Artificial Intuition for Automated Decision-Making

Marcello Trovati^{a,b}, Khalid Teli^{a,b}, Nikolaos Polatidis^c, Ufuk Alpsahin Cullen^b and Simon Bolton^b

^aDepartment of Computer Science, Edge Hill University, UK; ^bProductivity Innovation Research Centre, Edge Hill University, UK; ^cSchool of Architecture Technology and Engineering, University of Brighton, UK

ARTICLE HISTORY

Compiled July 5, 2023

ABSTRACT

Automated decision-making techniques play a crucial role in data science, AI, and general machine learning. However, such techniques need to balance accuracy with computational complexity, as their solution requirements are likely to need exhaustive analysis of the potentially numerous events combinations, which constitute the corresponding scenarios. Intuition is an essential tool in the identification of solutions to problems. More specifically, it can be used to identify, combine and discover knowledge in a 'parallel' manner, and therefore more efficiently. As a consequence, the embedding of artificial intuition within data science is likely to provide novel ways to identify and process information. There is extensive research on this topic mainly based on qualitative approaches. However, due to the complexity of this field, limited quantitative models and implementations are available. This work is an invited contribution based on Trovati (2022), where a model for artificial intuition. In this article, the authors have extended the evaluation to include a real-world, multidisciplinary area in order to provide a more comprehensive assessment. The results demonstrate the value of artificial intuition, when embedded in decision-making and information extraction models and frameworks. In fact, the output produced by the approach discussed in thei article was compared with a similar task carried out by a group of experts in the field. This demonstrates comparable results further showing the potential of this framework, as well as artificial intuition as a tool for decision-making and information extraction.

KEYWORDS

Artificial Intuition, Artificial Intelligence, Network Theory, Data Science, Decision Algorithms

1. Introduction

Problem-solving skills have enabled the human race to thrive throughout the centuries. Despite clear evidence that animals exhibit such skills, only humans have managed to perfect them, which have led to the establishment of several sciences. Rational thinking is one of the main components of science, as logical and methodical approaches have identified new solutions in a replicable and rigorous manner. However, not all discoveries have been solely guided by rationality. Intuitive thinking allows us to find novel ideas, which would not be possible to achieve by using rational approaches.

CONTACT Marcello Trovati. Email: trovatim@edgehill.ac.uk

The ability of identifying alternative paths to new solutions is an important aspect that have been often demonstrated to be crucial in several scientific endeavours (Xu (2019), Ray (2018))

As a consequence, artificial intuition is drawing increasing attention from the computational sciences communities, as it is likely to lead to efficient decision-making approaches (Olayinka (2020), Shao (2017), Trovati (2019)). Loosely speaking, artificial intuition can be defined as the ability to evaluate a problem within a specific context and discover new connections to enable the automation of decision-making processes (Trovati (2022)). Moreover, intuition depends on prior knowledge and experiences, which can be used to identify solutions otherwise difficult to discover via ordinary logical process (Dundas (2011)).

Artificial intuition and artificial creativity are usually associated with different, but overlapping research areas, where the former aims to discover novel solutions related to specific problems. The objective of the latter, on the other hand, is to achieve 'artistic' beauty. Artificial creativity tends to utilise specific machine learning methods by identifying data patterns which constitute beautiful and appealing products. Alternatively, artificial intuition focuses on pinpointing innovative problem-solving solutions. Since the context of the corresponding problems needs to be taken into consideration, their semantic properties must be investigated and assessed.

This article aims to expand and further discuss the approach to artificial intuition introduced in Trovati (2022). In particular, a more comprehensive evaluation will be introduced to demonstrate its applicability and efficiency, based on multi-disciplinary research on how to optimise innovation in organisations (Cullen (2021); Bolton (2016)). More specifically, the evaluation consists of a real-world case scenario focusing on business innovation. Companies capitalise on new ideas and technologies via different business models. While there are specific channels for exploring and assessing new ideas and technologies, they tend to have limited ability to identify innovative processes to discover new knowledge related to their business models (Chesbrough (2010)).

In Thomas (2019), the concept of 'innovation ecosystem' is introduced to define the complexity related to the different components of business innovation. More specifically, the authors emphasise that the dynamics of such ecosystem poses challenges in the full understanding and prediction of the most relevant parameters and trends. A a consequence, many information identification steps and decision-making processes are influenced by individual knowledge, as well as intuitive thinking, which is also defined as the *gut feeling*.

The intrinsic complexity in the identification and analysis of the main parameters which define business innovation demonstrates that this is a valuable and non trivial area to investigate to demonstrate the potential of the approach discussed in this article.

This work is structured as follows: in Section 2, the relevant background is discussed, and Section 3 introduced the core concepts of this work. Sections 4, 5 and 6 discuss the main components of the approach, and their implementation. The evaluation is discussed in Section 7, and finally, Section 8 concludes this work and prompts future research directions.

Figure 1. The overall architecture of this approach. All steps and phases are detailed in Sections 4, 5 and 6.

2. Background

The computational and application aspects of intuition have been the focus of extensive multi-disciplinary research.

In Olayinka (2020), the authors introduce a computational model of artificial intuition based on the assumption that specific data patterns can be extracted form prior knowledge related to the domain of the problem. One of the applications of such framework has been identified by Bolton (2022) to extract information related to small-medium enterprises (SMEs). SMEs play a crucial global economic role, and in particular the UK economy heavily relies on a healthy ecosystem created by the wealth, opportunities and knowledge generated, shared and augmented by SMEs.

In Simon (1987), the authors discuss managerial decision-making approaches which focus on how intuition is used. In particular, real-time information integrated with intuition can lead to proactive behaviours with respect to the environment. In Kahneman (2002), two fundamental and distinct intuition modes are introduced. These are defined as *System 1* (intuition) and *System 2* (logic-based reasoning) (Stanovich (2000)). More specifically, System 1 is related to (automatic) thought processes, which require limited attention and is based on prior knowledge. System 2 is a strenuous and controlled type of thinking. Despite System 1 is usually defined by pattern recognition approaches, System 2 requires rational analysis to exhaustively select the most suitable choice.

Clinical decisions are another example of a System 1 approach that consist of the inductive reasoning experiences (Payne (2015)). However, System 1 approaches might be subject to bias-induced errors when unusual data patterns might occur. According to Liu (2019), suitable environments and experiences are significant to the learning process, suggesting that past experiences play a crucial role.

In Frantz (2003), intuition is defined as the subconscious pattern recognition process where prior knowledge and experience are crucial for the accuracy of any intuition based decision-making process. In Dundas (2011), the authors present an implementation of human-like intuition where relational relationships connecting experience with associated attributes are implemented. In Srdanov (2017), the authors present an artificial intuition approach via random based optimal path searches. According to Diaz-Hernandez (2017), intuition consists of three stages: inputs, processing, and outputs. The authors implement such steps via data collection extracted from human abilities facilitate by intuition; implicit intuitive performance analysis; integration and simulation of intuitive action/reaction steps.

2.1. Applications of Artificial Intuition

In this section, an overview of applications of artificial intuition is presented.

2.1.1. Intuition in Clinical Settings

Intuition in clinical practice enables the rapid identification of links between collected information and pattern recognition to unconsciously assess data trends (Billay (2007)). In Lyneham (2008), the authors argue that intuitive decision-making process within clinical settings exhibit three stages: cognitive, transitional, and embodied intuition. The cognitive stage stems from the integration of experience with clinical knowledge and experience. The transitional intuition stage is the result of cognitive and embodied intuition, and finally the embodied intuition stage is the effect of clinical practitioners' confidence on their experience and knowledge.

2.1.2. Intuition and Business Decision

There is strong evidence from research that intuition has significant applications in strategic business decision making (Simon (1987)). In Miller (2005), the authors present a study based on behavioural decision-making approaches, and business modelling. The authors argue that executives extensively and consistently employ intuition in their decision making. However, they also argue that intuition can lead to the erroneous conclusions, if not properly utilised and interpreted.

2.1.3. Player's Intuition In Games

Remembering prior data patterns and quickly superimposing them to relevant scenarios is a crucial feature of artificial intuition. For example, subsequent to completing a game, the most relevant moves tend to be remembered and captured as mental models and represented as semantic networks to capture the mutual (semantic) relationships. In Silver (2016), the authors suggest that the experience of intuitive thinking based on prior knowledge is a likely candidate to a successful model representation.

3. General Definitions

Intuition involves the identification of new semantic paths, during the process of discovering potential solutions related to a specific problem. Such problems, or *queries*, consist of mutually connected semantic entities, as defined below.

Figure 2. Overview of entrepreneur decision-making process

Definition 3.1 (Definition of Query (Trovati (2022)).) A query is a group of semantically equivalent concepts, which describes a problem objectives. The solution of a query is defined as the paths joining the query with specific concepts. The concepts related to a query are defined as the query leaf nodes.

As introduced in Trovati (2022), in this work we shall consider three types of knowledge.

Definition 3.2. We define three types of knowledge:

- Existing knowledge which is the information related to prior knowledge
- *Intuitive knowledge*, which is linked with general (intuitive) knowledge, and finally
- Contextualised knowledge, which is related to individual experience.

3.1. Network Theory

Let G = G(V, E) be an undirected network, where $V = \{v_i\}_{i=1}^n$ is the set of nodes and $E = \{e_{w_{i,j}}(v_i, v_j)\}_{v_i \neq v_j \in V}$ is the set of *edges*. Many real-world systems are modelled by networks and in particular, by *weighted networks*, that is networks where each edge $e_{w_{i,j}}(v_i, v_j)$ has a weight $w_{i,j} \in (0, 1]$. Two nodes are said to be *adjacent* if they have a common edge and *incident* edges have a common node. We define a *path* $P(v_a, v_b)$ between v_a and v_b as a sequences of incident edges

$$e_{w_{a,k_1}}(v_a, v_{k_1}), e_{w_{k_1,k_2}}(v_{k_1}, v_{k_2}), \dots, e_{w_{k_{n-1},k_n}}(v_{k_{n-1}}, v_{k_n}), e_{w_{k_n,b}}(v_{k_n}, v_b)$$

joining the two nodes. A network is said to be cyclic if more than a single path can occur between any two nodes.

Semantic networks are specific networks where nodes are defined by concepts, and their mutual edges, as directed binary relations (Brasethvik (2001)). Semantic networks have been widely applied within artificial intelligence, machine learning and natural language processing techniques, as they provide a declarative graphical representation that can be utilised to model and reason about knowledge.

Concepts are associated with other concepts so that prior knowledge can be connected with new one.

In this article, as per Definition 3.2, we define a network defined by the union of three following (typically overlapping) networks

$$G = G_k \cup G_i \cup G_c \tag{1}$$

where G_k, G_i and G_c are related to existing, intuitive and contextualised knowledge, respectively.

Each node is defined by a concept and the network topology of the network G controls how information is shared.

4. Phase 1: Data Extraction

As discussed above, in this article we will focus on a specific context, namely innovation in business ecosystems. Innovation is, by definition, the process that allows to discover new and impactful solutions, concepts and their mutual connections. Usually, it involves "thinking outside the box", which is based on more than objective and quantifiable knowledge. The *gut feeling* some individuals might exhibit with respect to specific areas, can lead to novel solutions and ideas. The motivation of using innovation as a test case, also originates from its intrinsic multi-disciplinary definition, which makes it difficult to pinpoint it in a very quantitative manner. In particular, intuitive thinking has been demonstrated to successfully understand and address inconsistent growth in SMEs (Bolton (2022)). This work is also motivated by the attempt to automate such insights.

In this section, the main data extraction process is introduced and discussed. In Trovati (2022), an initial evaluation was described, which suggested the model suggested by the authors could provide an effective approach to a systematic implementation of artificial intuition. In this work, a more comprehensive analysis is introduced based on various large textual datasets, whose integration generates large fragments of semantic networks.

4.1. ConceptNet Dataset

The first dataset considered in this article is ConceptNet, which consists of common sense knowledge encompassing various aspects of everyday life. Information used to created ConceptNet has been extracted from multiple sources, such as expert created resources as well as the Open Mind Common Sense corpus, which is a crowd-sourced knowledge project (Liu (2004a)).

In this work, ConceptNet is utilised to find semantic networks as per the following steps:

- (1) Identify query concepts
- (2) Establish the appropriate network
- (3) Integrate it with any other one previously created
- (4) Assess the network(s) to enable knowledge discovery pertaining to the query.

An important point to consider, when defining a knowledge graph from Concept-Net, is which (semantic) nodes should be represented, due to the related implications on the network and its use. Furthermore, this has also significant effects on any other resources which might be linked, as well as any corresponding representation (Liu (2004a)). Furthermore, statements contain (semantic) concepts, which are connected by a positive or negative weight, where higher (positive) values suggest more reliable corresponding assertions, and negative weights may imply unreliable assertions (Liu (2004a)).

4.2. Wikipedia, Scopus and Twitter Datasets

ConceptNet still has limited data capture and semantic information and relationships. To augment and complement ConceptNet, Wikipedia was also used, which is a multilingual online encyclopaedia (McNeill (1994)). It is widely utilised in numerous AI and machine learning tasks due to its extensive and free content. To further extend the (textual) dataset used in this work, Scopus (https://www.scopus.com/home.uri) was queried to identify academic articles via based on the following keywords:

- Business innovation
- Risk
- Revenue
- Opportunity
- Margin

All the above keywords were combined and permuted, and the corresponding synonyms and lexical variants were also considered. This allowed to extract over 500 abstracts, which were subsequently analysed to extract relevant concepts and dependence relations as described in Trovati (2017).

Text analysis was carried out via SpaCy (https://spacy.io), which included tokenisation, lemmatisation, POS tagging, Named Entity Recognition (NER) and subsequent syntactic relation extraction. See Trovati (2017) for more details used in this article. Once the textual analysis identified the different concepts and mutual relationships, this naturally defined a graph representation of knowledge (Choi (2015)).

Finally, the same keywords were utilised to extract data from Twitter, which created approximately 600 tweets, via the Twitter Developer API (https://developer.twitter.com/en), which was accessed on 20/12/2023. The authors are aware that Twitter only offers limited data from social networks. In fact, a free account was utilised, restricted capabilities. Furthermore, tweets usually include partial information that could be used to extract precise temporal information to identify a definite timeline. Finally, an in-depth analysis based on social networks should also incorporate information from other platforms, such as LinkedIn, Facebook, as well as general blogs. However, the motivation to use Twitter was to initialise and partially simulate intuitive knowledge, which, by definition, may not have a framework as rigorous and well- developed as other types of knowledge (Trovati (2022)).

The tweets were downloaded as a CSV file and subsequently, they were manually pre-processed to remove any inconsistent or redundant tweet, as well as any duplicated one. Furthermore, any non-ASCII characters were removed to allow the creation of a new CSV text file, suitable for the subsequent text analysis. A similar textual analysis as per above was conducted. The different knowledge graphs created a single (overlapping) network, whose nodes and connections were labelled depending on their source, that is ConceptNet, Scopus, Wikipedia and Twitter, respectively.

The rationale behind the choice of the above data sources was to simulate the three types of knowledge introduced in Definition 3.2. Namely, Twitter data was associated with intuitive knowledge, Wikipedia and ConceptNet with existing knowledge, and academic articles (extracted via Scopus) with contextualised knowledge. The authors acknowledge that other (perhaps, even better) datasets could have been selected. However, based on their availability, suitability and wide usage within the AI and machine learning research community, the above data sources were deemed to be sufficiently justified and appropriate.

The above steps generated a large of amount of textual data, which had to be preprocessed and analysed to ensure the format is fully compatible and integrated. This is discussed in the following section.

5. Phase 2: Information Creation

As discussed above, the data identified in Section 4, consists of fragments of texts, pairs of concepts linked by semantic relationships, as well as further keywords. In order to generate a navigable network, the different concepts had to be linked by suitable semantic relations which, if not explicitly defined, had to be identified from the different textual fragments.

A group of keywords (and corresponding synonyms) related to semantic relations was manually identified, which include (but not limited to):

- Cause
- Depend (on)
- Based (on)
- Influence
- Impact
- Induce
- Stimulate
- Count (on)
- Act (on)
- Regulate
- Affect

The identified text fragments (containing relevant concepts and/or relational links) were pre-processed and lemmatised to ensure they were uniform and spurious words and punctuation were removed. The concepts identified were coupled, which naturally define edges, based on whether they were linked by a relational link or whether they occurred in the same sentence. More details can be found in Trovati (2017).

The presence of any of the above relations linking paris of concepts (nodes) would entail a stronger relation type (being explicitly linked by a dependency relation) compared to the latter, which only depends on co-occurrence properties. The strength of each edge also depends on how many times such couples occur in the texts. As mentioned above, the different networks from the datasets described in this section had their nodes and edges labelled accordingly to identify their origin for the algorithm implementation as per Section 6. The resulting network had 9634 edges and 675 Connected components of G

Figure 3. The network and degree distribution of the network defined in Section 5.

nodes and a single connected components. Figure 3 depicts its degree distribution. In particular,

- Average Degree: 26.161
- Diameter: 4
- Average Path length: 2.1068
- Density: 0.075, which suggests a sparse graph

In the next section, the model initially introduced in Trovati (2022) is implemented to analyse and assess the approach discussed in this work.

6. Phase 3: Model Implementation and Analysis

The model initially introduced in Trovati (2022) is based on some definitions and results which will be discussed in this section. First of all, edges have an activation

value $\alpha(x, y) \in (0, 1]$, measuring the influence between x and $y \in V$. Every node $x \in V$ has a probability of occurrence $p(x) \in (0, 1]$. This is combined with the information propagation to define the post node probability of x with respect to its neighbour w as

$$\tilde{p}(x) = \min\{I(w, x), p(x)\}.$$
 (2)

The topology of the network can be assessed by algebraically combine the edge attributes via the disjoint, joint and information independence relationships (Trovati (2022)). More specifically, for $x, y, z \in V$, $x \odot y(\rightarrow z)$ is defined as

$$x \odot y = p(x)p(y)W_{x,y}W_{y,z},\tag{3}$$

where

$$W_{x,y} = \tanh\left(2\alpha(x,y)\right),\tag{4}$$

Similarly, $x \oplus y \to z$ is defined as

$$x \oplus y = \begin{cases} p(x)W_{x,z} + p(y)W_{y,z}, & \text{if } p(x)W_{x,z} + p(y)W_{y,z} \le 1\\ 1, & \text{otherwise.} \end{cases}$$
(5)

A path $P(x_1, x_n) = \bigoplus_{i=1}^n x_i$ can be written as $\underline{x} = [x_1, \ldots, x_n]$. Definition 5 in Trovati (2022), introduces the innovation index between x_s and $x_e \in V$ linked by the path \underline{x} is defined as

$$i(\underline{x}) = \frac{|E(G \setminus G_k)(\underline{x})|}{|E_p(G)(\underline{x})|},\tag{6}$$

where $E_p(G \setminus G_k)(\underline{x})$ and $E(G)(\underline{x})$ refer to the sets of edges in $G \setminus G_k$ the edges in G for a path \underline{x} , respectively. The overall innovation index between x_s and x_e , based on the assumption that there are n paths linking them is

$$i(x_s, x_e) = \frac{1}{n} \sum_{j=1}^{n} i_{\underline{x}_j}$$
 (7)

Algorithm 1 is subsequently used to identify suitable solutions to a specific query, where

$$\alpha(\underline{x}) = \prod_{x_i \in \underline{x}} \alpha(x_i) \tag{8}$$

is the propagation index, and the (overall) entropy from x_s is defined as

$$H(x_s) = -\sum_{j=1}^k \alpha(\underline{x}_t^j) \log \alpha(\underline{x}_t^j), \qquad (9)$$

Algorithm 1 Solution Assessment Algorithm

1: Let t = 1 and $D \leq 1$ be the threshold for the maximum entropy 2: Let \underline{x}_t be a path connecting a query concept with one of its leaves $\operatorname{leaf}(\underline{x})$ 3: for path \underline{x} do if $\alpha(\underline{x}_t) \geq 1/(te)$ and $H(\underline{x}_t) \leq D$ then 4: Continue 5: else 6: Stop 7: end if 8: if $\underline{x}_t! = \operatorname{leaf}(\underline{x})$ then 9: t = t + 110: else 11: Stop 12:end if 13:14: end for 15: return path $\underline{x}_t, H(\underline{x}_t)$

for all the paths $\underline{x}_t^1, \ldots, \underline{x}_t^k$ from x_s .

In particular, $H(x_s)$ can be utilised to explore the query space by allowing to identify:

- Whether, from a given network, it is possible to identify one or more solutions based on a query, and
- The depth of the network (in terms of the number and lengths of paths originating from the query/concepts) required to reach a feasible solution.

7. Evaluation of the Model

The evaluation aimed to compare the results of our approach with Bolton (2022) to assess whether the same 'intuition' could have been replicated using the method discussed in this work. Artificial intuition is a new research area, and as a consequence there are very limited evaluation benchmarks or comparison tests. Furthermore, the multidisciplinary nature of artificial intelligence does not easily allow the use of existing (or new) datasets. Therefore, in this work the experimental evaluation has been independently assessed by a group of experts to understand whether the method introduced in this article yields comparable results with respect to manual assessment.

It is, however, not suggested that this method *replicates* intuition as such a claim would need to be substantiated by a series of large scale experiments, capturing different concepts and spanning across different topics and contexts. Such endeavour would, in fact, require the creation of large and more sophisticated semantic networks and corresponding models. The discussion included in this article is hopefully leading the general effort in that direction.

Computational intuition can also be viewed as the discovery of new knowledge, which cannot be *directly* extracted from given data. In other words, the semantic network defined above needs to be assessed based on the algorithm defined in Section 6, to discover semantic connections linking specific concepts. It is important to emphasise that such discovery process needs to identify novel information, which is not trivially

Variable	Unit	Value
Turnover	£	Numerical
Profit	£	Numerical
Productivity	£	Numerical
Increase in employment	Number of Employees	Numerical
Product and Service	New to market product	
Development	or service developed	Binary
Technology Adoption	New to firm product and	
	service developed	Binary
Reactive Strategic	Innovation initiated	
Innovation	within the past 3 years	Binary
Ability to identify and		
define problems	Manually assessed	Categorical
Ability to establish clear		
objectives and priorities	Manually assessed	Categorical
Collecting data and evidence		
evidence and identifying insights	Manually assessed	Categorical
Ability to evaluate options		
for alternative solutions	Manually assessed	Categorical
Ability to develop optimal solutions		
and action plans for implementation	Manually assessed	Categorical
Ability to monitor and evaluate		
performance against objectives	Manually assessed	Categorical
Business Age	Years	Numerical
Size	Number of Employees	Numerical

Table 1. Research Variables Detailed as per (Bolton (2022)), which were used to inform the creation, query and analysis of the data introduction and discussed in Sections 4, 6 and 5.

identified from the given data. Table 1 depicts some concepts that have been recently identified in Bolton (2022) as important factors linked to business productivity. It is important to point out that the mutual relationships have either not been published, or not included in the articles used in Section 4. As a consequence, any relation discovered via the method introduced in this work is not immediately discoverable.

As a consequence, the concepts in Table 1 were used to assess the method introduced in this article with respect to business productivity. More specifically, the concepts which are non trivially related to it include *clear objectives and priorities; data collection; technology adoption; business age; performance assessment* and *reactive strategic innovation*, as shown in Table 2. All these concepts were normalised and grouped into semantically equivalent nodes to ensure they were captured by the network created. For example, *clear objectives and priorities* were simplified as *objective* and *priority*. This query pre-processing was carried out automatically and subsequently manually verified to ensure that the identified nodes were semantically and lexically as close to the original concept as possible.

Despite a relatively small set of relations described in Table 2, the overall process was based on extensive textual analysis and investigation, which was manually assessed and evaluated by a group of approximately 25 experts, including business practitioners, researchers and analysts (including the authors of (Bolton (2022)), who routinely complement their practical and academic research with intuitive thinking to identify data trends and insights, which are often hidden in the

	Path length	Propagation Index	Innovation Index
Clear objectives	6	0.71	0.51
and priorities			
Data collection	4	0.49	0.45
Technology adoption	9	0.24	0.53
Business age	17	0.82	0.81
Performance assessment	9	0.51	0.34
Reactive strategic innovation	14	0.27	0.56

 Table 2.
 The experimental results as discussed in Section 7

data. These individuals are part of the Edge Hill University Productivity Innovation Research Centre (https://www.edgehill.ac.uk/departments/support/e3i/ supporting-business/pic/), which aims to identify, assess, and facilitate business innovation across UK SMEs. The members of this centre (who include some of the authors, as well as business practitioners and academics in various disciplines) collect and digitalise data produced by the centre's activities.

The results were also manually evaluated by experts to assess whether they were aligned with the findings in Bolton (2022). A notable instance is *business age*, as it is not a trivial association with *business productivity*. This was reflected by a relatively high innovation index, suggesting an 'intuitive solution' with respect to the overall knowledge.

The experimental evaluation, based on a much more comprehensive data from various sources compared to Trovati (2022) has again demonstrated the potential of this method. The evaluation was also performed on innovative research, which has been carried out within business productivity. The aim was to enable a scientifically sound and academically justified evaluation, which was independently confirmed by experts.

8. Discussion and Conclusions

Artificial intuition has been demonstrated to have significant potential in automated decision-making approaches. However, the development, implementation and ultimately the evaluation of artificial intuition frameworks have several challenges due to the novelty and multidisciplinary nature of this area. This work has been motivated by Trovati (2022), which is supported by the experimental evaluation discussed in this article and it further motivates more research in this area. Figure 4 depicts how the proposed intuition framework can be mapped to current and future research. In particular, subsequent research efforts will focus on the creation and analysis of suitable dynamic semantic knowledge network. This will be only partially manually maintained and augmented as novel 'data-evolutionary' algorithms would model the natural data stages, via suitable dynamical changes. These would enable an efficient and agile data creation system to create a knowledge system mimicking a 'collective intelligence' system. Furthermore, there is scientific evidence that collective intelligence (e.g. created by an ant colony) is used by the individual components (e.g. individual ants) to self-organise and regulate their common maintenance and survival.

This will enable an agile, adaptive and accurate data structure model that not only would it enhance artificial intuition but it would also improve the state-of-the-art technology in data science and AI.

Figure 4. The research motivation.

Disclosure statement

The authors declare no potential conflict of interest.

References

- Albert, Reka and Barabasi, Albert-Laszlo. 2007. "Statistical mechanics of complex networks." *Reviews of Modern Physics*, APS, vol. 74 (7:326-32), pages: 380-397
- Billay, Diane and Myrick, Florence and Luhanga, Florence and Yonge, Olive 2007. "A Pragmatic View of Intuitive Knowledge in Nursing Practice." Nursing forum, vol. 42 (7:326-32), pages: 147–155
- Bolton, Simon and Green, Lawrence and Kothari, Bhavin 2016. "Optimize the contribution of design to innovation performance in Indian SMEs–What roles for culture, tradition, policy and skills?" South Asian Popular Culture, Taylor & Francis, vol. 14 pages: 199–217.
- Bolton, Simon and Cullen, Ufuk Alpsahin 2022. "Data Driven Assessment of Inconsistent Growth in SMEs" In progress
- Brasethvik, Terje and Atle Gulla, Jon 2001. "Natural Language Processing and Information Systems", *Natural Language Analysis for Semantic Document Modeling*, Springer Berlin Heidelberg
- Chesbrough, Henry 2010. "Business model innovation: opportunities and barriers" Long range planning, Elsevier, vol. 43, (2-3) pages: 354–363.
- Choi, Jinho D. and Tetreault, Joel and Stent, Amanda. 2015. "It Depends: Dependency Parser Comparison Using A Web-based Evaluation Tool." Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Association for Computational Linguistics, vol. 22 (4), pages: 387–396

Cullen, Ufuk Alpsahin and De Angelis, Robert 2021. "Circular entrepreneurship: A business

model perspective" *Resources, Conservation and Recycling*, Elsevier, vol. 168 pages: 463–472.

- Diaz-Hernandez, O. and Gonzalez-Villela, V. J. 2017. "Analysis of Human Intuition Towards Artificial Intuition Synthesis for Robotics." *Mechatronics and Applications: An International Journal (MECHATROJ)*, vol. 1 (1).
- Jitesh Dundas and David Chik 2011. "Implementing Human-like Intuition Mechanism in Artificial Intelligence" ArXiv abs/1106.5917.
- Frantz Roger. 2003. "Herbert Simon. Artificial intelligence as a framework for understanding intuition." Journal of Economic Psychology, Cambridge University Press, vol. 24, pages: 265 – 277.
- Shuxia Liu and Ping He. 2019. "Artificial Intuition Reasoning System (AIRS) and Application in Criminal Investigations." *Journal of Physics: Conference Series*, Cambridge University Press, vol. 1302 (7:326-32), pages: 032032.
- Liu, H. and Singh, P. 2004. "ConceptNet A Practical Commonsense Reasoning Tool-Kit." BT Technology Journal, Kluwer Academic Publishers, vol. 22 (4), pages: 211–226
- Kahneman, D. and Frederick, S. 2002. "Representativeness revisited: Attribute substitution in intuitive judgment." *Heuristics & Biases: The Psychology of Intuitive Judgment.*, New York. Cambridge University Press, pages: 49–81.
- Lyneham J, Parkinson C, Denholm C. 2008. "Explicating Benner's concept of expert practice: intuition in emergency nursing." J Adv Nurs., vol. 64 (7:326-32), pages: 380-387
- McNeill, A. 1994. "A corpus of learner errors: making the most of a database." Flowerdew and A. Tong (Eds.), pages: 114–125
- Miller, C. and Ireland, R. 2005. "Intuition in Strategic Decision Making: Friend or Foe in the Fast-Paced 21st Century?" *Engineering Management Review*, *IEEE*, vol. 33, pages: 30 – 30 Newman, M. E. J. 2010. "Networks: An Introduction" Oxford University Press, vol. 33,
- Johnny, Olayinka and Trovati, Marcello and Ray, Jeffrey 2020. "Towards a Computational Model of Artificial Intuition and Decision Making" Advances in Intelligent Networking and Collaborative Systems Springer International Publishing, pages: 463–472
- Payne, L.K. 2015. "Intuitive Decision Making as the Culmination of Continuing Education: A Theoretical Framework." J Contin Educ Nurs., NCambridge University Press, vol. 46 (7:326-32), pages: 326–329.
- Ray, J., Johnny, O., Trovati, M., Sotiriadis, S. and Bessis, N., 2018. "The rise of big data science: A survey of techniques, methods and approaches in the field of natural language processing and network theory". *Big Data and Cognitive Computing*, 2(3), p.22.
- Shao, Y., Trovati, M., Shi, Q., Angelopoulou, O., Asimakopoulou, E. and Bessis, N., 2017. "A hybrid spam detection method based on unstructured datasets". *Soft Computing*, 21, pp.233-243.
- Silver, David and Huang, Aja and Maddison, Chris J. and Guez, Arthur and Sifre, Laurent and van den Driessche, George and Schrittwieser, Julian and Antonoglou, Ioannis and Panneershelvam, Veda and Lanctot, Marc and Dieleman, Sander and Grewe, Dominik and Nham, John and Kalchbrenner, Nal and Sutskever, Ilya and Lillicrap, Timothy and Leach, Madeleine and Kavukcuoglu, Koray and Graepel, Thore and Hassabis, Demis. 2016. "Mastering the Game of Go with Deep Neural Networks and Tree Search." Nature, vol. 529 (7587), pages: 484–489
- Simon, H.A 1987. "Making management decisions: the role of intuition and emotion." Acad. Manag. Exec., vol. 1, (1) pages: 57–64.
- Srdanov, Aleksa and Milovanovi, Dragan and Vasi, Selena and Ratkovi Kovaevi, Nada. 2017. "The Application of Simulated Intuition in Minimizing the Number of Moves in Guessing the Series of Imagined Objects." *Proceedings.*
- Stanovich, Keith E. and West, Richard F. 2000. "Individual differences in reasoning: Implications for the rationality debate?" *Behavioral and Brain Sciences*, Cambridge University Press, vol. 23, pages: 49–81.
- Thomas, Llewellyn DW and Autio, Erkko 2019. "Business model innovation: opportunities and barriers" Available at SSRN 3476925

- Trovati, Marcello and And Johnny, Olayinka and Polatidis, Nikolaos 2022. "A New Model for Artificial Intuition" *Artificial Neural Networks and Machine Learning – ICANN 2022* Springer International Publishing, pages: 463–472.
- Trovati, Marcello and Hayes, Jer and Palmieri, Francesco and Bessis, Nik. 2017. "Automated extraction of fragments of Bayesian networks from textual sources." *Applied Soft Computing*, vol. 60, pages: 508 519
- Trovati, M., Zhang, H., Ray, J. and Xu, X., 2019. "An entropy-based approach to real-time information extraction for industry 4.0." *IEEE Transactions on Industrial Informatics*, 16(9), pp.6033-6041.
- Xu, Xiaolong and Hu, Nan and Li, Tao and Trovati, Marcello and Palmieri, Francesco and Kontonatsios, Georgios and Castiglione, Aniello. 2019. "Distributed temporal link prediction algorithm based on label propagation", *Future Generation Computer Systems*, vol. 93, pages: 627–636, Elsevier