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Abstract

The advanced metering infrastructure allows smart meters to collect high-resolution
consumption data, thereby enabling consumers and utilities to understand their en-
ergy usage at different levels, which has led to numerous smart grid applications.
Smart meter data, however, poses different challenges to developing machine learn-
ing frameworks than classic theoretical frameworks due to their big data features
and privacy limitations.

Therefore, in this work, we aim to address the challenges of building machine
learning frameworks for smart meter big data. Specifically, our work includes three
parts: 1) We first analyze and compare different learning algorithms for multi-level
smart meter big data. A daily activity pattern recognition model has been devel-
oped based on non-intrusive load monitoring for appliance-level smart meter data.
Then, a consensus-based load profiling and forecasting system has been proposed for
individual building level and higher aggregated level smart meter data analysis; 2)
Following discussion of multi-level smart meter data analysis from an offline perspec-
tive, a universal online functional analysis model has been proposed for multi-level
real-time smart meter big data analysis. The proposed model consists of a multi-
scale load dynamic profiling unit based on functional clustering and a multi-scale
online load forecasting unit based on functional deep neural networks. The two
units enable online tracking of the dynamic cluster trajectories and online forecast-
ing of daily multi-scale demand; 3) To enable smart meter data analysis in the dis-
tributed environment, FederatedNILM was proposed, which is then combined with
differential privacy to provide privacy guarantees for the appliance-level distributed
machine learning framework. Based on federated deep learning enhanced with two
schemes, namely the utility optimization scheme and the privacy-preserving scheme,
the proposed distributed and privacy-preserving machine learning framework en-
ables electric utilities and service providers to offer smart meter services on a large
scale.



Nomenclature

ADLs Activities of daily life

AMI Advanced metering infrastructure

ANN Artificial neural network

ARMA Auto-regressive moving-average

ARMIA Auto-regressive integrated moving average

BIC Bayesian information criterion

BP Backpropagation

CH Calinski-Harabasz

CNN Convolutional neural network

CO Combinatorial optimization

CVI Cluster validity indice

DB-index Davies-Buldin validity index

DNN Deep neural network

DPFL Differential private federated learning

DTW Dynamic time warping distance

FDA Functional data analysis

FDN Functional deep neural network

FHMM factorial hidden Markov model
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FL Federated learning

FN False negative

FP False positive

FPCA Functional principal component analysis

FR Functional regression

FTL Federated transfer learning

GB Gradient boosting

GDPFL Global differential private federated learning

GDPR General data protection regulation

GMM Gaussian mixture model

HFL Horizontal federated learning

HMM Hidden Markov model

HR Hit rate

IoT Internet of things

IR Improvement rate

KNR K-nearest regression

LDPFL Local differential private federated learning

LSTM Long short-term memory

MA Moving average

MAE Mean absolute error

MAPE Mean absolute percentage error

MFPCA Multivariate functional principal components analysis

MLR Multiple linear regression

MSE Mean squared error
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NILM Non-intrusive load monitoring

OL Online learning

PA Passive-aggressive

PCA Principal component analysis

PSP-Net Pyramid scene parsing network

RBF Radial basis function

RBFN Radial basis function network

RNNs Recurrent neural networks

SAE Signal aggregated error

SBD Shape-based distance

SGD Stochastic gradient descent

SV Support vector

SVM Support vector machines

SVR Support vector regression

TL Transfer learning

TP True positive

VFL Vertical federated learning

XGBoost Extreme gradient boosting
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Chapter 1

Introduction

1.1 Context and Problem Statement

With the rollout of advanced metering infrastructure (AMI) [243], the power sys-
tem is undergoing rapid evolution. The number of smart meters operating in UK
households reached 27.5 million by the middle of 2022 [2], and the installation of
smart meters through the real-time exchange of information between power suppli-
ers and end-users will not only improve the efficiency of demand management but
will also introduce numerous new load forecasting strategies [168]. The ability to
record high-resolution consumption data allows smart meters to provide consumers
and utilities with a deeper understanding of their energy consumption at differ-
ent levels, allowing smart grids to be used in various ways. An accurate analysis
of electricity consumption patterns makes it possible to derive a model for simi-
lar electricity consumption patterns, thereby providing a solid foundation for load
forecasting, tariff adjustment, and customizing consumer preferences.

On the other hand, recent advancements in machine learning have propelled the
broad utilization of smart technologies, particularly the internet of things (IoT).
Worldwide, the number of IoT devices is expected to nearly triple from 8.74 billion
in 2020 to more than 25 billion in 2030 [90]. The massive data collected from
IoT devices is considered critical for constructing robust machine learning models,
which has created a wealth of chances for growing innovations in the era of big data.
However, real-world machine learning achievements have relied on the availability
of vast amounts of well-labelled data, such as ImgNet [49] and Alpha Zero [88],
which can be prohibitively expensive, particularly in fields requiring expertise and
human skill. Moreover, IoT big data, characterized by high volume, high velocity,
and high diversity [138], cannot be utilized directly as high-quality ready inputs,

1



CHAPTER 1. INTRODUCTION 2

posing many obstacles to the development of current data-driven real-world machine
learning systems.

The challenges of developing a distributed and real-time machine learning frame-
work in the era of smart meter big data are distinct from those of classic theoretical
frameworks, owing to the features of big data and the restrictions placed by new
data regulations and laws. These distinctions have essential effects on the assump-
tions and performance measures underlying the design of such a system. They may
stimulate the development of more innovative and practical machine learning algo-
rithms. There are several general challenges associated with analysing smart meter
big data:

1) Most existing research focuses on forecasting aggregated smart meter data,
ignoring load trends occurring at lower aggregation levels, such as the in-
dividual building/household level or the appliance level. These studies can
impede the development of more accurate demand management strategies, as
they obscure the visibility of embedding more personalized and refined models.

2) Smart meters realize the real-time acquisition of electricity consumption data,
which poses difficulties for conventional offline machine learning frameworks
that rely on historical smart meter readings, and necessitates a dynamic ma-
chine learning framework capable of handling the fine-grained timely data.

3) Smart meters are generally distributed in individual households rather than
a centralized location, and the data acquisition process takes remote or local
communication channels as carriers to complete the hierarchical transmission
between the systems [119], and these data are often statistical disparities.

4) The hierarchical transmission of smart meter data has become increasingly
challenging from a legislative standpoint. For example, the European Union’s
new General Data Protection Regulation (GDPR) [156] has several provisions
safeguarding user privacy and restricting companies from transferring data
without explicit user consent.

Therefore, it is necessary to develop a more intelligent and robust framework for
analysing the smart meter big data to address these challenges.

1.2 Research Aims and Objectives

This research aims to develop and refine machine learning frameworks for smart
meter analysis in distributed and real-time scenarios through innovative approaches.
Toward achieving this aim, the following objectives were established:
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• To address challenge 1): employee advanced deep learning techniques to en-
hance smart meter data analysis at the appliance level, and develop a robust
machine learning framework to analyze smart meter data at the building and
aggregate levels. Furthermore, examine the efficacy of advanced learning al-
gorithms to explore the hidden relationship between different algorithms and
varying levels of smart meter-based load usage patterns.

• To address challenge 2): establish a dynamic smart meter-based load analysis
model that can reflect the change in consumers’ electricity consumption be-
haviour, with the goal of real-time updating of electricity consumption data.
In this process, dynamic clustering and online forecasting are combined to
constantly cluster and forecast the demand of customers at different data
aggregation levels.

• To address challenges 3) and 4): develop smart meter-based load forecasting
systems, and utilise distributed machine learning mechanisms and privacy-
preserving techniques to improve the efficiency of smart meter big data pro-
cessing while protecting customer privacy.

1.3 Contributions

Three contributions have been made to this thesis, which can be summarized as
follows:

• To enhance multi-level smart meter data analysis, a novel ADLs pattern recog-
nition model was proposed to detect the smart meter-based load usage pat-
terns at the appliance level. The model combines deep neural networks with
advanced data analysis tools, including principle components analysis and
k-means clustering. It helps to infer the daily routine of customers by fore-
casting appliance usage patterns. Then, a robust machine learning framework
was developed to examine the efficacy of various load forecasting models at
various data aggregation levels, such as building and aggregated group levels.
As part of the developed framework, customized forecasting models are devel-
oped, and relationships between building characteristics and model forecasting
performance are also analysed.

• A two-unit universal online functional analysis model (Universal-OFA) that
has universal applicability for dynamically profiling and forecasting multi-scale
demand was proposed. The Universal-OFA incorporates adaptive clustering
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to identify dynamic load usage trajectories and employs real-time smart me-
ter feedback to predict daily load requirements. The proposed Universal-OFA
model has demonstrated its superiority based on real-world data to assist dy-
namic pricing strategies and customized electricity consumption management
at multiple scales.

• A distributed federated deep learning framework for non-intrusive load moni-
toring (FederatedNILM) was first proposed, which combines federated learn-
ing with a state-of-the-art deep learning architecture to conduct smart meter-
based load analysis. Then, we make the first attempt to conduct FL-based
NILM focusing on utility optimization and privacy-preserving by developing a
distributed and privacy-preserving NILM (DP2-NILM) framework and carry-
ing out comparative experiments on practical NILM scenarios based on real-
world smart meter datasets. Extensive comparison experiments are conducted
on three real-world datasets to evaluate the proposed framework.

1.4 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 first introduces the back-
ground and reviews the related state-of-the-art of load analysis. It explores the
general process of load forecasting, multi-level load forecasting, and enhancing tech-
niques for load forecasting. Chapter 3 then proposes a daily activity recognition
NILM model for appliance level smart meter data analysis and a consensus-based
load profiling and forecasting system for building level and aggregation level smart
meter analysis. After this, Chapter 4 expands the smart meter analysis system
to the online environment, in which a two-unit universal online functional analysis
model with universal applicability for dynamic profiling and forecasting multi-scale
load is proposed. Chapter 5 then extends the appliance level smart meter analy-
sis framework into a distributed and privacy-preserving environment by integrating
federated learning and differential privacy mechanisms. Lastly, Chapter 6 concludes
this work and identifies future research directions.
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Chapter 2

Background and Literature
Review

This chapter provides background information and reviews related work. Section
2.1 introduces load analysis, including load profiling and forecasting. Secondly,
load analysis at different levels, i.e., the appliance level, the individual level, and
the higher aggregation level, are discussed and reviewed in Section 2.2. Thirdly,
enhancing techniques for load analysis, including transfer learning, online learn-
ing, and distributed and privacy-preserving machine learning, are introduced and
reviewed in Section 2.3. The published work 1 and 3 also form part of this chapter.

2.1 Load Analysis

A general load analysis process is shown in Figure 2.1. The historical load data for
load analysis can be divided into three categories, raw daily load data, averaged
daily load data, and peak load. Raw daily load data are examined to investigate
the day-to-day variations [169]. In contrast, averaged daily load data are used
to determine typical intra-day load usage patterns of the residents. By analysing
the peak, it is possible to identify the participants who are price-sensitive when
determining the best electricity pricing strategy, and peak load analysis can be
viewed as a particular branch of load analysis, which will not be discussed further
here, and we refer to Dai et al. [39] for an in-depth analysis.

It is necessary to deal with missing values once smart meter data sets have
been collected. Several commonly employed methods address missing values, in-
cluding mean imputation, median imputation, multiple imputations, and hot deck
imputation [176, 13].

6
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Figure 2.1: The general process of load analysis.

Further, input variables are often numerous when training a forecasting model,
especially in the smart big data era. However, many variables may have unrelated
characteristics with the target/ response variable, and variables may also be inter-
dependent, easily leading to long training time and decreased forecast performance.

Feature transformation and feature selection are usually adopted to address the
problem [60]. Feature selection is similar to feature transformation for both trying
to reduce the number of input features. However, there are some differences be-
tween the two methods. Feature transformation aims to get transformed features
by creating a new feature space, and the commonly used methods include principal
component analysis (PCA), independent component analysis, and linear discrimi-
nant analysis. Feature selection [43] is to select a subset from the original feature
space, and commonly used methods include filtering, wrapper, and embedding.

Moreover, the difference in magnitude among the variables in the dataset may
cause the training algorithm to make inaccurate predictions. Besides, in real scenar-
ios, load data often need to be normalized due to privacy requests [70]. Therefore,
data normalization is a necessary preprocessing step for training the model. The
commonly used data normalization methods for load analysis are zero mean nor-
malization (Z-score normalization) [51] and Min-Max normalization [229, 182].

The load will be analysed after data preprocessing, with the profiling process be-
ing considered one of the key enhancing techniques for forecasting load. Electricity
retailer and consumers can adjust their consumption patterns based on information
smart meter data analysis. Nevertheless, due to the high variability of load patterns
from different customers, the load analysis system may be computationally intensive
and inaccurate. Profiling before the load forecasting can improve the forecasting
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efficiency of the load analysis system. In real-world smart grid applications, load
profiling is the most widely used and important session for enhancing load analy-
sis. Therefore, this section will introduce load profiling and forecasting, and other
enhancing techniques will be then discussed in subsection 2.3.

2.1.1 Load Profiling

Smart meter data profiling refers to classifying a large number of load curves or
participants according to load usage behaviours [204]. For load profiling, clustering
is the most commonly used method, and the general process of load clustering is
shown in Figure 2.2.

Figure 2.2: The general process of load clustering.

After pre-processing the historical load, one critical step is determining the
cluster algorithms to cluster the load profiles. Hard and soft clustering are the two
main types of clustering algorithms. In general, hard clustering involves assigning
a load curve or set of load curves of a customer to a single cluster. In contrast,
soft clustering involves assigning the load curves of individual customers to all the
clusters based on probability [183]. The most common types of hard clustering are
partitioning and hierarchical clustering, the latter including model-based and fuzzy
clustering.

The partitioning clustering technique based on k-means, k-medians, and k-
medoids is the most widely used in hard clustering, in which the cluster number
needs to be determined. Yilmaz et al. [227] analysed the daily electric load patterns
of 656 households in Switzerland and found that averaging the data suppresses the
variety of household electricity usage patterns. Moreover, McLoughlin et al. [142]
compared the clustering results of k-means, k-medoids, and self-organizing maps
according to the Davies-Buldin validity index (DB-index). Customer profile classes
were then built based on the selected algorithm. Finally, the paper combined the
clustering results with questionnaire answers from the residents to summarize the
unique characteristics of the electricity consumption of each PC, which well pre-
sented a straightforward way to connect the physical household information with
the electricity consumption data.

Compared to partitioning clustering, hierarchical clustering offers greater flexi-
bility and determinism. However, hierarchical clustering tends to be more compu-
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tationally expensive. Using hierarchical clustering, Ozawa et al. [158] investigated
the relationship between household lifestyles and electricity consumption. The ex-
periment indicated that residents who follow a regular daily routine consumed less
electricity than those who live a night-oriented lifestyle. Instead of focusing on the
household level load clustering, Valdes et al. [197] employed hierarchical clustering
for analysing the load profiles of three industrial plants in Chile, and the clustered
profiles can then be used to optimize the electricity consumption management mech-
anisms.

The model-based clustering assumes that the load samples are derived from
a mixture of components in a distribution [66]. Haben et al. [75] adopted the
finite mixture model clustering to conduct an in-depth analysis of smart meter
data to understand different electricity consumption behaviours better. In addition,
bootstrapping was hired in this paper to verify the validity of clustering results. In
Labeeuw et al. [112], household groups representative of Belgium were identified
using expectation maximization clustering. The experiments discovered that the
Belgian demand reduction potential is more significant during weekends and in the
winter months by combining social information.

The concept of fuzzy clustering refers to the assignment of load curves to mul-
tiple clusters based on the degree of membership in each cluster. Jain et al. [97]
proposed a cluster validation strategy based on fuzzy c-means clustering, which pro-
vides unbiased validity indices for electricity load profiles. Moreover, Viegas et al.
[200] developed a clustering-based detection method for identifying non-technical
electricity losses. In order to further improve the identification accuracy of the
proposed method, the Gustafson-Kessel fuzzy clustering algorithm was employed,
and the experiment demonstrated that the proposed method outperformed other
state-of-the-art supervised and unsupervised learning algorithms, such as support
vector machines and fuzzy c-means.

2.1.2 Load Forecasting

A well-developed load forecast framework can help the system operator optimize the
demand side management strategy and help reduce greenhouse gas emissions and
non-renewable fuel reliance. Moreover, the ultimate goal of demand management
is to balance electricity supply and demand to maximize the benefits of the system.
Table 2.1 lists the associated key stakeholders (grid operators, electricity retailers,
electricity end-users, government) in the load forecasting framework and highlights
the advantages of accurate load forecasting.

Load forecasting is often classified according to the forecast lead time, which can
be roughly divided into long-term load forecasting, medium-term load forecasting,
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Table 2.1: Associated key stakeholders and benefits of load forecasting
Electricity market stakeholders Advantages of load forecasting

Grid operators
• Improve the utilization rate of power generation equipment
• Reduce the cost of power generation and investment in power facilities
• Alleviate the supply pressure of the grid

Electricity retailers
• Make reasonable tariff schemes so as to maximize profits
• Offer energy-efficiency rebates to encourage customers to change load consumption behaviours

End-users
Commercial and industrial

• Improve the economic benefits and save production resources
• Reducing environmental pollution through the dispersal of emissions

Residential • Save electricity bills and improve their living standard

Government
• Enable a reliable power supply system
• Ensure economic growth and social welfare

and short-term load forecasting [106]. Long-term load forecasting generally refers
to forecasting for 1 to 10 years. Medium-term forecasting refers to the forecast
for a year. Long-term and medium-term load forecasting can generally be used
to estimate the operating costs of power generation enterprises [106]. Short-term
load forecasting refers to the prediction of daily load on an hourly or half-hourly
basis, and the prediction results can be used for preventive control and emergency
treatment.

The general process of load forecasting is shown in Figure 2.3.

Figure 2.3: The general process of load forecasting.

Generally, two types of methods are commonly used for training load forecasting
models, including statistical and machine learning methods.

The efficacy of machine learning methods, such as artificial neural networks
(ANNs)[162] and support vector machines (SVMs) [215], have made them an attrac-
tive alternative to statistical methods such as the auto-regressive moving-average
(ARMA), auto-regressive integrated moving average (ARIMA) [44], and Holt-Winters
exponential smoothing [194].

Compared with machine learning techniques, traditional statistical forecasting
models usually rely on statistical theory and historical data and often ignore the in-



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

herent characteristics of data, resulting in unsatisfactory prediction results. On the
other hand, machine learning models have the characteristics of better performance,
and satisfying training efficiency [10].

The high dimensional load data collected by smart meters make it challenging
to train traditional machine learning algorithms. It has been recognized that load
records can be seen as functional data, which has led to the development of a
statistical field referred to as functional data analysis (FDA) [170] for the load
analysis.

In the following subsections, we will first review statistical methods, including
stochastic time series models and exponential smoothing, and then review popular
machine learning methods, including SVMs, ensemble models, and DNNs. More-
over, the FDA will also be reviewed for load forecasting.

2.1.2.1 Statistical Models

For the statistical load forecasting models, the most commonly used methods are
stochastic time series models [44], and exponential smoothing [194].

Stochastic time series models can be generally divided into: the auto-regression
(AR(p)) model where p denotes the order of auto-regression; the moving average
(MA(q)) model where q is the order of moving average; the auto-regression mov-
ing average (ARMA(p, q)) model; the auto-regression integrated moving average
(ARIMA(p, d, q)) model where d denotes the order of integration; and the sea-
sonal auto-regression integrated moving average (SARIMA(p, d, q)(P,D,Q)s) model
where P,D,Q are the seasonal parts of the model corresponding to p, d, q.

A SARIMA model may be written as [18]:

ϕp(B)ψP (BS)Syt = θq(B)τQ(BS)αt (2.1)

where: Syt = ▽d▽D
S yt, yt is the load observed at time t. ▽d and ▽D

S denote the non-
seasonal and seasonal difference (S is the seasonal length) operators, respectively,
which transform yt into stationary time series. B is the backshift operator, which is
used to represent the backshift of time. When B is used for yt, it means to reverse
by one unit of time (Byt = yt−1). For monthly data, B12yt = yt−12 represents data
from the same month of the last year. ϕp(B) and ψP (BS) are the non-seasonal
and seasonal auto-regression operators, respectively. θq(B) and τQ(BS) are the
non-seasonal and seasonal moving average operators, respectively. p, P, q,Q denote
the maximum backshift order for the non-seasonal, seasonal, auto-regression, and
moving average operators, respectively. αt is the white noise at time t. The above
model can be represented by SARIMA(p, d, q)(P,D,Q)s where s = 4 represents
the seasonal time series and s = 12 represents the monthly time series. When
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P = D = Q = 0, the SARIMA model degenerates into an ARIMA model, and
when P = D = Q = p = d = q = 0, the SARIMA model degenerates into the white
noise process.

Exponential smoothing is a time series analysis method developed based on
moving average (MA). Exponential smoothing predicts the load according to the
weighted average of the historical time series. The recent data are given a larger
weight whereas the previous data are given a smaller weight. This is based on
the principle that the influence of a certain variable on subsequent behaviour is
gradually attenuating [157].

A general exponential smoothing model for load forecasting can be written as
[96]:

ŷt+1 = αyt + α(1− α)yt−1 + α(1− α)2yt−2 + · · · (2.2)

where ŷt+1 is the forecasted load at time t + 1, and α ∈ [0, 1] is the smoothing
parameter that controls the weights decrease (exponentially).

Exponential smoothing can be divided into several different forms. Gardner Jr
[68] provides a comprehensive review of exponential smoothing methods, in which 17
basic methods and some extensions based on these methods are described in detail.
In general, single exponential smoothing is applied to sequences without trends or
seasonality, and second exponential smoothing is applied to time series that only
have trends. The triple exponential smoothing (also known as the Holt-Winters)
targets sequences with trends and seasonality. When modelling the seasonal data, a
Holt-Winters model consists of three equations, each with its smoothing parameters:
trend, level, and seasonality components [212]. When the seasonal variations are
constant and uncorrelated with time series, the additive Holt-Winters model can
be hired. However, if the seasonal variables change proportionally with time series,
the multiplication model can be chosen to predict the seasonal data.

2.1.2.2 Machine Learning-based Models

With the emergence of machine learning, machine learning-based load forecasting
models have been adopted and gradually replaced statistical methods. ANNs are
the earliest machine learning models for load forecasting. Based on ANNs, various
advanced models such as ensemble models, SVMs, and deep neural networks (DNNs)
have been developed and have become the hot spot in the load forecasting field.

ANN was proposed in 1991; it is inspired by the anatomy of the human brain
and consists of artificial neurons in multi-layers for information communication. An
example of the structure of an ANN is shown in Figure 2.4.

A typical ANN consists of the input layer, the hidden layer, and the output
layer. Except for the input layer, each neuron in ANN is connected to neurons of
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Figure 2.4: An example structure of ANN.

the former layer (i.e., the input neurons), with each connection corresponding to
a weight. The sum of the product of all input and the corresponding connection
weights are passed to an active function to calculate each neuron’s final value, as is
shown in Figure 2.5.

Figure 2.5: The calculation process of a neuron in ANN.

The activation function needs to be selected according to data characteristics,
and the Sigmoid function is the most commonly used active function of ANN models
[6]. One well-known ANN is the backpropagation (BP) neural network, a multi-
layer neural network with error backward propagation. BP is widely used for its
satisfying performance on prediction tasks. It, however, suffers from high compu-
tational cost; therefore, the radial basis function network (RBFN) was brought up
to deal with this. The input variables of RBFN pass directly to the hidden layers
without additional weights, and RBFN is proved to be less time-consuming than
the traditional multi-layer neural network [69].

Ensemble learning trains multiple learners and aggregates each learner’s pre-
dicted results to obtain the final output through combining strategies, which gen-
erally involve averaging, voting, and stacking [165]. According to the dependencies
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between learners, one possible classification of the popular ensemble learning meth-
ods is as follows:

(1) Learners must be generated in sequence to satisfy the strong dependency
between them (boosting).

(2) Learners are allowed to be simultaneously generated since there is no strong
dependence between them (bagging and random forest).

Ensemble learning has been widely used in load forecasting in recent years.
Ensemble models used in the reviewed studies are mainly: boosting, bagging, and
random forest (RF).

Boosting adjusts the sample distribution according to the performance of the
initial learner so that samples with the wrong prediction get more attention than
others. Then it trains the next learner based on the adjusted sample. The process
is iterated until a specified number of learner clusters are generated, or the ag-
gregated learning criteria reach the stop threshold [165]. Commonly used boosting
algorithms in the reviewed papers are adaptive boosting (AdaBoost), boosting trees,
gradient boosting (GB), and extreme gradient boosting (XGBoost). Ahmad and
Chen [9] adopted three machine learning models (ANN with nonlinear autoregres-
sive exogenous multivariable inputs, multivariate linear regression, and AdaBoost)
to predict load profiles one month, one season, and one year ahead at the district
level. During training, datasets with different sizes were utilized for training mod-
els for different prediction intervals. This paper also adopted feature extraction to
select essential variables, and the results showed that the AdaBoost outperformed
other models significantly for all prediction intervals. Moreover, for seasonal fore-
casting, the error range of AdaBoost was relatively narrow, which indicated that
the model trained based on AdaBoost was more capable of capturing the dynamic
change of load curves. Zhang et al. [235] conducted short-term load forecasting
for southern California. In this study, different models were adopted (multivari-
ate linear regression, random forest, and GB), and the installed solar capacity was
identified as an essential feature during the forecasting. The results of the compara-
tive experiment revealed two insights: (1) The fact that the installed solar capacity
became an important feature suggested that new and clean energy resources are
important components in the system that researchers need to pay more attention
to; (2) Different forecasting accuracy in different periods indicated that being able
to capture the fluctuation of load curves is important for forecasting. Lu et al.
[131] combined complete ensemble empirical mode decomposition with XGBoost to
predict daily load consumption, peak load, and water delivery.
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Bagging is based on bootstrapping sampling. It carries out multiple times of
put-back sampling for a given dataset and trains learners simultaneously based on
the obtained sampling set. When bagging is applied to a regression task, a simple
mean or median can be adopted to obtain the final output [178]. de Oliveira and
Cyrino Oliveira [45], for the first time, utilized bagging to forecast monthly load
for countries with different development stages. The paper combined bagging with
exponential smoothing and SARIMA and then used the simple mean and median to
aggregate the results from single learners. A new variation of bagging, the remainder
sieve bootstrap, was also proposed to enhance the forecasting results, and the result
showed that the proposed method yielded the best MAPE for both developed and
developing countries.

RF can be seen as an extension of bagging, which further introduces random
selection in the construction of individual decision trees based on bagging.

The RF first uses bootstrapping to generate its training sets, and then a deci-
sion tree is constructed for each training set. Features are randomly selected, and
optimization criteria are used to guide the splitting of nodes in constructing each de-
cision tree learner. The prediction strategies of RF are: voting for the classification
task and averaging for the regression task [165].

As the number of learners increases, RF generally converges to a smaller general-
isation error than bagging. Moreover, the training efficiency of RF is often superior
to bagging, benefiting from the randomness in constructing single learners. Wang
et al. [206] adopted RF to predict hourly load usage patterns for two educational
buildings in North Central Florida, and the feature importance distribution was also
produced as a by-product. The proposed model was compared with the regression
tree and SVM, and the results showed that the RF had the best superiority among
all the trained models. Moreover, the feature importance distribution also proved
that the influential features changed depending on different educational periods,
which indicated that the load usage behaviour of educational buildings is highly
related to different semesters.

As one popular machine learning method, SVMs can minimize actual risk by
seeking risk minimization to get satisfactory forecasting performance. The variation
of SVMs for regression problems is represented as support vector regression (SVR)
[55], which is efficient for large-scale regression problems [35]. Similar to ANN,
SVMs can cope with nonlinear and high dimensional data [51][232]. The disadvan-
tage of SVMs is also similar to that of ANN for suffering from long training times
with large data sets. Besides, the hyperparameters of SVMs need to be manually
selected, which is also a complex step that needs to be optimized.

In Candanedo et al. [25], a comparative analysis for short-term load forecasting
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for a building in Belgium was carried out, where RF was compared with multiple
linear regression (MLR), SVR, and gradient boost machines. It demonstrated that
RF has the best performance among the considered models. Based on actual his-
torical data from the Tunisian Power Company, similar conclusions were reached
in Lahouar and Slama [113] for day-ahead load forecasting. Furthermore, Li et al.
[120] improved the short-term load forecasting accuracy by using a subsampled
SVR ensemble (SSVRE) based on the SVR. The SSVRE is used to diversify indi-
vidual SVR ensembles using a novel swarm optimization learning model, which has
provided better forecasting performance and lower uncertainty for load forecasting.

DNNs are popular variations of NNs that have multiple hidden layers and have
been proposed and applied to improve forecasting accuracy in recent years. For
example, recurrent neural networks (RNNs) [199] are a type of DNN whose con-
nections allow nodes to create a cycle, causing outputs from one node to influence
inputs from another. Consequently, RNNs exhibit temporal dynamic behaviour and
can process variable-length sequences of inputs using their internal memory. Zhang
et al. [233] developed an RNN model to conduct short-term load forecasting. In
particular, continuous and discrete time series are considered to generate multiple
time series, which can then be modeled with an RNN to gain sequential information
on the load. The proposed model outperformed the state-of-the-art models, such
as the k-nearest neighbour and SVR.

Further, long short-term memory (LSTM) [84]is an advanced modified version of
RNNs that keeps a constant flow of error between the nodes during backpropagation,
which makes it capable of handling more complex problems than RNNs. In Kwon
et al. [111], an LSTM model was proposed to conduct day-ahead load forecasting,
which achieved high accuracy in forecasting the total load of the Korean power
system in two years. Moreover, Muzaffar and Afshari [151] compared LSTM with
statistical models, including ARMA, Seasonal ARIMA, and ARMA with exogenous
inputs for load forecasting with various forecasting horizons from 24 hours to 30
days. Experimental results indicated that LSTM could increase forecasting accuracy
by learning from long-term and short-term information in the load sequences.

2.1.2.3 Functional Data Analysis

FDA, as an important method to deal with high-dimensional big data has received
increased attention in recent years. The FDA considers the discrete smart meter
records as functional curves that can be seen as random functions in the realization
of continuous stochastic processes. Therefore, applying FDA to load analysis ben-
efits from the continuity of the functional curves, which account for the changing
trend in data over a continuous period. Moreover, FDA can reduce the volatility
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of smart meter data and achieve smoother load profiles by treating a set of data
points as a single functional curve.

Many different approaches in the FDA have been developed, such as functional
regression (FR), functional principal component analysis (FPCA), and functional
discriminant analysis [171]. FR models are commonly used in FDA for load fore-
casting and can be classified into three types based on the predictors and response
variables:

• Scalar predictors with functional response variables.

• Functional predictors with scalar response variables.

• Functional predictors with functional response variables.

The FR has been extensively studied in a variety of forecasting applications
[188, 106, 65]. Shah and Lisi [187] compared the vector auto-regressive, functional
auto-regressive, and functional non-parametric regression models for day-ahead load
forecasting, and the results revealed that the functional non-parametric model out-
performed the other two algorithms. Kiani and Zeng [105] used a functional time
series regression approach to forecast the load of four regions. It turned out that
the proposed method has better performance than ARIMA.

Further, Yao et al. [222] proposed an end-to-end functional deep neural network
with a nested basis layer that was shown to be efficient at capturing functional data
characteristics. Moreover, Perdices et al. [163] combined the FDA with the auto-
encoder neural networks to characterize the network services, and the experiments
demonstrated the complementary nature of the FDA and neural networks. Shah
and Lisi [188] utilized functional auto-regressive models to forecast electricity prices.
Kiani and Zeng [106] adopted functional B-spline approximation for the history load
to explore the performance of models built on the individual area or aggregated data.

On the other hand, clustering functional curves prior to functional forecasting
is a common way for the FDA to assist the functional forecasting models. For ex-
ample, Chaouch [31] adopted hierarchical clustering to improve one-day-ahead non-
parametric functional time series forecasting. Moreover, Mart́ınez-Álvarez et al.
[139] employed the funHDDC, a functional clustering algorithm, to assist the func-
tional time series forecasting, which adopted a majority voting system to determine
the best cluster number.

2.2 Multi-level Load Analysis with Smart Meter Data

According to forecasting space scales, the load analysis for the smart meter data
can be divided into the appliance, individual building, and higher aggregation levels,
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each serving a specific purpose. The appliance level load analysis allows consumers
to identify their electricity consumption patterns for individual appliances, partici-
pate in demand side response through smart meters, and make informed decisions
regarding their electric bills. The most popular method for analysing appliance
level load is non-intrusive load monitoring (NILM) [81], in which the operational
status (ON/OFF) or the electricity consumption of each appliance is determined
using only the aggregated load from all the appliances.

Individual building level load forecasting becomes increasingly crucial with emerg-
ing applications in demand response, microgrids, and peer-to-peer energy trading.
Nevertheless, individual buildings typically exhibit a high degree of randomness,
thus making forecasting difficult. Alternatively, load forecasting at a higher aggre-
gation level is typically used in community energy management and grid operations
applications. Figure 2.6 gives an example of the daily smart meter readings at the
individual building level and the aggregation level.
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Figure 2.6: Daily smart meter readings.

Simply aggregating the load consumption will ignore some essential information
in individual buildings. It is, therefore, vital to select appropriate forecasting levels
based on the type of application scenario. This section presents a review of studies
on different levels of load analysis.

2.2.1 Appliance Level Load Forecasting

The appliance level smart meter data can be used for household energy system
management by coordinating and optimizing appliance schedules based on individ-
ual preferences and electricity tariffs [225]. The most widely studied method for
appliance level load analysis is NILM, which is based on machine learning and is
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effective at disaggregating smart meter readings into appliance-level consumption.
NILM was first proposed by Hart [81] in the 1980s, and it aimed to decompose

the electricity consumption of target appliances through non-intrusive detection.
Compared to intrusive monitoring, NILM has lower deployment costs and higher
user acceptance.

NILM is typically implemented for residential/household smart meter data. The
Hidden Markov Model (HMM) is the most commonly utilized model. Kelly and
Knottenbelt [102] developed a sparse HMM and achieved good load decomposition
results. Both Makonin et al. [137] and Kong et al. [110] proposed improved methods
based on HMM. Among them, Kim et al. [107] tried to introduce the time factor into
HMM, but the proposed model has relatively high computational costs. Kong et al.
[110] proposed a NILM model based on segmented integer quadratic constraint
programming (SIQCP), which was proved to be efficient on load disaggregation.
With the development of artificial intelligence and deep learning, various modern
NILM models combined with artificial neural networks have been developed. Kelly
and Knottenbelt [102] compared HMM with a convolutional neural network (CNN)
for NILM, and the results showed that the CNN-based model outperformed HMM.
In recent years, DNNs have provided new opportunities for the electrical utility
industry [145], and are the most representative structures applied to NILM [102,
108], which have been proved to be more effective than other traditional statistic
models.

Nevertheless, there are also studies focusing on conducting NILM for commer-
cial and industrial smart meter data. For NILM to be applied in an industrial
setting, new assumptions must be made due to differences in appliance states and
temporal dependencies in industrial settings compared to residential settings [89].
Consequently, sub-metering has to be performed according to the size of the in-
dustrial building and the type of appliances used to disaggregate the industrial
loads. Holmegaard and Kjærgaard [89] gives an analysis of how industrial equip-
ment challenges NILM algorithms, including the fact that equipment events seldom
change in load level, that equipment states are difficult to disaggregate, and that
power change events of multiple types of equipment are often overlapping. To ad-
dress these challenges, they investigated different levels of sub-metering to increase
disaggregation accuracy and introduced a day-specific training based on factorial
HMM (FHMM), which reduced the mean normalized error by half. Further, Mar-
tins et al. [140] compares the FHMM with a DNN-based model on a real-world site
meter from a Brazilian factory. Results showed that the DNN-based model outper-
formed the FHMM model in normalized disaggregation and signal aggregated error
for six industrial appliances.
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2.2.2 Individual Level Load Forecasting

Recent years have seen an increase in the development of individual level load fore-
casting for dynamic demand modelling and real-time pricing systems. load fore-
casting at the individual level is a key session for distributed energy forecasts, but
it is challenging due to the uncertainty associated with customer behaviour. The
individual level load can be mainly divided into the residential/household load, and
the commercial/industrial load [77]. The residential/household load refers to the
electricity consumed by households where people regularly live, whereas commer-
cial/industrial clients consume significantly more electricity than residential cus-
tomers.

Forecasting residential/household load can be helpful in energy consumption re-
duction and home energy system management. Forecasting residential/household
load is essential for utilities in controlling residential demand and optimizing dy-
namic pricing strategies. Moreover, residential/household load analysis can facili-
tate the development of efficient incentive schemes to enhance control mechanisms
through two-way communication. To forecast residential/household load, many
statistical and machine learning models have been applied. To predict the con-
sumption of four multi-story residential buildings in Seoul, South Korea, Ullah
et al. [196] adopts a statistical approach by employing HMM. A sequence of floor
occupancy values is created by transforming the load data into floor occupancy
values based on HMM. With the wide application of the machine learning models
for residential/household load forecasting, it has been demonstrated that the ma-
chine learning models are superior at extracting the nonlinear relationship between
the load sequence and the associated stochastic factors [24] than the statistical
models. In Cheng et al. [33], a convolutional neural network with squeeze-and-
excitation modules and micro-meteorological data was used to develop a day-ahead
probabilistic residential load forecasting model. This model incorporates feature
extraction to assist in forecasting, and has been evaluated using real-world data
from eight residential communities. Moreover, Zang et al. [231] combined LSTM
with self-attention mechanisms to propose a hybrid model with two input channels,
and experiments on the practical residential dataset verified its superiority. In Ryu
et al. [181], two types of deep neural networks were used to perform short-term load
forecasting. The results showed that the deep belief model had the best performance
in terms of training accuracy and time consumption.

On the other hand, load forecasting can be complex in commercial or industrial
buildings, particularly those with varying heating, cooling, and lighting require-
ments [226]. Furthermore, unlike residential/household buildings with regular load
usage patterns, commercial/industrial buildings are affected by occupancy levels
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and scheduling. Commercial building electricity loads have been forecasted us-
ing various techniques, including statistical models and machine learning models.
Stochastic time series models are commonly used for commercial/industrial load
forecasting. Nepal et al. [153] combines ARIMA with k-means clustering to fore-
cast peak load for university buildings, which improves the forecasting accuracy of
a single ARIMA model.

2.2.3 Higher Aggregation Level Load Forecasting

Power utilities rely heavily on load forecasts at the higher aggregation level to
plan their day-to-day operations, scheduling, and load-shedding strategies. The
aim of load forecasting at higher aggregation levels is to estimate a load for an
entire region, city, province, or even country rather than dividing the load into
small units. Aggregated load data can be collected directly from a substation or
aggregated individual load data.

Similar to commercial/industrial load forecasting, stochastic time series models
are commonly used for higher aggregation level load forecasting. Espinoza et al. [61]
adopted periodic autoregression to extract the stationary properties of 245 load pro-
files from a Belgian grid, which are then used for load profile clustering. Moreover,
Amjady [12] combined the ARIMA model with the knowledge of experienced hu-
man operators for short-term load forecasting. Based on a real-world dataset from
Iran’s power network, the proposed methodology was found to be more effective
than the original ARIMA model without expert knowledge.

Recently, DNNs have become the most popular topic for forecasting load at
higher aggregation levels. Barman et al. [16] presented a regional hybrid short-
term load forecasting model that considered regional climate conditions and used
grasshopper optimization algorithms. Compared with traditional hybrid models,
the proposed model proved to have better accuracy. In Lv et al. [134], a hybrid
model was developed based on variational mode decomposition and LSTM and
evaluated on data from Singapore and the United States. The results indicated
that the proposed model could achieve accurate forecasting of the power grid load.

However, unlike analysing load at the individual level, which is aimed at an-
ticipating household load use patterns, forecasting demand at the higher aggregate
level can be beneficial for estimating the generation capacity, making long-term
investments, optimizing electricity pricing strategies, and expanding transmission
capacity [91]. López et al. [130] proposed an online short-term load forecasting
system to forecast the Spanish inland and the regional load one hour ahead. The
proposed system was tested on two years of data. It was demonstrated that the
system achieved satisfactory performance for different days by incorporating spe-
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cial days such as holidays and weekends. Moreover, Liu et al. [125] conducted
day-ahead hourly load forecasting at the province level. A greedy forward feature
selection process was utilized to assist forecasting, and the comparative study re-
vealed the classic linear models and their variations, i.e., the MLR, the multivariate
adaptive regression splines, and the SVR, performed the best compared to other
candidates, including ARIMA and two DNNs.

2.3 Enhancing Techniques for Load Analysis

Smart energy meters can provide real-time, high-frequency data to facilitate demand-
side management and response and enhance economic and social well-being. Smart
meter-based load consumption records are a common type of time-series data that
offer detailed information about electricity usage in almost real-time. These records
are known as smart meter big data, which pose challenges to traditional profiling
and forecasting proceedures due to their large size and high dimensionality [7].
Therefore, this section reviews the related enhancing techniques for load analysis.

Typically, appliance level load analysis involves the collection of load consump-
tion for each appliance, which is prohibitively expensive since smart devices (such as
smart plugs) must be deployed in the living environment. As an advanced machine
learning method, transfer learning (TL) can address the issue of insufficient labelled
data by leveraging multiple sources of information. Therefore, we will first review
TL as one of the enhancement techniques for load analysis.

Secondly, as real-time smart meter readings become available, online learning
(OL) is necessary to leverage dynamic changes in consumption patterns, which
enables online models to dynamically adapt to new patterns in load data without
retraining the complete training dataset. Therefore, OL will be reviewed in this
section as one of the enhancing techniques for load analysis.

Moreover, the readings of the loads are generally distributed among a large
number of smart meters, which results in a high volume of network traffic when
the data is transferred to a central server [192]. Additionally, training a centralized
model for all smart meter users requires data sharing, posing security and privacy
concerns, and is challenging to comply with stringent privacy regulations [195].
Therefore, advanced distributed and privacy-preserving machine learning techniques
will also be reviewed in this section.

2.3.1 Transfer Learning

Most of the traditional machine learning algorithms assume that the training and
test data have similar distributions and feature spaces. However, this assumption
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Figure 2.7: Transfer learning process.

does not hold in the majority of real-world scenarios. Furthermore, traditional
machine learning has been hampered by a lack of adequately labelled training data
and mismatched computing capability. TL [159] was proposed to address these
challenges by leveraging knowledge from a single or multiple source domains to
enhance a training task in the target domain (Fig. 2.7). The knowledge transferred
could be instances from source domains [210], shared features from source domains
and the target domain [129, 177], parameters from the trained learners of source
domains [214], or relations between source domains and the target domain [193].

According to different implementation scenarios, TL can be categorized as single
source TL and multiple sources TL. Single source TL refers to transferring knowl-
edge from a single source domain [190] whereas the multiple sources TL utilizes
several source domains to transfer the knowledge [221, 67]. Moreover, different
TL techniques have been proposed to handle similar or different data structures
between the source and target domains, i.e., homogeneous and heterogeneous TL
[83, 241].

According to different label settings, various TL methods have been proposed
and can be classified into three major categories, i.e., transductive, inductive, and
unsupervised TL [159].

Inductive TL is used when the target domain has well-labelled data, and there
are different tasks in the source and target domains. TrAdaBoost [41] is a well-
known inductive TL technique that extracts valuable information from the source
domain by re-weighting predicted instances in both the source and target domains.
However, this method only utilized a single source domain, and the extracted infor-
mation may not be sufficient for the training task in the target domain. To address
this challenge, Li et al. [121] and Ye et al. [223] combined the transfer task with



CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 24

multiple source domains, which enhanced the training performance of the target
model. Moreover, unlike Dai et al. [41], which retained only one base learner and
discarded the rest, Eaton and desJardins [58] assumed that all base learners are use-
ful, based on the theory that older learners can represent the major distributions of
instances, while newer learners can provide accurate information about subsequent
iterations.

Transductive TL is used when the source domain data is labelled, but the target
domain data is unlabelled, and both the source and target domains have the same
task. Domain adaptation is the most well-known subfield of transductive TL [154],
which aims to minimize the marginal distribution gap between the source and the
target domains. Xia et al. [209] proposed a method for selecting and weighting
instances based on PU learning, a set of semi-supervised methods used to train a
binary classifier, to identify examples from the source domain that are most likely
to improve the training task. However, this method was limited by the difficulty of
dealing with high-dimensional distributions. A solution was provided by Xu et al.
[210], using the logistic approximation to adapt the high-dimensional data from the
source domain to the target domain.

In real-world situations, both the source and target domains may lack sufficient
well-labelled data, which cannot be addressed by the TL techniques discussed so far.
As a solution, unsupervised TL was introduced. Wang et al. [207] proposed trans-
ferred discriminative analysis, a method for generating class labels for unlabelled
target data by leveraging knowledge from the source domain. Although unsuper-
vised learning is a more practical solution in TL, it has received little attention from
researchers over the last decade.

2.3.2 Online Learning

Online learning is a machine learning paradigm for real-time data that uses feed-
back from sequence data to learn and update the best predictor for future data.
Compared to the optimal model in foresight, the primary goal of OL is to minimize
cumulative error across the whole data sequence [87]. OL is generally more effective
and scalable when dealing with large-scale real-world machine learning problems
involving data of varying quantity and velocity than conventional batch learning
algorithms, which require pre-given training data.

OL has been extensively investigated for many years [29, 86]. There are two
fundamental types of OL algorithms: first-order OL and second-order OL [86]. The
Perceptron [174, 155] is one of the earliest first-order OL algorithms, relying on
gradient feedback to update a linear classifier whenever a new sample is misclas-
sified. Passive-Aggressive (PA) [37] was introduced as a family of first-order OL
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algorithms based on margin-based learning. It updates the model when the classi-
fication confidence of a new sample falls below a predefined threshold. Moreover,
online gradient descent [244, 17, 48] was proposed to model the OL as an online
convex optimization problem.

The misclassified instances are retained as support vectors (SVs) in standard
OL algorithms (e.g., Perceptron and PA). Despite their solid theoretical guarantees
and efficient functioning, a fundamental issue is that the increasing number of SVs
over time may result in an increased computational overhead. To overcome this
challenge, Dekel et al. [47] discarded the oldest SVs, assuming they were less rep-
resentative of the data streams. Additionally, Zhao et al. [238] presented bounded
online gradient descent to constrain the number of SVs that fall below a threshold.

Unlike first-order OL algorithms, which maximize convergence by utilising only
the first-order derivative/gradient information of the cost function, second-order OL
algorithms maximize convergence by utilising both the first-order and second-order
information. The second-order Perceptron algorithm [30] was designed to examine
the geometric properties of data. In order to capture second-order information
about the confidence level of the features, the confidence-weighted algorithm [54]
was developed to manage the updating of the classifier. Furthermore, the second-
order OL requires exponential space and time for updates, and the sketched online
Newton [132] was introduced to address this issue. The sketched online Newton
is an enhanced version of the online Newton step with a linear running time in
dimension and sketch size, allowing for dramatic improvements in second-order
learning efficiency.

2.3.3 Distributed and Privacy-preserving Machine Learning

The goal of distributed machine learning is to distribute tasks with large volumes of
data and computation to multiple machines to improve the computational efficiency
and scalability. With the rapid exponential growth of smart meter data, machine
learning frameworks increasingly need the distributed support of machine learning
algorithms.

Liu et al. [124] elaborated on the development trend of distributed machine
learning and proposed that the performances of the machine learning models need
to be improved by enhancing algorithm design and optimization methods. Zhou
et al. [242] designed a kunpeng distributed computing platform, which combined
the large-scale distributed system with the optimization algorithm. This platform
wraps complex communication and scheduling into the application program inter-
face to quickly realize model synchronization. It supports directed acyclic graphs
and various data synchronization and has strong fault tolerance. Nazari et al. [152]
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used an advanced coding method to solve the time-consuming problem of data com-
munication and matrix calculation, which significantly improved the model training
efficiency.

When data owners want to combine their local data with training a deep neural
network model, the traditional way is to integrate their data into the central server
and use the integrated data to train a standard centralized model. However, data
uploading and integration often involve legal issues such as privacy leakage and
stolen data, making the centralized model training scheme more complicated. Many
studies designed privacy protection schemes for load analysis, which can be mainly
divided into identity privacy and data privacy protection.

Identity privacy protection refers to implementing user identity recognition while
hiding the real ID of the users by unique mechanisms such as blind signature [59].
For instance, Cheung et al. [34] adopted a blind signature to protect the identity
privacy of smart meter users. In the proposed scheme, the power company has
access to real-time electricity data but does not know the identity of owners, so the
privacy of users is protected.

On the other hand, data privacy protection is usually achieved by adding noises
or encryptions to electricity consumption data. Kalogridis et al. [100] suggested
that the load signatures of appliances in individual households could be moderated
by home electrical power routing. Gündüz et al. [74] studied the sensitive data in
smart metering from an information-theoretic perspective. In the paper, the smart
meter readings were diversified by the alternative energy source, and the storage
units filtered the real consumption data. Cao et al. [26] proposed a fog computing
approach based on differential privacy against NILM, which adds noises to the
behaviour parameter derived from the FHMM rather than the original consumption
data. The proposed scheme achieved a satisfying trade-off between data utility
and privacy. Hassan et al. [82] compared four variants of differential privacy in
blockchain-based smart metering, and the experiment showed that such mechanisms
could provide an effective privacy-preserving scheme.

Moreover, federated learning (FL), which performs distributed joint modelling
while protecting the privacy of the original data, has the potential to be applied
to load analysis. FL has been proposed for training a global model from data dis-
tributed across multiple devices with only intermediate updates periodically being
sent to a central server [217], which can be categorized into horizontal FL, vertical
FL, and federated transfer learning (FTL), depending on how data are distributed
among different devices in the sample and the feature space.

Horizontal federated learning (HFL) refers to the situation in which data from
distributed devices share the same feature space but differ in samples. Vertical
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federated learning (VFL) was proposed on the premise that heterogeneous data
from various devices share common sample IDs but have distinct feature spaces.
Thus VFL focuses on the correlation between devices from different sectors. In a
typical VFL process, data with common sample IDs are retrieved and used to train
a machine learning model. Distinguished from HFL and VFL, FTL [126] refers
to situations where data across multiple devices differ in terms of both feature
spaces and sample IDs and is regarded as a significant extension of traditional FL
frameworks [217]. By enabling users to leverage large datasets with well-trained
machine learning model parameters, FTL goes beyond simply allowing users to
exploit only matching data (i.e., data with overlapped feature spaces or sample
IDs) [149].

Google pioneered HFL by utilising data distributed across many local Android
devices to forecast text input without violating privacy regulations [144]. Abad
et al. [3] then developed a hierarchical heterogeneous HFL architecture for extending
HFL to heterogeneous environments, thus optimizing the communication efficiency
in local source devices with heterogeneous networks. Additionally, Bonawitz et al.
[21] designed a secure aggregation scheme based on McMahan et al. [144] to further
enhance the privacy of aggregated intermediate updates. Further research [185, 201]
has been proposed to address the high cost of communication in the HFL framework.

VFL is more difficult to implement than HFL since it requires encrypted user-
ID alignment algorithms [218] for common entities [217] and the authentication of
a fully trusted third-party. To overcome these obstacles, Yang et al. [219] devel-
oped a framework that eliminates the need for a third-party coordinator, and this
framework has proven to be efficient and scalable. Although VFL can handle het-
erogeneous domains, most VFL techniques rely on statistical models such as logistic
regression rather than sophisticated machine learning frameworks, indicating that
this field still demands enormous effort.

FTL has received growing interest in real-world applications, such as smart
healthcare [32], traffic monitoring [136], smart energy [236], and image analysis
[216]. The majority of current FTL systems are based on deep learning architec-
tures [32, 236, 216, 104] that usually freeze the base layers of the global model and
retrain the fully-connected layer on local devices. Chen et al. [32] performed human
activity recognition via FTL, which replaced one of the fully-connected layers with
a correlation alignment layer to facilitate domain adaptation. FTL with deep learn-
ing architectures is efficient due to the highly transferable features in the low-level
layers and the ability to capture specific features in the high-level layers of the deep
network [78].

Since the model parameters still need to be transferred, the FL provides lim-
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ited privacy guarantees for the smart meter data. A prior study has proposed
differential private FL (DPFL) to provide clients with stronger privacy guarantees,
which has been used as the basis for many privacy-preserving FL-based schemes
[27, 95, 166, 202]. Privacy in FL can be divided into global differential privacy FL
(GDPFL) [208], and local differential privacy FL (LDPFL) [27] based on different
noise-adding mechanisms. In GDPFL, the trusted server applies the noise during
the parameter aggregation, whereas in LDPFL, each participant adds noise to the
model parameters before uploading them to the server.

2.3.4 Discussion

TL, FL, and OL are all innovative approaches built on standard machine learning
techniques and has been applied in many popular fields. In this subsection, we will
discuss their implementation scenarios to investigate the most appropriate technique
for each load analysis level. Table 2.2 compares the implementation scenarios of
traditional machine learning, TL, FL, and OL.

Table 2.2: Implementation scenarios of enhancing techniques

Decentralization Heterogeneity
Inadequate Well-labelled

Data

Privacy-Preserving
Client-Side

Personalisation

Real-time Big

Data

Traditional Machine Learning # # # # # #

Transfer Learning # ! ! # ! #

Federated Learning ! ! ! ! ! #

Online Learning # # # # # !

Traditional machine learning relies on a massive amount of well-labelled cen-
tralized data and assumes that all data collected are homogeneous [154] to build
the load analysis models. However, many real-world load analysis tasks require a
more scalable, private, and dynamic machine learning framework that can manage
real-time load sequences from IoT devices. TL, FL, and OL were therefore proposed
as enhancing solutions to build advanced models.

TL enhances target model performance by providing learners in target domains
with a baseline performance rather than starting from scratch, thereby reducing
computational overhead [122]. The appliance level load analysis requires sufficient
labeled dataset from individual appliances to accurately extract the load patterns
from historical aggregated load, Therefore, combining TL with appliance level load
analysis is a suitable choice, which will be discussed in Chapter 3.

In the new era of big data, a prominent application scenarios is modelling real-
time smart meter data, which typically become obsolete within hours or even min-
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utes [239], such as real-time non-intrusive load monitoring systems for elderly living
alone [11]. Additionally, there is a cold start [118] problem in real-world load anal-
ysis tasks, which refers to new clients or datasets incoming into the load analysis
system at the individual building and higher aggregation levels. Thus, it is vi-
tal to incorporate the OL paradigm with load analysis models to overcome these
constraints, which will be explored in Chapter 4.

FL is applicable in situations where the datasets are heterogeneity between
individual client devices. Besides, FL keeps the raw data stay in the local client
side and only requires the updating of the local model parameters, which provide a
certain level of privacy guarantee for the model training process. The appliance level
load analysis has the potential to reflect the daily routines of the clients, and thus
may raise privacy concerns. Moreover, different clients may have different appliance
usage habits, which produce heterogeneous load usage patterns. Therefore, applying
FL to appliance level load analysis is a more practical way to train a well-performed
central model without exposing the privacy of the clients, which will be further
discussed in Chapter 5.

2.4 Chapter Summary

This chapter introduces the background of smart meter-based load analysis and
reviews the related state-of-the-art. The two essential steps of load analysis, load
profiling and load forecasting are reviewed, followed by a multi-level load analysis
discussion. Furthermore, enhancement techniques are presented for enabling smart
meter data analysis in distributed and real-time settings, which is necessary for
understanding the remainder of this thesis.

Nevertheless, most research has focused on building precise models with minimal
errors using an pre-given/offline dataset in a centralized environment. However, few
studies have explored the effectiveness of applying the above mentioned enhance-
ment techniques to load demand analysis at different levels. On the other hand,
the reviewed enhancement techniques has been proved in other fields, but they
are rarely used for load demand analysis. Therefore, this thesis explores different
enhance techniques to analyse different levels of load consumption.



Chapter 3

Load Profiling and Forecasting
System for Multi-Level Smart
Meter Data Analysis

3.1 Introduction

The installation of smart meters has made it possible to access high-resolution
load consumption data, which has increased the accuracy of load forecasting at the
aggregation level and enabled data-driven load forecasting at an individual building
level and even appliance level. This chapter aims to analyze smart meter data at
different levels in a traditional offline setting.

NILM using smart meter readings is an ambient intelligence solution for many
modern application scenarios. For example, a NILM framework combined with ab-
normal detection techniques can provide telehealth care for elders and patients with
care needs, reducing burdens on caregivers and the health system. In the first part
of this chapter, in order to analyze appliance level smart meter data, a novel deep
neural network model for NILM has been proposed, which disaggregates household
electricity usage into individual appliance consumption utilising the sequence-to-
point model and transfer learning. The daily behaviour regularities of residents are
then inferred by combining principal component analysis and k-means clustering
based on the disaggregated appliance level consumption. The appliance level load
forecasting framework of this part is adapted from our paper 6.

Rather than extracting the load patterns of individual appliances from histori-
cal aggregated load, smart meter data analysis at building and higher aggregation
levels make predictions of future load patterns. It is essential to develop customized
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and effective load forecasting frameworks at the individual building level to ac-
commodate the differences in load consumption behaviour within each building.
However, individual buildings usually exhibit high randomness, the smart meter
data collected from which may hinder the forecasting performance of the models,
making the forecasting problem at the building level more challenging. Meanwhile,
aggregating smart meter readings across buildings can reduce randomness and im-
prove forecasting results. Therefore, forecasting models may perform differently at
different aggregation levels because the predictability of smart meter data varies.

3.2 Problem Statement

As aforementioned, the load analysis for the smart meter data can be divided into
the appliance, individual building, and higher aggregation levels. The appliance
level load analysis allows consumers to identify their electricity consumption pat-
terns for individual appliances, participate in demand side response through smart
meters, and make informed decisions regarding their electric bills. The most popular
method for forecasting appliance level load is NILM [81], in which the operational
status (ON/OFF) or the electricity consumption of each appliance is determined
using only the aggregated load from all the appliances. Table 3.1 presents the key
challenges discussed in this chapter, along with their corresponding applications
and benefits for different load analysis levels.

Individual building level load forecasting becomes increasingly important with
emerging applications in demand response, microgrids, and peer-to-peer energy
trading. Despite the challenges of predicting individual building energy usage due to
its randomness, higher-level load forecasting is often utilized in community energy
management and grid operations applications.

The last few decades have seen the development of many smart technologies to
assist people in their daily lives [115] [135], such as intrusive load monitoring to help
residents better understand their appliance usage patterns. The majority of these
devices, however, are required to be intrusively attached to users or installed in
residential environments, which will have an unpredictable negative psychological
effect since many residents tend to reject noticeable devices [228]. As a result,
delivering various smart services utilising assistive technology that emphasizes self-
management and autonomy is more desirable.

NILM using smart meter readings, is an ambient intelligence solution for appli-
ance level smart meter analysis, which utilizes algorithms to derive the state and
load consumption of the individual appliance in the households based on their smart
meter readings. The disaggregated results can then be used for further analysis to



CHAPTER 3. LOAD PROFILING AND FORECASTING SYSTEM FOR
MULTI-LEVEL SMART METER DATA ANALYSIS 32

Table 3.1: Summary of focused challenges, applications and advantages of different
load analysis levels

Load Analysis Levels
Focused

Challenges

Applications Advantages

Appliance Level (NILM)
Inadequate well-labelled data,

client-side personalization

Demand response,

microgrids,

and peer-to-peer

energy trading

Delivers various

smart services

utilising assistive

technologies

Individual Building Level

High-resolution smart meter

data analysis,

seasonal load usage

pattern variations,

model performance

Energy system

operation,

peer-to-peer

energy trading

Essential for the

reliable and economical

grid operation

Higher Aggregation Level

Regional load consumtion

analysis,

model performance

Distribution

network operations

Important to the

planning of building

energy systems

monitor the activities of daily life (ADLs) of the smart meter users and timely detect
abnormal behaviours combined with the abnormal detection techniques. Compared
to intrusive monitoring, which focuses on hardware deployment, non-intrusive mon-
itoring hardware facilities are simple and easy to install and maintain. Moreover,
smart meter big data are considered a cost-effective source to achieve NILM with the
rolling out of smart meters [5]. Using electricity consumption data (e.g., current,
voltage, active power) collected by smart meters to infer ADLs [101] is a practi-
cal and commercially feasible method. Therefore, this section proposes an ADLs
pattern recognition NILM framework to analyze appliance-level smart meter data.

Buildings account for up to 40% of the global energy consumption [164] as an
indispensable role in day-to-day life. Building load forecasting is vital in improving
the flexibility and reliability of energy system operations [146]. With the installation
of smart meters, building-level high-resolution load consumption data become avail-
able, providing more opportunities for load forecasting applications at the building
level (e.g., peer-to-peer energy trading) and aggregation level (e.g., distribution
network operations).
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Building load forecasting is essential for the reliable and economical operation
and planning of building energy systems. Building load forecasting models can gen-
erally be categorized into the building physics-based approach and the data-driven
approach. The former requires detailed physical information (such as building ma-
terial types and ventilation system parameters which are often difficult to obtain)
to calculate the thermal dynamics and load consumption behaviours of individual
buildings [205]. Moreover, the physics-based approach often leads to unsatisfactory
forecasting results due to inevitable errors in the process of information collection
[180]. In contrast, the data-driven approach, such as machine learning-based fore-
cast models, which uses real-world data to find the hidden relationship between
independent variables and the response variable, has been widely emphasized in
building load forecasting during the past two decades for its superior performance
[213].

Traditionally, building load forecasting is conducted to forecast at the aggrega-
tion level, such as the hourly aggregation readings in a community. In contrast,
high-resolution data are rarely available for load forecasting at individual buildings.
The widespread deployment of smart meters makes it possible to forecast and ana-
lyze building level load consumption with greater precision [147]. Individual meter
readings can be collected by smart meters so that different levels of aggregation
can be analysed. Data collected from smart meters for individual buildings indicate
that the load patterns of these buildings are largely determined by the behaviour
of the building residents, which is highly unpredictable, as discussed in Section 2.2.
Consequently, load forecasting models perform worse on individual level smart me-
ter data than aggregated data at a higher level. To improve forecasting accuracy
for individual level load forecasting, rather than simply applying advanced forecast-
ing models, it is necessary to use enhancing techniques such as feature engineering
during the data processing stage.

Motivated by the above analysis, we propose a consensus-based load profiling
and forecasting system, which firstly identifies the underlying physical factors that
affect the electricity consumption behaviours in different seasons and track the
dynamic cluster trajectories of the 169 real-world buildings throughout the whole
year. In addition, key driving factors influencing electricity consumption patterns
are identified by quantifying the importance of the load-related features. Different
forecast models are explored at both the building and aggregation levels.
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3.3 Appliance Level load Analysis: An ADLs Patterns
Recognition NILM Model

3.3.1 Preliminaries

We introduce several essential concepts related to the proposed ADLs Patterns
Recognition NILM Model in this section.

3.3.1.1 Non-intrusive load monitoring

Given the aggregated load Lt at time t:

Lt =
I∑

i=1

lit + γt, (3.1)

the goal of NILM is to recover the status of I target electrical appliances. lit and γt
denote the load consumption for the i-th appliance and the residual/unmonitored
load respectively at time t. NILM can be formulated as either a classification or a
regression task depending on the status variables of individual electrical appliances
we aim to recover.

For the regression task, the NILM model aims to find the approximation, de-
noted as F , of the true relationship between the aggregated household-level con-
sumption (Lt) and the appliance-level consumption

LLL = [l̂1t , l̂
2
t , . . . , l̂

i
t, . . . , l̂

I
t ] = F (Lt), (3.2)

where LLL is the predicted load consumption sequence of I target electrical appliances
at time t.

For the classification task, thresholds need to be set for the NILM model to
determine the states (e.g., ON/OFF) of each target appliance. A commonly used
threshold method is the activation-time thresholding, which could avoid the neg-
ative effect of the abnormal spikes during the OFF state to improve the inference
accuracy [102]. For the sake of simplicity, we assume that there are two typical
states (ON/OFF) for the target appliances, and the state sit for i-th appliance at
time t is related to its threshold λi

sit =


1, lit ≥ λi

0, lit < λi,

(3.3)
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where 0 represents the OFF state, and 1 denotes the ON state. Therefore the
classification task for NILM can be defined as

SSS = [ŝ1t , ŝ
2
t , . . . , ŝ

i
t, . . . , ŝ

I
t ] = Fs(Lt), (3.4)

where ŝit is a binary variable indicating the predicted ON/OFF state of i-th electrical
appliance at time t.

In the real scenario, the general goal of NILM is to infer the electricity user
behaviour of each household from their smart meter readings. NILM can be for-
mulated as either a classification task or a regression task depending on the status
variables of individual electrical appliances we aim to recover.

3.3.2 Framework Design Overview

By utilising NILM, the proposed ADLs pattern recognition NILM framework is
intended to infer the ADLs of smart meter users to assist in various real-world
application scenarios, including monitoring patients in real-time to ensure consis-
tent tracking of disease deterioration and implementation of timely intervention
measures. Fig. 3.1 shows the proposed framework.

Figure 3.1: The proposed ADLs pattern recognition NILM framework.

The aggregated load consumption of the users is summarized by the smart meter
and automatically upload to the ADLs pattern recognition model. After learning
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valuable signatures for each appliance, the model can disaggregate the target appli-
ances’ consumption related to ADLs and then summarize the ADLs pattern of the
smart meter users. Then, ADLs pattern recognition reports will be generated and
delivered through the client application to the related users

Since accurate load disaggregation remains a recognized challenge, we propose
an ADLs pattern recognition model based on an improved NILM architecture. The
disaggregated appliance level loads are then further analysed using PCA and k-
means to detect and visualize the ADLs of the smart meter users. The use of PCA
aims to extract more orthogonal features from the disaggregated results. Then, we
choose to use k-means clustering to classify the extracted features from PCA since
it is easy to implement. The following sections describe the details of ADLs pattern
recognition and related methods.

3.3.3 Implementation

The ADLs pattern recognition model implementation contains two parts, as shown
in Fig. 3.2. The first part (green) is an improved NILM architecture based on
sequence-to-point and transfer learning. In this part, valuable signatures for repre-
sentative appliances will be learned and the target appliances’ consumption related
to ADLs will be disaggregated. The second part (blue) applies PCA and k-means to
detect and visualize the ADLs of the smart meter users based on the disaggregation
results.

Figure 3.2: ADLs pattern recognition model implementation.

3.3.3.1 An improved NILM architecture

Electrical devices are divided into switch type, finite-state type, and continuous
variable type [81]. The switching devices only have one status after starting, such
as kettles. Finite-state devices allow transitions between multiple states once turned
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on, such as washing machines and dishwashers. Continuous variable devices have
infinite states, such as sewing machines. Since the energy consumption of the contin-
uous variable devices is usually insignificant, it is not considered in our framework.
The earliest NILM algorithm was based on combinatorial optimization, aiming to
determine the best combination state of the monitored electrical appliances and
make the total combined power as close as possible to the real meter reading. The
DNN was firstly applied to NILM by Kelly and Knottenbelt [102] where experi-
ment results indicated its superior performance over traditional methods such as
the FHMM.

Unlike the traditional deep neural network, the sequence-to-sequence model uses
a sliding window to get the neural network input. By dynamically setting various
possible sliding window sizes, the output value of the sliding window at each time
step is predicted and averaged. This method has been proven effective in NILM
[102]. However, in the sequence-to-sequence model, the element of the output signal
needs to be computed multiple times, which brings redundancy to the calculation.
The sequence-to-point model [234] is brought forward to solve this problem. The
input of the sequence-to-point model is also a sliding window applied to the main
power supply, and the output is a single point from the target appliance. The
sliding window ensures that the model learns contextual information of the data,
and the output is only the midpoint of the window, which can significantly reduce
the computational cost during training.

The original model in D’Incecco et al. [52] can achieve satisfactory disaggregation
accuracy, but it has the same limitations as other deep neural network models,
such as long training time and high computational cost. To deal with this, an
improved NILM architecture based on the above model was proposed, as shown
in Fig. 3.3. Specifically, dropout with a rate of 0.5 was used in CNN to improve
the generalisation ability of the model. Moreover, one-dimensional CNN is used
to replace two-dimensional CNN. Besides, we use the trained convolution neural
network parameters of the washing machine as the pre-trained model for other
appliances and then only train the dense layer for other appliances to complete
transfer learning. In the proposed model, one-dimensional CNN was adopted to pre-
train the model based on the washing machine, which was proved to be able to learn
more active channels than other appliances (kettle, fridge, microwave, dishwasher).
The individual consumption patterns of other appliances were then fed into the
dense layer and combined with the pre-trained CNN (frozen part in Fig. 3.3) to
update the final model to achieve appliance transfer learning. Our improved neural
network model is expected to accurately conduct NILM for the target appliances
from the unseen house and improve the training efficiency of the model.
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Figure 3.3: Improved NILM model based on sequence-to-point and transfer learning.

3.3.3.2 Principle components analysis

PCA is a mathematical dimensionality reduction method that converts potentially
linearly correlated variables into a new set of linearly unrelated variables using
orthogonal transformations [172]. PCA is utilized in the model to make the feature
more orthogonal and get the new feature.

Specifically, the original disaggregated load consumption matrix of the i-th ap-
pliance is

(l̂itp)T∗P =


l̂i11 · · · l̂i1P
...

...
...

l̂iT1 · · · l̂iTP

 (3.5)

where T represents the total T time point, and P denotes the features from the
disaggregated load consumption of the i-th appliance.
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Then, the mean of the disaggregated load consumption of the i-th appliance
¯̂
li

was calculated to eliminate the impact of features with different magnitudes, and
the l̂i can be written as

l̂i∗ = l̂i − ¯̂
li. (3.6)

Assume Σ is the variance-covariance matrix associated with l̂i∗, and Σ is fac-
torable into eigenvalues and eigenvectors (λ1, e1), . . . , (λP , eP ). The principle com-
ponents can be represented by

PC = ep l̂
i∗ = e1 l̂

i∗
1 + e2 l̂

i∗
2 + · · ·+ eP l̂

i∗
P . (3.7)

Then, based on the obtained components, the goal of PCA is to choose the first
n PCs to maximize the variance of these PCs and minimize the variance of the last
(P − n) PCs such that ∑n

i=1 λi∑P
i=1 λi

≥ γ, (3.8)

where γ ∈ [0, 1] is a constant to ensure the variance of the unselected PCs sufficiently
small, we here chose γ = 0.95 to get the new features, which result in the final
projected two-dimensional features.

3.3.3.3 K-means clustering

K-means is an iterative clustering algorithm that divides the data set into k clusters
through similarity index evaluation. K-means initialises k centroids representing k
clusters, and each data point is assigned to the nearest cluster. The clustering
centroid is then updated as the mean vector of all sample points in the updated
cluster, and the optimal clustering result will be found through repeated iteration.
Due to that k-means is simple, and the interpretability of its clustering results
satisfies the easy-to-distinguish features of the target appliances, after obtaining the
new two-dimensional features via PCA, k-means is adopted to cluster the feature
set to identify hours in a day when the users are most likely to use each appliance.
To use the k-means method, it is necessary to decide on the number of clusters,
denoted by k. We followed the elbow method [191] to determine the best value for
k, ultimately selecting 2 as the final value.

3.3.4 Evaluation and Discussion

3.3.4.1 Evaluation indicators

For comparison and evaluation purposes, mean absolute error (MAE), normalized
signal aggregated error (SAE), and F1 score are used to evaluate the performance of
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the model. Besides, the hit rate (HR) is used to represent the correct classification
rate of ADLs pattern recognition.

To test the prediction accuracy at each time point (i.e., the absolute difference
between the predicted load l̂it and the ground truth lit of the i-th appliance), MAE
is adopted.

MAE =
1

T

T∑
t

|lit − l̂it| (3.9)

In order to evaluate the relative error between the predicted total consumption
(l̂it) and the actual total consumption of the i-th appliance (lit), SAE is adopted.

SAE =
|lit − l̂it|
lit

(3.10)

The F1 score is utilized to verify the accuracy of each appliance’s state recogni-
tion.

Precision =
TP

TP + FP
(3.11)

Recall =
TP

TP + FN
(3.12)

F1 = 2 ∗ precision ∗ recall
precision+ recall

(3.13)

where TP (true positive) denotes the sample is positive, and the predicted result
is also positive. FP (false positive), predicting the negative sample to be positive.
FN (false negative), predicting positive samples to be negative. The precision of a
model determines its ability to identify negative samples, while the recall reflects its
ability to identify positive samples. The F1 score is a combination of both metrics,
and a higher F1 score indicates that the model is more reliable. It should be pointed
out that the calculation of the F1 score needs to use a threshold to determine the
ON/OFF status of the target appliance. The threshold values of the switching state
of the appliances are obtained directly from the description file in the dataset.

In order to verify the accuracy of ADLs pattern recognition, HR is used.

HR =
hc
24
∗ 100% (3.14)

where hc denotes the number of hours of a day that correctly classify the ON/OFF
states of an appliance.
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3.3.4.2 Data source and preprocessing

We chose UK-DALE [103] as the source data set, and the sampling interval of each
sub-meter was 6s. To carry out the comparative experiment, we resampled the
data to 8s to align with the data sampling interval in D’Incecco et al. [52]. The
UK-DALE dataset consists of five houses in which the kettle, fridge, microwave,
washing machine, and dishwasher are commonly used appliances closely related to
the ADLs of smart meter users. Motivated by Kelly and Knottenbelt [102], Zhang
et al. [234], and Zhong et al. [240], the target devices selected in the model include
the kettle, fridge, microwave, washing machine, and dishwasher. Since only houses
1 and 2 in UK-DALE have all these five appliances, we used house 1 as training data
to train the improved deep neural network and implement NILM at the appliance
level to the unseen house (i.e., house 2 as the test set) via transfer learning.

Abnormal missing data are firstly imputed with mean values. The data are then
normalized to facilitate further training of the neural network model.

3.3.4.3 NILM model evaluation

Different experimental environments have different training costs for the same model.
In order to verify the training efficiency of the improved neural network, we crop
training data into 100000 samples as input to feed the proposed neural network, and
the original neural network [52] respectively. Percentages of time and parameters
saved by the new model (trained on the washing machine) are shown in Table 3.2.

Table 3.2: Number of parameters, training time, and saving percentages of the
proposed model compared to the original model

Original model [52] Proposed model Saving percentages

No. of parameters 10,228,249 1,302,139 87.2%

Training time (s) 66.13 27.67 65.7%

It can be seen that the improved model significantly saves the training cost of
the original model and improves training efficiency.

The data collected from house 1 in UK-DALE (from November 2012 to Novem-
ber 2013) were used as the training data, and the data from house 2 (from May 20,
2013, to October 10 of the same year) were used as the test data. Fig. 3.4-Fig. 3.8
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visualize the load disaggregation results of five target devices in the original and
the improved models. Table 3.3 shows the training results for the improved and
original models.
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Figure 3.4: Load disaggregation results for kettle
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Figure 3.5: Load disaggregation results for fridge

The above comparative results indicate that the improved model could achieve
satisfactory disaggregation with similar accuracy to the original model. In other
words, the improved model is competent for load disaggregation on the premise of
significantly saving training time.

It is worth mentioning that the improved model performs better than the original
model in switching devices such as the fridge and kettle. MAE of the fridge by
the proposed model decreased from 25.10 to 20.36 of the original model. The
visualization results also show that the fitting shape of the proposed model for the
fridge and kettle is better than that of the original model. On the other hand, more
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Figure 3.6: Load disaggregation results for dishwasher
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Figure 3.7: Load disaggregation results for microwave
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Figure 3.8: Load disaggregation results for washing machine
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Table 3.3: Test results for the proposed model and original model; Best results are
marked in bold

Proposed model Original model

MAE SAE F1 MAE SAE F1

Kettle 9.90 0.05 0.91 10.21 0.03 0.86

Fridge 20.36 0.26 0.81 25.10 0.21 0.71

Dishwasher 23.45 0.46 0.69 12.87 0.03 0.53

Microwave 14.48 0.98 0.53 7.14 0.35 0.52

Washing machine 7.17 0.35 0.73 7.12 0.45 0.80

accurate disaggregation results were obtained from the original model for finite-
state devices with more complex operation statuses, such as dishwashers, washing
machines, and microwaves. For the state recognition of each appliance, the improved
model is superior to the original model on most of the target appliances (see F1

metrics).

3.3.4.4 ADLs pattern recognition evaluation

The dataset we used allows us to calculate the power consumption of the target
appliance in hours. To detect ADLs of the smart meter users, we calculate the
mean power consumption and the frequency of power consumption in each hour
for each appliance based on the predicted load disaggregation results. Fig. 3.9
shows the predicted and true use frequency of the dishwasher and microwave. The
frequency of use is calculated by the ratio of the number of days that the appliance
has been used in that hour to the total number of days considered. The mean power
and usage frequency are taken as two features to conduct PCA, and then k-means
is applied to cluster the new feature set, thus inferring the time of a day when the
occupant is most likely to use the target appliance. Table 3.4 lists the HR of five
target appliances for house 2. To better demonstrate the ADLs pattern recognition
performance, Fig. 3.10 compares the inferred cluster results of dishwasher and
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microwave with the clustering results based on ground truth data. It can be easily
found that the dishwasher (with an HR of 100%) is most likely to be used around
dinner time.

00 02 04 06 08 10 12 14 16 18 20 22

Time/h

U
s
e
 f
re

q
u
e
n
c
y

0
.0

0
0

0
.0

1
0

0
.0

2
0

00 02 04 06 08 10 12 14 16 18 20 22

Time/h

U
s
e
 f
re

q
u
e
n
c
y

0
.0

0
0

0
.0

1
0

0
.0

2
0

true
predicted

(a) Kettle

00 02 04 06 08 10 12 14 16 18 20 22

Time/h

U
s
e
 f
re

q
u
e
n
c
y

0
.0

0
0
.1

0
0
.2

0
0
.3

0

00 02 04 06 08 10 12 14 16 18 20 22

Time/h

U
s
e
 f
re

q
u
e
n
c
y

0
.0

0
0
.1

0
0
.2

0
0
.3

0

true
predicted

(b) Dishwasher

00 02 04 06 08 10 12 14 16 18 20 22

Time/h

U
s
e
 f
re

q
u
e
n
c
y

0
.0

0
0

0
.0

1
0

0
.0

2
0

00 02 04 06 08 10 12 14 16 18 20 22

Time/h

U
s
e
 f
re

q
u
e
n
c
y

0
.0

0
0

0
.0

1
0

0
.0

2
0

true
predicted

(c) Microwave

Figure 3.9: Usage frequency comparison of kettle, dishwasher and microwave
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Figure 3.10: ADLs pattern recognition for dishwasher and microwave: cluster 1
represents the OFF status and cluster 2 represents the ON status

Table 3.4: Hit rate for the target appliances

HR

Kettle 100.00%

Fridge 75.00%

Dishwasher 100.00%

Microwave 66.67%

Washing machine 95.83%
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It can be seen from Table 3.4 that the improved network model can accurately
infer the ADLs pattern of participants using the kettle, dishwasher, and washing
machine. However, for the fridge and microwave, the inference results still have
room to be improved.

As aforementioned, the proposed model produced less accurate disaggregation
results for dishwashers and microwaves. As shown in Fig. 3.9, compared with the
kettle, the predicted use frequency results of both the dishwasher and microwave
deviated significantly from the ground truth. However, it is interesting to note that
the HR for the dishwasher reached 100%, whereas the microwave only achieved an
HR of 66.67%. One possible reason for this could be that although the predicted
use frequency for both the dishwasher and microwave was mediocre compared with
that of the kettle, the overall trend of the dishwasher was similar to the ground
truth. Instead, the predicted use frequency for microwaves differed much from the
ground truth. Therefore, the ADLs pattern recognition model may produce less
accurate cluster results for microwave usage than the dishwasher, as seen from Fig.
3.10.

Overall, the proposed model is useful for performing ADLs pattern recognition
based on NILM. Moreover, the obtained results based on ADLs pattern recognition
can be used as inputs and prior knowledge to abnormal detection algorithms. In
this way, abnormal behaviour of the appliance can be monitored, and potential risks
can be detected in time, which will be further investigated in our future work.

3.4 Individual Level and Higher Aggregation Level load
Forecasting: A Consensus-based load Profiling and
Forecasting System

3.4.1 Framework Design Overview

In the proposed system, we consider real-world smart meter data collected from
buildings in Cardiff, UK, where the load for different buildings in different seasons
vary. The data used in this model are collected from Cardiff Council [1], which
includes different types of buildings such as office buildings, community facilities,
schools, and cultural buildings. Data on historical load were collected every half
hour, and missing values below 20% were replaced by column means. We removed
other missing data since they may adversely affect forecasting accuracy during the
model training phase. The pre-processed data of each building includes half-hourly
load records in 2015 and physical information such as building type, number of
floors, energy rating certificate, and heating types. The detailed physical informa-
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tion of the considered buildings is shown in Table 3.5.

Table 3.5: Physical information of the considered 169 buildings.

Building

Type

Count
Floor

Number

Count
Heating

Type

Count
Energy Rating

Certificate

Count

Primary Schools 63 0 6 Gas 158 A 2

Community Facilities 29 1 51 Biomass 1 B 5

High Schools 21 2 75 Electricity 1 C 42

Leisure and Sports 11 3 21 Oil 1 D 46

Care Services Buildings 10 4 9 NA 8 E 22

Workshops and Depots 10 5 3 F 5

City Services 7 6 1 G 6

Key and Cultural 6 7 1 N 37

Parks Buildings 6 NA 2 NA 4

Core Offices 6

Most buildings are educational, with at most three floors and predominantly
gas heating. Most of the buildings are on the mid-level of energy rating (C to
E). Buildings with different physical characteristics may display different electric-
ity consumption patterns. Analysing the relationship between physical factors and
load usage patterns can assist grid operators in optimizing building energy manage-
ment strategies. The proposed system aims to understand the relationship between
physical characteristics and load usage behaviour of buildings, as well as to de-
velop customized load forecasting models for building groups that display different
load usage patterns. The system also aims to investigate the relationship between
different forecasting algorithms and load consumption patterns at different data
aggregation levels.

A graphical overview of the system framework is shown in Figure. 3.11 and ex-
plained step-by-step in subsections 3.4.2. Specifically, the proposed system frame-
work contains four layers. Layer 1 segments the historical building smart meter
data into seasonal time series and normalizes the data to prepare it for unsuper-
vised modelling. After this, layer 2 conducts the consensus-based robust clustering
to cluster the buildings with similar load usage patterns in different periods. Then,
layer 3 analyzes the clustering profiles, including their relationship patterns with
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the building physical characteristics and the dynamic load usage profiles trajec-
tory tracking route. By analysing cluster results, we can identify key drivers that
affect building load consumption in different clusters, which can help to develop
customized load forecasting models for each building cluster at layer 4. Specifically,
to assist the individual level forecasting, feature selection was adopted to enhance
the model performance further. Then, layer 4 explores the relationship between
the performance of different forecast algorithms and consumption patterns at both
the clustered building and aggregation levels. In the final stage, consensus-based
model training will be conducted to select the most appropriate forecasting models
for smart meter data on both levels.

3.4.2 Implementation

3.4.2.1 Building smart meter data management

To understand the typical characteristics of the building smart meter data, we first
briefly analyze the load usage patterns associated with different physical building
factors in different seasons. This study uses load consumption data from 169 Cardiff
buildings in 2015, and the average daily load consumption regarding physical infor-
mation of the considered buildings is summarized in Figure 3.12-3.15.

As observed, core offices, high schools, key and cultural buildings, and leisure
and sports buildings consume the most significant amount of electricity throughout
the year. The peak load time for most buildings is between 10:00 and 14:00, the
busiest working hours. In contrast, buildings that provide care services, community
facilities, parks, primary schools, workshops, and depots use less electricity through-
out the year. During spring and summer, the city services buildings consume more
electricity in the mornings and at night, while they consume very little electricity
in the autumn and winter.

In addition, buildings that have fewer floors consume less electricity, whereas
buildings with more floors consume more. In addition, buildings heated by biomass
consume the most considerable amount of electricity throughout the year. Other
heating methods, including electricity, gas, and oil, consume much less load when
compared to buildings heated by biomass. It is noteworthy that, unlike other heat-
ing types, which consume more electricity during peak hours in the cold season,
buildings heated by electricity have lower load consumption during winter peak
hours. This could be explained by the fact that, for buildings with electricity as the
primary heating source, there are usually storage heaters/hot water tanks along-
side to fully take advantage of time-of-use electricity prices (e.g., Economy 7 in the
UK) where radiators/water tanks are heated and stored during the off-peak periods
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Figure 3.12: Load consumption of different types of buildings in four seasons.
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Figure 3.13: Load consumption of different number of floors in four seasons.
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Figure 3.14: Load consumption of different heating types of buildings in four sea-
sons.
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Figure 3.15: Load consumption of different building energy rating certificate in four
seasons.



CHAPTER 3. LOAD PROFILING AND FORECASTING SYSTEM FOR
MULTI-LEVEL SMART METER DATA ANALYSIS 55

(usually from around midnight to early morning) and are used later (e.g., during
daytime), thus resulting in different peak load periods between buildings heated by
electricity and those heated by other energy sources during winter.

Based on the seasonal segmentation, we aim to model the load profiles of the
buildings in layer 2 using unsupervised learning techniques. However, these algo-
rithms must deal with scale and translation invariance to prioritize the shape fea-
tures of the load patterns over amplitude ones, especially for time series clustering
[98, 50, 211]. Therefore, z-normalization was used to normalize the load profiles:

Zj =
xj − µj
sj

(3.15)

where Zj are the normalized values calculated for all load profiles xj for season j.
µj and sj represent the mean feature value and the standard deviation, respectively.
We use the mean feature value and the standard deviation over the season months
rather than the whole year for the seasonal load profiles. It is important to use this
segmented normalization because we are focusing on dividing offices by seasons.
This will enable us to determine the dynamic trajectory of the load usage behaviour
in different seasons.

To assess the suitability for clustering before and after the z-normalization,
we then used a function get clust tendency from the factoextra library in R.
Table 3.6 presents Hopkins statistical scores for the raw and z-normalized data in
the four seasons. The z-normalized data generates the highest scores for all four
seasons, indicating that more meaningful clusters are present in the data set after
z-normalizing.

Table 3.6: Frequency analysis of the physical information for the simulated offices.

Cluster tendency (Hopkins statistic)

Spring Summer Autumn Winter

Raw data 0.95 0.96 0.96 0.98

Z-normalized data 0.98 0.98 0.99 0.99

3.4.2.2 Consensus-based unsupervised modelling

In layer 2, we perform clustering on the normalized seasonal load records segments.
Clustering algorithms must take into account two key components: distance mea-
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surements and prototyping functions [148]. It has been demonstrated that clustering
results can be unstable when only one clustering algorithm is used [92, 184]. For
this reason, we employ consensus-based robust clustering across multiple distance
measurements and prototype combinations , which uses three cluster validity in-
dices to select the optimal cluster algorithm by majority voting. Table 3.7 lists the
clustering algorithm combinations used in the proposed system.

The Euclidean distance [173], which approximates a one-to-one correspondence
between each pair of sequences, is the most commonly used distance measurement.
On the other hand, time series distance measurements must be invariant to spe-
cific distortions of the data to yield accurate results, which has been regarded as
a limitation of the Euclidean distance [173]. Therefore, except for using the Eu-
clidean distance, two state-of-the-art distance measurements, namely the dynamic
time warping distance (DTW) [19] and the shape-based distance (SBD) [160] also
adopted in the model to produce more accurate similarity measurements for the
load profiles.

To quantitatively choose the optimal number of clusters and also evaluate the
clustering results, three cluster validity indices (CVIs) are used in the validation
process to produce robust validation results: The silhouette index, Davies-Bouldin
(DB) index, and Calinski-Harabasz (CH) index. These metrics simultaneously mea-
sure the cohesion of the objects within clusters and the separation between clusters.
For the Silhouette index, it is obtained by contrasting the average distance of ob-
jects within the same cluster with the average distance to objects in other clusters
where it takes values between -1 and 1. Cluster configurations with a higher Silhou-
ette index value are considered to be more optimal. Similarly, a higher CH index
value signifies a better clustering result. In contrast, for the DB index, a lower
value indicates a better clustering configuration. A more detailed description of the
evaluation metrics can be found in [46] and [183].

3.4.2.3 Dynamic building load profiling

After the consensus-based unsupervised modelling, a dynamic clustering structure
is adopted in layer 3 to capture seasonal/dynamic changes of load usage behaviours
in different buildings, which is inspired by de Zepeda et al. [46]. The proposed
dynamic building load profiling structure is illustrated in Figure 3.16.

Under the dynamic profiling structure, individual consensus-based clustering
analysis is implemented for each season. The ultimate clustering results through
the dynamic clustering structure consists of two parts: (1) relationship pattern
between the clusters and the physical factors of the buildings. (2) dynamic load
usage behaviour trajectories of each building.
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Table 3.7: List of the used combination of the consensus-based clustering algorithm.
DTW: dynamic time warping, SBD: shape-based distance; PAM: partition around
medoids; DBA: DTW barycenter averaging.

Distance measurements

& Equations

Cluster

prototypes
Description

Euclidean Distance:

decul(y
a
i , ck) =

√∑24
i=1(y

a
i − ck)2

K-means

Random initialise K cluster centers, then

the Euclidean distance between the load

vector yai and the cluster center ck is

minimized. For each cluster k, update the

cluster center ck to be the mean attribute

vector of all observations in cluster ck.

PAM

Random initialise K cluster centers, then

the Euclidean distance between the load

vector yai and the cluster center ck is

minimized. For each cluster k, update the

cluster center ck by finding the representative

load vector yai that minimizes the

Euclidean distance to other vectors in

this cluster.

DTW:

ddtw(ya, yb) =
min

√∑P
p=1 ωp

P ,

ωp = (yai − ybl )2 ∈ [1 : 24]× [1 : 24]

DBA

Random initialise K cluster centers, then

the DTW distance between the load

vector yai and the cluster center ck is

minimized. For each cluster k, update the

cluster center ck by finding the representative

load vector yai that minimizes the DTW

distance to other vectors in this cluster.

SBD:

dsbd(ya, ck) = 1− max(NCCc(ya,ck))
∥ya∥2∥ck∥2

Shape extraction

Random initialise K cluster centers, and then

update the cluster center ck by finding the

maximized normalized cross-correlation

based on the SBD distance.

Where:

ya = (ya1 , y
a
2 , . . . , y

a
i , . . . , y

a
24) and yb = (yb1, y

b
2, . . . , y

b
l , . . . , y

b
24) are two daily load curves;

for ddtw, ωp ∈ {ω1, . . . , ωp, . . . , ωP } is defined as the warping path and satisfying the following

three conditions:

• Boundary condition: ω1 = (1, 1) and ωP = (24, 24).

• Monotonicity condition: i1 ≤ i2 ≤ . . . ≤ iP and l1 ≤ l2 ≤ . . . ≤ lP .

• Step size condition: ωp+1 − ωp ∈ {(1, 0), (0, 1), (1, 1)} for p ∈ [1 : P − 1].

for dsbd, NCCc is the cross-correlation with coefficient normalization sequence between the

load curve ya and the cluster centroid ck, and ∥·∥2 is the l2 norm.
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Figure 3.16: Dynamic analysis to capture seasonal change.

Specifically, the clusters for different seasons are described by testing the dif-
ference in the building physical factors. Since the physical factors (detailed in the
former Table 3.5) can all be seen as the categorical variables, the chi-square test
[161] is adopted to analyze the association between the clusters and the physical
factors. Then, based on the cluster results for each season, the dynamic load usage
behaviour patterns for each building can be tracked, which is a cluster trajectory for
each building (e.g., a cluster assignment for each building under each season). More
importantly, by analysing the dynamic cluster trajectories, typical dynamic clus-
tering trajectories over the year corresponding to the physical factors possessed by
the building can be sketched by category summary. We highlight that the proposed
dynamic building load profiling layer not only allows the investigation of different
load usage behaviours but also facilitates the understanding of seasonal behavioural
changes of the smart meter users.

3.4.2.4 Building load forecasting

Each building has a unique electricity usage pattern due to distinct physical infor-
mation and residential behaviours. Therefore, it is desirable to choose appropriate
forecast algorithms for different consumption patterns. Based on the clustering re-
sults in layer 3, layer 4 aims to build personalized forecasting models for different
cluster groups by consensus-based model training strategy and explore the rela-
tionship between the performance of forecast algorithms and different consumption
patterns at both the building level and the aggregation level. Specifically, different
algorithms are used to build forecasting models, and the consensus-based model
training strategy is to choose the optimal forecasting model with the best perfor-
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mance. Figure 3.17 shows the overall consensus-based model training flow.
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Figure 3.17: Consensus-based model training process at the building level and the
aggregation level.

In this layer, the relationship between the performance of forecast algorithms and
different consumption patterns at both building and aggregation levels are explored.
Specifically, the influential load consumption-related features are determined and
extracted from the clustered data; then RF is adopted to produce the feature im-
portance distribution for both the building level clusters and aggregation level load
data, and the five most significant features are then selected to train the forecasting
models at both levels. After the feature selection, five algorithms (SVR, RF, KNR,
LSTM, functional regression) are applied to build forecast models, with grid search
being used to find the optimal combination of parameters for each model:

• Support Vector Regression

SVR has been widely applied in energy forecasting applications for its high
effectiveness in solving non-linear problems [8]. SVR adopts the structural
risk minimization principle, which minimizes the training error and the up-
per bound of the generalisation error [53]. Given a training dataset T =
(x1, y1), ..., (xi, yi), ..., (xN , yN ), where xi ∈ Rm denotes the i-th observation
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Algorithm 1: Random forest for regression
1 for each b ∈ [1, B] do
2 Select a bootstrap sample Z∗ of size N from the training dataset;
3 Set a minimum node number nodemin, and grow a random forest tree Tb to the

bootstrapped data;
4 repeat
5 Choose r variables randomly from the input variables select the best split point from r;
6 Split the node into two sub-nodes;
7 until reach nodemin

8 end

9 Output: fully grown forest {T}B1
10 To predict at a new point x:

ŷ =
1

B

B∑
b=1

Tb(x) (3.17)

which is a m-dimensional input vector, yi∈R is the output corresponding to xi,
and N denotes the size of training set. For non-linear SVR, the basic idea is
to introduce a kernel function to efficiently map the input space into a higher
dimensional feature space, in which the problem becomes linearly separable
[117]. The decision function of SVR can be represented in Eq. (3.16)

ŷ = ⟨w, ϕ(x)⟩+ b (3.16)

where ϕ(x) is the hypothetical higher dimensional feature space. Coefficients
w and b need to be estimated based on the structural risk minimization prin-
ciple.

A main advantage of SVR is that the loss function penalizes deviations greater
than a threshold, which often leads to the sparse representation of the deci-
sion rule, thus bringing major algorithmic and representational strength [175].
Hence in our paper, we selected SVR as one of the regression algorithms to
perform energy forecasting.

• Random Forest

RF [23] adopts the random method to establish a forest, which is an ensemble
method. RF is often used for classification and regression problems. The RF
for regression is detailed in Algorithm 1 [179].

In Algorithm 1, recall the training dataset of size N , we build B regression
trees on bootstrapped training samples of size N . When a split in a tree is
considered, a random sample of r variables is selected as split candidates from
the full set of m variables. To predict a new point, it uses the average output
of B regression trees; see Eq. (3.17).
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RF achieves high prediction accuracy without increasing computation time.
Moreover, RF is a robust algorithm when applied to data with missing values
or imbalanced data [23]. Therefore, we consider RF one of the comparison
algorithms in layer 4.

• K-Neighbours Regression

The KNR algorithm selects the nearest k load samples y1, ..., yi, ..., yk by com-
puting the distance between the observed load samples y and other load sam-
ples in the feature space. yi represents the i-th closest load sample to the load
samples y. Then, the forecasted load ŷ in the KNR can be calculated in Eq.
(3.18)

ŷ =
1

k
×

k∑
1

ŷyi (3.18)

where ŷyi denotes the i-th closest load sample to ŷ. The forecasted load ŷ is
calculated by averaging the forecasted values of its k nearest neighbours on
the assumption that each neighbour contributes uniformly to the forecast.

As an easy-to-implement theoretical tool, KNR is frequently employed to solve
nonlinear problems. In particular, the algorithm is not sensitive to outliers
and has higher forecasting accuracy without requiring assumptions about the
collected data [20]. Therefore, KNR is selected as one of the comparison
algorithms in layer 4.

• Long Short-Term Memory LSTMs [85] are deep recurrent neural networks
widely employed to model time series data, which perform well when the time
series data have implicit temporal dependencies. Unlike classic ANNs, LSTMs
use activations from previous time steps as inputs for the current prediction.
In this way, the recurrent connection enables the model to develop a memory
for past events embedded in its hidden state variables. Assume that (xt, yt)
is input at time t, ht−1 is the output in the previous time step, and Ct−1 is
the memory cell in the previous time step. The output of the current network
can be calculated in Eq. (3.19)

ht = f(ht−1, xt) (3.19)

where f(·) is the recurrence function, in which the input gate, output gate, and
forget gate (for gradient vanishing and explosion problems) are introduced.

New information from the input is updated to the cell state by the input gate,
irrelevant information is removed from the ht−1 state by the forget gate, and
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the output gate will decide the output ht. Long-term and short-term sequence-
related information is learned and memorized by these gates simultaneously,
while memory cell C stores the state information.

LSTMs can also be configured with multi-sequence inputs, allowing them to
capture information across various timescales [123]. Thus, LSTM is included
in layer 4 as a training model.

• Functional Regression FR models transform infinite-dimensional load data
into finite-dimensional functions while maintaining the inherent continuity of
the original data. We consider the FR as one of the forecasting algorithms
in layer 4, which considers the load records of the last week and last day as
functional predictors to predict the functional load curve of the current day:

F̂ = B0 +
N∑
i=1

(Bi × Fi) + ϵi (3.20)

where F denotes the functional representation of the original load training
dataset T , which can be derived using basis functions such as the splines,
Fourier series, and principle components [170]. Our study uses the splines to
represent load data as functional curves since they effectively model smooth
functions [105]. B represents the coefficient function, and the ϵ denotes the
residual error.

Each model aims to perform day ahead single-step prediction load demand fore-
casting. The forecasting model with the best performance for each cluster and the
aggregated load data will be selected as the final personalized forecasting model.
This allows us to further compare the performance of aggregation level forecasts
with building level forecasts to explore the effect of the data aggregation process on
forecasting performance.

3.4.3 Evaluation and Discussion

3.4.3.1 Cluster validity results

We adopt consensus-based clustering to cluster the 169 Cardiff buildings based
on their daily load records in different seasons. The optimal cluster number and
algorithm for each season are chosen according to the majority vote from the CVIs.
We consider cluster numbers ranging from 2 to 10, i.e., K = 2, . . . , 10. Fig. 3.18
plots the visualizations of the CVIs for the cluster results in each season.
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(a) CVIs for spring season.
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(b) CVIs for summer season.
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(c) CVIs for autumn season.
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(d) CVIs for winter season.

Figure 3.18: A comparison of the CVIs of consensus-based clustering in different
seasons. The grey vertical dashes line indicates the optimal cluster number for each
CVI.
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Based on the majority vote, the CVIs vote K = 3 as the best clustering number
for the spring season and k = 2 for the other three seasons. The final chosen
clustering algorithms and their corresponding CVIs for the four seasons are listed
in Table 3.8.

Table 3.8: Lists of the optimal clustering algorithms and their corresponding CVIs
for the four seasons.

Season
Optimal clustering

algorithm

Optimal cluster

number

CVIs

Silhouette DB CH

Spring DTW+DBA 3 0.75 0.71 178.38

Summer DTW+DBA 2 0.86 0.82 156.46

Autumn DTW+DBA 2 0.82 0.52 192.69

Winter DTW+DBA 2 0.82 0.51 185.74

Dynamic time warping clustering is selected as the optimal clustering method
for all four seasons. Fig. 3.19 plots the cluster centroids for the clusters in the four
seasons.

3.4.3.2 Relationship pattern between seasonal load clusters with build-
ing physical factors

Based on the consensus results, the chi-square test is then performed to describe
the difference between clusters for the categorical physical factors of the building in
different seasons. Table 3.9-3.12 gives the test results for the four building physical
variables.

Building type and the number of floors in all four seasons were statistically
significantly associated with clusters based on the chi-square test. In the cold sea-
sons, i.e., the autumn and the winter, the heating type was found to be statistically
significantly associated with the clusters, which indicates that the increased use
of heating appliances in the cold seasons is the predominant factor that impacts
the building load consumption. Meanwhile, the energy rating certificate was found
to be statistically significantly associated with clusters in the spring and summer,
whereas the heating type did not correlate statistically significantly with clusters.
Based on this, it was demonstrated that building load is primarily determined by
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Figure 3.19: The cluster centroids of clusters in different seasons.

the type of building services and the number of floors.
Furthermore, the highest percentage and number of associated categories are

selected together with the mean, min, and max load usage to form the cluster label
for each cluster, which are summarized in Tables 3.13 for each of the four seasons to
facilitate tracking of the dynamic cluster trajectory for each building. By combing
both the clustering results and the corresponding building physical information, we
can conclude that each cluster has distinct characteristics as described in the cluster
label.

Clustering is associated with building types, floor numbers, and energy rating
certificates in spring and summer. During the spring season, primary schools are
the main building types in cluster 1 for all four seasons. Primary schools are the
most common building types in cluster 1, which has buildings with fewer floors and
high energy ratings during the spring. Buildings in cluster 3, on the other hand,
have more floors and consume more electricity during the spring. Cluster 2 can
be seen as a transition cluster between cluster 1 and cluster 3, with medium load
consumption and medium energy rating certificates.

In addition, clusters in the summer, autumn, and winter show more distinct
characteristics than those in the spring. Fewer floor numbers and a lower load con-
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Table 3.9: Chi-square test results for spring clusters.

Variable Category
Clusters Test results

Cluster 1 Cluster 2 Cluster 3 x2 p

Building Type

Care Services Buildings 10 0 0

115.195 0.000***

Community Facilities 27 2 0

Core Offices 2 2 1

High Schools 5 16 0

Key and Cultural 1 5 0

Leisure and Sports 9 1 1

Parks Buildings 6 0 0

Primary Schools 63 0 0

Workshops and Depots 9 1 0

Number

of Floors

0 1 1 0

67.285 0.000***

1 47 2 0

2 67 7 1

3 12 9 0

4 4 5 0

5 1 1 1

6 0 1 0

7 0 1 0

Heating Type

Biomass 1 0 0

5.414 0.492
Electricity 0 1 0

Gas 26 130 2

Oil 0 1 0

Energy Rating

Certificate

A 2 0 0

35.967 0.001***

B 5 0 0

C 37 5 0

D 33 13 0

E 18 4 0

F 3 1 1

G 4 1 1

N 30 3 0

∗ ∗ ∗p <0.01, ∗ ∗ p <0.05.
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Table 3.10: Chi-square test results for summer clusters.

Variable Category
Clusters Test results

Cluster 1 Cluster 2 x2 p

Building Type

Care Services Buildings 10 0

33.684 0.000***

Community Facilities 29 0

Core Offices 3 2

High Schools 20 1

Key and Cultural 4 2

Leisure and Sports 10 1

Parks Buildings 6 0

Primary Schools 63 0

Workshops and Depots 9 1

Number

of Floors

0 2 0

33.277 0.000***

1 49 0

2 73 2

3 19 2

4 8 1

5 2 1

6 1 0

7 0 1

Heating Type

Biomass 1 0

0.139 0.987
Electricity 1 0

Gas 151 7

Oil 1 0

Energy Rating

Certificate

A 2 0

21.723 0.003***

B 5 0

C 42 0

D 43 3

E 21 1

F 3 2

G 5 1

N 33 0

∗ ∗ ∗p <0.01, ∗ ∗ p <0.05.
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Table 3.11: Chi-square test results for autumn clusters.

Variable Category
Clusters Test results

Cluster 1 Cluster 2 x2 p

Building Type

Care Services Buildings 10 0

26.563 0.001***

Community Facilities 28 1

Core Offices 3 2

High Schools 17 4

Key and Cultural 4 2

Leisure and Sports 9 2

Parks Buildings 6 0

Primary Schools 63 0

Workshops and Depots 9 1

Number

of Floors

0 1 1

29.361 0.000***

1 49 0

2 71 4

3 17 4

4 8 1

5 2 1

6 1 0

7 0 1

Heating Type

Biomass 1 0

12.633 0.006***
Electricity 0 1

Gas 11 147

Oil 0 1

Energy Rating

Certificate

A 2 0

9.887 0.195

B 5 0

C 40 2

D 42 4

E 21 1

F 3 2

G 5 1

N 31 2

∗ ∗ ∗p <0.01, ∗ ∗ p <0.05.



CHAPTER 3. LOAD PROFILING AND FORECASTING SYSTEM FOR
MULTI-LEVEL SMART METER DATA ANALYSIS 69

Table 3.12: Chi-square test results for winter clusters.

Variable Category
Clusters Test results

Cluster 1 Cluster 2 x2 p

Building Type

Care Services Buildings 10 0

25.741 0.001***

Community Facilities 28 1

Core Offices 3 2

High Schools 18 3

Key and Cultural 4 2

Leisure and Sports 10 1

Parks Buildings 6 0

Primary Schools 63 0

Workshops and Depots 9 1

Number

of Floors

0 1 1

32.133 0.000***

1 49 0

2 72 3

3 18 3

4 8 1

5 2 1

6 1 0

7 0 1

Heating Type

Biomass 1 0

15.304 0.002***
Electricity 0 1

Gas 9 149

Oil 0 1

Energy Rating

Certificate

A 2 0

12.56 0.084

B 5 0

C 41 1

D 43 3

E 21 1

F 3 2

G 5 1

N 31 2

∗ ∗ ∗p <0.01, ∗ ∗ p <0.05.
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Table 3.13: Clusters profile summary for the four seasons.

Cluster
Mean

Load Usage

Max/min

Load Usage

Cluster Label

Spring

1 4.39 7.87/2.42
Primary schools; Small floor numbers;

Low load consumption; High energy efficiency.

2 24.82 39.18/14.38
Key and cultural; High floor numbers;

Medium load consumption; Medium energy efficiency.

3 102.15 198.10/37.77
Core office; Medium floor numbers;

High load consumption; Low energy efficiency.

Summer

1 6.35 10.37/3.76
Primary schools; Small to medium floor numbers;

Low load consumption; High energy efficiency.

2 79.84 149.48/37.44

Core office; High floor numbers;

High load consumption;

Medium to low energy efficiency.

Autumn

1 6.73 12.42/3.31
Primary schools; Small to medium floor numbers;

Low load consumption; Electricity/Gas/Oil heating.

2 64.46 103.72/35.13
Core office; High floor numbers;

High load consumption; Biomass heating.

Winter

1 8.21 14.52/4.32
Primary schools; Small to medium floor numbers;

Low load consumption; Electricity/Gas/Oil heating.

2 75.00 120.21/42.86
Core office; High floor numbers;

High load consumption; Biomass heating.
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sumption are associated more with cluster 1, while cluster 2 has a higher load with
a maximum load usage of 149.48 kWh in the summer. Moreover, electricity/gas/oil
heating leads to lower load consumption in cluster 1 during the autumn and winter,
whereas biomass heating leads to higher load consumption in cluster 2. During
the warm season, i.e., the spring and summer, the load consumption is primarily
determined by the building services and the number of floors, as summarized by
the cluster label. Cold seasons, such as autumn and winter, are dominated by the
load usage behaviour of the residents, which has a major influence on building load
consumption.

3.4.3.3 Dynamic load usage behaviour recognition

After characterizing each cluster for the four seasons, a category summary is per-
formed to track the dynamic cluster trajectories for the buildings. Table 3.14 sum-
marizes all the cluster trajectories that appear in the buildings and lists the corre-
sponding average load profile related to each trajectory in the four seasons, and the
number of buildings corresponding to each DT.

Table 3.14: Category summary for the dynamic cluster trajectories over the year.
DT: dynamic trajectory.

Spring

cluster

Summer

cluster

Autumn

cluster

Winter

cluster

Spring

Mean

Summer

Mean

Autumn

Mean

Winter

Mean

Number of

Buildings

DT

No.

1 1 1 1 4.39 3.74 4.56 5.49 139 1

2
1

1 1 19.05 20.18 24.89 27.64 17 2

2 1 23.91 32.27 37.36 36.23 2 3

2 2 30.51 31.78 42.85 49.52 3 4

2 2 2 41.40 53.25 60.88 66.31 5 5

3 2
1 1 104.94 94.38 0.21 0.53 1 6

2 2 100.75 139.03 132.93 134.96 2 7

A total of seven dynamic trajectories (DTs) appear in the clustering results for
the 169 buildings. The dynamic load usage behaviour of each DT can be sum-
marized by combining the cluster labels for each season defined in the previous
section. The buildings in DT 1 have small to medium floor numbers and high en-
ergy efficiency, resulting in low load consumption. Compared with DT 1, DT 2-5
have relatively higher load consumption throughout the year. Particularly, DT 2
has a medium load consumption in the spring and decreases in load consumption
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over the following three seasons. This may be because most buildings in DT 2 are
heated by electricity, gas, or oil, which are energy-efficient and can reduce electricity
consumption. The load consumption of DT 3 increases during the autumn, while
the load consumption of DT 4 increases both during autumn and winter. In DT
4, most buildings are heated by biomass, which results in high load consumption
during the winter. Furthermore, the DT 5 consumes moderate amounts of electric-
ity during the spring, followed by higher electricity consumption from summer to
winter. The smart grid operators should pay more attention to DT 3-5 during the
winter season, as buildings in these DTs are more likely to have higher demand in
the cold months. DT 5 should also be considered during the summer months as the
residents of these buildings will consume more electricity during this period.

In spring and summer, most buildings following DT 6 have a low energy rating
certificate. In contrast, in autumn and winter, the load consumption has decreased
as most buildings are heated with electricity, gas, or oil. Buildings in DT 7, on
the other hand, have high load consumption throughout the year. Most of these
buildings have large floor areas and are heated by biomass during the cold months,
which leads to high load consumption and low energy efficiency across the year.
Smart grid operators should, therefore, ensure adequate load budgets for buildings
in DT 6 during the summer months and buildings in DT 7 throughout the year.

3.4.3.4 Building load forecasting

The error indicators of mean squared error (MSE), MAE, mean absolute percentage
error (MAPE), and R-squared (R2) are considered in layer 4 to evaluate the forecast
performance.

MSE =
1

N

N∑
i=1

(yi − ŷi)2 (3.21)

MAE =
1

N

N∑
i=1

|yi − ŷi| (3.22)

MAPE =
1

N

N∑
i=1

|yi − ŷi
ŷi
| × 100% (3.23)

R2 = 1−
∑N

i=1(yi − ŷi)2∑N
i=1(ȳi − yi)2

(3.24)
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where ŷi, yi, and ȳi are the observed i-th load consumption, the predicted electricity
consumption, and the observed mean consumption, respectively. N denotes the size
of the testing dataset, and i is the index of test observations.

Since MSE takes the square of the error, it will exaggerate the error caused by
outliers. For MAE, it will be affected by the magnitude of the electricity consump-
tion since it reflects the absolute error.

MAPE and R2 can overcome the aforementioned limitations and are suitable
for comparing different forecast algorithms for different buildings with difficult elec-
tricity consumption levels. Specifically, MAPE gives a percentage value, making
the deviations comparable for different magnitudes of electricity consumption of
different buildings. R2, ranging from 0 to 1, is also a desirable evaluation indicator.

Since MAPE and R2 give relative metrics to quantify the performance of dif-
ferent forecast models across different buildings, layer 4 only reports the scores of
these two metrics.

To assist the forecasting process, load consumption-related features are selected,
which are listed in Table 3.15.

Table 3.15: Selected features for hourly load forecasting

Input Size Description

Lweek
h 1

hth hour load on

the same day of last week

Lday
h 1 hthhour load of yesterday

Lhour
h 1 Load of the (h− 1)th hour of today

F 2 One-hot code for festival/non-festival day

Y 2 One-hot code for year index

M 12 One-hot code for month index

W 7 One-hot code for day index of a week

H 24 One-hot code for hour index of a day
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One-hot encoding is performed to represent festival/non-festival1, year, month
of the year, day of the week, and hour of the day. Based on the feature importance
reported by RF, for each season, the first ten most important features are selected
and displayed in Table 3.16-3.19, in which the first five most important features for
each cluster were selected as the predictors to build the forecasting models.

Table 3.16: First 10 most important features in Spring

C1 C2 C3

Importance Feature Importance Feature Importance Feature

0.8904 last hour 0.9017 last hour 0.6992 last day

0.0395 last day 0.0450 last day 0.2258 last hour

0.0358 last week 0.0280 last week 0.0217 7:00

0.0024 9:00 0.0024 9:00 0.0158 last week

0.0024 0:00 0.0019 Monday 0.0061 20:00

0.0020 8:00 0.0014 8:00 0.0045 Tuesday

0.0017 Monday 0.0014 6:00 0.0037 Monday

0.0016 23:00 0.0013 7:00 0.0035 1:00

0.0016 22:00 0.0013 Saturday 0.0033 Wednesday

0.0015 Sunday 0.0010 10:00 0.0029 March

Key influential features vary between buildings, although the most critical fea-
ture (electricity consumption of the last hour) is the same for all the clusters, except
for spring cluster 3, which takes the last day as the most important feature. In ad-
dition, the last day and last week are the two most common key features for all the
clusters. For spring cluster 3, hour 7 are also important features. Combined with
the cluster label in Table 3.13, most buildings in cluster 3 are the core offices, in
which 7:00 may be the turning point for working/non-working hours. As a result,
hour 7 forms an essential feature for those buildings.

In the spring months, Hour 9 is a key feature for clusters 1 and 2. Moreover,
in spring cluster 1, most buildings are primary schools. Since most schools open on
Monday, a sharp change in electricity use may occur. In other clusters with most
primary schools, Monday has also been observed as an important feature. A key
feature of winter cluster 1 is 23:00 rather than Monday, which might be because

1In the experiment, we considered the school holidays according to the historical school calen-
dars of local schools in Cardiff, including four seasonal half-semesters, winter vacations, summer
vacations, and bank holidays.
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Table 3.17: First 10 most important features in Summer

C1 C2

Importance Feature Importance Feature

0.8999 last hour 0.7624 last hour

0.0584 last day 0.1297 last day

0.0251 last week 0.0552 last week

0.0011 Saturday 0.0133 6:00

0.0011 7:00 0.0085 7:00

0.0011 9:00 0.0069 Saturday

0.0010 Monday 0.0044 22:00

0.0010 8:00 0.0033 July

0.0007 0:00 0.0032 Thursday

0.0006 June 0.0028 festival

Table 3.18: First 10 most important features in Autumn

C1 C2

Importance Feature Importance Feature

0.8831 last hour 0.6390 last hour

0.0502 last day 0.2630 last week

0.0464 last week 0.0513 last day

0.0019 Monday 0.0053 Wednesday

0.0012 Saturday 0.0039 Saturday

0.0011 festival 0.0024 14:00

0.0010 9:00 0.0022 16:00

0.0009 19:00 0.0021 11:00

0.0009 18:00 0.0021 Tuesday

0.0009 8:00 0.0021 Friday
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Table 3.19: First 10 most important features in Winter

C1 C2

Importance Feature Importance Feature

0.9124 last hour 0.5174 last hour

0.0350 last day 0.4033 last week

0.0306 last week 0.0396 last day

0.0016 23:00 0.0029 20:00

0.0014 9:00 0.0028 18:00

0.0013 Saturday 0.0020 15:00

0.0013 8:00 0.0019 December

0.0012 19:00 0.0018 Sunday

0.0012 10:00 0.0018 13:00

0.0011 January 0.0017 February

most of the buildings in cluster 1 are heated by electricity, gas, or oil. As a result,
radiators/water tanks are heated and stored during off-peak hours (usually from
midnight to seven in the morning), resulting in an increase in load consumption
after 23:00. In comparison, the winter cluster 2, where most buildings are heated
by biomass, will result in an increase in load consumption when the occupants use
heating appliances in the cold night. As a result, 20:00 (a peak hour) has been
observed as an important feature in winter cluster 2.

The first ten most important features for the aggregation level load data are
listed in Table 3.20 to investigate the energy forecast performance based on the
aggregation data of the 169 buildings. Compared with the feature importance at
the individual building level, features that are unique to individual buildings (e.g.,
moths and festivals) are less critical for load forecasting at the aggregation level.

After selecting the five most important features for each cluster, forecasting
models are established using SVR, RF, KNR, LSTM, and FR for each cluster,
among which two models are built by SVR using linear kernel function and radial
basis function (RBF), respectively. Therefore, there are 54 models for the load data
from 169 buildings. We carry out a grid search for parameters tuning, and the
implementation steps are as follows:

1. Give a range of possible parameters for the five models; their parameter ranges
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Table 3.20: First 10 most important features for the 169 aggregated buildings

Importance Feature

0.8692 last hour

0.0560 last week

0.0416 last day

0.0080 7:00

0.0078 8:00

0.0024 9:00

0.0022 Monday

0.0015 10:00

0.0012 21:00

0.0010 0:00

are determined via a trial and error manner. The range of parameters is shown
in Table 3.21.

Table 3.21: Optimal parameters for each forecast model

Model Parameters and range

SVR(Linear) C:[0.01, 0.1, 1, 10]

SVR(RBF) C:[0.01, 0.1, 1, 10], γ:[0.001, 0.01, 0.1, 1]

RF
max depth:[5, 10, 15, 20], min sample split:[2, 5, 10, 15],

n estimators:[10, 100]

KNR k-neighbours:[1-10]

LSTM
activation:[‘relu’, ‘tanh’, ‘sigmoid’], optimizer:[‘SGD’, ‘Adam’],

epochs:[10, 15, 50, 100, 150], batch size:[16, 32, 64, 128]

2. Parameters are paired to form parameter grids.
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3. Relevant parameters are successively substituted into the model for the net-
work nodes, and the optimal parameter combination is selected according to
the best results.

Based on the above steps, the best parameter combinations for models at the indi-
vidual and aggregation levels are listed in Table 3.22.

Table 3.22: Best Parameters for each model

Model Parameter
Spring Summer Autumn Winter Aggregated

DataC1 C2 C3 C1 C2 C1 C2 C1 C2

SVR(Linear) C 0.01 10 0.01 0.01 0.01 0.01 0.01 0.01 10 0.1

SVR(RBF)
C 10 10 10 10 10 10 10 10 10 10

γ 0.001 0.01 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.01

RF

max depth 15 15 10 15 10 15 15 15 10 15

min sample split 10 10 2 15 10 15 15 15 10 5

n estimators 100 100 10 100 100 100 100 100 100 100

KNR k-neighbours 5 2 2 5 2 6 2 5 2 2

LSTM

activation ‘relu’ ‘relu’ ‘relu’ ‘relu’ ‘relu’ ‘relu’ ‘relu’ ‘relu’ ‘relu’ ‘relu’

optimizer ‘Adam’ ‘Adam’ ‘Adam’ ‘Adam’ ‘Adam’ ‘Adam’ ‘Adam’ ‘Adam’ ‘Adam’ ‘Adam’

epochs 100 150 100 50 50 15 100 15 10 150

batch size 32 32 32 128 32 128 128 16 64 16

Models were built for each cluster of each season based on the selected forecasting
algorithms, and total 45 models has been built at the building level. The forecast
accuracy at the individual building level are reported in Table 3.23. Besides, load
data at the aggregation level of different models are also reported in this table.

Overall, the aggregation level forecasting model performs better than the indi-
vidual level forecasting model with the lowest MAPE of 2.48 %, and the highest R2

of 0.97. The LSTM performed best at the individual building level from summer
to winter, whereas it performed less well in autumn cluster 2 and winter cluster 2.
However, the FR achieved the lowest MAPE for these two clusters. Cluster 2 likely
has fewer buildings during autumn and winter, which prevents the LSTM model
from learning sufficient features to predict load usage patterns correctly. FR, how-
ever, can effectively extrapolate the shape of predicted load curves by considering
the discrete load samples as individual load curves.

It is worth mentioning that the forecast scores for summer cluster 2 and spring
cluster 3 are worse than other clusters; most forecasted R2 are below 0.91. An intu-
itive explanation is that the data distribution of these two clusters is very different
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Table 3.23: Forecasting results for each model

Model
Evaluation

Indicators

Spring Summer Autumn Winter Aggregated

DataC1 C2 C3 C1 C2 C1 C2 C1 C2

SVR(Linear)
MAPE (%) 8.52 8.40 19.43 9.22 7.41 10.26 6.75 8.36 6.18 5.59

R2 0.89 0.91 0.79 0.94 0.82 0.92 0.84 0.94 0.83 0.94

SVR(RBF)
MAPE (%) 9.27 7.91 17.44 8.69 7.24 9.12 6.01 8.24 5.53 3.68

R2 0.91 0.94 0.87 0.96 0.83 0.95 0.83 0.96 0.89 0.91

RF
MAPE (%) 8.59 5.10 6.81 8.19 5.51 7.26 4.81 8.46 5.17 3.00

R2 0.93 0.95 0.92 0.97 0.97 0.96 0.88 0.96 0.87 0.96

KNR
MAPE (%) 8.39 4.47 5.60 6.90 6.46 7.63 4.96 7.95 5.29 2.83

R2 0.93 0.95 0.96 0.96 0.90 0.94 0.88 0.96 0.85 0.93

LSTM
MAPE (%) 8.13 9.41 8.68 5.11 6.87 6.22 6.55 6.55 7.02 2.48

R2 0.94 0.94 0.91 0.96 0.82 0.97 0.85 0.97 0.84 0.97

FR
MAPE (%) 7.45 9.42 10.11 6.49 11.27 6.33 4.74 7.58 2.63 3.14

R2 0.94 0.93 0.88 0.95 0.79 0.96 0.90 0.95 0.95 0.95

from the other clusters, as can be seen from the former Figure 3.19; the cluster
centroids of these two clusters are much different from other clusters, which have
more load peaks and valleys. Therefore, it can be observed that models including
SVR, LSTM, and FR perform relatively worse than the RF and KNR. Notably, the
FR has a relatively worse performance with the MAPE higher than 10%, indicating
that the functional representation may smooth some useful features for forecasting.
On the other hand, RF and KNR achieved better scores for both clusters, and it
may be because the RF and KNR are two algorithms that are not sensitive to the
outliers, which can train robust models even if there are more fluctuations in the
load curves.

Overall, LSTM and FR models outperform other models in most clusters, fol-
lowed by SVR models. Since RF and KNR are not sensitive to outliers, they are
suitable for training robust models for load data with more fluctuations. Moreover,
based on the comparison of the forecast performance with the individual build-
ings, aggregation can mitigate the high randomness in electricity consumption of
individual buildings.
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3.4.3.5 Discussion

We can conclude that there are different physical factors contributing to load usage
behaviour differences among clusters in different seasons. Furthermore, the dynamic
cluster trajectory of the buildings provides valuable guidance for designing statistic
and dynamic load pricing strategies.

Moreover, the above promising results can also be applied to other relevant ap-
plications such as for the building thermal management. Based on the customized
data-driven building load profiles, customized electricity management approaches
can be developed for each group of buildings. It is also possible to consider cus-
tomized energy pricing and demand response management strategies for managing
the energy costs. Based on the above, the proposed system has promising com-
putational benefits. The consensus-based clustering and training method improves
model development efficiency significantly, making it useful for large regions with
multiple building types, as well as big data scenarios.

3.5 Chapter Summary

In this chapter, firstly, we introduce an ADLs recognition NILM model to detect
and infer the daily activities of smart meter users based on the appliance level load
analysis. More specifically, we propose an improved deep neural network model
based on sequence-to-point and transfer learning, which aims to optimize the train-
ing efficiency of the model while ensuring the accuracy of the load disaggregation
results. Moreover, we utilize useful data analysis tools such as PCA and k-means
based on the disaggregated appliance consumption to conduct ADLs pattern recog-
nition for smart meter users. The comparative experimental results show that our
improved model can efficiently disaggregate the usages of target appliances in the
unseen house, and the usage regularities of target devices can be effectively inferred.

After exploring the appliance-level load analysis, this chapter proposes a consensus-
based load profiling and forecasting system to conduct individual and higher level
load analysis, in which the consensus-based robust clustering approach is applied to
cluster individual buildings into different groups, to capture different building load
usage behaviours in different seasons. By analysing clustering results with accompa-
nying building physical information, we can identify underlying factors that explain
the observed load usage behaviours. This is an important step for the following
forecasting layer to develop personalized building load forecasting models.



Chapter 4

From Offline to Online:
Real-time Smart Meter Data
Analysis

4.1 Introduction

Analysing smart meter data is imperative to balance energy consumption and min-
imize power outages. Traditional load forecasting techniques rely on historical con-
sumption patterns to obtain load forecasts. However, such techniques are difficult
to adapt to dynamic changes in newly arrived real-time load curves. Moreover,
most studies analysing residential smart meters focus on understanding the load
records based on individual participants rather than analysing the load records,
which are unlikely to be generalized to other forecasting levels. To address these
challenges, this chapter proposes a two-unit universal online functional analysis
model (Universal-OFA) with universal applicability for dynamically profiling and
forecasting multi-scale demand. With respect to Chapter 3, this chapter considers a
more complex and practical scenario, i.e., the real-time smart data analysis, which
is adapted from our two papers 5 and 7.

The rest of this chapter is organized as follows. Firstly, the problem statement
is given in Section 4.2. Then, Section 4.3 describes the detailed methodological
approach for the Universal-OFA and discusses its benefits. Specifically, the overview
of the proposed framework is given in Section 4.3.1, and the implementation detail
is then described in Section 4.3.2. Thirdly, Section 4.3.3 presents the data used in
the experiments and conducts comparative experiments for evaluating the two units
in Universal-OFA based on real-world data. Section 4.4 gives a conclusion to this
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chapter.

4.2 Problem Statement

With the development of smart grid technologies in recent years, electricity con-
sumption can be monitored in finer detail through the installation of AMI. AMI
consists of smart meters capable of two-way communication that transmit infor-
mation between utility companies and the consumers [93]. The energy system can
achieve mutually beneficial outcomes between energy supply and demand by fa-
cilitating demand side management and minimizing power outages [42]. Residen-
tial buildings make up a significant proportion of end-use electricity demand [203].
Amongst the forecast studies targeting the residential sector, the main focus has
been on aggregate region or district level electricity loads that aggregate all involved
participants and, therefore, generate a smoothing effect to improve the accuracy of
time series forecasting [62].

However, the behaviour of resident groups under the same electricity pricing
strategy may differ greatly in a region due to different social/economic backgrounds.
Price-sensitive residents may reduce their load consumption to avoid paying higher
electricity bills during periods of high electricity prices. Price-insensitive residents
may be more concerned with their living comfort than with additional expenses and
are less sensitive to changes in electricity tariffs [64]. Consequently, it is important
to understand the load profile and its associated social characteristics of residents
rather than simply aggregating their load usage.

On the other hand, existing load forecasting models at the individual level
overemphasise analysing electricity patterns by individual households. Developing
load forecasts for individual households is challenging because of the high variability
caused by the dynamic processes that consist of many uncertain and random load
curves. Focusing on the individual load curves rather than households might solve
the above challenge.

Furthermore, individual households may enter into the smart meter analysis
model asynchronously, which results in the loss of effectiveness for many previously
trained models and requires continuous retraining to adapt to dynamically chang-
ing smart grid environments. Moreover, existing residents may contain various
social/economic information that corresponds to various specific electricity con-
sumption patterns. As new residents join, more types of social information will
be incorporated into individual-level profiles, resulting in a richer contextual so-
cial/economic profile for the specific electricity consumption patterns.

Therefore, we proposed the Universal-OFA, which assumes that only a por-
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tion of the participants in a region can provide historical load and that the future
individual load of these participants and any other newly joined participants, as
well as the load of other higher aggregation levels, will be predicted with a loose
sketch-detail refinement approach. Moreover, to assist in defining future person-
alized electricity pricing strategies, this chapter also examines the relationships
between social/economic background and individual level load usage patterns, as
well as the dynamic changes in household load usage behaviours.

4.3 A Universal Online Functional Analysis Model for
Multi-scale Load Dynamic Profiling and Forecast-
ing

4.3.1 Framework Design Overview

In the Universal-OFA model, each load sequence is composed of discrete time points
sampled from a finite equidistant mesh and treated as random function drawn from
a continuous stochastic process X = {X(t); t ∈ R}, where t is a time point on the
discrete time grid. In the model, we assume that we have observed historical load
values for the process X over an interval [0, T ] from only a portion of the participants
in a region, and our goal is to forecast the load values of X over a future interval
[T, T + σ](σ > 0) at different levels, including the individual level (existing or
new) participants and the region level aggregated load usage. The individual level
historical interval [0, T ] can be divided into N sub-intervals with a pre-segmented
length β. Denoting by Lnd

(ti) the functional-valued discrete stochastic process over
the sub-interval n and day d, we have

Lnd
(ti) = Xn((d− 1)β + ti), (4.1)

where Xn(t) is the restricted real-valued continuous stochastic process of X(t) on
the n-th interval, and is translated on the interval [0, N · β]. The sub-interval
n ∈ {1, 2, ..., N}, and i ∈ {1, 2, ..., P}. In our case, we use each load curve observed
from half-hourly load records of a day d to forecast the half-hourly load values of
the next day d + 1. Therefore, the assigned length β = σ = P = 48. For the
sub-interval n on day d, we have

Lnd
= [Lnd

(t1), Lnd
(t2), ..., Lnd

(t48)], (4.2)

and the Universal-OFA is to forecast the load values of the sub-interval n on the
day d+ 1 at different levels:

Lnd+1
= [Lnd+1

(t1), Lnd+1
(t2), ..., Lnd+1

(t48)]. (4.3)
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where t = (t1, · · · , t48) ∈ R. For each 1 ≤ p ≤ 48, the random function X(tp) is
square-integrable with the inner product of any two real-valued functions f and g
defined as

< f, g >Tp=

∫
Tp
f(tp)g(tp)dtp, f, g ∈ H (4.4)

where H := L2(T1) × · · · × L2(T48) is a Hilbert space, which is a vector space
that enables the expansion of linear algebra and calculus from finite-dimensional
Euclidean vector spaces to spaces that could be infinite-dimensional, and T :=
T1×T2×· · ·×T48. The inner product < ·, · > induces the norm ∥ f ∥=

√
< f, f >T48 .

Let µ denote the smooth mean function of X, and C denote the covariance function
of X, we have

µ(t) = E(X(t)), (4.5)

C(s, t) = cov(X(s), X(t)). (4.6)

The structure of the Universal-OFA model is shown in Figure 4.1, which is
designed with two units, i.e., the multi-scale load dynamic profiling unit, and the
multi-scale online load forecasting unit. Each unit consists of two layers that follow
a loose sketch-detail refinement strategy.

Based on the historical load records of the individual level participants, the loose
sketch strategy at layer one of Universal-OFA enables the development of universal
models for the two units. The loose features of the intra-day load usage patterns and
their associated social information will be sketched, and universal FDN models will
be trained at this layer. The detail refinement strategy in layer 2 for the two units in
Universal-OFA allows the universally sketched models to consider the time-varying
load consumption patterns for the detailed refinement of the universally-sketched
clusters and universally trained FDN models at different levels.

Initially, the multi-scale load dynamic profiling unit conducts functional universal-
sketching to cluster the historical load records of individual level participants. In
this layer, an intra-day volatility score was proposed to assist the clustering pro-
cess. Multi-scale dynamic profiling will then be performed using the real-time load
sequences collected from individual participants (existing/new) and regional levels
to track the dynamic change at different levels over time. The multi-scale load
dynamic profiling unit combines load records with social backgrounds to examine
the relationship between different types of participants and the corresponding load
usage behaviours.

The multi-scale online load forecasting unit will make use of universally-sketched
clusters to perform functional deep neural network universal training on the loose
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Figure 4.1: The proposed Universal-OFA model.
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sketch layer. These universally-trained models have been trained to capture fea-
tures of the historical load usage patterns of existing participants. By exploiting the
dynamically profiled real-time load sequences at different levels, these universally-
trained models will be incorporated into the multi-scale FDN model updating pro-
cess at layer 2. Upon passing through layer 2, personalized online FDN models will
be developed for each cluster at different levels.

4.3.2 Implementation

4.3.2.1 Multi-scale load dynamic profiling unit

To assist in the development of universally-sketched models, the functional historical
load records of the individual participants are stratified into multiple groups with
similar load usage patterns. In this chapter, we are using a different approach than in
Chapter 3. We are utilizing model-based functional data clustering which views the
original daily load discrete points as continuous load curves. Instead of categorizing
the data by season like in Chapter 3, the focus of this method is to identify load
curves with similar shapes by analyzing the load consumption features of different
hours in a day. This allows for a more accurate capture of daily fluctuations in
the load curves. Many studies have demonstrated that selecting the appropriate
attributes for load analysis is critical [76]. In this study, the primary objective is to
identify more features of the intra-day load patterns to assist the functional data
clustering process. So we investigate the impact of the Time-of-Use tariff [14] to
further improve the clustering process, which is shown in Table 4.1.

Table 4.1: The Time-of-Use tariff.
Period Time Price

Daytime 08:00 to 16:30 and 19:00 to 23:00 Medium

Peak 17:00 to 18:30 High

Overnight 23:00 to 07:30 Low

According to the Time-of-Use tariff, there are three time periods: daytime,
peak, and overnight. Prices of electricity are highest during peak hours and lowest
at night. The three time periods in the Time-of-Use tariff are indexed by 1, 2, and
3, corresponding to the daytime, peak, and overnight periods, respectively. These
periods are then assigned an intra-day volatility score (IVS):

IV Si =
Ei

L̄
, (4.7)
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where Ei is the mean half-hourly load at period i, and L̄ calculates the average
daily load consumption. Considering that there may be a particular period of non-
use of electricity by consumers, a minimal positive value of 10−6 was added to the
denominator of each mean calculation to avoid the denominator being zero. IVS
measures the fluctuation of load within a specific period and is useful for determining
the optimal demand management strategy and assessing the volatility of intra-day
load.

After finding the IVSs for the load patterns, a model-based functional data clus-
tering procedure [72] will be used to conduct unsupervised clustering for the daily
load curves, which eliminates the need to determine the cluster number. Recall the
functional-valued discrete stochastic process L(t) defined in Eq. (4.1), the model
based clustering assumes L(t) follows a functional mixture model with K subpro-
cesses, with each subprocess corresponding to a cluster k , and a Karahunen-Loève
representation for daily load consumption of L allows decomposition:

L(t) =
K∑
k=1

µk(t) +
∞∑
j=1

ξjϕj(t) (4.8)

where µk is the smooth mean curve function in Eq. (4.5) in the k-th cluster, and ξj
is the real-valued variable with an orthonormal basis ϕj , j is a real-valued random
variable of H, and H := L2(T1)× · · · × L2(TP ) is a Hilbert space.

The representative scores of the original features including the IVSs and the load
data then need to be found to construct an unsupervised binary tree considering the
mixture model built in Eq. (4.8). Since the IVSs and the load data are defined on
potentially different domains, multivariate functional principal components analysis
(MFPCA) [79] is employed to represent the functional data by computing the eigen-
functions for each domain separately. Specifically, the local polynomial smoothing
with Gaussian kernel [189] is utilized to estimate the mean (Eq. 4.5) and covariance
(Eq. 4.6) of the original dataset on each domain. A fitted smoothed example of the
load records compared with the true values is shown in Figure 4.2.

The eigenfunctions Φγ,j = (ϕ1γ,j , · · · , ϕCγ,j) and eigenvectors Λγ,j = (λ1γ,j , · · · , λCγ,j)
are computed as a matrix eigenanalysis of the covariance. Then for each domain
θ ∈ {1, · · · ,Θ}, the matrix of scores Sθ

γ,j representing the projection with C compo-
nents of the load curves of L(ti) onto Φγ,j are estimated by numerical integration.
Finally, the multivariate scores SΘ

γ,j are estimated by plugging the computed scores
of each domain.

After finding the representative scores of the original data, a full binary tree with
a root node Γ0,0 is constructed. The tree has two types of nodes, the non-terminal
nodes with two disjoint children subsets from L(t) and the terminal nodes with no
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Figure 4.2: An example of the true daily load readings compared with the smoothed
functional curves.

children. The nodes are indexed by (γ, j), where γ is the depth index, and j is the
node number index. Each node Γ(γ,j) is possibly to have a left child Γ(γ+1,2j) and a
right child Γ(γ+1,2j+1).

To avoid over-partition, a threshold Kmax is adopted. At each node Γ(γ,j), for

each K = 1, · · · ,Kmax, the scores SΘ
γ,j are fitted with the Gaussian mixture model

(GMM). Then the Bayesian information criterion (BIC) [186] is used to estimate
the optimal number of clusters K̂γ,j :

K̂γ,j = arg max
K=1,··· ,Kmax

BIC(M1, · · · ,MK)

= arg max
K=1,··· ,Kmax

{K ln |Γγ,j | − 2 ln(LK)} ,
(4.9)

whereM is the fitted GMM model, LK is the likelihood of K subprocessesMK for
the node Γγ,j . If K̂γ,j > 1, Γγ,j will be divided into two children nodes. Otherwise,
Γγ,j is a terminal node. The recursive process is repeated until it satisfies the
stopping rules, and then a joining step is performed to rectify the redundant nodes.
The functional clusters universal-sketching based on the historical functional load
consumption data is completed at this point. Afterward, social information related
to each cluster will be summarized to produce more interpretable results. The intra-
day load usage pattern sketch and the social information sketch will be generated
at this layer, which will be refined in more detail at the subsequent layer.

A dynamic clustering algorithm is applied to layer 2 to cluster the newly ar-
rived daily load records based on the tree constructed in the functional clusters
universal-sketching layer. Based on the projection of the newly received sequence
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onto eigenfunctions for each node of the tree, the posterior probability of this se-
quence belonging to each component will be estimated again using the GMM. The
new sequence is assigned to the cluster candidate with the highest likelihood. Using
the loosely sketched outputs from layer 1, the multi-scale dynamic profiling module
will refine social information and identify the dynamic cluster trajectories of each
participant at different time scales.

4.3.2.2 Multi-scale online load forecasting unit

In the multi-scale online load forecasting unit, functional deep neural network
(FDN) models were trained based on universally-sketched clusters. The proposed
FDN is shown in Figure 4.3, which utilizes a micro basis layer proposed in [222].
The basis layer [222] parameterizes the representation functions with a micro neu-
ral network and uses numerical integration to weigh and calculate the final score to
approximate the true inner product between the basis functions and the input val-
ues. Unlike the previous work in [222], which predicted a single value at a one-time
step, the goal of the FDN models universal-training layer is to train universal FDN
models that forecast half-hourly load daily and capture loose features of historical
load usage patterns at the individual level.

Figure 4.3: The architecture of the proposed FDN.

Recall that Lnd
(t) is the discrete stochastic process on the sub-interval n and

day d. Let {ϕj(t)}bj=1 be a set of b continuous basis functions. The output of the
j-th basis node is a collection of score vectors for the basis functions:

cj =< ϕj , Lnd
>=

∫
ϕj(t)Lnd

(t)dt. (4.10)
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In practice, each basis function is parametrized with a micro neural network at
each time step, and the integral in the above formula needs to be approximated nu-
merically. The nested basis layer consists of 3 hidden layers and 128 fully connected
nodes per layer. The score vectors are then input into the multilayer perceptron
(MLP) regression head, and the divergence between the forecasted value and the
actual response is evaluated to determine the loss of the network.

Although various functional data clustering and forecasting methods have been
proposed, most existing works rely solely on historical functional inputs, which
makes trained models incapable of adapting to newly arrived load curves over time.
In the second layer of Universal-OFA, a new online updating strategy is proposed by
leveraging the information feedback from real-time smart meter readings to adap-
tively update and optimize the universally-trained FDN models in layer 1. As new
load records are generated by existing participants or as new participants join the
system, the multi-scale online FDN model updating module forecasts the load values
of X at different levels over a future interval [T, T + 48].

A majority of existing functional data forecasting studies have focused primarily
on training and testing forecasting models without considering dynamic changes in
electricity consumption behaviour. By incorporating feedback from newly arriving
smart meter readings at different levels, the online multi-scale FDN model updat-
ing module continuously refines the details of universally trained models, allowing
personalized forecasting models to be developed through online learning.

The online updating strategy of the multi-scale online FDN model updating
module is shown in Figure 4.4. For the k-th model concerning the k-th cluster, the
MLP regression head is updated by online learning (updating batch size=1) when a
new load sequence is received. Specifically, in each FDN model, recall that the goal
of the framework is to forecast Lnd+1

, given the newly observed daily load records
Lnd

for the sub-interval n on the day d. We first use Lnd
to forecast the predicted

value L̂nd+1
, and then use it along with the true value Lnd+1

revealed on the next
day d+1 as the input to the regression head to optimize the model parameters. As a
result, the basis layer will remain unchanged since it extracts the functional features
of historical inputs, and only the MLP layers will be updated based on the received
load sequences to guide the model in forecasting the daily load more accurately.
The frozen step of the basis layer ensures that the online learning process does
not deviate too much from the correct gradient direction while also providing the
optimization process with the flexibility to capture more dynamic changes in the
time-varying load.
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Figure 4.4: Multi-scale online FDN model updating process.

4.3.2.3 Discussion

There are several practical considerations associated with the proposed Universal-
OFA model. In a particular region, individuals with different social backgrounds
have different electricity consumption patterns and levels of sensitivity to electricity
prices. Most studies cluster load usage patterns based on individual IDs, i.e., dif-
ferent clusters contain different participants. Consequently, if load usage patterns
are derived from their IDs without preserving personal information, the daily rou-
tine habits of participants may be revealed. Smart meter analysis may be limited
to a small number of participants in real-world scenarios due to privacy concerns.
Therefore, traditional smart meter analysis models can only be applied to a limited
number of participants and cannot be applied universally to new participants due
to a lack of generalisation capability.

Unlike traditional frameworks, we emphasize that clustering and training of the
loose sketch layer (layer 1) in both Universal-OFA units are ID-free processes, in
which historical load records are collected anonymously into a common pool for un-
differentiated clustering and training, such that load curves over several consecutive
days of the same participant can be categorized into different groups. By doing so,
additional flexibility can be provided in analysing load usage patterns and ensuring
the participants’ anonymity, i.e., their identity remains anonymous.

Both units use the loose sketch layer for clustering and training the models,
which captures the patterns of load usage based on daily load curves rather than all
the load records of each participant. Considering the variable and uncertain nature
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of residential energy consumption, a model trained on a participant-by-participant
basis cannot forecast accurately when a random load curve occurs since the random
load curve contains new features that have not been observed previously. A model
trained on electricity usage patterns can, on the other hand, cluster and predict
based on the features of the load patterns, which ensures accuracy in the individual
level load forecasting.

We emphasize that the individual level analysis and the regional level analysis
in the experiment are only two illustrative examples that demonstrate the gener-
alizability of the proposed Universal-OFA. The detail refinement layer in the two
units can analyze real-time load at different levels, such as the individual, the city,
the region, and the country. Furthermore, both sketches in layer 1 of the two units
are universal models that can be generalized to a broader range of data by learning
supplementary features from real-time load records at various data scales.

With the multi-scale dynamic profiling, social information from newly joined
participants is considered in conjunction with the previous profiles, resulting in an
overall more comprehensive contextual social/economic profile of electricity con-
sumption patterns for each cluster, which may assist in deriving electricity con-
sumption characteristics for participants with different social backgrounds. Fur-
ther, the multi-scale dynamic profiling facilitates the tracking of dynamic changes
in the electricity usage behaviours of each participant, which enables quantification
of the effectiveness of various dynamic-based and incentive-based demand response
strategies.

In real-world scenarios, where participants may join the smart meter analysis
system asynchronously, it is difficult for traditional models to train accurate models
for new participants. Nevertheless, the proposed model requires universal training
of historical load usage patterns from only a portion of participants, making it
more efficient when new participants join asynchronously. Rather than starting
from scratch, the Universal-OFA trains personalized models for the existing/new
participants in the multi-scale online FDN model updating module by adding their
detailed load usage features to the previous universally-trained models. Using real-
time smart meter data at different data scales, the proposed Universal-OFA can
learn to adapt to the newly arriving load sequence by incorporating time-varying
load consumption patterns.
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4.3.3 Evaluation and Discussion

4.3.3.1 Data description and experiment settings

Residential load records from the Commission for Energy Regulation (CER) on
half-hourly domestic electricity consumption in Ireland [14] for a whole year from
July 14, 2009, to July 14, 2010, were utilized. 3440 residents remain after the
missing values have been removed from the datasets. The dataset includes a pre-
trail survey, which provides information about the socioeconomic background of
each participant, allowing us to interpret the clustering results more clearly.

As the number of rooms in a household is directly related to the amount of
electricity consumed, we selected participants according to the proportion of differ-
ent numbers of rooms in the total number of residents, as shown in Table 4.2. A
weighted random selection was conducted to select half of the residents as individual
level participants and to select the remainder as new participants who would join
subsequently. 1717 residents were randomly selected as the existing participants,
and the remaining 1723 residents were randomly selected as new participants.

Table 4.2: The number of selected participants.

No. Rooms Proportion No. Selected Participants

1 1.0% 17

2 8.4% 145

3 44.3% 762

4 34.9% 600

5 11.2% 197

There are 365 days per participant. We select the first 265 days (from July 14,
2009, to April 06, 2010) as the historical load records and the remaining 100 days
(from April 07, 2010, to July 14, 2010) as the online smart meter readings. In the
case of new participants, only 100 days (from April 07, 2010, to July 14, 2010) are
used as online smart meter readings since we assume their historical load records
still need to be provided. Moreover, to evaluate the universal applicability of the
Universal-OFA model, we use the aggregated mean of 100 days (from April 07,
2010, to July 14, 2010) of all the 3440 participants as the region level online smart
meter readings. This partitioning is adopted to ensure that the framework can
access sufficient data to perform reliable clustering and model training. Moreover,
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it allows us to observe the impact of this framework on adaptive model updating
as new unseen smart meter readings are acquired over time.

It is worth noting that this forecasting task considered in this study is more
complex than many previous works [31, 139, 71]. For training, it utilizes the entire
autumn and winter seasons, the last two months of summer (July and August), and
the first two months of spring (March and April), while for testing, the last two
months of spring (April, May) and the first two months of summer (June, July) are
used, where May and June are not observed by the trained model and may contain
new patterns in electricity consumption.

Based on the above partitioning, the goal of the Universal-OFA is to use the ob-
served discrete stochastic process Ln1 , Ln1 , ..., Ln265 with each day have half-hourly
smart meter readings of the individual level participants to forecast Ln266 , Ln267 , ..., Ln365

for the newly joined participants and the newly generated load sequence at the indi-
vidual and the region level. The experiments were implemented using Pytorch and
conducted on a Windows 10 platform (64GB RAM) with GPU NVIDIA GeForce
RTX 2080 Ti and CUDA v10.2.

4.3.3.2 Multi-scale load dynamic profiling results

• Interest of the intra-day volatility scores

This subsection aims to evaluate the validity of the IVSs by comparing the
BIC of the results obtained with and without the IVSs, as shown in Table 4.3.

Table 4.3: BIC scores
BIC

Without IVSs 2.05 ×106

With IVSs 3.23 ×106

As described in Eq. (4.9), a higher BIC indicates better clustering results,
and Table 4.3 shows that the cluster model with IVSs has a higher BIC than
the cluster model without IVSs, demonstrating that IVSs can improve the
clustering process.

• Functional Clusters Universal-Sketching Results

During the clustering, 99% of the components were preselected in MFPCA,
and a sample size of 55,000 was selected to avoid over-partitioning. After
applying the functional clusters universal-sketching module, 7 clusters were
obtained from total N = 265*1717 individual-level load curves, which are
shown in Figure 4.5.
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Figure 4.5: Functional clusters universal-sketching results. The red dashed vertical
lines denote the peak period (17:00–18:30), the blue dashed vertical lines denote the
daytime period (8:00–16:30 and 19:00–23:00), and the black dashed vertical lines
denote the overnight period (from 23:00 to 07:30).

Further, the class of social background with the largest share in each cluster
is summarized as the representative social information for each cluster, which
will be combined with average daily load and IVSs to assign a loose sketch label
to each universally-sketched cluster. In Table 4.4, we summarized the above
information and marked the average daily load and the IVS in each period
with arrows to indicate high or low electricity consumption in accordance with
the median.

Clusters 1 and 6 appear to have the most records with 18%, followed by
clusters 3 with 17%, cluster 4 with 15%, and clusters 5 and 7 with 12%. Less
than 10% of total load records are contained in cluster 2. Clusters 2, 4, and
5 describe load usage behaviour with relatively higher load consumption, and
we can see that the average daily load of cluster 2 is the highest compared with
other clusters. Across all three clusters, there are 5 rooms and 5-6 residents,
which indicates that having more rooms and residents will result in greater
electricity consumption.

Furthermore, clusters 2 and 4 have higher social classes and income levels than
cluster 5. Despite cluster 2 having the highest average daily load consumption,
IVSs for all three periods remain stable. Moreover, cluster 4 has a high IVS
during peak periods and a low IVS during overnight periods despite peak
periods having a higher electricity price than overnight periods.
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Although cluster 5 has a higher average daily load consumption, the IVS
during peak time indicates that residents in cluster 5 have responded to the
change in electricity price. Based on average daily load consumption and IVSs
for clusters 2 and 4, these cluster participants are less price sensitive. They are
more concerned with living comfort without considering the extra expenses
caused by Time-of-Use tariffs.

Table 4.4: The social information sketch and the IVSs of the universally-sketched
clusters.

No.

adults

Social

Class

No.

rooms

Income

Level

Avg.

Daily Demand
Daytime Peak Overnight

C1 1 F 1 1 0.16(↓) 1.08(↓) 1.24(↓) 1.11(↓)

C2 5 AB 5 5 1.09(↑) 1.06(↓) 1.27(↓) 1.09(↓)

C3 2 DE 2 2 0.36(↓) 1.09(↓) 2.07(↑) 1.21(-)

C4 6 AB 5 5 0.74(↑) 1.12(-) 1.71(↑) 1.20(↓)

C5 6 C2 5 3 0.82(↑) 1.35(↑) 1.41(-) 1.32(↑)

C6 3 C2 4 6 0.55(-) 1.28(↑) 1.57(↑) 1.29(↑)

C7 2 DE 1 1 0.34(↓) 1.32(↑) 1.05(↓) 1.27(↑)
Social Class: AB-F from high to low; Income Level: 1-5 from low to high, and 6 represents

unknown; ’-’: median; ’↑’: higher than the median; ’↓’: lower than the median.

As with cluster 5, cluster 6 shares the same social class label but has fewer
rooms and residents. This cluster has high IVSs in all three periods, indicating
that participants are less price-sensitive. Cluster 3 has the highest IVS during
peak times; however, it has a low average daily load consumption compared
to other clusters. Households in cluster 3 have fewer adults and rooms, which
may explain the low average electricity consumption throughout the day.

On the other hand, cluster 3 has a lower social class, and residents of this
cluster tend to follow their daily routines, commute to work during the day,
and return to their homes after working during peak hours. Consequently,
Time-of-Use tariffs do not promote a peak shift in peak demand for individuals
in this cluster since electricity is the rigid demand during peak hours.

In clusters 1 and 7, the average daily load is relatively low, particularly in
cluster 1, with only 0.16 KWh per day. There is also a low IVS at peak times
for these two clusters, indicating that the participants are price-sensitive to
the Time-of-Use tariff. This may be due to the lower income levels of the
participants in these clusters.
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• Multi-Scale Dynamic Profiling Results

There are two ways the new daily load curve can be generated: at the indi-
vidual level (existing or new participants) or at the regional level. When a
new daily load curve is observed, the multi-scale dynamic profiling modules
will adaptively classify it into one of the universally-sketched clusters. The
outputs of this module consist of two parts: the refined social information
sketch and the multi-scale dynamic cluster trajectory.

Table 4.5 provides the social information sketches in the loose sketch layer,
followed by the detail refinement layer that includes the social sketches from
the updated clusters of the existing participants and the new participants for
each cluster. Based on the social information sketch in the loose sketch layer,
the refined social information sketch is generated by a detailed refinement pro-
cess, resulting in a richer social information profile for different electricity con-
sumption patterns. This information can be used to determine characteristics
of electricity consumption among participants with different socioeconomic
backgrounds.

As more participants join a cluster, more types of social information will be
added. The final sketch can be defined by summarizing the social information
from the updated clusters. According to table 4.5, most loose sketched clusters
have been enriched except for cluster 5, which has a medium income level and
social class, with 5 adults and 6 rooms. Furthermore, we expect that all
final refined details will fall within a narrow range since the dynamic profiling
module refines details based on universally-sketched clusters, and we do not
wish the final refined cluster to include participants from a variety of social
backgrounds.

Clusters 1, 3, and 7 have similar final sketches since they all have fewer res-
idents, rooms, and a lower social class and income level. Since more partici-
pants are clustered in cluster 1, more types of room numbers have been added.
Also, cluster 3 has been enriched regarding the types of residents, room num-
bers, and income levels. The social information for cluster 7 has been refined
except for the income level.

The participants in clusters 2 and 4 have a high social class and income level,
and only the adult resident numbers have been refined for both clusters. Fur-
thermore, it is important to note that the income level of cluster 6 is unknown
at the loose sketch layer, and this information is then revealed by the refined
dynamic profiling module. Using refined dynamic profiling, it is possible to
complement the loose sketches derived from layer 1 with additional informa-
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Table 4.5: Refined social information sketch

Level
No.

Adults

No.

Rooms

Social

Class

Income

Class
Final Defined Sketch

C1

Loose sketch 1 1 F 1
1 adult, 1-2 rooms, social class F,

income level: 1
Existing 1 2 F 1

New 1 1 F 1

C2

Loose sketch 5 5 AB 5
5-6 adults, 5 rooms, social class AB,

income level: 5
Existing 6 5 AB 5

New 5 5 AB 5

C3

Loose sketch 2 2 DE 2
1-3 adults, 1-2 rooms, social class DE,

income level: 1-2
Existing 3 2 DE 1

New 1 1 DE 1

C4

Loose sketch 6 5 AB 5
5-6 adults, 5 rooms, social class AB,

income level: 5
Existing 5 5 AB 5

New 6 5 AB 5

C5

Loose sketch 6 5 C2 3
6 adults, 5 rooms, social class C2,

income level: 3
Existing 6 5 C2 3

New 6 5 C2 3

C6

Loose sketch 3 4 C2 6
3 adults, 4 rooms, social class C2,

income level: 3
Existing 3 4 C2 3

New 3 4 C2 3

C7

Loose sketch 2 1 DE 1
1-2 adults, 1/3 room, social class DE/F,

income level: 1
Existing 1 1 F 1

New 1 3 F 1

Social Class: AB-F from high to low; Income Level: 1-5 from low to high, and 6 represents
unknown; ’-’: median; ’↑’: higher than the median; ’↓’: lower than the median.
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tion based on the updated information.

By analysing the multi-scale dynamic cluster trajectories, the system tracks
the changes in electricity consumption behaviour at different levels, which
is essential for developing dynamic pricing strategies and enabling demand
side management [128]. Moreover, the multi-scale cluster trajectories in the
Universal-OFA can have varying time scales (e.g., daily, weekly, monthly,
yearly), depending on the specific requirements of the system. In our ex-
periment, we use the monthly time scale as a showcase by selecting a repre-
sentative cluster based on the cluster with the maximum mode in each testing
month for each participant. As a result, we can obtain a total of 3440 monthly
dynamic trajectory records at the individual level (1717 existing and 1723 new
participants) and a monthly dynamic trajectory record at the regional level.

Based on the monthly dynamic trajectories, 628 existing and 645 new par-
ticipants showed stable cluster trajectories, i.e., their load usage patterns re-
mained in the same cluster throughout the testing period. The demand side
management strategy can be optimized for these participants based on the
intra-day load usage pattern sketches of the corresponding cluster in Table
4.4. For the rest participants, there are 618 existing participants and 619
new participants at the individual level who are experiencing a cluster shift
between May and June (the seasonal transition months), which requires addi-
tional attention as distinct load usage patterns may be generated when cooling
appliances are used.

Figure 4.6 gives the region level dynamic cluster trajectory and an example
of the individual level dynamic cluster trajectories.

According to the dynamic cluster trajectory, individual level participant 1059
remained in cluster 4 from April to June but shifted to cluster 2 between June
and July. Based on the intra-day load usage pattern sketches for clusters 2
and 4 in Table 4.4, it can be concluded that from April to June, participant
1059 had high load usage during peak times. There has been an average daily
electricity consumption increase after July, despite a decrease in fluctuations
in peak electricity consumption. During July, high temperatures may have
affected the load usage behaviour of the residents in this household, increasing
load consumption since cooling appliances are used continuously.

At the regional level, however, the load consumption pattern has remained
in cluster 4 for the past four months, indicating that load consumption dur-
ing peak hours is volatile and that most participants in this region are not
sensitive to tariff changes. It is, therefore, necessary to adjust the electric-
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April May June July

Individual level (ID 1059)

Region level (aggregated from 3440 participants)

Figure 4.6: A dynamic cluster trajectory example at the individual levels (upper)
and the dynamic cluster trajectory at the region level (lower).

ity pricing strategy to achieve a more successful result regarding demand-side
management.

4.3.3.3 Multi-scale online load forecasting

• Performance Evaluation Indices

To measure the performance of the proposed framework, for each forecasted
daily load curve containing 48 half-hourly data points, we use the MAE defined
on each day to measure the daily errors of the forecasted results:

MAE(d) =
1

P

P∑
i=1

{
|L̂nd

(ti)− Lnd
(ti)|

}
, (4.11)

where L̂nd
(ti) is the predicted value at the i-th half-hour in day d regarding

to the real value Lnd
(ti). Another common evaluation criterion is the MAPE,

which is calculated by dividing the MAE by the real load value. However, in
our case, the real value Lnd

(ti) can be (near) zero since there are periods when
the customer does not use any electricity. We, therefore, do not consider the
accuracy metric of MAPE in this study.
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In addition, the improvement rate (IR) is introduced as a means to measure
the superiority of the proposed framework over other benchmark models [230]:

IRMAE =
MAEB −MAET

MAEB
× 100%, (4.12)

where IRMAE denotes the improvement rate of the target model MAET over
its benchmark model MAEB in terms of MAE, the target model will have a
higher level of prediction accuracy if the IR is positive. In the following ex-
periments, the results from the proposed Online-FDA are set to be the target
model MAET and compared with the MAEB of other benchmark scenarios.

• FDN Models Performance Benchmarking

Based on the previous studies [63, 230, 94, 220, 133, 22, 151], we now compare
the proposed Universal-OFA model with various state-of-the-art approaches
without real-time feedback adjusting, including the KNR model, SVR model,
and the LSTM model. Considering that these models are trained on all the
3440 participants, the Universal-OFA model is also tested using the same
offline data settings (trained in the loose sketch layer without utilising the
detail refinement layer) by developing models based on the load usage patterns
of all the participants rather than dividing them into the existing and new
participants. Each model runs the testing procedures five times, and the final
score is the average of all runs. Table 4.6 computes the mean MAE scores
and the IRMAE of 100 testing days (from April 07, 2010, to July 14, 2010)
for these models, and Fig 4.7 presents the detailed distribution of the MAE
scores for these models during the testing period.

Table 4.6: Evaluation mean scores and the improve rate of 100 days for different
models

KNR SVR LSTM Universal-OFA

MAE 0.227 0.219 0.201 0.188

IRMAE 17.18% 14.16% 6.47% \

As shown in Table 4.6, the proposed Universal-OFA has the lowest MAE
compared to other models evaluated in the experiment, outperforming the
KNR model with an IR of 17.18%. Moreover, the proposed Universal-OFA
improves forecasting accuracy by 6.47% over the LSTM model. Further, the
SVR and LSTM perform better than the KNR models because they are more
robust to noisy data and can identify load usage patterns for unseen load
parameters.
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Figure 4.7: MAE scores for forecasted daily load of 100 days of different models.

Moreover, as shown in Figure 4.7, compared with other models, the MAE
scores of the Universal-OFA for forecasting load in April are lower, demon-
strating that the proposed FDN structure of Universal-OFA can assist in
capturing the characteristics of the load curves, and thereby produce more
accurate forecasts.

Despite May and June being unseen months for the forecasting models, the
results show that Universal-OFA achieved the best performance during these
months with the lowest MAE scores On the other hand, it is important to
point out that the scores oscillate regularly, and most of the spikes occur on
Saturday, which is a transition day between weekdays and weekends. This
may be because the Universal-OFA needs help capturing the pattern shifts
in electricity consumption behaviour between weekdays and weekends, thus
leading to relatively low forecasting accuracy, even though it is still better
than other models. Hence, it might be worthwhile to explore the possibility
of providing a scheme that would enable the Universal-OFA to promptly track
pattern shifts between weekdays and weekends.

• Online FDN Models Forecasting Results

Following the functional clusters universal-sketching module, seven universally-
trained FDN models were developed using historical load records of each clus-
ter.

After the dynamic profiling, the MLP regression head of the corresponding
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universally-trained model will be dynamically updated to forecast the load at
different levels for the testing period. The same updating step will be repeated
100 times to get the forecasts for 100 days.

In the multi-scale online FDN model updating phase, for one day, each online
FDN model updating step for the newly arrived smart meter readings takes
about 2.6s. The models ran the testing/updating procedures five times and
used the mean values as the final scores. We evaluate the effectiveness of the
proposed Universal-OFA model by comparing the following scenarios:

– Individual-OFA: Universal-OFA model trained on the 1717 individual
level participants in the loose sketch layer and further refined on the
real-time load sequences of the existing participants.

– Individual-OFAoffline: Universal-OFA model trained on the 1717 indi-
vidual level participants in the loose sketch layer and tested on the real-
time load sequences of the existing participants, i.e., without utilising
the detail refinement layer.

– Individual-OFAnew: Universal-OFA model trained on the 1717 individual
level participants in the loose sketch layer and further refined on the real-
time load sequences of the newly joined participants.

– Regional-OFA: Universal-OFA model trained on the 1717 individual level
participants in the loose sketch layer and further refined on the real-time
aggregated load sequences of the 3440 participants at the regional level.

The Individual-OFAoffline is developed without utilising the information from
the newly arrived daily load records to evaluate the improvement of the de-
tail refinement layer in the overall Universal-OFA framework. Moreover, the
Individual-OFAnew is developed to explore the generalisation ability of the
universal models developed in the loose sketch layers at the individual level,
and the Regional-OFA is developed to assess the generalisation ability of uni-
versal models developed in the loose sketch layers at the region level.

The final MAE scores of each model for each cluster in the above scenarios
are the mean scores over 100 days, as shown in Table 4.7.

Overall, the forecasting results at both levels of the Universal-OFA are promis-
ing when compared to other scenarios, with the lowest mean MAE of 0.161 at
the individual level and 0.070 at the region level. The noteworthy point is that
the Individual-OFAnew achieved the same mean MAE score as the Individual-
OFA, indicating that universal models developed in the loose sketch layer of
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Table 4.7: The MAE score of each cluster in different forecasting scenarios

Individual-OFA Individual-OFAoffline Individual-OFAnew Regional-OFA

C1 0.041 0.046 0.044 0.032

C2 0.179 0.183 0.183 0.073

C3 0.168 0.171 0.168 0.072

C4 0.189 0.193 0.190 0.016

C5 0.193 0.196 0.186 0.182

C6 0.186 0.188 0.186 0.059

C7 0.171 0.175 0.172 0.053

Overall 0.161 0.166 0.161 0.070

the Universal-OFA can be generalized at the individual level robustly. More-
over, the Regional-OFA achieved the best performance with a forecasting
MAE of 0.070, indicating that aggregation reduces the inherent variability
in load curves leading to a smoother profile of load consumption. Mean-
while, since FDNoffline was trained without a refinement layer, it performs
poorly compared to other scenarios, indicating that the Universal-FDA can
continuously update itself in response to dynamic fluctuations in load data by
incorporating real-time feedback from smart meter recordings.

Most cluster models within the Individual-OFA framework have shown the
best performance for individual level forecasting. Individual-OFAnew models
for clusters 3 and 6 were found to achieve the same MAE as Individual-
OFA models, and Individual-OFAnew models for cluster 5 even outperformed
Individual-OFA models. These models exhibit clear peaks in their universally
sketched cluster results (Figure 4.5), demonstrating the ability of Universal-
OFA to capture fluctuations in load usage patterns and its superior ability to
generalize.

Furthermore, to better understand the half-hourly MAE distribution and demon-
strate the advantage of the proposed framework, Figure 4.8 shows the MAE dis-
tribution for the last run of both the Individual-OFA forecasts and the Individual-
OFAoffline forecasts for 100 consecutive days. The daily forecasts show that the
MAE scores of the proposed Individual-OFA framework decrease as the number of
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days increases, whereas it does not happen in the Individual-OFAoffline forecasts,
implying that by incorporating real-time feedback from smart meter recordings, the
Individual-OFA is able to learn from the newly arriving smart meter data to con-
tinuously update itself in response to dynamic fluctuations in load demand data.
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Figure 4.8: Box plot of the MAE scores for 48 half-hourly forecasted daily load of
100 unseen days of the Individual-OFA and Individual-OFAoffline. The black short
lines are the daily median MAE and the red dots are the daily mean MAE.

4.3.4 Summary

Three significant conclusions can be drawn from the discussion of the experiment
results above: 1) The Universal-OFA framework has been demonstrated to be uni-
versally applicable to the dynamic profiling and forecasting of multi-scale functional
load, especially at higher aggregation levels. 2) IVSs enhance the robustness of the
profiling process, enabling effective tracking of changes in load usage behaviour and
analysis of the relationship between social information and the load profile. 3) The
use of real-time daily load feedback renders the proposed Universal-OFA highly
promising for forecasting short-term real-time load compared to various state-of-
the-art models.

4.4 Chapter Summary

We propose a novel two-unit Universal-OFA model for the dynamic profiling and
forecasting of multi-scale load, which is enhanced by a loose sketch-detail refine-
ment strategy. The loose sketch layer enables the development of universal models,
while the detail refinement layer allows the details to be refined based on data
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obtained from multi-scale load. In the proposed model, an intra-day volatility
score was proposed to enhance the multi-scale load dynamic profiling unit. More-
over, both Universal-OFA units train loose sketch layers by collecting historical
load records anonymously into a common pool for undifferentiated clustering and
training, ensuring customer identity privacy while providing flexibility for multi-
scale load forecasts. By taking into account real-time feedback from newly arrived
load records, the Universal-OFA enables dynamic tracking and forecasting of load
usage behaviour at different levels. Experiments with real-world data have shown
that the IVSs can boost the multi-scale load dynamic profiling unit in the proposed
Universal-OFA, which can track the dynamic changes of the multi-scale load pro-
files and sketch the social information for the load profile at the individual level.
Furthermore, quantitative comparisons have demonstrated the superiority of the
proposed Universal-OFA in forecasting different levels of daily load.



Chapter 5

Distributed and
Privacy-preserving Machine
Learning Framework for Smart
Meter Data Applications

5.1 Introduction

The NILM can help analyze the electricity consumption behaviours of users and
enable practical smart energy and smart grid applications. As compared with data
collected at the individual and other higher aggregation levels, smart meter data at
the appliance level is more susceptible to leakage since they reveal the specific load
usage patterns of residents. On the other hand, smart meters are privately owned
and distributed, which makes real-world applications of NILM challenging. To this
end, instead of analysing smart meter data at the individual level and the higher
aggregation level as in Chapter 3 and 4, this chapter develops a distributed and
privacy-preserving federated deep learning framework for NILM. Specifically, this
framework is separated into two modules: the FederatedNILM and the DP2-NILM,
which are adapted from our paper 2. The FederatedNILM considers the distributed
learning for smart meter data analysis, and the DP2-NILM provides enhanced util-
ity optimization and privacy-preserving techniques based on the FederatedNILM.

The rest of this chapter is organized as follows. Firstly, the problem statement
is given in Section 5.2. Secondly, section 5.3 provides the preliminaries used in
FederatedNILM and DP2-NILM. Thirdly, Section 5.4 describes the FederatedNILM
module, in which subsection 5.4.1 presents the designed FederatedNILM system and
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details its implementation process, and subsection 5.4.2 conducts the performance
evaluation based on the comparative experiments. Similarly, Section 5.5 describes
the DP2-NILM module. Specifically, subsection 5.5.1 overviews the three-tier work-
flow of DP2-NILM, and subsection 5.5.2 and 5.5.3 details the utility optimizations
schemes and the privacy-preserving schemes of DP2-NILM. Then, the performance
evaluations on real-world datasets are conducted in subsection 5.5.4. The final
chapter conclusion is given in Section 5.6.

5.2 Problem Statement

Modern urbanization, lifestyles, and technological advancements have increased the
energy demand. Energy supply generates greenhouse gas emissions that accelerate
climate change, which presents a significant threat to the security and prosperity of
the global community [73]. In the UK, legal obligations regarding climate change
have been enacted, putting increased strain on the traditional centralized power
grid [36]. The smart grid has been brought up using information systems to create
a more reliable and intelligent power grid network [114], which has the potential to
contribute to the decarbonization of the energy system and is a leading candidate
for renewable energy sources [36]. As a key part of a smart grid, smart meters
allow NILM to help smart meter clients reduce energy consumption by scheduling
appliance usage hours and monitoring abnormal electricity usage patterns.

Recent studies have proposed many novel NILM frameworks based on deep
learning. Although deep learning models usually perform well on NILM, such mod-
els still face several challenges. The number of the labelled data generated by a
single household is limited, and the size of the training set has a great impact on
the effectiveness of the deep learning model. Therefore, it is necessary to collect the
labelled data from multiple data sources on the premise of ensuring data security.
Besides, different users have different lifestyles and thus have different electricity us-
age patterns (i.e. data distribution), which put forward higher requirements for the
generalization ability of the NILM model. Moreover, given the increasing public at-
tention to data privacy and security preservation, it is necessary to satisfy the needs
of training models with not only high precision but also reasonable communication
efficiency under the premise of ensuring individual data privacy.

To overcome the above challenges, federated learning [143] was proposed where
private data of individual users do not need to be uploaded to a central server for
centralized training. Instead, under the coordination of the central cloud server,
each participant can carry out the model training locally and only exchange typical
parameters of their local model such as updated gradients [80]. Compared with
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other privacy-preserving technologies that need to encrypt the original data set,
federated learning does not need to collect the original data centrally, therefore
model training in this framework does not involve data transmission and public
sharing, and can thus help to achieve individual data privacy protection. On the
other hand, the wide penetration of the IoT in various areas [198] has sparked new
opportunities for federated learning by providing massive amounts of distributed
user-generated data on intelligent IoT devices and applications, which is poised
to make substantial contributions in all aspects of our modern life, such as smart
healthcare and smart grid system [15].

Although federated learning has been studied in various areas, limited attention
has been paid to smart grid applications especially for NILM. Since NILM is one
of the key technologies to unlock the full potential of local and distributed energy
resources, a distributed and privacy-preserving framework is urgently needed to
enable its practical applications. To this end, the first part of this chapter develops
a distributed and privacy-preserving federated deep learning framework for NILM
based on federated deep learning.

Moreover, it is worth noting that there lacks comprehensive research exploring
the utility optimization schemes and the privacy-preserving schemes in different FL-
based NILM application scenarios. Therefore, in the second part of this chapter,
we make the first attempt to conduct FL-based NILM focusing on both the utility
optimization and the privacy-preserving by developing a distributed and privacy-
preserving NILM framework and carrying out comparative experiments on practical
NILM scenarios based on real-world smart meter datasets. Specifically, two alterna-
tive federated learning strategies are examined in the utility optimization schemes,
i.e., the FedAvg and the FedProx. Moreover, different levels of privacy guaran-
tees, i.e., the local differential privacy federated learning and the global differential
privacy federated learning are provided in the DP2-NILM.

5.3 Preliminaries

We introduce several essential concepts related to the proposed framework in this
section.

5.3.1 Federated deep learning

When data owners intend to combine their local data with training a common utility
model, the traditional centralized approach pools their private data at a central
server, during which data uploading and integration process are often restricted
by data privacy legislation. To address this challenge, FL was brought up [116],
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which only requires the exchange of updated model parameters rather than the
raw data between clients and the central server, and therefore is deemed to be the
state-of-the-art approach for distributed data privacy protection.

FL is a machine learning strategy aimed at training a high-quality global model
while the raw private datasets are distributed locally in each client without trans-
ferring them to a central server. The training process of the federated deep learning
framework is shown in Figure 5.1, which can be described in three steps.

• Step 1. Each client trains their local model and updates model parameters
during each training round. Then, each client passes the updated parameters
to a central server.

• Step 2. The global model aggregates the updated parameters from all local
clients and updates its parameters accordingly in the central server.

• Step 3. The updated global model parameters are then broadcast to each
local client, and these three steps are iterated for multiple rounds until con-
vergence is reached.

Figure 5.1: Training process of the federated deep learning framework.

5.3.2 Differential privacy

DP introduces noise into the raw dataset to provide statistical guarantees against
the information a malicious adversary may infer from the output of a randomized
algorithm [56].
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Definition 1 (Differential Privacy [4]). A random algorithm M is compliant
with (ϵ, δ)-DP if for any two neighbouring input datasets L,L′ and for any subset
of outputs/events SSS ⊆ Rang(M),

Pr[M(L) ∈ SSS] ≤ eϵ Pr[M(L′) ∈ SSS] + δ. (5.1)

In the above equation, ϵ is the privacy budget/loss, which is inversely propor-
tional to the privacy level. δ is the probability that the upper privacy bound is
broken, i.e., the occurrence of a bad event. It is a plain ϵ-DP when δ equals 0.

For a real-valued function F , a common exemplification is to calibrate an ad-
ditive zero-mean Laplacian or Gaussian noise mechanism to the sensitivity of F ,
which can be denoted as

∆F = max
L,L′

∥∥F(L)−F(L′)
∥∥
1
. (5.2)

Depending on whether a single record is included or excluded, the sensitivity ∆F
measures the maximum change in output.

The Gaussian mechanism adds Gaussian noises to F to satisfy (ϵ, δ)-DP: ∀δ ∈
(0, 1), the noise is denoted by N (0,∆F2 · σ2), and we have

M(L) = F(L) +N (0,∆F2 · σ2), (5.3)

where ∆F · σ is the standard deviation, and σ ≥
√

2 ln(1.25/δ)

ϵ .

5.4 FederatedNILM: A Distributed Smart Meter Anal-
ysis Framework

5.4.1 Framework Design and Implementation

5.4.1.1 The workflow of the proposed FederatedNILM framework

The FederatedNILM framework aims to accurately infer the ON/OFF states of
multiple appliances in individual households in a distributed and privacy-preserving
way. The whole workflow of the FederatedNILM can be described in three stages
(see Algorithm 2).

• Initialisation. The parameters of global deep learning model wG, global
sharing batch BG, along with parameters of model training including learning
rate η, momentum ρ and loss function L need to be initialised first. Then set
the global and local communication round index to 1, initialise the moment
estimate variable v to 0, and begin the first round of training.
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Algorithm 2: FederatedNILM for multiple households
Input: Aggregated load consumption of target appliances from all N houses

{Ln} , n = 1, 2, . . . , N , the number of global communication rounds RG, the global
sharing batch BG, the local batch BL, the number of local epochs RL

Output: The optimal global deep learning model parameters w∗
G.

1 Initialization:
2 The initial global deep learning model parameters wG, learning rate η, momentum ρ, loss

function L, the global sharing batch BG;
3 The global communication round index rG = 1;
4 The local epoch index rL = 1;
5 The moment estimate variable v = 0;
6 Procedure:
7 // Global deep learning model aggregation, training, and broadcasting
8 for rG ≤ RG do
9 for n = 1, 2, . . . , N in parallel do

10 wn
rG+1 ← HouseholdsUpdate(wn

rG
);

11 end

12 wrG+1 ←
∑N

n=1 wn
rG+1

N
;

13 Replace the old global deep learning model with the new parameters, which are stored in the
global sharing batch BG: wrG ← wrG+1;

14 rG ← rG + 1.

15 end
16 return The global deep learning model with parameters wRG

17 // Local households model updating, training, and uploading
18 HouseholdsUpdate(wn

rG
):

19 Split Ln into batches of size BL;
20 while rL ≤ RL do
21 for each batch of Ln do
22 Calculate the gradient by d← ▽wn

rG
L;

23 Update biased moment estimate variable by v ← ρv + d;
24 Update the local model parameters by wn

rG
← wn

rG
− ηv;

25 end
26 rL ← rL + 1.

27 end
28 return wn

rG

• Local households model updating, training, and uploading. The local
households will train their own local deep learning model based on the local
data Ln after receiving the broadcast parameters from the global deep learning
model. As described in HouseholdsUpdate(), in each local epoch, the local
deep learning models aim to find the best approximation Fs (Equation (3.4)).
The local training returns the updated parameters from all the local models,
which are then uploaded to the global cloud server.

• Global deep learning model aggregation, training, and broadcasting.
The global deep learning model receives the locally updated parameters from
the global sharing batch BG and adopts federated averaging (FedAvg) to the
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parameter sets [143]. Then, the global deep learning model will be updated
based on the FedAvg results. After this, the updated global parameters will
be broadcast to the local models of each house. After running all the global
communication rounds between the local households and the central cloud
server, a final global deep learning model will be generated.

5.4.1.2 The deep learning model for NILM

In Chapter 3, we have used the sequence-to-point architecture to build NILM model,
which is a suitable choice for applying transfer learning and building personalized
NILM models for different appliances. However, in this chapter, the main focus of
using the deep learning model is to enhance the overall performance of the NILM
models, which in turn expands the choice of models. The deep learning architecture
utilized to enhance the overall inferring performance in this chapter is inspired
by Zhao et al. [237], which was originally used for image semantic segmentation.
The selection of the above particular architecture is motivated by its potentially
promising performance on NILM after appropriate adjustments as demonstrated in
[167]. The complete layout of our chosen deep learning model for NILM is shown
in Figure. 5.2

Specifically, the architecture of the deep learning model for NILM is composed
of three modules: the encoder, the temporal pooling module, and the decoder.

• Encoder. The input of the encoder is the household aggregated load con-
sumption of the target appliances over a 126 minutes interval. The encoder
increases the space of features from a single aggregation value to 256 while
paying the price of decreasing the time signal resolution by ten times.

• Temporal pooling. The temporal pooling module consists of four average
pooling modules. The filters in this module are reduced from the whole size
of the input signal to one-sixth of it, which is the same case with the stride.
After going through a convolutional layer, the feature dimension of the input
is reduced to a quarter of its original size, and the acquired feature maps were
upsampled to increase their size to the size of the input time signals. Then the
upsampled feature maps (shallow features) are concatenated with the original
input signal (deep features) from the temporal pooling to get the final feature
maps. The fusion of the deep and shallow features of the temporal pool could
enable this block to get contextual information fed into the decoder.

• Decoder. The decoder receives the output from the temporal pooling block
and passes it to a convolutional layer to recover the temporal resolution. Then



CHAPTER 5. DISTRIBUTED AND PRIVACY-PRESERVING MACHINE
LEARNING FRAMEWORK FOR SMART METER DATA APPLICATIONS 114

Figure 5.2: The overall layout of the deep learning model for NILM
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the output is fed into the final convolutional layer to produce the final output.
Softmax is utilized to classify the states of multiple targeted appliances. After
this, the binary cross-entropy is chosen as the loss function, which is given by:

Liclass =
1

N

N∑
n=1

1

S

S∑
s=1

(sin,s · log p(sin,s)

+ (1− sin,s) · log(1− p(sin,s)))

(5.4)

where N is the number of the training samples, S is the length of the output
from Softmax classifier, sin,s is the true state of i-th appliance, and p(sin,s)
denotes the predicted probability that i-th appliance is in the activation state.
Also, stochastic gradient descent (SGD) is selected as the optimizer to facili-
tate the convergence of the binary cross entropy.

5.4.2 Evaluation and Discussion

This section gives numerical experiments to evaluate the proposed FederatedNILM
framework. Firstly, experimental settings are introduced, including the environ-
ment setup, data preprocessing, training and testing split, and evaluation metrics.
Secondly, we compare our proposed FederatedNILM with the centralized counter-
part regarding model performance and training time efficiency. Finally, we compare
the adopted deep learning architecture (used in the FederatedNILM and the cen-
tralized counterpart) with several existing advanced NILM models to evaluate the
performance of the proposed FederatedNILM framework.

5.4.2.1 Experimental settings

The FederatedNILM model is implemented on Pytorch and conducted on a Windows
10 platform using an NVIDIA GeForce RTX 2080 Ti GPU with 64GB of RAM and
CUDA v10.2. When conducting local model training and uploading, we assume
that all clients are available. Since the entire project was completed on a single PC,
the client models were updated consecutively within a set number of local epochs
before communicating with the central server to train the final global model.

In the FederatedNILM, we consider the UK-DALE dataset [103], which has been
introduced in subsection 3.3.4.2, Chapter 3. To demonstrate the effectiveness of the
proposed FederatedNILM model and the utilized deep neural network architecture,
we deploy a simplified experimental setup following Kelly and Knottenbelt [102] for
comparison purposes. We consider common appliances possessed by most houses,
i.e., fridge, dishwasher, and washing machine, which narrowed the dataset to houses
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1, 2, and 5. The date range selected from the three houses is from 12/04/2013 to
01/07/2015 for house 1, 22/05/2013 to 03/10/2013 for house 2, and 29/06/2014 to
01/09/2014 for house 5.

Following the same data preprocessing procedure in [102], abnormal load con-
sumption records were firstly filtered out by the max power threshold provided in
Table 5.1 followed by a down-sampling of the aggregated load from 1s to 6s to align
with the submetered data. The resampled data were normalized by subtracting the
mean and then dividing a constant value 2000 W. Finally, the state series of each
target appliance were derived from the activation-time thresholding as the input
of the proposed FederatedNILM model where relevant thresholds are provided in
Table 5.1.

Table 5.1: Relevant thresholds information

Fridge Dishwasher Washing Machine

Max power (W) 300 2500 2500

Power threshold (W) 50 20 20

Min. ON duration (s) 1 60 60

Min. OFF duration (s) 0 60 5

In the experiment, both the seen house case and the unseen house case are
considered to verify the effectiveness of FederatedNILM.

For the seen house case, the split of the three houses datasets is listed in Table
5.2. The first 80% series from each household was selected as the training set,
followed by a 10% for validation and 10% for testing. In this case, the disaggregation
ability of the model is evaluated when signatures of specific appliances are learned.

For the unseen house case, the choice of three houses allows us to train using two
houses and test on another. The unseen house case aims to verify the generalisation
ability of the model, and the generic signature characteristics of the same type of
appliances need to be distinguished. As detailed in Table 5.3, we split two houses
data into training and validation sets and used the other unseen house as the test
set. Then, we average the results of all three different combination cases of the
training and testing for comparative analysis.

The parameters used in the FederatedNILM model training are listed in Table



CHAPTER 5. DISTRIBUTED AND PRIVACY-PRESERVING MACHINE
LEARNING FRAMEWORK FOR SMART METER DATA APPLICATIONS 117

Table 5.2: Training, validating and testing splits for the seen house case model

Train Validation Test

House 1 80% 10% 10%

House 2 80% 10% 10%

House 5 80% 10% 10%

Table 5.3: Training and testing splits for the unseen house case model

House

Number

Case 1 Case 2 Case 3

Training Validation Testing Training Validation Testing Training Validation Testing

1 90% 10% - 90% 10% - - - 100%

2 90% 10% - - - 100% 90% 10% -

5 - - 100% 90% 10% - 90% 10% -

5.4. Different global rounds [2, 4, 6, 8, 10] are selected to conduct comparative
experiments. We repeat the experiment five times for all the cases and report the
average performance for each model.

Four evaluation metrics, precision, recall, accuracy, and F1, are used in the
experiment to assess the performance of the proposed framework. The precision (eq.
(3.11)), recall (eq. (3.12)), and F1 (eq. (3.13)) has been introduced in subsection
3.3.4, Chapter 3. Recall the true positive as TP, true negative as TN, false positive
as FP, and false negative as FN, the accuracy can be defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(5.5)

The accuracy reflects the ratio of all correctly identified samples to all the data
sequences.
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Table 5.4: Parameters used in FederatedNILM

Item Explanation Value

BG Global sharing batch size 32

RG Global communication rounds [2, 4, 6, 8, 10]

BL Local batch size 32

RL Local epochs 10

η Learning rate 1e-4

Activation function - ReLU

Dropout probability - 0.1

ρ Momentum 0.5

Optimizer - SGD
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5.4.2.2 Comparative studies

We consider the FederatedNILM model and the centralized counterpart (termed
as Centralized-NILM) for both the seen house case and unseen house case. For
Centralized-NILM, each household needs to upload its original data directly to the
trusted central server, in which the data are trained in a centralized way by the
deep learning model described in Section 5.4.1.2. This scenario could not provide
any data privacy guarantee to participants. FederatedNILM, on the other hand,
does not require access to the original data. In this scenario, households only need
to share the training outcomes (parameter sets) of the local deep learning model
with the central server.
•Performance comparison with centralized model based on seen house

case
In this section, we conduct comparative studies between the proposed Federat-

edNILM and Centralized-NILM for the seen house case. We run ten global rounds
with ten local epochs for FederatedNILM training and 100 epochs for Centralized-
NILM training.

Fig. 5.3 shows the disaggregation performance on the test dataset in the seen
house case.

(a) Fridge (b) Dishwasher (c) Washing machine

Figure 5.3: Disaggregation performance on the test dataset in the seen house case.

From the results, we can see that for each appliance, both Centralized-NILM
and FederatedNILM achieve satisfactory results on the dishwasher and washing
machine and reasonable results on the fridge. It is worth pointing out that the
fridge consumes relatively low power compared with other appliances and is likely
to be learned with less evident signature during model training since its consumption
can easily be omitted as unidentified load noise. This might explain why testing
results of the fridge show relatively low scores compared with other appliances.

It should be highlighted that the FederatedNILM achieves very similar per-
formance to Centralized-NILM on all appliances. Therefore, it is reasonable to
infer that our proposed FederatedNILM framework works well in a distributed and
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privacy-preserving manner for the seen house case and can achieve a good trade-off
between data privacy and data utility.
• Performance comparison with centralized model based on unseen

house case
In this section, we apply our proposed models for the unseen house case to

evaluate the generalisation ability of FederatedNILM.
Figure 5.4 shows the disaggregation scores on the house not seen during training

for the three target appliances.

(a) Fridge (b) Dishwasher (c) Washing machine

Figure 5.4: Disaggregation performance in the unseen house case.

Compared with the seen house case, both models produce satisfying results for
the fridge and dishwasher but perform less well for the washing machine. One
possible reason is that the washing machine, as a multi-state appliance, has more
complex signature characteristics [57], which is likely to be more challenging to
distinguish the generic signature characteristics.

We can also find that the FederatedNILM has very similar performance com-
pared with Centralized-NILM on all appliances for the unseen house case, which
aligns well with our conclusion on the proposed FederatedNILM framework in terms
of data privacy and data utility in Section 5.4.2.2 for the seen house case.
• Global round, local epochs, and training time efficiency
In this section, different global rounds and their related training costs and testing

results are given to explore the relationship between training efficiency and model
performance.

The epochs for the Centralized-NILM are set to 20, 40, 60, 80, and 100, respec-
tively, corresponding to the global rounds 2, 4, 6, 8, and 10 with ten local epochs
of the FederatedNILM model. Tables 5.5 to 5.7 listed the testing results of both
models using different global rounds in the unseen house case for fridge, dishwasher,
and washing machine, respectively, and the best results of each model are marked
in bold. Figure. 5.5 shows the training time of the two models with increasing
epochs/global rounds.
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Table 5.5: Test results for fridge

Global

rounds

FederatedNILM Baseline

epochs

Centralized-NILM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

2 0.80 0.80 0.77 0.70 20 0.80 0.76 0.73 0.75

4 0.82 0.69 0.76 0.74 40 0.81 0.78 0.73 0.75

6 0.83 0.72 0.86 0.78 60 0.83 0.79 0.74 0.75

8 0.84 0.70 0.82 0.73 80 0.83 0.80 0.73 0.79

10 0.85 0.83 0.79 0.78 100 0.85 0.82 0.77 0.79

Table 5.6: Test results for dishwasher

Global

rounds

FederatedNILM Baseline

epochs

Centralized-NILM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

2 0.79 0.55 0.54 0.45 20 0.97 0.70 0.74 0.74

4 0.81 0.58 0.57 0.68 40 0.97 0.74 0.81 0.73

6 0.98 0.73 0.69 0.69 60 0.98 0.74 0.84 0.77

8 0.89 0.75 0.77 0.69 80 0.98 0.76 0.91 0.77

10 0.98 0.77 0.82 0.78 100 0.98 0.76 0.90 0.79

The overall performance of the FederatedNILM model and the Centralized-
NILM generally improves with the increase of the epochs.

With the increase of the global rounds, the time consumption cost also increases.
The training time consumption of the FederatedNILM model is slightly higher but
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Table 5.7: Test results for washing machine

Global

rounds

FederatedNILM Baseline

epochs

Centralized-NILM

Accuracy Precision Recall F1 Accuracy Precision Recall F1

2 0.96 0.52 0.53 0.41 20 0.97 0.53 0.49 0.44

4 0.95 0.53 0.57 0.45 40 0.98 0.50 0.52 0.47

6 0.95 0.54 0.58 0.50 60 0.98 0.55 0.57 0.49

8 0.94 0.55 0.58 0.54 80 0.98 0.59 0.55 0.53

10 0.96 0.56 0.59 0.53 100 0.98 0.61 0.60 0.54

Figure 5.5: Training time for the proposed FederatedNILM and the centralized
NILM model
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still within the acceptable range compared with the Centralized-NILM. Besides,
given similar classification scores, the proposed FederatedNILM model has similar
training time efficiency compared with the Centralized-NILM. For instance, the
proposed model obtained an accuracy, precision, recall, F1 of 0.98, 0.77, 0.82, 0.78,
respectively, for the dishwasher when global rounds reach ten. In contrast, similar
scores (0.98, 0.76, 0.90, 0.79 for accuracy, precision, recall, F1, respectively) were
achieved in the Centralized-NILM with 100 epochs. Therefore, we can also infer that
the training cost of FederatedNILM is within an acceptable range compared with
the Centralized-NILM under similar accuracy requirements. The above analysis
confirms that the proposed model could achieve a satisfactory trade-off between the
computational costs and the model performance.
• Performance comparison with state-of-the-arts
In the previous subsections, we compare the proposed FederatedNILM with

Centralized-NILM to examine its feasibility from the perspective of communication
cost and model accuracy (i.e., distributed vs. centralized). In the following, we
compare our adopted deep learning architecture (used in both FederatedNILM and
Centralized-NILM) with state-of-the-art considered in [102] on model generalisation
performance for the NILM task.

By considering the experiment environment set up in the proposed framework
and in [102] and to allow for a direct comparison, the appliances and corresponding
house numbers listed in Table 5.8 are considered.

Table 5.8: Training and testing houses for the unseen house case model

Train Testing

Dishwasher [1, 2] 5

Washing machine [1, 5] 2

Table 5.9 gives the comparative results of FederatedNILM and Centralized-
NILM with state-of-the-art for dishwashers and washing machines, respectively.
The models considered for the comparative study are combinatorial optimization
(CO), factorial hidden Markov models (Neural-NILM FHMM), and deep neural
network (Autoencoder, Rectangles, Neural-NILM LSTM, centralized-NILM, and
FederatedNILM).

In general, the deep neural network-based models for NILM have relatively bet-
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Table 5.9: Comparison results of Federated-NILM with state-of-the-arts

State-of-the-art
models

Dishwasher Washing machine
Accuracy Precision Recall F1 Accuracy Precision Recall F1

CO [102] 0.64 0.06 0.67 0.11 0.88 0.06 0.48 0.10

Neural-NILM
FHMM [102]

0.33 0.03 0.49 0.05 0.79 0.04 0.64 0.08

Autoencoder [102] 0.92 0.29 0.99 0.44 0.82 0.07 1.00 0.13

Rectangles [102] 0.99 0.89 0.64 0.74 0.98 0.29 0.24 0.27

Neural-NILM
LSTM[102]

0.30 0.04 0.87 0.08 0.23 0.01 0.73 0.03

Centralized
-NILM

0.99 0.79 0.99 0.83 1.00 0.85 0.96 0.90

FederatedNILM 0.98 0.84 0.69 0.78 1.00 0.77 0.67 0.92

ter performance than other models. It is also worth pointing out that both the
Centralized-NILM and FederatedNILM achieved better testing results on the un-
seen house 2 (see Tables 5.8 and 5.9) than the average testing results of all three
cases in Table 5.3 for the washing machine. One possible reason is that house 1
provides the largest dataset, and when this house is considered an unseen house,
as in Table 5.3, the training size of the model becomes much smaller, which could
impact the model performance. Among all the methods, the Centralized-NILM
model achieved the highest accuracy score for both appliances, which proves that
the deep learning architecture we utilized in the proposed framework could enhance
the local training performance and thus improve the overall state inference accu-
racy in our framework. As discussed in previous subsections, the above results
also demonstrated that our proposed FederatedNILM with the same deep learning
architecture as Centralized-NILM could achieve promising generalisation perfor-
mance. Considering FederatedNILM works in a distributed and privacy-preserving
manner, which is fundamentally different from the other considered methods (i.e.,
centralized-based methods), our proposed framework could achieve a good trade-off
between data privacy protection and data utility.

5.5 DP2-NILM: Providing Privacy Guarantee to Dis-
tributed Smart Meter Analysis

5.5.1 Framework Design Overview

5.5.1.1 Overview of DP2-NILM

The key objective of our DP2-NILM framework is to train different federated learn-
ing models focusing on various enhancement schemes, i.e., the utility optimization
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schemes and the privacy-preserving schemes, for real-world NILM application sce-
narios. We further stress that the DP2-NILM framework can easily incorporate
various state-of-the-art DNN models and datasets. As presented in Figure 5.6, the
whole workflow of the DP2-NILM framework contains three tiers.

Figure 5.6: The workflow of proposed DP2-NILM framework.

• Client Model Training Tier. In this tier, smart meter readings from the
client side are preprocessed into standard formats for the federated pipeline.
The client can either specify their privacy-preserving or data heterogeneity
optimization requirements. After preprocessing, each client trains their data
based on a state-of-the-art DNN model, which will be introduced in Section
5.5.1.2, and then upload their parameters through the DP2-NILM paradigm.

• Federated Model Training Tier. This tier is the key part of the DP2-
NILM framework. Based on the particular requirement from the client model
training tier, the DP2-NILM assigns different federated learning mechanisms
to each client. For example, a client-side requires a strict privacy-preserving
mechanism to protect sensitive data. After receiving this request, DP2-NILM
will deliver a high-level privacy-preserving paradigm, the local differential pri-
vacy federated learning (Section 5.5.3.2), to train the FL model based on the
typical FL training steps.
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During FL training, the objective for the global model can be formulated as:

min
wg

Lg(wg) =
1

|L|

N∑
n=1

|Ln| · Lnc (wc), (5.6)

where Lg(wg) is the loss of the global model, Lnc (wc) is the loss of the n-th
local client model. Then, the initialized/updated server parameter wg will be
broadcasted to each client. The objective for each client can be formulated
as:

Lnc (wc) =
1

|Ln|
∑
i∈Ln

Li(wi),∀Ln ∈ L, n ∈ {1, 2, . . . , N} (5.7)

where Li(wi) is the loss of a single smart meter reading. Each household
n ∈ {1, 2, . . . , N}, and generates its private smart meter readings Ln =
{(ln, sn), (ln, sn), . . . , (ln, sn)}, where ln is the aggregated load consumption
of the target appliances, and sn is the corresponding states (ON/OFF) set of
these appliances.

The most commonly used optimization algorithm for FL is the FedAvg [143].
Based on the FedAvg, two subsequent research streams for enhancing the
FL paradigm have been proposed, i.e., the utility optimization schemes and
the privacy-preserving schemes. Following this development, the DP2-NILM
framework uses the FedAvg as the baseline to include the above two enhancing
schemes. Specifically, the DP2-NILM adopts the FedAvg and the FedProx to
optimize the model utility for FL-based NILM. Furthermore, studies [208, 208]
have provided clear theoretical foundations for GDPFL and LDPFL based
on the FedAvg, and hence the DP2-NILM develops GDPFL and LDPFL in
privacy-preserving schemes based on FedAvg.

• Performance Evaluation Tier. We designed different model training paradigms
for different NILM application scenarios based on three real-world smart me-
ter datasets, and the model performance of each scenario is evaluated and
validated in this tier.

5.5.1.2 State-of-the-art NILM client model

We introduce a state-of-the-art deep learning architecture, i.e., the pyramid scene
parsing network (PSPNet) [237], to enhance the performance of DP2-NILM in the
local client model training and the central server global model training, which was
originally used for image semantic segmentation. The selection of this particular
architecture is motivated by its potentially promising performance in learning the
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inherent signatures of appliances as demonstrated in [141]. We further adjusted
the PSPNet model for the NILM task, and the training structure of the adjusted
PSPNet is shown in Figure 5.7.

Figure 5.7: The overall layout of the deep learning model for NILM.

We provide a detailed description of the adjusted PSPNet model, which consists
of three modules: the encoder, the temporal pooling module, and the decoder.

• Encoder. The input of the encoder is the household aggregated load con-
sumption of the target appliances over a 1-hour interval (the consumption
datasets were resampled to 30 seconds). The encoder makes up of four mod-
ules, each of which is alternated by a max pool layer except for the last block.
The encoder increases the output features from a single aggregation value to
256 while paying the price of decreasing the time signal resolution by ten
times.

• Temporal Pooling. The temporal pooling consists of four average pooling
modules, filter sizes of which are decreased from the whole size of the input
signal to one-sixth of it. After going through a convolutional layer, the feature
dimension of the input is reduced to a quarter of its original size, and the
acquired feature maps are upsampled to the size of the input time signals.
Then the upsampled feature maps (shallow features) are concatenated with
the original input signal (deep features) from the temporal pooling to get
the final feature maps. The fusion of the deep and shallow features of the
temporal pool could enable this block to get contextual information fed into
the decoder.

• Decoder. The decoder receives the output from the temporal pooling block
and passes it to a convolutional layer to recover the time signal resolution.
Then the output is fed into the final convolutional layer to produce the final
appliance-level load disaggregation.
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5.5.2 Utility Optimization of DP2-NILM

Recall the FL optimization objective (equation 5.6), the DP2-NILM framework
considers two utility optimization schemes, the FedAvg-NILM and the FedProx-
NILM, to achieve this goal.

5.5.2.1 FedAvg-NILM

Algorithm 3 depicts the steps of FedAvg-NILM. The FedAvg [143] allows the smart

Algorithm 3: FedAvg-NILM
1 Central Server Execution:
2 Initialise the global model parameters wG

3 for each global round r ≤ R do
4 for each client n ∈ {1, 2, . . . , N} in parallel do
5 wn

r+1 ← HouseholdsUpdate(wn
r )

6 end

7 wr+1 ←
∑N

n=1 wn
r

N

8 end
9 Broadcast the global model to all clients

10 Smart Meter Client Execution:
11 procedure HouseholdsUpdate(wn

r ):
12 Split Ln into batches of size BL;
13 for each local client epoch e ≤ E do
14 for each batch of Ln do
15 wn ← wn − η∇L(wn)
16 end

17 end
18 Upload wn to the central server

meter clients to train their local DNN models iteratively using the same learning
rate and the number of epochs before uploading the updated model weights to the
central server. For each global round (line 3), every smart meter client receives a
copy of the global model and trains its local DNN models with its private smart
meter readings for multiple epochs using wn ← wn − η∇L(wn) (line 13-17), where
η is the learning rate. After this, the local clients upload their updated local model
weights wn to the central server (line 18). Then, the central server updates the
global model by averaging the uploaded weights from the smart meter clients (line
7) and broadcasts the updated global model to all clients (line 9).

An advantage of FedAvg-NILM is that a well-trained FedAvg-NILM model can
outperform a single local NILM model while maintaining data privacy. Moreover,
FedAvg has been proven to be efficient in reducing the communication overhead
between the local clients and the global server [143].
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Nevertheless, the FedAvg only performs effectively under the premise that all the
local clients utilize a similar initialization. It has been shown that data heterogeneity
impedes the convergence of FedAvg [118]. On the other hand, in real-world NILM
tasks, smart meter clients often exhibit diverse appliance usage patterns, making
the local client models easy to deviate from the global model, thereby reducing the
overall performance.

5.5.2.2 FedProx-NILM

Data from smart meters are likely heterogeneous since they are collected under var-
ious contexts (e.g., across different countries) and are affected by diverse client be-
haviours leading to heterogeneous load usage distributions. Our DP2-NILM frame-
work is efficient for guaranteeing the convergence of the FL model in heterogeneity
settings, i.e., the non-IID data settings, by incorporating FedProx [118] as an ex-
tension of the utility optimization scheme.

Algorithm 4: FedProxmod-NILM
1 Central Server Execution:
2 (// Same central server execution steps as the FedAvg-NILM)
3 Broadcast the global model to all clients
4 Smart Meter Client Execution:
5 procedure HouseholdsUpdate(wn

r ):
6 Split Ln into batches of size BL

7 for each local client epoch e ≤ E do
8 for each batch of Ln do
9 ∇Lprox(wn)← ∇L(wn) + µ(wn − wn

r )
10 wn ← wn − η∇Lprox(wn)

11 end

12 end
13 Upload wn to the central server

Algorithm 4 depicts the steps of FedProx-NILM. The central server executes
the same steps as in the FedAvg-NILM. However, a proximal term µ(wn − wn

r ) is
added to update the local model of smart meter clients (line 9), which keeps local
updates from deviating too much from the initial global model. When µ = 0, the
FedProx-NILM will produce the same results as the FedAvg-NILM.

Specifically, in the typical FedProx training paradigm, there is an inexact mini-
mizer adjusting the local epoch of each client to reduce the negative impact of the
system heterogeneous, which is defined as follows.

Definition 2 (γ-inexact Solution [118]). The w∗ is a γ-inexact minimizer solution
for the optimization objective in equation 5.6 if ∥w∗ − wn

r ∥ ≤ γ
∥∥wn

r − wn
r−1

∥∥, where
γ ∈ [0, 1).
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The γ-inexact minimizer solution considers adjusting the local computation and
the global communication overhead based on the number of local model epochs
performed by the clients. In our framework, we hypothesize that most smart meter
clients are available and capable of completing a certain number of local epochs.
In contrast, for the very few stragglers, their destabilized training environment
may produce models that contribute little to the FL global model. Therefore, we
adjusted the FedProx to make it more efficient in the DP2-NILM framework by
utilising the proximal term µ(wn−wn

r ) with the exact minimizer solution wn
r rather

than the inexact one.

5.5.3 Privacy-preserving of DP2-NILM

The DP2-NILM considers privacy-preserving mechanisms at two different levels to
suit various privacy requirements from smart meter clients, i.e., the global differen-
tial privacy federated learning and the local differential privacy federated learning.

5.5.3.1 Global differential privacy federated learning NILM

In the DP2-NILM paradigm, if a client sends out the privacy requirement and trusts
the central server, the GDPFL-NILM will be utilized for this client. Although
there must be a certain degree of trust in the central server, this presumption is
significantly less stringent than granting the server access to the data. Algorithm 5
details the GDPFL-NILM scheme in the DP2-NILM.

Algorithm 5: GDPFL-NILM
1 Central Server Execution:
2 Initialise the global model parameters wG

3 for each global round r ≤ R do
4 Compute privacy cost: ϵ̂r ← PrivacyAccount(δ, σ);
5 if ϵ̂r > ϵr then
6 return wr

7 end
8 else
9 for each client n ∈ {1, 2, . . . , N} in parallel do

10 wn
r+1 ← HouseholdsUpdate(wn

r )

11 end

12 wr+1 ←
∑N

n=1 wn
r

N
+N (0,∆F2 · σ2)

13 end

14 end
15 Broadcast the global model to all clients
16 Smart Meter Client Execution:
17 (// Same smart meter client execution steps as the FedAvg-NILM)
18 Upload wn to the central server
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Algorithm 6: LDPFL-NILM
1 Central Server Execution:
2 (// Same central server execution steps as the FedAvg-NILM)
3 Broadcast the global model to all clients
4 Smart Meter Client Execution:
5 procedure HouseholdsUpdate(wn

r ):
6 Split Ln into batches of size BL

7 for each local client epoch e ≤ E do
8 for each batch of Ln do

9 ∇Lldp(wn)← ∇L(wn) +N (0, ∆F2·σ2

N
)

10 wn ← wn − η∇Lldp(wn)

11 end

12 end
13 Upload wn to the central server

In GDPFL-NILM, the smart meter client execution steps are the same as in
FedAvg-NILM. The central server guarantees participant-level privacy by perturb-
ing the model weights aggregation, i.e., adding Gaussian noise N (0,∆F2 ·σ2) to the
aggregated results (line 12). Moreover, to ensure the (ϵ, δ)-GDP, after each global
round, the algorithm PrivacyAccount() calculates the accumulated privacy budget
(line 4). The global training iteration will be stopped if it exceeds the overall budget
ϵ (line 6).

5.5.3.2 Local differential privacy federated learning NILM

In the LDPFL [4], smart meter clients apply noise on the updated local model
weights before uploading them to the central server. The LDPFL-NILM scheme in
DP2-NILM is presented in Algorithm 6.

The central server updating process in the LDPFL-NILM is the same as in
FedAvg-NILM. On the other hand, the smart meter clients guarantee their pri-
vacy by perturbing the updated local model weights, i.e., adding Gaussian noise
N (0, ∆F

2·σ2

N ) to the updated model weights (line 9). The LDPFL-NILM provides
a better privacy notion than the GDPFL-NILM, and it is suitable for clients who
require strict data privacy-preserving discipline.

5.5.4 Evaluation and Discussion

This section uses real-world smart meter datasets to evaluate the proposed DP2-
NILM framework. The datasets and the evaluation criteria are firstly introduced.
Then, the performance of the FL setting in DP2-NILM is compared with the Local-
NILM models trained on individual household datasets and the Centralized-NILM
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model trained on aggregated household datasets. After this, we examine the utility
optimization schemes in the DP2-NILM paradigm. Finally, based on the FedAvg,
two privacy-preserving schemes, i.e., the GDPFL-NILM and the LDPFL-NILM, are
compared in terms of the trade-off between model utility and privacy.

We used three real-world smart meter datasets to evaluate the DP2-NILM frame-
work, including UK-DALE [103], REDD [109] and REFIT [150]. As UK-DALE has
been introduced in the subsection 3.3.4.2, Chapter 3, we here will introduce other
two datasets.

• REDD: The Reference Energy Disaggregation Dataset (REDD) consists of six
buildings in the U.S. from 3 to 19 days, and the sampling periods for mains
and appliances are 1s and 6s, respectively.

• REFIT: The REFIT dataset contains 20 buildings in the U.K. between 2013
and 2015 with an 8s sampling period for mains and appliances.

For comparison purposes, three appliances (fridge, dishwasher, and washing
machine) are selected as our target appliances. 80% records from each smart meter
client were selected as the training set, followed by a 10% for validation and 10%
for testing. The distribution of the selected buildings is listed in Table 5.10.

Table 5.10: Distribution of the selected datasets. D: Days

Datasets Building Period Total (D) Training (D)
Validation

/Testing (D)

UK-DALE
1 2013-04-12 to 2017-04-25 1475 1180 147.5
2 2013-05-22 to 2013-10-03 135 108 13.5
5 2014-06-29 to 2014-09-01 65 52 6.5

REDD
1 2011-04-19 to 2011-05-19 31 24.8 3.1
2 2011-04-18 to 2011-05-21 34 27.2 3.4
3 2011-04-17 to 2011-05-30 44 35.2 4.4

REFIT
2 2013-09-18 to 2015-05-27 617 493.6 61.7
5 2013-09-27 to 2015-07-05 647 517.6 64.7
9 2013-12-18 to 2015-07-07 567 453.6 56.7

TABLE 5.11 gives the relevant thresholds used in data preprocessing. We firstly
filtered out the abnormal load consumption by the max power [102], and then down-
sampled the load consumption of all the nine households from 6s to 30s through
averaging. After this, the resampled data were normalized by subtracting the mean
and dividing a constant load value 2000 W following Kelly and Knottenbelt [102].
Then the state series of each target appliance was derived from activation-time
thresholding [102] as the input to feed into the DP2-NILM.
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Table 5.11: Relevant threshold information

Fridge Dishwasher Washing Machine

Max power (W) 300 2500 2500

Power threshold (W) 50 20 20

Min. ON duration (s) 1 60 60

Min. OFF duration (s) 0 60 5

Furthermore, parameters used in the DP2-NILM framework are listed in TA-
BLE 5.12. We used TensorFlow to train the DP2-NILM framework. To keep the
comparison fair, all the models in our experiment use the same DNN architecture
described in Section 5.7. For all the FL models in DP2-NILM, each global training
round consists of eight local epochs, allowing the clients to take reasonable learning
steps before central server aggregation. For the privacy-preserving scheme, we vary
the privacy budget ϵ between 4 and 12 while keeping δ = 10−5, and report the
performance and attack success risk, i.e., the Accuracy and the ASR. The choice
of δ = 10−5 satisfies the requirement that δ should be smaller than the inverse of
the training data size [4]. Clipping is required to be a computationally efficient and
common practice in deep learning to bound the sensitivity ∆F2 of the gradients.
With the TensorFlow Privacy framework, we implemented batch clipping with a
threshold of 4. Further, for the listed parameters, we note that an additional pa-
rameter tuning step may improve the final model performance, however, at the cost
of massive computational resources.

We use the same four evaluation metrics as in FederatedNILM to assess the
model performance of the DP2-NILM framework, i.e., the precision, recall, accuracy,
and F1 scores.

Moreover, to measure the privacy risk for the privacy-preserving DP2-NILM
models, we utilized the member inference attack metric defined by Yeom et al.
[224]. To test the membership of an input record, this attack mechanism evaluates
the loss of the uploaded local model parameters and then classifies it as a member
if the loss is smaller than the average training loss. The attack success risk can be
calculated as

ASR = TPR− FPR, (5.8)

where TPR = TP
TP+FN denotes the TP rate, and FPR = FP

FP+TN represents the FP
rate.
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Table 5.12: Parameters used in the DP2-NILM framework

Parameters Value
Batch size 32
Global rounds 10
Local epochs 8
Number of clients 9
Proximal parameter µ 0.01
Privacy budget ϵ [4, 8, 12]
Privacy relaxation term δ 10−5

Gradient clipping threshold 4
Learning rate η 10−4

Activation function ReLU
Dropout probability 0.1
Momentum 0.5
Optimizer SGD

5.5.4.1 Evaluation on the baseline model of DP2-NILM

This subsection evaluates the FL setting of DP2-NILM. There are three different
model settings in this subsection:

• Local-NILM models: The Local-NILM models are trained on nine household
datasets separately. This setting eliminates the need for data sharing with
the central server but at the expense of updating all nine models separately.

• Centralized-NILM model: The Centralized-NILM model is trained on aggre-
gated datasets from all nine households, which requires raw data sharing from
the smart meter clients.

• FL-setting of DP2-NILM (FedAvg-NILM): The FL-setting of DP2-NILM uti-
lizes FedAvg as the optimization method and trained on all the nine house-
holds without any exchange of the raw smart meter data. The FL model
trained based on FedAvg in DP2-NILM will be used later as the baseline for
evaluating two schemes in the proposed framework.

For the Local-NILM models and the Centralized-NILM model, the epochs are
set to 80 to achieve the final convergence. For comparison purposes, Table 5.13 lists
the average performance scores of the Local-NILM models, the Centralized-NILM
model, and the FL-setting of DP2-NILM (FedAvg-NILM).
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Table 5.13: Average performance scores of the Local-NILM models, the Centralized-
NILM model, and the FL-setting of DP2-NILM for 9 households

Fridge Dishwasher Washing Machine

Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall

Local-NILM 0.83 0.79 0.82 0.74 0.98 0.88 0.86 0.83 0.99 0.78 0.89 0.70

Centralized-NILM 0.86 0.80 0.79 0.81 0.97 0.70 0.87 0.59 0.97 0.66 0.71 0.62

FedAvg-NILM 0.65 0.63 0.50 0.85 0.97 0.75 0.92 0.64 0.98 0.71 0.83 0.62

A comparison of FedAvg-NILM with Local-NILM models examines the per-
formance of federated learning strategies in capturing diversities among clients.
Moreover, comparing FedAvg-NILM to the Centralized-NILM model evaluates the
overall performance of the common utility FL model. From the results, we can
see that for each appliance, all models achieved satisfactory results on the dish-
washer and washing machine and reasonable results on the fridge. Note that the
FedAvg-NILM achieved the same accuracy score and higher F1, precision, and recall
scores on dishwashers and washing machines compared with the centralized-NILM
model. For the fridge, as it consumes relatively low power compared with other
appliances, it is likely to be learned with less evident signature during model train-
ing, and such consumption can easily be omitted as unidentified load noise in the
FL paradigm. Overall, we can conclude that the FedAvg-NILM model in the DP2-
NILM framework works well, and its performance can be used as the baseline for
further evaluations.

We also observed that the FedAvg-NILM might achieve more satisfying per-
formances with more global rounds. For example, we have set 100 global rounds
for the FedAvg-NILM. The final average accuracy for the fridge, dishwasher, and
washing machine were 0.89, 0.99, and 0.99, respectively, which are even better than
the centralized NILM model. However, parameter tuning in FL remains challeng-
ing due to the distributed environment, and the associated computational overhead
[99]. We further stress that fixed global and local training rounds enable efficient,
fair, and comparative evaluations in our DP2-NILM framework.

5.5.4.2 Evaluations on utility optimization of DP2-NILM

Based on the evaluation results in the above subsection, although the performance of
FedAvg-NILM in the case of 9 smart meter clients achieved satisfying performance
on the dishwasher and washing machine, its scores on the fridge are worse than both
the Local-NILM and the Centralize-NILM models. We further conjecture that the



CHAPTER 5. DISTRIBUTED AND PRIVACY-PRESERVING MACHINE
LEARNING FRAMEWORK FOR SMART METER DATA APPLICATIONS 136

load consumption distribution of the fridge for the clients may be heterogeneous
because they are collected geographically, i.e., the REDD dataset is from the U.S.,
whereas the other two datasets are from the U.K., and the size of the smart meter
records from REDD are smaller than the other two datasets. Figure 5.8 shows
the load consumption distribution of the fridge for all nine clients. It can be seen
that different clients have different fridge usage patterns, and in particular, the
UK-DALE and REFIT datasets differ significantly from those in REDD.
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Figure 5.8: Example fridge usage distributions for UK-DALE, REDD, and REFIT.

In this subsection, we will explore the relationship between data heterogeneity
and the different types of FL utility optimising models. We hypothesize that us-
ing optimising algorithms that can accommodate statistical heterogeneity may help
improve the performance of FL models. By comparing the FedProx-NILM to the
FedAvg-NILM, we evaluate the ability of the two strategies to learn from heteroge-
neous data in the DP2-NILM framework. Table 5.14 lists the average performance
scores of the FedAvg-NILM and the FedProx-NILM, and we highlight the improve-
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ment in blue and the downgrade in red of the FedProx-NILM corresponding to the
FedAvg-NILM.

Table 5.14: Average performance scores of FedAvg-NILM and FedProx-NILM
schemes for 9 households

Fridge Dishwasher Washing Machine

Accuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall

FedAvg-NILM 0.65 0.63 0.50 0.85 0.97 0.75 0.92 0.64 0.98 0.71 0.83 0.62

FedProx-NILM 0.85 0.81 0.82 0.81 0.98 0.80 0.78 0.82 0.97 0.54 0.83 0.40

Evaluation (↑ 20%) (↑ 18%) (↑ 32%) (↓ 4%) (↑ 1%) (↑ 5%) (↓ 19%) (↑ 18%) (↓ 1%) (↓ 17%) (-) (↓ 22%)

It can be observed that FedProx-NILM significantly outperforms FedAvg for
most scores on fridge and dishwasher, especially on the fridge, with an improved
accuracy by 20% and an increased precision by 32%. On the other hand, there is a
slight drop (1%) in accuracy and a significant drop (22%) in recall of the washing
machine. We infer that, as the signatures of the washing machines are more complex
than the other two appliances [57], the proximal term in FedProx-NILM reduces
the difference in weight updates for individual models, which may undermine the
learning of significant features of washing machines by the client models. To con-
clude, the above results confirm our assumptions regarding the utility optimization
based on FedProx-NILM for handling heterogeneous smart meter appliances.

5.5.4.3 Evaluations on privacy-preserving of DP2-NILM

FedAvg-NILM and FedProx-NILM presented unique advantages for devices with
different signatures and datasets with different degrees of consistency. However,
studies suggest that potential risks still exist in the training communication process
even though the transmitted objects are the updated parameters instead of the orig-
inal data [28]. Therefore, it is necessary to provide stronger privacy guarantees to
the FL-based NILM. In this subsection, we evaluate two privacy-preserving schemes
of DP2-NILM, i.e., the GDPFL-NILM and the LDPFL-NILM. When clients decide
whether to participate in the DP2-NILM paradigm for smart meter data analy-
sis, our framework serves as a reference for quantifying the potential privacy loss
based on the privacy budget ϵ. By comparing the benefits of participating in the
framework, clients can make an informed decision on whether to join.

Table 5.15 compares the GDPFL-NILM and the LDPFL-NILM trained with
varied privacy budget ϵ, in which we again use the FedAvg-NILM as the base-
line model. Intuitively, the Gaussian random noise will slow the convergence of
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the GDPFL-NILM and the LDPFL-NILM models while providing stronger privacy
guarantees for the local clients, leading to trade-off problems between model utility
and privacy. It is noticed that even with a stronger privacy guarantee, the GDPFL-
NILM still performs reasonably with a marginal reduction in accuracy score from
0.65 to 0.58 with the privacy budget ϵ = 8. Interestingly, most model performance
scores for the dishwasher and washing machine drop dramatically. This is likely
because they differ from the fridge in terms of features, as dishwashers and washing
machines may offer more insight into individual behaviour because they are more
closely related to the routines of smart meter clients.

Table 5.15: Average performance scores of the GDPFL-NILM and the LDPFL-
NILM schemes for 9 households

Privacy

Budget

Fridge Dishwasher Washing Machine Privacy

Guarantee

Trusted

ServerAccuracy F1 Precision Recall Accuracy F1 Precision Recall Accuracy F1 Precision Recall

FedAvg-NILM ⧹ 0.65 0.63 0.50 0.85 0.97 0.75 0.92 0.64 0.98 0.71 0.83 0.62 Basic Yes

GDPFL-NILM

4 0.54 0.53 0.37 0.95 0.90 0.14 0.16 0.72 0.95 0.68 0.40 0.92

Moderate Yes8 0.63 0.61 0.49 0.84 0.97 0.69 0.93 0.56 0.98 0.68 0.79 0.60

12 0.66 0.82 0.81 0.83 0.99 0.85 0.86 0.85 0.98 0.74 0.80 0.63

LDPFL-NILM

4 0.58 0.40 0.40 0.38 0.93 0.11 0.21 0.39 0.94 0.10 0.11 0.34

Strong No8 0.58 0.42 0.41 0.44 0.94 0.20 0.30 0.40 0.96 0.20 0.40 0.47

12 0.65 0.42 0.36 0.50 0.94 0.13 0.26 0.48 0.96 0.43 0.40 0.50

We then compare the performance of the GDPFL-NILM and the LDPFL-NILM
in terms of privacy attacks. To determine whether a client has participated in
a training session, we use the attack success risk introduced in the above as the
evaluation criterion. Figure 5.9 illustrates ASRs based on various epsilon budgets
for FedAvg-NILM, GDPFL-NILM, and LDPFL-NILM, respectively.

We evaluate all three models with three privacy budget values (i.e., ϵ = 4, ϵ = 8,
and ϵ = 12) with a fixed δ = 10−5. Figure 5.9 shows that LDPFL-NILM with the
setting ϵ = 4 mitigates the attack success risk better (downgrades the risk to 0.33)
with compromises in decreasing model accuracy by 7% for fridge, 4% for dishwasher,
and 4% for washing machine. The GDPFL-NILM with ϵ = 8 achieved satisfying
performance on all three appliances and reduced the attack accuracy to 0.59.

Not surprisingly, the LDPFL-NILM imposes more noise than the GDPFL-
NILM, which provides stronger privacy guarantees but less utility due to a higher
amount of noise. It is worth noting that with a higher privacy budget ϵ = 12, the
attack success risk in both the GDPFL-NILM and the LDPFL-NILM are similar to
that in FedAvg-NILM whereas the F1, precision, and recall for the LDPFL-NILM



CHAPTER 5. DISTRIBUTED AND PRIVACY-PRESERVING MACHINE
LEARNING FRAMEWORK FOR SMART METER DATA APPLICATIONS 139

Figure 5.9: The ASRs of FedAvg-NILM, the GDPFL-NILM, and the LDPFL-NILM
in the DP2-NILM framework.

are much worse than the FedAvg-NILM and the GDPFL-NILM. Therefore, utilis-
ing the GDPFL-NILM or the FedAvg-NILM may achieve a better trade-off between
utility and privacy when clients have a higher privacy budget.

5.6 Chapter Summary

In this chapter, we firstly proposed a distributed framework based on federated
learning for NILM (FederatedNILM) to classify the typical states of appliances on
the household level. The proposed FederatedNILM combines federated learning
with a novel deep neural network model, which could benefit from labelled data of
multiple distributed user data sources for NILM. Moreover, compared with the stan-
dard centralized model, the framework only requires model parameters uploading
instead of data transmitting, which has good capability for data privacy protec-
tion. Comparative experiments on a real-world dataset demonstrate the feasibility
and good performance of the proposed FederatedNILM framework and the superior
model performance of the adopted deep learning architecture for NILM.

To provide privacy guarantees and optimize the model utility for the Federat-
edNILM, we proposed the DP2-NILM framework based on federated learning and
differential privacy for NILM, which provides two schemes to the smart meter clients,
i.e., the utility optimization scheme and the privacy-preserving scheme. The utility
optimization scheme consists of the FedAvg-NILM and the FedProx-NILM focus-
ing on dealing with the data heterogeneity. The privacy-preserving scheme includes
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the global differential privacy federated learning NILM and the local differential
privacy federated learning NILM to provide privacy guarantees from various levels.
We conducted extensive evaluations for the proposed DP2-NILM framework based
on real-world smart meter datasets and demonstrated its scalability from multiple
perspectives.

The proposed DP2-NILM framework will serve as a key technology to enable
electric utilities and service providers to offer various large-scale smart energy ser-
vices at the local/residential level, thereby enhancing the return on investment from
the smart meters. Meanwhile, this framework enables smart meter clients to receive
more valuable feedback, facilitating behaviour change in energy use and therefore
contributing to the decarbonization of the energy system.



Chapter 6

Conclusion and Future
Directions

6.1 Summary of Contributions

The following contributions to developing a distributed and real-time machine learn-
ing framework for smart meter big data are discussed in Chapter 3-5.

6.1.1 Load Profiling and Forecasting System for Multi-Level Smart
Meter Data Analysis

In this chapter, we developed load profiling and forecasting frameworks for multi-
Level smart meter data analysis in traditional offline settings, i.e., a model trained
on the observed historical data. The contribution of this chapter can be summarized
as follows:

• For the appliance level smart meter data analysis, we optimize the structure
of a deep neural network based on sequence-to-point and transfer learning to
improve the training efficiency of the model while ensuring the accuracy of
NILM. Useful data analysis tools such as PCA and k-means clustering are
used based on the disaggregation results of individual household appliances
to infer the daily routine patterns of the smart meter users. The proposed
appliance level smart meter data analysis framework can be used to address
a wide variety of applications. For example, the proposed model can monitor
the conditions of patients in real-time, and allows for early detection and
timely intervention of the disease in the remote healthcare service.
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• For the individual and higher aggregation level smart meter analysis, the
proposed system uses consensus-based clustering to reduce the complexity of
the building energy management process. A dynamic clustering structure is
adopted in the proposed system, which can help to identify different load us-
age behaviours at different seasons. Moreover, personalized forecasting models
for different cluster groups are developed by consensus-based model training
strategy and explore the relationship between the performance of forecast
algorithms and different consumption patterns at both the building and ag-
gregation levels. The proposed system provides a systematic way to help to
deliver customized load forecasting models, and enable robust, cost-effective
building energy management. Moreover, the proposed overall approach has
great potential to optimize the demand side management strategy by devel-
oping customized electricity dynamic pricing strategies and to help reduce
greenhouse gas emissions and decrease non-renewable fuel reliance

6.1.2 From Offline to Online: Real-time Smart Meter Data Anal-
ysis

In this chapter, we consider the former load profiling and forecasting framework
in the online setting, i.e., to analyze real-time smart meter big data. The main
contributions of this chapter can be summarized as follows:

• We propose a two-unit universal online functional analysis model (Universal-
OFA) with universal applicability for analysing load at different scales, such
as individual and regional/district levels. To the best of our knowledge, no
previous work has considered such a structure to investigate multi-scale load
analysing problems.

• In the Universal-OFA, a loose sketch-detail refinement strategy is proposed
to first sketch the loose features of load profiles and social information by
clustering and training historical daily load curves at the individual level and
then refine the details of clustered/trained models to generalize them into
higher levels based on real-time load records.

• To assist the clustering process in the multi-scale load dynamic profiling unit,
this work proposes an intra-day volatility score to capture more volatile fea-
tures of the intra-day load curve. Furthermore, social data from participants
are analysed to understand the clustered load profiles further.

• The proposed Universal-OFA reports the dynamic changes in the load usage
patterns of different levels of participants. Furthermore, it can accurately
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forecast newly joined customers without retraining the previous model, which
can result in promising computational benefits, particularly for large and com-
plex regions/districts where participants are likely to participate in the smart
meter data analysis scheme asynchronously.

6.1.3 Distributed and Privacy-preserving Machine Learning Frame-
work for Smart Meter Data Applications

Although federated learning, as a newly proposed distributed and privacy-preserving
framework, has been studied in various areas, more attention should be paid to
smart grid applications, especially for NILM. This chapter develops a distributed
and privacy-preserving framework for appliance level smart meter big data analysis.
The main contributions of this chapter are summarised as follows.

• We firstly develop the FederatedNILM, a distributed framework for NILM
based on federated deep learning, to enable appliance level smart meter data
analysis in the distributed environment. Specifically, we combined an ad-
vanced deep neural network architecture with federated learning, which could
benefit the whole framework by providing more accurate state inference for
multiple appliances on the household level. The comparative experiments
verified the effectiveness of the proposed FederatedNILM by investigating key
practical characteristics, including communication costs and model accuracy.

• We propose DP2-NILM, an enhanced distributed and privacy-preserving frame-
work based on FederatedNILM, which deploys federated learning with two
enhancing schemes, i.e., the utility optimization and the privacy-preserving
in real-world NILM scenarios. The DP2-NILM is expected to provide a sys-
tematic understanding of different enhancement schemes for the challenges in
real-world FL-based NILM applications to satisfy the diverse requirements of
smart meter clients.

• To deal with client heterogeneity, the DP2-NILM framework examines two
utility optimization schemes derived from the FL paradigm, the Federated
averaging (FedAvg) [143] and FedProx [118]. By exploring how the utility
optimization schemes impact the accuracy of the FL-based NILM models,
the proposed DP2-NILM can achieve satisfactory performance under both
homogeneous and heterogeneous data environments.

• The DP2-NILM framework preserves data privacy by incorporating differential
privacy (DP) at different levels, i.e., the central DP level and local DP level,
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and aims to find a better trade-off between utility and privacy for various
privacy requirements.

• We examine the correlations between key parameters and the inference ac-
curacy of different enhancement schemes. It has been demonstrated that the
proposed DP2-NILM can be scalable and offers enlightening insights into dif-
ferent smart meter client requirements based on the extensive evaluation of
three real-world datasets.

6.2 Future Directions

Based on the works done in this thesis, distributed and real-time machine learning
frameworks for multi-level smart meter data analysis have been developed. Al-
though the thesis fulfills the objectives of the project, there are still several direc-
tions that can be explored in the future.

For the appliance level smart meter analysis, anomaly detection techniques for
the proposed ADLs pattern recognition NILM model in Chapter 3 can be combined.
In this way, based on the ADLs pattern recognition analysis, the model should con-
sistently monitor the real-time daily activities of the smart users under the protocols
of privacy protection and alert the abnormal behaviours in time. Moreover, based
on the FederatedNILM and DP 2-NILM proposed in Chapter 5, we stress that the
framework has the potential to accommodate a wider range of client types, such as
commercial and industrial clients. Further, as proved by McMahan et al. [144], the
federated learning scheme has the potential to perform better in the later stage of
convergence by reducing number of the local epochs and learning rates, one of our
potential future direction is to further explore the convergence property of the fed-
erated learning-based NILM model. Nevertheless, the training environment for such
client types may be more complex, so it is important to further consider the system
heterogeneity to ensure the robustness of the framework. Furthermore, as smart de-
vices enable real-time feedback from smart meter clients, adapting the DP2-NILM
framework to online scenarios will deliver more flexible smart meter data analysis
and improve the communication efficiency of the FL paradigm.

For the individual level and the higher aggregation level smart meter data anal-
ysis, a future direction worth exploring for the Universal-OFA proposed in Chapter
4 would be to devise a method by which the Universal-OFA can detect pattern
shifts between weekends and weekdays promptly since it has been observed that
the Universal-OFA has difficulty capturing the pattern shifts in electricity con-
sumption behaviour between the weekdays and weekends. Further, even though
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the loose sketch layer of the Universal-OFA does not require participants to pro-
vide their identity information, the detail refinement layer requires real-time load
records of individuals. Therefore, advanced privacy-preserving algorithms should be
provided for the detailed refinement layer, such as federated learning [127, 40, 38].
Furthermore, the current Universal-OFA takes into account the residential sector.
As the Universal-OFA framework can be deployed at various data scales, we will
examine its scalability in various real-world industry scenarios in the near future.
At the aggregation level, the forecast performance of different learning algorithms is
analysed in Chapter 3 and Chapter 4. It has been shown that aggregation reduces
the randomness and variations of individual buildings and produces more stable
forecast performance among different models. Moreover, the experiment results in
Chapter 3 indicate that some important features of individual buildings are lost in
the data aggregation process. As a result, it is necessary to develop a better data
aggregation process to retain more critical features and further improve forecast
performance for the aggregation level smart meter analysis.

In this thesis, we have considered TL, OL, and FL in the three core chapters,
which are three enhancing approaches built on standard machine learning tech-
niques to address practical challenges in smart meter big data analysis. Extending
these techniques to a comprehensive framework, i.e., online FTL, will enable the
developing of an advanced machine learning framework for smart meter big data
analysis. Fig. 6.1 illustrates the proposed online FTL framework that is described
below. The data in the source domain can be generated in real-time or from pre-
given datasets. It should be noted that a scratch of the source data is essential
to ensure the benchmark performance of the source models. Each local device in
the target domain generates data in an online fashion, and the real-time data is
analysed by online learners, who then attempt to formulate an optimal strategy for
online updating during each training round [87]. The global model enables model
aggregation, heterogeneous computing, updating, and broadcasting. Local devices,
such as smartphones and laptops, provide essential infrastructure tools, including
local online/offline training, uploading, and distributed storage.

Various applications may be developed on top of the proposed online FTL to
provide critical human-machine interface services. By utilising federated learning,
machine learning models for multiple parties can be established without exporting
local data, ensuring data security and privacy while providing users with tailored
services. Meanwhile, TL enables FL to train models on a variety of different but
related parties, which is practically important given that stakeholders within the
same FL framework are usually from the same sector. Furthermore, classical batch/
offline learning has low efficiency in computing costs and limited scalability for large-
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scale applications due to the need for model retraining after online data sequences
are generated. We envisage that extending TL, OL, and FL to online FTL will help
overcome the limitations of traditional batch learning by allowing online learners to
update the local model safely and rapidly.
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[148] Pablo Montero and José A. Vilar. Tsclust: An r package for time series
clustering. Journal of Statistical Software, 62(1):1–43, 2014. doi: 10.18637/
jss.v062.i01. URL https://www.jstatsoft.org/index.php/jss/article/

view/v062i01.

[149] Viraaji Mothukuri, Reza M Parizi, Seyedamin Pouriyeh, Yan Huang, Ali De-
hghantanha, and Gautam Srivastava. A survey on security and privacy of
federated learning. Future Generation Computer Systems, 115:619–640, 2021.

[150] David Murray, Lina Stankovic, and Vladimir Stankovic. An electrical load
measurements dataset of united kingdom households from a two-year longi-
tudinal study. Scientific data, 4(1):1–12, 2017.

https://www.jstatsoft.org/index.php/jss/article/view/v062i01
https://www.jstatsoft.org/index.php/jss/article/view/v062i01


BIBLIOGRAPHY 163

[151] Shahzad Muzaffar and Afshin Afshari. Short-term load forecasts using lstm
networks. Energy Procedia, 158:2922–2927, 2019.

[152] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin
Takác. Reinforcement learning for solving the vehicle routing problem. Ad-
vances in neural information processing systems, 31, 2018.

[153] Bishnu Nepal, Motoi Yamaha, Aya Yokoe, and Toshiya Yamaji. Electricity
load forecasting using clustering and arima model for energy management in
buildings. Japan Architectural Review, 3(1):62–76, 2020.

[154] Shuteng Niu, Yongxin Liu, Jian Wang, and Houbing Song. A decade survey of
transfer learning (2010–2020). IEEE Transactions on Artificial Intelligence,
1(2):151–166, 2020.

[155] Albert B Novikoff. On convergence proofs for perceptrons. Technical report,
STANFORD RESEARCH INST MENLO PARK CA, 1963.

[156] European Society of Radiology (ESR) eu-affairs@ myesr. org. The new eu
general data protection regulation: what the radiologist should know. Insights
into Imaging, 8:295–299, 2017.
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