2.8 shows how a Semantic interpreter is used to generate weighted 

semantic vectors for texts that can be compared for semantic relatedness using the cosine 

measure. 

Comparing texts for semantic similarity is carried as follows: input texts are converted to 

semantic concept vectors by retrieving concept weights for input texts, this is done by querying 

the semantic interpreter (inverted index) with each term in an input text. Semantic similarity 

between a pair of texts is computed by comparing their concept semantic vectors using cosine 

similarity measure. 



  

41 

 

Meuschke et al., (2017) integrated ESA with citation detection method to detect semantic 

relatedness and structural similarity in obfuscated text. The proposed method uses ESA to 

detect semantic relatedness between texts, and apply in-text citation proximity and patterns to 

detect structural similarity, evaluation results presented from Meuschke et al., study revealed 

that the proposed integrated method outperformed established plagiarism detectors that are 

primarily based on text matching. 

2.4.3.2.5.3 Latent Semantic Analysis/Indexing (LSA/LSI) 

LSA (LSI in IR) (Deerwester et al., 1990; Landauer et al., 1998) is a dimensionality reduction 

technique that uses a mathematical technique called singular value decomposition (SVD) to 

reduce a high dimensional vector space into a lower one (Deerwester et al., 1990; Wiemer-

Hastings, 2004; Chandrasekaran and Mago, 2021). LSA basically extracts core information 

contents in a collection of documents by decomposing a high dimension document matrix into 

a lower and more informative document matrix structure. In terms of implementation, LSA 

begins by constructing a term document matrix with an entire collection of document vectors 

(where unique terms occupy rows and each column is a document vector), followed by 

decomposing the document matrix into three smaller matrices. Among the three matrices, the 

most similar to the original term document matrix is used as an approximation of the original 

matrix. In terms of dimensionality reduction capability, LSI could be used to reduce a vector 

space with tens of thousands of dimensions down to a few hundred dimensions (Wiemer-

Hastings, 2004). LSI can also be used to smooth a VSM by eliminating unfilled dimensions 

that create sparseness during the dimensionality reduction. The major drawback of the LSA (or 

LSI) is that dimensionality reduction can result in information loss. 

In plagiarism detection and semantic similarity measurement in general, LSA is used to reduce 

a large VSM to allow for vector comparison between a suspect document vector and source 

documents in the reduced semantic space using a similarity measure. Ceska (2008) applied 

SVD to detect paraphrases in plagiarised texts. Most studies on the use of LSA in plagiarism 

detection are focused on cross lingual and source code plagiarism detection (Ratna et al., 2017). 
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2.4.3.2.6 Knowledge Based Semantic Measurement Methods 

Knowledge based methods obtain semantic information from external knowledge resource 

such as WordNet, thesaurus and dictionaries (Chandrasekaran and Mago, 2021). The most 

common knowledge based resource used in plagiarism detection is WordNet; a semantic 

network and lexical database. WordNet is a network of words and their semantic relationships 

in a hierarchical structure, and includes relationships such a synonyms, antonyms hyponyms 

and homonyms (Barbouch et al., 2021). There are two approaches in which WordNet has been 

used in the literature to detect plagiarism, they are query expansion and path length of synsets 

(synonyms) or information content similarity. Details of the two approaches are described 

below. 

2.4.3.2.6.1 Query Expansion Using WordNet to Detect Synonym Replacements 

Query expansion is used in IR to expand queries to increase matches and improve the quality 

of information retrieval. The application of query expansion in plagiarism detection is to 

address the problem of synonym replacements (lexical substitution), which is known as the 

most common paraphrase phenomenon or technique used by plagiarist to obfuscate plagiarism 

(Baron-Cerdeno et al., 2013). In the context of plagiarism detection, a suspect document is the 

query that requires expansion, a suspect document is expanded by retrieving synsets (a list of 

synonyms) for each word from a lexical resource (i.e. WordNet). Through synset generation, 

words that have been replaced with their synonyms in the act of plagiarism are reintroduced 

back into a suspect document to be detected by a matching algorithm when the expanded query 

(suspect document) is compared with potential source documents. The challenge in this 

approach is that too many synsets could easily be generated which increases the chances of 

false matches and erroneous detection. Hence previous studies in this area have been focused 

on reducing the amount of synonyms generated during expansion so as to minimize false 

matches, but without bypassing relevant synonyms required for plagiarism detection. 

This approach was used by Ceska et al., (2012) and Abdi et al., (2012) to detect obfuscation 

plagiarism. In an attempt to retrieve accurate synonyms from WN for query expansion and 

plagiarism detection, Ceska et al.,  experimented with the first sense (the first synonym in a set 

of synonyms retrieved from WN) and all sense (all synonyms in a set). Results from Ceska et 

al., experiments show very little improvement in performance in both cases. In a similar way, 

Nawab et al., assigned different weights (based on probability) to every first 3 synonyms 

generated by WN and obtained results that were better than a baseline method (Kullback–
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Leibler divergence method) used for candidate selection. Other studies based on query 

expansion using WN for plagiarism detection and in document similarity search are discussed 

below. 

In an attempt to detect altered cases of plagiarism, Chong and Specia (2011) used WordNet 

lexical resources to generate synsets as basic units for measuring similarity between pairs of 

documents. The proposed approach uses the normalised sum of common synsets in a pair of 

documents (under comparison) as a measure of similarity. The normalization was carried out 

by dividing the total common synsets in a pair of document by the total unique synsets (similar 

to the computation of Jaccard-index). Results obtained from this study show improvement in 

the detection of paraphrase (obfuscated) cases of plagiarism over a baseline method that uses 

5-gram overlap for similarity measurement. The problem with Chongs’ et al., (2011) study is 

that comparison against such baseline would not give a realistic view of how effective the 

proposed model is in detecting paraphrase plagiarism. This is because the baseline model uses 

5-gram overlap to detect plagiarism, which can rarely be found in highly altered plagiarised 

texts. If the baseline was of lower order n-grams such as 1, 2 or 3 grams, it would have been 

better, as such n-gram sizes are able to detect altered plagiarized fragments.  

A slightly different approach was used by Chen et al., (2010) to detect plagiarised passages. 

The approach involves comparing each synset in a suspected document with the entire 

collection of synsets in a source document, word for word, and any comparison that results in 

the highest similarity score is noted. The recorded similarity scores obtained for all the synsets 

in a suspect documents are added up and normalised by the total unique synsets in the document 

pair, which is then use as a measure of similarity between the pair. Chen et al., (2010) 

incorporated this method into existing methods used in ROGUE (a text summarization 

algorithm) to detect multiple forms of plagiarism. The methods in ROGUE include the longest 

common sub-sequence (LCS), skip-bigram and unigram. Experimental results revealed that the 

WordNet method performed best for detecting plagiarism cases that involves substituting 

words with their synonyms. 
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2.4.3.2.6.2 Word Pair Similarity Using Path Length and Information Content of a 

Semantic Network   

This approach uses the taxonomy of a semantic network (i.e. WordNet) to measure wordpair 

similarity, and has not had much application in plagiarism detection. The depth of two synsets 

(i.e. Wu Palmer similarity) or information contents (IC) of two concepts (Resnik IC) relative 

to their common subsumer (common ancestors in an ontology)  in WordNet taxonomy are two 

common methods used to measure the similarity between words  (Mehachie et al., 2006; 

Chandrasekaran and Mago, 2021). This approach was used in Sánchez-Vega et al., (2019) as 

baseline and in Lovepreet et al., (2021) to detect paraphrase and other complex cases of 

plagiarism respectively. 

Given a pair of terms (t1 and t2), their similarity based on Wu Palmer is computed as follows: 
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)2,1(

wdepthwdepth

wdepth
wwsim lcs

wup


 …………………………………………Equation 2.2 

Where lcs = longest common subsume of both terms (common ancestor) 

Resnic information content of two concepts (c1 and c2) is expressed mathematically as follows. 

))2,1(()2,1( ccLCSICccres  ……………………………………………………...Equation 2.3 

Where information content )(log)( cPcIC  ,  

and LCS is the longest common subsumer of the two concepts 

The application of external lexical resources such as WordNet is limited by vocabulary size, 

for instance WordNet only contains words of certain part-of-speech i.e. nouns, verbs, adverbs 

and adjectives (Barbouch et al., 2021). This limitation is evident in Álvarez-Carmona et al., 

(2018) study where the performance of a plagiarism detection system designed to use either 

WorldNet knowledge base or the Word2Vec model were compared, and the one built with 

WordNet was clearly outperformed. 
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2.4.3.2.7 Syntactic Measurement Technique 

Syntax are grammatical rules that specify how words should be arranged in phrases and 

sentences to make grammatical sense. Each word in a sentence is of a particular part-of-speech 

(POS) and certain parts of speech should not be placed next to each other in a sentence. 

Common parts of speech in English include Nouns, verbs, adjective, adverb, preposition, and 

many more. 

The application of syntactic measures in plagiarism detection is to detect obfuscated plagiarism 

by comparing texts for similarity based on their syntactic structure. The most common method 

used to measure syntactic similarity in plagiarised texts is POS comparison. According to 

Chong et al, (2010), when a plagiarised word is replaced with a new word, the new word always 

certainly retain the same POS as the old word, and by comparing documents with their POS 

features, modified cases of plagiarism could be uncovered. Another notion is that certain parts 

of speech are more informative that others (which includes verbs, nouns, adjectives, adverbs), 

for example, WordNet lexical database is made of only nouns, verbs, adjectives and adverbs 

(Banerjee and Pederson, 2002; Liu et al., 2007; Jurafsky and Martin, 2015), words of other 

POS are regarded as stop-words (common words) and are not in WordNet. Hence by limiting 

document comparison to only certain POS, the accuracy of document similarity measurement 

could be improved, and in particular, cases of highly altered plagiarism could be uncovered.  

Bar et al., (2012) combined POS ngrams and Stop-word ngrams to detect syntactic structure in 

plagiarised texts that have been paraphrased; this method was implemented by representing 

texts with their POS tags, and transforming the represented text into ngrams which in effect 

captures the syntactic structure of the text that can be compared with other texts for structural 

similarity. Vani and Gupta (2015) demonstrated that applying POS tagging in plagiarism 

detection significantly improves precision by selecting only nouns, verbs and adjectives as 

keywords. Kong et al., (2015) selected only nouns and verbs as keywords with the help of the 

Stanford POS tagger for source retrieval in plagiarism detection (Hagen et al., 2015).  Gupta et 

al., (2016) combined stop-word ngram and POS tagging to detect obfuscation plagiarism and 

presented results that outperforms a baseline model that uses stop-word-ngrams to detect 

plagiarism by comparing patterns of stop-word ngrams in a pair of documents proposed in 

(Stamatatos, 2011).  

The application of syntactic method, such as POS comparison in plagiarism detection is limited 

to cases where words are replaced with their synonyms, as in such cases, the new and replaced 
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words are likely to be of the same POS. In complex cases where text are rewritten without 

synonym replacements, comparison based on POS tagging will not be effect. 

Table 2.2: Summary of plagiarism detection methods 

 This table contains methods that have been used in the literature to detect plagiarism, the mechanism in which 

the function and their pros and cons. 

One current but not so popular technique used in detecting plagiarism is the citation plagiarism 

detection technique. Gipp (2014) argue that the results obtained from traditional plagiarism 

detection systems (such as those that rely on lexical overlaps) on highly paraphrased and 

translational cases of plagiarism are unsatisfactory, and propose the use of citation matching as 

a way of complementing existing techniques used in detecting plagiarised documents. The idea 

behind this technique is that plagiarised documents are likely to have similar citations, even 

when they have been seriously paraphrased or translated. Hence a pair of documents that have 

similar in-text citation patterns, in terms of proximity and sequence may have been plagiarised. 

One limitation of this approach as pointed out by Gip and Beel (2010) is that text passages 

Methods Sub-class Function Pros Cons 

Lexical 

(string) 

Ngram overlap, Vector 

space model, 

Fingerprinting. 

 

Compute proportion of 

overlapping strings 

Suitable for detecting 

verbatim and light 

obfuscation 

plagiarism. Easy to 

implement and very 

efficient. 

Not suitable for 

detecting heavy 

obfuscation 

plagiarism. 

Semantic Knowledge based: 

WordNet, dictionaries, 

thesaurus 

Corpus based: word 

embeddings, SRL, LSA, 

ESA 

Compute word level and 

sentence level semantic 

similarity using external 

resources such as lexical 

databases (i.e. Wordnet) 

and word embeddings (i.e. 

Word2Vec and BERT) 

Suitable for detecting 

obfuscation 

(paraphrase) 

plagiarism, such as in 

synonym replacements 

No suitable for large 

scale, real time 

plagiarism detection. 

Rely on external 

resource which may 

be limited in 

vocabulary. 

Syntactic and 

structural 

POS patterns, stop-word 

ngram pattern 

Compare POS and stop 

word patterns. 

Suitable for detecting 

heavy obfuscation 

plagiarism, and best 

when used to 

complement 

established methods. 

Significant pattern of 

similarity must exist.  

Not effective for 

detecting reordering. 

Others Citation based method, 

Machine learning  

Compare patterns in 

citation. 

Suitable when 

combined with 

established content 

based method. 

Limited to academic 

papers that contains 

citations, and requires 

a minimum number of 

citations. 
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must be large enough to hold at least two citations for this method to work. Hence the citation 

approach to plagiarism detection should be used to complement existing techniques and not to 

replace them, especially in academic documents that often contain citations.  

   Post-Processing  

When potential plagiarised text fragments have been detected, the next stage is post-processing 

where detected fragments in both source and suspect documents are merged into plagiarised 

passages, and passages that are not well formed are discarded. Post processing is usually carried 

out using a combination of techniques, and commonly used ones include seeding, merging and 

filtering (Potthast et al., 2012; 2013; Foltýnek et al., 2019).  Details of these techniques are 

described below. 

2.4.3.3.1 Seeding, Merging and Filtering 

As stated above, seeding, merging and filtering are common text alignment techniques used in 

the post plagiarism detection stage. Seeding is the processes of identifying overlapping text 

fragments in a document pair. Seeds are overlapping units which include words, phrases, n-

grams or even passages. Merging or extension is the process of joining nearby seeds into 

maximum overlapping sequences (phrases, or sentences), while filtering involves removing 

merged sequences that do not co-occur or satisfy certain criteria, i.e. phrases less than a specific 

length are removed, and isolated phrases that do not fall into any identified plagiarised passage 

are filtered off. 
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Table 2.3: Example of Seeding, Merging and Filtering 

 Plagiarised text Source (original) text 

Seeding Inheritance in object oriented 

programming is where a new class is 

formed using classes which have already 

been defined.  

These classes have some of the behavior 

and attributes which where existent in the 

classes that it inherited from.  

In object-oriented programming, 

inheritance is a way to form new classes 

(instances of which are called objects) 

using classes that have already been 

defined.  

The inheritance concept was invented in 

1967 for Simula. 

 

Merging Inheritance in object oriented 

programming is where a new class is 

formed using classes which have already 

been defined.  

These classes have some of the behavior 

and attributes which where existent in the 

classes that it inherited from.  

In object-oriented programming, 

inheritance is a way to form new classes 

(instances of which are called objects) 

using classes that have already been 

defined.  

The inheritance concept was invented in 

1967 for Simula. 

 

Filtering Inheritance in object oriented 

programming is where a new class is 

formed using classes which have already 

been defined 

In object-oriented programming, 

inheritance is a way to form new classes 

(instances of which are called objects) 

using classes that have already been 

defined.  

 

This table contains an example of how seeding, merging and filtering could be performed on a pair of potential 

plagiarised and source text.  

The first row in table 2.3 displays seeds in the pair of text, which are short overlapping 

substrings, the second row display how nearby seeds are merged into long contiguous text 

sequences, and the third row displays potential plagiarised and source passage after potions of 

texts that contain little or no overlaps have been filtered off.  

Leilei et al., (2012, 2013) proposed a text alignment algorithm that is based on seeding, merging 

and filtering. The algorithm uses overlapping sentences as seeds; in particular pairs of 

sentences (in a suspicious and source document) with overlaps that exceed a specific threshold 

were used as seed. The algorithm merges neighboring seeds into a plagiarised passage using a 

sorting algorithm that alternates between seed searching and merging, although details of the 

merging algorithm were not disclosed. Passages with Jaccard coefficient less than a specific 

similarity threshold were discarded. 

Sánchez-Vega-Parez et al., (2014) proposed a text alignment algorithm that uses seeding, 

merging and filtering techniques to align plagiarised document and their sources, and won the 
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Pan@Clef 2014 text alignment competition. The proposed algorithm uses sentences for 

seeding, and compares each sentence in a suspicious document with sentences in a source 

document using the VSM with TFIDF, and Cosine similarity and Dice-coefficient for similarity 

measurement. The algorithm stores overlapping sentences with similarity scores that exceed 

certain threshold, and merges sentences within certain distance apart. In terms of filtering, the 

algorithm filters off duplicate fragments, and fragments less than certain length. 

The next section reviews common surface similarity measures that have been used in the 

literature to detect plagiarism and in other related textual similarity measurement tasks.  

 

2.5 Similarity Measures 

This review is to identify surface similarity measures that have been dominant in the literature 

in one similarity measurement task or the other, and use them for subsequent analysis. 

Similarity measures are needed in many IR and NLP tasks such as plagiarism detection 

(Barrón-Cedeño et al., 2009; Alvi et al., 2017; Álvarez-Carmona et al., 2018), document 

clustering and categorization (Huang, 2008; Gali et al., 2019) and in collaborative filtering for 

recommendation systems (Magara et al., 2018; Amer and Abdalla, 2021), and duplicate and 

near duplicate detection (Charika, 2002). Similarity measures are functional tools used for 

measuring the similarity between objects (where objects means text documents in this 

research). A similarity measure takes in two objects and outputs a numerical value that reflects 

the degree of their similarity. The numerical value is known as similarity score and it is usually 

in the range of 0 and 1 where 0 means exact dissimilarity and 1 means exact similarity, values 

between 0 and 1 are intermediate levels of similarity. According to the literature, there are three 

major groups of similarity measures, they include string-based, corpus-based and knowledge-

based (Mihalcea et al., 2006; Gomaa and Fahmy, 2013; Gali et al., 2019). Knowledge-based 

and corpus-based similarity measures apply semantic and syntactic similarity measurement 

techniques such as Latent semantic analysis (LSA or LSI in IR) (Deerwester et al., 1990), 

pointwise mutual information (Turney et al., 2010; Amigó et al., 2020) or lexical databases 

such as WordNet for measuring semantic and syntactic similarity between texts. String 

similarity measures are divided into two groups namely character and term (token) based 

(Elmagarmid et al., 2007; Gomaa and Fahmy, 2013; Gali et al., 2019).  
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 String Similarity Measures 

String similarity measures are divided into character based and term based metrics. Below is a 

discussion of these metrics; 

 Character Based Similarity Measures 

Character-based similarity measures compares texts by sequence alignment using edit 

operations such as insert, delete, replace and transpose to transform one string to another. 

Standard edit operations include insert, delete, replace and transpose. The main idea is that the 

more similar two strings are, the less edit operations is required to transform one into the other, 

and vice versa. Character based similarity measures are commonly used in DNA sequence 

alignment and duplicate record detection (Elmagarmid et al., 2007), and are based on dynamic 

programming and hence not efficient for comparing large texts (documents). Common 

character based similarity measures include Euclidean distance, Jaro-distance, Jaro-Winkler 

distance, Smith-Waterman distance etc. Elmagarmid et al., 2007; Gomaa and Fahmy, 2013; 

Gali et al., 2019). One character based similarity measure commonly used in plagiarism 

detection (sometimes as baseline) and in document similarity search is the longest common 

subsequence (Clough and Stevenson, 2011; Bär et al., 2012; Sánchez-Vega et al., 2019)  

2.5.1.1.1 The Longest Common Subsequence 

The longest common subsequence (LCSS) is a modified version of the longest common 

sequence (LCS). The longest common sequence is a variant of the Euclidean distance, but 

differs from the Euclidean distance in that it uses less edit operations to transform one string 

into another. Unlike the Euclidean distance that transforms one string to the other by character 

insertion, deletion and replacement, the LCS uses only insert and delete edit operations.  

The longest common sequence is very effective in aligning strings, but like most character 

based similarity metrics, the LCS is based on dynamic programming (hence it is not an efficient 

algorithm. In order to use the LCS on large texts (such as in plagiarism detection), it has to be 

made efficient, and the only way to do this is to trade off some of its effectiveness for efficiency. 

The LCSS is a variant of the LCS that has undergone such trade-off; it is more efficient than 

the LCS on large texts, but less effective. The longest common subsequence has been 

successfully used in many studies to detect plagiarism (Chong et al., 2010; Clough and 

Stevenson, 2011; Baba et al., 2017); however its effectiveness is limited to the alignment of 
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verbatim plagiarism and sometimes lightly altered texts, and will fail when used to detect 

plagiarised texts that have been reordered. 

 Term (Token) Based Similarity Measures 

Term based similarity measures compute similarity by comparing words (or terms/tokens) in 

documents; they use terms as the basic units for comparing texts, and not characters. Term 

based similarity measures are relatively more efficiency (than character based metrics) on high 

dimensional data such as documents, and for the most part they are standard in IR for 

addressing many document similarity measurement problems such as plagiarism detection, 

document clustering, near duplicate detection etc. Hence term based similarity measures are 

considered in this research for text similarity measurement. Term based similarity measures 

are sometimes referred to as surface or lexical similarity measures, this is because they compare 

texts by matching surface features (terms/strings/characters) without taking into account the 

meaning (or semantics) of words when measuring similarity between texts (Metzler, 2007; 

Zesch and Gurevych, 2012; Gali et al., 2019). A term may have more than one meaning (e.g. 

batan animal and a sport equipment), for example the homonym ‘address’ in the two phrases 

below matches lexically, but mean different things semantically in context in both phrases. 

 ‘my address’ and  

 ‘address the issues’ 

There are several basic properties that define a proper similarity measures, they included:  

(1) The symmetrical property: the output of a similarity measure must be consistent even when 

the objects of measurement are swapped, for example given two text objects  A and B, sim(A,B) 

must be equal to sim(B,A). 

(2) The triangular inequality property: this property could be described in terms of the 

equivalent relationship between the  three sides of a triangle, and basically means the sum of 

the distance of any two sides of a triangle must be equal to or greater than the third; AB + AC 

=>BC.   

(3) The similarity property: a similarity measure must satisfy the similarity property, which 

simply means the distance between two identical objects must be 0.  

While there are other properties of a proper similarity measures, these three properties are the 

most widely accepted in research communities. See Oakes (2014) for more. 
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A non-symmetrical measure can be made symmetrical by taking measurement twice (while 

swapping the objects of measurement) and using the average. (sim (A, B) + sim (B, A))/2. 

Similarity measures are either distance based or similarity based. Distance based measures 

carry out measurements in distances; their outputs reflects dissimilarity, but can easily be 

transformed into similarity using one of the following methods;  

)1 (distance

1
Similarity

ordistance1Similarity






……………………………………………………….Equation 2.4 

The outputs of similarity measures are a direct reflection of similarity between objects and are 

usually in the range of 0 and 1, there is usually no need for any form of transformation in the 

output of similarity measures when working on a text similarity measurement task.  

 Types of Similarity Measures 

Different types of similarity measures have been proposed in the literature (Cha, 2007; Magara 

et al., 2018; Molle, P., Verbelen, 2021; Amer and Abdalla, 2021) text similarity analysis. Term 

based similarity measures can be grouped into geometric, probabilistic and set based theoretical 

measures. In practice, term based similarity measures are usually applied on document vectors 

to determine document similarity. Given two document vectors 


U  and


V , their similarity could 

be computed using the following common term based similarity measures; 

 Geometric Similarity Measures  

Geometric similarity measures apply geometrical principles to measure the similarity between 

text documents. If two objects (or vectors) have similar shape in a Euclidean space, they are 

likely similar. A Euclidean space comprises of points in a vector space, or coordinates scattered 

in two or more Euclidean planes. Popular geometric similarity measures include Euclidean 

distance (L2), Manhattan (L1) (both L1 and L2 are together known as generalised Minkowsky 

distance) and cosine similarity (Amer and Abdalla, 2020; Diallo et al., 2022). 

2.5.2.1.1 Euclidean Distance (ED) 

Euclidean distance is the ordinary distance between two points in a Euclidean space that can 

easily be measured with a ruler. ED is about the oldest and most widely used distance measure 

(Oakes, 2014), it is sometimes referred to as ‘as the crow flies’ which simply means ‘in a 
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straight line’. ED measures distances based on differences in vector length or magnitude, and 

does not explicitly focus on content similarity. Hence ED measurements that are equal but of 

different content cannot be easily differentiated (Diallo et al., 2022).  Mathematically, ED is 

the square root of the sum of square difference between any two vectors. Given two documents 

vectors U and V, their Euclidean distance can be calculated using the following mathematical 

expression:  

  



z

1

2

ii
V)(U,Euclidean vu

i ……………………………………………...Equation 2.5 

Where i to z = Euclidean space over which distance is measured. 

ED can easily be implemented and it is also efficient, however one major limitation of the ED 

is that it is skewed by outliers resulting in uneven scale of measurement; features with 

outstanding weights in document vectors contribute more to similarity (or distance) 

measurement than other features. Hence the actual similarity between documents based on 

relative distribution of common features is often skewed, and likely inaccurate. One way of 

overcoming this problem is by applying data standardization (or normalization), with common 

technique such as the z-score. 
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…………………………………………….Equation 2.6 

What z-score normalization does is to set the standard deviation to one and mean to zero for 

every feature. In so doing, the scale becomes normalized as every feature has equal standard 

deviation and measured from a common mean point.  One other disadvantage of the ED as it 

relates to document similarity measurement is that ED performs best when comparing vectors 

with two or three dimensions and documents tend to have much higher dimensions (Sohangir 

and Wang, 2017). Hence the accuracy of ED decreases with increase in dimension, which 

makes it not quite suitable for distance measurement in high dimensional space such as what 

is usually encountered in document similarity measurements.  

2.5.2.1.2 Manhattan Distance 

The Manhattan distance (also known as city block distance or L1) between two vectors is the 

sum of the difference between the common components shared by the vectors. The difference 
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between Manhattan distance and the ED is that when computing Manhattan distance, the 

difference between each corresponding vector components is not squared. The Manhattan 

distance and the ED are both regarded as special cases of Minkowsky distance because of their 

similarity.  
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i ………………………………………….Equation 2.7 
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…………………………………………Equation 2.8 

When the difference in the Minkowsky distance is raised to power (p) of one (1), the 

Minkowsky distance becomes Manhattan distance, and if p=2, then it becomes Euclidean 

distance.  

2.5.2.1.3 Cosine Similarity 

Cosine measure along with Euclidean distance are about the most widely used surface 

similarity measures (Sohangir and Wang, 2017). The Cosine similarity uses the cosine of the 

angle between two document vectors as a measure of similarity; if the angular difference 

between two vectors is 0θ (zero degree), cosine 0=1, which means exact similarity, and if the 

angular difference is 90θ (ninety degrees), cosine 90=0, which means exact dissimilarity. 

Cosine measure do not take into account the magnitude (length) of vectors (Diallo et al., 2022), 

but rather the content similarity (similarity in vector components). In terms of actual 

implementation, cosine similarity can simply be expressed as the inner product (dot product) 

of two vectors divided by their norm product.  

 V,UsimilarityCosine
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…………………….Equation 2.9 

Cosine similarity has really been successful in many IR tasks, especially when combined with 

TFIDF weighting in the vector space model (Salton et al., 1975; Meuschke and Gipp, 2013, 

Gupta et al., 2016). However cosine similarity is insensitive to differences in document length; 

hence some experts argue that cosine similarity in its original form is not suitable for all textual 

similarity measurement tasks (Shivakuma and Monilar, 1996;   Hoard and Zobel, 2003). 
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Fig 2.2 shows document comparison in a vector space using angular distances between vectors and 

distances between vector lengths, where the length of a vector is indicated by the arrow sign at the 

peak.2 

2.5.2.1.4 Pearson Correlation Coefficient (PCC) 

Pearson correlation coefficient is a well-known statistical tool used for measuring the linear 

relationship between two random variables. Given any two random variables U and V taken 

from a population, PCC is mathematically expressed as the covariance of U and V divided by 

the product of their respective standard deviation. Where the covariance is the relative variance 

of variables U and V. PCC is usually expressed as a number between +1 and -1, where +1 

represent perfect relationship.  
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 ……………………………….Equation 2.10 

PCC can be computed very efficiently, and can be effective when the relationship between two 

vectors is linear. However, PCC always assumes linear relationships even when such 

relationships do not exist, it is also affected by outliers Baak et al., (2019); what this implies in 

                                                 
2 Note that there are two measurement variables that determine the similarity between objects in a vector space, 

they include vector length (extent of similarity) and angular distance (content /topic similarity) (Zhang and 

Korfhage, 1999). A query and document a vector are exactly similar if they have equal length and zero angular 

distance between them, but are completely different if one is orthogonal to the other. However, for documents 

similarity measurement, angular distance matters most as it reflects content (or topic) similarity. 

 

Θ 

Θ 

Doc1  

Doc 2 

Query 

Figure 2.9: Document Comparison in a Vector Space. 
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terms of document similarity measurement is that not linear relationships cannot be captured, 

and one or more extremely high and outstanding values could alter the accuracy of similarity 

measurement, which could potentially result in high similarity in a pair of documents even 

when they are not really similar or vice versa. 

 Similarity Measures Based On Event Probability  

Similarity measures under this group use probability of similar events in two documents to 

determine how similar they are.  Most probabilistic similarity measures are used in information 

theory; they compare documents using information content or features derived from 

documents. Commonly used ones include Kulback-Leibler divergence, Jenssen-Shannon 

divergence and Bayttacharyan coefficient (Amer and Abdalla, 2020; Levada and Haddad, 

2021). 

2.5.2.2.1 Kullback-Leibler Divergence (KLD) 

Kullback-Leibler divergence also known as relative entropy is a one of the most widely used 

information theoretical measure for computing the divergence between two probability 

distributions (Barrón-Cedeno, 2009; Levada and Haddad, 2021). Given a pair of texts U and 

V, the KLD measure of (U||V) is the amount of uncertainty or information loss when V is used 

to approximate (Kullback-Leibler, 1951) or replace U.  KLD is not symmetrical, hence it is not 

a proper distance measure, but there are many variants of KLD that are symmetrical. 

Mathematically, KLD can be expressed as follows: 

v

u
loguV)||(UKLD

i

i

i
i  …………………………………………………………..Equation 2.11 

KLD requires that there is absolute continuity in comparison, if 0)(0)(  iViU . This 

simply means, if U and V are two probability distributions, every event in U must be compared, 

and if such event is not present in V, KLD becomes undefined ( 0log0 ) due to sparse data. 

Data sparseness occurs when there is insufficient data to use to make accurate estimate of 

similarity between two texts. A common solution to the problem of data sparseness is 

smoothing where vector components with values equal to zero are replaced with a very small 

positive number (Alison et al., 2006; Sueno et al., 2020). More about smoothing is discussed 

in the section below under the limitations of the language model. 
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2.5.2.2.2 Jensen-Shannon Divergence (JSD) 

JSD measures how similar two probability distributions taken from the same sample space are. 

It is a well-known measure in information theory because of its strong statistical grounding. 

JSD is based on Kullback Leibler divergence (KLD), it is generally referred to as normalized 

KLD, but differs in the sense that it is symmetrical and normalized, and it is not constrained by 

absolute continuity, hence its output is always finite. The JSD for any two text documents U 

and V can be mathematically represented as: 
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VU
||dKLD(V)
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………………………….Equation 2.12 

2.5.2.2.3 Bhattacharyya Coefficient (Bhat) 

Bhattacharrya coefficient measures the amount of overlaps (intersections) between two 

statistical distributions. Bhattachayya coefficient and KLD are increasing being used for 

measuring uncertainty in neural networks and collaborative filtering in recommendation 

systems (Patra et al., 2015; Singh et al., 2020; Pieter et al., 2021).  
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…………………………………………………Equation 2.13 

Where U and V are two probability distributions, and the letter i represents an overlapping 

event taken from the even space ‘i –to- z’. In light of this research, U and V represent the two 

text documents that are being compared. 

 Similarity Measures Based on Set Theory   

Similarity measures under this group represent documents as sets of features and apply basic 

set theories such as intersection, union etc. to measure how similar two documents are.  Popular 

similarity measures under this group include Jaccard-index, Dice-coefficient and overlap 

(Egghe and Michel, 2003; Jimenez et al., 2018; Verma and Aggarwal, 2020). 

2.5.2.3.1 Jaccard-Index 

The Jaccard-index is simply the intersection of two objects divided by their union.  It is one of 

the standard measures used in IR, and was originally designed for similarity measurements 

involving binary vectors, but can be modified to work with weighted vectors  using a version 

called the extended Jaccard (Ghosh and Strehl, 2006).  Jaccard index is computed as the 
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intersection of two sets normalized by their union. Given two document vectors U and V, their 

Jaccard-index can be calculated using the formula below: 

VU

VU
=V)(U,SimilarityJaccard





……………………………………………………..Equation 2.14 

 V,UJaccardExtended
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2.5.2.3.2 Dice Coefficient 

Dice coefficient is very similar to Jaccard index, and in many cases they tend to have similar 

outputs (many times the same). The main difference between Dice and Jaccard index is that 

Dice assigns twice as much weight to set intersection than Jaccard-index, and in many textual 

similarity measurement studies, there is little or no difference in their performance. Given two 

document vectors U and V, their Dice coefficient can be calculated using the function bellow: 
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=V)(U,tCoefficien Dice




…………………………………………………Equation 2.16 
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…………………………………………….Equation 2.17 

2.5.2.3.3 Overlap Measure  

The overlap measure is an efficient similarity measure that can be very handy when a quick 

estimate of similarity between texts is needed. The overlap measure of two sets of objects is 

computed as their intersection divided by the minimum size of the smaller object. Give two 

sets of objects U and V, their overlap measures can be computed as; 

 
 V|Umin

VU
VU,Measure Overlap




 ………………………………………Equation 2.18 

From the literature and description above, it is clear that similarity measures function 

differently; which means they have different areas of strengths and weaknesses; some may be 

effective on some problems, and may not be effective on other problems. It is therefore 

important to know the right similarity measures to use. Before designing an experiment model 

that will allow the best performing similarity measures to be determined, it is only reasonable 
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to select from the literature those that have been dominant and successful from previous 

evaluation studies. 

The following similarity measures have been successful in the literature; Bhattacharyya 

coefficient, Cosine similarity, Dice distance, Euclidean distance, Jaccard-index, Euclidean 

distance, Jensen-Shannon divergence, Kullback-Leibler divergence and Pearson correlation 

coefficient. 

The literature revealed that these similarity measures are either dominant or successfully used 

in at least one area of textual similarity measurement tasks such as in text categorization, 

document classification and clustering etc. Euclidean distance is commonly used in clustering 

algorithms, especially for k-means clustering (Moradi et al., 2020; Aamir and Zaidi, 2021), it 

is efficient and can be used to measure distances between objects in two or more dimensional 

space.  Results from Ljubesic et al; (2008) experiments show both Euclidean distance and 

Jensen-Shannon divergence outperformed many well-known similarity measures in the 

extraction of semantic similarity between texts. Cosine similarity, Jaccard-index and Dice 

coefficient are well known IR similarity measures, empirical studies revealed that Cosine 

similarity, Jaccard-index and Pearson correlation coefficient are some of the best similarity 

measures for text document clustering. Results from Huang (2008) experiments revealed that 

document clustering based on Pearson correlation coefficient and Kullback-Leibler divergence 

were more accurate than clustering based on most other similarity measures.  Barrón-Cedeno 

et al., (2009) applied KLD to reduce search space in plagiarism detection with improved 

performance. Pearson correlation coefficient once again proved to be more effective than many 

well-known similarity measures in Forsyth and Sharoff (2014) study. Sanchez-Perez et al., 

(2014) applied Dice coefficient and Cosine measure to detect plagiarised sentences with 

outstanding results. In more recent studies, similarity measures such as Jaccard index, Cosine 

similarity, Bhattacharyya coefficient, KLD and PCC have found great applications in 

collaborative filtering (Patra et al., 2015; Singh et al., 2020; Ayub et al., 2020; Amer and 

Abdalla, 2021) for recommender systems. 

These similarity measures have all shown to be remarkably effective in different areas of text 

similarity measurement tasks and are considered in this thesis for plagiarism detection. Another 

common tools used in surface similarity measurement are term weighting methods. The next 

subsection reviews common term weighting methods used in IR. 
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 Term Weighting 

The success of IR models such as the VSM, and text classification systems to a large extent 

depends on the type of term weighting method used (Polettini, 2004; Dogan and Uysal, 2020). 

Term weighting is important as it allows terms in documents to be well represented according 

to their relevance, which improves the quality of retrieval systems. When documents are pre-

processed, they are usually transformed to vectors by assigning weights to indexed terms. 

Several term weighting methods have been proposed in the literature, they are broadly 

classified into local and global term weighting methods (Polettini, 2004, Cummins and 

O’Riordan, 2006; Domeniconi et al., 2015). Local term weighting methods express the relative 

importance of terms in a document; common local term weighting methods include term 

frequency, binary, logarithm weighting and its derivatives etc. Global term weighting on the 

other hand is focused on expressing the importance of a term across all documents in a 

collection. It main goal is to project the discriminatory power of each term in a collection of 

documents;  to scale down the weights of  highly frequent terms, and scale up the weights of 

rare terms due to their high discriminating power. Examples of global term weighting methods 

include inverse document frequency (IDF), term frequency inverse document frequency 

(TF/IDF), probability inverse document frequency (PIDF) etc. In practice, common term 

weighing methods used by retrieval systems are binary, TF, IDF and TF/IDF (Domeniconi et 

al., 2015; Dogan and Uysal, 2020); these weighting methods are common because of their 

success in previous studies, hence are described in details below: 

 Binary Weighting 

In binary weighting, a value of one is assigned to every term that occurs in a document 

irrespective of their frequency of occurrence, and terms which do not occur are assigned a 

weight of 0. Binary weighting is one of the oldest weighting methods, it is easy to implement 

and runs efficiently, but does have obvious limitations. Binary weighting does not take into 

consideration the relative importance of terms in documents, which is a disadvantage especially 

when comparing documents that have high dominance of common terms; such common terms 

(usually with low discriminating power) will contribute more to document similarity than rare 

terms that could bring about clear discrimination. Hence this weighting method is not suitable 

for all document similarity measurement tasks. 
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 Term Frequency (TF)  

Term frequency is the number of times a term occurs in a document.  

frequencyfand

,d'documentintermaist'where

d)f(t,d)(t,TF





 

TF is easy to implement and can be computed efficiently, however with TF weighting, common 

words with high document frequency are assigned higher weights than rare words (with high 

discriminating power) in a document, as long as such common words occur more frequently. 

This will therefore result in false matches and inaccurate measurement of similarity as common 

words will contribute more to document comparison than highly discriminating words.  

 Inverse Document Frequency (IDF) 

IDF measures the relative importance of terms in a document collection; it is mathematically 

expressed as the logarithm of the quotient of the total number of documents divided by the 

document frequency of a term. Document frequency itself is the number of documents in which 

a term occurs in a collection.  

ttermoffrequencydocumentDFand

collectionaindocumentsofnumberNwhere

DF

N
log)(IDFFrequencyDocumentInverse

t

t

t







………………………………Equation 2.19 

 Term Frequency Inverse Document Frequency (TF/IDF) 

TFIDF is a global term weighting scheme and a relevance measure (Qaiser et al, 2018), it is 

simply the multiplication of term frequency (TF) and the inverse document frequency (IDF). 

Both TF and IDF can be derived as described above. The intuition behind the implementation 

of TF/IDF is to balance the weights of terms in a corpus by assigning more weights to rare 

terms and scale down the weights of common terms that have high document frequency. Hence 

rare terms, and terms with high TF and low DF are often weighted higher than common terms 

with high DF. 
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tDF

N
log),(TF/IDF  dtf

……………………………………………………….Equation 2.20 

TFIDF is one of the most successful term weighting methods used in IR. TFIDF is the main 

weighting method used in SMART information retrieval system (Salton, 1971). However, 

TFIDF often scale down the weights of common words, and when working with real life data, 

there are often cases where common words are better discriminators than rare words. Hence 

the use of TFIDF in such situation would most likely result in inaccurate similarity 

measurement. 

The next section reviews the literature on cross-lingual plagiarism and common methods used 

in the literature to detect cross-lingual plagiarism. 

 

2.6 Cross-lingual Plagiarism Detection 

This section describes state-of-the-art methods used in detecting CLP, some of which have 

been in existence for a while relative to newer models based on word embeddings and 

knowledge graphs. 

 Cross-lingual Character N-Grams (CL-CNGs) 

Cross-lingual character n-grams (CL-CNGs) use character n-grams to measure syntactic 

similarity between texts, it is suitable for languages that have high lexical similarity such as 

English and French (McNamee and Mayfield, 2004; Barrón-Cedeño et al., 2013).  This model 

has the advantage of being language independent, as similarity is computed by matching strings 

(characters). 

 Cross-lingual Explicit Semantic Analysis (CL-ESA) 

Cross-lingual explicit semantic analysis (CL-ESA) (Potthast et al., 2011) uses comparable 

(intermediary) corpora to capture topic similarity based on explicit semantic analysis 

(Gavrilovic et al., 2007). In CL-ESA, semantic similarity is computed using Wikepedia 

concept, the idea is, if a pair of texts in two different languages maps to the same Wikepedia 

concept, then they are semantically related. See section 2.4.3.3.1 for details on explicit semantic 

analysis. 
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 Cross-lingual alignment-based similarity analysis (CL-ASA) 

Cross-lingual alignment-based similarity analysis (CL-ASA) (Barrón-Cedeño et al., 2013) uses 

statistical machine translation (SMT) based on the IBM model to align parallel corpora. 

Statistical machine translation is based on probability distributions, the main idea is to 

maximize the probability of mapping a string Ss in one natural language (e.g. Spanish) into a 

string Se in another natural language (e.g. English). An implementation SMT based on Bayes 

rule could be expressed mathematically as follows: 

 

** ee

p(e)p(s|e)

ee

|s)p(e
e







 maxargmaxarg
…………………………………………Equation 2.21 

The first and second languages are usually referred to as the source and target languages 

respectively. Once texts have been translated, plagiarism could be detected format a standard 

monolingual format. One drawback machine translation models is that they are 

computationally expensive (Stegmüller et al., 2021), and they require parallel corpora which 

takes a lot of time to create.  

 Knowledge Based Methods 

Knowledge based methods rely on external knowledge resources such as Eurovoc and 

multilingual dictionaries to translate texts from one language to another before applying a 

monolingual detection method. Gupta et al., (2012) and (Pataki, 2012) applied knowledge 

based methods with encouraging results. One major limitation of this approach is that 

performance in plagiarism detection is often related to vocabulary sizes of knowledge resources 

used, which are often limited.  

 T + MA Model (Translation plus Monolingual Analysis) 

The T+ MA model normalises texts into a common language using an online machine 

translator, before applying monolingual plagiarism detection methods. The T + MA method is 

the most common, having been used by most participants in the Pan competition on plagiarism 

detection, and in the SemEval (Agirre et al., 2016; Cer et al., 2017) competition on cross and 

multi lingual semantic similarity analysis, including the best performing systems (Tian et al., 

2017; Wu et al., 2017). Evaluation of state-of-the-art CLPD models revealed that the T + MA 

model is the most effective model for detecting CLP (Barrón-Cedeño et al., 2013). However, 

the T+MA model is limited by the fact that internet translation tools are not always available, 
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it is not effective in situations where texts are translated and then altered by replacing words 

with similar words. The T+MA model is also limited by the amount of translations required 

for large scale plagiarism detection over the internet, and can easily be disrupted by failed or 

slow internet connection or online traffic. 

 

Newer Approaches for CLPD 

In more recent studies, approaches based on word embeddings and semantic networks have 

been proposed for CLPD.  

 Cross Lingual Word Embedding 

Word embedding models use distributed representation of words to predict semantically 

similar words; the basic idea is that words that appear frequently in the same contexts are 

considered similar. Common but efficient (and effective) word embedding architectures 

include the wor2vec CBOW and skip-gram models (Mikolov et al., 2013a), and Glove 

(Pennington et al., 2014; Ghannay et al., 2016). These models map words to vectors of real 

numbers, and follow the intuition that when words are represented in a common vector space, 

similar words should have similar vector representations. Word embeddings were originally 

proposed for monolingual similarity analysis, but have been extended to cross-lingual settings 

where a joint embedding space is used to learn cross-lingual representation of words (Ruder et 

al., 2017); typical implementation involves projecting the embeddings of a source language 

into the space of a target language. Common CL-WE models are the canonical correlation 

analysis (CCA) (Faruqui and Dyer, 2014; Lu et al., 2015; Ammar et al., 2016), alignment 

projection (Guo et al., 2015; 2016), and the linear transformation model proposed by Mikolov 

et al., (2013b). The CCA projects matrices from parallel corpora into lower dimensions of 

maximum correlation, and translate by projecting across both matrices. The alignment 

projection method aligns a parallel corpora (bilingual dictionary) and project words in a target 

language to the embedding space of a trained monolingual source. The linear projection method 

uses a linear transformation function to map the embeddings of one language into the space of 

another using a trained dictionary that learns the function. Duong et al., (2017) argued that 

most of the common CL-WE models were built for bilingual analysis, and proposed a method 

based on multilingual joint training that combines bilingual word embeddings from multiple 

languages in a common embedding space and obtained encouraging results. CL-WE are rarely 

used in CLPD, although they can be effective offline machine translators. In one application 
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of CL-WE in CLPD, Ferrero et al., (2017a) used bilingual embeddings (from a parallel corpus) 

mapped to a common space, and trained using the Word2Vec CBOW model to detect CLP. 

The actual implementation was carried out using MultiVec (Berard et al., 2016); a toolkit 

designed for creating and managing a number of distributed representation models, and the 

specific model used was original proposed by Luong et al., (2015); a skip-gram extension of 

Word2Vec in a bilingual space. CLPD was carried out by comparing word vectors in pairs of 

suspect and source sentences using the cosine measure, pairs of sentences with similarity scores 

above a predefined threshold are considered potential plagiarised fragments. The skip-gram 

and CBOW models retain word order and capture the context of a word, which reveal a lot 

about the word. In a similar study Glavaš et al., (2017) applied the linear transformation method 

proposed by Mikolov et al., (2013b) in CLPD; the actual detection of plagiarism was based on 

word vector comparison on sentence level similar to Ferrero et al., (2017a). 

 Knowledge Graphs/Semantic Networks 

Semantic networks link words with similar meanings in different languages to common 

concepts; words more closely linked to a concept are assigned higher weights than words 

further away. Examples of semantic networks are BabelNet and ConceptNet (Franco-Salvador 

et al., 2014, 2016; Speer. and Lowry-Duda, 2017). Franco-Salvador et al., (2014; 2016) 

proposed a CLPD model that uses knowledge graphs built form a multilingual semantic 

network (MSN) to compare documents in different languages for semantic similarity, and 

CLPD. Knowledge graphs capture relationships between concepts derived from text fragments 

in a document, while a MSN links semantically related words in different languages to a 

specific concept. The knowledge graph method was proposed because most of the existing 

CLPD models were designed to detect texts that have been translated to 

other languages using online machine translators, and struggle to detect translated texts that 

have been paraphrased. To address the problem, Franco-Salvador et al., applied BableNet, a 

MSN made from concepts derived from Wikipedia and WordNet, to build knowledge graphs 

for documents written in different languages and apply a similarity function to measure their 

similarity. Results from Franco-Salvador et al., study shows that the knowledge graph method 

outperformed state-of-the-art methods.  
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 Hybrid CLPD Models 

Hybrid models that combine word embeddings with other methods have also been proposed. 

A hybrid of word embeddings and knowledge graph was proposed in (Franco-Salvado, 2016) 

with the aim of determining whether both models complement each other in detecting CLP, 

evaluation results presented by the authors revealed that the models are complementary, and 

that when in combination, they outperformed several state-of-the-art CLPD models. Speer and 

Lowry-Duda (2017) used concept-net to combine pre-trained Word2Vec and Glove models 

(word embedding models) into a multilingual semantic similarity detection system, and 

emerged best in the SemEval 2017 competition. Concept-net is an open multilingual 

knowledge graph that generates concepts that relate meanings of words and phrases. The idea 

used in combining the concept graph to a word embedding model is retrofitting, where a pre-

trained embedding model is built upon a concept graph. This process is carried out separately 

on the individual word embedding models, and then combined using a unified vocabulary. The 

redundant features/dimensions that result from the combination are then removed via truncated 

singular value decomposing (SVD), a technique used in latent semantic analysis to reduce the 

dimensions of a VSM to only the most relevant ones. España-Bonet and Barrón-Cedeño (2017) 

presented a language independent model that measures the semantic similarity between text 

snippets across multiple languages. The system uses a Support Vector Machine (SVM) to 

combine a number of intertextual features, which includes features derived from embeddings 

trained using the Word2Vec model and a multilingual corpora, from lexical similarity 

measurements, from the internal representation (hidden layer) of a neural network trained using 

multilingual parallel corpora and from CL-ESA. This approach is however best suited for low 

resource languages.  

Evaluation of state-of-the-art CLPD models (Barrón-Cedeño et al., 2013) revealed that the T + 

MA model outperformed the others due to its precision in translating texts using online 

machine translators, and as mentioned in (Burrows et al., 2013; Barrón-Cedeño et al., 2013), 

precision is the single most important measure used in plagiarism detection as it reduces the 

time in deciding whether plagiarism is carried out or not. Hence one of the objectives of this 

thesis is to propose a CLPD model functions with similar precision and performance to a T + 

MA model, but without the limitations. 

 

The next section briefly discusses some of the main challenges facing plagiarism detection. 
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2.7 Challenges in Plagiarism Detection 

One of the main challenges to plagiarism detection is the complex tactics used by plagiarist in 

carrying out the act of plagiarism (Pertile et al., 2016). It is a fact that majority of conventional 

plagiarism detection software are ineffective in detecting paraphrased and translated plagiarism 

(Foltýnek et al., 2020; Kaur et al., 2021). Due to the absence of overlaps, many cases of 

plagiarism go undetected as traditional plagiarism detection tools rely on overlaps to perform.  

To make matters worse, plagiarism in the form of reuse of other people’s ideas render most 

detection software ineffective. Such cases can only be detected using manual comparison; even 

semantic similarity techniques may not be really effective in such cases. In recent years, 

plagiarists have gone a step further to apply complex tactics such as the use of foreign 

characters to beat plagiarism software. Since most plagiarism software are designed to work 

with English characters, replacing some English characters in a plagiarised passage with 

foreign characters (i.e. German characters) renders most plagiarism software ineffective.  

Another challenge facing conventional plagiarism detection is the lack of evaluation corpus for 

testing plagiarism detection software before deployment into production environments remains 

an issue (Foltýnek et al., 2020). Plagiarism detection, specifically in academic institutions of 

learning is sensitive and care should be taken to ensure that plagiarism detection software are 

accurate and reliable before deployment into a production. One way of ensuring accuracy and 

reliability is by testing on real life data and measuring performance and analyzing results under 

different conditions. The question then becomes how can real life data be acquired for testing 

plagiarism detection software? There is currently no real life plagiarism corpus to use for 

testing and evaluating plagiarism detection systems; this is because of the legal ramifications 

of using real life plagiarism cases (Clough and Stevenson, 2011; Foltýnek et al., 2020). Due to 

the right of privacy given to students, plagiarist and academic institutions have to agree on the 

use of plagiarised cases for system development purposes, which is something that is almost 

impossible as virtually all plagiarists would oppose the idea of making their information public.  

The next section reviews common methods used in the literature to evaluate plagiarism 

detection and classification systems. 
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2.8 Metrics Used for Evaluating the Performance of Plagiarism 

Detection Systems 

The performance of a plagiarism detection system is measured in the same way as most IR 

systems; the same performance metrics can be applied. Standard metrics for measuring the 

performance of plagiarism detection systems includes precision, recall (Zobel and Moffat, 

2006; Manning et al., 2008) and F1-measure (Baeza-Yates and Ribeiro-Neto, 2011; Baron-

Cerdeno et al., 2013). Efficiency is another performance measure that can be measured in terms 

of computational time or complexity.  

Here are all the possible outcome from a detection model or classifier that define the above 

evaluation metrics.  

True positive (TP): number of positive examples correctly classified as positive. 

False positives (FP): number of negative examples wrongly classified a positive. 

True negative (TN): number of negative examples correctly classified as negative. 

False negative (FN): number of positive examples wrongly classified as negative. 

The precision of a retrieval system is a measure of how precise the system is; it can be 

calculated as the number of relevant retrieval divided by the total number of items (documents) 

retrieved. Mathematically, this can be represented as; 

 
FPTP

TP

retrieveddocumentsofnumberTotal

retrievedaccuratelydocumentsofNumber
ecision


Pr  

Recall is an expression of sensitivity; recall is a measure of how sensitive a detection model is 

with respect to positive (relevant) items the recall of a system is the number of relevant retrieval 

divided by the number of relevant items expected; 
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exp
Re ……………………..Equation 2.22 

The difference between the precision and recall of a system is not supposed to be large, but if 

it does happen, a common practice is to use F1-score as a measure of performance. The F1-

measure (F1-score) is the harmonic mean of precision and recall, it is a measure that takes into 

account the precision and sensitive of a system. 
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 …………………………………………Equation 2.23 

In an event where time is equally as important as effectiveness, then the performance of a 

system may be measured in terms of efficiency. The efficiency of a system can be measured in 

terms of its response time, or the rate at which inputs are processed into outputs (throughput). 

Efficiency can be expressed in percentage, likewise precision, recall and F-score. 

These evaluation metrics do not take into account details of plagiarised fragments (granularity) 

such as the extent to which a fragment is detected (complete or partial), and multiple detection 

of a single plagiarised fragment. To address this problem, a number of evaluation metrics were 

proposed in Pan (Potthast et al., 2014; 2015) for measuring performance at character level, they 

include precision, recall, granularity and plagdet score. These measures are applied using 

positional character alignment (character overlaps) between actual plagiarised passages S= 

{s1,s2….sn} and passages retrieved by a detector R={r1,r2,…rn} for a pair of suspect and 

source documents, and averaged across all plagiarised cases in the corpus. Precision: measures 

the proportion of retrieved passages that are relevant 
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………………………………………………..Equation 2.24 

Recall: measures the proportion of relevant passages retrieved. 
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………………………………………………Equation 2.25 

Granularity: Penalises for multiple (or fragmented) retrieval of a single plagiarism case. 
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Plagdet score: combines precision, recall and granularity into a single performance score for 

ranking plagiarism detectors. 
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 …………………………………………...Equation 2.27 

F1=harmonic mean of precision and recall. 
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These evaluation metrics are only relevant when details of plagiarised passages are provided, 

such as length and offset (starting character) of plagiarised passages (included in ground truth), 

otherwise the IR metrics described above should be used. 

One other tool that can be used to evaluate the performance of plagiarism detection system is 

area under the receiver operator characteristic (AUC-ROC) commonly used in NLP and 

machine learning for comparing classification systems. An ROC curve is a plot of true positive 

rates against false positive rate of a binary classifier, it gives a clear picture of the accuracy of 

a classification model with respect to a positive class.  

FNTP

TP
ratepositiveTrue


 …………………………………………………...Equation 2.28 
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 ………………………………………...Equation 2.29 

AUC is a measure of the area under the ROC curve, the larger the area, the better the 

classification accuracy of a model. AUC is recommended for binary classification problems 

(Davis and Goadrich, 2006), such as classifying a pair of source and suspect text as plagiarized 

or not. AUC values range from 0.5 to 1, where 1 is the maximum score assigns to a perfect 

classifier, and 0.5 is assign to a poor classifier that makes random guess (Szymura, 2022); that 

completely lacks the ability to discriminate between two classes. AUC is used in authorship 

attribution (Stamatatos et al., 2015) for comparing detection systems, authorship attribution is 

one of the closest task the plagiarism detection. 

The next section this chapter, and highlights important topics covered in the literature relevant 

to the research problems.  

 

2.9 Summary 

This chapter reviewed the relevant literature on plagiarism and plagiarism detection, with 

emphasis on external plagiarism detection using automated systems in both mono and cross-

lingual settings. The review covered state-of-the-art methods used in the literature to detect 

plagiarism which includes methods for data pre-processing, candidate retrieval and text 

alignment. For data pre-processing, NLP techniques such as tokenization, case-folding, stop-

word removal, stemming were described. For candidate selection, information retrieval 
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techniques used in document ranking and retrieval such as search engines, keyword selection 

were described. For text alignment which involves exhaustive similarity search and detailed 

comparison, methods used for detecting copied text which includes lexical matching, semantic 

and syntactic similarity measurement methods, and text alignment techniques (seeding 

merging, and filtering) used for joining detected fragments into plagiarized passages were all 

reviewed. Common IR term weighting methods for optimizing document similarity measures 

(TF, IDF and binary) weighting schemes were described. In terms of Cross-lingual plagiarism, 

the review covered old and new methods used in the literature for detecting cross lingual 

plagiarism, with much emphasis placed on new methods such as word cross lingual word 

embeddings and knowledge graphs. The review also covered methods proposed in the literature 

for evaluating plagiarism detection systems, mostly from the field of IR given that plagiarism 

detection is primarily an IR tasks, evaluation metrics such as precision, recall and F1-score 

were described, and newer evaluation metrics (proposed in the Pan@Clef competition on 

plagiarism) that take into account details of plagiarised fragments (i.e. granulaty and plagdet) 

were described. Also included are major challenges facing conventional plagiarism detection, 

and number of weaknesses in terms of performance of current plagiarism detectors were 

highlighted.  
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3 Methodology 

 

3.1 Introduction 

This thesis is about developing models for addressing some of the current challenges facing 

plagiarism detection which includes paraphrase and cross-lingual plagiarism. This thesis is also 

about improving the state-of-the-art in plagiarism detection using advance technology such as 

the deep neural network (DNN). In chapter two, a review of the relevant literature was carried 

out in order to study the problem of plagiarism detection, and to identify state-of-the-art 

approaches, methods and tools used in the literature to detect plagiarism. This chapter looks at 

a methodology designed to address the research problems, and this breaks down into three 

research questions, which are: 

 

1. What are the best performing combination of surface similarity measures and textual 

features (as measured by precision, recall and f1-score) from those described in the 

literature for detecting similar and near similar texts?  

 

2. Can deep contextual learning models be used to enhance the detection of paraphrase 

plagiarism with performances comparable or better than the current state-of-the-art? 

 

3. Can a multilingual translation model that does not rely on the internet be built from the 

Word2Vec (word representation) model and applied to effectively detect cross-lingual 

plagiarism (CLP) with performances comparable to the state-of-the-art? 

 

The next section outlines the structure of the methodology, which includes the methods and 

approaches chosen to address the above research questions. 
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3.2 Structure of Chapter 

The methodology is structured so that simple but effective methods (proposed in this research) 

for detecting plagiarism using surface features were first described, followed by more advanced 

methods (proposed in this research for detecting more complex cases of plagiarism that may 

or may not have surface features) that uses features deeply embedded in text for measuring 

semantic similarity. The final aspect of the methodology looks at cross-lingual plagiarism 

(CLP) detection (where textual features are written in different languages), and describes a 

novel method proposed in this research to address the problem of CLPD.  

The evaluation of each method, including evaluation datasets, metrics and baselines were also 

described as part of the methodology (and experimental design). 

The rest of this chapter is organized into the following sections: 

 Section 3.3: Datasets; this section describes the datasets used in this research to address 

the questions raised; the datasets include corpora for evaluating paraphrase and cross 

lingual plagiarism detection systems, the datasets come with ground truth which 

contains details of plagiarism cases for evaluation purpose.  

 Section 3.4: Method chosen to address research question 1; this section describes the 

approach used to address research question one (1), this includes the evaluation of 

methods that uses surface textual features to detect plagiarism. 

 Section 3.5: Method chosen to address research question 2;  describes the approach 

used in this research to address research question two (2), and includes evaluating 

methods that incorporate state-of-the-art NLP tools that use deeply embedded features 

in text to measure semantic similarity into existing methods used in plagiarism 

detection to enhance the detection paraphrase plagiarism. 

 Section 3.6: Method chosen to address research question 3; this section describes the 

approach used in this research to address research question three (3), and involves 

evaluating a method proposed in this research for detecting CLP that uses a multilingual 

plagiarism detection tool proposed in this work built using a non-contextualised word 

embedding model. 

 Section 3.6 summarises the entire methodology, with a list of experiments described in 

the subsequent sections. 

 



  

74 

 

3.3 Datasets 

The datasets used in this research to evaluate plagiarism detection systems include corpora for 

evaluating paraphrase plagiarism, cross-lingual plagiarism and monolingual plagiarism (with 

alterations of varying degrees of intensity) detection systems. 

 Paraphrase Datasets 

The datasets chosen to evaluate paraphrase plagiarism detection systems are the 

Crowdsourcing paraphrase corpus (Burrow et al., 2013), the P4P (paraphrase for plagiarism) 

corpus (Barrón-Cedeño et al., 2013) and the Microsoft research paraphrase corpus (MRPC) 

(Dolan and Brockett, 2005).  

These datasets are described in details below. 

 Crowdsourcing Paraphrase Corpus  

The Crowdsourcing corpus (Burrows et al., 2012) contains 7,859 pairs of passages, of which 

4,067 are paraphrased and the remaining 3792 pairs are non-paraphrased. The passages were 

obtained from crowdsourcing, which involves enlisting paid workers with specific instructions 

to create paraphrase passages using one or more of the following alteration techniques; 

synonym replacement, word or phrase reordering, insertion/deletion, inflectional changes of 

texts etc. The corpus comes with groundtruth that contains details about whether a pair is 

paraphrased or not. 

Table 3.1: Statistics on the Crowdsourcing paraphrase corpus 

 

 

Statistical distributions of pairs of paraphrase and non-paraphrase texts in the Crowdsourcing 

paraphrase corpus.  

 The P4P Paraphrase Plagiarism Corpus 

The P4P paraphrase plagiarism corpus was created from the Pan@Clef 2010 evaluation corpus 

for plagiarism detection, which was artificially generated from web data. The P4P paraphrase 

corpus contains 859 pairs of short texts of which 847 have been paraphrased at sentence level 

and annotated with paraphrase types. There are 20-paraphrase types in the corpus, of which 

Classes Number of pairs 
Paraphrased pairs 4067 (51.75%) 

Non-paraphrased pairs 3792 (48.25%) 

Total  7,859 
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same lexical substitution is the most prevalent. See Barrón-Cedeño et al., (2013) for more 

details on the P4P paraphrase corpus. For plagiarism detection at sentence level as in the case 

of this research, a total of 6030 pairs of sentence comparison can be carried with the corpus, of 

which 2481 are annotated as paraphrase, and the remaining 3549 are non-paraphrase according 

to the ground truth. The table below are example of pairs of texts taken from the P4P corpus 

that contains paraphrase fragment of text and the specific paraphrase types as annotated in the 

groundtruth. 

Table 3.2: Examples of paraphrase instances in the P4P corpus 

This table contains examples of paraphrase plagiarism in the P4P corpus, each example is a pair of 

paraphrase and source text. Highlighted in yellow are parts (text fragments) of the examples that have 

been paraphrased (altered) and their respective sources (original). 

 

 

 

Paraphrase passage Original passage Paraphrase type 

This question is linked closely to 

the often-debated issue of the 

Pointed Style's beginnings. Still, 

in my opinion, the use of 

"Gothic" might well have origins 

unconnected to the emergence of 

the pointed arch.” 

This Query is, of course, intimately 

connected with the much-disputed 

question of the origin of the Pointed 

Style. But yet I imagine that the 

application of the term "Gothic" 

may be found to be quite distinct, in 

its origin, from the first rise of the 

Pointed Arch.” 

Lexical change annotated 

as ‘same polarity lexical 

substitution’----  

The substituted lexicons 

are: [(Question, Query), 

(linked, connected), (often-

debated, much-disputed), 

(beginning, origin)]. 

Since the principles regulating 

the constitution have already 

been established and talked 

about, next will be an 

examination of the specific 

powers it's supposed to have, as 

per the way the convention set it 

up. 

Having thus laid down and 

discussed the principles which 

ought to regulate the constitution of 

the federal judiciary, we will 

proceed to test, by these principles, 

the particular powers of which, 

according to the plan of the 

convention, it is to be composed. 

Syntactic change 

annotated as ‘Syn-

diathesis’—structural 

alterations around a verb. 
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Table 3.3: Statistics on the P4P paraphrase plagiarism corpus 

 Paraphrased Non-paraphrased Total 

Short text 847 12 859 

sentences 2481 3549 6030 

Table 3.4 shows statistical distributions of paraphrase and non-paraphrase texts in the P4P paraphrase 

plagiarism corpus. 

 Microsoft Research Paraphrase Corpus (MRPC) dataset 

The MRPC (Dolan and Brockett, 2005) contains pairs of texts annotated (labelled) as 

paraphrase or not by human. The corpus contains 5801 pairs collected from newswire articles 

divided into training and text sets, the training subset contains 4076, of which 2753 are 

paraphrased, while the test subset contains 1,147 paraphrased pairs out of 1725 pairs. The 

Remaining pairs are non-paraphrased. The MRPC is a standard dataset commonly used as 

benchmark for evaluating classification models in the task of paraphrase identification. 

Table 3.4: Distribution of paraphrase and non-paraphrase samples in the MRCP corpus 

This table shows statistical distribution of paraphrase and non-paraphrase examples in the MRPC. The 

corpus is clearly imbalance, with significantly more paraphrase instances than non-paraphrase on both 

the training and test subsets. 

 The first two paraphrase corpora described above were created specifically for the task of paraphrase 

plagiarism detection, while the MRPC corpus was created for paraphrase identification tasks (general 

paraphrasing). As discussed earlier in section 2.2.1.2, paraphrasing in general is similar to 

paraphrase plagiarism, the same alteration techniques (mechanism) are employed, and they 

both ensure paraphrase texts are semantically similar to their original. However unlike in 

corpora used for paraphrase identification task that are often a collection of pairs of paraphrase 

and original sentences, corpora created for paraphrase plagiarism detection often contain 

instances of plagiarised and original (source) text that are usually passages of text (two or more 

sentences) that contains fragments (i.e. sentences) that have been paraphrased. On account of 

the above, it is reasonable to say that in the absence of paraphrase plagiarism corpus, a corpus 

created for paraphrase identification could be used for training and evaluating paraphrase 

detection models. 

 Paraphrased Non-paraphrased Total 

Training subset 2753 (67.5%) 1323 (32.5%) 4076 

Test subset 1147 (66.5%) 578 (33.5%) 1725 
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As mentioned earlier, the P4P and Crowdsourcing paraphrase corpora were created for the task 

of paraphrase plagiarism detection. To determine how similar they are, we compared them 

across four dimensions, this include groundtruth, paraphrase features, alteration techniques and 

variation in intensity of paraphrases computed as variance of proportion of source text present 

in paraphrase text for all paraphrase instances in a corpus.  

Table 3.5: Comparison between P4P and Crowdsourcing paraphrase corpora 

 

Table 3.4 contains comparison of the P4P and Crowdsourcing paraphrase plagiarism corpora. 

The table shows that they both have similar groundtruth, although that of the P4P corpus 

contains additional details of offsets and lengths of paraphrased text and their sources which 

are required for post-processing.  In terms of features of paraphrase instances, each instance 

comprises of two or more sentences for a pair of paraphrase and source text, they both have 

paraphrase samples formed using similar alteration techniques and similar variation in 

paraphrase intensity across all examples as seen in their variance, which means the distribution 

of surface features across instances in the corpora are similar. From the above comparison, it 

is clear that the P4P and Crowdsourcing paraphrase corpora have similar characteristics, and 

are therefore ideal for evaluating paraphrase plagiarism detection models. 

 

 

 

 

 Groundtruth Features of instances Formation of paraphrases 

P4P corpus Contains information about 

whether a pair is paraphrase 

or not, and details of offset 

and length of paraphrase 

and source fragments. 

Pairs of source and 

paraphrase text each 

comprising of two or more 

sentences (i.e. passage) 

Contains common paraphrases 

found in plagiarised text such as 

lexical, semantic and syntactic 

changes 

Crowdsourcing 

paraphrase 

corpus  

Contains information about 

whether a pair is paraphrase 

or not 

Pairs of source and 

paraphrased text each 

comprising of two or more 

sentences (i.e passage) 

Paraphrase samples contains 

semantic, syntactic and lexical 

changes 
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 Cross-lingual Plagiarism Datasets 

The datasets used to evaluate models proposed in this research for cross-lingual plagiarism 

detection are the Pan2011 and 2012 evaluation corpora. The two corpora come with detailed 

groundtruth that includes offset and length of paraphrase and source passages. 

 The Pan 2011 Evaluation Corpus 

This corpus contains 5142 manually and automatically generated cases of CLP distributed 

across 550 suspect documents of which 4709 were generated automatically using internet 

translation services, and 433 were generated using both automatic and manual correction 

processes. The automatically generated cases were created using Google translate to translate 

text passages from one language to another; the process typically involves removing a passage 

from a non-English source document, translating the passage into English and inserting it in a 

document written in English. The manually created cases were artificially generated and 

corrected by humans to appear like real plagiarism cases. The translations are from {Spanish 

and Danish) to English.  

Table 3.6:  Statistics on Pan2011 evaluation corpus (cross-lingual plagiarism class) 

 

 

 

 

The table contains statistical distributions of the different cross-lingual plagiarism cases in the Pan2011 

corpus, and also the nature of the cases in terms of how they were created. 

 The Pan 2012 Evaluation Corpus 

This corpus contains 2500 source documents and 500 artificially generated cases of cross-

lingual plagiarism distributed across 500 suspect documents. The cross-lingual plagiarism 

cases were created using the multilingual europarl corpus; from a non-English source 

document, a text passage is removed and used to retrieve its corresponding English version 

from the multilingual europarl corpus. The retrieved English version is then inserted into a 

Gutenberg book (suspicious documents). The translated passages are from {Danish and 

Spanish} to English. The lengths of the plagiarised passages are between 75-150 words, and 

Nature of plagiarism cases Number of plagiarism cases 

Automatically generated  4709 

Automatic + manual correction 433 

Total 5142 
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the average similarity between the plagiarised documents and their sources is 0.018 using the 

cosine measure and TF weighting.  

Table 3.7: Statistics on Pan2012 corpus 

The table contains statistical distributions of cross-lingual plagiarised documents in the Pan2012 

evaluation corpus. The table also contains addition details such the inter-lingual translations and the 

minimum and maximum length of the plagiarism cases. The dataset is clearly imbalance with far more 

non-CLP (80%) examples than examples with CLP cases (20%), it was created this way to mimic reality 

because real life plagiarism detection is done over the web where there is significantly more non-

plagiarised documents than plagiarised ones. Although the difference between the plagiarism classes is 

not as large as what is expected in reality, the corpus is still representative to a reasonable extent. 

 Dataset(s) for Monolingual Plagiarism (with varying degrees of 

alterations) Detection 

The dataset chosen for building and evaluating models for detecting plagiarism with varying 

degrees of intensity in monolingual text is the Clough and Stevenson corpus of short 

plagiarized answers, this corpus is described below. 

 Clough and Stevenson Corpus of Short Plagiarised Answers 

The Clough and Stevenson (2010) corpus of plagiarised texts contains simulated cases of text 

reuse (plagiarism) carried out by humans (a human corpus).  The corpus contains 100 text 

documents; of which 5 of them are questions, and the remaining 95 are responses to the 

questions. The corpus was created by issuing out questions to students (respondents) with 

instructions on how to answer the questions. The questions are original text taken from 

Wikipedia, and the respondents were given the following instructions; some were asked to copy 

and paste their answers, some were asked to paraphrase their answers lightly, while others were 

asked to paraphrase heavily and so on. The collective responses for all five questions resulted 

in four categories of plagiarism that can be demarcated by levels of intertextual similarity. The 

categories of plagiarism include cut and paste (verbatim copy), light paraphrased, heavy 

paraphrased and non-plagiarised. The corpus comes with a ground-truth file that contains the 

Number of 

Source docs 

No of docs with 

CLP cases 

Number  of 

docs without 

CLP 

Length of plagiarised 

passages  

Translations 

2500 500 (20%) 2000 (80%) 75--150 words De, EsEng 
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categories in which each response (suspect) document belongs according to human judgment 

(the creator’s judgment).  

 Table 3.8: Statistics on Clough and Stevenson corpus 

 

 

 

 

 

 

 

This table shows the statistical distributions of plagiarised documents with different formation 

plagiarism, as well as non-plagiarised documents in the Clough and Stevenson corpus. 

 

Table 3.9: A summary of the corpora used in this thesis 

Corpus  Nature of corpus Features and suitability 

Crowdsourcing 

paraphrase 

corpus 

Automatically 

generated + 

correction by 

human 

Comprises of pairs of text passages that contain paraphrased 

plagiarism and non-plagiarised texts. Suitable for evaluating 

models on paraphrased plagiarism detection tasks. 

P4P paraphrase 

plagiarism 

corpus 

Automatically 

generated + 

human correction 

Comprises of pairs of text passages that contain paraphrased 

plagiarism and non-plagiarised texts. Suitable for evaluating 

models on paraphrased plagiarism detection tasks. 

Pan@Clef 2011 

evaluation 

corpus 

Automatically 

generated, and 

automatically 

generated + 

human correction 

Contains plagiarised texts with varying levels of obfuscation 

including translation plagiarism and non-plagiarised texts. 

Suitable for evaluating detection models on both mono and 

cross-lingual plagiarism detection tasks. 

Pan@Clef 2012 

evaluation 

corpus 

Automatically 

generated 

Contains plagiarised texts in pairs with varying levels of 

complexity including translation plagiarism and non-

plagiarised texts. Suitable for evaluating detection model on 

both mono and cross-lingual plagiarism detection tasks. 

Clough and 

Stevenson 

corpus of short 

Simulated Contains plagiarised texts that have been obfuscated to 

varying levels of complexity in categories. Suitable for 

Plagiarism categories  Number documents 

Cut  19 

Light revision 19 

Heavy revision 19 

Non-plagiarism 38 

Total 95 
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plagiarised 

answers. 

evaluating a models ability to detect both simple and 

challenging cases of plagiarism. 

This table outlines the corpora used in this research and the nature of plagiarism in them. 

Although the paraphrase corpora chosen in this research are old, they are common and reliable, 

and many of them are still being used in current research to train and evaluate plagiarism 

detection and text classification models (Devlin et al., 2018; Sánchez-Vega et al., 2019). In 

addition it is worth mentioning that techniques used in paraphrasing (and plagiarising) text do 

not really change much over time, which is why old paraphrase dataset are still currently being 

used, and there are hardly any new reliable plagiarism corpora out there. 

Here are the criteria used in this research for corpus selection:  

 Corpus must contain pairs of plagiarised and non-plagiarised instances in sufficient 

amount,  

 Groundtruth file must be included,  

 Paraphrases must be embedded in text 

 Corpus must contain information about the alteration techniques used in creating 

plagiarised (or paraphrased) instances which should not be different from common 

techniques used in paraphrasing text,  

 Paraphrase instances must show clear semantic similarity with their sources, and non-

paraphrase instances must show the reverse. 

The next section describes the methods proposed in this research to address research question 

1, which investigates the effectiveness of varying combination of surface similarity 

measurement tools on different formation of plagiarism. 

 

3.4 Methods Chosen to Address Research Question One 

This section describes the methods chosen to address research question one, which investigates 

whether specific combinations of tools used for measuring surface similarity could be 

determined for detecting plagiarized texts that have been obfuscated to different levels of 

complexity with performances comparable, and even better than standard baselines. 

Hypothesis: Since plagiarized text often contain fragments of unaltered texts that could link 

them to their sources, it is therefore possible that with the right combination of tools used for 
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measuring surface level similarity which includes similarity measures, ngram textual features 

and tem weight methods, different formation of plagiarized text could easily be detected, 

including cases with high degree of obfuscation. 

Description of Methods  

The methods chosen to address research question 3 involves evaluating the performance of 

various combinations of selected surface similarity measurement tools in detecting plagiarized 

texts that have been obfuscated to varying levels of complexity, and comparing performance 

against baselines and previous studies. The evaluation metrics used are common in IR for 

evaluating the performance of retrieval systems, they include precision, recall and F1-score. 

See section 2.8 for details of these evaluation metrics. For each level of obfuscation, the 

performance of the surface combination methods and baselines are computed and evaluated.  

The surface similarity measurement tools considered in this research are common in plagiarism 

detection (IR and NLP) for computing similarity between texts. They include ngram document 

representation models, term weighting methods/schemes and similarity measures.  

The method chosen to compute performance involves using each combination model to detect 

potential plagiarized sentences in pairs of source and suspect texts by comparing sentences in 

a suspect text with sentences in a source text, and retrieving sentence pairs with maximum 

similarity scores for every suspect sentence. The similarity scores (at sentence level) are then 

aggregate to passage level similarity by dividing the sum of similarity scores across all 

sentences by the length of the number of sentences in the suspect text (containment). A pair of 

source and suspect passage is detected as plagiarized if their aggregate similarity score exceeds 

a threshold determined from the dataset. 

The process of plagiarism detection often begins with data pre-processing to remove irrelevant 

elements from texts that may influence the accuracy of similarity computation, and to present 

texts in uniform comparable format. The subsection below specify the data pre-processing 

techniques chosen. 

Data pre-processing 

The data pre-processing tools used to implement the models are common in NLP, they include 

case folding (normalize text to lower alphabetic case), tokenization, white space and special 

character removal. The pre-processing steps used when implementing character ngram models 

were slightly different, only case folding and tokenization were applied on text. On both 
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character and word ngram models, texts passages were tokenized to sentences, this ensures that 

text comparison is done on sentence level, targeting actual plagiarized fragments.  

 Surface Similarity Measurement Tools Implemented 

The surface similarity measurement tools considered in this research are common in plagiarism 

detection (IR and NLP) for computing similarity between texts. They include ngram document 

representation models, term weighting methods/schemes and surface similarity measures.  

Here are the specific surface intertextual similarity measurement methods chosen: 

 Ngram Text Representation Models Used 

Ngram models were implemented to detect sequence of plagiarized texts; ngrams maintain 

word order (unlike the bag of word model) and preserve the context of words which improve 

similarity measurement especially for verbatim and lightly altered texts. Two types of ngrams 

were chosen in this research, they are character and word ngrams. Word ngrams are efficient 

and effective for detecting verbatim and lightly altered texts, while character ngrams are 

slightly less efficient, but effective for capturing verbatim copy and has the advantage over 

word ngrams of being able to detect sub-word similarity when spelling errors or morphology 

changes are present. 

 Term Weighting Methods Used 

Term weighting methods were implemented to enhance the accuracy of intertextual similarity 

measurement. Term weighting assigns weights to terms (i.e. words/tokens) based on their 

relevance in texts, this is important because certain terms carry more information about the 

semantics (thematic) of text than others. The specific term weighting methods chosen are term 

frequency (TF), term frequency inverse document frequency (TF-IDF) and binary weighting. 

The rationale for choosing these weighting methods is that they are common in IR for 

improving the relevance of information retrieval, they have different characteristics which 

allows for a comprehensive evaluation of a wide range of term weighting methods so as to 

determine the most suitable one to optimize the detection of plagiarized texts of a specific 

obfuscation levels. Term weighting methods are also relevant for transforming surface textual 

features into vectors that most similarity measures require to work with. 
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  Similarity Measures Used 

Similarity measures were implemented to estimate the degree of intertextual similarity of 

feature vectors derived from texts. The chosen similarity measures are Cosine similarity, 

Jaccard index, Dice coefficient, Bhattacharyya coefficient, Kullback-Liebler divergence and 

Euclidean distance. These surface similarity measures are chosen because they are common, 

and have been successfully used in many applications that require texts similarity 

measurements including plagiarism detection, text clustering, duplicate and near duplicate 

detection, recommendation systems etc. See section 2.5.2 in the literature for previous studies 

where these measures were used. 

 Algorithm Used To Combine Surface Tools for Plagiarism Detection  

 START 

 Pre-process text by applying case normalization, tokenization, white space removal 

and stemming.  

 Transform pre-processed text into n-gram representation model; 

 Vectorize ngram model by assigning weights to terms (n-grams) using a term 

weighting method (e.g. TF); 

 Compare vectors for similarity using a similarity measure (i.e. cosine measure) and 

compare similarity score with threshold derived from corpus; 

 Return text as potential plagiarized if similarity score >=threshold 

 END 
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Figure 3.1: Combination of surface tools for text similarity measurement. 

 

 

 Datasets 

The dataset chosen to address research question one is the Clough and Stevenson corpus of 

short plagiarized answers. The dataset contains plagiarized texts that have been obfuscated to 

varying degrees of complexity, it is therefore suitable for the evaluation required. Details of 

this dataset could be found in section 3.3.5.  

 Baselines 

The baseline models used in this work include string matching and semantic methods, they are 

Ferret (Malcolm et al., 2006) a string matching method commonly used as baseline for 

evaluating the performance of plagiarism detection systems, and query expansion (using 

WordNet), which is a semantic method that have been used in the literature of semantic text 

similarity and plagiarism detection.  

Ferret (tri-gram overlap) 

The Ferret model was implemented by transforming pairs of source and suspect texts to 

trigrams and computing the Jaccard index of the trigrams as a measure of similarity. Data pre-

processing were carried out on texts before transformation to ngrams; case normalisation and 

tokenization were applied. 
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Query expansion (via WordNet) 

This baseline was used to detect plagiarized texts that have been obfuscated by replacing words 

with their synonyms (lexical substitution), studies show that lexical substitution is the most 

prevalent technique used in plagiarizing texts (Barrón-Cedeño et al., 2013). This baseline was 

implemented by retrieving synonyms for words in a suspect (query) text from WordNet lexical 

database, and comparing the suspect text (expanded with synonyms) with its corresponding 

source text. To resolve word ambiguity, we retrieved all unique synonyms for each word in a 

paraphrase text which includes different senses of the word, and matched them with source 

words for possible overlaps. This flexibility allows the WordNet baseline to detect possible 

matches of ambiguous terms. 

Here are the experiments carried out to address research question one. 

 Experiment to determine the best performing combination of surface similarity 

measurement tools for detecting plagiarised texts of different obfuscation complexity. 

 Experiment to determine the best performing combination of surface similarity 

measurement tools for detecting plagiarised texts of a specific obfuscation level. 

 

3.5 Methods Chosen to Address Research Question Two 

This section describes the methods chosen to address research question two, which investigates 

whether deep contextualised learning models (DCLMs) could be used to detect plagiarised 

texts that have been obfuscated using different paraphrase techniques that are challenging to 

conventional plagiarism detectors, given their recent success in many NLP tasks.  

Datasets: the dataset chosen for this task are the P4P and the Crowdsourcing paraphrase 

plagiarism corpora. These datasets contain cases of paraphrase plagiarism and are therefore 

suitable for evaluating paraphrase plagiarism detection systems. 
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 Description of Methods  

The approach used to address the problem of paraphrase plagiarism detection involves 

extending a generic plagiarism detection framework by integrating a DCLM into the 

framework to detect obfuscation plagiarism that have been altered using different paraphrase 

types (or expressions such as lexical, syntactic and semantic changes), and evaluating the 

models performance in the task of paraphrase plagiarism detection. 

The generic plagiarism detection framework and the method used to integrate a DCLM into 

the framework is first described, followed by a description of the chosen DCLMs and the 

rationale for choosing them. Finally an evaluation framework that describes how the 

performance of the proposed model was computed and evaluated against standard baselines 

and a SOTA model using paraphrase plagiarism corpora. Both pre-trained and fine-tuned 

DCLMs were considered, the evaluation therefore includes fine-tuning the best performing 

DCLM on a dataset that contains different types of paraphrase plagiarism. 

  Integrating A DCLM into A Generic Plagiarism Detection Framework  

This subsection describes the generic plagiarism detection framework and the method used to 

integrate a DCLM into the generic framework to enhance the detection of paraphrase 

plagiarism. The main components of the generic framework include data pre-processing, 

candidate selection, detailed document similarity search (pairwise comparison to detect 

semantically similar text fragments) and post-processing (merging and filtering). The 

integration of a DCLM into the framework takes place at the exhaustive document similarity 

search stage; a DCLM is applied at this stage to detect semantically similar text sequences 

(sentences) in pairs of suspect and source texts. The candidate selection step is excluded 

because candidate text are already provided for suspect text in the evaluation corpora. Details 

of the components of the generic model relevant to this work, the specific methods chosen and 

rationale for choosing them are described below: 

 Pre-processing is usually carried out using NLP techniques to remove unwanted 

elements from texts that may interfere with detection processes, and to normalise texts 

to uniform comparable format. Tokenisation of texts to individual sentences is the only 

pre-processing required here. The reason for tokenising texts to sentences is to ensure 

that the input text is consistent with the DCLM, given that DCLMs are trained on text 

sequences, and a sentence is a sequence of words. In addition, sentence level similarity 
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measurements result in more accurate estimation of semantic similarity than passage or 

document level, and at the same time, it targets actual paraphrase fragments without 

losing contexts as in word level similarity computation, which makes it even more 

accurate. 

 Text comparison is an exhaustive similarity search process that involves comparing 

fragments of texts in a paraphrased and source texts for semantic similarity. 

Comparison is usually carried out either at word, sentence or paragraph level (Gupta, 

2016) using a similarity function (i.e. cosine measure) to estimate the degree of 

semantic similarity between text fragments. This is where CLMs come in, given that 

they are trained to learn the semantics of text sequences, and generate representations 

that capture such semantics. CLMs are used here to generate representations for pairs 

of paraphrase and source sentences that could be used to compute their similarity using 

a similarity function. The cosine measure is the chosen similarity function because it 

measures content similarity between vectors in the form of angular distance, and not 

based on difference in vector length (Cha, 2007; Thompson et al., 2015), so it blends 

well with CLMs.  

 The detection and retrieval method involves using threshold as cut-off to determine 

whether a pair of sentences should be retrieved as plagiarised or not based on their 

semantic similarity score obtained from the previous step (i.e. text comparison step). 

Pairs of sentences with similarity scores that satisfy a threshold requirement are 

retrieved as paraphrased or potentially plagiarised. Human intervention is usually 

required to confirm plagiarism (Foltýnek et al., 2020). 

Here is how the model works in detecting paraphrase plagiarism: 

For a given pair of suspect (potential paraphrased text) and source texts, 

 Tokenize text passages to individual sentences using a sentence tokenizer (i.e. NLTK 

toolkits sentence tokenizer) to be consistent with the input of a DCLM (sequence of 

text of certain length).  

 Retrieve fixed length contextualised embeddings (representations) for sentences in the 

pair from a DCLM.  

 Compare pairs of sentence representations (from source and paraphrased texts) using 

the cosine measure and return a real number (similarity score in the range of 0 and 1) 

as a measure of semantic similarity for each pair compared.   
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 Retrieve all paraphrased sentences with similarity scores that satisfy a threshold 

(derived from the corpora) as paraphrased and potentially plagiarised. 

 

Figure 3.2: A DCLM integrated into a generic plagiarism detection model  

  

The final step is to aggregate sentence level similarity into passage level using containment 

measure and discard passages with similarity below threshold. To go from sentence level to 

passage (document) level plagiarism detection, we aggregate sentence level similarity into 

passage level; this is done by dividing the sum of sentence level similarity by the number of 

unique sentences in the paraphrase text. For example, given a pair of paraphrase and original 

text (T1 and T2) each comprising of two or more sentences; 

T1= {S1, S2..Sn} and T2= {S1, S2..,Sn} 

𝑠𝑖𝑚(𝑇1, 𝑇2) =
∑(𝑝𝑎𝑟𝑎𝑝ℎ𝑟𝑎𝑠𝑒 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑)

𝑙𝑒𝑛(𝑇1)
 

Next are the chosen DCLMs implemented in this research. 
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  The Chosen Deep Contextualised Learning Models (DCLMs)  

The CLMs chosen in this paper are SBERT (fine-tuned RoBERTa) and ELMo, they are the 

most common from the two architecture described in the literature. RoBERTa is the most 

common transformer model, and ELMo is the most common LSTM model used for 

contextualised learning. CoVe is another CLM implemented in this research, but as one of the 

baselines. 

SBERT (sentence BERT) 

SBERT is chosen because it is the most common BERT model for generating sentence 

embeddings, and does so much faster than the other models which makes it suitable for the task 

of plagiarism detection that requires real time results, in addition, SBERT was fine-tuned for 

the task of semantic text similarity, which is at the core of plagiarism detection. In comparison 

with two other common deep learning models for generating sentence embeddings (i.e. 

Universal Sentence encoder and inferSent), SBERT significantly outperformed both models 

(Reimers and Gurevych, 2019) in the task of semantic text similarity. 

ELMo (embeddings from language model) 

ELMo is a bidirectional LSTM, it is the most common LSTM used for contextualised learning, 

the original ELMo model was pre-trained on large web data specifically for tasks such as 

paraphrase identification which is similar to paraphrase plagiarism detection, in addition it can 

be used to generate contextualized representations for text sequences via linear combination of 

character embeddings and therefore captures contextualized information similar to the BERT 

model. Based on the above features, the ELMo model is a good choice of CLM to explore in 

the task of paraphrase plagiarism detection. The ELMo model used in this research is simple 

ELMo, a Python library that uses a pre-trained ELMo model trained on 5.5B (billion) tokens 

of with 1.9B are from Wikipedia and the remaining 3.6B are WMT monolingual news crawl 

data from 2008-2012; it is the original pre-trained ELMo. 
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 Methods Chosen to Fine-tune DCLMs for Paraphrase Plagiarism 

Detection 

This subsection describes the methods chosen to fine-tune the best performing DCLMs for 

paraphrase plagiarism detection. Fine-tuning typically involves replacing the output layer of a 

pre-trained DCLM with a task specific layer (Zang et al., 2020) using corpus from the task 

area, and can result in slight adjustment of the parameters of the pre-trained model to optimise 

performance in the specific task. The corpus chosen to fine-tune a DCLM for paraphrase 

plagiarism detection is described below. 

Corpus 

The dataset used to fine-tune a DCLM for paraphrase plagiarism detection are pairs of 

paraphrase and non-paraphrase sentences/phrases retrieved from the P4P and Microsoft 

paraphrase corpora (MRPC); we limit the training set to only pairs that contain at least one 

sentence with minimum sequence length of 10-characters, this ensures that majority of the text 

sequences have contexts, and single words that lack contexts were removed. We arrived at a 

total of 10000 pairs, of which 6000 are paraphrased texts retrieved from the P4P corpus (using 

annotations in ground truth), and 4000 are non-paraphrased pairs (2100 from P4P corpus and 

1901 from the Microsoft paraphrase corpus), and named this mixed training set P4P-MRPC 

corpus. 

Training (fine-tuning) and validation method 

A train-test split of 70:30 is chosen to fine-tune a pre-trained DCLM for paraphrase plagiarism 

detection, this means 70% of the corpus will be used for training and the remaining 30% for 

testing. Upon completion of the training, the performance of the fine-tuned model is validated 

on the Crowdsourcing paraphrase corpus. 

Fine-tuning BERT for Paraphrase Plagiarism Detection 

The method chosen to fine-tune BERT is based on the SBERT model which is designed to 

generate fixed size vectors for sequence of texts from a pre-trained BERT model.  

The SBERT model uses Siamese network comprising of two identical BERT models (heads) 

to generate embeddings for pairs of text sequences that are passed through a pooling layer that 

averages the embeddings of the sentences into fixed length vectors, and uses cosine similarity 

and MSE (mean square error) loss for optimisation. 
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Fine Tuning ELMo for Paraphrase Plagiaris 

We chose to implement this model using the sentence transformer library that contains different 

SBERT module, the library simplifies the implementation and only requires training data, a 

pre-trained BERT model and knowledge of hyper-parameters to optimise performance. The 

rationale behind this method is based on previous studies that revealed that reasonable 

performance could only be achieved on small dataset if fine-tuning is carried out using a BERT 

model that has already been fine-tuned on a much larger dataset (Phang et al., 2018; Zhang et 

al., 2020).We chose distilbert-base-nli-mean-tokens; a sentence transformer model that was 

fine-tuned for STS using the NLI dataset (over 100,000 training samples) and a pre-trained 

BERT model known as distilbert (a small but fast BERT model with significantly less 

parameters relative to other BERT models). 

A train-test split of 70%/30% was used to train (fine-tune) and evaluate (test) the pre-trained 

BERT model, this involves using 70% of the dataset for training (fine-tuning) and the 

remaining 30% for evaluating the performance of the fined-tuned model.  

In terms of parameter turning to optimise performance during training, the hyperparameters of 

interest are learning rate, batch size, max token length (input length) and number of epoch. The 

number of hidden-layer stays the same as in the pre-trained model to prevent completely 

altering the learned weights of the pre-trained model. The method chosen for parameter tuning 

involves testing different parameter values during training and using a set of parameter values 

that coincided with the best performance. 

 

Sent_B 

BERT head 

Pooling layer 

vect_v 

Sent_A 

BERT head 

Pooling layer 

vect_u 

Cosine (vect_u, vect_v) 

-1…1 

Figure 3.3: Fine-tuning using the SBERT architecture (Reimers and Gurevych, 2019) 
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Fine-Tuning ELMo for Paraphrase Plagiarism Detection  

Fine-tuning an ELMo model is more straight-forward than BERT, it is simply a continuous 

process of training a pre-trained ELMo model using task specific dataset. The checkpoint of a 

pre-trained ELMo model that includes learned parameters are used as starting point for pre-

training on additional dataset. 

ELMo models pre-trained in a number of languages can be found in a repository called 

AllenNLP, we chose the 5.5B ELMo model pre-trained on English corpus containing 5.5 

billion tokens retrieved from both Wikipedia and web crawling sources.  

 Baseline and SOTA Evaluation Models 

The baseline models used in this work is comprehensive, and includes contextualised and non-

contextualise word embedding models, common semantic method used in plagiarism detection, 

and a string (lexical) matching model (the generic model). The SOTA model is a paraphrase 

plagiarism detection model based on content and stylistic character n-gram features. To ensure 

the implementation of the baselines are accurate, they were validated on dataset used in 

previous studies where they were implemented, and their performances compared with what 

was obtained in those studies. An accurate implementation is one with little or no difference in 

performance with the original model.   

CoVe (contextualised vectors): the CoVe model learns contextualised vectors from a machine 

translation MT-LSTM trained with word vectors as input. We used a pre-trained CoVe model 

that uses GloVe vectors as inputs to a MT-LSTM to generate context dependent word vectors 

for sentences; contextualised vectors for each word in a sentence were retrieved from a CoVe 

model and averaged into a single representation for the sentence. 

GloVe (Global Vectors): the GloVe model uses a matrix of global co-occurrence statistics to 

learn word vectors that are representative of the meaning of words. Similar to many other 

studies where GloVe was used as baseline, we represent sentences with their average GloVe 

vectors, which is the average embeddings of the individual words in a sentence. We used a pre-

trained GloVe model downloaded from Stanford University (the 42Billion pre-traind GloVe 

embeddings) to retrieve embeddings for each word in a sentence, and averaged the embeddings 

into a single sentence vector.  
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Cosine similarity (with term frequency vector): Here we represent sentences as vectors of 

frequency counts that can be compared for similarity using the cosine measure. This baseline 

is similar to a string matching method commonly used in the STS competition (Agirre et al., 

2016; 2017), although the STS baseline is uses binary vectors. It is also similar to the vector 

space model (VSM) approach proposed for plagiarism detection (Gupta et al., 2016). 

Character ngrams (SOTA): this model combines content and stylistic textual features to detect 

paraphrased plagiarism and outperformed a number of character and string based models, and 

models based on semantic network (WordNet). Hence, was used as a state-of-the-art model for 

comparison. The model was implemented as described in Sánchez-Vega et al., (2019). We 

created 5 different character n-gram representations for pairs of paraphrased and source 

sentences, all of which were 3-characters in length, they include inner word, between words, 

prefixes, suffixes, and punctuation character n-grams. To detect plagiarism, we compared the 

5-character ngram representations for a paraphrase sentence and those of a source sentence for 

similarity using the Dice coefficient measure, and obtained a vector of length five (five 

similarity scores) for every comparison between paraphrased and source sentences. A binary 

classification scheme based on Naïve Bayes was then used to classify vectors for all sentence 

pairs as either paraphrased on not. 

 Performance Evaluation Method 

This section describes the method chosen to evaluate the performance of the proposed 

paraphrase detection model. The method chosen involves computing the models’ performance 

using standard corpora that contains paraphrased plagiarism, and comparing performance 

against baseline models and a state-of-the-art model proposed in the literature for detecting 

paraphrased plagiarism. The chosen evaluation metrics used for measuring performance are 

precision, recall, F1-score and AUC-ROC measure, see section 2.8 in the literature for details 

of these evaluation metrics. 

Here are the experiments required to address research question 1: 

 Experiments to determine whether integrating DCLMs in paraphrase plagiarism 

detection could result in performances comparable to a SOTA model proposed in the 

literature for paraphrase plagiarism detection.   

 Experiments to determine paraphrase types that could be detected with the help of 

DCLMs, and those that are challenging even with the help of DCLMs. 
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3.6 Methods Chosen to Address Research Question 3 

This section describes the methods chosen in this work to address research question three, which 

investigates whether the exact language translations of an online machine translator could be 

captured and used in CLPD without relying on, or limited by internet translation services, and 

with performances comparable to, or even better than a standard translation plus monolingual 

analysis (T+MA) model, which is the most common approach used in CLPD but limited by 

internet translation services. 

Datasets: the datasets chosen for this task are the Pan2011 and 2012 evaluation corpora on 

plagiarism detection. These datasets contain cross-lingual plagiarism cases, and are therefore 

suitable for evaluating CLPD models. 

 Description of Methods  

To address the research question two, a model for detecting CLP that captures the translation 

precision of a common online machine translator, without relying on the internet is proposed. 

The CLPD model follows the standard architecture proposed in previous studies for detecting 

mono and cross lingual plagiarism (Potthast et al., 2011; Barrón-Cedeno et al., 2013), which 

include candidate selection, detailed comparison and extraction of plagiarised passages (text 

alignment), and post-processing. In the retrieval process, a suspect document is tokenised, 

keywords are extracted and expanded using a multilingual translation model, and the expanded 

query is used to retrieve candidate source documents from an inverted index built with a 

collection of source documents. Matched query words (during the candidate selection stage) 

and their corresponding source words are mapped to the sentences in which they appear in the 

suspect and candidate source documents respectively for detailed similarity analysis. Sentences 

with similarity scores above certain thresholds are used as plagiarised fragments to retrieve 

plagiarised passages. The next section describes the proposed multilingual translation model 

(MTM) and how it was used in this research to detect CLP. 

 The Proposed Multilingual Translation Model (MTM) 

This subsection describes how the MTM is designed to learn the language translation of a 

common online machine translator and apply them offline without using the internet.  The 

MTM uses word embeddings to capture words and their translations in different languages; it 

is designed to reproduce the translation of words from an online machine translator when 
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detecting CLP without using internet translators, and to detect semantically similar words 

(synonyms) by leveraging the potentials of a Word2Vec model in linking similar words that 

occur in different contexts in an embedding space. In summary, to build the MTM, generate 

the translations of words in different languages using Google translate (or any other online 

translation tool), map the words and their translations in a common space and replicate the 

embeddings to optimise performance, and then train the simulated embeddings using the 

Mikolov et al., (2013a) Word2Vec CBOW model. 

The premise of the model is that similar words occur in similar contexts, if the probability of 

finding a word in a context is magnified, then higher similarity should be assigned to words 

that share similar contexts than to non-contextual words (words not in the context). The 

contexts are simulated, each comprises of a pivot word in English and its equivalent translations 

in other languages. 

Example of a context: {man (Eng), homme (French), mann (Germ), hombre (Spanish)} 

The context in the example above consists of the word ‘man’ in English and its corresponding 

translations in French, German and Spanish. Our objective is to maximise the probability of 

retrieving a context c given a word w. 
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 v  in equation 3.1 represents the vocabulary of the model. 

To create contexts, we used the top-k most common English words (based on their frequency) 

from the British national corpus (BNC; Leech, 1992) and create context for each word by 

retrieving the translations of the word in Danish, French, German, Spanish etc. from Google 

translate.  The top-K could be the top-10,000 words, but k has to be carefully chosen for optimal 

performance. For optimal performance, the best value for k would have to be determined 

experimentally. Similar to Faruqui and Dyer (2014), the top-100 most common words are 

considered too common and non-discriminatory (noisy), hence excluded. 

When contexts are created, the final stage is to train a feed-forward neural network, using the 

back propagation algorithm with stochastic gradient descent to learn the word distributions in 

the embeddings with the objective of maximising the conditional probability of retrieving an 

output word given an input context. However training the network this way would result in 
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poor performance (inaccurate predictions) as sufficient data (statistics) is required about each 

context in order to increase the probability of retrieving a context when a word in the context 

is searched (similar to the curse of dimensionality). 

To achieve higher similarity for contextual words, each context has to be replicated n-times.  

N has to be carefully chosen because each increase in the value of n increases the search space 

exponentially (exponential time complexity O(Vn), v=model vocabulary size). Hence a trade-

off between accuracy and computational time has to be carefully resolved. An experiment is 

required to determine the best value of n for optimal performance (Thompson, 2017). 

Steps used in building the MTM: 

 Retrieve the top-n most common English words from the BNC based on frequency  

 Create contexts by retrieving the semantic equivalent of each word in other languages 

using Google translate, which is one of the most common tools used by plagiarist 

because it is freely available and easily accessible for limited use. Hence building 

CLPD models to reproduce similar language translations is vital for detecting CLP. 

 Replicate each context n-times, where n is determined experimentally. 

 Train the embeddings with the Word2Vec CBOW model; we used Gensim a Python 

library with the following parameter settings: window size (context) =5, negative 

sampling=5, minimum word count=50, attributes size =300. 

Applying the MTM in CLPD  

This sub-section describes how the MTM can be applied to detect CLP in a suspect document 

given  

 a collection of source documents in different languages (require candidate selection) 

 a source document in a different language (documents  in pairs). 

 

 Using the MTM to Detect CLP given a Collection of Source Documents 

The application of the MTM in CLPD when given a collection of source documents starts with 

candidate selection; the method chosen for candidate selection is similar to that of Ehsan et al., 

(2016) in that matching words are searched and mapped back to the sentences in which they 

appear in source and suspect documents using information retrieval. In this work, the task of 

candidate selection is performed using the MTM with query expansion and inverted indexing, 
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while in Ehsan et al., key-words/phrases (ngrams of variable sizes between 1-3)  are selected 

in source documents based on tf-idf and tf scores, and the key-words are translated using Google 

translate. Details of the method used in this work is as follows: 

The MTM is applied in candidate selection through query expansion, query terms are expanded 

with their translations and used to retrieve potential candidate sources from an inverted index 

built from a collection of source documents. Query expansion using the MTM involves 

reformulating a query so that the translations of each query word are retrieved from the MTM. 

This is possible through vector comparison. The MTM takes a query word and converts it into 

a word vector and then compares it with word vectors in the model using cosine measure. The 

outputs from the vector comparison is a list of words and their similarity to the query word, 

where the most similar words are the translations of the query word in other languages. For 

example; when the query word ‘friend’ is presented to the MTM, the model outputs; 

 ‘friend’: [('ami', 0.99845964), ('freund', 0.99622697), ('amigote', 0.99596620), ('crony', 0.99569368), 

('boezemvriend', 0.99561995), ('vriend', 0.99513805), ('amigo', 0.98925573), ('pal', 0.98832619)] 

French=’ami’, German=’freund’, Spanish=’amigote’, ‘amigo’, Dutch=’vriend’, ‘boezemvriend' 

The output includes synonyms such as ‘crony’ and ‘pal’ in English, ‘amigote’ and 

‘boezemvriend’ in Spanish and Dutch respectively. The model is able to detect related words 

(synonyms) because semantically similar words do have similar translations, which means they 

have similar contexts and therefore similar word vectors. When a word is searched, the model 

outputs the context of the word and similar words in other contexts. This is a key feature of the 

MTM, and one of advantages it has over online machine translators.  

When translations are retrieved for all query words, together they form an expanded query for 

searching and retrieving potential plagiarised sources from an inverted index. For each 

candidate document retrieved the original query words (before expansion), and their 

corresponding matched words in a source document are stored and used for detailed 

comparison (see figure 1 below) and retrieval of offsets for plagiarised passages. 
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Detailed Comparison and Extraction of Plagiarised Passages 

Detailed comparison is carried out on a sentence level similar to (Pataki et al., 2012); this brings 

the search for plagiarism closer to plagiarised fragments and makes it easier to extract 

plagiarised passages from clusters of nearby plagiarised sentences. The method used involves 

mapping the matching word pairs (from the previous stage) to the sentences in which they 

occur in the source and suspect documents, and normalising the number of matched words by 

sentence length. Sentences with similarity scores less than a predefined threshold are discarded. 

When plagiarised sentences are detected, nearby sentences not more than certain characters 

apart are merged into plagiarised passages; nearby passages are merged, and passages less than 

certain characters in size are discarded (post-processing). 

 

 

 

 

 

 

 

  

  Using the MTM Model to Detect Cross-Plagiarism in Document Pairs  

When documents/texts are provided in pairs (suspect and source), such as in the SemEval STS 

competition (Agirre et al., 2016; Cer et al., 2017), there will be no need for candidate selection, 

as suspect documents are paired up with their potential sources.  

The MTM detects CLP in document pairs by simply aggregating word level similarity to 

sentence level, and using sentences with similarity scores above a predefined threshold to map 

out plagiarised passages. 

To compute similarity at word level, the MTM compares pairs of words (in source and suspect 

sentences) by measuring their word vectors using cosine measure, and outputting a similarity 

Suspect text in English: ‘technology is the application of science’ 

Source text in German: 'technologie ist das anwendung von 

wissenschaft' 

 

1) Tokenize and expand suspect sentence using the MTM 
(exclude stopwords); output: [['la technologie', 

'technologie', 'tecnologia', 'technology',…], 

['anwendung', 'toepassing', 'app', 'aplicacion',….], 

['elm', 'la science', 'wissenschaft', 'ciencia', 

'wetenschap', 'science'..,]] 

 

2) Query inverted index with expanded query and return matching word pairs in 

English and German; output: (‘technology’, 'technologie'), (application, 

anwendung), (‘science’, ‘wissenschaft') 

3) Similarity(suspect,source)=len(match-pairs)/len(sentence)=3/3=1 

 
Figure 3.4: A simple application of the MTM in CLPD  
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score that ranges between 0 and 1. Word pairs in a pair of sentences with similarity score above 

a predefined threshold are retained; the threshold used for word pair similarity is 0.97.  

||wordvec||wordvec

|wordvec|wordvec
),wordveccine(wordve),wordsim(word

21

21
21cos21




 ----Equation 3.2 

To compute similarity at sentence level, the number of similar words in a pair of sentences is 

normalised by the sentence length (containment). Sentence pairs with similarity scores above 

a certain threshold are used to map out plagiarised passages in the source and suspect 

documents by retrieving the offset and length of each sentence, and merging nearby sentences 

not more than certain distance apart into plagiarised passages. The sentences should line up 

with the documents they appear in.  

 

Figure 3.5: Proposed CLPD that uses the MTM for language translation 

 Evaluation method 

This section describes the method chosen to evaluate the performance of the proposed CLPD 

model. The method chosen to evaluate the proposed CLPD model involves computing the 

performance of the model using datasets that contain CLP, and comparing the performance 

with a baseline model, as well as with results from previous studies (that made used of the same 

datasets). The performance evaluation metrics chosen are precision, recall, granularity and 

plagdet score. These metrics are the standard metrics used for evaluating the performance of 

plagiarism detection systems. The chosen baseline is the Kasprzak and Brandejs  (2010) T+MA 

model which emerged as the best performing system in the Pan2010 competition on Plagiarism 
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detection, and given that the baseline is T+MA model makes it even more suitable for this 

evaluation. 

Here are the experiments required to address research question 2: 

 Experiments to determine the best vocabulary size for the base embedding model to 

optimise the multilingual translation model. 

 Experiments to determine the number of replications required to simulate the 

embedding space to optimise to optimise the multilingual translation model. 

 Experiments to implement and evaluate the performance of the proposed CLP detector 

against state-of-the-art baseline models. 

 

3.7 Summary 

In summary, the methods and approaches chosen to address each of the questions raised in this 

research were described in this chapter.  

Here are the main experiments and tasks discussed:  

 

 Experiments to determine whether integrating DCLM into existing plagiarism detection 

methods could address the problem of paraphrase plagiarism detection with 

performances comparable to a state-of-the-art model. 

1) Experiment to implement and evaluate the performance of DCLMs and a number 

of baselines and a SOTA model in the task of paraphrase plagiarism detection. 

2) Experiment to determine the specific paraphrased types that could be detected when 

a DCLM is integrated in paraphrase plagiarism, and the paraphrase types that are 

challenging to detect. 

 

 Experiments to determine whether the exact language translations of an online machine 

language translator could be captured and used in CLPD without relying on, or limited 

by internet translation services, and with performances comparable to, or even better 

than a standard T+MA model. 

1) Experiment to determine the best vocabulary size for the base embedding model to 

optimise the multilingual translation model. 
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2) Experiment to determine the number of replications required to simulate the 

embedding space to optimise to optimise the multilingual translation model. 

3) Experiment to implement and evaluate the performance of the proposed CLP 

detector against state-of-the-art baseline models. 

 

 Experiment to investigate whether a specific combination of surface similarity 

measurement tools could be determined for detecting plagiarised texts that have been 

obfuscated to different levels of complexity. 

1) Experiment to determine the best performing combination of surface similarity 

measurement tools for detecting plagiarised texts of different obfuscation 

complexity. 

2) Experiment to determine the best performing combination of surface similarity 

measurement tools for detecting plagiarised texts of a specific obfuscation level. 
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4 Experiments on Detecting Obfuscation Plagiarism 

Using Combination of Surface Tools. 

The last chapter described the methodology of this research, this chapter addresses research 

question 1, which is as follows: 

 What are the best performing combination of surface similarity measurement 

tools/techniques (as measured by precision, recall and F1-score) from those described 

in the literature for detecting similar and near similar text?  

 

Objective(s): to determine the best combination of surface similarity measurement 

tools/techniques for detecting plagiarised texts that have been obfuscated to varying 

degrees.  

 

Hypothesis: Since plagiarized text often contain fragments of unaltered texts that could 

link them to their sources, it is therefore possible that with the right combination of 

tools used for detecting surface level similarity which include similarity measures, 

ngram textual features and tem weight methods, different formation of plagiarized text 

could easily be detected, including cases with high degree of obfuscation. 

To address the above question, several experiments were carried out to evaluate the 

performance of different combination of surface similarity measures and textual features in the 

task of detecting similar and near similar texts, and in the context of plagiarism detection. The 

textual features are different types of ngram document models and term weighting schemes 

(relevance).  

The specific surface similarity measurement tools are: 

Similarity measures used 

Bhattacharyyan coefficient, Cosine similarity, Dice-coefficient, Euclidean distance, Jaccard-

index, Kullback-Leibler divergence and Pearson correlation coefficient. 

Term weighting methods and ngrams models used 

 Term frequency-inverse document frequency (TF-IDF),  

 Term frequency (TF) and  

 Binary weighting 
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 Character and word n-grams 

 

The algorithm used to implement the combination of these surface tools for plagiarism 

detection is described in the methodology in section 3.6.2. Throughout this chapter, the 

combination of these surface similarity measurement tools will be referred to as hybrid surface 

similarity measurement model or HSSMM. 

4.1 Experiment: Determination of the Best Performing 

Combinations of Surface Tools for Measuring Textual 

Similarity. 

 Aims/Objectives of Experiment 

1. To determine the best performing combinations of surface similarity measurement tools 

for detecting plagiarized text that have undergone varying degree of obfuscation. 

2. To determine the best performing combinations of surface similarity measurement tools 

for detecting plagiarized texts that have been altered to specific obfuscation level (i.e. 

light or heavy obfuscation plagiarism). 

 Datasets 

The corpus used for evaluation is the Clough and Stevenson corpus of short plagiarised 

answers. The corpus contains plagiarised text (or text reused cases) divided into four 

obfuscation levels (four complexity levels), they include cut and paste (cut and paste), light 

paraphrased, heavy paraphrased and non-plagiarised (highly dissimilar). See section 3.3.5 for 

details about the corpus. 

Description of Experiments 

Several combinations of the above mentioned surface similarity measurement tools were 

implemented and their performance evaluated in the task of plagiarism detection using the 

Clough and Stevenson corpus of short plagiarized answers. Each combination is a HSSMM 

(hybrid surface similarity measurement model) comprising of a similarity measure, a term 

weighting method and an n-gram document; an HSSMM combines three different dimensions 

of textual features.  

The application of HSSMMs for document comparison was carried out as follow:  
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Suspect and source documents were pre-processed (case normalization, sentence tokenization, 

white space removal) and transformed into ngram document models (character and word 

ngrams) and vectorized by term weighting; binary, TF, TFIDF weighting methods. Document 

Comparison between suspect and source documents was carried out by vector comparison 

using similarity measures listed earlier in this chapter.  

In determining the best performing HSSMM, we evaluated the performance of different 

HSSMM created by permutation. The evaluation task involves using an HSSMM model to 

detect plagiarism in the named corpus by comparing suspect documents with a number of 

potential source documents, if plagiarism is detected, a suspect document is classified into a 

plagiarism category depending on the degree of obfuscation (of surface textual features) in the 

plagiarized text, a suspect document is classified either as cut and paste, light or heavy 

obfuscation plagiarism category, or as non-plagiarised. An HSSMM is designed to classify 

plagiarized text with similar features in the same category. Performance was measured in 

precision, recall and F1-score by comparing the detections of an HSSMM with the groundtruth. 

A fivefold cross validation was used to determine a robust HSSMM that can generalize well 

on unknown data; this was carried out by splitting the dataset into 5-equal groups and averaging 

the performance of an HSSMM model across all groups. We chose fivefold because the dataset 

is small and to ensure each group is properly represented with sufficient data. 

The baseline models used for evaluation are trigram overlap (with Jaccard similarity) and query 

expansion using WordNet synsets (knowledge based semantic network), the two baselines are 

standard methods that have been used in the literature to evaluate plagiarism detectors. See 

section 3.4.4 in the methodology for the implementation of these baselines. 

 Results and Discussion 

This section presents and discusses the results obtained from the evaluation of different 

HSSMM models in the task of plagiarism detection on the Clough and Stevenson corpus. 

Tables 4.1-4.4 are the results obtained from the task carried out to determine the best 

performing HSSMM model across all the obfuscation levels. Tables 4.5-4.6 are the results 

obtained from the task carried out to determine the best performing HSSMM on specific 

obfuscation levels. The tables contain performances in precision, recall and F1-score, the tables 

also contain details of the specific similarity measure, term weighting methods and n-gram 

document models for each HSSMM model.  
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Table 4.1: Evaluation Results for the HSSMMs and baselines on the Cut and Paste 

The results in this table are the highest performance obtained for the HSSMMs and baselines on the 

cut and paste plagiarism category measured in precision, recall and F1-score.  

 

The highest performance on the cut and paste category is 89.474% (F1-score) as seen in table 

4.1, this performance was obtained when Kullback-Leibler divergence (KLD) measure was 

combined with 5-word n-gram document model and TF weighting. The performance of the 

HSSMM models on the cut and paste category was quite high relative to the other categories; 

the second best performance is 87.18%, while the average performance and variance are 

84.893% and 11.6921% respectively. The lowest performance on this category is 79.07%, and 

was observed when Euclidean distance was combined with character n-gram document model 

of size 2. 

 

 

 

 

 

 

Similarity 

measures 

Precision

% 

Recall% F1-score% N-gram type Ngram size Term weighting 

Bhattacharyya 84.21 84.21 84.21 Word 5 Binary, TF, TFIDF 

Cosine 84.21 84.21 84.21 Word 5 Binary, TF, TFIDF 

Dice 85 89.474 87.18 Word 5 Binary, TF, TFIDF 

Euclidean 70.833 89.474 79.07 char 2 TF 

PCC(R) 77.273 89.474 82.927 char 3 TFIDF 

Jaccard 85 89.474 87.18 Word   5 Binary, TF, TFIDF 

Kullback-Leibler 89.474 89.474 89.474 Word 5 TF 

Baselines 

Trigram overlap 60 78.947 68.182  

Query expansion (WordNet) 77.778 73.684 75.676 
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Table 4.2: Results of the HSSMM models on the Light Obfuscation Plagiarism  

The results in this table are the highest performance obtained for the HSSMMs and baselines on the 

light obfuscation plagiarism category measured in precision, recall and F1-score.  

 

The best performance on the light obfuscation plagiarism category is 69.767% (F1-score), this 

performance score was observed when Cosine measure and Bhattachrryan coefficient were 

combined with word ngram of size 5 and with TFIDF weighting. Similar to the results obtained 

on cut and paste category, the performance of the HSSMM models on the light obfuscation 

category was quite close (with a variance of 24.758% and an average of 66.467%), most of the 

models have an F1-score that falls within the range of 66.667-68%, although the performance 

in this category was generally lower than that of the cut and paste category. The lowest 

performance score in this category is 55.556%, and was observed when Euclidean distance was 

combined with character n-gram document model of size 3.  

 

 

 

Similarity measures Precision

% 

Recall% F1-score% Ngram type Ngram size Term weighting 

Bhattacharyya 62.5 78.947 69.767 Word 5 TFIDF 

Cosine 62.5 78.947 69.767 Word 5 TFIDF 

Dice 68.421 68.421 68.421 Word 5 Binary 

Euclidean 58.824 52.632 55.556 char 3 TF 

PCC(R) 57.692 78.947 66.667 char 3 TFIDF 

Jaccard 68.421 68.421 68.421 Word   5 Binary 

Kullback-Leibler 65 68.421 66.667 Word 5 TF 

Baselines 

Trigram overlap 50 52.632 51.282  

Query expansion (WordNet) 60 63.158 61.538 
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Table 4.3: Results of the HSSMM models on the Heavy Obfuscation plagiarism Category  

The results in this table are the highest performance obtained for the HSSMM and baseline models on 

the heavy obfuscation plagiarism category in the Clough and Stevenson corpus, the performance are 

measurements in precision, recall and F1-score.   

 

The best performance on the heavy obfuscation category is 54.545%, this performance score 

was observed when Cosine measure and Bhattachrryan coefficient were combined with 5-word 

ngram document model, and with TF weighting scheme. The performance of the HSSMMs on 

the high obfuscation category is the lowest relative to the other categories, and more varied; 

the average performance is 48.6321%, and the variance is 36.89%. There was a general drop 

in recall on the high obfuscation category, the recall was as low as 38.71% for the least 

performed model, which is surprisingly not a model formed with Euclidean distance. 

Table 4.4: Best performing HSSMMs on Cut and Paste, Heavy and Light Obfuscation Levels 

 

 

This table contains results for the best performing HSSMM model on the three obfuscation level in the 

Clough and Stevenson plagiarized corpus. 

 

 

 

Similarity 

measures 

Precision 

% 

Recall % F1-score 

% 

N-gram 

type 

N-grams 

size 

Term 

Bhattacharyya 64.286 47.368 54.545 Word 5 TFIDF 

Cosine 64.286 47.368 54.545 Word 5 TFIDF 

Dice 66.667 42.105 51.613 Word 5 Binary 

Euclidean 44.444 42.105 43.243 char 3 TF 

PCC(R) 85.714 31.579 46.154 char 3 TFIDF 

Jaccard 66.667 42.105 51.613 Word   5 Binary 

Kullback-Leibler 50 31.579 38.71 Word 5 TF 

Baselines 

Trigram overlap 66.667 31.579 42.857   

Query expansion (WordNet) 64.706 57.895 61.111 

HSSMM Precision % Recall % F1-score % 

KLD + 5word ngram + TF 89.474 89.474 89.474 

Cosine/Bhat + 5word ngram + TFIDF 62.5 78.947 69.767 

Cosine/Bhat + 5word ngram + TFIDF 64.286 47.368 54.545 
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Table 4.5: Results from Experiments to Determine the Best Performing HSSMM for Detecting Light 

Obfuscation Plagiarism 

 

 

 

 

 

The results in table 4.5 are the performance for a number of HSSMM models in the task to determine 

the best performing HSSMM on light obfuscation plagiarism. The best performance of majority of the 

models was observed when implemented with 5-character ngrams and TFIDF weighting. 

 

Table 4.6: Results from Experiments to Determine the Best Performing HSSMM for Detecting Heavy 

Obfuscation Plagiarism. 

 

 

 

 

 

 

The results in table 4.6 are the best performing HSSMM models on the heavy obfuscation plagiarism 

category. The majority of the models performed their best when implemented with ngrams of sizes in 

the range of 3 and 4 characters, however the best performance was obtained when Dice coefficient was 

implemented with binary weighting methods. 

 

 

 

 

 

HSSMM model Precision Recall F1-score 

Bhat + 5char ngram + TFIDF 65.2174 78.9474 71.4286 

Cosine + 5char ngram + TFIDF 65.2174 78.9474 71.4286 

Dice + 5char ngram + binary 62.5 78.9474 69.7675 

Euclid  + 3-char-ngram + TFIDF 58.824 52.632 55.556 

PCC(R) +4-word ngram + TFIDF 54.8387 89.4737 68.0 

Jaccard + 5char ngram + binary 62.5 78.9474 69.7675 

KLD + 5-char ngram + TFIDF 62.5 78.9474 69.7675 

HSSMM model Precision Recall F1-score 

Bhat + 4-char-ngram + TFIDF 57.1429 84.2105 68.0851 

Cosine + 3-char-ngram + TFIDF 61.905 68.421 65.0 

Dice + 4-char-ngram + binary 56.6667 89.4737 69.3878 

Euclid + 3-char-ngram + TFIDF 41.6667 52.6316 46.5117 

PCC(R) + 3-char-ngram + TFIDF 43.2432 84.2105 57.1428 

Jaccard + 4-char-ngram + binary 57.1429 84.2105 68.0851 

KLD + 2-word-ngram + TFIDF 50.0 68.4211 57.7778 
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Table 4.7: Best Performing HSSMMs for Specific Obfuscation Levels. 

The results in this table are for HSSMM models that performed best from evaluation carried out to 

determine the best performing HSSMM for specific obfuscation levels.  

 Analysis of the Results  

This section analysis the results obtained from the evaluation of the HSSMM models with 

respect to individual components of the HSSMM models, which include similarity measures, 

ngrams and term weighting methods. 

 Analysis of Performance Based on Obfuscation Levels 

The results in table 4.1-4.4 show that the highest performance was obtained on the cut and 

paste plagiarism category, this is likely due to absence of obfuscation in the plagiarism cases 

resulting in large chunks of overlapping fragments.  The high performance may also be due to 

the application of higher order ngram models (long) that can easily capture and discriminate 

texts with high overlaps. For instance, the chances of having an overlap of up-to five sequence 

of words (5-gram) in a pair of text is very slim, and when such overlaps occur, they suggest 

plagiarism. Hence discriminating text that contain cut and paste plagiarism was relatively easy 

for majority of the models. A closer look at the results revealed that the performance of the 

HSSMM models decreased with increase in degree of obfuscation (alteration) (see fig 4.1 

below) 

HSSMM Precision % Recall % F1-score % Obfuscation  

level 

KLD + 5-word ngram + TF 89.474 89.474 89.474 Cut and paste 

Cosine/Bhat + 5char ngram + TFIDF 

+ TFIDF 

65.2174 78.9474 71.4286 Light 

Dice + 4-char-ngram + binary 56.6667 89.4737 69.3878 Heavy 
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Figure 4.1: Visualization of obfuscation levels in Clough and Stevenson’s corpus. 

The scatter plot in fig 4.1 shows the distribution of document clusters that represent the four obfuscation 

levels in the Clough and Stevenson’s corpus as classified by an HSSMM ( composed of cosine, TFIDF 

and 5-word ngram).  

This trend is consistent with Clough and Stevenson’s (2011) findings, and suggests that the 

more texts are rewritt3en the higher the uncertainty in the accuracy of intertextual similarity 

estimation. In more analytical terms, the progressive decrease in performance can be attributed 

to increase in the degree of textual alteration (paraphrase); increasing the degree of alteration 

results in decrease in overlapping textual features available for the HSSMM to work with, this 

brings about decease in true positive rate, recall and performance. This effect is clearly seen in 

the performance of the models on the heavy obfuscation category (in table 4.3) where recall 

for majority of the HSSMM was below 50%, it can also be visualize in fig 4.1, the smallest 

cluster just above zero represents the heavy obfuscation category, the size of the cluster is 

indicative of the recall, and in this case, fewer documents that actually belong to that category 

of plagiarism were detected, relative to the other categories. 

 

 

                                                 
The data points in fig 4.1 along the horizontal axis at zero are non-plagiarised documents, as similarity increases 

above zero are clusters of plagiarized documents in the heavy and light obfuscation categories respectively, and 

the cluster at the very top is documents in the cut-and paste plagiarism category.  
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 Analysis of Performance Based on n-grams and Term Weighting 

With respect to n-grams and term weighting methods, the results show that the HSSMM models 

performed their best on the cut and paste plagiarism category when implemented with higher 

order n-grams (long) than with lower order ones (see tables 4.1, 4.5, 4.6) and vice versa, this 

trend is consistent with literature (Sanchez et al., 2019). This means that as the degree of 

intertextual similarity increases, the size of n-gram required for optimal detection also 

increases. The results can therefore be used to characterize plagiarism by n-gram sizes; for 

detecting cut and paste plagiarism, 5-word ngram (or 9-12 characters) is ideal, for light and 

heavy paraphrased plagiarism, ngrams of 5-character and 3 to 4-character ngrams are ideal 

respectively. This characterization of plagiarism by n-gram sizes could be used as benchmark 

(or baseline) for classifying plagiarism cases by intensity or degree of obfuscation.  

Regarding term weighing methods, the results revealed that majority of the HSSMM models 

performed best on the cut and paste category when implemented with binary, TF and TFIDF 

weighting methods. This implies that when text overlap significantly, such as in cut and paste 

plagiarism, term relevance becomes insignificant when discriminating such text, a simple 

overlap technique is enough to capture areas of interest that suggest plagiarism. On the light 

obfuscation plagiarism category, the results show that the best performance was observed when 

majority of the models were implemented with TFIDF weighting method as seen in table 6.5. 

This means that the combination of both local and global term weighting is important for 

discriminating light and heavy obfuscated plagiarized text, and that certain terms have more 

discriminating power than others and should be assigned higher weights. 

 Analysis of Performance Based on Similarity Measures 

The results in tables 4.1-4.3 revealed that the HSSMM that was implemented with Kullback 

Leibler divergence (KLD) outperformed the other HSSMM models on the no-obfuscation (cut 

and paste) plagiarism category. The outstanding performance of KLD in this study is likely due 

to the fact that KLD measures similarity between pairs of text by comparing probability of 

distributions of textual contents, this takes into account content similarity, and ensures that all 

terms in a pair of texts under comparison are considered when measuring similarity (divergence 

or dissimilarity in this case). In addition, using probability distributions minimise errors when 

samples are adequately represented such as in cut and paste plagiarism where there is 

significant overlaps between suspect and source texts. This outstanding performance of KLD 

is consistent with Huang (2008) and Deng et al., (2019) studies on identifying the best 
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similarity measures to be used with a clustering algorithm, and for Collaborative filtering 

respectively.  

The performance of the HSSMMs implemented with Cosine and Bhattacharrayan coefficient 

were the best on the light and heavy obfuscation plagiarism category. This is likely due to the 

fact that they both measure content similarity by applying inner product, although 

Bhattacharrayan converts text vectors to probability distribution before applying inner product, 

cosine on the other hand apply inner product directly to vectors and normalize by norm  product 

(vector length). Inner product ensures that similarity is based on angular distance between 

vectors (topic/content similarity), and not on distance between vector lengths which is easily 

influenced by outliers. The results imply that inner product which magnifies content similarity 

is a major determining factor in detecting obfuscation plagiarism as seen in the relatively higher 

performance of  HSSMMs implemented with Cosine similarity and Bhattacharyya coefficient 

on both the light and heavy obfuscation category. Cosine similarity has always been 

outstanding in previous studies (Magara et al., 2018; Amer and Abdalla, 2020), but 

Bhattacharyya coefficient is not well known in the literature of text similarity analysis.  

The performance of HSSMM implemented with Dice coefficient and Jaccard index emerged 

second best even though they both account for content similarity in the form of set intersection. 

Dice and Jaccard index however do not take term relevance into account as they apply equal 

weights to all terms (binary), which may have been the likely reason for the small difference 

in their performance relative to the best performing HSSMMs. In addition, the performance of 

Dice and Jaccard were similar across all obfuscation levels, this was however expected given 

how similar the two set theoretical measures are. In terms of HSSMMs implemented with 

Pearson correlation coefficient (PCC), the performance of PCC was decent across the 

obfuscation categories, but was however lower than cosine similarity even though PCC is a 

centered cosine, and as mentioned earlier, a centered cosine is the cosine of a pair of vectors 

with zero mean, which is equivalent to their PCC. The lower performance of PCC relative to 

the cosine measure indicates that the mean of vectors formed from the obfuscated texts is often 

not zero, otherwise the performance of PCC would have equalled that of the cosine measure. 

The performance of HSSMMs implemented with Euclidean distance was the lowest in almost 

of the evaluation tasks carried out, which is consistent with the literature (Strehl et al., 2000; 

Huang, 2008). One possible reason for the poor performance is that Euclidean distance 

computes similarity in terms of distances (or differences) between vector lengths, and not based 
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on angular distance. The downside of using distances between vectors as a measure of 

similarity is that documents that share some terms in common but at significant distance apart, 

are assigned lower similarity scores than documents that share relatively fewer words but at 

relatively less distance apart. This implies that Euclidean distance does not compute similarity 

on the basis of textual content, and therefore prone to error. One other possible reason for the 

poor performance is that Euclidean distance is sensitive to outliers (extremely high or low 

vector components). A term with extremely high weight in a document has strong influence on 

similarity, and can easily result in false positive. Jones and Furnas (1987) described this effect 

as the single component influencing monotonicity. It is worth pointing out that normalised 

Euclidean distance (using z-score) was implemented in this research to tackle outliers, and 

preliminary experiments revealed better performance in comparison to traditional Euclidean 

distance. However, it is obvious from the results that normalising Euclidean distance does not 

completely eliminate the effect of outliers in vector comparison.  

 Comparison with Baselines. 

In comparison with baselines, the results show that the best performing HSSMM (cut: 84.2%, 

light: 69.767%, heavy: 54.545%) clearly outperformed the tri-gram overlap baseline model 

(68.182%, 51.282%, 42.857%) on the three levels of obfuscation as seen in tables 4.1-4.3. With 

respect to the WordNet/query expansion baseline (75.676%, 61.538%, 61.111%), the HSSMM 

performed better on two out of the three obfuscation categories (cut and paste and light 

obfuscation plagiarism category). However, on the heavy obfuscation category, the 

performance of the WordNet model was higher. Further analysis on the heavy obfuscation 

category using AU-ROC revealed little difference in performance between the HSSMM (AUC: 

0.704) and the WordNet/query_exp (AUC: 0.719). The AUC results of the models is consistent 

with the F1-score, imply that the query_exp model is slightly better at discriminating heavy 

obfuscation plagiarism than the HSSMM. 
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Figure 4.2: AU-ROC curves for best performing HSSMM and baselines on the heavy obfuscation 

category. 

The likely reason for the superior performance of the WordNet model over the HSSMM on the 

heavy obfuscation category is that, the textual alterations carried out on the heavy obfuscation 

category involved replacing words with their synonyms, which is exactly what the WordNet 

baseline model is designed to detect using query expansion. It is worth noting that semantic 

networks such as WordNets are used primarily for semantic similarity measurement tasks, such 

as the task of detecting heavy obfuscation plagiarism. This therefore reinforces the need for the 

inclusion of semantic methods into conventional plagiarism detection, which is one of the 

questions addressed in this research. 

 Comparison with Results from Previous Studies 

In comparison with results from previous studies, the proposed HSSMM outperformed Bär et 

al., (2012) and Clough and Stevenson (re-implementation) models as seen in figure 4.10. To 

the best of my knowledge, the results from Bär et al., represent the state-of-the-art on this 

corpus. 
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Table 4.4.8: Macro average for the best performing HSSMM when light and heavy obfuscated 

categories were merged. 

Class  Metrics Precision Recall F1-score 

Cut and paste 0.85 0.895 0.872 

Light + heavy 0.968 0.79 0.87 

Non-paraphrased 0.881 0.861 0.871 

Macro-average 0.9 0.849 0.871 
 4Merging was carried out to ensure consistency with results from previous studies. 

 

Table 4.4.9: Confusion matrix for the best performing HSSMM when light and heavy obfuscated 

categories were merged. 

 Cut Light + heavy Non-plagiarised 
Cut 17 5 0 

Light + heavy 0 30 1 

No-plagiarised 2 3 37 

 

Table 4.4.10: Results from best performing HSSMM and previous studies 

 Accuracy F1-score (macro-average) 

HSSMM (our model) 0.884 0.871 

Bär et al., (2012) 0.884 0.859 

Clough and Stevenson (2012) 0.821 0.788 

The HSSMM performed comparably to the Bär et al., (2012) with similar accuracy but slightly better 

in terms of macro-average F1-score as seen in table 4.1. Both models clearly outperformed the Clough 

and Stevenson method. 

The Clough and Stevenson method combined features from ngrams of various sizes with the 

longest common subsequence (LCS) using a machine learning classifier (Naïve Bayes 

classifier), while Bär et al., model combines features across a number of dimensions including 

stylistic, content and semantic dimensions. In spite of how complex Bär et al., model is, the 

best performing HSSMM performed comparably and even better as seen in their accuracy and 

macro-average respectively (macro-aver: HSSMM—0.871, Bär et al.,---0.859, Clough and 

Stevenson—0.788).  While the HSSMM and models from the previous studies all apply some 

form of string matching using ngrams and similarity measures, the strong performance of the 

                                                 
The performance of the HSSMM on the obfuscation (light and heavy) class significantly increased as a result of 

merging the two classes. This revealed that majority of the misclassification take place between the heavy and 

light obfuscation categories, which is a reflection of the dataset, and implies that the boundary (separation) 

between the light and heavy obfuscation categories in the Clough and Stevenson corpus is very thin. 
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HSSMM is likely due to the application of the most suitable term weighting method in 

combination with the best of the other surface tools.  

4.2 Discussion 

In relation to the research objectives, the results revealed that no single combination of surface 

similarity measures and textual features performed best on all the obfuscation levels present in 

the corpus as seen in table 4.4; HSSMM based on KLD + 5-word ngram + TF emerged best 

for detecting cut and paste plagiarism, but fell short on the other obfuscation categories, while 

HSSMMs based on Cosine/Bhat + 5-word ngram + TFIDF emerged best on the light and heavy 

obfuscation plagiarism category, but fell short on the cut and paste category. However, given 

that it is more challenging to detect light and heavy obfuscation plagiarism, it is only rationale 

to recommend Cosine/Bhat + 5-word ngram + TFIDF for detecting obfuscation plagiarism of 

all levels. In terms of the hypothesis, the results show that the best performing HSSMM 

performed comparably and in many cases better than established methods. This means that 

with the right combination of surface similarity measures and textual features, better 

performance could be achieved in the task of detecting plagiarized texts with different degrees 

of obfuscation, the hypothesis is therefore accepted.  

Regarding the objective to determine the best performing HSSMMs for specific obfuscation 

level, the results show that KLD + 5-word ngram + TF is best for cut and paste, Cosine/Bhat + 

5-word ngram + TFIDF is most suitable for detecting light obfuscation plagiarism and Dice + 

4-char-ngram + binary is most suitable for light obfuscation plagiarism as seen in table 4.7. A 

common trend seen in the performance of the HSSMMs is a decrease in performance with 

increase in obfuscation levels from cut and paste down to the heavy obfuscation category as 

seen in tables 4.1 to 4.3. Heavy obfuscation plagiarized text were the most challenging to detect 

as they contain relatively few overlaps for surface similarity measurement tools to work with, 

and majority of the HSSMM performed their best in this category when implemented with 

character n-grams and TFIDF. The performance of the HSSMMs were for the most part better 

than the baselines and results from previous studies, however the WordNet baseline model 

which is designed for semantic similarity outperformed the best performing HSSMM model  

on the heavy obfuscation category as seen in table 4.3. This means integrating an appropriate 

semantic similarity method could enhance the performance of the best performing HSSMMs 

in detecting heavy obfuscation plagiarism. 
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4.3 Conclusion 

Experiments were carried out to determine the best performing combination of similarity 

measures and textual features in the task of detecting plagiarized texts that have been 

obfuscated at different levels (degrees). The objectives of the experiments were to determine 

whether a specific combination of surface similarity measurement tools/techniques could be 

determined for detecting obfuscation plagiarism of varying complexity. Experimental results 

revealed that no single combination performed best on all the levels of obfuscation plagiarism 

experimented with. Some combinations performed well on some obfuscation type, but not so 

well on others, while some combinations performed averagely across all categories. A single 

combination was recommended that performed best on majority of the obfuscation levels, 

especially on the challenging ones. Recommendations were also made concerning the best 

combination to use for specific obfuscation levels. In comparison with the baselines, many of 

the combinations clearly outperformed the baseline models, however one of the baselines 

which is designed for semantic similarity measurement outperformed the best combination 

model on the most challenging obfuscation level, and reinforces the need to enhance plagiarism 

detection using semantic similarity measurement tools.  

The results obtained from the experiments clearly support the hypothesis which states that; 

with the right combination of tools used in estimating surface level intertextual similarity, both 

simple (cut and paste) and to a large extent difficult cases of plagiarism (altered cases) could 

be detected. This finding is particularly useful considering the fact that the tools used for 

surface level similarity measurement (such as similarity measures) are relatively easy to 

implement and compute similarity much faster than methods that rely on external resources 

(semantic methods), which include knowledge or corpus based methods (WordNet and word 

embeddings i.e. Word2Vec respectively). Unlike semantic methods, surface similarity methods 

do not require lookups on external resources that slows down detection processes, and 

plagiarism detection especially in academic environment require systems than are fast enough 

to keep up with large number of students and scalable enough to deal with huge assignment 

materials such as projects and dissertation. These requirements are easily satisfied with surface 

similarity methods, but surface similarity measures alone cannot deal with the increasing 

complexity in obfuscation techniques device by plagiarist, especially challenge in detecting 

heavily paraphrased plagiarism. Although the dataset used in the experiments is limited in size, 

there were no better datasets out there to use, the dataset has also been commonly used in many 

studies on plagiarism detection and text reuse. Due to the size limitation of this dataset, the 
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conclusion drawn here is subject to further evaluation and analyses using much larger dataset 

as they become available, or a research to create much larger dataset of the same structure may 

be undertaken in the future. Future work will also be focused on combining the best performing 

combination models into a hybrid that works best across all the obfuscation levels, and also a 

hybrid that integrates a little semantics to enhance the performance (effectiveness) of surface 

similarity methods. 
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5 Experiments on Paraphrase Plagiarism Detection  

 

5.1 Introduction  

The last chapter described experiments carried out to detect different formation of plagiarism 

using combination of surface detection tools. This chapter addresses research question two 

which is stated as follows: 

 Can deep contextual learning models be used to enhance the detection of paraphrase 

plagiarism with performances comparable or better than a state-of-the-art (SOTA) 

model? 

Aim(s)/Objective(s) 

 To determine whether the application of a deep contextualised learning (DCLM) in 

paraphrase plagiarism detection could result in performances comparable to, or even 

better than the current state-of-the-art. 

To address the above research question, this chapter describes experiments carried out to 

evaluate the performance of a proposed paraphrase detection model described in the 

methodology in section 3.5.1.1. The proposed model is an extension of a generic plagiarism 

detection framework by integrating DCLM into the framework. We evaluated two 

implementations of the proposed model using two common DCLMs described in the 

methodology in subsection 3.5.1.2, using corpora that contain paraphrase plagiarism, and with 

standard evaluation metrics used in information retrieval (IR) and NLP for measuring the 

performance of plagiarism detection systems. We re-implemented the best performing model 

with a DCLM fine-tuned on a dataset that contains paraphrase plagiarism and evaluated its 

performance. We compared our model with baseline systems, a state-of-the-art model and with 

the generic plagiarism detection framework upon which our model was built. We also carried 

out additional experiments to determine the types of paraphrases plagiarism that could be 

detected with our model and those that are challenging or difficult to detect even with the help 

of a DCLM. 
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5.2 Experiment 1: Performance Evaluation of Proposed 

Paraphrase Plagiarism Detection Model 

This experiment was carried out to implement and evaluate the performance of the proposed 

paraphrase plagiarism detection (PD) model when implemented with the chosen DCLMs on 

datasets that contain paraphrase plagiarism, and to make comparison against baselines and a 

SOTA model. 

 DCLMs Implemented With the Proposed Model 

 SBERT (Sentence BERT, a fine tuned RoBERTa model with a bidirectional 

transformer architecture). 

 ELMo (Embeddings from language model, a bidirectional LSTM architecture) 

 Aims/Objectives of Experiment 

 To determine how well the proposed paraphrase plagiarism detection model would 

perform relative to a SOTA paraphrase plagiarism detector, and standard baselines. 

 To determine the best performing DCLM from the chosen models that could be used in 

the proposed paraphrase plagiarism detection model.  

 Datasets 

The datasets used in the experiments are the P4P and the Crowdsourcing paraphrase corpora, 

they both contain cases of paraphrase plagiarism and are therefore suitable for this particular 

evaluation, see section 3.3 in the methodology for details about these datasets.  

Description of Experiments  

The proposed plagiarism detection model (PPDM) was implemented using the two DCLMs 

mentioned above (in subsection 5.2.1) and performance was evaluated in the task of paraphrase 

plagiarism detection (PPD) using corpora that contain paraphrase plagiarism (the P4P and 

Crowdsourcing paraphrase corpora). The evaluation metrics used are precision, recall, F1- and 

AUC-ROC, see section 2.8 in the literature for details of these evaluation metrics.  

The evaluation was carried out using a 10-fold cross validation scheme; the evaluation corpus 

was split into 10-equal groups, and performance was computed on each group and averaged 
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across all the groups. This was done to avoid overfitting so that a realistic (and robust) model 

that generalises well on unknown dataset is achieved. 

We carried out further evaluation to determine whether a DCLM that is fine-tuned on a 

paraphrase plagiarism dataset could outperform the other models. We fine-tuned the best 

performing DCLM using dataset that contains paraphrase and non-paraphrase sentence pairs 

(the P4P-MRPC). The model was fine-tuned as described in section 3.5.1.3; 70% (7000 

examples) of the dataset was used for training and the remaining 30% (3000 examples) for 

validation (to avoid overfitting). Training was carried out by running the model on the training 

set while evaluating its performance by testing different hyper-parameter settings; search space 

was defined for each hyper-parameter, at every 500-training cycle the model was evaluated on 

the validation set, and the model with the best performance (using accuracy and loss metrics) 

was saved and integrated into the generic PD model, and evaluated on the Crowdsourcing 

paraphrase corpus.  

Hyper-parameters for the best performing model are; Adam optimiser with a learning 

rate=0.001, epoch=1, batch size= 16 and max token length=512, and as stated earlier, the 

number of hidden layers remained the same to avoid completely altering the weight of the pre-

trained DCLM. 

Implementation and validation of baselines and SOTA 

The baselines and SOTA model were also implemented and their performances evaluated. The 

implementation of each baseline was validated on the corpus used in the original study they 

were proposed, the validation was carefully done to ensure that their performance (baselines) 

was consistent with that of their original.  

CoVe baseline: we used the original pre-trained CoVe model (McCann et. al. 2017), which is 

an implementation MT-LSTM in Pytorch to generate contextualized sentence vectors that can 

be compared for semantic similarity using the cosine measure. Upon validation, we obtained 

the same results as the original implementation on text entailment using the SNLI (Stanford 

natural language inference) corpus (Bowman et al., 2015).  

Average GloVe baseline: this baseline was implemented using 42Billion pre-trained GloVe 

embeddings downloaded from Stanford university website, the pre-trained model was used to 

generate word vectors that are averaged across all words in a sentence into a single vector 

representation for the sentence that can be compared with other sentence representation for 

http://papers.nips.cc/paper/7209-learned-in-translation-contextualized-word-vectors.pdf
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semantic similarity. The transformation of sentences to average GloVe embeddings was carried 

out as follows; given a sentence from a passage, we first tokenised the sentence into words and 

transformed the words into GloVe vectors (using a pre-trained GloVe), we then concatenated 

(dimension wise) and averaged the word vectors along each dimension into a single sentence 

embedding (vector). With regards to validation, we obtained the same performance with the 

implementation of Reimers and Gurevych (2019) on the STS benchmark dataset (Cer et al., 

2017). 

Cosine (with frequency vector)/generic model: The generic model was obtained by 

transforming sentences into frequency vectors that can be compared for semantic similarity 

using the cosine measure. Short sentences with less than 3-words are joined to proceeding 

sentences as in (best model). We validated this model by implementing it with both binary and 

frequency vectors and obtained similar results to Agirre et al., (2016) on the STS monolingual 

plagiarism evaluation subset. 

State-of-the-art model (SOTA): the implementation of the SOTA model was carried out using 

5-character ngram features to capture content and stylistic textual features in sentences that 

could be compared with other sentences for semantic similarity. See section 3.5.2 for details of 

this implementation. Our implementation was validated on a subset of the P4P corpus used in 

(Sanchez et al., 2019) and we obtained the same result. 

 

5.3 Experiment 2: Determination of the Performance of DCLMs 

on Different Paraphrase Types. 

This experiment was carried out to determine the relative performance of DCLMs with respect 

to paraphrase types in plagiarised texts. 

 Aim(s)/Objective(s) 

 To determine the paraphrased types that could be detected with the DCLMs and those 

that are challenging or difficult to detect even with the help of DCLMs. 
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 Corpus 

The P4P corpus was used in this experiment, it contains sentences that are annotated with 

paraphrased types, and hence it is suitable for this evaluation. 

Evaluation of performance with respect to paraphrase types 

To evaluate the performance of the DCLMs with respect to paraphrase types, the proposed 

paraphrased plagiarism detection model was implemented in the same way as in experiment 1 

(in section 5.2), and thei’r performances were measured at the point of intersection of precision 

and recall (the equilibrium point where precision equals recall). The threshold at the 

intersection was used as cut-off to retrieve all detected paraphrased text, and performance was 

measured in recall with respect to specific paraphrase types (i.e. proportion of each paraphrase 

type retrieved). Recall was chosen because the objective is to determine the proportion of each 

paraphrase type retrieved at the optimal performance point (intersection of pr/rc) of each 

model, which is the same as recall.  

Results from the Experiments on the P4P Corpus 

This section presents the results obtained from the experiments carried out to evaluate the 

performance obtained for the proposed model and baselines on the P4P- paraphrase corpus. 

Table 5.1: Results on Proposed Model and Baselines on the P4P Corpus. 

Model Precision  Recall  F1-score AUC 

Proposed model with SBERT 0.807 0.795 0.801 0.890 

Proposed model with ELMo 0.796 0.755 0.775 0.875 

 Baselines    

CoVe (McCann et al., 2017) 0.750 0.778 0.764 0.860 

Average GloVe 0.751 0.772 0.762 0.845 

Cosine/frequency vector (generic 

framework) 

0.568 0.577 0.572 0.685 

 SOTA    

Character features (Sánchez-Vega et al., 

2019) 

0.879 0.601 0.714 0.835 

The results in this table are the performance of the proposed model, baselines and a SOTA model in 

precision (pr), recall (rc), f1-score (f1) and AUC based on 10-fold cross validation. 

The results in table 5.1 show that for the context learning models (SBERT, ELMo and CoVe), 

SBERT (F1-score: 0.801) outperformed ELMo (F1-score: 0.775) and CoVe (F1-score: 0.764) 

as seen in their F1-scores, while ELMo outperformed CoVe. Overall, SBERT performed best, 

and ELMo comes second best; the two contextualised learning models under investigation 

(SBERT and ELMo) outperformed the baselines. Statistical test for significance using paired 
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t-test revealed significant difference in performance between the SBERT model and the 

baselines (P<0.05); this implies that in 95% or more of the time the SBERT model will 

outperform the baselines. This is supported by the AUC which show higher values for the 

DCLMs, particularly for the SBERT model, which means the SBERT model is able to separate 

the paraphrased plagiarism examples from the non-paraphrased ones much better than the 

baselines, and has a higher probability in classifying a random example into the right class.  

The results imply that SBERT is able to detect the type of obfuscation associated with 

paraphrase plagiarism much better than the other models, which means that SBERT is more 

effective in learning semantic, syntactic, lexical and miscellaneous relationships embedded in 

paraphrased texts than the other models. The results also imply that the transformer architecture 

(of BERT) is better in contextualised learning than the LSTM (in ELMo and CoVe).  

A number of factors may have contributed to the difference in performance between SBERT 

and ELMo, two of the most likely reasons are the difference in training objectives of the 

models, and in the way input sequences are processed and used during training for 

contextualised learning. While both models use bidirectional learning and attention 

mechanism, they are however trained using different learning objective methods, SBERT (fine-

tuned RoBERTa) is trained with MLM objective, while ELMo is trained with traditional 

language modelling objective (next word prediction) as in LSTMs. As stated earlier, in MLM 

a model learns to predict a number of randomly selected tokens of an input sequence (about 

15%), this exposes the model to a wide range of relationship between input tokens and results 

in deeper representation learning, as opposed to next word prediction where a model learns to 

predict only the next word given the previous words in a sequence of tokens, and therefore not 

able to learn the relationship between different combination of input tokens. This relationship 

could be lexical, semantic, syntactic or miscellaneous, which are core characteristics of 

paraphrased texts. Another possible reason is the differences in which input sequences are 

processed during training. Transformers are designed to process an entire sequence of text 

during training, and therefore avoids information loss, while LSTMs use gates to selectively 

retrieve a limited amount of previous information for next word prediction learning, giving 

room to information loss from long dependencies (Vaswani et al., 2017). 

The contextualised and non-contextualised learning models (SBERT, ELMo, CoVe and 

GloVe) which are designed to detect semantic similarity at word and sequence (i.e. sentence) 

levels clearly outperformed the string/lexical matching methods (Cosine and SOTA) that rely 

mainly on surface content features. This findings is consistent with the literature that suggests 
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that detecting paraphrased or high obfuscated plagiarism require models that are designed for 

semantic text similarity (Gupta, 2016; Foltýnek et al., 2019). 

It is worth noting that the recall of the generic model (cosine with frequency vector) is 

obviously lower than the other models which is likely due to absence of matching strings 

(overlaps), it may also be due to the diverse types of paraphrases in the corpus, because even 

when significant overlaps (matching strings) are present, they may not necessarily mean that 

pairs of texts are semantically similar, for example, the sentences below have significant 

matching terms but are not semantically similar; 

a) The quick brown fox jumps over the fence. 

b) The slow brown fox did not jump over the fence. 

The paraphrases in the P4P dataset may also have significantly reduced the ability of string 

matching models to detect semantic similarity, this is also seen in the performance of the SOTA 

model, although to a lesser extent.  

Table 5.2: Performance of the Models Different Paraphrase Types 

The results in this table are performance in recall for paraphrase types in the P4P corpus taking at the 

threshold point where pr/rc intersect as seen in fig 5.1 and 5.3.  

Paraphrase types SBERT ELMo CoVe Aver_Glove Cosine/f

req. vect 

Num. of 

samples 

dis_direct_indirect 0.583 0.694 0.556 0.278 0.361 36 

dis_punct_format 0.833 0.849 0.842 0.755 0.697 538 

dis_sent_modality 0.857 0.914 0.829 0.714 0.571 35 

Insert_delete 0.9 0.89 0.879 0.727 0.618 1576 

lex_converse 0.939 0.879 0.909 0.667 0.606 33 

lex_opposite_polarity 0.877 0.846 0.815 0.662 0.662 65 

lex_same_polarity 0.920 0.926 0.884 0.772 0.617 5071 

lex_spelling_and_format 0.892 0.867 0.909 0.746 0.735 437 

lex_synt_ana 0.945 0.928 0.919 0.828 0.680 669 

mor_derivational 0.958 0.935 0.935 0.759 0.582 261 

mor_inflectional 0.913 0.929 0.925 0.78 0.63 254 

mor_modal_verb 0.853 0.888 0.862 0.647 0.612 116 

order 0.915 0.905 0.894 0.835 0.767 576 

semantic 0.862 0.829 0.761 0.538 0.453 340 

syn_coordination 0.824 0.857 0.833 0.671 0.595 210 

syn_diathesis 0.969 0.915 0.869 0.769 0.662 130 

syn_dis_structure 0.955 0.946 0.901 0.738 0.658 313 

syn_ellipsis 0.99 1.0 0.954 0.92 0.782 87 

syn_negation 1.0 0.939 0.849 0.788 0.576 33 

syn_subord_nesting 0.93 0.908 0.91 0.784 0.663 597 

Variance 0.00795 0.0039 0.0074 0.01729 0.00939  

Average 0.896 0.892 0.862 0.72 0.626  
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Although there were some difference in performance between SBERT and ELMo as seen in 

table 5.2 where SBERT outperformed ELMo on certain paraphrase type, and the same goes for 

ELMo on other paraphrase types; statistical analysis to measure dispersion (variability) in 

performance across paraphrase types revealed that among the contextualized learning models 

SBERT has the highest variance, while ELMo has the least variance (ELMo: 0.0039, CoVe, 

0.0074, BERT: 0.008 (0.00795)). This means the performance of the SBERT model vary across 

paraphrase types more than the other contextualized learning models, and implies that the 

SBERT model is more sensitive to changes in paraphrase types, while the ELMo model is least 

sensitive. In general, the variability in performance of the contextualized learning models was 

less than the baselines (non-contextualised learning models); lower variability in performance 

could be interpreted as better stability and consistency in performance irrespective of 

paraphrase types, although more study may be required to establish this fact. With regards to 

specific paraphrase types, the analysis of the performance of the models is largely focused on 

DCLMs because of their superior performance overall as seen in Fig 5.1 below. The results in 

table 5.2 revealed that representations from DCLMs could be used to enhance the detection of 

the following paraphrase types with relatively higher probability; mor_derivational, 

syn_diathesis, syn_dis_structure, syn_ellipsis and syn_negation, all of which have recall above 

0.949 as seen across the models. While syn-coordination, dis-direct-indirect and dis-punct-

format, all of which have recall lower that 0.85 appear to be challenging to the DCLMs, with 

dis-direct-indirect being the most challenging, even to the other models evaluated. Paraphrase 

types with recall that lie between the above thresholds appear to neither difficult nor easy to 

detect. These threshold values are hypothetical, but points to the relative strength of DCLMs 

with respect to paraphrase detection, and where improvement could be made so as to build 

DCLMs that can generate good quality representations for better inferences on a wide range of 

NLP tasks, including paraphrase plagiarism detection. 
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Table 5.3: Paraphrase types in the P4P Corpus Divided into Six Groups 

Paraphrase 

class 

Generic features Paraphrase types 

Morphological 

changes 

 

All changes that affect the form in which a lexical 

unit appear in text. 

Inflectional, derivational and modal 

verb changes 

Lexical changes:  All changes that involves substituting one lexical 

unit with another, or altering the structure of a 

unit. 

 

Spelling and format changes, converse, 

opposite-polarity, synthetic/analytic 

and same-polarity substitutions. 

Semantic 

changes 

All changes that involves rewriting portion of 

text without changing the meaning of the text.  

Semantic alteration 

Syntax based 

changes 

All changes that affect the structure of texts such 

as moving lexical units around, they include 

coordination changes, subordination and nesting 

changes, ellipsis, negation switching and 

diathesis.  

Coordination changes, subordination 

and nesting changes, ellipsis, negation 

switching and diathesis.  

 

Discourse 

changes 

All changes that affect the style, format, or mode 

in which text is presented, 

punctuation and format changes, 

direct/indirect 

Miscellaneous 

changes 

 All changes to text that involves reordering, 

insertion or deletion of one or more lexical units. 

Insertion/deletion, 

reordering 

This table contains the paraphrase types in the P4P corpus, their groupings and respective generic 

features. 

 

 

Fig 5.1a: precision/recall curve for SBERT                             Fig 5.1b: precision/recall curve for ELMo 

Figure 5.5.1: Precision/Recall curves for SBERT and ELMo across all possible thresholds. Each curve 

shows the point where precision and recall intersect, and the threshold at that point. 
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The pr/rc curves in fig 4.1 show higher performance for SBERT (F1: slightly above 0.8) than 

ELMo (F1: slightly below 0.8) at the intersection of precision and recall. The curves also 

revealed that ELMo uses higher detection thresholds than SBERT, which implies that the 

ELMo model is able to detect higher semantic similarity in paraphrased texts than the SBERT 

model. 

Although the pr/rc curve used in this thesis is not the traditional one, the method was however 

used in Chong and Specia (2011) for plagiarism detection, and it does produces similar results 

to the traditional pr/rc method, but with clearer visualisation of the optimal performance point 

and its corresponding threshold at the intersection of pr/rc. For example, fig 5.2 is a traditional 

pr/rc curve for the proposed, the optimal point is somewhere just above 0.8 for both precision 

and recall, which is the same as what is observed using standard method as in fig 5.1a.  

 

Figure 5.2: PC/RC curve for SBERT using traditional method 

 

 

Figure 5.3: Precision/Recall curves plotted over every possible thresholds for the baseline models. Each 

curve shows the point where precision and recall intersect, and the threshold at the intersection point. 

The pr/rc curves in fig 5.3 revealed similar performance for GloVe and CoVe (but lower than 

those of SBERT and ELMo). However, significant difference does exist between the 



  

130 

 

intersection thresholds of GloVe and CoVe. The similarity in performance between CoVe and 

GloVe (and difference in thresholds) is likely due to the fact that CoVe utilises GloVe word 

embeddings to generate contextualised word representations, and that the contextualised word 

representations were not contextualised enough to bring about difference in their performances, 

but results in difference classification thresholds. The performance for the generic model 

(cosine with frequency vector) was once again the least as seen in the pr/rc curve in fig 5.3 (far 

right), and once again prove that the detection of paraphrased plagiarism require semantic 

models, and that string matching models are not effective enough.  

When compared with previous results on three common paraphrase types, namely semantic, 

lexica and syntactic changes; on average our proposed model performed better in detecting 

syntactic (0.945) and lexical (0.915) changes than semantic (0.862), a similar trend was 

observed in Sanchez et al., (2019), although with a slightly different performance measure. 

This similarity in trend revealed the challenge in detecting plagiarised texts that have 

undergone semantic changes. 

5.4 Results from the Experiments on the Crowdsourcing Corpus 

This section presents and discusses results obtained from the evaluation of the models on the 

Crowdsourcing paraphrase plagiarism corpus. 

Table 5.4: Results from Evaluation on the Crowdsourcing paraphrase Corpus 

This table contains performance measurement in precision, recall, F1-score, and AUC-ROC for the 

proposed model (implemented with SBERT and ELMo) and baselines (including the SOTA model). 

The results in table 5.3 show that the proposed paraphrase detector outperformed the other 

models as seen in their F1-scores and AUC-ROC values (SBERT: 0.885 and 0.895, ELMo: 

 Precision  Recall  F1-score AUC-ROC 

Proposed model (with SBERT) 0.828 0.951 0.885 0.895 

Proposed model (with ELMo) 0.776 0.960 0.858 0.875 

     

CoVe (McCann et al., 2017) 0.762 0.948 0.845 0.883 

Average GloVe (global vectors) 0.764 0.92 0.835 0.875 

Cosine  with frequency vector (VSM) 0.743 0.957 0.836 0.849 

     

N-gram feature (SOTA, Sánchez-Vega  

et al., 2019) 

0.759 0.854 0.804 0.860 
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0.858 and 0.875). This implies that on average the proposed model (when implemented with 

SBERT and ELMo) has better sensitivity and positive predictive value than the other models, 

in other words, the proposed model is more sensitive to paraphrased text, and has a higher 

probability of detecting paraphrased text in a corpus containing paraphrased and non-

paraphrased text. In terms of evaluation using the AUROC measure, the results revealed that 

SBERT has a higher AUROC than the other models, this implies that SBERT is able to 

discriminate between the two classes (paraphrased and none-paraphrased) much better than the 

other models, and that at every possible threshold, the probability of positive (accurate) 

prediction is relatively higher for SBERT comparatively. This can be seen in the AUC-ROC 

curves in the next page in fig 5.3, the closer to the vertical a curve is, and the higher and parallel 

to the horizontal its surface is, the more area under the ROC curve is covered, and the higher 

the true positive rate. Fig 5.3 shows AUC-ROC curve for the top three best performing models 

on the Crowdsourcing paraphrase corpus, it is clear the ROC curves that the proposed model 

(implemented with SBERT) occupy a larger area under the curve than the other models, and 

there is very little difference in performance between the other two models (CoVe and ELMo). 

 

Figure 5.4: ROC curves for the top three best performing models showing area under the curve  (AUC) 

for the proposed model (imple5mented with SBERT and ELMo) and the best performing baseline 

(CoVe).  

The AUC values for the models align with their confusion matrix in fig 5.4-5.6 which clearly 

show lower misclassification rate for the SBERT model relative to the other models, the 

proportion of paraphrase plagiarism detected as non-paraphrase plagiarism and non-paraphrase 

                                                 
The further from the diagonal an ROC curve is, the higher the true positive rate. The diagonal line represents 

random guess. 
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plagiarism detected as paraphrase plagiarism (false positive rate) was much less for SBERT 

than the other models (SBERT: 0.128, ELMo: 0.164 and CoVe: 0.18). 

 

 

Figure 5.5: Confusion matrix for the proposed model (implemented with SBERT). 

Error analysis of the SBERT model as seen in fig 5.4 revealed a relatively higher 

misclassification on the non-paraphrased class than on the paraphrased class. 

 

 

 

Figure 5.6: Confusion matrix for proposed model (implemented with ELMo) 

The plot in fig 5.5 shows higher misclassification on the non-paraphrased class for the ELMo 

model relative to SBERT, but still better than the baselines, see appendix for the confusion 

matrices of the baselines. 



  

133 

 

 

Figure 5.7: Confusion matrix for the CoVe model 

Error analysis of the CoVe model as seen in fig 5.6 shows that the degree of misclassification 

on the non-paraphrased class is close to six times that of the paraphrased class.                

The confusion matrix plots in fig 5.4-5.6 display different levels (degrees) of misclassification, 

however one thing they share in common is that majority of the misclassification originate 

from the non-paraphrased class, which is more or less a reflection of the nature of the corpus 

as this is observed across the models. A closer look at the confusion matrix plots revealed that 

the proposed model performed better on the paraphrased class when implemented with ELMo 

than when it was implemented with SBERT, the ELMo model detected more paraphrase 

examples (ELMo:3904/96%---SBERT:3868/95.1%) and less false negatives in comparison to 

the other models (ELMo:163/4%---SBERT:199/4.9%). However, SBERT clearly 

outperformed the other models on the non-paraphrased class with far fewer false positives 

(BERT:806/21.3%---ELMo:1125/29.4%). The results therefore suggests that the ELMo model 

is more sensitive to paraphrased texts due to its high true positives, while the SBERT model 

seems more precise because of its relatively low false positives. This finding is consistent with 

the results in table 5.3 which shows relatively higher recall for ELMo (sensitivity) and higher 

precision for SBERT (specificity).  

Further analysis of the results in table 5.3 revealed that CoVe and GloVe, which are designed 

for semantic text similarity tasks fell short in performance in comparison to the proposed 

model.  This is likely due to the fact that GloVe is a context independent model that does not 

capture the real meaning of words in contexts, a requirement that is essential for detecting 

semantic text similarity and paraphrase plagiarism ultimately. CoVe which is a contextualised 

learning model does not learn deep relationships between contextualised words as compared 
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to the DCLM used in the proposed model; CoVe does not combine feature representations from 

the internal layer of the training model, but uses only representations from the top layer of an 

LSTM, and therefore does not take advantage of the deep relationships between contextualised 

words at the hidden units (Peters’ et al., 2018), in addition, the DCLMs used in this work learns 

bidirectional contexts which is deeper relative to a unidirectional learning model such as CoVe 

that is unidirectional (Peters’ et al., 2018; Ethayarajh et al., 2019).  Although lower than the 

contextualised learning models, the performance of the SOTA and Cosine baseline were 

surprisingly high on the Crowdsourcing paraphrase corpus (relative to P4P corpus) given their 

simplicity and non-reliance on complex external resource. However the importance of 

precision which is a reflection of accuracy cannot be overemphasized given the sensitivity of 

plagiarism and the importance of reducing false detection. Hence every little improvement in 

precision, such as what was observed in the relatively superior performance of the DCLMs is 

worth it. 

 Results from BERT Fined-Tuned on Paraphrase Plagiarism Dataset 

This subsection presents results obtained when the proposed model was implemented with a 

RoBERTa model fine-tuned on a corpus that contains paraphrase plagiarism and evaluated on 

the Crowdsourcing paraphrase corpus. 

Table 5.5: Performance of Fine-Tuned BERT 

 Precision Recall F1-score 

Paraphrased 0.831 0.962 0.891 

Non-paraphrased 0.951 0.79 0.863 

Macro-average 0.891 0.876 0.877 

 

The results in table 5.4 revealed that when the proposed model was implemented with a BERT 

model fine-tuned on paraphrase plagiarism corpus and evaluated on the Crowdsourcing 

paraphrase corpus, the performance obtained was slightly higher (F1-score=0.891) than when 

implemented with a BERT model fine-tune on generic corpora (SBERT F1-score=0.885). The 

performance of the model fine-tuned on paraphrase corpus is more balanced; margin between 

precision and recall is relatively smaller for the fine-tuned model. The superior performance is 

likely due to the fact that fine-tuning a pre-trained BERT adjusts the parameters (weights) of 

the model to be more sensitive to the types of paraphrases embedded in plagiarised texts. Much 
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better performance could have been obtained if the dataset used for fine-tuning was much 

larger. See error analysis of the fine-tuned model in the confusion matrix below. 

 

 

 

 

 

 

 

 

 

Figure 5.8: Confusion matrix for BERT fine-tuned on paraphrase plagiarism dataset 

Error analysis of the confusion matrix in fig 5.7 revealed lower false positives and negatives 

for the fine-tuned BERT model relative to the other models, the proportion of the non-

paraphrase plagiarism detected is much less than the paraphrase class, but still better than the 

other models. 

 Comparison with Results from a Previous Study 

In comparison with results from a previous study where performance was computed as macro 

F1-score (taking into account performance for non-paraphrased class), Table 5.9 revealed that 

the proposed model outperformed Bars’ et al., (2012) model as seen from their macro-average 

F1-scores (SBERT--0.871, previous study--0.85) respectively. The likely reason for the 

superior performance of the proposed model is that the Bars’ et al., model is a combination of 

content, stylistic and knowledge based similarity measurement methods, content based 

methods measures similarity based on string matching, stylistic method measures similarity 

based on similar writing style, and knowledge based methods rely on semantic networks e.g. 

WordNet. None of these methods is able to decipher the real meaning of words in context, or 

learn deep semantic, syntactic and miscellaneous features associated with paraphrased text. 

These features are what DCLMs are trained to learn from text, and the likely reason for the 

superior performance of the proposed model over the other models, including the baselines and 

SOTA. 
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Table 5.6: Results for proposed model and a previous study on the Crowdsourcing corpus 

This table contains the macro-average F1-scores for our proposed model and results from a previous 

study where Crowdsourcing paraphrase corpus was used for evaluation. 

Similar to the results obtained on the P4P corpus, the proposed model outperformed the 

baselines and SOTA model, and results from previous evaluation on the same dataset. The 

likely reason for the significant difference in performance is similar to those given for the P4P 

corpus, which is the ability of the proposed model to detect semantically related text sequences 

using a DCLM, which is an essential requirement for detecting paraphrased plagiarism.  

Implications of Results With Respect to the Objectives of the Experiment 

In relation to the research objectives, the proposed model outperformed the baselines and a 

SOTA paraphrase detection model on two corpora the contain paraphrase plagiarism, which 

suggest that the application of DCLM in plagiarism detection enhances the detection of 

paraphrase plagiarism, and addresses the objective that investigates whether the use of DCLMs 

in plagiarism detection would result in performance comparable to what could be obtained by 

a the state-of-the-art model. With respect to determining the most suitable DCLM for 

paraphrase plagiarism detection, the results revealed that SBERT (a transformer model) 

outperformed ELMo (an LSTM model) for the most part on both datasets, and therefore suggest 

that a DCLM with a transformer architecture such as SBERT is better suited for the task of 

paraphrase plagiarism detection. With respect to the objective on the types of paraphrases that 

could be detected with the help of CLMs, and those that are challenging, the results show that 

the proposed model could detect most of the paraphrase types, but a few paraphrase types were 

found challenging to detect; a trend seen in the performance of the other models, and suggest 

that representations from DCLMs are yet to capture features of certain paraphrase types in 

texts, and that more emphasis should be placed on the difficult to detect paraphrased types 

  Precision  Recall  F1-score 

Proposed model (with SBERT) Paraphrased 0.828 0.951 0.885 

Non-paraphrased 0.938 0.787 0.856 

Macro-average 0.883 0.869 0.871 

Proposed model (with fine-tuned BERT) Macro-average 0.891 0.876 0.877 

Previous study (Bars’ et al., 2012) Paraphrased    

Non-paraphrased 

 

Macro-Average 

  0.85 
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when building DCLMs. The cosine (with frequency vector) baseline which is the generic 

framework into which DCLMs were integrated performed relatively low in all the experiments, 

this imply that the proposed model, which is an extension of the generic model via integration 

with DCLMs brought about significant increase in the detection of paraphrase plagiarism given 

its superior performance over the generic and SOTA models. Although misclassification did 

occur across the models, which for the most part are  likely due to the variety and complexity 

of the paraphrase types in the corpora, especially the P4P corpus. In depth analysis of the 

individual paraphrase types in table 5.2 revealed that at optimal performance, the DCLM 

models were able to detect certain paraphrase types with almost 100% recall (at reasonable 

precision), while the recall on other paraphrase types were as low as 60% or less.  Further in 

depth analysis of the results revealed that the models performed well on paraphrase plagiarism 

with structural alterations (syntax) and not so well on discourse and semantic based changes.  

Additional experiments to evaluate the performance of proposed model using a DCLM fine-

tuned on a paraphrase plagiarism dataset revealed performances that were better than DCLMs 

fine-tuned on a generic dataset. Although the performance difference was small, it would have 

been much higher if the model had been fine-tuned with much larger dataset. The results is 

quite promising and leaves room for further experiments to evaluate the performance of 

DCLMs fine-tuned on large plagiarism corpora.  

In terms of how the proposed method will be used in an end to end plagiarism detection system 

that comprises of candidate document retrieval, pairwise document comparison (intensive 

similarity search) and detection of potential plagiarised text fragments, and post-processing to 

identify plagiarised passages and filter off false passages, the proposed method aligns with the 

middle stage, which involves comparison and detection of plagiarised text fragments. The 

middle stage is where evidence of plagiarism is detected; it is about the most important stage. 

 

 

 

5.5 Summary 

Several experiments were carried out to evaluate the performance of DCLM in the task of 

paraphrase plagiarism detection. A proposed model described in the methodology that utilizes 

DCLMs for paraphrase plagiarism detection was implemented with DCLMs of two different 
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architectures, and its performance evaluated. Experimental results revealed that the proposed 

model clearly outperformed a state-of-the-art model, and a number of established baselines. 

The findings suggests that DCLMs could be used to enhance the detection of paraphrased 

plagiarism. Further experiments to determine the performance of a DCLM fine-tuned on a 

paraphrase plagiarism corpus revealed performances that were better than those obtained from 

a DCLM fine-tuned on a generic dataset (SBERT). The performance difference could have 

been much better if the model had been fine-tuned on a larger plagiarism dataset, which is 

indeed promising and leaves room for future in that respect. Additional experiments to 

determine the performance of DCLMs with respect to different paraphrase types revealed that 

DCLMs could be used to detect most paraphrase types embedded in plagiarised texts, although 

a few were challenging or difficult to detect, even to the other models evaluated. The results 

suggest that DCLMs can be effectively used to detect paraphrase plagiarism, and are likely to 

be more effective when fine-tuned on paraphrase plagiarism corpora.  

 

 

 

 

 

 

 

 

 

 

 

6 Experiments on Cross-lingual Plagiarism Detection 
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6.1 Introduction 

The previous chapter described experiments carried out to address the challenge of paraphrase 

plagiarism detection. This chapter addresses research question three (3), which is stated as 

follows: 

 Can a multilingual translation model that is independent of internet translation services 

be built using a Word2Vec (word embedding) model and applied to effectively detect 

cross-lingual plagiarism (CLP) with performances comparable to a state-of-the-art 

CLPD model? 

Objective(s) 

 To determine whether a multilingual translation model can be built by leveraging 

the predictive power of word embedding (particularly the Word2Vec model) and 

applied in CLPD to achieve performances comparable to a state-of-the-art CLPD 

model (based on the T +MA model). 

 To determine whether a Word2Vec model could be trained to reproduce the output 

of an online machine translator and used in CLPD to produce similar performance 

to a commonly used CLPD model (T+ MA) which is dependent (and limited) by its 

reliance on internet translation services. 

To address the above research question, this chapter describes experiments carried out to 

evaluate the performance of a CLPD model proposed in the methodology in section 3.6.1.2 for 

that does not rely on internet translation tools. The proposed CLPD model is an integration of 

relevant tools used in detecting plagiarism with a multilingual translation model (MTM) 

proposed in the methodology in section 3.6.1.1 for translating texts across multiple languages. 

The MTM depends on predictions from a Word2Vec model trained with simulated embeddings 

that comprise of semantically related words in different languages as context. The evaluation 

includes comparison against established methods, which includes state-of-the-art (SOTA) 

methods, baselines and results from previous studies. This chapter also includes experiments 

to test the effectiveness of the proposed CLP detector on low resource languages.  

6.2 Experiments 

The following sections of this chapter describe experiments carried out to train a Word2Vec 

model for multilingual translation, and to evaluate the performance of our proposed 
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multilingual translation model (MTM) and a CLPD model that uses the MTM for language 

translation. The experiments are: 

 Experiments to determine whether a Word2Vec model could be trained with 

multilingual embeddings to predict semantically similar words in different languages 

and used as a multilingual translation model (MTM).  

 Experiment to evaluate the performance of a proposed CLP detector that uses the MTM 

for translating text across languages when detecting CLP.  

 Experiment to determine the performance of the proposed CLP detector on low 

resource languages, and its effective as a language independent tool. 

These experiments are described in the subsequent sections. 

 Experiments to determine whether a Word2Vec model could be 

trained and used for multilingual translation (MTM). 

This section describes experiments carried out to train and optimize multilingual word 

embeddings using the Word2Vec model built with simulated embedding space. 

Aims/Objective(s): To determine whether a Word2Vec model could be trained with a 

multilingual embedding space to predict semantically similar words in different languages, and 

be used as an MTM. 

Description of experiments 

The MTM uses multilingual word embeddings from a Word2Vec model trained with simulated 

embeddings space. We used a Word2Vec model from the Gensim NLP library and created a 

multilingual embeddings space that maps semantically similar words in different languages 

(e.g. English, Spanish, German and French) into the same context/space. For example, a 

context for an English word ‘car’ is as follows: 

{‘car in English’, ‘car in French’, ‘car in German’, ‘car in Spanish’}  

We created multilingual contexts for the top-100,000 thousand most common English words 

with the help of Google translate (see section 3.5.1.1 in the methodology for more details) and 

trained the Word2Vec model with an objective of assigning similar vector representations to 

words that appear in similar context so that words that appear in similar contexts (semantically 

similar words in different languages) are predicted with relatively high probability. 
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To achieve the training objective, we experimented with two optimization parameters namely 

minimum context frequency and appropriate vocabulary size of the embedding space, the 

experiments to determine these parameters are: 

a) Experiment to determine the frequency of co-occurrences of semantically related words 

in different languages to use as context for training the Word2Vec model. The contexts 

need to be replicated to increase the probability of predicting the semantic equivalent 

of a word in other languages. 

b) Experiment to determine an appropriate vocabulary size of the embedding space of the 

Word2Vec model. The vocabulary should include all common English words and 

beyond. However, since the efficiency of a Word2Vec model is related to the size of 

the embedding space, rarely used words should be minimised in the vocabulary, this is 

determined experimentally. 

The above experiments are described in the subsequent sections as experiments 1A and 1B. 

 Experiment 1A: Determination of the Frequency of Context Words in the 

Embedding Space of the Word2Vec Model for Optimal Language 

Translation. 

Aims/Objectives: the aim of this experiment is to determine the number of times to 

replicate the embedding space of the Word2Vec model in order to optimise the 

prediction of target words, given a source word in a different language.  

Description of the Experiment 

The task here is similar to candidate retrieval as it involves retrieving relevant information for 

query terms; the query is a word in a language, and the expected information is the semantic 

equivalent of the query word in a different language. The embedding model is replicated n-

number of times and trained so that each context appears n-times (where n is an integer; a 

multiplier), replication increases the probability of retrieving the context of a word, which are 

the translation of the word in other languages. Preliminary experiments revealed that the 

translations of a word in other languages is usually among the top-10 words returned by the 

model after replication; this threshold is set to improve the precision of the model. 

The Word2Vec model was trained to perform the above task with different values of n, and its 

performance in terms of predicting target words was measured each time in recall, n is the 
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number of times the embedding space is replicated. The values of n tested in the experiments 

ranges from 10 to 100, at an interval of 10; where n=number of replications= {10, 20, 30, 40, 

50, 60, 70,…100} 

The top-1000 most frequently used English words (excluding the first 100) were used as source 

words, and their translations in Spanish were the target words; for each English word presented 

to the model, the models’ output (top-10 words) is expected to contain the translation of the 

word in Spanish, and recall increases when the translation of the word is present, but decreases 

when not present. 

Table 6.1: Results from the experiments to determine the best replication parameter 

No. of reps (n) 10 20 30 40 50 60 70 80 

Performance  (recall) 0.265 0.383 0.534 0.728 0.925 0.927 0.927 0.927 

Changes in recall as number of replications of the embedding space (contexts) of the Word2Vec model 

increases when optimising the MTM. 

The results in table 6.1 show that optimal performance was achieved when the embedding 

space was replicated 50-times, and further increase did not result in any significant 

improvement in performance. The result also revealed a linear relationship between increase 

in the models performance with increase in the value of n (number of replications), and flattens 

afterwards as the value of n approaches 60 replications; which means as the value of n-

increases, the performance of the model in terms of returning the exact translation of an English 

word in Spanish also increases, but as n approaches 60, the model becomes noticeably less 

linear, and the performance flattens out. See fig 6.1 for visualisation of the pattern in the results. 

The maximum performance was observed when the replications were between 50 and 60, and 

additional replications could not bring about significant increase in performance, the likely 

reason for this is that at 50 replications about 93% of the target words were already retrieved, 

and the amount of target words left was not large enough to bring about any significant increase 

in performance beyond 60 replications. 

 

In terms of choosing the ideal number of replications to optimise the models’ performance, the 

ratio of the difference in performance (recall) between 40 and 50, and between 50 and 60 is 

about 3:1 which makes 50 an ideal cut off (n-value) to use because the last significant change 

in performance was observed when the number of replications increased from 40 to 50. This 

value may vary depending on the vocabulary size of the embedding model; here the embedding 
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model comprises of the top-25000 English words and their translations in German, French, 

Spanish, Dutch and Chinese. 

  

Figure 6.1: Changes in recall as number of replications increases 

The curve in figure 6.1 shows changes in recall as the number of replications (n) of the 

embedding space increases, and flattens out afterwards as n approaches 50 replications (see 

table 6.1 for details). 

 Experiment 1B: Determination of an Appropriate Vocabulary Size for 

the Embedding Model for Optimal Language Translation.  

Aims/objectives: to determine an appropriate vocabulary size for optimising the 

performance of the Language Translation Model. 

Dataset: the dataset used in this experiment is the Pan2012 evaluation corpus on plagiarism 

detection. The corpus contains CLP cases, and therefore suitable for this experiment.  

Description of Experiment 

This experiment is carried out to determine the appropriate words and vocabulary size to 

simulate an embedding space for training a Word2Vec skip-gram model to optimise the 

prediction of translated words. The vocabulary comprises of English words as pivots and their 

translations in order languages as contexts. The vocabulary sizes experimented with ranges 

from the top-5000 to the top-45000 most common English words, at an interval of 10,000 

words. Contexts were created for each word by retrieving the translations of the word (in 

Danish, French, German, Spanish and Chinese) using Google translate, and each context was 
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replicated. Translation models of different vocabulary sizes were tested and their performance 

measured in terms of the effectiveness and efficiency (runtime) of a model to be used for real 

time language translation in CLPD.  

Vocab sizes= {5000, 15000, 25000…,.., 45000) 

 

6.3 Results and analysis 

The results obtained from the experiments on the determination of an appropriate vocabulary 

size for optimising the performance of the translation model are presented in table 5.2.   

Table 6.2: Results from the experiments to determine appropriate vocabulary size. 

The results in this table are the performance of the MTM in precision, recall, granularity, plagdet score 

and runtime when implemented with different vocabulary sizes. 

The main aspect of the results in table 6.2 is the performance difference observed as the 

vocabulary size increases, which points to the effect increasing vocabulary size has on 

performance, and reveals an appropriate vocabulary size to optimise the performance of the 

MTM. The results show that the highest increase in performance was observed when the 

vocabulary size increases from 5000 to 15000 (0.8190.884) and flattens out afterwards. The 

results suggest that most of the translated CLP cases in the corpus could be detected with an 

MTM built with a vocabulary size of the top-25000 most common English words; about 418 

out of the 500 cases in the Pan 2012 evaluation corpus. 

Moving upwards to a vocabulary size of the top-25,000 most common English words, the 

models’ performance increased, but slightly, and the run time was still reasonable enough for 

plagiarism detection tasks; about 6.2 seconds per suspect document. In real world situation that 

require much more document comparison to be made (i.e. in monolingual plagiarism 

detection), the detection time reported (6.2 seconds) can be considered average. However, 

typical CLPD require the use of external resources which tend to slow down the process, unlike 

Vocabulary size (words) Precision  Recall  Granularity  Plagdet score Time (sec) 

5000 0.875 0.802 1.020 0.819 1934.41 

15000 0.932 0.835 1.003 0.878 2844.79 

25000 0.930 0.846 1.003 0.884 3068.94 

35000 0.926 0.850 1.003 0.884 3363.19 
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in monolingual plagiarism detection. There are a number of ways to speed up the process and 

reduce detection time, one way is to use parallel processing that allows different stages of 

plagiarism detection to be carried out simultaneously. Another way is to use cache memory to 

store pre-processed source text to avoid going through pre-processing phase during detection 

time. One other approach is to limit searched query terms to only key words with high TFIDF 

scores (most relevant terms) thereby reducing the amount of translations to be carried out, this 

method could however result in the omission of potential suspect documents. As stated earlier, 

the reported detection time is considered reasonable, hence the top-25000 most common 

English words and their translations in other languages were found to be appropriate for 

optimising an MTM for CLPD. 

In terms of pattern, the results in table 6.2 show that as the vocabulary size increases, the 

effectiveness (recall) of the model increases, and the run time increases as well. The recall 

increases because the models’ ability to detect more translated words increases, while the 

increase in run time is likely due to increase in search time. The increase in vocabulary size 

was also met with a corresponding decrease in precision which could be attributed to 

coincidental matches that may have occurred in the corpus, and may also be due to inaccurate 

translations of some words. The decrease in precision was however much smaller in 

comparison to the increase in recall. 

 Experiment 2: Evaluating the Performance of the Proposed CLPD 

Model 

This experiment is carried out to evaluate the proposed CLPD model described in section 3.6.1. 

The proposed language translation model (MTM) is combined with relevant plagiarism 

detection tools, and used to detect CLP in the Pan2011 and 2012 evaluation corpora. 

 Evaluation on the Pan 2011 corpus  

The proposed CLPD model was used to detect CLP in the Pan2011 evaluation corpus, and its 

performance was measured. Below are the details of the implementation and evaluation. 

Candidate documents were first retrieved from an inverted index build with the source 

document collection using PyLucene search engine library. This process was carried out by 

querying the inverted index table with key-words extracted from a suspect document and 

retrieving source documents that contain the key-words as candidates. Key-words were 
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extracted from query documents as follows; a query (suspect) document is pre-processed by 

case folding (reduce text to lower alphabetic case) and tokenisation to single words, term 

frequency weighting was then used to retrieve all words that occur not more than 3-times as 

key-words; this number was determine empirically via heuristics by trying different values 

while computing performance, and the value that corresponded to the best performance was 

chosen. To retrieve cross lingual candidates, query words (from a suspect document) were 

expanded using the MTM to identify semantically similar words in other languages which are 

used to retrieve candidate documents from the inverted index (source collection), this was done 

by querying the inverted index table with the expanded key-words and retrieving the top-10 

source documents that contain significant amount of the query words as candidates. When 

source documents have been retrieved for a query (suspect) document, detailed search for 

plagiarism 112 was then carried out between the suspect document and its candidate 

documents, and plagiarised passages (in the suspect document) and their respective sources (in 

candidate documents) were mapped out as described in the methodology in section 3.5.1.2.  

The above process was used to detect CLP in suspect documents, and the performance of the 

model was measured in precision, recall, granularity and plagdet score. The evaluation also 

includes performance comparison with established methods; baseline models and results from 

previous studies.  

 Evaluation on the Pan2012 corpus 

The Pan@clef 2012 corpus contains documents in pairs; each suspect document is assigned to 

a source document, comparison is therefore expected to be between pairs of source and suspect 

documents. Taking this into account, the evaluation on the Pan 2012 corpus was carried out 

twice as follows; 

 The first evaluation follows the normal plagiarism detection framework that begins 

with searching for plagiarised sources in a large collection of source documents; we 

followed the steps used in the previous evaluation on the Pan2011 corpus.  

 The second evaluation involves pairwise document comparison; we used the proposed 

method for detecting plagiarism in pairs of documents as described above between a 

suspect and a candidate documents. 
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 Implementing the Baselines 

The baselines used for evaluation are the Kasprzak and Brandejs (2010) T+MA model, and the 

Francisco et al., (2013) model. These models were implemented as follows: 

The Kasprzak and Brandejs (2010) T+MA Model 

The kasprzak and Brandejs model follows the normal implantation of a T+MA model, language 

identification and translation were carried out on source documents using a Python library 

known as Landetect (Danilak, 2016) and Google translate respectively, source documents were 

translated to the language of the suspect documents ready for monolingual plagiarism 

detection.  

This model was implemented as follows; Langdetect (Danilak, 2016), a Python programming 

language identifier and Google translate were used to identify languages and translate source 

documents into the language of suspect documents before applying monolingual plagiarism 

analysis. Candidate selection was carried out by transforming the source documents in the 

collection into 5-gram fingerprinting models (using an MD5 hash function) and indexed, 

candidate documents for a suspect document was retrieved by transforming the suspect 

document into a 5-gram fingerprinting model in the same way as the source documents, and 

then used as query to retrieve all indexed source documents that contain up to 20-matches; gap 

between any two consecutive chunks was set to a maximum length of  50 characters. Matched 

fragments between a query document and a candidate document was used to retrieve 

plagiarised passages by retrieving every line of text (offsets) that contains a fragment, and 

merging neighbouring lines into a passage. See Kasprzak and Brandejs (2010) for the merging 

parameters used. 

The Francisco Et Al., (2013) Model 

The Francisco et al., (2013) baseline model is similar to the one proposed in this work in that 

it is multilingual, and also language independent, but differs in that it uses BabelNet; a 

multilingual semantic network to disambiguate texts written in different languages, while the 

approach proposed in this work uses the MTM for language disambiguation.  

The Francisco et al., (2013) model was implemented as follows; for a pair of source and 

suspicious documents under investigation for plagiarism, synonym sets were generated for 

each word, followed by transformation to knowledge graphs that relate words to similar 

concepts in the documents using BabelNet. Each word is assigned a weight that is a reflection 
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of the strength of relationship between the word and a concept. Detailed comparison was 

carried out by comparing the knowledge graphs of the pair using the similarity function 

described in Francisco et al., (2013). Pairs of documents with similarity scores above a 

threshold value were retrieved as plagiarised and co-occurring words that relate to similar 

concepts in their knowledge graphs were merged as seeds to form plagiarised passages. The 

threshold was determine on the fly as performance was computed, different values were tested 

from a search space of 0.1-1.0 (because the maximum similarity score is 1), and the value that 

corresponded with the best performance (F1-score) was used as threshold.  

The implementation of these baselines were validated by making comparison with results in 

the original papers; the baseline implementations were evaluated on the corpora used in the 

original paper and the performances obtained were compared with performances in the original 

papers. 

 Results and Analysis  

In this section, the results obtained from the evaluation of the proposed CLPD system are 

presented and analysed. Tables 6.3 and 6.4 contain the results obtained for the proposed model, 

baselines and previous studies on the Pan2011 and 2012 evaluation corpora. 

Table 6.3: Results from the evaluation on Pan 2011 Corpus 

CPLD methods Precision  Recall  Granularity  Plagdet score 

Manual 

Proposed detector 0.767 0.594 1.0065 0.667 

Baseline (Francisco 

et al., (2013) 

0.75 0.575 1.002 0.65 

Previous study 0.750 0.460 1.0000 0.57 

Baseline (T+MA) 0.727 0.445 1.0002 0.552 

Automatic 

Proposed detector 0.954 0.943 1.0000 0.945 

Previous study 0.960 0.920 1.0000  0.94 

Baseline (Francisco 

et al., (2013) 

0.937 0.91 1.0004 0.923 

Baseline (T+MA) 0.945 0.878 1.0000 0.91 

The results in this table are the performance obtained from the evaluation of the proposed CLPD model, 

the baseline and from a previous study (best performing system in Pan 2011 competition) on the Pan 

2011 corpus. 
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The results in table 6.3 show that the proposed CLPD model outperformed (0.667, 0.945) the 

T+MA baseline (0.552, 0.91) on the manually and automatically generated plagiarism cases as 

seen in their plagdet scores. The performance was much higher on the automatic CLP cases 

(0.945) than on the manually created ones (0.667) because the manually created cases were 

simulated to appear like real world cases of CLP. The results therefore point to the difficulty 

involved in detecting real CLP cases as opposed to machine generated ones, which is consistent 

with previous studies and the baseline. 

In comparison with results obtained from previous studies, the results show that the proposed 

CLPD model outperformed the best performed system in the Pan 2011 competition which is 

quite difficult to beat, this is a reflection of the effectiveness of the proposed model in terms of 

being able to detect translated texts that have undergone further alterations. In terms of 

precision, both systems were more or less even. 

Table 6.4: Results of the proposed CLPD model, baselines and a previous study on Pan 2012 

corpus. 

CLPD methods Precision  Recall  Granularity  Plagdet score 

Plagiarism Detection In Document Pairs 

Proposed CLPD model 0.93 0.846 1.003 0.884 

Baseline (Francisco et 

al., 2013) 

0.87 0.85 1.003 0.862 

Baseline (T+MA) 0.93 0.76 1.00 0.84 

Previous study 0.82 0 .727 1.00  0.771 

Detection Of Plagiarism Given A Source Collection 

Proposed CLPD model 0.91 0.78 1.00 0.84 

Baseline (Francisco et 

al., 2013) 

0.87 0.75 1.00 0.81 

Baseline (T+MA) 0.91 0.73 1.00 0.81 

The performance of the models in table 6.4 are for the pairwise CLPD task and the standard plagiarism 

detection task that begins with candidate selection. The previous study in the table is the best performing 

system in the Pan2012 competition. 

The results in table 6.4 show that the proposed CLPD model outperformed (0.884) the baselines 

(0.863, 0.84) on the two evaluation tasks undertaken with the Pan 2012. The difference in 

performance against the T+MA baseline (our benchmark) is clearly seen in the recall (proposed 

detector: 0.846, 0.78; baseline: 0.76, 0.73). The results also show that the proposed model 

outperformed the second baseline as can be seen in their relative plagdet scores (proposed 

detector: 0.884, 0.84; baseline2: 0.863, 0.81). The performance difference was even higher in 
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comparison with the results from the previous study (the best performed system in the Pan 

2012 competition on plagiarism detection); which emerged as the least performing. With 

respect to the two detection tasks, the performance of the model was much better when used to 

detect plagiarism in pairs of documents, than when applied in normal plagiarism detection that 

begins with candidate selection; this pattern is also reflected in the results of the baselines and 

the previous study. The likely reason for the difference in performance between the two 

detection tasks is that in candidate selection, there is always a chance that some plagiarised 

sources may not be selected, unlike in the pairwise task that plagiarised sources are given in 

advance; without going through the probabilistic candidate selection process. While the results 

from the pairwise comparison seem impressive, plagiarism detection in large collection 

documents is usually preceded with candidate selection.  

Analysis of Performance across Corpora 

In terms of analysing the performance of the models across both corpora with respect to their 

functionality, the T+MA uses overlapping 5-gram sequences to detect plagiarised texts, while 

this could result in high precision, heavily altered plagiarism cases are unlikely to have 

significant amount of matching 5-word sequences, but when found, the likelihood of copy is 

almost certain (see Thompson et al., 2015 for detailed analysis of how n-gram sizes affect the 

performance of plagiarism detectors). In comparison, the proposed CLPD model detects 

plagiarism using sentence level similarity analysis, unlike the T+MA baseline, the sentence 

level similarity analysis allows the proposed model to detect both lightly and heavily altered  

plagiarised texts. In addition, the proposed CLPD model is able to detect semantically related 

words such as synonyms (translated texts that have been paraphrased), and not just words that 

have been translated directly into their exact meanings in other languages using automatic 

processes. This is reflected in the significant difference in recall, but not in the precision 

between both systems. The difference in precision between the proposed CLP detector and the 

baseline was not significant, which proves that the proposed detection model actually captures 

the translation precision of the internet translation tool that the T+MA model uses for cross 

language translation.  

On the other hand, the Francisco et al., (2013) method is based on concepts matching, and 

many non-plagiarised documents in the corpora share similar concepts, in such situation, 

concepts based matching methods would most likely detect similar but non-plagiarised 

concepts as plagiarised; which would only increase false positives, and decrease precision. In 
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contrast, the method proposed in this research learns word translations from Google translate 

which are more exact and precise, and this explains why much of the difference between the 

proposed model and the Francesco et al., baseline model lies in their precision. In addition, 

when weighting words based on their relationships to a concept in BabelNet, there are cases 

where words that are not very related to a particular concept are assigned higher weights than 

more related words which would most likely result in false similarity measurement and 

plagiarism detection. 

 Experiment 3: Determination of Performance on Low Resource 

Languages. 

Aim/objective: to investigate whether the proposed CLPD model could be effectively used to 

detect CLP in low-resource languages, and whether it can be used for CLPD independently of 

language.    

Dataset: the dataset used is the Pan 2012 evaluation corpus, and the translation plagiarism 

category is the particular category of interest, it comprises of 500 source and 500 suspect 

documents.  

For the corpus to be suitable for the evaluation task, the translation obfuscation category was 

changed to a low resource language (Belarusian), and CLPD systems were then used to detect 

plagiarism across the languages. The intuition is that the proposed CLPD system is language 

independent, and changing the language of the source or suspect document would have little 

or no effect on the performance of the system. Regardless of language change, details of the 

plagiarised passages (the offsets and lengths) should remain the same, hence the ground truth 

included in the Pan2012 should be valid (and accurate) for measuring performance. 

Details of the experiment 

The experiment to detect plagiarism in low resource languages (Hungarian and Belarusian) 

was carried out in two stages; in the first stage a mul6ti-lingual translation model (MTM) was 

built to include Hungarian and Belarusian in the embedding space. In the second stage, the Pan 

2012 corpus was altered by replacing the translation category (a high resource language) with 

the low resource languages, this was done using Google translate to change the source 

languages (in Pan2012 translation category) to Hungarian for all the 500 source documents (in 

                                                 
Performance on the low resource language should be similar to that of the high resource language (in the Pan2012 

corpus) as the evaluations were carried out on semantically similar texts expressed in different languages 
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the translation category), the same was done for the Belarusian language, and a third, which is 

a mixture of Belarusian and Hungarian in equal number (250 each). At the end, three versions 

of the Pan 2012 corpus were generated, which differ in terms of the language of the source 

documents in each version.                                                                                                                                         

When the corpora have been prepared by the inclusion of low resource languages, they were 

then used to evaluate the proposed CLPD model in the task of cross-lingual plagiarism 

detection, and the performance of the model was measured in precision, recall granularity and 

pladget score. 

 Results and Analysis 

The results obtained from the experiments on CLPD on the low resource languages are 

presented and discussed below: 

Table 6.5: Results From the Evaluation on Low Resource Languages 

This table contains results obtained from the experiments to investigate whether the proposed CLPD 

model is as effective on low resource languages as it is on high resource ones. The table shows the 

relative performance of the proposed model on low and high resource languages.  

The results in table 6.5 show that the performance obtained from the evaluation on the low 

resource languages (Hungarian and the Belarusian) for the proposed model were close (0.874, 

0.864) to what was obtained on the high resource language in the original version of the Pan 

2012 corpus. The drop in performance can be attributed to slight variation in translations; when 

translating from the original sources to Hungarian and Belarusian. This is likely the case 

because certain words have more than one meaning across languages, and machine translators 

are by no means perfect. In addition, detailed examination of the translated texts revealed that 

the machine translator was unable to translate certain words to Hungarian and Belarusian. 

Performance comparison across the two low resource languages shows that the performance 

 Precision  Recall Granularity Plagdet score 

Performance of proposed CLPD model on modified versions of Pan2012 (low resource) 

Hungarian  0.921 0.832 1.0020 0.874 

Belarusian  0.915 0.819 1.0010 0.864 

Hungarian + Belarusian 0.911 0.809 1.0003 0.857 

Performance of proposed CLPD model and Baseline on Pan 2012 corpus (original version: high resource) 

Proposed detector  0.93 0.846 1.003 0.884 

Baseline (Francisco et al., 

2013) 

0.9 0.85 1.003 0.874 
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was better when the source was Belarusian, than when Hungarian was used as source. The 

difference in performance was quite small, and can be attributed to either limitation in the 

vocabulary of the machine translator, or Belarusian may just be richer in vocabulary than 

Hungarian. Detail analysis revealed that not all words in the high resource language were 

translated to the low resource languages, this is likely due to the absence of such words in the 

low resource language, or limitation in the vocabulary size of the machine translator. 

In comparison with the Francisco et al., (2013) baseline, the results show that the performance 

obtained on the low resource language for the proposed CLPD model were almost even with 

the baseline method, even when the baseline method was used to detect plagiarism on the low 

resource languages. The results therefore prove that the CLPD model proposed in this research 

is not only effective on high resource languages, it is also effective on low resource languages. 

6.4 Implications of Results  

The results imply that when provided with an appropriate embedding space, which include 

words and their translations in other languages as contexts, a word embedding model such as 

the Word2Vec model could be trained to predict semantically related words in different 

languages, and the pre-trained model could be used for multilingual translation. With respect 

to cross-lingual plagiarism detection, an MTM based the trained Word2Vec model could be 

applied in CLPD to translate texts across languages with performances comparable to a state-

of-the-art (SOTA) T + MA model, but without being limited by the internet as a traditional 

T+MA model. The results also imply that, when texts are translated automatically and then 

paraphrased, they become more difficult to detect than automatically created CLP cases, which 

is consistent with previous studies. However, CLPD systems that are designed to detect 

semantically similar words (such as the synonyms of translated words) such as the one 

proposed in this research should be able to detect most difficult cases of CLP. Although the 

performance of the proposed model was only marginally better than the baselines as seen in 

tables 5.4 and 5.5, it is worth pointing out that these baselines are the very best and difficult to 

beat. 

As with most systems, the effectiveness of our model is limited, it is worth recollecting that we 

built our system on predominantly European languages that have similar syntax, it was not 

evaluated on non-European languages such as Arabic which has completely different syntax. 

The proposed model is also most likely to fail when used for CLPD (or language translations) 

on languages that do not form part of the vocabulary of the underlying word embeddings. 
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6.5 Summary 

We have conducted the following experiments to evaluate the performance of a multilingual 

translation model that utilises the Word2Vec model for language translation, and a CLPD 

model that utilises the MTM. 

 Experiments to evaluate the performance of a multilingual translation model that 

incorporates a Word2Vec model trained with simulated embedding space, and this 

breaks down into two sub experiments. 

1. Experiment to determine an appropriate embedding space to optimise the 

performance of a Word2Vec model for multilingual translation. 

2. Experiment to determine an appropriate vocabulary size for the embedding space 

of the Word2Vec model for multilingual translation.  

 Experiment to evaluate the performance of a proposed CLP detector that uses the MTM 

for translating text across languages when detecting CLP.  

 Experiment to determine the performance of the proposed CLP detector on low 

resource languages, and how effective it is as a language independent tool. 

 

The main objective of our experiments is to determine whether a Word2Vec model could be 

trained to predict semantically similar texts in different languages, and used in CLPD for 

translating texts across languages so as to eliminate the need to connect to internet translation 

tools that limits common CLPD methods  (i.e. the T+MA model). Experimental results 

revealed that the proposed model performed comparably to a SOTA T + MA model, and even 

better in some cases, this is because the proposed model is able to predict a range of 

semantically similar words that could be used to paraphrase translated texts, and not limited to 

predicting the exact translation of words. The results prove that it is possible to train a 

Word2Vec model to learn to predict semantically similar words in different languages, and 

applied in CLPD with performances comparable to established CLPD models, and hence 

satisfy the objective of the research question. Additional task carried out to test the 

effectiveness of the proposed CLPD model on low resource languages revealed performances 

that clearly indicates that the model can be effectively used to detect CLP on both low and high 

resource languages. 
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7 Discussion and Conclusion 

 

7.1 Thesis summary 

The previous chapters described experiments carried out in this research to address some of the 

challenges facing plagiarism detection, particularly in the areas of paraphrase and cross-lingual 

plagiarism. This chapter discusses the findings from the experiments carried out in relation to 

the research questions and aims/objectives, implications, and the literature, this chapter also 

covers the limitations of this research and potential areas of future work.  

Here are the questions addressed in this research; 

 

 What are the best performing combination of surface similarity measures and textual 

features (as measured by precision, recall and F1-score) from those described in the 

literature for detecting similar and near similar texts?  

 Can deep contextual learning models be used to enhance the detection of paraphrase 

plagiarism with performances comparable to, or even better than a state-of-the-art 

(SOTA) model? 

 Can a multilingual translation model that is independent of internet translation services 

be built using a Word2Vec (word embedding) model and applied to effectively detect 

cross- lingual plagiarism (CLP) with performances comparable to a state-of-the-art 

CLPD model? 

The above research questions resulted in a number of novel contributions which are described 

below.  

Regarding the problem of paraphrase plagiarism detection, which is about determining whether 

the application of DCLMs in paraphrase plagiarism detection could result in performances 

comparable to a state-of-the-the-art model, a novel paraphrase plagiarism detector that extends 

a generic plagiarism detection framework with an inbuilt deep contextualised learning model 

(DCLM) was proposed. The novel deep paraphrase plagiarism detector (DPPD) uses a DCLM 

for detecting semantically related text sequences that may have been altered lexically, 

syntactically, semantically or by other linguistic techniques. The proposed DPPD is capable of 

detecting different expressions (or types) of paraphrases in plagiarised text, and outperformed 

a number of standard baselines and a state-of-the-art paraphrase plagiarism detector. The 
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proposed DPPD model performed even better when implemented with a DCLM fine-tuned on 

paraphrase plagiarism corpus. The findings of this research prove that DCLMs can effectively 

be used to detect paraphrase plagiarism with performances comparable to a state-of-the-art 

model. 

Regarding the problem on cross-lingual plagiarism detection (CLPD), which investigates 

whether a Word2Vec model could be trained to capture and reproduce the translation outputs 

of an online machine translator, and applied in CLPD with performance comparable to a 

standard baseline that uses online machine translator (a T + MA model), a novel CLPD model 

and a multilingual translation model (MTM) were proposed. The proposed CLP detector uses 

an inbuilt language translation model to detect plagiarism across multiple languages without 

connecting to internet translation tools. The inbuilt language translator is a novel multilingual 

translation model (MTM) built by pre-training a Word2Vec model with simulated embeddings 

to predict the semantic equivalent of a word in other languages (language translation). The 

proposed MTM is designed to be extended (scaled) to multiple languages, and to tackle the 

problem of CLPD in low resource languages. The proposed CLP detector performs comparably 

and in many cases better than a standard T+MA baseline and a SOTA CLPD model. The 

findings therefore prove that the capabilities of a Word2Vec model could be applied in CLPD 

to reduce the overly dependent on internet translation services of common CLPD systems. 

Regarding the question that investigates whether specific combination of surface 

tools/techniques used for measuring intertextual similarity could be determined for detecting 

plagiarised texts that have been obfuscated to different levels of complexity, a novel hybrid 

surface plagiarism detector (HSPD) was proposed, the HSPD is capable of detecting 

plagiarised texts of varying degrees of obfuscation ranging from obfuscated texts that contain 

large fragments of verbatim (cut and paste) text reuse to heavily obfuscated text with scanty 

overlaps. The novel HSPD is a combination of the most suitable surface similarity measures 

and textual features which includes suitable term weighting method, ngram document model 

and surface similarity measure. On majority of the complexity levels, the HSPD performed 

better than standard baselines and results from previous studies, which proves that suitable 

surface similarity measurement tools and techniques could be combined to detect plagiarised 

texts with varying degrees of obfuscation, and confirmed the hypothesis that plagiarised text 

often contain unaltered remains of their sources which are surface features that could be 

detected (and used in plagiarism detection) by the right combination surface detection 

tools/techniques, even when such features are in trace amount.  
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7.2 Discussion of Findings In Relation To Existing Research  

This section describes how the findings of this work relate to the existing body of knowledge 

(literature) in plagiarism detection.  

In terms of the problem of paraphrase plagiarism detection, our novel model (DPPD) 

significantly outperformed a SOTA paraphrase plagiarism detection model proposed by 

Sánchez-Vega  et al., (2019) on two standard paraphrase plagiarism datasets (see tables 4.1 and 

4.3) . The superior performance over the SOTA model is as a result of the integration of DCLM 

into an existing plagiarism detection framework to detect semantically related texts that have 

undergone obfuscation using different paraphrase techniques. DCLMs are trained to learn deep 

semantic, syntactic and miscellaneous relationships between texts, this enhances the DPPDs’ 

ability to detect pairs of texts that are semantically related but lexically different (paraphrased 

texts). The SOTA model on the other hand uses character trigrams to capture content and 

stylistic similarity in paraphrased texts, lexical matching methods such as character trigrams 

do not have the ability to detect semantic relationships between texts that are lexically different, 

and this explains the superiority of the proposed DPPD over the SOTA model. This finding is 

consistent with the literature that suggests that detecting paraphrase or high obfuscated 

plagiarism require models that are designed to detect semantic text similarity (Gupta, 2016; 

Foltýnek et al., 2019), or the integration of such models with existing lexical matching models. 

In addition, the proposed DPPD also outperformed a number of baseline models which include 

models designed to detect semantic similarity (including GloVe and CoVe), the average GloVe 

baseline is a context independent model, which means it is unable to decipher the real meaning 

of words in context, the model is therefore prone to errors when dealing with texts that contain 

lexically similar words but are semantically different, such as polysemy. The CoVe baseline is 

a shallow context learning model used as baseline in many studies, it uses only the outermost 

layer of an LSTM to represent texts, and does not take advantage of the rich contextualised 

features in the hidden layers. DCLMs are not limited by the short comings of these semantic 

models, which explains the superior performance of the proposed DPPD. 

One of the most common (and effective) method used in the literature to detect CLP is the T + 

MA model (Barrón-Cedeño et al., 2013; Tian et al., 2017; Brychcín, 2020), which is heavily 

reliant on internet translation services (CLPD models that uses online machine translators to 

normalised text to a common language before applying a monolingual plagiarism detection 

analysis fall under the T + MA method). The proposed cross-lingual plagiarism detector (CPD) 
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addressed this reliance on the internet by using a built in multilingual translation model (MTM) 

proposed in this research for language translation instead of internet translation tools. 

Evaluation was carried out to determine how well the CPD performs in comparison to a 

traditional T + MA and a model based on concept net (Francisco et al., 2013). Evaluation results 

revealed that the CPD outperformed a T + MA model proposed Kasprzak and Brandejs (2010) 

that emerged as the best performing cross-lingual plagiarism detection model in the Pan2011 

competition. The CPD performed comparably to, and in many cases better than the T + MA 

model, this is likely due to the ability of the CPD not only to translate texts to their semantic 

equivalent in other languages, but also to detect translated texts that have been paraphrased, 

which is one of the most challenging aspect of translation obfuscation (Sánchez-Vega et al., 

2016; Foltynek et al., 2020; Gupta and Kaur, 2021). The CPD also outperformed the Francisco 

et al., model which is based on concept mapping. The proposed CPD learns to predict verified 

language translations from Google neural machine translation (NMT) service which is often 

used by plagiarist as it is freely available for short text language translation. Concept mapping 

on the other hand is prone to errors; documents may have similar concepts without being 

plagiarised. In addition, architectural difference such as making comparison at sentence level 

which targets actual plagiarised fragments (at local level) may have contributed to the superior 

performance of the CPD over the other models. The proposed CPD is therefore comparable to 

state-of-the-art CLPD models in performance; it is indeed a T + MA model that is not limited 

by the internet as a traditional T + MA model. In addition, the proposed CPD is designed to be 

used for CLPD on low resource languages, which is currently a challenge given the lack of 

sufficient training data for such languages (Brychcín, 2020). Recent studies shows that methods 

based on neural machine translation (NMT) have been used for cross-lingual semantic text 

similarity, but are not well developed to keep up with the speed required for plagiarism 

detection, however they can be used for short text CLPD, but studies shows that they are prone 

to errors (Cer et al., 2017). 

Research limitations  

One limitation of this work, as well as many other researches on plagiarism detection is the 

lack of real world plagiarism datasets. The unavailability of datasets that contain real world 

plagiarism cases for evaluation purposes makes it difficult to know how well a proposed 

plagiarism detection system would perform in a production environment, such as in an 

academic institution, and therefore limits the options to fine-tune a system for general purpose 

use.  
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Another limitation of this research is the inability to validate some of the models proposed in 

this thesis against a standard and commonly used commercial plagiarism detection system 

(such as Turnitin) due to patent protection, and there is also a lack of unified (standard) 

evaluation framework which includes standard datasets for training and testing, search engines, 

evaluation metrics etc. Efforts would however be made in the future to carry out such validation 

under a legal binding agreement. 

 

7.3 Future Work  

In continuation of the progress made in this research, here are potential areas of future work: 

Future work would include fine-tuning a state-of-the-art pre-trained DCLM to detect virtually 

all types of plagiarism, and not just limited to paraphrase plagiarism. This will include 

acquiring sufficient amount of datasets (corpora) that contain real cases of plagiarism with 

different features common to plagiarised texts.  

Future work would be carried out in the application of DCLMs in other areas of academic 

misconduct closely related to plagiarism detection; such as in the detection of falsifications, 

fabrications and ghost writing. This would include training DCLMs to detect these misconducts 

in academic research, and would involve training models to learn contextualised features 

associated with these academic misconducts. A major concern however would be acquiring 

sufficient training data in different academic domains to train DCLMs.  

With respect CLPD, future work will be focused on extending the multilingual translation 

model proposed in this research to include more languages (including those with low resources) 

so as to increase the coverage and capability of the proposed CLP detector to other languages. 

The MTM was pre-trained with four European languages, hence the MTM in its current form 

can only translate texts between the four languages, which limits CLPD to only those 

languages. However, the MTM is designed to be extended to include more languages. Effort 

will also be made in future to build an efficient multilingual representation model for transfer 

learning, such as multilingual BERT that can effectively translate texts across languages with 

similar structure, but no so well across languages of different word order (Pires et al., 2019). 

Future work will also include combining surface similarity measurement tools with semantic 

similarity measures (context based) to enhance the detection of plagiarism across all 

obfuscation levels. Surface similarity measurement tools are relatively more efficient and can 
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keep up with high demand in plagiarism detection than semantic similarity methods however 

they are not effective in detecting high obfuscation plagiarised text. Semantic similarity 

measures in their current form are not well developed to meet the demand of real time 

plagiarism detection but are relatively more effective on high obfuscation plagiarism, hence a 

stepwise approach that involves carrying out initial detection with surface similarity 

measurement tools to reduce the work load of plagiarism detection, before applying semantic 

similarity detection would be a good place to start. 

 

7.4 Summary 

This section summarises this thesis in terms of the problems raised, the experiments carried out 

to address the research problems, the findings from the experiments and the extent to which 

the objectives set out were achieved.  

The first research question is about determining whether DCLMs could be used to enhance the 

detection of paraphrase plagiarism with performances comparable to a SOTA model proposed 

for paraphrase plagiarism detection. This question was addressed by integrating a DCLM into 

the generic plagiarism detection model to enhance the detection of plagiarised fragments 

(sentences) that may have been obfuscated using varying paraphrase expressions. A pair of 

common DCLM (SBERT and ELMo) taking from the two most dominant architectures 

(Transformer and LSTM) were integrated into the generic model and evaluated in the task of 

paraphrase plagiarism detection so as to determine the most suitable model for detecting 

paraphrase plagiarism, and to ensure that the evaluation is not limited to a particular 

architecture. The evaluation also include determination of specific paraphrase types that 

DCLMs are able to enhance their detection, and those that are challenging to detect even with 

the help of a DCLM, so as identify the limitations of DCLMs in the context of paraphrase 

plagiarism detection, and related textual similarity measurement tasks. The findings from the 

experiments revealed that the extension of an existing (generic) plagiarism detection 

framework via integration of a DCLM resulted in performance comparable and in many cases 

better than a number of standard baseline models, which includes the generic model itself, and 

a SOTA paraphrase plagiarism detector, and of the two DCLMs evaluated, SBERT 

(transformers) outperformed ELMo (biLSTM). Further evaluation revealed that the 

performance could be better when the proposed model is implemented with a DCLM fine-

tuned on datasets that contain paraphrase plagiarism. In terms of the evaluation on different 
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paraphrase types, the findings revealed that DCLMs are able to enhance the detection majority 

of the paraphrase types (or expressions) associated with plagiarised text, however certain 

paraphrase types were found challenging. 

The second problem addressed in this research is about determining whether a Word2Vec 

embedding model could be pre-trained for multilingual translation, and applied in CLPD with 

performances comparable to a state-of-the-art T+MA model, but without being limited by 

internet translation services as a T + MA. As stated earlier, T + MA is one of the most common 

(and successful) approach used for CLPD, but strongly relies on internet translation services 

which comes with a number of limitations stated in section 2.6.5. We addressed this problem 

by proposing a multilingual translation model (MTM) that uses pre-trained Word2Vec model 

(Mikolov et al., 2013) to predict the semantic equivalent of words in other languages. The 

MTM was built by pre-training a Word2Vec model with simulated embeddings which 

comprises of contexts of semantically related words in different languages grouped in the same 

space. The Word2Vec model was essentially trained to reproduce the output of a common 

online machine translator. The MTM can be extended to multiple languages, and does not rely 

on parallel corpora, it is therefore designed to address the problem of detecting CLP on low 

resource languages that do not have sufficient amount of parallel corpora for building language 

translation models. The MTM was integrated into a CLPD framework (similar to a T +MA 

model) for translating text across languages, and evaluated in the task of CLPD. The findings 

from the evaluation revealed that the MTM was able to translate text with good accuracy, and 

that a CLP detector that uses the MTM for language translation performed comparably, and 

better in some cases than a standard T + MA baseline, but without the limitations that come 

from relying on internet translation tools as does a standard T + MA model. Results obtained 

from evaluation on low resource languages were good and encouraging. An unexpected 

outcome is the ability of the model to detect translated texts that have been altered by replacing 

words with semantically similar words, which is the likely reason for the superior performance 

over the T+MA baseline. The findings from the experiments are encouraging and clearly satisfy 

the research objectives. 

The third research problem is about determining the best performing combination of surface 

similarity measurement tools for detecting plagiarised texts that have been obfuscated to 

varying degrees of complexity, the performance of several combinations of surface similarity 

measurement tools/techniques (which includes similarity measures, term weighing methods 

and ngram document models) were evaluated using plagiarised texts that have undergone 
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varying degrees of obfuscation. The findings from the experiments revealed that no specific 

combination performed best on all obfuscation levels; combinations that performed best on 

some obfuscation levels, fell short on others. However a specific combination that performed 

best on majority of the obfuscation levels was determined, it even outperformed standard 

baselines (including string matching and semantic measurement methods) in many cases. In 

addition, the best performing combinations for detecting plagiarised texts of specific 

obfuscation level were also determined. The findings also confirms the hypothesis that 

plagiarised text often contain unaltered remains of their sources, which are surface features that 

could link plagiarised texts to their sources during detection. Several combinations have been 

recommended for detecting plagiarised texts of different obfuscation levels, and the need to 

integrate efficient semantic methods into the recommended combinations to enhance the 

detection of obfuscation plagiarism (without significant compromise to the efficiency of 

surface matching tools) represent the extent to which the objectives were achieved. 
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7.5 Conclusion 

This thesis addressed some of the challenges currently facing plagiarism detection, which 

includes paraphrase and cross-lingual plagiarism. New and existing state-of-the-art tools and 

methods used in NLP and IR were combined to address these challenges.  

A number of novel contributions emerged as a consequence of the experiments carried out in 

this research to address the above research problems, notable ones include a novel deep 

paraphrase plagiarism detector (DPPD) that integrates deep contextualised learning (DCL) into 

a generic plagiarism detection framework to enhance the detection of paraphrase plagiarism. 

A novel multilingual translation model (MTM) and a cross lingual plagiarism (CLP) detector 

that utilised the MTM in CLP detection were proposed. The MTM is a pre-trained word 

embedding model (i.e. Word2Vec) designed to translate text across multiple languages, 

including low resource languages where parallel corpora are not available in sufficient amount 

for training translation models. Currently one of the most efficient (but not so effective) method 

for detecting plagiarism involves using surface similarity measurement tools/techniques (i.e. 

ngrams models, similarity measures, term weighting methods), in order to improve their 

effectiveness novel combinations of surface similarity measurement tools/techniques were 

proposed for detecting plagiarised texts that have been obfuscated to different levels of 

complexity.  

In relation to the literature, some of the findings obtained in this research correlate closely with 

results from similar studies in the literature, for the most part, the results obtained in this 

research were comparably, and in many cases better than those from standard baselines, state-

of-the-art models and previous studies. The superior performance of some of the models 

proposed in this research is largely due to the integration of state-of-the-art NLP tools into 

existing plagiarism detection frameworks. Details of the limitations of this research, which 

seem common to most research on plagiarism detection, including the lack of real world 

evaluation corpus and framework can be found in section 7.2. Details of the contributions to 

knowledge that emerged from this research can be found in the introductory chapter in section 

1.4. While the objectives of this research were achieved to a reasonable extent, the thesis leaves 

room for future research work which are highlighted in section 7.3. 
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APPENDICES 

Appendix A: Results Tables and Graphs 

Results for DCLMs and Baselines on P4P Corpus 
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Detailed Results from the Experiment to Detect Paraphrase Types Embedded In 

Plagiarised Texts (P4P corpus). 
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Aggregate AU-ROC Curves For Proposed Model (Best Performing Surface 

Combination) Baselines From The Experiments To Determine The Best Performing 

Combination Of Surface Tools 
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Confusion Matrices for Baselines on Crowdsourcing paraphrase Corpus (Experiments 

on Paraphrase Plagiarism Detection) 

 

Confusion matrix for the CoVe model 
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Appendix B: Algorithms and Pseudocode  

Algorithm for Threshold Determination 

START 

 For a given class of plagiarism, compute threshold range for all document pairs (suspect 

and source) that belongs to the class as follows; 

 Move a sliding window with shifting upper and lower boundaries (threshold range) on 

the outputs (similarity scores) from document comparison (between 0 and 1), at an 

interval of 0.001. 

 At each interval point, compute performance for all documents whose similarity scores 

fall within the sliding window (in precision, recall and f-measure). 

 The threshold range at the point where performance is highest is taken as the threshold 

hold range for the class of plagiarism.  

 Repeat above steps for all the classes. 

END 

 

Pseudocode for Text Alignment 

Class text_alignment( ): 

/for a pair of plagiarised document and its source: 

  Pre-process pair/ 

/find overlapping terms in pre-processed pair/ 

/for plagiarised doc: 

join neighbouring overlaps within certain distance into maximum overlapping 

sequence; 

if overlap < than length (x): 

remove overlap; 

  else:  join maximum sequence overlaps within certain distance into one passage/ 

/Repeat the above process on the source document/ 

/If overlap not occurring in both suspect and source passage: 

Remove overlap; 

If passage size < than length(x): 
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remove plagiarised passage and its sources / 

RETRUN plagiarised passages and their sources in  pairs/. 

 

Pseudocode for Creating TFIDF 

Class TFIDF( ): 

/for doc in a list of candidate source doc 1 to n: 

pre-process doc/ 

/join all pre-processed document into a single dictionary with aggregated term 

frequency; call document frequency/ 

/for doc in pre-processed candidate doc-list: 

  for term  in doc: 

   compute;[ (term/len-doc ) * (log(len(doc-list)/doc frequency)] 

  append {output of compute to a dictionary}/ 

/append [dictionary to a list]/ 

RETURN [list of document vectors with TFIDF weighting]/. 

 

#Pseudo-Code for Document Pre-Processing 

Class pre-process(): 

 Open and read doc using ‘utf8’ encoding/ 

 /Convert doc to lowercase and tokenize to single words/ 

 /Remove stop-words from doc and stem each word to root form/ 

 /Transform doc to n-grams / 

 /Transform doc to dictionary that contains n-grams and their weights i.e. frequency/. 

RETURN document vector as a dictionary of weighted n-grams/. 
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Pseudo-code for Candidate Selection 

Class candidate_selection(): 

/tokenise suspect doc into BOW/ 

For term in suspect doc (BOW): 

 query inverted_index_table with term 

 retrieve list of candidate_doc IDs 

 append each ID to a list in an array of  lists 

               Sum [[each array list],[ ],[ ]…[ ]] 

Return [a list of 50 top ranking IDs as candidate set] 

 

Algorithm Used To Combine Surface Tools for Plagiarism Detection  

 START 

 Pre-process text by applying case normalization, tokenization, white space removal 

and stemming.  

 Transform preprocessed document into n-gram representation model; 

 Vectorize ngram model by assigning weights to terms (n-grams) using a term 

weighting method (e.g. TF); 

 Compare vectors for similarity using a similarity measure (i.e. cosine measure) and 

compare similarity score with threshold derived from corpus; 

 Return text as potential plagiarized if similarity score >=threshold 

 END 
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Algorithm for Building the Inverted Index Table  

 START 

 Pre-process source documents collection using methods described earlier. 

 Collect the terms in the entire collection into a single list and convert the list into a 

dictionary that contains each term and its document frequency. 

 Select terms with document frequency <=a specific threshold. 

 Create a table in a database (inverted index table) with the following three columns; 

Terms, Doc_ID and Term frequency 

 Load the term column of the inverted index table with the selected terms. 

 For each term loaded in the inverted index table, collect all document IDs that contain 

the term and load them in the Doc_ID column. 

 Load the term frequency of each term in the term frequency column of the inverted 

index table. 

 Return inverted index table. 

 END 

 

 

 

 


