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Abstract

A wearable artificial pancreas (AP) has been a research goal for over three 

decades. The aim of this device is to establish effective closed-loop control of 

blood glucose in patients with type 1 diabetes mellitus (T1DM) using 

subcutaneous (SC) glucose measurements and SC insulin delivery. The main 

difficulties that hamper the successful development of a wearable AP concern 

the stability and accuracy of SC glucose sensing, the predictability of the 

absorption kinetics of the injected insulin, and finally the performance of the 

glucose control algorithm. As clinical tests on humans are costly, time 

consuming, and demand ethical approval, in silico testing of the AP has 

become a critical feature to facilitate an accelerated development of the AP 

and, specifically, the control algorithm.

The primary aim of the work reported in this thesis was to explore the use of 

compartmental modelling techniques with in-built physiological constraints to 

facilitate the development of a wearable AP.

In particular, the study aimed to extend and evaluate an existing model of 

whole-body glucose kinetics on a set of data obtained in a clinical trial 

designed to test the AP algorithm. The model was extended to represent the 

input-output relationship between the SC insulin and intravenous glucose 

concentrations. The extended model was re-evaluated in subjects with T1DM 

under new conditions with the objective to obtain sets of parameters to 

represent ‘virtual’ subjects with T1DM in the AP simulator. The parameter 

estimation was completed, but the ‘virtual’ subjects for use in the AP simulator 

could not be generated due to the uncertain validity of the tested model.

Further objectives included the support for in silico testing of an AP through 

investigating insulin lispro and interstitial glucose kinetics.
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To explore the kinetics of SC administered insulin lispro, ten competing 

models were proposed assuming a number of physiological effects. The 

principle of parsimony was used to select the model, which best represented 

our data. The best model included slow and fast absorption channels, and the 

presence of local insulin degradation at the injection site.

In order to establish the relationship between the interstitial glucose (IG) and 

plasma glucose (PG), nine models of IG kinetics were postulated. The model 

which best represented the experimental data was selected using the principle 

of parsimony. Two mechanisms explaining the temporal variation in the IG-PG 

ratio were identified, a zero-order removal of glucose from the interstitial fluid 

(ISF) and the stimulatory effect of insulin on glucose transfer from the plasma 

to the ISF. This best model found its use in the simulator to represent SC 

glucose measurements.

In conclusion, valuable insights were obtained into the mechanisms involved 

in the insulin and interstitial glucose kinetics, as well as the whole-body 

glucose kinetics.
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Glossary

ADA American Diabetes Association

ADICOL ADvanced Insulin infusion using a COntrol Loop

AIC Akaike information criterion

AP Artificial pancreas

CGMS Continuous glucose monitoring system

CHO Carbohydrate

CIGMA Constant infusion of glucose with model assessment

CSII Continuous subcutaneous insulin infusion

CV Coefficient of variation

DCCT Diabetes Control and Complications Trial

HbA1c Glycated haemoglobin concentration

HOMA Homeostasis model assessment

IG Interstitial glucose

HR Insulin infusion rate

ISF Interstitial fluid

ITS Iterative two-stage

IV Intravenous

IVGTT Intravenous glucose tolerance test

MAP Maximum a posteriori probability

MM Michaelis Menten

OFM Open-flow microperfusion

PG Plasma glucose

PI Plasma insulin

SC Subcutaneous

STS Standard two-stage

T1DM Type 1 diabetes mellitus

WHO World Health Organisation

WRSS Weighted residual sum of squares
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Chapter 1. Introduction and Plan o f Thesis

Chapter 1 Introduction and Plan of Thesis

1.1 Background and Motivation

Diabetes mellitus is a group of metabolic disorders characterised by 

hyperglycaemia due to defects in insulin secretion, insulin action, or both. The 

condition is associated with potentially severe long-term complications 

responsible for high morbidity and mortality rates and, hence, high costs to the 

National Health Service.

Type 1 diabetes (T1DM) accounts for approximately 20% of all diabetes cases 

in Europe and North America (1). The condition is caused by autoimmune 

destruction of pancreatic beta cells, resulting in absolute insulin deficiency. A 

person with this condition has to rely on exogenous insulin delivery for 

survival.

The aim of all subjects with T1DM is to achieve a good, near normal, 

glycaemic control while avoiding hypoglycaemia. The main benefits of good 

metabolic control, delaying the onset and slowing the progression of long term 

macrovascular and microvascular complications, has been demonstrated by 

the Diabetes Control and Complications Trial (DCCT) (2). Intensive insulin 

therapy with frequent blood glucose monitoring is a clear recommendation 

coming from this study.

In direct response to the above recommendations, much research has 

focused on improved methods of glucose monitoring and more physiologic 

ways of insulin delivery. Continuous subcutaneous (SC) glucose sensing and 

continuous subcutaneous insulin infusion (CSII) with rapid acting insulin 

analogues, such as lispro, have since become major advancements in the 

treatment of diabetes. Combining the two devices in a closed loop with a 

control algorithm, i.e. creating an artificial pancreas (AP) is now the way 

forward for researchers around the world.
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Chapter 1. Introduction and Plan of Thesis

The artificial pancreas has been a research goal since 1970s. Its aim is to 

establish effective closed-loop control of blood glucose in patients and to 

alleviate the burden of frequent treatment decisions. Such a closed-loop 

control system requires a sensor to provide a blood glucose reading to a 

controller, an algorithm to calculate an appropriate insulin dosage based on 

this reading, and a programmable insulin pump to deliver this dose to the 

patient. The main difficulties that hamper the successful development of AP 

concern the stability and accuracy of a long term glucose sensing and the 

predictive powers of control algorithm.

Clinical trials designed to test the AP algorithm were conducted as part of the 

Advanced Insulin infusion using a Control Loop (ADICOL) project. Several 

subjects with type 1 diabetes participated in those trials giving rise to a large 

set of unique data. As a reliable and accurate subcutaneous glucose sensor 

was not available, the experimental protocol involved subcutaneous insulin 

infusion and intravenous glucose measurements. The aim of the first study of 

this thesis was to fully describe the input-output relationship in this 

experimental set-up, I.e. the relationship between SC administered insulin and 

intravenous (IV) glucose concentration. For that purpose an existing model of 

glucoregulatory system was extended and tested. If the model was proven 

valid, its parameter estimates could be fed into the existing AP simulator to 

represent ‘virtual’ patients with type 1 diabetes.

Simulation has obvious advantages in the development of the AP: it reduces 

costs, limits human resources, and speeds up testing. The present version of 

AP simulator uses synthetic subjects represented by parameters, some of 

which were obtained from an overnight tracer study involving normal healthy 

humans, others were drawn from probability distribution. Bringing the 

simulation environment closer to reality would constitute a major step in the 
development of an AP.

A prerequisite of an effective wearable AP control algorithm is detailed 

understanding of the pharmacokinetic properties of subcutaneously 

administered insulin. The absorption kinetics of regular insulin is a complex
2



Chapter 1. Introduction and Plan of Thesis

process with inherent delays and a marked inter-subject variability. The 

advent of genetically engineered rapid acting insulin analogues, such as 

insulin lispro, opened new opportunities for the development of a wearable 

artificial pancreas. This type of insulin is able to mimic closely physiological 

pattern of insulin secretion and is therefore ideal for use in an AP when 

administered via CSII. Although the time action profiles of insulin lispro are 

more predictable than those of the regular insulin, certain issues around the 

absorption kinetics remain unresolved. Pharmacokinetic properties of insulin 

lispro have been studied after bolus administration but little is known about 

those properties during continuous insulin infusion. Hence, the aim of the 

second study was to investigate the absorption kinetics of insulin lispro during 

standard insulin pump treatment with bolus and CSII modes of insulin 

delivery.

An accurate and reliable glucose measurement is yet another prerequisite of 

an effective AP. As subcutaneous sensing is minimally invasive and avoids 

the risks associated with a long-term venous access, this type of glucose 

sensing has become a research goal in recent years. However, the SC 

glucose sensors measure glucose concentration in the interstitial fluid (ISF) 

not in the blood. As blood glucose is a commonly used reference for all clinical 

decision making, the knowledge of exact relationship between interstitial 

glucose (IG) and plasma glucose (PG) is required. In the currently available 

continuous glucose monitoring systems (CGMS) this relationship is assumed 

to be a simple proportion. The aim of this final study was to investigate the IG- 

PG relationship using compartmental modelling approach with the main 

objective to be able to estimate plasma glucose concentration from interstitial 

glucose measured by the SC glucose sensor.

The overall aim of this study was to facilitate the development of AP through 

validated models and techniques. In particular, this study supports the in silico 

development of an artificial pancreas through investigating interstitial glucose 

and insulin lispro kinetics, and by generating sets of parameters to represent 

‘virtual’ subjects with T1DM for use in the AP simulator.
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Chapter 1. Introduction and Plan of Thesis

1.2 Plan o f Thesis

Chapter 1 provides introduction to the thesis.

Chapter 2 sets out the aims and objectives of this study.

Chapter 3 provides literature review including aetiology, physiology and 

treatment of diabetes, compartmental modelling methods and the iterative two 

stage technique. The following sections present review of currently available 

models of the whole body glucose kinetics followed by models of insulin and 

interstitial glucose kinetics.

Chapter 4 provides the details of a model used to represent the relationship 

between the subcutaneous insulin infusion and the intravenous glucose 

concentration. The chapter describes the evaluation and the validation of the 

model on experimental data and presents the results.

Chapter 5 presents a new model of insulin lispro kinetics. Ten competing 

models are identified, validated, and compared. The model best representing 

the experimental data is selected and its parameters summarised.

Chapter 6 proposes a model of interstitial glucose kinetics and examines the 

interstitial to plasma glucose relationship. This time nine compartmental 

models are postulated, their parameters estimated, and the validation and 

selection processes described. The results of the best model are presented 

and the clinical implications discussed.

Chapter 7 is dedicated to re-evaluation of the model of interstitial glucose 

kinetics, presented in Chapter 6, on an independent data set. The results are 

summarised and compared with those obtained in the previous chapter.

Chapter 8 presents the final conclusions, meeting of the objectives, and the 

recommendations for future work.
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Chapter 2 Aims and Objectives

2.1 Aims

The general aim of this research is to explore the use of compartmental 

modelling with physiological considerations to assist in the development of a 

wearable artificial pancreas.

In particular, this study aims to support in silico development of an artificial 

pancreas by developing and validating models to represent ‘virtual’ subjects 

with type 1 diabetes.

2.2 Objectives

The specific objectives are divided into three main categories.

A. Objectives in relation to modelling of the input-output relationship between 

subcutaneously administered insulin and intravenously measured plasma 

glucose:

• To extend and validate an existing model of glucoregulatory system on 

a set of clinical data recorded over 28 hours in trials involving subjects 

with type 1 diabetes treated by CSII;

• To estimate model parameters for individual subjects with the aim of 

providing the AP simulator with a set of ‘virtual’ subjects with type 1 

diabetes.

B. Objectives in relation to modelling of subcutaneously administered insulin 

lispro kinetics:

• To develop and validate a model of absorption kinetics of 

subcutaneously administered insulin lispro in type 1 diabetes during 

standard insulin pump treatment with bolus and CSII modes of delivery.
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Chapter 2. Aims and Objectives

C. Objectives in relation to modelling of interstitial glucose kinetics:

• To investigate relationship between plasma glucose and interstitial 

glucose;

• To develop and validate a model of interstitial glucose kinetics under 

physiological conditions in subjects with type 1 diabetes.
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Chapter 3. Review of Literature and Associated Techniques

Chapter 3 Review of Literature and Associated 
Techniques

3.1 Glucose Regulatory System

Glucose is the primary source of energy necessary to sustain our body 

functions. It is the major fuel for the central nervous system. The brain, for 

instance, consumes about 80% of the glucose utilised under fasting conditions 

(1), and critically depends on the maintenance of normal glucose levels. In 

healthy human subjects, blood glucose levels are maintained within relatively 

narrow limits between 4mmo/L and 7mmol/L (3). Such a tight control of 

plasma glucose concentrations is achieved by a balance between actions of 

various hormones, enzymes, and substrates.

3.1.1 Glucose distribution and metabolism

Plasma glucose concentrations are determined by the net balance between 

glucose released into the circulation and glucose uptake from the plasma. The 

two main sources of glucose are the food intake and glucose produced in the 

liver (hepatic glucose production). In the fed conditions, glucose is absorbed 

from the gastrointestinal tract into the plasma but, during post absorptive 

conditions, plasma glucose is primarily derived from the liver (3). Glucose 

uptake from the plasma can be divided into those tissues where glucose 

utilisation is regulated by insulin, such as the muscle, the adipose tissue and 

the liver, and those in which insulin has no apparent role in stimulating 

glucose uptake, such as the brain and the kidney.

3.1.2 Glucose concentration throughout the body

Glucose absorbed from the gastrointestinal tract as well as glucose produced 

in the liver appears first in the blood stream. Blood delivers glucose to 

different parts of the body, for it to be utilised. Before glucose enters the cells 

it needs to cross the capillary wall barrier and enter the extracellular space 

filled with interstitial fluid (ISF). Hence, the three major compartments of 

glucose distribution in the body are blood, interstitial or extracellular space 

and intracellural space.

7



Chapter 3. Review of Literature and Associated Techniques

0 Blood. Blood glucose is distributed between red blood cells and 

plasma. In adult humans, glucose concentration in plasma water is 

nearly the same as in red blood cell water over a wide range of blood 

glucose concentration, until plasma glucose becomes extremely high 

when erythrocyte glucose transporters are saturated (4). Erythrocyte 

glucose serves as a buffer to damp the amplitude of variations in 

plasma glucose concentrations.

0 Interstitial space. Although details of glucose movements across 

capillaries are unknown, it is assumed that the process is a simple 

diffusion driven by the concentration gradient (4). Glucose is not 

distributed instantly across the capillaries into the ISF, as the initial 

response to the concentration gradient is water movement from the ISF 

to the plasma. Water crosses the capillaries faster than glucose (bigger 

particles). The process of passive movement of molecules down its 

concentration gradient can be described by Fick’s Law (5):

Flux = (Ci-C2) x (Area x Permeability coefficlent)/Thickness 

where C1 is the higher concentration and C2 is the lower concentration, 

Area is the area across which diffusion occurs, and thickness is the 

length of the diffusion path.

The glucose concentration in the ISF must be less than that in plasma 

for glucose to diffuse out of the plasma.

0 Intracellular space. The current evidence suggests that there is very 

little or no free intracellular glucose in the skeletal muscle at normal 

plasma glucose concentrations (4). This implies that glucose is 

phosphorylated in the muscle as rapidly as it is translocated into the 

cell.

At any moment, the change in concentration of glucose in any small volume 

element of the plasma depends on (i) the rate at which glucose is introduced 

into the circulating blood, (ii) the rate at which it is apportioned between the 

red blood cells and the plasma, and (¡ii) the rate at which it is removed from

8



Chapter 3. Review of Literature and Associated Techniques

the circulation. The limiting event on the rate of glucose removal from the 

circulation is its rate of entry into the cells. This rate of entry into the cells may 

be limited by transmembrane transport.

3.1.3 Glucose transporters: categories and distribution

Glucose is carried into the cells across the cell membrane by specialised 

transporter proteins called GLUTs. There are four main categories of GLUT 

transporters:

0 GLUT-1 is involved in basal and non-insulin mediated glucose uptake 

in many cells including pancreatic beta cells;

0 GLUT-2 is important in intestinal absorption and renal reabsorption and 

for releasing glucose from and translocating it into hepatocytes;

0 GLUT-3 is involved in non-insulin-mediated uptake of glucose in the 

brain;

0 GLUT-4 is responsible for insulin-stimulated glucose uptake in the 

muscle and the adipose tissue.

GLUT isoforms vary in their transport efficiency. The lowest Michaelis-Menten 

constant KM is 1-5mmol/L for GLUT-3 (the brain GLUT), the highest 20- 

40mmol/L for GLUT-2. Km for GLUT-1 and GLUT-4 falls within middle-to- 

upper range of blood glucose concentrations (4). Kozka and colleagues 

reported KM of 4.7 ± 1.1 mmol/L and V Max  of 3.3 ± 0.8mmol/L min'1 for GLUT-4 

in the adipose tissue (6).

3.1.4 Insulin and other hormones playing a part in the regulation 
of glucose

3.1.4.1 Insulin molecule

The insulin molecule consists of two polypeptide chains linked by disulphide 

bridges, the A chain containing 21 amino acids and the B chain 30 amino

9



Chapter 3. Review of Literature and Associated Techniques

acids (see Figure 3.1). Human insulin differs from pig insulin at only one 

amino acid position (B30), and from beef insulin at three amino acids 

positions (B30, A8 and A10) (1). In dilute solution such as in the blood 

stream, insulin exists as the 6000Da molecular weight monomer (1). In 

concentrated solution and crystals, the form of insulin found in vials supplied 

by the pharmaceutical companies for insulin injection, six monomers self-

associate with two zinc ions to form a hexamer.

Figure 3.1 Structure of human insulin.

This is of therapeutic importance, as the slow absorption of insulin from the 

subcutaneous tissue is partly due to the time taken for hexameric insulin to 

disperse and dissociate into the smaller monomeric form.

3.1.4.2 Insulin secretion and action

The hormone insulin is formed in the beta cells of the pancreatic islets of 

Langerhans from a single amino acid chain precursor molecule called 

proinsulin. Proinsulin is packaged into vesicles in the Golgi apparatus of the 

cell, and is then converted by enzymes into insulin and the connecting peptide 

(C-peptide) (3).
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3.1.4.3 Glucagon secretion and action

Another pancreatic hormone involved in the glucoregulatory system and a 

product of pancreatic alpha cells is glucagon. Its principal physiological activity 

is to increase the blood glucose levels by accelerating the glycogenolysis and 

glyconeogenesis in the liver. Glucagon and insulin secretion is inhibited by the 

growth hormone inhibiting factor or somatostatin, a product of delta cells.

3.1.4.4 Negative feedback control of glucose

The secretion of both glucagon and insulin hormones is directly controlled by 

the level of blood sugar via a negative feedback system. When the blood 

sugar level falls below normal, chemical sensors in the alpha cells of the islets 

stimulate the cells to secrete glucagons, the beta cells are not stimulated. 

When blood sugar rises, the alpha cells are no longer stimulated and their 

production slows down; the stimulatory effect is now on the beta cells, which 

begin to secrete insulin.

Other hormones can indirectly affect insulin production. For instance, growth 

hormone raises blood glucose level, and the rise in glucose level triggers 

insulin secretion. Adrenal cortical hormones, by stimulating the secretion of 

glucocorticoids, bring about hyperglycaemia and also indirectly stimulate the 

release of insulin. Gastrointestinal hormones, like gastrin, secretin, glucogon- 

like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), 

cholecystokinin, and gastric inhibitory peptide also stimulate insulin secretion 

(3).
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3.2 Diabetes Mellitus

3.2.1 Definition and classification of diabetes meliitus

“Diabetes mellitus is a group of metabolic disorders characterised by 

hyperglycaemia resulting from defects in insulin secretion, insulin action, or 

both” {7).

The World Health Organisation (WHO) gives a slightly different definition of “a 

metabolic disorder of multiple aetiology characterised by chronic 

hyperglycaemia with disturbances of carbohydrate, fat and protein metabolism 

resulting from defects in insulin secretion, insulin action, or both" (8).

The classification of diabetes mellitus includes four clinical classes (7):

0 Type 1 diabetes, in the past referred to as insulin-dependent diabetes 

mellitus or juvenile onset diabetes, results from an absolute deficiency 

of insulin due to an auto-immunological destruction of the insulin 

producing pancreatic beta cells;

0 Type 2 diabetes, previously referred to as non-insulin -dependent 

diabetes mellitus or maturity onset diabetes, results from a progressive 

insulin secretory defect on the background of insulin resistance (the 

muscle and the fat cells become ‘resistant’ to the action of insulin and 

compensatory mechanisms that are activated in the beta cells to 

secrete more insulin are not sufficient to maintain blood glucose levels 

within a normal physiological range (9));

0 Other specific types of diabetes due to other causes, e.g. genetic 

defects of beta cell function, genetic defects in insulin action, diseases 

of the exocrine pancreas, drug or chemical induced;

0 Gestational diabetes mellitus diagnosed during pregnancy.
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3.2.2 Epidemiology and aetiology of diabetes

3.2.2.1 Type 1 diabetes mellitus

Although type 1 diabetes can, theoretically, occur at any age, It predominantly 

arises in children and young adults with peak incidence before school age and 

at around puberty (1).

There is a marked geographical difference in the incidence of type 1 diabetes. 

Scandinavian countries like Finland and Sweden have a very high incidence 

(30-35 cases per year per 100,000 of the population), whereas Oriental 

countries like Japan, China and Korea show a very low incidence 

(approximately 0.5 -  2.0 cases per year per 100,000 of the population) (1). 

The difference in the incidences of type 1 diabetes in genetically similar 

countries like, for example, Finland (high incidence) and Estonia (low 

incidence), suggest that environmental factors may predominate over the 

genetic susceptibility in the disease aetiology. The seasonal differences, i.e. a 

high incidence over the winter and early spring months, and a low incidence 

over the summer months supports this theory and points to precipitating 

agents such as common viruses which may trigger the onset of the disease. 

Other possible determinants of T1DM are foods containing nitrosamines and 

cow’s milk protein.

The commonest cause of the disease is autoimmune destruction of the islet 

beta cells but the exact aetiology is complex and still not well understood. 

Research efforts concentrate lately on showing the inherited susceptibility of 

type 1 diabetes (10).

3.2.2.2 Type 2 diabetes mellitus

This is the commonest type of diabetes with various predisposing factors such 

as obesity, low level of exercise, older age and family history of diabetes. 

Similarly to T1DM, there is also a large variation in the prevalence of type 2 

diabetes in different countries. The highest prevalence were found in Pima 

Indians of Arizona and in the South Pacific island of Nauru (>50%) (1). The
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most likely cause of this high prevalence is a change in lifestyle due to the 

rapid westernisation of those previously typically agricultural communities. A 

low prevalence (<1%) is found in poorly developed rural communities such as 

parts of Chile or China (1).

Ethnic effects can be observed in multicultural societies such as the UK or the 

USA. The prevalence of type 2 diabetes in Asians from Southall in West 

London, for instance, is four times as high as in the local Caucasian 

population (1). African Caribbean people in the UK also have high frequency 

of type 2 diabetes (1). The two main pathophysiological defects in type 2 

diabetes are impaired insulin secretion and insulin resistance. The main 

abnormality in the islet beta cells of type 2 diabetic patients is the presence of 

insoluble fibrils distorting the cell membrane (1). Although insulin resistance is 

generally high in type 2 diabetic patients, it also varies widely in the non-

diabetic population. Hence, this defect alone cannot account for diabetes.

3.2.3 Diagnosis and treatment

Diabetes is diagnosed by identifying chronic hyperglycaemia. The latest WHO 

recommendations (8) specify diagnostic criteria and the blood glucose values 

representing the diagnostic cut-off points. WHO defines diabetes as fasting 

plasma glucose of 7 millimoles per litre and after 2 hour oral glucose 

tolerance test 11.2 millimoles per litre. The clinical diagnosis of diabetes is 

often prompted by symptoms such as increased thirst and urine volume, 

recurrent infections and unexplained weight loss and, in severe cases, 

drowsiness and coma. In the absence of clear symptoms of diabetes, 

diagnosis of diabetes should be based on at least two laboratory blood 

glucose measurements, as hyperglycaemia, even severe, could be only 

transitory caused by trauma or metabolic stress (11). If in doubt the oral 

glucose tolerance test should be performed.

Generally, people with T1DM present with acute symptoms and markedly 

elevated blood glucose levels (7). Type 2 diabetes, on the other hand, is
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frequently not diagnosed until complications appear (7). It is suspected that as 

much as half of all people with diabetes may be undiagnosed (12).

Diabetes management is based on blood glucose monitoring and adjustments 

of treatment dose/type in response to the blood glucose levels, anticipated 

meal composition, and planned activities. The blood glucose self-monitoring 

record as well as two indices, HbA1c and fasting plasma glucose, are 

commonly used to assess diabetic control -  the extent to which metabolism in 

a patient differs from normal (1).

Treatments vary depending on the type and severity of the disease. Diet and 

lifestyle, however, always constitute an integral component of diabetes 

management.

The recent diabetes clinical trials (2,13) have shown the need for an intensive 

diabetes treatment and tight glycaemic control in order to prevent/delay the 

onset of the micro- and macro-vascular diabetes complications.

3.2.3.1 Management of type 1 diabetes

People with type 1 diabetes do not produce enough insulin to sustain life and, 

therefore, depend on exogenous insulin to survive. They often require regular, 

one to four times daily, insulin injections. The aim of insulin therapy in people 

with type 1 diabetes is to mimic the pattern of endogenous insulin secretion 

present in healthy subjects. This is, however, very difficult to achieve due to a 

high inter-subject variability in the absorption rate of SC administered insulin.

Various types of insulin preparations are currently available differing in their 

length of action and pharmacological properties. Long acting insulin, usually 

given once daily, serves to provide a basal level of insulin. Intermediate, short, 

and rapid acting insulin types are given post-prandially to counteract the effect 

of the meals. Recently developed by DNA-recombinant technique insulin 

analogues, both rapid acting (lispro, aspart) and long acting (glargine), proved 

more effective in mimicking physiological insulin patterns (14). Rapid acting
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insulin analogues are quickly absorbed with virtually no delay in their onset of 

action. This property makes them suitable for use in CSII.

3.2.3.2 Management of type 2 diabetes mellitus

The first line treatment for type 2 diabetes is usually based on dietary and 

lifestyle changes. Patients are advised to cut out or restrict foods with high 

sugar/saturated fat contents and to increase their level of activity. These 

recommendations are essentially the same for type 1 and type 2 diabetes and 

indeed follow a healthy eating pattern suitable for the entire population (1).

In the event of failure to achieve satisfactory control of blood glucose through 

diet alone, oral hypoglycaemic agents are introduced. The most common 

types include sulphonylureas, biguanides and glitazones. As the diabetes 

progresses and the glycaemic control deteriorates, treatments become more 

complex and a combination of two or more types of drugs may be used. 

Eventually, a number of individuals with type 2 diabetes may even require 

supplemental insulin for adequate blood glucose control (7).

3.2.4 Glucose monitoring

Glucose monitoring is an essential part of diabetes management. While 

people with type 2 diabetes may get away with urine glucose testing and an 

occasional blood glucose test, those with type 1 diabetes require frequent 

self-monitoring using finger stick blood sampling and an analysis with a 

portable glucose meter device. This is due to the wide fluctuation and 

unpredictability of blood glucose levels in type 1 diabetes (1). Hence, single 

blood glucose measurements give little information about overall control. Even 

when the measurements are done more frequently, typically before and after 

meals, clinically significant glucose fluctuations and hypos may not be 

detected. To overcome this problem, methods for continuous glucose 

monitoring have been introduced in recent years. The ideal method would be 

a non-invasive technique, such as spectroscopy (15). However, there are 

considerable problems with these systems due to overlapping spectral 

features from other substances and optical changes with varying blood 

volume and temperature (16). Other possible techniques involve
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subcutaneous implantation of a glucose sensor, which measure glucose in the 

interstitial fluid of adipose tissue. Research is still ongoing to produce an 

accurate and long lasting continuous glucose monitoring device. The products 

currently on the market are only able to give historical data and their accuracy 

has been questioned (17,18).

3.2.5 Artificial pancreas

The concept of an artificial endocrine pancreas was introduced as early as 

1959 by an endocrinologist Prof. E. Perry McCullagh (19). The aim was to 

substitute the function of intact beta cells, which recognise the changes in 

blood glucose, then transmit the information inside the cell and secrete an 

appropriate amount of insulin to maintain glucose homeostasis.

The ultimate goal of the development of an artificial pancreas is a long-term 

strict glycaemic control and, subsequently, prevention or delay of the onset of 

macro- and microvascular complications of diabetes. Hence, in order to create 

an artificial pancreas one needs a glucose sensor for glucose monitoring, a 

processor system with control algorithms and insulin delivery system in the 

form of an insulin pump (see Figure 3.2). These three components are then 

connected to form a closed loop feedback control system.

Patient monitoring 

History records analysis 

Parameter setup

Figure 3.2 Model of artificial pancreas used in ADICOL project. MMI stands for Man- 
Machine Interface.
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The first prototype of an artificial pancreas was created by Prof. A.M. Albisser 

from the University of Toronto in 1974. It was based on intravenous glucose 

measurements and intravenous insulin delivery (i.e. IV-IV approach) and 

consisted of an auto-analyser for blood glucose monitoring, a minicomputer 

for computing insulin requirement in response to measured blood glucose 

concentrations and an insulin pump (20). As the next step, to make the device 

smaller, the auto-analyser was replaced with a continuous glucose sensor 

(19). This bed-site type artificial endocrine pancreas is still widely used on a 

short-term basis in a clinical environment (i.e. during clinical trials under 

glucose clamp conditions).

Since then the work concentrated on the miniaturisation of the device and on 

long-term clinical applications. A French team of researchers led by Eric 

Renard have developed an implantable artificial pancreas claiming good, 

long-term control of blood glucose, low failure and complication rates (21).

Current research efforts, however, concentrate mostly on developing an extra-

corporal wearable AP with SC glucose sensing and SC insulin delivery, this 

way avoiding long-term complications and trauma related to the implantation 

of the device. Thanks to the recent technical progress we now have small 

needle type glucose sensors, which measure glucose in the interstitial fluid 

and miniature programmable insulin pumps. More work is required in the field 

of sensor stability and reliability. Another goal is to develop an efficient and 

adaptable control algorithm. The aim of a European Project ADICOL was to 

accomplish these two goals and to develop a long-term wearable artificial 

pancreas. Although the project has ended with successful preliminary trials, 

the efforts are ongoing thanks to the commitment of its collaborators. A 

prototype AP device should become available in approximately 2-3 years 

time.
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3.3 Compartmental Modelling Techniques

3.3.1 The concept and purpose of modelling

Modelling is a process of mapping or transforming a system into a model - a 

representation of reality involving some degree of approximation. Any kind of 

system, i.e. biological, mechanical, organisational, can be transformed into a 

model. Modelling biological systems, known for their complexity, becomes a 

necessity in our attempts to understand their structure and their functionality.

When postulating a model of a system one is required to make some 

assumptions on how the system works and to describe these assumptions 

mathematically. Models of systems can have different characteristics 

depending on the system properties. They can be deterministic or stochastic, 

dynamic or static, with lumped or distributed parameters. Metabolic systems 

are dynamic systems and we focus here on the most widely used class of 

dynamic models: compartmental models (22).

Compartmental models are lumped parameter models, in that the events in 

the system are described by a finite number of changing variables, and are 

thus described by ordinary differential equations (22). The models which are 

considered here are deterministic in nature, i.e. they are formulated using 

exact relationships between model variables.

3.3.2 The theory of compartmental models

A compartment is an amount of material that acts as though it is well mixed 

and kinetically homogenous (22). Well-mixed means that any two samples 

taken from a compartment at the same time would have the same 

concentration of the substance being studied. Kinetic homogeneity means that 

every particle in a compartment has the same probability of taking any 

pathways leaving the compartment.
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The concept is purely theoretical. One compartment may combine material 

from several different physical spaces. Hence, it can be sometimes difficult to 

assign a particular physical space to it. Compartments can be divided into 

accessible and nonaccessible for measurement.

A compartmental model consists of a finite number of compartments with 

interconnections among them. These connections represent a flux of material, 

which physiologically represents transport from one location to another, or a 

chemical transformation or both (22). The function of the compartment can be 

described by mass balance equations of the following general form. If Q, is the 

quantity of a substance in compartment / that interchanges matter with other 

compartments (see Figure 3.3), then

where E  Rij represents the summation of the rates of mass transfer (fluxes) 

into / from all relevant compartments and E  Rji the summation of the rates of 

mass transfer from / to other compartments of the system (23).

» y -► SR,

input fluxes compartment output fluxes

Figure3.3 Diagram showing the compartment containing quantity of material Q, with 
its input and output fluxes.

The functional dependencies of each flux need to be specified. The 

dependencies can be either linear or nonlinear. The linear dependence can be 

described as follows:

Rn - kuQj

where /r,y is a constant defining the fractional rate of transfer of material into 

compartment /' from compartment j.
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In biological systems one of the most commonly occurring nonlinear 

dependencies is the Michaelis-Menten form:

where VMAx is the saturation value of flux R,j and KM is the value of Q, at which 

Rij is equal to half of its maximal value.

The number of required compartments depends both on the system being 

studied and on the richness of the experimental design. A model is unique for 

each system, as it represents known and hypothesised physiology and 

biochemistry specific to that system. It provides the investigator with insights 

into the system’s structure and is only as good as the assumptions that are 

incorporated into its structure.

The essential steps of the modelling process are model formulation and model 

identification, the latter including parameter estimation and model validation 

(23).

3.3.2.1 Model formulation

Model formulation can be subdivided into three distinct components, the 

formulation of the conceptual model, the mathematical realisation of that 

conceptual model, and finally the solution of the model to give the required 

relations between the variables of interest (23).

The formulation of the conceptual model is based on the validated a priori 

physiological knowledge. It requires a functional description of the relevant 

physiological processes, and their interdependence in the form of a final 

model.

Mathematical realisation comprises constructing the mathematical equations 

to provide a detailed description of the physical processes and to describe the 

overall relations contained within the functional model. For each compartment
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a mass balance equation is formulated. The complete set of those equations 

together with the initial conditions constitute the mathematical model of the 

particular metabolic system (23).

Obtaining the required explicit relations between the model variables, usually 

done through the implementation of the model on the computer, is called the 

solution.

3.3.3 Model identification

Model identification is concerned both with determining the structure of a 

mathematical model and with estimating the model’s unknown parameters on 

the basis of a suitable set of experimental data (23).

3.3.3.1 A priori identifiability

A mismatch between the complexity of the model and the richness of the 

experimental data is known as the identifiability problem.

Before proceeding to estimate the model parameters, one must decide 

whether the data obtained in the course of the experiment contain enough 

information to estimate the unknown parameters of the postulated model 

structure. If the model structure is too complex for the particular data set, e.g. 

if certain parameters are not identifiable from the ideal noise-free data, it is 

unlikely that parameters could be identified in a real situation with a possible 

error in the model structure and the noisy data. This problem is usually 

referred to as the a priori identifiability problem.

In summary, a priori identifiability examines whether, given ideal noise-free 

data and assuming an error-free model structure, it is possible to make unique 

estimates of all the unknown model parameters. A model can be uniquely 

(each of the parameters has only one possible solution) or nonuniquely 

identifiable (one or more parameters has one or more but a finite number of 

possible solutions), or nonidentifiable (one or more of the parameters has an 

infinite number of solutions) (22).

22



Chapter 3. Review o f Literature and Associated Techniques

If a model is a priori nonidentifiable, the incorporation of additional knowledge, 

the reparametrisation (parameter aggregation), or even the design of a more 

informative experiment may be required.

3.3.3.2 Parameter estimation and a posteriori identifiability

If a model is a priori uniquely or nonuniquely identifiable, then identification 

techniques can be used to estimate the numerical values of the unknown 

parameters from the noisy data. As the parameters do not appear in the 

model linearly as a straight line or a polynomial model, the parameter 

estimation problem is nonlinear (22).

Weighted nonlinear least squares is the most commonly used parameter 

estimation technique. In this method the weighted residual sum of squares 

(WRSS) is defined as a cost function:
N

WRSS =  Y — f y f \ t i)-y{.ti,px...pM))2
t r vv'

where y f ’ ttp is the measurement at time t„ .y(/,-,/>,.•■/>*/) ¡s the model prediction 

at time f, for a given set of parameters from p-i to pM, and w, is the assigned 

weight (equal to the inverse of the variance of the measurement error)

The desired parameter estimates are those, which minimise this function. As 

there is no closed form analytical solution to the WRSS minimisation, an 

iterative solution is required. Iteration can be thought of as a series of steps 

where the nonlinear problem is handled in a linear fashion at each step (22). 

The covariance matrix of the parameter estimates, the Fisher Information 

Matrix, can be used to evaluate their precision, or in other words, their a 

posteriori identifiability (23).

Other techniques of parameter estimation include Maximum Likelihood and 

Bayesian Estimation.
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3.3.4 Model validation

Once the model has been identified in terms of both structure and parameter 

estimates it still needs to undergo further validation. Validation is a procedure 

of examining whether the model is good enough for its intended purpose.

The basic approach in validating a model is to compare the model and system 

behaviour, based on appropriate output features.

Once the parameter estimation procedure has been completed, the following 

quantitative tools become available:

0 plausibility of the estimated parameters: if one or more estimated 

parameters take on values that are absurd in the physical or 

physiological sense, the model is deemed invalid and is rejected;

0 statistics of the residual errors: it has been assumed a priori that the 

measurement error is normally distributed and with a zero mean; 

hence, residual errors which are nonrandomly distributed or contain 

trends put validity of the model in question;

0 precision of parameter estimates expressed as a coefficient of variation 

(CV) or a posteriori (practical) identifiability: this is an arbitrary 

measure, a commonly agreed level of acceptability is a CV of 100%, 

good precision of parameter estimates refers usually to a CV of less 

than 25%.

The validity of a model is only applicable in a specific domain. A model that is 

valid is not necessarily a true one (22).

3.3.5 Model selection process

When one deals with a number of competing models, comparison between 

them should be made on the basis of their ability to fit the data. This, so 

called, goodness of fit can be evaluated through WRSS as a measure of the 

mismatch between the model prediction and the data. However, goodness of 

fit on its own does not reflect solely the accuracy of representing the data by
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the model. The known effect of an improvement in model fit with increased 

model complexity (increased number of parameters) is a confounding effect. 

In order to correct for this effect a different measure needs to be applied. This 

new measure, also called the parsimony criterion, corrects the goodness of fit 

for the increase in the number of degrees of freedom. The Akaike information 

criterion (AIC) is one such measure used for comparing linear models. It takes 

into account both goodness of fit and the number of parameters when 

comparing models (24). The Akaike criterion is calculated as follows:

AIC -  N \n WRSS + 2P

where N is the number of data points, WRSS is the residual sum of squares 

and P is the number of parameters. The best model, based on the principle of 

parsimony, is than which achieves the lowest value of AIC.

Other similar criteria are available such as the Schwarz Bayesian information 

criterion (25). With small-size data sets, both the Akaike and the Schwarz give 

similar results (26).

3.3.6 Population modelling techniques

In the course of individual modelling analysis a unique set of parameter 

estimates is assigned to each individual subject. Those parameter estimates 

will most probably vary among subjects, and hence the interindividual 

variability will be observed. In other words we will be dealing with a 

population of individuals. The purpose of population kinetic analysis is to focus 

on such a population and estimate the population distribution of the model 

parameters based on a collection of individual data.

Given a specific population of individuals an experiment carried out on each 

individual with similar modalities and an appropriate system model, population 

kinetic analysis can be defined as the study of the intersubject variability of the 

parameters of a kinetic model (27).

Depending on the nature of prior knowledge available on the population 

distribution, two approaches can be used to facilitate its estimation. In the

25



Chapter 3. Review of Literature and Associated Techniques

parametric approach, the distribution is assumed to be known except for a 

certain number of unknown parameters, whereas in the nonparametric 

approach no functional form of the distribution is assumed.

The two basic methods for obtaining estimates and their variability are the 

maximum likelihood method based on the maximisation of the likelihood 

function and Bayesian methods which use the Bayesian inference approaches 

to estimate the full conditional population distribution.

3.3.6.1 Standard two-stage analysis

Standard two-stage analysis (STS) is the most common way of determining 

the distribution of parameter estimates within a population of subjects. From 

the individual parameter estimates, the empirical sample mean a, and the 

empirical sample covariance D, are calculated as follows:

1 M
D ------------Y  {p  -  a)(p -  a)T

M - 1£,

where M is a number of individuals in the population and p is an estimate of 

the parameter vector. The covariance matrix D gives an estimate of the 

interindividual variability. As no functional form of the population distribution is 

assumed, the STS belongs to the class of nonparametric estimators.

A clear advantage of this method of population analysis is its simplicity. There 

are, however, three major shortcomings of this method. One of the main ones 

is that no knowledge is gained from the fact that the subjects belong to the 

same population. The second disadvantage is that the intraindividual 

variability given by the subject-specific covariance matrix is not taken into 

account. Thirdly, no measure of the precision of the estimates of a and D is 

available.
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3.3.6.2 Iterative two-stage analysis

The Iterative two-stage (ITS) approach is a parametric iterative population 

analysis method based on the concepts of population prior knowledge and 

maximum a posteriori probability (MAP) empirical Bayes estimator (27). 

There are three steps of the ITS: step 1 initialisation, step 2 expectation, and 

step 3 minimisation. In the initialisation step the population mean for each 

parameter is calculated as the sample mean of all individual parameter 

estimates. Population variance is also calculated as the corresponding sample 

variance. In step 2, the expectation step, the parameter estimation for each 

individual subject j  is performed again, this time minimising the following 

extended MAP Bayesian objective function with respect to Pj (28)

where the distance of the current parameter estimate from the population 

mean is also penalised; we denote with pjj the f h element of the parameter 

vector pj for subject j, jm(k) is the value of the population mean at the 

iteration, Nj is the number of data points available for the f h subject, t-,jand G°

are the f h time point and data point, respectively, for the f h subject, is the 

variance of the measurement error of the f h data point, GM(pj, ti) is the model 

prediction for a given pj, and L.i(k) is the f h diagonal element of the population 

covariance matrix at the ^iteration. The estimate obtained by minimising this 

objective function is called post hoc, or empirical Bayes, estimate. The 

updated population mean of the parameter vector and the covariance are 

calculated. In the final step 3, the check for convergence of the population 

mean, the population variance, and the individual parameter estimates is 

carried out. This is done by determining whether or not the current and the 

previous estimate differ by <1%. If so, the algorithm is stopped, if not, it 

returns to step 2. Hence, steps 2 and 3 are performed iteratively until 

convergence is achieved.
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3.4 Review o f Existing Techniques to Model Whole-body Glucose 
Kinetics

The whole-body glucose kinetics and its control by insulin is complex. 

Understanding this system requires the quantification of various fluxes and 

control effects that are not directly measurable as they take place in 

nonaccessible compartments. This can only be accomplished with 

mathematical modelling methods (29).

Mathematical models of the whole-body glucose kinetics and metabolism 

have been the subject of research for over four decades. The models can be 

classified according to their specific purpose, i.e. explanatory models, models 

for measurement or control (29), or, alternatively, according to the way they 

were derived. This review follows the latter classification, whereby models are 

placed into two main categories: those derived from existing knowledge and 

literature, and those derived directly from experimental data. The emphasis 

will be on models, which have the potential to be used or to provide important 

information when representing the whole-body glucose kinetics in type 1 

diabetes during normal physiological conditions. For this reason, models 

dealing with insulin secretion will not be considered here.

3.4.1 Knowledge driven models of whole-body glucose kinetics

Knowledge driven models rely on independent knowledge of the metabolic 

and kinetic processes. If they are to be valid explanatory means of the 

system, they should mirror structurally and parametrically the component 

processes. Such models, typically explanatory in nature, promote insight and 

understanding, and possibly define quantitative interactions, which are not 

normally measurable. The structure and the kinetic/metabolic processes 
involved in the glucose regulatory system are illustrated in Figure 3.4.
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insulin-independent glucose utilisation

Figure 3.4 Schematic representation of the whole-body glucose kinetics/metabolism.

The very first models of the whole-body glucose kinetics were linear and 

represented glucose and insulin pools with single compartments (30,31). This 

was a clear oversimplification of the glucose regulatory system. In the next 

stage, nonlinear kinetics was introduced while maintaining the two- 

compartment structure (32).

The following models (33,34), although expanding on the number of 

compartments to represent insulin kinetics, still could not claim to be a good 

physiologic representation of a widespread applicability. For instance, insulin- 

dependent glucose disposal was not partitioned between the periphery and 

the liver at this stage, and insulin sensitivity was not taken into consideration.

An increased understanding of glucose metabolism and its regulation by 

insulin led to a number of more accurate explanatory physiologic model 

formulations. The model presented by Guyton et al (35) employed a high 

degree of body compartmentalisation to an organ level. It was described by 32 

ordinary differential equations, 16 of which were nonlinear. The model by 

Sorensen (36) expanded on the model by Guyton by adding a model of
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glucagon counterregulation, an additional compartment for the gut, and an 

additional parameter for the transcapillary diffusion time. Sorensen’s model 

was described by 22 simultaneous nonlinear ordinary differential equations.

Cramp and Carson (37), and then Cobelli et al (38) managed to reduce the 

mathematical complexity to 9 and 7 differential equations, respectively, by 

proposing lumped compartmental models. The model by Cramp and Carson 

represented glucose metabolism in the liver in terms of the major contributing 

biochemical pathways, i.e. glycolysis, gluconeogenesis, glycogen synthesis 

and breakdown, and included hepatic glucose 6-phosphate and hepatic 

glycogen compartments. However, inadequacies of this model include the 

following: no provision was made for the renal glucose extraction, the 

pancreatic insulin release was described by a simplified linear function, and 

the distribution volumes of glucose, insulin, and glucagon were all assigned 

the same value.

The model by Cobelli et al (38) represented a metabolic plant, that is, glucose 

kinetics and its two controllers, hormones insulin and glucagon. The glucose 

subsystem, described by a single compartment, considered a net hepatic 

glucose balance, the renal excretion of glucose, and an insulin-dependent as 

well as insulin-independent glucose utilisation. The insulin subsystem was 

described by a five-compartment model representing pancreatic insulin 

release, portal plasma insulin, plasma insulin, and insulin in the interstitial 

fluid. The glucagon subsystem was represented by a one-compartment 

model. The three subsystems interacted via control signals. This model was 

further improved by the authors by means of experimental testing (see the 

next section for details).

A number of simulation models were developed in the 1980s and early 1990s 

with the aim to help optimise insulin therapy in type 1 diabetes. Salzsieder et 

al based their simulation model (39) on the optimal control theory adopted 

from engineering and used a state-variable technique to model the 

glucoregulatory system. Four state variables proved sufficient for complete 

description of the controlled metabolic plant’s behaviour: the circulating
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concentration of insulin and glucose, the overall endogenous glucose balance, 

and the peripheral insulin-dependent glucose utilisation. A black-box analysis 

of transfer functions was employed to estimate parameters of glucose 

metabolism such as rate constants and sensitivity ratios.

Berger and Rodbard developed a computer program for the simulation of 

plasma insulin and glucose dynamics after subcutaneous insulin injection 

(40). They followed the parsimony principle associated with the minimal model 

approach (41) to find the mathematical formulation to represent the major 

physiological systems with the fewest parameters. The program incorporated 

a pharmacokinetic model of insulin absorption to calculate the time courses of 

plasma insulin for various insulin preparations. The parameter values of the 

complete model employed by Berger and Rodbard were obtained by 

analysing data from studies reported in the literature.

The above model was utilised by Lehman and Deutsch in the development of 

AIDA (42), diabetes simulation program designed specifically for subjects with 

type 1 diabetes, i.e. assuming a complete lack of endogenous insulin 

secretion. The model contains a single glucose pool representing 

extracellular glucose. Glucose enters this pool via both intestinal absorption 

and hepatic glucose production, and is removed by an insulin-independent 

glucose utilisation in the red blood cells and the central nervous system as 

well as by an insulin-dependent glucose utilisation in the liver and the 

periphery. Hepatic and peripheral handling of glucose is treated separately 

making it possible to assign patient-specific insulin sensitivity parameters to 

glucose-insulin interactions in the liver and the periphery. Glucose excretion 

takes place above the renal threshold of glucose as a function of the 

creatinine clearance.

The simulation model by Boroujerdi et al (43) expands on the previous model 

by Cobelli et al (44) and represents glucose distribution by means of glucose 

transporters.
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3.4.2 Experimentally driven models of glucose-insulin 
interactions

The conceptual paradigm of models representing glucose-insulin interactions 

is illustrated in Figure 3.5. The glucose regulation system is commonly 

represented by a model of insulin action linked to a model of glucose kinetics. 

Glucose and insulin concentrations are the measured variables. The model of 

insulin action typically includes a remote compartment to represent a delay in 

insulin action. The glucose model describes the distribution, production and 

utilisation of glucose, and their control by rnsulin. Model parameters are 

determined by the least squares fitting of the model to the experimental data.

insulin concentration

glucose concentration

Figure 3.5 The glucose-insulin system; dotted line arrows indicate insulin contro;. 
adapted from (45).

The main driving force in the development of these models was the need for 

easily applicable tools to quantify indices of insulin sensitivity and insulin 

secretion. As mentioned previously, models of insulin secretion will not be 

considered in this review.
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There is a general agreement that a euglycaemic clamp is the best available 

standard for the measurement of insulin effect on glucose kinetics. When a 

steady state is reached, the exogenous glucose infusion rate equals the 

amount of glucose disposed of by all tissues in the body and thus provides a 

measure of overall insulin sensitivity.

Unfortunately, the glucose clamp methodology is technically difficult to 

perform and is, therefore, not suitable for a routine practice. Other simpler and 

less invasive methods, usually involving a model representation of the 

glucose-insulin system, had to be devised. Currently, the two most commonly 

used methods are the homeostatic model assessment and the minimal model.

The homeostatic model assessment (HOMA) and the constant infusion of 

glucose with model assessment (CIGMA) were used to determine insulin 

sensitivity from the fasting plasma glucose and insulin concentrations (HOMA) 

or after a standardised, 1h intravenous glucose infusion (CIGMA) (46,47). 

Insulin sensitivity, expressed as an index of relative insulin resistance R (R=1 

corresponds to normal homeostasis), is calculated as a function of the 

measured glucose and insulin levels. In practice, R is determined from a 

contour plot.

The minimal model of glucose kinetics (41) was developed using data 

collected during the intravenous glucose-tolerance test (IVGTT). The original 

model has two compartments representing remote insulin and plasma 

glucose. The measured time course of insulin is regarded as the input and the 

falling glucose concentration as the output. A nonlinear regression analysis is 

used to estimate four parameters, with insulin sensitivity (Si) and glucose 

effectiveness (Sg ) being the indices of interest.

A major limitation of the original minimal model stems from the fact that, since 

the model was developed using unlabelled IVGTT, it was not possible to 

separate the glucose production from the disposal. Only the net hepatic 

glucose balance and glucose disposal in non-hepatic tissues could be
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described as a function of plasma glucose and the remote insulin action (48). 

As a consequence, the metabolic indices S/ and SG are hybrid parameters, 

which measure not only the effect of glucose and insulin on glucose disposal 

but also their inhibitory effects on the hepatic glucose production. Other 

concerns regarding the minimal model include poor precision of parameter 

estimates and unsatisfactory reproducibility of the insulin sensitivity parameter 

Si (29). The usefulness of SG, defined as the basal fractional glucose 

clearance, has also been questioned and found to be in error (49,50).

To overcome these limitations, labelled IVGTT methods have been devised 

(48,51), i.e. a tracer glucose bolus was injected together with the cold 

glucose. The tracer minimal models allowed the estimation of the true tissue 

sensitivity to insulin and the true glucose effectiveness without distortion of 

glucose and insulin effects on glucose production. In addition, precision and 

reproducibility of the estimates of insulin sensitivity and glucose effectiveness 

were also improved (51).

Both cold and tracer glucose minimal models describe the functioning of the 

glucose system in the non-steady state during an IVGTT. Caumo et al (52) 

observed that the models give a very poor prediction of the hepatic glucose 

production during an IVGTT. The source of the error is likely to be an 

inadequate mono-compartmental description of the glucose kinetics (29). A 

good evidence exists that a reliable description of the glucose kinetics 

requires at least two compartments (44).

Two-compartment minimal models have been proposed in the last decade 

(50,52,53) with improved results. Unfortunately, the increase in the number of 

model parameters to six meant that the parameters could not be uniquely 

estimated using the standard least squares data fitting. The problem was 

solved using tracer glucose bolus (50,52) or applying Bayesian estimation 

methods (53). The first approach simplifies the model by separating the 

hepatic glucose production from the insulin-dependent glucose utilisation. In 

the second approach, the uncertainty in the individual parameter values is 

reduced by assuming a given statistical distribution of the parameters. The
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two-compartmental models provided a physiologically plausible profile of the 

endogenous glucose production during the IVGTT.

The two-compartment minimal model allowed for the separation and 

quantification of two insulin sensitivities, sensitivity of glucose uptake by the 

periphery and the sensitivity of hepatic glucose production. The estimation of 

the third insulin sensitivity of glucose transport/distribution (see Figure 3.4) 

was first attempted by Ferrannini et al (54). They proposed a three- 

compartment model of glucose kinetics and identified the model on data from 

a euglycaemic hyperinsulinaemic clamp with the use of labelled [3-3H] 

glucose. Apart from the plasma glucose compartment, the other two 

compartments were a slowly-equilibrating compartment representing insulin- 

dependent glucose utilisation by the muscle and the adipose tissue and a 

rapidly-equilibrating compartment representing the insulin-independent 

glucose utilisation by the central nervous system and the red blood cells. The 

model also allowed the estimation of other kinetic parameters, in particular, 

the mean arterio-venous transit time of both the extracellular and the transport 

tracer.

The partitioning of the three insulin effects on glucose transport/distribution, 

disposal and hepatic glucose production was accomplished by Flovorka et al 

using a two-compartment model for the labelled IVGTT (55) based on work by 

Vicini et al (50). The separation of the three insulin sensitivities was made 

possible by the use of two glucose tracers (a dual-tracer IVGTT). A marker of 

glucose transport (3-O-methyl-D-glucose), which shares with native glucose 

the transport system but is not metabolised, and a stable tracer 

indistinguishable from the native glucose (D-[U-13C] glucose) were 

administered simultaneously. The validation of hepatic glucose production 

was facilitated by administering and reconstructing a variable infusion of D- 

[6,6-2H2] glucose. The model described both the steady state (pre-IVGTT) and 

dynamic (IVGTT) conditions and was validated in healthy subjects. It was 

found that in healthy subjects insulin has the strongest effect on the hepatic 

glucose production (approximately 50%), whereas the other two peripheral 

insulin effects account for the remaining 50%, each effect contributing equally.
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A completely different approach to modelling the whole-body glucose kinetics 

and insulin sensitivity from a labelled IVGTT was taken by Natali et al (56), 

and then Mari et al (57). The authors assumed that compartmental models do 

not represent the physiological system realistically enough and proposed a 

circulatory model based on the theory of organ kinetics by Zierler (58). The 

models still fit the scheme shown in Figure 3.5. However, the glucose kinetics 

is described by a circulatory loop. When compared with the compartment 

models, the circulatory model was only fractionally superior to the two- 

compartment minimal model in its prediction of the rate of appearance of 

glucose in non-steady-state conditions (57).

In conclusion, modelling glucose kinetics and insulin sensitivity are mature but 

still active areas. New methods and new models are being constantly 

developed in attempt to resolve physiological complexities.
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3.5 Review o f Existing Techniques to Model Interstitial Glucose 
Kinetics

The subcutaneous tissue is easily accessible and appears to be a perfect site 

for a long-term continuous glucose monitoring, one of the main components of 

an artificial pancreas. Glucose measurements can be carried out using 

minimally invasive techniques (skin inoculation) with a low level of trauma and 

a low risk of infections. When using SC tissue, however, one assumes that 

the glucose concentration in the interstitial fluid reflects blood glucose level, 

both under steady state conditions and during dynamic glucose changes. 

Several studies have been conducted to quantify the relationship between the 

ISF and blood glucose (17,59-63), but no definite formula has been obtained 

so far. Authors have reported a varying ISF-to-plasma glucose ratio and time 

lag between the two sampling sites. This leads to a conclusion that the 

relationship in question is more complex than previously thought.

The delay, the gradient, and the dynamic relationship between plasma and 

ISF glucose can be described in physiological terms assuming that the 

plasma and the interstitial fluid are separated by a capillary wall barrier as 

shown in Figure 3.6.

If a capillary is a significant barrier to glucose molecules, then changes in ISF 

glucose will be directly related to the changes in blood glucose by the rate of 

glucose diffusion across the capillary and by the rate of glucose removal from 

the ISF (glucose uptake by the cells). If the glucose uptake in the tissue 

immediately surrounding the sensor is negligible (i.e., if f02=0 ), then steady 

state plasma and ISF glucose will be equal and deviations will only exist 

during transient glucose changes (64). If, however, glucose uptake by the 

surrounding tissue is not negligible, a steady state gradient will exist. 

Furthermore, if glucose uptake is sensitive to insulin (see insulin effect on f02 

in Figure 3.6), then the IG-PG gradient will change with insulin concentration. 

Similarly, if the area of diffusion surface is increased with the higher insulin 

concentration (insulin-induced capillary recruitment (65)), then the glucose
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distribution volume, and consequently fluxes f12 and f2i, will also increase (see 

insulin effect on f2i in Figure 3.6).

0 Insulin 
A  Glucose

Figure 3.6 Conceptual model of interstitial glucose kinetics; C, and C, represent 
glucose concentration in the plasma and the interstitial fluid, respectively; V1 and V, 
are the plasma and ISF glucose distribution volume, respectively; f02 represents 
glucose flux from the ISF Into the fat cell, f12 and f21 represent glucose fluxes from the 
ISF into the plasma and from the plasma to the ISF, respectively; adapted from (64).

Dynamically, changes in ISF glucose will lag behind the changes in plasma 

glucose if this change originates in the plasma space (e.g., a change due to a 

meal ingestion or a change in the endogenous glucose production). 

Conversely, if the change in glucose concentration originates in the ISF 

(glucose uptake by the cells), the changes in ISF glucose should precede the 

changes in plasma glucose. This effect, often called a push-pull phenomenon, 

has been discussed widely in the literature and a number of authors claim to 

have detected it (17,59,60,66).

The studies employed a variety of techniques and sensor types to measure 

interstitial glucose concentration and attempted to find the ISF versus plasma 

glucose relationship by comparing these measurements against blood 

glucose readings taken at calibration points, also called reference values. As 

a result, any difference in glucose levels between the ISF and capillary blood 

leads to a “reference” error, which depends on the relationship between the 

blood and the ISF glucose concentrations. Direct quantification of the ISF to
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plasma glucose ratio and the time lag between them cannot be achieved here 

and the results are difficult, if not impossible, to compare. Values obtained 

depend on the insertion site, i.e. blood flow, insulin sensitivity, local reaction, 

device characteristics such as sensitivity, lag time and sampling frequency, 

also on type of subjects used, i.e. dogs, rats, humans (healthy, with type 1 or 

type 2 diabetes) and test conditions (physiological, insulin/glucose clamps, 

fasting, prandial etc.). A wide range of often conflicting results from some of 

the studies described below can be seen in Table 3.1.

3.5.1 Indirect measurement of interstitial glucose using a sensor

0 Aussedat et al (59) studied changes in the ISF and blood glucose 

concentrations in anaesthetised nondiabetic dogs determined with a 

miniaturised needle-type enzymatic glucose sensor. Time lag 

dependent on the plasma glucose gradient and a slower recovery of 

ISF glucose from hypoglycaemia were observed in this study. The 

authors also claim to have observed the, so-called, push-pull 

phenomenon.

0 Rebrin et al (64) used an electrochemical enzyme-based glucose 

sensor to examine the plasma to ISF glucose gradient and the time lag 

during hyperglycaemic clamps. The study, conducted in nondiabetic 

dogs also aimed to investigate the effect of insulin on both the gradient 

and the lag. Although the magnitude of the interstitial to plasma 

glucose gradient could not be measured with the sensor, the changes 

in the gradient could be estimated from the changes in sensor 

sensitivity. These did not prove to be statistically significant. The 

reported lag was 3-14min, considerably longer than the in vitro delay of 

the sensor (<1.5min). The supposed insulin effect on the gradient or 

the delay could not be detected in this study.
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3.5.2 Direct measurement of interstitial glucose by interstitial fluid 
sampling or ultrafiltration

0 Thennadil et al (67) used the suction blister technique to determine 

interstitial glucose in six subjects with type 1 diabetes. Scatter plots and 

linear regression analysis were used to describe the IG-PG 

relationship. The authors found no time lag between PG and IG even 

during rapid changes of blood glucose. They also found a considerable 

inter-subject variability of the ISF and blood glucose bias and a high 

correlation of the two measurements.

0 Schaupp et al (68) employed an open-flow microperfusion (OFM) 

method with the ionic reference technique (69) to measure interstitial 

glucose in twenty five healthy volunteers. Their estimated adipose ISF 

glucose was, on average, 63% of the plasma glucose concentration.

0 Summers et al (63) studied seven healthy subjects after an overnight 

fast under hyperinsulinaemic clamp conditions. A microdialysis 

technique was used in this study to measure ISF glucose during a rise 

and a fall of blood glucose. During steady state conditions the IG 

concentrations were lower than those in the plasma. During the rapid 

changes from euglycaemia to hyperglycaemia and back, the ISF and 

plasma glucose concentrations were similar. The authors observed that 

changes in the ISF concentrations were delayed on average by 20min 

with a wide inter-subject variation. Summers et al noted that the 

subject with the longest time lag was the most obese, with BMI of 

39kg/m2, and linked it to the higher insulin resistance in those subjects.

0 Bantle et al (70) measured interstitial glucose concentrations in the 

sampled ISF of seventeen subjects with type 1 diabetes during pre- 

and post-prandial conditions. Interstitial glucose was measured using a 

manual hexokinase method. They found IG to be highly correlated with 

PG. No time lag or gradient was detected.
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0 Moberg et al (60) employed a microdialysis technique (71) to measure 

interstitial glucose in ten nondiabetic subjects during hypoglycaemic 

clamp. Glucose levels in the ISF were observed to be significantly 

lower during induced hypoglycaemia and a marked protracted glucose 

fall was also noted. The restoration of the adipose tissue glucose levels 

following hypoglycaemia was markedly delayed. During euglycaemia, 

the glucose concentration in the adipose tissue was similar to that in 

the plasma. The authors concluded that hyperinsulinaemia is a 

prerequisite for the plasma-ISF differences observed during 

hypoglycaemia and that an increased glucose extraction is the 

mechanism whereby this relative glucopenia of the tissue occurs. Apart 

from the glucose measurement, the authors also measured the local 

tissue blood flow. An increase in the blood flow was recorded during 

hypoglycaemia in the adipose tissue.

0 Sternberg et al (62) studied the ‘real’ interstitial glucose concentrations 

in ten healthy volunteers using a new method based on the 

recirculation of phosphate-buffered saline in a microdialysis probe. He 

found the ISF glucose concentration lower both during fasting 

conditions and during a hyperglycaemic clamp (72 ± 6 and 76 ± 6%, 

respectively). The mean delay time reported in this study was 12 ± 

3min.

0 Lonnroth et al (72) measured glucose in the interstitial fluid in ten 

healthy volunteers with the aid of a microdialysis technique. The 

reported difference between IG and PG was 12 ± 3%.

3.5.3 Comparison of direct and indirect methods of interstitial 
glucose measurement

0 Monsod et al (17) evaluated the MiniMed® CGMS system on eleven 

healthy volunteers by comparing the system readings to the direct 

measurement of the ISF glucose through a microdialysis technique. 

The aim was to examine whether the relationship between interstitial
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and plasma glucose is affected by changes In plasma glucose and 

insulin levels. Applying a hyperinsulinaemic clamp technique, the 

authors found that insulin induced hypoglycaemia lowers interstitial 

glucose concentrations, even in the face of unchanged plasma glucose 

levels. Another finding was that insulin-induced hypoglycaemia 

increases the interstitial to plasma glucose gradient. During recovery 

from hypoglycaemia, the sensor reading lagged behind increases in 

plasma glucose and remained 15% lower than plasma glucose up to 

the end of the study.

0 Schmidt et al (61) compared a microdialysis based enzyme sensor 

method of measuring the ISF glucose concentration with two reference 

methods, i.e. the subcutaneous filtrate collection and the equilibration 

method using ultrafiltration membranes. He found a close agreement 

between the mean values of Interstitial glucose concentrations obtained 

by these three methods (range of IG-PG ratio of 0.44-0.51).

Table 3.1 Summary of findings relating the interstitial glucose dynamics to the 
plasma glucose dynamics published by various authors.

Study Subjects Test conditions Method Delay Gradient

(59) Rats (healthy, 
anaesthetised)

Fasting + glucose 
injection

Enzymatic
sensor

5-10min N/A

(64) Dogs (healthy) Hyperglycaemic
clamp

Enzymatic
sensor

3-14min N/A

(67) Human (diabetic) Normal Suction blister 0 100%

(68) Human (healthy) Normal OFM Not stated 63%

(63) Human (healthy) Normal Microdialysis 0-45min 100%

(70) Human (diabetic) Hypoglycaemic
clamp

ISF sampling 0 89.4%

(60) Human (healthy) Glucose clamp Microdialysis 25min 100%

(73) Human (healthy) Hyperglycaemic 
clamp + fasting

Recirculation 
method (PSB)

12min 72-78%

(72) Human (healthy) Fasting steady 
state

Microdialysis Not stated 100%

(74) Human (diabetic) Monitoring Microdialysis Not stated 87-101%

(17) Human (healthy) Glucose clamp Microdialysis + 
MiniMed CGMS

Not stated 65%

(61) Human (healthy) Equilibration study Ultrafiltration + 
enzyme sensor

Not stated 44-51%
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3.6 Existing Techniques to Model Subcutaneous Insulin Kinetics

Subcutaneous insulin absorption is a complex process influenced by many 

factors including the associated state of insulin, it’s concentration, injected 

volume, injection site and depth, and tissue blood flow (75-78). Consequently, 

the quantitative description of insulin absorption is a difficult task. Several, 

mostly compartimentai, models have been proposed dealing with one or more 

commercially available insulin preparations (79). Models differ in the 

description of subcutaneous insulin absorption, hence differing in the number 

of compartments and the type of processes, which are taken into account. 

Since plasma insulin is, in all cases, assumed to be a single compartment 

(79), models differ in the way they consider the SC tissue compartment.

The earliest models consider regular insulin, whereas the more recent ones 

take the new analogue insulin types into account. Model parameters (except 

for the model by Mosekilde) estimated for soluble and/or monomeric insulin 

are shown in Table 3.2.

3.6.1 Compartimentai models

0 Kobayashi et al (80) proposed a two-compartment (plasma and SC 

tissue) model with a delay to describe subcutaneous absorption of 

short acting insulin (see Figure 3.7).

The model is described by the following set of equations:

d x \ t  d t  -  - k aX\{t) + u ( t  -  r) 
d i / d t = - kei { t) + (ka / Vd )X) (t )

where xi is the amount of insulin in the SC depot, i(t) is plasma insulin, Vd is 

the distribution volume, ka is the absorption rate constant, ke is the elimination 

rate constant, r is  the time delay and u(t) is the rate of insulin administration.

The parameter values were obtained by fitting the model to data obtained 

through the administration of both bolus and infusion of short acting insulin 

(Actrapid MC, 40U/ml) to 9 subjects with type 1 and 3 subjects with type 2 

diabetes. Monomeric insulin was not available at the time of this publication.
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Table 3.2 Parameter values for models described in this section.

Model Parameter Unit soluble insulin
Value

monomeric insulin

T min 7
min'1 2.7 x 10'2

Kobayashi ka min'1 1.2 x 10'2
(80) v d

ml kg'1 1.5 x 103

k2i
min'1 3.0 x 10'2
min'1 0.0

Kraegen kd min'1
min'1

9.7x1 O'2
(81) Is 9.0 x 10'2Ke ml 12.0 x 103

v d

min'1 1.4 x 10'2
ka min'1 6.3 x 10'2

Puckett ke
P

ml 3.5 x 10'2
(82)

min'1 1.1 x 10'2 1.7 x 10'2k2i min'1 1.5 x 10'2 4.8 x 10'2
Shimoda ka

kd
min'1 2.1 x 10'2 2.9 x 10'2

(83) min’1 9.9 x 10'2 1.3 x 10'2
ke
v d

ml kg'1 1.25 x 10'1 8.0 x 10'2

unitless 2s min U'1 3
Berger a min 102

(84) D min'1 9 x 10'2
ke ml 12 x 103
v d

Q ml2 U2 1.3 x 10'1 1.3 x 10'1
min'1 5 x 10'1 5 x 10'1

Trajanoski P cm2 min'1 9 x 10'5 9 x 10'5
(85) u

B
ke

min'1 1.3 x 10'2 1.3 x 10'2
min'1 9 x 10'2 9 x 10'2
ml 12 x 103 12 x 103

Vd
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subcutaneous tissue plasma

Figure 3.7 A model of insulin absorption kinetics proposed by Kobayashi et al (80); 
x1 is the amount of insulin in the SC depot, i is plasma insulin, Vd is the distribution 
volume, ka is the absorption rate constant, ke is the elimination are constant, r  is the 
time delay and u(t) is the rate of insulin administration.

0 Kraegen et al (81) proposed a three-compartment mode! (see Figure 

3.8).

subcutaneous tissue plasma

Figure 3.8 Model of subcutaneous insulin absorption proposed by Kraegen (81); x, 
and x2 are insulin masses in each of the two SC compartments (accessible and 
nonaccessible), / is plasma insulin concentration, Vd is the distribution volume of 
insulin, k21 and ka are the transport rate constants describing transport of insulin 
between SC compartments, and SC compartment and plasma, respectively, ke is the 
elimination rate constant, and kd is the degradation rate constant from the respective 
SC pool.

The model is described by the following equations:

dx̂  / dt -  —(kd + k2\)xl(t) + u(t) 
dx2 /  dt = k2 -  (kd + ka )x2 (t)

di/dt =^f-x2( t ) - k ei(t) 
v d
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The authors fitted the above model to the insulin profiles of normal subjects 

with a suppressed endogenous insulin secretion. Similarly to Kobayashi, 

Kraegen also used short acting insulin (Actrapid MC, 40 U/ml). In his 

conclusion he assessed the model fit as good, and the SC insulin degradation 

as low (rate constant < 10%/h) regardless of the Input profile.

0 Puckett et a/ (82) also proposed a three-compartment model that was 

Identified on diabetic patient data using regular insulin given as a bolus. 

The SC insulin degradation was assumed to take place at the injection 

site, not in the SC tissue itself (see Figure 3.9).

sc tissue interstitium plasma

Figure 3.9 Model of subcutaneous insulin absorption proposed by Puckett (82); x1 
and x2 are insulin masses in the SC tissue and the interstitial fluid, respectively, i is 
the plasma insulin concentration, Vd is the distribution volume of insulin, ka are the 
absorption rate constant from the SC compartments to the interstitial fluid, and the 
interstitial fluid to plasma, respectively, ke is the elimination rate constant.

The following equations describe this model:

d x \ l d t  = - k ax x (0 X, (0 ) =  ccD/Vd 

dx2 / d t  =  - k a [xx( t )  -  x 2 ( t) \ x2(0) = 0
d i ! d t  = k ax 2 ( t)  -  kei ( t )

where a is the effectiveness factor which accounts for insulin degradation at 

the injection site.

To make the model a priori uniquely identifiable, the authors lumped a and Vd 

together in the aggregated parameter p-V Ja  and assumed the known plasma 

insulin removal constant ke.
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0 Shimoda et al (83) developed a three-compartment model of a soluble 

and monomeric insulin analogue, to be used in the artificial pancreas 

(see Figure 3.10).

subcutaneous tissue plasma

Figure 3.10 A mathematical model for SC insulin absorption proposed by Shimoda 
and colleagues (83); kd is the degradation rate constant in the SC tissue, other 
symbols as in Figure 3.8.

The model is described by the following equations:

d x \ l  d t  -  -&2ixl (0 + u(t)

d x 2 / d t = -¿21 xi (0 -  (k d +  k a ) x 2 (0

d i l  d t  = ~ ~ x 2 (0 -  k ei( t)
Vd

This model was fitted on 3 hour data of ten subjects with T1DM following a 

subcutaneous injection of 12 U kg'1 of regular insulin (Humulin R) or rapid 

acting insulin analogue (insulin lispro) diluted to the concentration of 4 U ml'1. 

Contradictory to Kraegen, the degradation rate constant in the subcutaneous 

tissue estimated from this model is not negligible for either insulin type (see 

Table 3.2).

3.6.2 Noncompartmental models

0 Berger (86) proposed a model based on an empirically derived logistic 

equation of insulin absorption for different insulin preparations.

The percentage of injected insulin remaining at the absorption site is 

expressed as:

A%(t) = 100-
100 ts

(TsoY+t5
T5q(D) = aD + b
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where T50 is the time interval to reach a 50% absorption of the injected insulin, 

D is the insulin dose, a and b assume different values for each insulin 

preparation, and s characterises the absorption rate of various insulin 

preparations.

The absorption velocity is the time derivative of A(t) multiplied by the dose. It 

is hence the insulin input flux into plasma:

dA D  t s- ' s T j0D  

d t (T5s0 + t 5) 2

Hence, the plasma insulin concentration can be expressed as:

di

dt
- k ei{ t ) +

dA D_

d t  V■„
- k ei ( t )  +

tS-'sTj0D 
Vd (T5s0 + t s)2

The model was used by authors to describe the dynamics of regular and NPH 

(neutral protamine Hagedorn ) insulin preparations. Parameter values for 

these two insulin types are shown in Table 3.2.

0 Mosekilde et al (87) formulated a mathematical model of SC absorption 

of soluble insulin in terms of well-established physical and 

pharmacokinetic principles, i.e. the diffusion, the equilibration between 

different multimeric (hexameric and dimeric) forms of soluble insulin, 

and either reversible binding of insulin molecules in the tissue or 

precipitation in situ of polymerised insulin.

Figure 3.11 gives an overview of this model, which is described by the 

following set of three coupled partial differential equations:

= P(QC2d- C h ) + DV2C„
Ot

~  =  -P tQ C l - C H) + DV2Cd  -  BCd  -  SCD{C + 
o t 1

=  SCD(C — Cg)~ 
ot I

where Ch , Cd, and Cs denote the concentrations of hexameric, dimeric, and 

bound insulin, respectively, Q is the chemical equilibrium constant, C is the 

binding capacity per unit tissue volume, P is a rate constant, S is a binding 

rate constant, and T is an average life time for insulin in its bound state; terms 

involving the Laplacian operator V2 describe the diffusion of free insulin, terms
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involving the rate constant P describe transformations between hexameric 

and dimeric insulin, terms involving the rate constant S describe the capture of 

insulin in the tissue, and terms involving the time constant T describe the 

release of bound insulin.

The above equations are solved numerically by dividing the subcutaneous 

layer into a number of rings, centred around the injection site.

Subcutaneous Depot

L _________________ _____ _  J

Figure 3.11 An overview of the model by Mosekilde of subcutaneous absorption of 
soluble Insulin; adapted from (87).

0 Trajanoski et al (85) developed a simplified and more practical model to 

one proposed by Mosekilde and colleagues (87) while also taking into 

account the new monomeric insulin preparations.

The following assumptions were made:

1. insulin binding in the SC tissue is negligible

2. the size of the initial depot equals the injected volume

3. the injected volume builds up a spherical homogenous depot 

which is symmetrically widened through diffusion of insulin into 

the tissue

4. at pharmaceutical concentrations of soluble insulin the 

predominant association state is hexamer

5. only dimers are absorbed from the SC tissue into plasma (88)
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6. monomeric insulin analogues have reduced tendency to self-

associate and their mean association state is monomer (89)

The model is described by the following equations:

Ot

=  -P(QCb - C H) + Dh V2Cd  -  b d c d
Ot

?£M- = Dm V2Cm - B m Cm
ot

where Cm is the concentration of monomeric insulin in the SC depot, Dh 

and Dm are diffusion constants for soluble and monomeric insulin, 

respectively, and BD and BM are absorption rate constants for dimeric 

and monomeric insulin, respectively; other symbols as in the previous 

model by Mosekilde.
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Chapter 4 Modelling Glucose Kinetics over Twenty 
Eight Hours in Subjects with Type 1 
Diabetes

4.1 Introduction

A model of glucose regulatory system was previously developed by Hovorka 

et al (55). The model linked intravenous insulin concentration to the plasma 

glucose concentration during basal conditions and during an intravenous 

glucose tolerance test. It was identified using a tracer study in normal 

subjects.

This model is adopted in the present work and is extended to include models 

of insulin absorption, insulin kinetics and gut absorption. The aim of this study 

is to evaluate the model feasibility to represent glucose excursions over 24 

hours in subjects with T1DM treated by CSII. The data comes from clinical 

trials designed to test the AP algorithm. An SC-IV approach, i.e. 

subcutaneous insulin delivery and intravenous glucose measurements, was 

adopted in these trials as a reliable and accurate subcutaneous glucose 

sensor was not available.

The secondary objective of this study is to generate the model parameters for 

individual subjects, which could be used in the AP simulator to represent a 

‘virtual’ set of simulated subjects.

4.2 Subjects and Methods

4.2.1 Subjects and experimental protocol

Twelve subjects with type 1 diabetes (duration of diabetes 24 ±11 years), 

eight men and 4 women aged 21 to 64 years participated in this study. 

Subjects were all treated by CSII with short acting insulin (basal/prandial 

insulin requirements 20 ± 6/ 22 ± 6IU/day; mean ± SD). All subjects had 

normal or near normal body weight (BMI 24 ± 2kg/m2) and their diabetes was 

well controlled (HbA1c7.3 ± 0.9%).

Chapter 4. Modelling Glucose Kinetics over Twenty Eight Hours in Subjects with Type 1
Diabetes
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The study was a single-centre trial which took place at the University Hospital, 

University of Graz, Austria. The study was approved by the local ethics 

committee and all subjects signed an informed consent.

Basal insulin infusion profile was optimised prior to the study and the subjects 

not using the short acting insulin analogue lispro were switched to this insulin. 

The subjects were admitted to the clinic at 13:30 and remained there until 

22:00 on the following day. At the start of the study the patient’s own insulin 

pump was replaced with the “study day pump” and the infusion of insulin lispro 

(Humalog®, Eli Lilly) was started according to the subjects optimised insulin 

infusion profile. A cannula for blood sampling was inserted into the vein of the 

hand and was kept patent with saline. Another cannula for intravenous 

administration of insulin and glucose boluses during the normalisation period 

was inserted into the vein of the other hand.

At the start of the study blood glucose was normalised to a level between 5.5 

to 6.6mmol/L using intravenous insulin or glucose as appropriate. During the 

clamp period blood samples were taken as needed. After 17:00 intravenous 

glucose and insulin administration was stopped. From then on blood samples 

for glucose measurement were taken every 15min. Plasma glucose was 

measured in duplicate with Beckman Glucose Analyser 2 (Beckman 

Instruments, Fullerton, CA) and a CV < 1.5% of the intra-assay measurement 

error. The insulin infusion rates were adjusted every 15min in response to the 

blood glucose values. Blood samples for plasma insulin were collected every 

30min from 14:00. In case of hypoglycaemia (PG < 3.3mmol/L) oral glucose 

consisting of 10g of carbohydrates was given.

Subjects were given their first meal, dinner one, at 18:00. On the second 

study day they were given breakfast at 8:00, lunch at 14:00 and dinner two at 

18:00. Depending on their total daily calorie intake patients were assigned to 

one of the four menu groups (see Appendix). Prandial boli of insulin lispro 

were administered immediately before each meal using the insulin pump.

Chapter 4. Modelling Glucose Kinetics over Twenty Eight Hours in Subjects with Type 1
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4.2.2 Model of glucoregulation

Data analysis was based on the model of the glucose regulatory system as In 

(55).

Figure 4.1 Structure of model of glucoregulation from (55).

The model shown in Figure 4.1 represents the input-output relationship 

between plasma insulin and plasma glucose concentrations. Intravenous 

glucose infusion and meal ingestion are additional inputs.

The explanation of symbols is as follows: Qi and 0 2 represent the masses of 

glucose in accessible and nonaccessible compartments (mmol), k i2 

represents the transfer rate constant from the nonaccessible to the accessible 

compartment (min'1), VG is the distribution volume of glucose in the accessible 

compartment (L), G is the measured glucose concentration (mmol L'1), EGP0 

represents endogenous glucose production (EGP) extrapolated to the zero 

insulin concentration (mmol min'1), UG represents gut absorption rate (mmol 

min'1), f 0\ is the total non-insulin dependent glucose flux corrected for 

ambient glucose concentration (mmol min'1), FR is the renal glucose clearance 

(mmol L'1 per min), / is the plasma insulin concentration (mil L'1), x1t x2 and x3
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represent the remote effect of insulin on glucose distribution, disposal and 

endogenous glucose production, respectively, kai, i=1,2,3, represent activation 

rate constants (min'1), and kbi, ¡=1,2 represent deactivation rate constants 

(min'2 per mU L'1), kb3 represents deactivation rate constant for the insulin 

effect on endogenous glucose production (min'1 per mil L'1), V/ represents the 

volume of distribution of plasma insulin (L), U/ represents the insulin mass in 

plasma (mU), ke is the elimination rate constant for plasma insulin (min'1).

The model consists of a glucose subsystem (glucose absorption, distribution, 

and disposal) and insulin action subsystem (insulin action on glucose 

transport/distribution, disposal and endogenous production). For the sake of 

clarity, the differential equations describing the above model are given 

separately for each of its subsystems.

4.2.2.1 Glucose subsystem

The glucose subsystem is represented by a two-compartment model of 

glucose kinetics and described by the following equations:
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¿6,(0
dt V„G(t)

+ X,(0 0, (0 + kl2Q2(t)-FR+UG(0 + EGP0 [1 -*3(/)]

= *, (00, (0 -[*,,+ *2 (0102 (0 02 (0) = 02 oat
y(0 = G(t) = Q,(0/vo

0 ,(0) = 0 ,„

where Qxo and Q20 are masses of glucose in the accessible and

nonaccessible glucose compartments, respectively; other terms as defined in 

Figure 4.1.

The total non-insulin dependent glucose flux represented by f ‘ is defined as 

follows:
j  Fol, if G > 4.5mmol/L

01 ~ |F01G(9-G)/(4.5)2, otherwise

Fr  is the renal glucose clearance above the glucose threshold of 9mmol/L:
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f0.003(G-9)Fc , if G > 9mmol/L
[ 0, otherwise

4.2.2.2 Insulin action subsystem

The model represents three actions of insulin on glucose kinetics. These are 

the remote effects on glucose distribution/transport, glucose disposal and 

endogenous glucose production:

—T  = ~ h \* i (0 +SrrkMko J  (0 *. (°) = 0at

“  = ~kbïx2( t ) + S IDkb2kosJ { t )  x2(0) = 0
at

~  = ~kb3x3 (0 + SIEkhikoJ ( t )  Xl (0) = 0
at

where SiT=ka1/k b1, SiD=ka2/kb2, SiE=ka3/kb3 are insulin sensitivities for transport, 

distribution and endogenous glucose production, kosc represents the 

oscillatory component defined in section 4.2.5.2, the remaining symbols are 

described in section 4.2.2.

4.2.3 Gut absorption model

Postprandial glucose excursions are determined by the rate of glucose 

absorption from the alimentary canal represented in Figure 4.1 by Uq - The 

physiology of the gut absorption model is represented here by a simple two- 

compartment model with identical transfer rates (see Figure 4.2). This model 

was shown to be adequate in representing the glucose rate of appearance in 

plasma from the gut (90). For dinner one the model is described by the 

following equations:

dGEJ t)  1
dt L.,

dG.J') 1

g ,JO  + so D])b^ d di

d t

Clo,(0) = 0

G, „ , ( / ) - --------G l c | ( 0
t ..  I ..

where G1iDi and G2,di  are the glucose masses in the accessible and 

nonaccessible compartments corresponding to the absorption of dinner one 

(mmol), fmax.Di is the time-of-maximum appearance rate of glucose in the 

accessible compartment (min), S represents the Dirac function, tDi is time of
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dinner one (min), Dd1 is the amount of carbohydrate ingested at dinner one 

(9). Bio, di  is the carbohydrate bioavailablity of dinner one (unitless).

The models representing gut absorption of breakfast, lunch and dinner two 

are similar giving rise to the corresponding parameters: Gi ,b, G2,b, tmax,B, tB, 

Db, Bi0,b for breakfast, Gu , G2,l , tmax,Ll tL, DL, Bio,L for lunch, and G)jD2, G2,D2, 

tmax,D2, tD2, DD2, Bio,D2 for dinner two.

Uq , the total glucose flux entering plasma, is obtained by summing absorption 

rates due to the four meals.

,, , ^ 2,D l(0  ^2,«(0 , ^2,¿(0 , ^ 2,D 2(0
i / c (0 -  + + +

*max,£)l l max,fl max,L max,D2
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plasm a

Figure 4.2 Structure of the gut absorption model for dinner one.

4.2.4 Insulin absorption model

To reduce the complexity of the final model we represented insulin lispro SC 

absorption kinetics as a simple three-compartment model. The previously 

validated model (see Chapter 5) of structure shown in Figure 4.3 is described 

by the following equations:

dStQ)
dt

dS2(t)

dt

u { t ) - k aSt0 )

W ) - * A (  0

dt V, '

where Si and S2 represent insulin masses in the accessible and 

nonaccessible compartments, respectively (mil), u represents administration 

(bolus and infusion) of insulin lispro, ka represents insulin lispro absorption
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rate constant (min'1), V, is the volume of distribution of insulin lispro (L), / is the 

insulin concentration in plasma (mU/L), ke represents the fractional elimination 

rate from plasma (min'1).
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depo t

Figure 4.3 Structure of the insulin absorption model.

4.2.5 Model constants and parameters

The model quantities were divided into model constants and model 

parameters with the objective of reducing the number of parameters while 

retaining the ability to represent the wide range of glucose excursions seen in 

subjects with T1DM during physiological conditions.

4.2.5.1 Model constants

The model constants were those quantities which were either a priori non- 

identifiable or were unlikely to be identifiable from the data (a posteriori non- 

identifiability). The model constants with the source their values were taken 

from are given in Table 4.1 below.
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Table 4.1 Model constants

Symbol Quantity Value Source

ku transfer rate constant 0.065min'1 (55)

kai activation rate 0.006min'1 (55)

ka2 activation rate 0.07min'1 (55)

ka3 activation rate 0.03min'1 (55)

ke elimination rate from plasma 0.1408min'1 (91)

V, Insulin distribution volume 0.12L kg'1 (91)

4.2.5.2 Model parameters

The model parameters are listed in Table 4.2.

Initial investigations with time invariant parameters were not successful and 

the analysis of the results (data not shown) and physiological considerations 

suggested the adoption of time variant insulin sensitivities. Sinusoidal 

oscillations were superimposed on the three insulin sensitivities Sit , Sid and 

Sie. A combination of two sinusoids was chosen with the following 

parameterisation:

km = 1 +  ampl s in  2n{------------phaset x  cycle) +  amp2 s in  2ir ( --------------------------- phase 2 x  (cycle +  A cycle))
cycle cycle +  Acycle

where t represents time (min). The remaining parameters are described in 

Table 4.3.
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Table 4.2 Model parameters

Symbol Quantity

S/o,or, 8,0jB, B/o,l  8/0,02 CHO bioavailability of dinner one, breakfast, 
lunch and dinner two, respectively

tmax,D1i tmax,B> tmax,L,’ m̂ax,D2 time-to-maximum of CHO absorption for dinner 
one, breakfast, lunch and dinner two

EGPo EGP extrapolated to zero insulin
*SIT insulin sensitivity of glucose transport
*S/D insulin sensitivity of glucose disposal

*S/E insulin sensitivity of EGP

Foi non-insulin dependent glucose flux

VG glucose distribution volume

ka absorption rate of SC injected insulin lispro

Ql.O, Q2,0 qlucose masses in accessible and nonaccessible 
compartments at time zero

‘ Alternative parameterisation: S,T=ka1/kbh S,D-ka2/kb2, and Si£=ka3/kb3

Table 4.3 Parameters describing time variation of insulin sensitivities

Symbol Quantity

cycle cycle of the first sinusoid
A cycle cycle difference of the second sinusoid
ampi fractional amplitude of the first sinusoid

amp2 fractional amplitude of the second sinusoid

phase1 phase of the first sinusoid expressed as a fraction of cycle of the 
first sinusoid

phase2 phase of the second sinusoid expressed as a fraction of cycle of 
the second sinusoid

4.2.6 Parameter estimation

The model parameters were estimated using the ITS technique implemented 

in SAAM II Population Kinetics v 1.01 software package (SAAM Institute, 

Seattle, WA, USA). In each iteration, the parameters were estimated 

employing a nonlinear, weighted, least-squares algorithm with an empirical 

Bayesian term. Prior to estimation the parameters were log-transformed with
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the exception of ampi, amp2, phases phase2 and A cycle. The distribution of 

these parameters was assessed as normal using Blom’s proportional 

estimation formula in preliminary investigations (data not shown). This was 

done to assure non-negativity and to correct for skewed distribution of the 

parameters.

Insulin infusion rate, insulin boluses and the carbohydrate intake were the 

model input. Plasma glucose was the model output. The parameter estimation 

started at 600min in order to avoid the multiple disturbances during the 

normalisation period and to achieve initial conditions of the insulin action 

model.

The measurement error was assumed at 1.5% and the absolute weighting 

method in SAAM II was adopted. The weight was defined as the reciprocal of 

the square of the measurement error.

The precision of parameter estimates was obtained from the inverse of the 

Fisher information matrix (23).

4.2.7 Model identification and validation

The validity of this model was assessed on the basis of physiological 

feasibility of its parameter estimates, posterior identifiability, and the 

distribution of weighted residuals. Posterior identifiability was assessed on the 

basis of the precision of parameter estimates (CV<100%).

4.2.8 Statistical analysis

The significance of the change of carbohydrate bioavailability and time-to- 

maximum absorption was established using a two-way analysis of variance 

(ANOVA) with effects due to time instance and subject. Dinner one (ingestion 

at 360mm) was excluded from this and any further analysis as it is estimated 

with lower confidence (glucose data were zero weighted up to 600min).

Chapter 4. Modelling Glucose Kinetics over Twenty Eight Hours in Subjects with Type 1
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The runs test was used to test for the randomness of the weighted residuals. 

The Bonferroni correction was applied to the runs test results to correct for 

multiple comparisons.

4.3 Results

4.3.1 Plasma glucose and insulin

Figure 4.4 shows mean plasma glucose over the course of the experiment. 

The range of plasma glucose concentration and insulin infusion rate was 3.1 

to 18.0mmol/L and 0 to 4.0U/h, respectively. The insulin bolus was 3.5±2.3U 

(0.3 -10U); mean ± SD (range).

4.3.2 Model identification and validation

Parameter estimates with their precision expressed as a CV are shown in 

Table 4.4. The parameters describing time variations of insulin sensitivities 

are shown in Table 4.5.

The weighted residuals, shown in Figure 4.5, passed the Runs test in 83% of 

cases.

Figure 4.6 shows model fits for all twelve subjects, whereas Figure 4.7 the 

oscillation patterns of insulin sensitivities for all subjects.
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tim e (m in)

Figure 4.4 Plasma glucose; values are mean ±  SE, n= 12.

time (min)

Figure 4.5 Weighted residuals; values are mean ±SE, n=12.
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Table 4.4 Parameter estimates for individual subjects.

Subject
Bio,D1

(unitless)

Bj0,B

(unitless)

B(o,L

(unitless)

Bio,D2

(unitless)

tmax,D1

(min)

tmax.B

(min)

tmax.L

(min)

tmax,D2

(min)

1 0.66 (41)* 0.59(13) 0.82(15) 1.14(15) 64(15) 32 (10) 40 (8) 71 (10)

2 2.50(17) 0.70 (9) 0.82 (9) 0.79(10) 68 (8) 41 (3) 50 (4) 42 (3)

3 0.57(15) 0.59(11) 1.15(11) 0.76(11) 76 (9) 102 (6) 104 (4) 85 (3)

4 0.66(16) 0.77 (14) 1.07(15) 0.98(14) 110(10) 64(12) 65 (9) 76 (9)

5 1.08 (31) 1.87(16) 0.54(16) 1.14(15) 331 (20) 82 (7) 100(12) 70 (10)

6 0.89 (45) 1.03(10) 1.13(11) 0.94(10) 31 (45) 27 (6) 53 (2) 42 (4)

7 0.54(17) 0.67 (6) 0.91 (6) 1.25 (9) 215(10) 33 (4) 60 (3) 55 (5)

8 0.86 (45) 0.85(11) 0.66(15) 1.07(10) 22 (98) 47 (3) 38 (5) 108 (6)

9 0.95(17) 1.10(12) 1.05(10) 0.72(12) 190(11) 73 (4) 46 (4) 48 (5)

10 0.54(13) 0.52(14) 0.73(13) 1.72 (15) 23 (6) 69 (6) 63 (3) 194 (14)

11 0.98(18) 0.57(11) 0.72(11) 1.01 (11) 352 (8) 33 (4) 61 (2) 69 (3)

12 1.51 (16) 0.85(14) 0.85(14) 0.95 (14) 257 (6) 82 (6) 110(7) 109 (8)

♦Precision of parameter estimate expressed as a fractional standard deviation (%)
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Table 4.4 (coni.) Parameter estimates for individual subjects.

Subject EGPo
(10'2x mmol min"1)

Su

(IO^x min"1

S|D

per mU L'1)

S|E

(lO^xmU L"1)

F0i
(10"2x mmol min"1)

VG
(L kg"1)

ka
(10"2x min"1)

1 1.73(11)* 42 (5) 338 (3) 1 (5) 1.4(13) 0.17(24) 1.75(1)

2 1.54(7) 1 (73) 32(17) 734 (3) 1.0(8) 0.11 (12) 4.65 (2)

3 1.96(10) 611 (42) 42 (7) 206 (12) 0.9(18) 0.03 (18) 0.99(1)

4 1.66(12) 6(31) 21 (39) 44 (82) 1.5 (13) 0.9 (27) 1.75 (2)

5 1.71 (11) 14 (30) 124 (27) 53 (82) 0.9 (30) 0.04 (28) 1.24 (2)

6 1.69(10) 2(17) 21 (22) 494 (4) 0.3 (23) 0.23(16) 3.11 (2)

7 2.50 (4) 1 (128) 4(34) 277 (4) 2.0 (4) 0.13 (8) 2.84(1)

8 1.78(10) 10(37) 5(19) 403 (7) 1.1 (13) 0.15(12) 3.67(1)

9 1.78(10) 267 (24) 5(9) 156 (6) 0.5 (30) 0.14(12) 5.41 (1)

10 1.71 (11) 11 (17) 42(19) 25 (54) 1.3(14) 0.6 (20) 2.28(1)

11 1.85(10) 7(31) 6(17) 339 (4) 1.3(12) 0.20(10) 4.81 (1)

12 1.73 (12) 93 (41) 12(13) 70 (32) 1.8 (12) 0.06 (21) 2.27(1)

‘ Precision of parameter estimate expressed as a fractional standard deviation (%)
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Table 4.5 Parameter estimates describing time variation of insulin sensitivities.

S u b jec t
cycle

(min)

Acycle

(min)

am pi

(unitless)

am p2

(unitless)

phasei

(unitless)

phase2

(unitless)

1 231 (1)* 59(14) 0.27(15) 0.18(14) 0.20 (36) 0.58 (14)

2 286 (1) 218 (5) 0.10(18) 0.31 (5) 0.21 (37) 0.66 (6)

3 223 (0) 103 (3) 0.19(16) 0.09(11) -0.55 (4) -0.47 (8)

4 191 (1) 172 (2) 0.13 (18) 0.17 (24) 0.35 (23) 0.86 (6)

5 383 (5) 99 (30) 0.08 (38) 0.22(17) 0.55 (31) 0.32 (24)

6 168 (1) 71 (3) 0.28(10) 0.22 (11) -0.31 (12) 0.20 (20)

7 182 (1) 204 (4) 0.18 (9) 0.16 (7) 0.94 (6) -0.35(14)

8 247 (0) 368 (6) 0.38 (5) 0.15 (7) 0.61 (4) 0.00 (203)

9 265(1) 233 (2) 0.19(8) 0.32 (6) -0.56 (8) 0.57 (4)

10 336 (1) 192 (4) 0.28 (3) 0.31 (4) -0.20(15) -0.52 (0)

11 185(1) 11 (20) 0.44(15) 0.34(18) 0.53 (9) 0.57 (11)

12 149 (0) 93 (4) 0.24(10) 0.08(17) -1.00 (4) 0.22 (42)

‘ Precision of parameter estimate expressed as a CV (%)

4.3.3 Model parameters

The population parameters and the parameters describing the oscillatory 

pattern of insulin sensitivities are summarised in Tables 4.6 and 4.7, 

respectively.

The normally distributed parameters are expressed as a mean and standard 

deviation, whereas log-normally distributed parameters are expressed as a 

mean and the inter-quartile range.

The carbohydrate bio-availability and time-to-maximum absorption were not 

significantly different for breakfast, lunch and dinner two with p values of 0.94 

and 0.096, respectively. Dinner one was not taken into account in this 

comparison as the parameter estimation begun 4 hours later at 600min.
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Table 4.6 Model parameters; values are mean (inter-quartile range), n=12.

Param eter Popu lation  Mean

S/o,Di (unitless) 0.88 (0.63- 1.23)

S/o,b (unitless) 0.79 (0.60- 1.03)

Bj0,L (unitless) 0.85 (0.72- 1.01)

Bio.D2 (unitless) 1.01 (0.85-1.21)

tm a x ,D 1  (min) 97 (46 -  204)

t m a x .B  (min) 52 (37 -  73)

t m a x .L  (min) 62 (48-81)

tm a x ,D 2  (min) 73 (53- 101)

EGP0 (1C)'2 x mmol min'1) 1.79(1.64- 1.96)

Sit  (10-4 x min'1 per ml) L'1) 17 (7-39)

Sid (10-4 x min'1 permU L'1) 11 (2 -  53)

Sie (1CT4 x mU L'1) 170 (77-376)

F0i (10'2 x mmol min"1) 1.04 (0.71 -  1.54)

Vg  (L kg'1) 0.10 (0.06-0.16)

ka (10'2 x min'1) 2.55(1.71 -3.80)

Table 4.7 Parameters describing the time variation of insulin sensitivities; values
are mean (inter-quartile range) or mean ± SD, n=12.

P aram eter P opulation  M ean

cycle (min) 228 (185-282)

A cycle (min) 152 ±98

ampi (unitless) 0.23 ±0.11

amp2 (unitless) 0.21 ±0.09

phasef (unitless) 0.06 ±0.59

phase2 (unitless) 0.22 ± 0.46
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Figure 4.6 Model fits for individual subjects. Pink dot (•) represents measurement 
and green line ( ------- ) represents model Tit.
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Figure 4.6 (cont) Model fits for individual subjects. Pink dot (•) represents 
measurement and green line ( ------- ) represents model fit.
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Figure 4.7 Oscillatory patterns of insulin sensitivities for individual subjects.
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Figure 4.7 (cont.) Oscillatory patterns of insulin sensitivities for individual subjects.
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4.4 Discussion

The present results do not fully support the validity of our proposed model. 

Although population means of parameter estimates are physiologically 

feasible (see Table 4.6), physiological feasibility of individual parameters is 

occasionally questionable (see Tables 4.4 and 4.5). This applies to insulin 

sensitivities, the extent of their oscillations, and to the volume of glucose 

distribution. The amplitude of oscillations in subject 11 (see Table 4.5), for 

instance, reached 0.44 for the first sinusoid and 0.34 for the second sinusoid 

giving the total magnitude of oscillations at 0.78. Oscillations of this size, 

increasing and decreasing the insulin sensitivities almost two-fold, are very 

unlikely. The volume of distribution, on the other hand, reached very small, 

non-physiological values in subjects 3 and 5. The physiological limits were 

taken from published and validated studies (55,92)

The model validity is also compromised by a high inter-subject variability of 

the three insulin sensitivities. For example, the values of insulin sensitivity of 

glucose transport/distribution increase 600-fold from 1 to 611 x 1CT4 min'1 per 

m il L'1 (see Table 4.4). This is too high when compared with other published 

studies (55,93,94). The likely cause of this excessive variability is in the nature 

of the ITS technique itself. In this technique the level of confidence in the 

individual parameters is disregarded for the calculation of the population mean 

at the end of each ITS cycle. Hence, parameter values distant from the 

current population mean, even when estimated with lower confidence, carry 

the same weight as those lying in a close proximity to the mean. This will 

have an effect on the next calculated mean and, in our case, will cause an 

overestimation of the variability in the study population.

Apart from the concerns regarding physiological feasibility and high inter-

subject variability of certain model parameters, our model was posteriorily 

identifiable and provided a very good fit to the experimental data (see Figure 

4.6). The precision of parameter estimates was excellent (see Table 4.4) and
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the visual inspection of the weighted residuals did not reveal any obvious 

trends (see Figure 4.5).

Oscillations in plasma glucose under fasting conditions were first discovered 

in 1923 by Hansen (95) who suggested that the rapid glucose oscillations 

originating from the rapid insulin pulses were superimposed on larger 

oscillations of lower frequency. More recent studies in dogs (40,96) and 

humans (97-100) indeed demonstrated the existence of ultradian oscillations 

in glucose and insulin with periods of 50-200min. The precise mechanisms 

that generate these oscillations are not fully understood. Representing 

oscillations in our model would mean superimposing them on some of the 

model parameters.

In a preliminary data analysis (data not shown) oscillations in the model 

parameters were not assumed. Strong evidence coming from the literature 

(101-103), however, and a poor fit to the data led to the decision to 

superimpose oscillations on the three insulin sensitivities S i t , S i d , and S/e . 

Initially only one sinusoid was assumed. However, the best improvement in 

the model fit was achieved when two sinusoids were used (data not shown).

The mean cycle of faster oscillations in the insulin sensitivities was 

approximately four hours and the mean cycle of slower oscillations was 

approximately 6 hours (see Table 4.7). This is longer than 120min reported by 

(104) but shorter that diurnal changes reported by (105). The spread of meals 

in our study, which were approximately 6 hours apart, may have influenced 

our results.

The variability of responses to different meals was not statistically significant 

(p=0.096) in this study. Visual inspection of the results suggests that there is a 

tendency of breakfast to be absorbed faster that lunch or dinner, but this is not 

consistent across all individuals (see Tables 4.4 and 4.6). A high inter-subject 

variability of time-to-maximum absorption of carbohydrates and bioavailability 

is also evident. It should be emphasised that current modelling knowledge of 

the glycaemic effect of food is very limited. The fact that we based our
72
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assessment of the effect of food on the carbohydrate content of the meal is a 

well recognised simplification of a very complex physiological process. Two 

other inadequacies of a simple two compartment gut absorption model may 

have played a part here. The time delay caused by meal ingestion and the 

ceiling in the CHO absorption rate from the gut were two main effects not 

implemented in our model. To justify this decision it should be mentioned that 

representing a parameterised delay in meal ingestion is a difficult task. As far 

as the ceiling of the gut absorption rate is concerned, our preliminary studies 

have demonstrated (data not shown) that the commonly stated ceiling of 

4.5mg per kg min'1 (106) was not reached in our experiments. An additional 

factor when deciding not to implement the above effects was an increase in 

the complexity of our model. This was an important issue, as the 

implementation of the complete model in SAAM II software package proved 

labour intensive and time consuming.

In conclusion, modelling the whole body glucose metabolism during 

subcutaneous insulin delivery and intravenous glucose measurements in 

subject with typel diabetes was an important task contributing to the current 

knowledge. Only one specific model was evaluated. Although the validity of 

this model was questioned, the study also produced some important 

quantitative results. Clearly, more work needs to be done in this field. Other 

models should be explored. The presented results can be used as a 

benchmark for further studies in the future.
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Chapter 5 Modelling Insulin Lispro Kinetics during
Continuous Subcutaneous Insulin Infusion 
in Subjects with Type 1 Diabetes

5.1 Introduction

Insulin therapy in people with type 1 diabetes aims to mimic the pattern of 

endogenous insulin secretion present in healthy subjects. This pattern can be 

achieved to a certain extent by CSII with an insulin pump administering 

individually titrated basal insulin infusion and prandial insulin boluses.

Despite considerable progress, currently available insulin preparations still do 

not fully deliver the desired insulin profile, partly due to a delay in insulin 

appearance in the plasma following subcutaneous injection. In particular, 

absorption of regular insulin from the subcutaneous depot is impeded by the 

formation of hexameric macromolecules. The DNA-recombinant technique 

has contributed to the synthesis of rapid acting human insulin analogues such 

as lispro, with a reduced formation of higher order hexamers and with binding 

to the receptors and biological activity preserved (107). As this type of insulin 

is absorbed faster from the subcutaneous tissue, its ability to mimic the 

physiological pattern of insulin secretion is improved (14). For that reason 

lispro and, for that matter, other rapid acting insulin analogues have become 

the insulin of choice for CSII therapy (107).

A better understanding of the insulin absorption process could lead to further 

improvements in glycaemic control. However, the pharmacokinetics of 

subcutaneous insulin is yet to be fully understood. The absorption from the 

subcutaneous tissue is influenced by many factors including the associated 

state of insulin, i.e. hexameric, dimeric, or monomeric, concentration, injected 
volume, injection site and depth, and blood flow (79).

Several models of the subcutaneous insulin kinetics have been proposed 

(40,80-83,85,87) dealing with different types of commercially available insulin
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preparations. Only two of those models (83,85) consider monomeric rapid 

acting insulin such as lispro.

The pharmacokinetics of insulin lispro was studied extensively after a bolus 

injection but little is known about its kinetics during CSII. The aim of this study 

was to investigate the kinetics of insulin lispro during standard insulin pump 

treatment with bolus and continuous infusion modes of insulin delivery.

5.2 Subjects and Methods

5.2.1 Subjects and experimental protocol

Seven subjects with type 1 diabetes (4/3 F/M, age 31.7 ± 14.1 years, HbA1c

8.5 ± 1%, BMI 26.2 ± 4.9 kg/m2, daily basal insulin requirements 23.6 ± 

6.4U/day; means ± SD) treated by CSII participated in the study. All 

participants provided written informed consent and the study was approved by 

the local ethics committee. Six subjects (Subject 1 to 6) were studied after an 

overnight fast (start of the study at 8:00) and one subject (Subject 7) was 

studied at postprandial conditions overnight (start of the study at 19:00). The 

subjects arrived at the University Hospital, University of Graz, Austria one 

hour prior to the start of the study and remained in a supine position for the 12 

hours of the experiment.

On the arrival at the hospital, an intravenous cannula was inserted into a 

forearm vein to facilitate arterialised venous blood sampling using a 

thermoregulated (55°C) box. A replacement cannula was inserted into the 

subcutaneous abdominal tissue for the variable administration of rapid acting 

insulin analogue (Humalog®, Eli Lilly, Indiannapolis, USA) by an insulin pump 

(D-Tron, Disetronic Medical Systems, Burgdorf, Switzerland).

At the start of the study, the subjects ingested a standard meal (40g CHO) 

with a co-administration of an individually determined prandial insulin bolus. 

Only water was allowed for the rest of the study. In case of a low plasma
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glucose concentration (< 3.3mmol L'1) a 10-20g bolus of Intravenous glucose 

(20% Dextrose solution, Fresenlus Kabl, Graz, Austria) was administered. 

Arterialised venous blood samples were drawn every 30min for the 

determination of plasma insulin measured using the Iso-Insulin ELISA 

(Mercodia AB, Uppsala, Sweden) assay with an intra-assay CV < 6%.

5.2.2 Modelling insulin lispro kinetics

Ten alternative compartment models were postulated to represent the insulin 

kinetics following the administration of a bolus and continuous infusion of 

insulin lispro (see Table 5.1). The models differed in the description of 

subcutaneous insulin absorption and its elimination from the plasma. The 

following effects were identified and assessed:

(i) the effect of insulin delivery mode, i.e. bolus or basal, on the insulin 

absorption rate,

(ii) the effect of insulin dose on the insulin absorption rate,

(iii) the remote insulin effect on its volume of distribution,

(iv) the effect of insulin dose on insulin disappearance,

(v) the presence of insulin degradation at the injection site, and finally

(vi) the existence of two pathways, fast and slow, for the insulin 

absorption.

These putative effects were identified from the literature (65,87,108). The 

structure of the most basic insulin kinetics model was based on an 

assumption that there is a delay in insulin action. This delay was represented 

by an additional nonaccessible compartment (see Table 5.1, models 1 to 4). 

In the consequent models, the basic structure was expanded to account for 

the additional effects. The only noncompartmental Model 10 was adopted 

from Berger et al (40).

In all models plasma insulin was represented by a single compartment. Insulin 

in the subcutaneous tissue was represented by two compartments to describe 

the delay in insulin absorption, or by just one compartment with the aim of 

representing the faster absorption channel.
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Formal definitions of models are shown in Table 5.1. The explanation of 

symbols is as follows: Qi and Q2 represent the insulin mass (mU) in the two 

subcutaneous compartments, respectively; Qia and Q2a represent the mass of 

insulin (mU) administered as continuous infusion, and Q1b and Q2b represent 

the mass of insulin (mU) given as a bolus; Q3 represents the insulin mass 

(mU) in the plasma compartment; u represents the insulin input (mil min'1), u/ 

and ub (mil min'1) represent the continuous insulin infusion and the bolus 

input, respectively; kai, ka2, k04, k40 and ke are transfer rates (min'1), a1 is the 

slope of the saturable insulin absorption (min'1 mU L"1); V is the insulin 

distribution volume (L kg'1); W is the body weight (kg); VMAX, a and VMAX, e are 

the maximal values of the insulin flux (mU min'1) describing the Michaelis- 

Menten dynamics of the insulin absorption and the insulin disappearance, 

respectively; KM,a and KM, e are the values of insulin mass (m il) at which the 

insulin flux is equal to half of its maximal value when describing the Michaelis- 

Menten dynamics of insulin absorption and disappearance, respectively; X  is 

the remote insulin effect in (ml) L'1), KM is the value of insulin concentration at 

which the distribution volume attains half of its maximal value (mU L'1), and 

VM (unitless) is the maximum proportional increase in the volume of 

distribution; VMax ,l d  is the saturation level (mU min'1) describing the Michaelis- 

Menten dynamics of insulin degradation for continuous infusion and bolus; 

K m ,l d  is the value of insulin mass (m il) at which insulin degradation is equal to 

half of its maximal value for the continuous infusion and the bolus; B (unitless) 

is the bioavailability of the insulin bolus relative to the continuous infusion; L0,a 

and LD,b represent the local degradation at the injection site (m il min'1) for the 

continuous infusion and the bolus, respectively; k (unitless) is the proportion of 

the total input flux passing through the slower two compartment channel; s 

and Si (unitless) characterise the absorption rate of bolus and continuous 

infusion, respectively, T50, b (min) is the time to reach 50% absorption of the 

injected insulin bolus (min) with a (min U'1) and b (min) parameter, and T50, i 

(equal to £>,) is the time interval (min) to reach 50% absorption of the 

continuous infusion. All models are a priori identifiable.
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Table 5.1 Compartment models of insulin lispro kinetics.

Compartment Structure

depot

Model Equations Comments Parameters

1 dQ1/dt=u-ka1Qi [Eq. 1] 
dQ2/dt=ka1Q1 - kaiQ2 [Eq. 2] 
dQ3/dt=ka1Q2 - keQ3 [Eq. 3]

Basic linear model â1i

2 dQ1/dt=u-(-a1 Q, +ka1 )Q1 
dQ2/dt=(-a1Q1+kai)Qi — (-3iQ2+kai)Q2 
dQ3/dt=(-aiQ2+kai)Q2 - keQ3

Saturable insulin absorption 
rate - simplified MM relation

Û) 7? O) F

3 dQ1/dt=u-VMAx, aQ-|/(KM a+Qi)
dQ2/dt= VMAX.aQl ! (Kw,a+Ql) ~ VMAX,a Q2/(KM,a+Q2) 
dQ;j/dt= VMAX.a Q2/ (KM,a+Q2) * keQ3

Saturable insulin absorption 
rate -  MM relation

Vf/AX.a. KM a, ke

4 Equations 1, 2 and 3
ke=VMAX,e/(KM,e+Q3)

Saturable insulin 
disappearance

VMAX,ei KM,e> ke

5 dQ1a/dt=ur ka1Q1a 
dQ1b/dt=ub-ka2Q1b 
dQ2a/dt-ka-|Q1a ka-|Q2a 
dQ2b/dt=ka2Q1b — ka2Q2b 
dQ3/dt=ka1Q2a + ka2Q2b — keQ3

Delivery mode dependent 
insulin absorption rate

â1i ka2, kg
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Table 5.1 (coni.) Compartment models of insulin lispro kinetics.

Compartment Structure Model Equations Comments Parameters

depot plasma
6 dQ1/dt=u-ka1Qi 

dQ2/dt=ka-iQ1 — ka1Q2 
dQ3/dt=kaiQ2 - keQ3 
dX/dt=k40pi -  k04X 
k4o=1
Q3=PìV W in steady state 
V=V(1+VMaxX/(KM+X))

slow channel dQ1a/dt=ku-ka1Qia 
dQ1b/dt=(1-k)u-ka2Q1b 
dQ2/dt=kaiQ1a — ka1Q2 
dQ3/dt=ka1Q2 + ka2Q1b — keQ3

as above and 
u = Ui + Bub

slow channel 9 dQ1a/dt=ku-ka1Q1a -LDa 
dQ1b/dt=(1-k)u-ka2Q1b-LDb 
dQ2/dt=kaiQ1a — ka1Q2 
dQ3/dt=kaiQ2 + ka2Q1b — keQ3 
LDa=VMAx,LDQla/(KM,LD+Qla) 
LDb=VMAX,LDQlb/(KM,LD+Qlb)

Remote insulin effect on 
volume of distribution

Slow and fast insulin 
absorption channels

its kai, ke, ko4, V 
Vmax. Km

kali ka2, ke, k

Relative bio-availability of 
bolus to continuous infusion

ka1i ka2. ke, k, B

Local degradation of insulin ka1, ka2, ke, k, 
at the injection site V MAx ,l d , K m,l d
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Table 5.1 (cont.) Proposed compartment models of insulin lispro kinetics.

Compartment Structure Model Equations Comments Parameters

plasma
delay Insulin

j \ ^ G )

10 dQi ld t = -k eQi + A{t)

m = +  'h(r)
f e + ' )  °

TS0 ,b=aUb+b

Tm =bt

Empirically derived insulin 
absorption function

ke, s, Si, a, b, bi

M k.
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Model 1 was a basic three compartment linear model, in which both the insulin 

absorption rate and the insulin disappearance rate were unaffected by other 

factors.

Model 2 assumed a linear relationship between the insulin absorption rate and 

the amount of insulin infused. Model 2 assumed that the saturation level of the 

insulin absorption rate was not attained as in Model 3.

Model 3 implemented the Michaelis-Menten relation between the insulin 

absorption rate and the insulin dose. The two delivery modes, a continuous 

infusion and a bolus administration, were not discriminated by this model.

Model 4 assumed a saturable, dose-dependent Insulin disappearance rate 

implemented as the Michaelis-Menten relation. The absorption rate was 

assumed linear and independent of the insulin delivery mode.

Model 5 differentiated among continuous insulin infusion and the bolus 

administration and assumed that the insulin absorption rate is dependent on 

the delivery mode with the aim of assessing whether, as frequently discussed 

in the literature, insulin administered in the form of a bolus is absorbed more 

slowly than insulin given as a continuous infusion.

Model 6 examined the remote insulin effect on its volume of distribution. The 

relationship between plasma insulin and the volume of distribution was 

assumed to be of the Michaelis-Menten form.

Model 7 considered two different pathways of the insulin absorption, one 

consisting of two compartments, as in the previously described models, and 

the other with one compartment turning it into a faster channel for the insulin 

absorption. The proportion of insulin channelled through these two pathways 

was considered to be the same for both modes of the delivery, the continuous 

infusion and the bolus. This and the following models were formulated to 

overcome underestimation of the post-prandial plasma insulin peak 

encountered by previous models.
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Model 8 introduced a relative bioavailability of the insulin bolus to the 

continuous infusion while maintaining the two pathways of the insulin 

absorption implemented in Model 7. This relative bioavailability is sometimes 

referred to in the literature as an effectiveness factor and could be explained 

by different levels of local insulin degradation for the bolus and infusion 

delivery.

Model 9 considered a local degradation of insulin at the injection side, also 

maintaining the two pathways of the insulin absorption (as in Model 7). The 

degradation process was assumed to be saturable and was implemented as a 

Michaelis-Menten relation.

Finally, Model 10 was based on that published by Berger et al (40) and 

employed description of the insulin absorption which was derived empirically 

from published studies (76,109).

5.2.3 Parameter estimation

Prior to the estimation process, all parameters except k and B were log- 

transformed in order to assure non-negativity and to correct for skewed 

distributions of parameters. The parameters were estimated using an iterative 

two stage (ITS) population kinetic analysis method (27,110). In each iteration, 

model parameters were estimated employing a nonlinear, weighted, least- 

squares algorithm with an empirical Bayesian term.

The absolute data variance model was adopted, which assigns weights 

subject to the specified measurement error. The weight was defined as the 

reciprocal of the square of the measurement error. The accuracy of parameter 
estimates was obtained from the Fisher information matrix (23). The SAAM II 

Population Kinetics v1.2 software (SAAM Institute, Seattle, WA) was 

employed to carry out the calculations.
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5.2.4 Model identification and validation

Parameter estimates were checked for physiological feasibility. To validate the 

models two additional criteria were adopted. These were posterior 

identifiability and the distribution of residuals (23). Posterior identifiability of 

each model was assessed on the basis of the accuracy of parameter 

estimates. A given parameter was considered non-identifiable if the coefficient 

of variation of the parameter estimate was > 150%. The Runs test evaluated 

the randomness of the residuals.

5.2.5 Model selection

The best model, i.e. the model, which best represented our experimental data, 

was selected using the principle of parsimony as implemented by the Akaike 

criterion.

5.3 Results

5.3.1 Experimental data

Mean plasma insulin concentration is shown in Figure 5.1. The continuous 

insulin infusion rate, which varied during the experiments, was 0.86 ± 0.27 U/h 

(mean ± SD), and the bolus administered prior to the meal was 5.95 ± 2.37 U.

5.3.2 Model identification and validation

Model identification and validation results are summarised in Table 5.2. 

Models 4 and 6 proved non-identifiable with precision of parameter estimates 

for Km, Vmax- KM„e, Vmax.b, and k04 expressed as CV considerably exceeding 

150%. The remaining eight models demonstrated physiological feasibility of 

parameter estimates and posterior identifiability (see Table 5.2). Weighted 

residuals associated with these models are plotted in Figure 5.2. The results 

of the Runs test applied to the weighted residuals, i.e. the percentage of 

cases, which passed this test, is shown in Table 5.2. Weighted residuals of 

models 2, 8, 9 and 10 passed the Runs test in 100% of cases (Table 5.2).
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time (min)

Figure 5.1 Plasma insulin concentration. Values are mean ±SE (n=7).

5.3.3 Model selection

The values of the Akaike criterion for a posteriori identifiable models are 

shown in Table 5.2. On the basis of this criterion, Model 9 was selected as 

best representing the experimental data. This model is also characterised by 

100% of cases passing the Runs test and the tightest range of the weighted 

residuals. Although parameter estimates for ke and V were outside the 

physiological limits, their product, the metabolic clearance rate (MCR), 

maintained physiological feasibility. The parameter estimates for this model 

and for all remaining a posteriori identifiable models are shown in Tables 5.3a, 
5.3b and 5.3c. An example model fit for Model 9 is shown in Figure 5.3.
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Table 5.2 Model identification, validation, and selection. Summary results.

Model
Physiological

feasibility
Precision of parameter 

estimates
Runs
Test

Akaike
criterion

Yes/No Good/Acceptable/
Unacceptable**

%* Mean ± SD

1 Yes Acceptable 86 8.06 ± 6.08

2 Yes Acceptable 100 7.62 ± 5.85

3 Yes Good 57 7.78 ± 5.86

4 Yes Unacceptable N/A N/A

5 Yes Good 71 7.43 ±6.10

6 Yes Unacceptable N/A N/A

7 Yes Good 86 6.11 ±3.41

8 Yes Good 100 4.32 ±2.37

9 Yes Good 100 4.13 ± 2.12

10 Yes Good 100 6.17 ±3.59

‘ Percentage of random cases
** Good (CV<100%), Acceptable (CV<150%), Unacceptable (CV»150%)
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Figure 5.2 Mean weighted residuals for Models 1, 2, 3, and 5 (top panel), and for 
Models 7, 8, 9, and 10 (bottom panel) (n=7).
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Table 5.3a Parameter estimates of ka1, ka2, ke, k, V and MCR for identifiable models. 
Values are population means (inter-quartile range of individual values) (n=7).

O  ka1  
CL

ka2 ke k V MCR
CD

(10-2x min-1) (10-2 x min-1) (10-2 x min-1) (unitless) (10-2 x L kg-1) (10~3x L kg-1 
min-1)

1 1.66 
(1.04-2.66)

- 30.22
(6.79- 134.55)

- 5.38
(1.16-25.07)

16.3
(13.1-20.1)

2 1.83* 
(1.05-3.19)

- 36.17
(8.57- 152.70)

- 4.49
(1.03- 19.68)

16.2
(13.1-20.1)

3 - 41.50
(15.45- 111.49)

- 3.90
(1.46- 10.39)

16.2
(13.1 -  19.9)

5 1.89 
(0.97-3.66)

1.58
(1.03-2.43)

28.58
(7.56- 108.03)

- 5.62
(1.42-22.26)

16.1
(12.9-20.0)

7 1.89 
(1.00-3.57)

2.57
(1.34-4.95)

1.91
(1.54-2.37)

0.71
(0.60-0.82)

84.00“ 16.0
(12.9-19.9)

8 2.47 
(1.69-3.61)

0.79
(0.18-3.34)

1.98
(1.32-2.97)

0.57
(0.44 -  0.70)

86.13
(59.11 -125.50)

17.1
(12.4-23.5)

9 1.12 
(0.44-2.85)

2.10
(1.12-3.96)

1.89
(1.34-2.68)

0.67
(0.53-0.82)

56.45
(38.79-82.16)

10.7
(6.3-18.1)

10 3.68
(1.33- 10.20)

42.01
(16.73-105.51)

15.5
(12.5-19.1)

‘Estimate of kai at zero insulin concentration 
“ Individual values converged to an identical estimate
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Table 5.3b Parameter estimates of VMAXa,, KM,a, KMlLD, B and a, for Models 2, 3, 8 
and 9. Values are population means (inter-quartile range of individual values) (n-7).

< *
V max , a Km, a V max , l d K m, l d B a i

o
C L
CD (103 x mU 

min"1)
(103x mU) (mU min'1) (mU) (unitless) (10"8x min"1 

mmol'1 L)

2 - ~ - - - 14.8
(2.1 -  105.4)

3 1.14
(0.36- 3.67)

66.0
(15.1 -288.8)

- - - - -

8 — —

- -
1.55

(1.14-1.95)
—

9 - -
1.93

(0.62-6.03)
62.6

(62.6-62.6)
‘ Individual values converged to an identical estimate

Table 5.3c Parameter estimates of a, b, bit s, s, for Model 10. Values are population 
means (inter-quartile range of individual values) (n-7).

a b bj s Si

(min U"1) (min) (min) (unitless) (unitless)

2.44
(1.66-3.59)

53.45
(30.97-92.27)

79.19
(36.47- 171.97)

2.01
(1.74-2.32)

2.86
(1.91 -4.26)
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time (min)

Figure 5.3 Example model fit generated by Model 9.

5.4 Discussion

Mathematical modelling is a common approach to quantify subcutaneous 

insulin absorption. A number of models have been proposed (40,80-83,85,87) 

dealing with different insulin types. Two of those models (83,85) consider 
monomeric rapid acting insulin such as lispro.

Our ten models are partly, or in case of Model 10, entirely based on existing 
models of the insulin kinetics after the SC insulin injection. Model 1 has an 

identical structure to the model proposed by Puckett et a l (82) but with an 

omitted effectiveness factor to represent the local insulin degradation. The 

effect of the local insulin degradation was accounted for in Models 8 and 9. In 
Model 8, instead of Puckett’s effectiveness factor, we use relative 
bioavailability B to account for different levels of the insulin degradation at the 

injection site for the bolus and continuous infusion. Although this model 

proved identifiable, it provided marginally worse AIC than best Model 9.

Model 10 is the only noncompartmental model based on an empirical equation 

describing the subcutaneous insulin absorption derived by Berger et a l (84).
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This model was also identifiable with borderline physiological values of 

parameter estimates but did not provide the best fit to the data as measured 

by the Akaike criterion.

All models except Model 1 were nonlinear. Nonlinearity with Michaelis-Menten 

characteristics was imposed on the insulin absorption (Model 3), the insulin 

disappearance (Model 4), the remote insulin effect on the volume of 

distribution (Model 6), and finally on the local insulin degradation (Model 9).

Several authors (81,87,111,112) observed that the insulin absorption rate 

varies inversely with the concentration of the injected insulin. Trajanoski (85), 

in his theoretical study, examined this phenomenon in the monomeric insulin 

and found its absorption rate to be constant regardless of the concentration 

and the volume. This finding was supported indirectly by Kang (78) in his 

study of the influence of molecular aggregation on rates of the subcutaneous 

absorption. Our Models 2 and 3 addressed this issue of the concentration 

dependent absorption rate by assuming nonlinear dynamics and saturability of 

the subcutaneous insulin absorption. Model 2 uses a simplified, whereas 

Model 3 a full form of the Michaelis-Menten relation. Both models proved only 

borderline identifiable with precision of some parameter estimates exceeding 

100%. In particular, the Michaelis-Menten parameters in Model 3, VMAx,a and 

Km,a achieved borderline precision for some but not all subjects. The highest 

CV for Vmax,3 was 123% and 124% for KM,a indicating a higher degree of 

uncertainty related to these parameter estimates. In case of Model 2, 

borderline CVs were recorded for the volume of distribution, and the insulin 

disappearance rate.

The evidence of a saturable insulin removal In the supraphysiological range of 

the insulin concentration comes from a number of studies (88,113,114). In the 

physiological range of insulin concentration, however, existing evidence 

suggests a linear process (115). Nonlinear kinetics of the insulin removal rate 

have been represented in Model 4. This model proved non-identifiable with a 

CV for three of the parameter estimates (V, VMAx.e, and KM,e) exceeding 

considerably 150%. An unacceptable uncertainty of Michaelis-Menten
90
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parameters suggests that saturable levels of the plasma insulin concentration 

were not achieved during the experiment and that the insulin disappearance is 

most probably linear over the physiological range.

Mosekilde et al (87) observed a reverse relationship between the insulin 

absorption rate and the injected volume. This implies that insulin kinetics 

depends on the insulin delivery mode, i.e. it is different for the bolus (a large 

volume) and the continuous subcutaneous infusion (a sequence of small 

volumes). Other authors (80) did not find such dependence in their studies. In 

Model 5 it was attempted to examine this finding for insulin lispro. Bolus and 

continuous infusion inputs were routed via separate absorption channels and 

the insulin absorption rate constants for bolus and infusion were estimated. 

Although the population means differed slightly, this difference was not 

statistically significant (P = 0.34, paired t-test). This model, although validated, 

did not provide the best fit to our data.

It has been suggested that insulin may have a remote effect on its volume of 

distribution (65). This remote effect of insulin was represented in Model 6. 

Unfortunately Model 6 proved nonidentifiable with a CV for VMax and KM 

reaching values as high as 400%.

Although some of the above discussed models were identifiable, their 

representation of our data was not satisfactory, especially around the peak of 

the plasma insulin curve. In an attempt to achieve a better representation of 

the experimental data, and the peak region in particular, we introduced two, 

slow and fast, insulin absorption channels differing in the number of 

compartments. A marked improvement in the model fit was observed in 

Models 7, 8, and 9, where the two absorption channels were represented. 

The best model fit was observed in Models 8 and 9 further assuming the 

effect of local insulin degradation. Although two parameter estimates, the 

volume of distribution and the insulin elimination rate, were not physiologically 

feasible in Models 8 and 9, the insulin metabolic clearance rate (MCR) 

attained physiological feasibility (see Table 5.3a). For this reason the two 

models were retained and Model 9, with a slightly lower Akaike criterion, was
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selected as best representing our data. The value of the insulin MCR 

obtained by Model 9 is almost identical to that obtained by Kraegen et al (81) 

with an independent intravenous experiment (10.8 mL min'1 for regular insulin) 

and Shimoda et al (83) (10.6 mL min'1 for monomeric insulin).

The local insulin degradation seems to be a controversial issue. Some studies 

confirm its significance (108,116), others discount it as relatively small 

(81,112,117). In Model 9, we modelled the local degradation as a saturable 

process with Michaelis-Menten characteristics. The mean precision of the 

V max , l d  parameter estimate was very good (47 ± 58%; mean ± SD) with the 

exception of one subject where it was 150%. On the other hand, the 

parameter estimate for Km,Ld , almost converged to the population mean. The 

mean precision of each of the parameter estimates in this model was less 

than 50%. Our best model indicates that the effect of insulin degradation, 

however small [VMa x ,ld =1 .93(0.62 -  6.03)mU min'1, Km,ld =62.6(62.6 -  

62.6)mU], is not, as suggested by Binder et al (112), insignificant in the 

physiological range of insulin concentrations.

As far as the two absorption channels are concerned, Model 9 estimated that 

67(53 -  82)% [mean (interquartile range)] of insulin passes through the slow 

absorption channel [absorption rate 0.011 (0.004 -  0.029)min'1] with the 

remaining 33% passing through the fast channel [absorption rate 0.021(0.011 

-  0.040)min'1]. The idea of two absorption channels could represent the 

existence of monomer-dimer equilibrium, as dimers have been shown to be 

absorbed slower than monomers (78).

A marked inter-subject variability of the insulin absorption rate from the 

subcutaneous tissue has been observed by many authors (85,87,118). The 

insulin absorption is thought to be dependent on the injection site (75,119), 

the injection depth (120), lipodystrophy (121), the low body weight (121), and 

many other factors such as exercise, smoking, temperature etc. This inter-

subject variability can be seen very clearly across all the individual parameter 

estimates of our best Model 9.
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5.5 Conclusion

Ten alternative models of the subcutaneously administered insulin lispro 

kinetics have been evaluated for posterior identifiability and validated with 

experimental data collected in subjects with type 1 diabetes. The selection 

process based on the Akaike criterion identified Model 9 to represent best our 

data. The model indicates the existence of fast and slow absorption channels 

and the presence of the local insulin degradation.
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Chapter 6 Modelling Interstitial Glucose Kinetics
under Physiological Conditions in Type 1 
Diabetes

6.1 Introduction

Subcutaneous glucose sensing offers an alternative, minimally invasive 

approach for long term continuous glucose monitoring in real time. It provides 

subjects with T1DM and their clinicians with vital information to optimise 

treatment and to achieve good metabolic control.

Due to difficulties encountered with the long term stability of implantable 

glucose sensors (122), recent research has explored a wearable 

subcutaneous glucose measurement using techniques such as ultrafiltration 

(61), the wick technique (123), microdialysis (124), transdermal extraction 

(125), and open-flow microperfusion (OFM) (69). Microdialysis and OFM have 

been shown to be suitable for continuous ex vivo on-line glucose monitoring 

(69,124,126). These techniques have demonstrated the presence of a 

gradient between plasma and interstitial glucose of a varying magnitude from 

20% (127) to 110% (70). An equilibration time delay between plasma and 

interstitial glucose has been reported in the range from 2.3min (66) to 45min 

(128).

The understanding of the gradient and the dynamics of the relationship 

between interstitial and plasma glucose depends on the understanding and 

quantification of the physiological processes in the ISF compartment 

surrounding the adipose tissue. Plasma glucose is separated from the 

interstitial glucose by a capillary wall (see Figure 3.6 in Chapter 3). Hence 

changes in interstitial glucose are related to changes in plasma glucose by the 

rate of diffusion across the capillary wall and by the rate of glucose removal 

from the ISF. The removal represents the uptake by adipose tissue 

immediately surrounding the sampling probe and transport back to the 

plasma. Rebrin et al (64) argue that if the uptake by adipocytes is negligible, 

plasma and interstitial glucose should equilibrate in steady-state conditions. If,
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however, the uptake is not negligible, then a steady-state gradient will exist 

between plasma and interstitial glucose concentration. Assuming that glucose 

uptake by the adipose tissue is sensitive to insulin, an increase in insulin 

concentration should result in an increased uptake of glucose by adipocytes, 

and therefore, an increase in the plasma-to-interstitial glucose gradient.

The existence of the so-called “push-pull” phenomenon has been suggested 

in the literature. When plasma glucose is rising, the changes in interstitial 

glucose should fall behind the changes in plasma glucose due to glucose 

being pushed from blood to the ISF. Conversely, with plasma glucose falling, 

the changes in interstitial glucose should precede the changes in plasma 

glucose due to glucose being pulled from the ISF as it is assumed that insulin- 

stimulated glucose uptake from the ISF is primarily responsible for the fall 

(insulin effect on flux f02 in Figure 3.6).

Several authors claim to have detected the push-pull phenomenon (17,59,66). 

Rebrin et al (64) in their study in non-diabetic dogs disputed its existence 

showing that insulin does not appear to have any effect on glucose removal 

from the ISF in adipose tissue. The effect of interstitial glucose being pulled 

out from the ISF surrounding the probe could possibly be counteracted by 

changes in interstitial glucose originating in the areas distant from the 

probe/sensor.

Although studies conducted so far provide conflicting results possibly due to 

differences in techniques and methods as well as subjects/species, most of 

them have demonstrated not a constant but changing interstitial to plasma 

glucose gradient (the IG-PG ratio). This implies that the IG-PG relationship is 

not simple. A more detailed understanding is required if subcutaneous 

glucose sensing is to become an even more accurate surrogate for plasma 
glucose measurements.

The majority of previous studies employed glucose clamps achieving non- 

physiological conditions and/or were carried out in animals or non-diabetic 

humans. As subcutaneous glucose sensing has its main application in human
95
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subjects with T1DM during normal physiological conditions, the present study 

aimed to describe the IG-PG relationship during and after meal in T1DM. The 

OFM technique was employed to measure interstitial glucose. A compartment 

modelling approach was adopted to postulate competing models and to 

represent mechanisms explaining temporal variations in the IG-PG ratio. 

Using selection criteria based on the principle of parsimony, a model was 

selected which best explained the experimental data while attaining 

physiological plausibility.

6.2 Subjects and Methods

6.2.1 Subjects and experimental protocol

Nine subjects with T1DM (5/4 M/F, age 33 ± 13 years, body mass index 26.6 

± 4.3 kg m'2, HbA-|C 8.6 ± 0.9%; mean ± SD) treated by CSII participated in 

the study. All participants provided written informed consent and the study 

was approved by the local ethical committee. The subjects followed their 

standard diet and insulin regimen prior to the study.

Six subjects (Subject 1 to 6) were studied after an overnight fast (start of the 

study at 8:00) and three subjects (Subject 7 to 9) were studied at postprandial 

conditions (start of the study at 19:00). The subjects were admitted to the 

University Hospital, University of Graz, one hour prior to, and remained supine 

throughout the 12-hour long study.

On arrival at the hospital, an intravenous cannula was inserted into a forearm 

vein to facilitate arterialised venous blood sampling using a thermoregulated 

(55°C) box. A replacement cannula was inserted into the subcutaneous 

abdominal tissue for the variable administration of rapid acting insulin 

analogue (Humalog®, Eli Lilly) by an insulin pump (D-Tron, Disetronic Medical 

Systems, Burgdorf, Switzerland). A double-lumen catheter was inserted into 

the subcutaneous adipose tissue on the opposite side of the abdominal wall to 

extract ISF by open-flow microperfusion. Local skin anaesthesia (Novanaest 

purum 2%, Gebro Broschek, Vienna, Austria) was used before the adipose
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tissue was cannulated. Perfusion started immediately, but sampling of the 

perfusate began 60min after the insertion of the catheter (equilibration period) 

to allow the initial trauma to subside.

At the start of the study, the subjects ingested a standard meal (40g CHO) 

with a co-administration of an individually determined prandial bolus of insulin 

lispro. Only water was allowed for the rest of the study. In the case of a low 

plasma glucose concentration (< 3.3 mmol L'1) a 10-20g bolus of intravenous 

glucose (20% Dextrose solution, Fresenius Kabi, Graz, Austria) was 

administered.

Over 12 hours, the ISF was continuously collected and samples over 30min 

were subjected to the determination of IG. Arterialised venous blood samples 

were drawn every 15min for the determination of PG and every 30min for the 

determination of plasma insulin. The ISF samples and samples for the 

determination of plasma insulin were stored at -70°C instantly after sampling 

until they were analysed. Plasma glucose was determined on a bedside 

analyser.

6.2.2 Open-flow microperfusion

The OFM was employed to obtain samples of the ISF (68,69). The double-

lumen catheter was prepared from a conventional intravenous cannula (24 

gauge * 19mm, 0.7mm OD; Neoflon, Becton-Dickinson, Helsingborg, 

Sweden) by perforating 30 holes (0.3mm diameter) with an Excimer Laser. 

The catheter was inserted into the adipose tissue of the anterior abdominal 

wall by a steel mandrin, which was subsequently removed and replaced by 

the inner cannula of the double-lumen catheter (steel tube, length 16mm, 

inner diameter 0.1mm, outer diameter 0.2mm, Goodfellow, Cambridge, UK). 

The inner cannula was connected to a plastic bag containing perfusate 

[isotonic, ion-free mannitol in aqueous solution (275mmol L*\ 288mosmol L'1); 

Leopold, Graz, Austria], The perfusion fluid entered the catheter through the 

inner lumen and passed to the tip of the probe. Thereafter, it streamed back in 

the annular space between the inner cannula and the outer perforated
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catheter, where partial equilibration between the ISF and the perfusate 

occurred. The outer lumen was connected to a peristaltic pump (Minipuls 3, 

Gilson, France) in push-pull mode, which transported the diluted ISF effluents 

through the tubing system to a collecting vial on ice. The vials were sealed 

with a film to prevent evaporation during sampling. The flow rate was set by 

the peristaltic pump. To verify appropriate average flow rate, each vial was 

weighed before and after sampling.

6.2.3 Assays and determination of interstitial glucose

Plasma glucose was measured in duplicate by a Beckman Glucose Analyser 

2 (Beckman Instruments, Fullerton, CA) with a CV < 1.5% of the intra-assay 

measurement error. Plasma insulin was measured using the Iso-Insulin 

ELISA (Mercodia AB, Uppsala, Sweden) assay with an intra-assay CV < 6%. 

Sodium and potassium concentrations in the ISF were measured using a 

flame photometer (IL 943, Instrumentation Laboratory, Milano, Italy). The 

glucose concentration in ISF samples was measured enzymatically with 

glucose hexokinase programmed on a Cobas Integra analyser (Hoffman-La 

Roche, Basel, Switzerland). The interstitial glucose concentration was 

calculated by the ionic reference technique (68).

6.2.4 Data analysis

6.2.4.1 Modelling interstitial glucose kinetics

Compartment modelling described the PG-IG kinetics. PG was represented by 

one compartment, IG also by one compartment. The transfer of glucose 

between these two compartments represented diffusion across the capillary 

wall driven by the concentration gradient (4). The disposal from the IG 

compartment represented glucose transporters facilitated transport across the 

cell membrane (129).

Nine models were postulated to account for the temporal variations in the IG- 

PG ratio. In all models, PG was employed as the forcing function. The models
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differed in the inclusion of physiologically motivated alterations of the three 

pathways entering/leaving the IG compartment. These effects included:

(i) a saturable glucose disposal,

(ii) a zero-order (constant) glucose disposal,

(iii) a stimulatory effect of insulin on glucose transfer from 

plasma to ISF, and

(iv) an effect of insulin on glucose removal from ISF.

Model 1 was the base model that assumed time invariant fractional transfer 

rates from and to the IG compartment.

Model 2 assumed a saturable glucose disposal from the IG compartment. To 

avoid posterior identifiability problems, the Michaelis-Menten form was not 

used and the transfer rate associated with the outflux decreased linearly with 

an increasing IG concentration. This is a reasonable approximation of the 

Michaelis-Menten form assuming that a narrow range of saturation levels is 

achieved during the experiment. Centring with an IG concentration of 4mmol 

L'1 (the “basal” IG value) was used to enable comparison of parameter 

estimates across models.

Model 3 implemented the stimulatory effect of insulin on glucose disposal from 

the IG compartment. To avoid expected posterior identifiability problems, the 

insulin effect did not involve a remote insulin compartment as the infrequent 

sampling of IG (sample every 30min) was not considered to be sufficient to 

determine the time delay of insulin action.

Model 4 combined Models 2 and 3, i.e. the saturability of glucose removal and 

the stimulatory effect of insulin on glucose disposal.

Model 5 extended Model 3 and employed the remote insulin compartment to 

assess the possibility of determining the delay in insulin action to test the 

assumption presented in Model 3.
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Model 6 combined Models 2 and 5, i.e. the saturability of and the remote 

insulin action on glucose disposal.

Model 7 assumed that part of the glucose removed from the IG compartment 

is due to a zero-order disposal representing a constant flux independent of the 

IG concentration.

Model 8 implemented a stimulatory effect of insulin on the transfer of glucose 

from the plasma to the ISF (insulin effect on flux f2i in Figure 3.6). A remote 

insulin compartment was not used for posterior identifiability reasons.

Finally, Model 9 combined Models 7 and 8, i.e. the zero-order removal from 

the IG compartment and the stimulatory effect on the transfer of glucose from 

plasma to the ISF.

Formal definitions of models are shown in Table 6.1. The explanation of 

symbols is as follows: Ci, C2 represent PG and IG concentrations (mmol'1), 

respectively; k i2, k2i, and k02 are transfer rate constants (min'1); k ’02 = k02 + k12 

is an aggregated constant (min'1); ks is the slope of a saturable component of 

the glucose disposal (min'1); / is the plasma insulin concentration (mU L'1); lb 

is basal (pre-experimental) plasma insulin concentration (mU L'1); X  is the 

remote insulin action representing the delay in insulin action (min'1); /c30 and 

k03 represent the activation and the deactivation constants of the remote 

insulin, respectively (min'2 per mU L'1 and min'1); S/ is the insulin sensitivity 

associated with glucose removal from IG (Model 3, 4, 5, and 6) or with 

plasma-to-interstitial-fluid transfer (Model 8 and 9) (min'1 per mmol L'1); and 

F02 is the zero-order glucose disposal (mmol L'1 min'1). All models are 

assumed to be a priori identifiable (23).

6.2.4.2 Parameter estimation

The parameters were estimated using an iterative two-stage technique (ITS) 

(27,110). In each iteration, model parameters were estimated employing a 

nonlinear, weighted, least-squares algorithm with an empirical Bayesian term.
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Table 6.1 Nine proposed compartment models of interstitial glucose kinetics (see text for details).

Compartment structure Model Equations Comments Parameters

d C 2¡dt—k2 iCi~k 02^2

dC2ldt=k21Ci- [k’02- ks (C2- 4.0)]C2

Basic linear model

Saturable glucose removal from ISF

k21, k ’02* 

k2i, k’02, ks

/"■ N
s,

. ki’ y S' N  , ' 3 dC2idt=k2iC1- [k’o2+Si(l-lb)]C2 Glucose removal from ISF linearly k2u k’02, S,
(  : dC2l dt=k21Cr

[k'u+S, (/-/*)- /cs(C2-4.0)]C2
dependent on plasma insulin concentration

* 4 Models 2 and 3 combined k2i, k’02, ks, Si

*k’o2 is an aggregated parameter, k’02 -k02+k12
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Prior to the parameter estimation, parameters were log-transformed to assure 

non-negativity and to correct for skewed distributions of parameters with the 

exception of the parameter ks, which was not transformed.

Model input was plasma glucose and plasma insulin (Models 3, 4, 5, 6, 8 and 

9). Model output was the average interstitial glucose over a 30min period.

The relative weighting that assigns weights subject to a proportional constant, 

was adopted to reflect the fact that at the time of data analysis, we did not 

have information about the extent of the measurement error. The weight was 

defined as the reciprocal of the square of the nominal measurement error with 

a coefficient of variation of 5%. The model fit error (the difference between 

measurements and model predictions) was determined from the nominal 

measurement error and the variance parameter determined by the estimation 

procedure.

The accuracy of parameter estimates was obtained from the Fisher 

information matrix (23). The SAAM II Population Kinetics v 1.0b software 

package (SAAM Institute, Seattle, WA) was employed to carry out the 

calculations.

6.2.4.3 Model identification and validation

Parameter estimates were checked for physiological feasibility. Models with 

parameter estimates outside the physiological range were excluded from 

further analysis. Physiological ranges of parameters were determined from 

previously validated tracer studies.

To validate the models, three additional criteria were adopted. These were the 

goodness of fit, posterior identifiability, and the distribution of residuals (23). 

The goodness of fit was assessed on the basis of the model fit error, as 

discussed above. Posterior identifiability of each model was assessed on the 

basis of the accuracy of parameter estimates. A given parameter was
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considered non-identifiable if the coefficient of variation of the parameter 

estimate > 100%. The Runs test evaluated the randomness of the residuals.

6.2.4.4 Model selection

The best model, i.e. the model which best represented the experimental data, 

was selected by comparing the model fit error and by using the principle of 

parsimony as implemented by the Akaike criterion.

6.3 Results

6.3.1 Plasma glucose, interstitial glucose and interstitial-to-plasma 
glucose ratio

Figure 6.1 shows plasma glucose, interstitial glucose, and plasma Insulin. PG 

and IG concentration ranged from 3.1 to 15.7mmol L'1 and from 1.6 to 

lO.Ommol L'1, respectively. The plot also shows the IG-PG ratio (0.6 ± 0.1; 

mean ± SD), which significantly changed during the experiment (P < 0.01, two 

way ANOVA with effects due to the time instance and the subject).

6.3.2 Model identification and validation

The parameter estimate for k03 in Model 3 (data not shown) reached very low 

values prolonging the time delay for the remote insulin effect (equal to 

reciprocal of k03) to over 350min. This is equivalent to a half time of 245min. 

Hence the insulin effect, as considered in Model 3, could not be responsible 

for the push-pull phenomenon. The parameters for Model 4, where the insulin 

effect was considered to be direct, could not be estimated, as the population 

model failed to converge. At that point the population mean of the insulin 

sensitivity parameter Si was low at 5 x 10'5 min'1 per mU L'1 with a very small 

standard deviation of ~ 10'8 min'1 per mU L'1. Similarly, population models 5 

and 6 failed to achieve convergence and their parameters could not be 

estimated. As a result, models 3, 4, 5 and 6 were excluded from further 

analysis.
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time (min)

Figure 6.1 Plasma glucose and interstitial glucose (top panel), interstitial to plasma 
glucose ratio (middle panel), and plasma insulin concentration (bottom panel) 
(mean ± SE; n=9).
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Population parameter estimates, as determined by the iterative two-stage 

parameter estimation procedure, for the remaining models are shown in Table 

6.2. In Models 1 and 2, individual estimates of k2i converged to an identical 

value indicating that the data did not contain sufficient information to 

discriminate this parameter individually.

Models 1,2, 7, 8, and 9 demonstrated physiological feasibility of parameter 

estimates and a posteriori identifiability (see Table 6.3).

Figure 6.2 shows weighted residuals associated with these models. Table 6.3 

shows the percentage of cases in each of the models, which passed the Runs 

test. The residuals are scaled assuming a “realistic” measurement error with a 

CV of 10%. This is an estimate of the true measurement error, which is not 

known. An upper bound of 16% has been determined from samples taken 

simultaneously from two interstitial probes (data not shown).

6.3.3 Model selection

The model fit error and the Akaike criterion for models 1, 2, 7, 8 and 9 are 

shown in Table 6.3. On the basis of these two criteria, Model 9 was selected 

as best representing the experimental data. This model is also characterised 

by the highest percentage of cases that passed the Runs test.

Individual parameter estimates for Model 9 are shown in Table 6.4. A sample 

model fit generated by Model 9 is shown in Figure 6.3. The ISF equilibration 

time constant (delay x = 1/k’02) predicted by this model was 10.7 (4.8 - 23.9) 

min [mean (interquartile range)].
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Table 6.2 Population analysis results for a posteriori identifiable models. Values are means (inter-quartile range) (n=9).
k’o2 «21 ks Fo2 s,

Model (10 2 x min'1) (10'2 x min'1) (10'3 x min'1 per 
mmol L'1)

(10'2x mmol L'1 
min'1)

(10-4 x min"1 per 
mU L'1)

1 8.26* 4.44
(3.82-5.15)

- - -

2 7.25* 4.00
(3.51 -4.57)

2.4
(-1.8-6.6)

- -

7 4.76
(1.92-11.84)

3.48
(1.41 -8.60)

- 4.04
(2.17-7.52)

-

8 11.33
(5.41 -23.73)

5.78
(2.43- 13.76)

- - 3.57
(1.13-11.28)

9 9.33
(4.19-20.80)

5.73
(2.30- 14.26)

— 4.66
(2.12-10.26)

2.34
(0.80 - 6.82)

‘ Individual values converged to an identical estimate
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Figure 6.2 Weighted residuals for posteriority identifiable models. Values are mean 
(n=9).

Table 6.3 Summary of validation and model selection results.
Model

No
Physiological

feasibility
(Yes/No)

Acceptable
accuracy
(Yes/No)

Model fit 
error

(Mean ± SD)

Runs test

(%)*

Akaike 
criterion 

(Mean ± SD)
1 Yes Yes 15 + 7** 11 0.97 ± 0.38
2 Yes Yes 13 ± 5 56 0.91 +0.30
3 No N/A N/A N/A N/A
4 No N/A N/A N/A N/A
5 No N/A N/A N/A N/A
6 No N/A N/A N/A N/A
7 Yes Yes 1 1 + 4 44 0.80 ± 0.28
8 Yes Yes 10± 4 56 0.72 + 0.35
9 Yes Yes 9 ± 3 67 0.71 +0.26

* Percentage of cases satisfying the test
** Expressed as fractional standard deviation (%)
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Table 6.4 Parameter estimates for Model 9.

Subject k’02
(10'2x min'1)

k2i
(10'2x min'1)

F 02
(10‘2 x mmol L'1 )

s,
(lO ^x min'1 
per mil L'1 )

1 21.15(66)* 8.93(61) 4.18(111) 15.5(70)

2 10.09(49) 6.30 (48) 12.31 (55) 5.6 (58)

3 22.81 (58) 15.81 (57) 2.33 (113) 0.5 (146)

4 0.65 (31) 0.24 (16) 0.56 (71) 0.3 (45)

5 7.18(30) 5.55 (29) 2.32 (67) 0.4(138)

6 10.45 (48) 7.91 (49) 18.15(53) 2.1 (141)

7 23.32 (39) 15.33 (39) 4.19(77) 12.6 (53)

8 8.59 (23) 6.97 (22) 10.18(25) 3.0 (33)

9 11.22 (55) 6.51 (52) 8.52 (75) 4.4 (72)

‘ Accuracy of parameter estimate expressed as a fractional standard deviation (%)

Figure 6.3 Example model fit generated by Model 9.
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6.4 Discussion

Using compartment analysis, we identified and quantified possible 

physiological mechanisms related to the interstitial glucose kinetics during 

prandial, postprandial, and fasting conditions in subjects with type 1 diabetes.

Having postulated nine distinct models, we assessed their validity on the basis 

of four criteria: physiological feasibility, the goodness of fit, posterior 

identifiability, and the distribution of residuals. The selection process 

employed the principle of parsimony and was complemented by the 

assessment of the residual error.

Two mechanisms have been identified by the selected model (Model 9) to 

explain the temporal variation in the IG-PG ratio. These are the zero-order 

glucose disposal from the interstitial fluid and an insulin effect on glucose 

transfer from the plasma to the ISF. The former implies that a portion of the 

disposal is constant and independent of the glucose concentration. The 

remaining portion is concentration dependent. At normoglycaemia, the 

constant disposal contributes approximately 10% to the total outflux but this 

relative contribution increases at lower glucose concentrations. At a 

hypoglycaemia threshold of 3.3mmol L'1, it is about 20% of the total outflux. 

Similarly, the IG-PG ratio is also glucose dependent. For example, a fall in 

plasma glucose from 9 to 3.3mmol L'1 will reduce the IG-PG ratio by 0.1. 

Extrapolating the results outside the range of our experimental data, a more 

pronounced fall from 9 to 2mmol L'1 would lower the IG-PG ratio even further 

by 0.2. This finding is consistent with observations made by others, who also 

found a drop in the IG-PG ratio in the hypoglycaemic range (17,130) and the 

finding may have important implications on the calibration of ISF glucose 

sensors.

Several authors have noted that recovery from hypoglycaemia takes longer in 

IG compared to PG (17,59,60,130). This is normally attributed to the push-pull 

phenomenon, i.e. the insulin-stimulated IG disposal. However, our data offer 

an alternative explanation. The zero-order disposal affects the time-to-

Chapter 6. Modelling Interstitial Glucose Kinetics under Physiological Conditions in Type 1
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equilibrium in IG due to the kinetic properties of Model 9 (see model 

equations). A rise in glucose is associated with a prolonged time-to- 

equilibrium, whereas a drop in glucose is associated with a shorter 

equilibration time.

The constant, zero-order disposal can be explained by a portion of glucose 

transport across the adipose cell membrane being saturated even at low 

glucose concentrations as supported by Kozka et al (6) who found a low KM 

value of 3.6mmol L'1 and low glucose transport activity in the human adipose 

tissue with a low GLUT-4 abundance, GLUT-4 being the principal glucose 

transporter isoform in human adipose cells (4).

The second mechanism identified by the present study is the stimulatory 

effect of insulin on glucose transfer from the plasma to the ISF. Contrary to 

current views, this suggests that the IG-PG ratio increases in parallel with 

plasma insulin within its physiological range. The effect is modest. The IG-PG 

ratio increases only by 0.03 per 10mU L'1 of plasma insulin with a 

considerable between-subject variability. One should emphasise here the 

failure of models 3 to 5, which were not compatible with the experimental 

data. The long time delay of insulin action estimated by model 3 (350min) 

shifted the insulin action from the early peak into a period of low plasma 

insulin concentrations making this model behave as Model 8.

Two possible explanations for this effect are at hand. Insulin has been found 

to induce vasodilatation (131,132) and also to mediate capillary recruitment in 

tissues (65). Both these effects potentially improve the micro-vascular 

perfusion and may be responsible for the insulin stimulated transfer of glucose 

from the plasma to the ISF.

Similarly to Rebrin et al (64), our study was not able to detect the stimulatory 

effect of insulin on glucose disposal, the so called push-pull phenomenon, 

which has been reported by others and widely discussed in the literature 

(17,59,66). The pull part of the push-pull phenomenon occurs when the 

(insulin-stimulated) enhanced uptake of interstitial glucose by the adipocytes

Chapter 6. Modelling Interstitial Glucose Kinetics under Physiological Conditions in Type 1
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is not fully compensated for by increased delivery of glucose from the plasma. 

The phenomenon has been documented in studies using high 

physiological/supra-physiological insulin concentrations during a 

hyperinsulinaemic clamp, whereas plasma insulin concentrations in our study 

remained in the low physiological range potentially explaining the discrepancy 

and questioning the relevance of the push-pull phenomenon in physiological 

conditions. Furthermore, studies in humans showed that while glucose 

transport in the adipose tissue of healthy lean subjects is stimulated by insulin 

approximately two-fold, the transport in the adipose tissue of obese or 

overweight subjects is not responsive to insulin at all (133). This is also 

relevant to the present study, which included a few subjects on the borderline 

of obesity.

The IG-PG ratio estimated by Model 9 is 0.56 at plasma glucose of 9mmol L"1. 

It is reduced to around 0.46 at the hypoglycaemic threshold of 3.3mmol L'1. 

This is consistent with other studies. Monsod et al (17) documented the IG-PG 

ratio of 0.65 under basal glucose and insulin levels and also documented a 

drop in the IG-PG ratio by approximately 20% when moving from euglycaemia 

to hypoglycaemia. Schaupp et al (68) reported a ratio in the range 0.60 to 

0.75 within the plasma glucose range from 5 to 10mmol L"1. Both studies 

investigated healthy subjects.

The equilibration time constant reported in the literature varies considerably 

from 2min (66) to 25min (60), and even 45min (128), but most authors report 

a range from 5 to 10min (64,66,70,134), which is comparable to the 

equilibration time constant obtained in this study (11 min). There are, however, 

difficulties in making direct comparisons as the differences may arise from the 

use of different sampling techniques, different glucose/insulin ranges, and 

different subject categories.

The identifiable models, Models 1, 2, 7, 8 and 9, provided consistent 

parameter estimates, see Table 6.2. The transfer rate constants k’02 and k2i 

compare well between the models. However, the individual parameter
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estimates varied considerably between subjects, see Table 6.2. Other authors 

also reported high between-subject variability (63).

The selected Model 9 was only marginally better than Model 7 and Model 8 

(see Table 6.3). It failed the Runs test in three out of nine cases suggesting 

the influence of additional unmodelled effects on the IG-PG ratio such as 

variable recovery or hormonal influences on model parameters. As hormones 

are cyclical in nature, a model was proposed, in which oscillations were 

superimposed on the k02 transfer rate constant. Preliminary results showed a 

marked improvement in model fit and a higher number of cases passing the 

Runs test. However, we excluded the model from detailed reporting as the 

nature of the oscillations is lacking explicit physiological interpretation.

We considered practical implications of our modelling study for ISF-based 

glucose sensing and applied a one-point calibration to the experimental data 

to determine PG from IG. Population parameter estimates were used as 

calibration constants. Models 1 and 7 were employed and the calibration 

results were compared. We chose Model 7 over the selected Model 9 for 

practical reasons. Model 7 does not require knowledge of plasma insulin 

concentrations and could, therefore, be used in real-time glucose monitoring.

Figure 6.4 shows the Clarke error grid analysis of a one-point calibration 

method for Models 1 and 7. The one-point calibration with Model 1 gave 56% 

points in the region A and 44% in the region B. Model 7 resulted in an 

increase in the number of points in the region A to 60% and a fall in the 

number of points in the region B to 40%. Hence, we documented a small 

advantage in the use of Model 7 for calibration, which could be extended 

assuming a higher proportion of low glucose readings.
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Figure 6.4. The Clarke error grid showing relationship between measured plasma 
glucose and glucose predicted from IG using Model 1 (top panel; 56% in zone A), 
and Model 7(bottom panel; 60% in zone A).

6.5 Conclusion

We identified and quantified a model of interstitial glucose kinetics applicable 

to physiological conditions in subjects with type 1 diabetes. The model 

implements two effects, which are responsible for temporal variations in the 

IG-PG ratio, the zero-order removal of glucose from the ISF and the insulin 

stimulated glucose transfer from the plasma to the ISF.
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Chapter 7 Further Evaluation of the Model of 
Interstitial Glucose Kinetics

7.1 Introduction

A study of modelling interstitial glucose kinetics was described in the previous 

chapter. Out of the nine models analysed in this study, Model 9 provided the 

best representation of our experimental data and was, therefore, selected as 

the best model of interstitial glucose kinetics.

Since the completion of that study, a new richer data set collected over a 

longer period has become available. This data set was obtained from a clinical 

trial in twelve subjects with T1DM. The subjects participated in a thirty two 

hours long experiment.

Further evaluation of Model 9 is presented in this chapter with the aim to 

reassess the model validity and to compare the results with those obtained in 

Chapter 6.

7.2 Methods

7.2.1 Subjects and experimental protocol

The experimental protocol and the subjects are described in section 4.2.1. 

Subject 1 had to be omitted in this study due to an unacceptable high 

interstitial glucose measurement error. This section also describes the assays, 

the IG measurement method, and the OFM technique used for sampling the 
interstitial fluid.

Eleven subjects with type 1 diabetes treated with CSII participated in this 

study (7/4 M/F, age 41 ± 11 years, duration of diabetes 21 ± 9 years, BMI 24.2 

± 2.2kg/m2, HbA1c 7.4 ± 0.9%, basal/prandial insulin requirements 20.9 ± 5.6/

21.4 ± 6.0U/day; mean ± SD).
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Basal insulin infusion profile was optimised prior to the study and the patients 

not using the short acting insulin analogue lispro were switched to this insulin. 

Subjects arrived at the clinic at 13:30 and remained there until 22:00 on the 

following day. They were given dinner at 18:00 on the first study day, 

breakfast at 8:00, lunch at 14:00 and dinner at 18:00 on the following day.

At the start of the study blood glucose was normalised to a level between 5.5 

to 6.6mmol/L using intravenous insulin or glucose as appropriate. Blood 

samples for plasma insulin were collected every 30min from 14:00 and ISF 

sampling started at 18:00 using the OFM technique.

7.2.2 Data analysis

7.2.2.1 Model o f interstitial glucose kinetics

Data analysis was done using Model 9 (see Chapter 6).

Two effects represented in this model are the zero-order removal of glucose 

from ISF and the stimulatory effect of insulin on glucose transfer from plasma 

to ISF. The Model of structure shown in Figure 7.1 is described by the 

following differential equation:

ci Cydt-[l<2 i +Si(l-lb)]Ci-k'o2 C2-F02

where k'02=k12+ko2, C1 and C2 represent PG and IG concentrations (mmol/L), 

ko2, k i2 and k2i are transfer rate constants (min'1), k ’02 is the aggregate 

transfer rate constant (min'1), S/ is insulin sensitivity associated with glucose 

transfer from plasma to the ISF (min'1 per mmol L'1), and F02 is the zero-order 

glucose removal from the ISF (mmol L'1 min'1).
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Si

Figure7.1 Structure of Model 9.

7.2.2.2 Parameter estimation

Model parameters were estimated using the iterative two-stage technique 

(ITS) implemented in SAAM II Population Kinetics v 1.01 (SAAM Institute, 

Seattle, WA, USA). In each iteration, the parameters were estimated 

employing a nonlinear, weighted, least-squares algorithm with an empirical 

Bayesian term. Prior to estimation the parameters were log-transformed. This 

was done to assure non-negativity and to correct for skewed distribution of the 

parameters.

Plasma glucose and plasma insulin were the driving functions. The interstitial 

glucose averaged over a 30min period was the model output.

As the extent of the measurement error was not known, the relative weighting 

method in SAAM II was adopted. The weight was defined as the reciprocal of 

the square of the nominal measurement error (ME) with a CV of 5%. The 

model fit error (MFE) was obtained from the nominal ME, and the variance 

parameter was determined by the estimation procedure.

7.2.2.3 Model identification and validation

Similarly to model validation described in Chapter 6, the validity of Model 9 

was assessed on the basis of physiological feasibility of parameter estimates, 

posterior identifiability (CV<100%), model fit error, and distribution of weighted 

residuals.
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7.2.2.4 Statistical analysis

The significance of the change in the IG-PG ratio was established using a 

two-way analysis of variance (ANOVA) with effects due to time instance and 

subject.

The Runs test was used to test for the randomness of the weighted residuals. 

The Bonferroni correction was applied to the runs test results to correct for 

multiple comparisons.

In order to compare the two groups of results generated by Model 9, the 

nonparametric Mann-Whitney U test was applied.

7.3 Results

7.3.1 Plasma glucose, interstitial glucose, plasma insulin and 
interstitial to plasma glucose ratio

Figure 7.2 shows the mean plasma glucose, interstitial glucose, and plasma 

insulin. PG and IG concentration ranged from 3.1 to 18.0mmol/L and from 1.7 

to 12.8mmol/L, respectively. The plot also shows the IG to PG ratio (0.64 ± 

0.11; mean ± SD), which changed significantly during the experiment (p < 

0 .0001).

7.3.2 Parameter estimates and model validation

All parameters demonstrated physiological feasibility. The parameter 

estimates with their accuracy expressed as CV are listed in Table 7.1.

The parameter k2 i converged to a population mean in all subjects. The 

inter-subject variability of the parameter k’02 was small.
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Table 7.1 Parameter estimates and their accuracy.

Subject
k’02

( 10'2 x min1)
l<21

(10‘2 x min1)
Fo2

( 10"2 x  mmol/L)

s,
(10^ x  min'1 
per mU L"1)

1 9.79 (4)* 8.13** 9.14(19) 2.9 (63)
2 10.56 (3) 8.13** 4.64 (24) 1.1 (78)
3 12.47 (4) 8.13** 4.75 (40) 2.4 (46)
4 9.91 (4) 8.13‘ * 8.12(12) 3.5 (37)
5 9.63 (7) 8.13** 12.54(19) 0.5 (64)
6 10.37 (3) 8.13** 8.76(15) 1.5 (47)
7 12.42 (3) 8.13** 4.16(41) 0.6 (84)
8 9.36 (7) 8.13** 21.83(12) 0.7 (84)
9 10.70 (2) 8.13** 5.73(17) 0.6 (71)
10 10.45 (4) 8.13** 5.79 (31) 5.9 (20)
11 11.44 (3) 8.13** 4.47 (30) 1.1 (71)

♦Accuracy of parameter estimate expressed as a fractional standard deviation (%)
** Parameter value converged to the population mean

The model fit error was 9 ± 3% (mean ± SD). The model fits for all eleven 

subjects are shown in Figure 7.3.

Figure 7.4 shows the distribution of weighted residuals associated with Model 

9. The residuals are scaled assuming a ‘realistic’ measurement error with a 

CV of 10%. It was confirmed that 56% of cases passed the runs test.

118



Chapter 7. Further Evaluation oftheModel of Interstitial Glucose Kinetics

time (min)

time (min)

Figure 7.2 Plasma glucose, interstitial glucose (top panel), interstitial to plasma 
glucose ratio (middle panel), and plasma insulin (bottom panel). Values are mean ±  
SE, n=11.
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Subject 1 Subject 2

Subject 3 Subject 4

Subject 5 Subject 6

Figure 7.3 Individual model fits generated by Model 9. Pink dot (-) represents 
measurement and continuous line ( ------- ) represents the model fit.
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Subject 7 Subject 8

time (min) time (min)

Subject 9 Subject 10

Subject 11

Figure 7.3 (cont.) Individual model fits generated by Model 9. Pink dot (•) represents 
measurement and continuous line ( ------- ) represents the model fit.
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time (min)

Figure 7.4 Weighted residuals assuming a nominal value for the ME at 10%. Values 
are mean ±  SE, n = 11.

7.3.3 Comparison with estimates obtained in Chapter 6

The population parameter estimates obtained by Model 9 in the present (32h 

long experiment) and the previous study (12h long experiment) are shown in 
Table 7.2.

Table 7.2 Population parameter estimates for the two data sets.

Parameter
Mean (IQR) 

32h experiment 
(N=11)

Mean (IQR) 
12h experiment 

(N=9)
p value

k ’02 (10"2x min"1) 10.60 (9.87-11.38) 9.33 (4.19-20.80) 0.94**
k21 (10"2x min"1) 8.13* 5.73 (2.30 -  14.26) N/A
F02(10'2x  mmol L"1) 7.13(4.89 -10.40) 4.66 (2.12-10.26) 0.37
Si (10"4x min'1 per mU L"1) 1.36 (0.73-2.51) 2.34 (0.80 -  6.82) 0.50

* Individual values converged to an identical estimate
** Mann-Whitney U test
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7.4 Discussion

Model 9 of interstitial glucose kinetics was tested on an independent set of 

clinical data. The new data set was richer with four meals instead of one and 

was recorded over a longer period of time, i.e. 32 hours instead of 12 hours as 

in the previous study. The subjects differed in the quality of glycaemic control 

reflected in a lower HbA1c. Reassessing validity of Model 9 and comparison of 

the results obtained for these two different data sets was an important task.

The obtained results support validity of Model 9. Parameter estimates were 

physiologically feasible and Model 9 demonstrated posterior identifiability with 

the range of CVs from 2 to 84% (see Table 7.1). Model 9 provided an 

acceptable fit to the data (see Figure 7.3) and the model fit error was similar to 

that reported in Chapter 6 (see Table 6.3).

The range of weighted residuals was acceptable with the exception of the time 

instant immediately following breakfast. At this particular time a clear 

underestimation is visible in several subjects (see Figure 7.3) suggesting the 

existence of unmodelled effects. The runs test was passed in 56% of cases, 

which is only slightly lower than 67% as obtained previously (see Table 6.3). 

Visual inspection of the weighted residuals suggests the presence of alternate 

positive and negative runs. This type of trend is indicative of an oscillatory 

pattern most likely associated with the possible parameter variation. This is 

consistent with diurnal changes in insulin sensitivity and carbohydrate 

metabolism (99,105,135).

The exact mechanisms responsible for these diurnal variations are not known. 

It is presumed that they could be hormonal, due to varying levels of growth 

hormone or cortisol, or neural caused by the rhythms in the autonomic 

nervous system where adrenergic stimulation has been shown to inhibit 

insulin action (136). The oscillations in carbohydrate metabolism could be 

linked to the cyclical nature of gastric motility occurring in man (137).
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Van Cauter et al (105) demonstrated modulation of glucose responses to 

mixed meals by circadian rhythmicity and correlated these responses with 

cortisol concentrations. Their results also show that meal related increases in 

cortisol levels occur consistently in the morning and together with other 

hormonal or neural influences could be responsible for the particular difficulty 

of our model to provide a good fit to the data around the breakfast time.

Parameter estimates obtained in the new study were shown to be similar to 

those obtained in Chapter 6 (see Table 7.2).

An interesting characteristics of the new set of results is a smaller variability of 

parameters reflected in a narrower inter-quartile range (see Table 7.2). This 

finding is consistent with the fact that the subjects in 32h study were well 

controlled (a tight range of HbAic).

The convergence of parameter k2i to the population value appears to be 

associated with the property of ITS technique. Due to insufficient information 

included in the data individual estimates of this parameter could not be 

obtained. This, in turn, led to their convergence to the population mean.

The results of this study support the validity of Model 9 with an exception of 

nonrandom distribution of the weighted residuals in 44% of cases. This 

shortcoming of Model 9 suggests the presence of unmodelled effects, which 

were discussed earlier. The above effects were not included in our time 

invariant model. It might be, therefore, appropriate to consider a time varying 

model in the future investigations.

In summary, the current results support validity of Model 9, which provided a 

good explanation to our experimental data with a small model fit error and 

good precision of parameter estimates. Parameter estimates were 

physiologically feasible and were similar to those obtained in Chapter 6.

It is acknowledged, however, that certain effects, most probably associated 

with time varying parameters, may require further exploration.
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Chapter 8 Discussion and Conclusion

8.1 Overall Discussion

The AP has been a research goal for over three decades. The first prototype 

(20) was designed for intravenous glucose sampling and intravenous insulin 

infusion. The present research has concentrated on the subcutaneous 

delivery of insulin and the subcutaneous glucose testing as these methods are 

less invasive and more suitable for routine use. However, the SC-SC 

approach, as it is called, poses problems to the efficient glucose control. Due 

to the lack of availability of a reliable SC glucose sensor, experimental set up 

for testing an AP algorithm often resorts to using a SC-IV approach, i.e. the 

subcutaneous insulin infusion and the intravenous glucose measurements.

The primary aim of this thesis was to explore the use of compartmental 

modelling techniques with in-built physiological constraints to facilitate the 

development of a wearable artificial pancreas. In particular, this study aimed 

to extend and evaluate an existing model of the glucoregulatory system on a 

set of data obtained in a clinical trial designed to test the AP algorithm.

Further objectives included support for the in silico testing of an artificial 

pancreas through investigating interstitial glucose and insulin lispro kinetics, 

and by generating sets of parameters to represent ‘virtual’ subjects with T1DM 

in the AP simulator.

Both the AP algorithm and the simulator were developed in the course of an 

EC-funded project ADICOL (Advanced Insulin Infusion using a Control Loop). 

The objective of this project was to develop a treatment system that 

continuously measures and controls glucose in subjects with type 1 diabetes,

i.e. an artificial pancreas. The project activities included the development of 

glucose sensors, the development of glucose controllers encompassing the 

development of a glucose simulator, clinical testing, and system integration. 

After a series of successful clinical trials, the ADICOL project confirmed 

feasibility of glucose control with a wearable, modular AP comprising a SC
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glucose sensor, a control algorithm running on a palmtop computer, and a SC 

delivery of lispro using insulin pump.

The availability of a rich set of clinical data obtained in clinical trials designed 

to test the AP control algorithm within the ADICOL project prompted the 

exploration of the possibility of modelling the input-output relationship between 

the subcutaneous insulin delivery and the intravenous glucose 

measurements. The study involved the extension of a previously validated 

model of the glucose-insulin system (55) in type 1 diabetes under new 

conditions. Apart from the model validation, the study had other potential 

benefits. Assuming that the model was valid, its parameters could be used in 

the AP simulator to represent a set of ‘virtual’ subjects with T1DM. This would 

constitute a major step towards enhancing the AP simulation environment and 

providing methods to create a ‘virtual’ but realistic population.

Unfortunately, the model validity could not be ascertained. A number of model 

parameters, such as the three insulin sensitivities and the glucose distribution 

volume, reached non-physiological values and displayed an excessively high 

inter-subject variability. Otherwise, the model provided a good fit to the data 

(see Figure 4.4 in Chapter 4).

Our study supported the presence of ultradian oscillations in the insulin 

sensitivities. The variation in response to different meals was shown to be on 

the borderline of statistical significance. Despite the fact that the model 

validity was not confirmed, the results are of importance and could serve as a 

benchmark for new models to be tested in the future.

The subcutaneous insulin delivery is associated with an additional delay and a 

high inter-subject variability in the absorption parameters. Although the new 

rapid acting insulin analogues produce a more predictable time action profile, 

certain issues around the absorption kinetics remain unresolved. The study 

described in Chapter 5 investigated the absorption kinetics of lispro insulin 

analogue during bolus and continuous infusion modes of delivery. Ten 

models, nine of which were compartmental, were proposed assuming various
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putative physiological effects and re-using some of the previously published 

models (75,82). The assessment of model validity was based on four criteria 

discussed by Carson et al (23). Valid models were then compared using the 

principle of parsimony (23) and a model which best represented our 

experimental data was identified. The model best representing the 

experimental data was identified as Model 9 (see Chapter 5). This model 

assumed local insulin degradation at the injection site and two, slow and fast, 

absorption channels. Both effects are a little controversial. Local insulin 

degradation is considered significant by some authors (108,116) but 

disregarded by others (78,81). In Model 9 the local degradation, implemented 

as a Michaelis-Menten relation, was estimated as a small but significant 

proportion of the total insulin dose in the physiological range of insulin 

concentrations [V Ma x ,l d =1 .93(0.62 -  6.03)mU min'1, K m,l d = 6 2 .6 (6 2 .6  -  

62.6)mU]. The idea of two insulin absorption channels, although reported in 

literature (87), does not have an immediate physiological interpretation. A 

possible explanation could be the existence of a dimer-monomer equilibrium, 

the two association states of insulin. The dimers have been shown to be 

absorbed slower than the monomers (78). Our model estimated that 67% of 

insulin passes through the slow absorption channel and the remaining 33% 

passes through the fast channel.

The greatest hurdle in the development of a wearable extracorporeal artificial 

pancreas is the availability of an accurate and reliable long-term 
subcutaneous glucose sensor. The accuracy of the current sensors has been 

questioned (17). One of the main problems related to the accuracy of 

subcutaneous sensors is the fact that they measure glucose concentration in 

the interstitial fluid and translate it into the plasma glucose reading using 
asimple multiplication factor. A significance test conducted in this study (see 

Chapter 6) demonstrated a time varying IG-PG ratio pointing to a more 

complex relationship between the two entities. To investigate the true 

relationship we postulated nine distinct compartmental models and quantified 

possible physiological mechanisms involved in this process. A similar process 

to that described in Chapter 5 was followed. The models were identified, 

validated, and the best model was selected using the principle of parsimony.
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Two mechanisms explaining the temporal variation in the IG-PG ratio were 

identified by the selected model (Model 9 in Chapter 6). These were the zero- 

order glucose disposal and a positive effect of insulin on glucose transfer from 

the plasma to the ISF. The former is responsible for a reduction in the IG-PG 

ratio with a falling plasma glucose concentration (a fall in PG from 9 to 

3.3mmol/L will reduce the IG-PG ratio by 0.1). The latter, a smaller effect, is 

responsible for an increase in the IG-PG ratio with a rising plasma insulin 

concentration (a 10mU/L rise in plasma insulin will increase the IG-PG ratio by

0.03).

The two mechanisms could explain observations made by other researchers. 

A lower IG-PG ratio was observed at low glucose concentrations (17,130). 
Several authors also observed a longer recovery from hypoglycaemia in the 

interstitial glucose (17,59,60,130). The effect, which is normally attributed to 

the push-pull phenomenon, can be explained by the kinetic properties of the 

model proposed in Chapter 6 (due to zero-order removal of glucose affecting 

the time-to-equilibrium). The stipulated push-pull phenomenon was not 

detected in this study.

Although Model 9 was shown to best represent our data, it was by no means 

an ideal representation. The Runs test was not passed in a number of cases 

suggesting the existence of unmodelled effects. Hence, as a new richer data 

set had become available we set out to re-evaluate this model on the new 

data set (see Chapter 7). The obtained results supported the validity of the 

model and the model parameters compared well with those obtained in 

Chapter 6. This was despite certain differences in the study population such 

as a tighter glycaemic control.

Model 9 describing the interstitial glucose kinetics was used successfully in 

the AP simulator to predict the results of clinical trials conducted as part of the 

ADICOL project.

As Claude Bernard said: “The application of mathematics to natural 

phenomena is the aim of all science” (Bernard, 1895). In this study the use of 

mathematical models in support of the development of an AP was explored.
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Several models have been proposed and important results obtained. We 

acknowledge the fact that the proposed models are by no means the true 

representation of systems they are meant to represent. However, by 

definition, models only provide an approximate description of the real system. 

Thus, the assessment whether or not the given model is valid, i.e. adequate 

for its purpose, remains a difficult task. The models were subject to 

assumptions and simplifications, which are inevitable when dealing with a 

complex biological system. Certain effects could not be modelled due to an 

insufficient knowledge to describe them or due to the fact that they would 

affect the computational complexity to unacceptable levels.

In conclusion, this thesis provides an insight into the mechanisms involved in 

the insulin and interstitial glucose kinetics. The results should be expanded by 

a further research in this field.

8.2 A chievement of Objectives

This section deals with each of the objectives listed in Chapter 2 and 

describes the extent to which they were met.

A. Objectives in relation to modelling of the input-output relationship between 

subcutaneously administered insulin and intravenously measured plasma 

glucose:

• To extend and validate an existing model of the glucoregulatory system 

on a set of clinical data recorded over 28 hours in trials involving 

subjects with type 1 diabetes treated by CSII;

• To estimate model parameters for individual subjects with the aim to 

provide an AP simulator with a set of ‘virtual’ subjects with type 1 

diabetes.

Of the two objectives in this category only the first one was met. The given 

model was extended and applied to the experimental data. Unfortunately, as 

the model validity was not confirmed, the parameter estimates are not reliable 

enough to be used to represent ‘virtual’ subjects in the AP simulator.
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B. Objectives in relation to modelling of the subcutaneously administered 

insulin lispro kinetics:

• To develop and validate a model of subcutaneously administered 

insulin lispro kinetics in type 1 diabetes during the standard insulin 

pump treatment with bolus and CSII modes of delivery.

This objective was met in full. A model of insulin lispro kinetics in type 1 

diabetes was identified and validated.

C. Objectives in relation to modelling of interstitial glucose kinetics:

• To investigate the relationship between plasma glucose and interstitial 

glucose;

• To develop and validate a model of interstitial glucose kinetics under 

physiological conditions in subjects with type 1 diabetes.

The objectives in relation to modelling of interstitial glucose kinetics were also 

met as planned. A model of interstitial glucose kinetics was developed and 

validated, and the relationship between plasma glucose and interstitial 

glucose was established.

8.3 Future Work

8.3.1 Generating ‘virtual’ subjects with type 1 diabetes

The objective o f supplying the AP simulator with ‘virtual’ subjects with type 1 

diabetes was not met in this study. In order to meet this objective, further 

attempts should be made to arrive at a valid model of the input-output 

relationship between subcutaneously administered insulin and plasma 

glucose concentration. Other models should be investigated. The most 

obvious suggestion would be to replace the simple two-compartment model of 

insulin kinetics with Model 9 described in Chapter 5. The gut absorption model 

also requires further research, in particular, the time of meal ingestion should 

be taken into account. Alternatively, to avoid the reported drawbacks of the 

ITS technique, other methods of population analysis should be explored.
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8. Discussion and Conclusion

8.3.2 Insulin lispro kinetics

Ten models were proposed in Chapter 5 to represent lispro absorption 

kinetics in subjects with type 1 diabetes treated by CSII. The list of possible 

models was not exhausted here. Other models could be explored and tested 

on the data. Similarly to the best model of interstitial glucose kinetics, Model 9 

in Chapter 5 could also be re-evaluated on the set of independent data.

8.3.3 Interstitial glucose kinetics

The model of interstitial glucose kinetics proposed in Chapter 6 and re-

evaluated in Chapter 7 provided a good representation to the experimental 

data. However, non-randomness of the weighted residuals in a number of 

cases also pointed to some unmodelled effects. These effects should be 

identified and modelled in future studies. In particular, time varying 

parameters may need to be considered. The oscillatory pattern observed in 

the insulin sensitivities in Chapter 4 may be responsible for the modulation of 

the relevant transfer rate constants.

131



References

References

1. Williams G, Pickup JC: Handbook of Diabetes. London, Blackwell 
Science, 1999

2. Diabetic Control and Complications Trial Research Group: The effect of 
intensive treatment of diabetes on the development and progression of 
long term complications in insulin-dependent diabetes mellitus.
N.Engl.J. Med. 329:977-986, 1993

3. Tortora GH, Anagnostakos NP: Principles of Anatomy and Physiology. 
New York, Harper and Row Publishers, 1987

4. Zierler K: Whole body glucose metabolism. Am.J.Physiol. 276:E409- 
E426, 1999

5. Katzung BG: Basic Principles-lntroduction. In Basic and Clinical 
Pharmacology. Katzung BG, Ed. Appleton-Lange, 1998, p. 5

6. Kozka I J, Clark AE, Reckless JPD, Cushman SW, Gould GW, Holman 
GD: The effects of insulin on the level and activity of the GLUT4 
present in human adipose-cells. Diabetologia 38:661-666, 1995

7. The Expert Committee on the Diagnosis and Classification of Diabetes 
Mellitus: Report of the Expert Committee on the Diagnosis and 
Classification of Diabetes Mellitus. Diabetes Care 26:S5-S20, 2003

8. WHO. Definition, Diagnosis and Classification of Diabetes Mellitus and 
its Complications. 1999. World Health Organization.

9. Bell Gl, Polonsky KS: Diabetes mellitus and genetically programmed 
defects in beta- cell function. Nature 414:788-791, 2001

10. Douek IF, Gillespie KM, Bingley PJ, Gale EAM: Diabetes in the parents 
of children with Type I diabetes. Diabetologia 45:495-501,2002

11. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, 
Schetz M, Vlasselaers D, Ferdinande P, Lauwers P, Bouillon R: 
Intensive insulin therapy in the surgical intensive care unit. N.Engl.J 
Med. 345:1359-1367, 2001

132



References

12. Wild SH, Williams DRR: The Global Burden of Disease Study under-
estimates diabetes prevalence in the United Kingdom. Diabetic Med. 
20:44, 2003

13. UK Prospective Diabetes Study Group. Intensive blood-glucose control 
with sulphonylureas or insulin compared with conventional treatment 
and risk of complications in patients with type 2 diabetes (UKPDS 33). 
Lancet 352:837-853, 1998

14. Kang S, Creagh FM, Peters JR, Brange J, Volund A, Owens DR: 
Comparison of subcutaneous soluble human insulin and insulin 
analogues (AspB9, GluB27; AspBIO; AspB28) on meal-related plasma 
glucose excursions in type 1 diabetic subjects. Diabetes Care 14:571- 
577, 1991

15. Robinson MR, Eaton RP, Haaland DM, Koepp GW, Thomas EV, 
Stallard BR, Robinson PL: Noninvasive glucose monitoring in diabetic 
patients - A preliminary evaluation. Clin.Chem. 38:1618-1622, 1992

16. Heise HM: Non-invasive monitoring of metabolites using near infrared 
spectroscopy: State of the art. Horm.Metab.Res. 28:527-534, 1996

17. Monsod TP, Flanagan DE, Rife F, Saenz R, Caprio S, Sherwin R, 
Tamborlane W: Do sensor glucose levels accurately predict plasma 
glucose concentrations during hypoglycemia and hypoinsulinemia. 
Diabetes Care 25:889-893, 2002

18. Guerci B, Floriot M, Bohme P, Durain D, Benichou M, Jellimann S, 
Drouin P: Clinical performance of CGMS in type 1 diabetic patients 
treated by continuous subcutaneous insulin infusion using insulin 
analogs. Diabetes Care 26:582-589, 2003

19. Shichiri M: Artificial Endocrine Pancreas. Development and Clinical 
Applications. Kumamoto, Japan, Kamome Press Co., 2000

20. Albisser AM, Leibel BS, Ewart TG, Davidovac Z, Botz CK, Zingg W: An 
artificial endocrine pancreas. Diabetes 23:389-404, 1974

21. Renard E, Costalat G, Moran B, Shah R, Zhang YN, Villegas D, Kolopp 
M, Lebel R, Bringer J: First combined implantations of a long-term IV 
glucose sensor and an intra-peritoneal insulin pump in diabetic 
patients. Diabetes 50.A3, 2001

133



References

22. Cobelli C, Foster DM: Compartmental models: Theory and practice 
using the SAAM II software system. Mathematical Modelling in 
Experimental Nutrition 445:79-101, 1998

23. Carson ER, Cobelli C, Finkelstein L: The Mathematical Modeling of 
Metabolic and Endocrine Systems. New York, Wiley, 1983

24. Akaike H: A new look at the statistical model identification. IEEE 
Trans.Automat.Contr. AC-19:716-723, 1974

25. Schwartz G: Estimating the dimension of a model. Annals Of Statistics 
5:461-464, 1978

26. Cobelli C, Foster D, Toffolo G: Tracer Kinetics in Biomedical Research. 
From Data to Model. New York, Kluwer Academic/Plenum Publishers, 
2000

27. Hovorka R, Vicini P: Parameter estimation. In Modelling Methodology 
for Physiology and Medicine. Carson ER, Cobelli C, Eds. San Diego, 
Academic Press, 2001, p. 107-151

28. Vicini P, Cobelli C: The iterative two-stage population approach to 
IVGTT minimal modeling: improved precision with reduced sampling. 
Intravenous glucose tolerance test. Am. J.Physiol. 280:E179-E186, 
2001

29. Cobelli C, Bier DM, Ferrannini E: Modeling glucose metabolism in man: 
Theory and practice. Horm.Metab.Res. 24:1-10, 1990

30. Bolie VW: Coefficients of normal blood glucose regulation. 
J.Clin.Invest. 39:783-788, 1960

31. Ackerman E, Gatewood LC, Rosevear JW, Molnar GD: Model studies 
of blood-glucose regulation. Bull.Math.Biophys. 27:21-37, 1965

32. Charrette, W. P., Kadish, A. H., and Sridhar, R. A nonlinear dynamic 
model of endocrine control of metabolic processes. 1967. Stockholm. 
7th Int. Conf. on Med. and Biol. Eng. 16-8-1967.

33. Cerasi E, Fick G, Rudemo M: A mathematical model for the glucose 
induced insulin release in man. Eur.J.Clin.Invest. 4:267-278, 1974

134



References

34. Insel PA, Liljenquist JE, Tobin JD, Sherwin RS, Watkins P, Andres R, 
Berman M: Insulin control of glucose metabolism in man. J.Clin.Invest. 
55:1057-1066, 1975

35. Guyton JR, Foster RO, Soeldner JS, Tan MH, Kahn CB, Koncz L, 
Gleason RE: A model of glucose-insulin homeostasis in man that 
incorporates the heterogeneous fast pool theory of pancreatic insulin 
release. Diabetes 27:1027-1042, 1978

36. Sorensen, J. T.: A physiologic model of glucose metabolism in man 
and its use to design and assess improved insulin therapies for 
diabetes. PhD Thesis. Massachusetts Institute of Technology, 1985

37. Cramp DG, Carson ER: The dynamics of short-term blood glucose 
regulation. In Carbohydrate Metabolism: Quantitative Physiology and 
Mathematical Modelling. Cobelli C, Bergman RN, Eds. Chichester, 
Wiley, 1981, p. 349-367

38. Cobelli C, Federspil G, Pacini G, Salvan A, Scandellari C: An 
integrated mathematical model of the dynamics of blood glucose and 
its hormonal control. Math.Biosc. 58:27-60, 1982

39. Salzsieder E, Albrecht G, Fischer U, Freyse EJ: Kinetic modeling of the 
glucoregulatory system to improve insulin therapy. IEEE 
Trans.Biomed.Eng. 32:846-856, 1985

40. Berger M, Rodbard D: Computer-simulation of plasma-insulin and 
glucose dynamics after subcutaneous insulin injection. Diabetes Care 
12:725-736, 1989

41. Bergman RN, Ider YZ, Bowden CR, Cobelli C: Quantitative estimation 
of insulin sensitivity. Am. J.Physiol. 236:E667-E677, 1979

42. Lehmann ED, Deutsch T: A physiological model of glucose interaction 
in Type 1 Diabetes Mellitus. Journal of Biomedical Engineering 14:235- 
242, 1992

43. Boroujerdi MA, Umpleby AM, Jones RH, Sonksen PH: A simulation- 
model for glucose kinetics and estimates of glucose- utilization rate in 
type-1 diabetic-patients. Am.J.Physiol. 31 :E 766-E 774, 1995

135



References

44. Cobelli C, Toffolo G, Ferrannini E: A model of glucose kinetics and their 
control by insulin, compartimentai and noncompartmental approaches. 
Math.Biosc. 72:291-315, 1984

45. Mari A: Mathematical modelling in glucose metabolism and insulin 
secretion. Curr.Opin.Clin.Nutr.Metab.Care 5:495-501, 2002

46. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, 
Turner RC: Homeostasis model assessment: insulin resistance and p- 
cell function from fasting plasma glucose and insulin concentrations in 
man. Diabetologia 28:412-419, 1985

47. Hosker JP, Matthews DR, Rudenski AS, Burnett MA, Darling P, Bown 
EG, Turner RC: Continuous infusion of glucose with model 
assessment: measurement of insulin resistance and p-cell function in 
man. Diabetologia 28:401-411, 1985

48. Cobelli C, Pacini G, Toffolo G, Sacca L: Estimation of insulin sensitivity 
and glucose clearance from minimal model: New insights from labeled 
IVGTT. Am.J.Physiol. 250:E591-E598, 1986

49. Regittnig W, Trajanoski Z, Leis HJ, Ellmerer M, Wutte A, Sendlhofer G, 
Schaupp L, Brunner GA, Wach P, Pieber TR: Plasma and interstitial 
glucose dynamics after intravenous glucose injection - Evaluation of 
the single-compartment glucose distribution assumption in the minimal 
models. Diabetes 48:1070-1081, 1999

50. Vicini P, Caumo A, Cobelli C: The hot IVGTT two-compartment minimal 
model: indexes of glucose effectiveness and insulin sensitivity.
Am.J. Physiol. 273:E1024-E1032, 1997

51. Avogaro A, Bristow JD, Bier DM, Cobelli C, Toffolo G: Stable-label 
intravenous glucose tolerance test minimal model. Diabetes 38:1048- 
1055, 1989

52. Caumo A, Cobelli C: Hepatic glucose production during the labeled 
IVGTT: estimation by deconvolution with a new minimal model.
Am.J.Physiol. 264:E829-E841, 1993

53. Cobelli C, Caumo A, Omenetto M: Minimal model S-G overestimation 
and S-l underestimation: improved accuracy by a Bayesian two- 
compartment model. Am J Physiol 277:E481-E488, 1999

136



References

54. Ferrannini E, Smith JD, Cobelli C, Toffolo G, Pilo A, DeFronzo RA: 
Effect of insulin on the distribution and disposition of glucose in man. 
J.Clin.Invest. 76:357-364, 1985

55. Hovorka R, Shojaee-Moradie F, Carroll PV, Chassin LJ, Gowrie IJ, 
Jackson NC, Tudor RS, Umpleby AM, Jones RH: Partitioning glucose 
distribution/transport, disposal, and endogenous production during 
IVGTT. Am.J.Physiol. 282:E992-E1007, 2002

56. Natali A, Gastaldelli A, Camastra S, Sironi AM, Toschi E, Masoni A, 
Ferrannini E, Mari A: Dose-response characteristics of insulin action on 
glucose metabolism: a non-steady-state approach. Am.J.Physiol. 
278:E794-E801, 2000

57. Mari A, Stojanovska L, Proietto J, Thorburn AW: A circulatory model for 
calculating non-steady-state glucose fluxes. Validation and comparison 
with compartimentai models. Comput.Methods Programs Biomed. 
71:269-281,2003

58. Zierler KL: Theory of the use of arteriovenous concentration differences 
for measuring metabolism in steady and non-steady-states.
J. Clin.Invest. 40:2111-2125, 1961

59. Aussedat B, Dupire-Angel M, Gifford R, Klein JC, Wilson GS, Reach G: 
Interstitial glucose concentration and glycemia: implications for 
continuous subcutaneous glucose monitoring. Am.J.Physiol. 278:E716- 
E728, 2000

60. Moberg E, HagstromToft E, Amer P, Bolinder J: Protracted glucose fall 
in subcutaneous adipose tissue and skeletal muscle compared with 
blood during insulin-induced hypoglycaemia. Diabetologia 40:1320- 
1326, 1997

61. Schmidt FJ, Slatter WJ, Schooner AJM: Glucose concentration in 
subcutaneous extracellural space. Diabetes Care 16:695-700, 1993

62. Sternberg F, Meyerhoff C, Mennel FJ, Mayer H, Bischof F, Pfeiffer EF: 
Subcutaneous glucose concentration in humans: real estimation and 
continuous monitoring. Diabetes Care 18:1266-1269, 1995

63. Summers LKM, Clark ML, Humphreys SM, Bugler J, Frayn KN: The 
use of microdialysis to monitor rapid changes in glucose concentration. 
Horm.Metab.Res. 31:424-428, 1999

137



References

64. Rebrin K, Steil GM, Van Antwerp WP, Mastrototaro JJ: Subcutaneous 
glucose predicts plasma glucose Independent of Insulin: implications 
for continuous monitoring. Am.J.Pf?ys/o/.E561-E571, 1999

65. Seme EH, IJzerman RG, Gans ROB, Nijveldt R, de Vries G, Evertz R, 
Donker AJM, Stehouwer CDA: Direct evidence for Insulin-induced 
capillary recruitment in skin of healthy subjects during physiological 
hyperinsulinemia. Diabetes 51:1515-1522, 2002

66. Sternberg F, Meyerhoff C, Mennel FJ, Mayer H, Bischof F, Pfeiffer EF: 
Does fall in tisue glucose precede fall in blood glucose? Diabetologia 
39:609-612, 1996

67. Thennadil SN, Rennert JL, Wenzel BJ, Hazen KH, Ruchti TL, Block 
MB: Comparison of glucose concentration in interstitial fluid, and 
capillary and venous blood during rapid changes in blood glucose 
levels. Diabetes Technol.Ther. 3:357-365, 2001

68. Schaupp L, Ellmerer M, Brunner GA, Wutte A, Sendlhofer G,
Trajanoski Z, Skrabal F, Pieber TR, Wach P: Direct access to interstitial 
fluid in adipose tissue in humans by use of open-flow microperfusion. 
Am.J.Physiol. 39:E401-E408, 1999

69. Trajanoski Z, Brunner GA, Schaupp L, Ellmerer M, Wach P, Pieber TR, 
Kotanko P, Skrabal F: Open-flow microperfusion of subcutaneous 
adipose tissue for on- line continuous ex vivo measurement of glucose 
concentration. Diabetes Care 20:1114-1121, 1997

70. Bantle JP, Thomas W: Glucose measurement in patients with diabetes 
mellitus with dermal interstitial fluid. Journal Lab Clin Med 130:436-441, 
1997

71. Lonnroth P, Jansson PA, Smith U: A Microdialysis method allowing 
characterization of intercellular water space in humans. Am.J.Physiol. 
253:E228-E231, 1987

72. Lonnroth P, Jansson PA, Smith U: A microdialysis method allowing 
characterization of intercellular water space in humans. Am.J.Physiol. 
253.E228-E231, 1987

73. Hoss U, Salgado M, Sternberg F, Rinne H, Pfeiffer EF: Insulin lispro 
improves glycémie control in iddm patients under continuous 
subcutaneous insulin infusion (CSII). Diabetologia 40:1320, 1997

138



References

74. Bolinder J, HagstromToft E, Ungerstedt U, Arner P: Self-monitoring of 
blood glucose in type 1 diabetic patients: Comparison with continuous 
microdialysis measurements of glucose in subcutaneous adipose 
tissue during ordinary life conditions. Diabetes Care 20:64-70, 1997

75. Berger M, Cuppers HJ, Hegner H, Jorgens V, Berchtold P: Absorption 
kinetics and biologic effects of subcutanously injected insulin 
preparations. Diabetes Care 5:77-91, 1982

76. Binder C, Lauritzen T, Faber O, Pramming S: Insulin pharmacokinetics. 
Diabetes 7:188-199, 1984

77. Owens DR, Jones MK, Birtwell AJ, Burge CT, Jones IR, Heyburn PJ, 
Hayes TM, Heding LG: Pharmacokinetics of subcutaneously 
administered human, porcine and bovine neutral soluble insulin to 
normal man. Horm.Metab.Res. 16 Suppl 1:195-199, 1984

78. Kang S, Brange J, Burch A, Volund A, Owens DR: Subcutaneous 
insulin absorption explained by insulin's physicochemical properties. 
Evidence from absorption studies of soluble human insulin and insulin 
analogues in humans. Diabetes Care 14:942-948, 1991

79. Nucci G, Cobelli C: Models of subcutaneous insulin kinetics. A critical 
review. Comput.Methods Programs Biomed. 62:249-257, 2000

80. Kobayashi T, Sawano S, Itoh T, Kosaka K, Hirayama H, Kasuya Y: The 
pharmacokinetics of insulin after continuous subcutaneous infusion or 
bolus subcutaneous injection in diabetic patients. Diabetes 32:331-336, 
1983

81. Kraegen EW, Chisholm DJ: Insulin responses to varying profiles of 
subcutaneous insulin infusion: kinetic modelling studies. Diabetologia 
26:208-213, 1984

82. Puckett WR, Lightfoot M: A model for multiple subcutaneous insulin 
injections developed from individual diabetic patient data. Am J Physiol 
269:E1115-E1124, 1995

83. Shimoda S, Nishida K, Sakakida M, Konno Y, Ichinose K, Uehara M, 
Nowak T, Shichiri M: Closed-loop subcutaneous insulin infusion 
algorithm with a short-acting insulin analog for long-term clinical 
application of a wearable artificial endocrine pancreas. Front
Med.Biol.Eng. 8:197-211, 1997

139



References

84. Berger MP, Rodbard D: A pharmacodynamic approach to optimizing 
insulin therapy. Comput.Methods Programs Biomed. 34:241-253, 1991

85. Trajanoski Z, Wach P, Kotanko P, Ott A, Skraba F: Pharmacokinetic 
model for the absorption of subcutaneously injected soluble insulin and 
monomeric insulin analogs. Biomedizinische Technik 38:224-231, 1993

86. Berger MP, Rodbard D: Computer simulation of plasma insulin and 
glucose dynamics after subcutaneous insulin injection. Diabetes Care 
12:725-736, 1989

87. Mosekilde E, Jensen KS, Binder C, Pramming S, Thorsteinsson B: 
Modeling absorption kinetics of subcutaneous injected soluble insulin. J 
Pharmacokinet.Biopharm. 17:67-87, 1989

88. Ferrannini E, Wahren J, Faber OK, Felig P, Binder C, DeFronzo RA: 
Splanchnic and renal metabolism of insulin in human subjects: A dose- 
response study. Am. J.Physiol. 244:E517-E527, 1983

89. Brange J, Owens DR, Kang S, Volund A: Monomeric insulins and their 
experimental and clinical implications. Diabetes Care 13:923-954, 1990

90. Worthington DR: Minimal model of food absorption in the gut.
Med.inform.(Lond) 22:35-45, 1997

91. Hovorka R, Powrie JK, Smith GD, Sonksen PH, Carson ER, Jones RH: 
Five-compartment model of insulin kinetics and its use to investigate 
action of chloroquine in NIDDM. Am.J.Physiol. 265:E162-E175, 1993

92. Regittnig W, Trajanoski Z, Leis HJ, Ellmerer M, Wutte A, Sendlhofer G, 
Schaupp L, Brunner GA, Wach P, Pieber TR: Plasma and interstitial 
glucose dynamics after intravenous glucose injection - evaluation of the 
single-compartment glucose distribution assumption in the minimal 
models. Diabetes 48:1070-1081, 1999

93. Hovorka R, Bannister P, Eckland DJA, Halliday D, Murley DN, Rees 
SE, Young MA: Reproducibility and comparability of insulin sensitivity 
indices measured by stable-label intravenous glucose tolerance test. 
Diabetic Med. 15:234-246, 1998

94. Mari A: Assessment of insulin sensitivity and secretion with the labelled 
intravenous glucose tolerance test: improved modelling analysis. 
Diabetologia 41:1029-1039, 1998

140



References

95. Hansen K: Oscillations in the blood sugar in fasting normal persons. 
Acta Med.Scand. Suppl. 4:27-58, 1923

96. Marsh BD, Marsh DJ, Bergman RN: Oscillations enhance the efficiency 
and stability of glucose disposal. Am.J.Physiol. 250:E576-E582, 1986

97. Kraegen EW, Young JD, George EP, Lazarus L: Oscillations in blood 
glucose and insulin after oral glucose. Horm.Metab.Res. 4:409-413, 
1972

98. Van Cauter E, Désir D, Decoster C, Fery F, Balasse EO: Nocturnal 
decrease in glucose tolerance during constant glucose infusion.
J. Clin. Endocrinol.Metab. 69:604-611, 1989

99. Simon C, Weibel L, Brandenberger G: Twenty-four-hour rhythms of 
plasma glucose and insulin secretion rate in regular night workers. Am 
J Physiol Endocrinol Metab 278:E413-E420, 2000

100. Simon C, Brandenberger G: Ultradian oscillations of insulin secretion in 
humans. Diabetes 51:S258-S261,2002

101. Boden G, Ruiz J, Urbain JL, Chen XH: Evidence for a circadian-rhythm 
of insulin-secretion. Am.J.Physiol. 34:E 246-E 252, 1996

102. Van Cauter EV, Polonsky KS, Scheen AJ: Roles of circadian 
rhythmicity and sleep in human glucose regulation. Endocr.Rev. 
18:716-738, 1997

103. Plat L, Byrne MM, Sturis J, Polonsky KS, Mockel J, Fery F, Van Cauter 
EV: Effects of morning cortisol elevation on insulin secretion and 
glucose regulation in humans. Am.J.Physiol. 33:E36-E42, 1996

104. Sturis J, Polonsky KS, Mosekilde E, Van Cauter E: Computer model for 
mechanism underlying ultradian oscillations of insulin and glucose. 
Am.J.Physiol. 260:E801-E809, 1991

105. Van Cauter E, Shapiro ET, Tillil H, Polonsky KS: Circadian modulation 
of glucose and insulin responses to meals: relationship to cortisol 
rhythm. Am.J.Physiol. 262:E467-E475, 1992

106. Benn JJ, Bozzard SJ, Kelley D, Mitrakou A, Aoki T, Sorensen J, Gerich 
JE, Sonksen PH: Persistent abnormalities of the metabolism of an oral

141



References

glucose load in insulin-treated Type 1 diabetics. Metabolism 38:1047- 
1055, 1989

107. Jameson JL: Update: Insulin Lispro: A new, rapidly acting analogue. In 
Harrison’s Principles of Internal Medicine. Braunwald E, Fauci AS, 
Isselbacher KJ, Kasper DL, Hauser SL, Longo DL, Jameson JL, Eds. 
London, McGraw-Hill, 1999,

108. Berger M, Halban PA, Girardier L, Seydoux J, Offord RE, Renold RE: 
Absorption kinetics of subcutaneously injected insulin. Evidence for 
degradation at the injection site. Diabetologia 17:97-99, 1979

109. Owens DR: Clinical Pharmacological Studies in Normal Man. MA, 
MTP, Hingham, 1986

110. Steimer JL, Mallet A, Golmard JL, Boisvieux JF: Alternative 
approaches to estimation of population pharmacokinetic parameters: 
Comparison with the nonlinear mixed-effect model. Drug Metab.Rev. 
15:265-292, 1984

111. Murat A, Slama G: Influence of concentration on the kinetics of sc- 
infused insulin. Comparison between square-wave sc infusion and 
bolus sc injection. Metabolism 34:120-123, 1985

112. Binder C: Absorption of injected insulin. A clinical-pharmacological 
study. Acta Pharmacol.Toxicol. 2:1-84, 1969

113. Sonksen PH, Tompkins CV, Srivastava MC, Nabarro JDN: A 
comparative study on the metabolism of human insulin and porcine 
proinsulin in man. Clin.Sei.Mol.Med. 45:633-654, 1973

114. Tranberg KG: Hepatic uptake of insulin in man. Am.J.Physiol. 
237:E509-E518, 1979

115. Frost DP, Srivastava MC, Jones RH, Nabarro JDN, Sonksen PH: The 
kinetics of insulin metabolism in diabetes mellitus. Postgrad.Med. J. 
49:949-954, 1973

116. Kitabchi AE, Stentz FB, Cole C, Duckworth WC: Accelerated insulin 
degradation: an alternate mechanism for insulin resistance. Diabetes 
Care 2:414-417, 1979

142



References

117. Kang S, Brange J, Burch A, Volund A, Owens DR: Absorption kinetics 
and action profiles of subcutaneously administered insulin analogues 
(AspB9GluB27, AspBIO, AspB28) in healthy subjects. Diabetes Care 
14:1057-1065, 1991

118. Lauritzen T, Faber OK, Binder C: Variation in 125l-insulin absorption and 
blood glucose concentration. Diabetologia 17:291-295, 1979

119. Koivisto VA, Felig P: Alterations in insulin absorption and in blood 
glucose control associated with varying insulin injection sites in diabetic 
patients. Ann.Intern.Med. 92:59-61, 1980

120. Hildebrandt P, Sejrsen P, Nielsen SL, Birch K, Sestoft L: Diffusion and 
polymerisation determines the insulin absorption from subcutaneous 
tissue in diabetic patients. Scand.J.Clin.Lab Invest 45:685-690, 1985

121. Kolendorf K, Bojsen J, Deckert T: Clinical factors influencing the 
absorption of 12él-NPH insulin in diabetic patients. Horm.Metab.Res. 
15:274-278, 1983

122. Gough DA, Armour JC: Development of the implantable glucose sensor 
- what are the prospects and why is it taking so long. Diabetes 
44:1005-1009, 1995

123. Fischer U, Ertle R, Rebrin K, Freyse EJ: The wick technique - a 
reference method for implanted glucose sensors. Artif.Organs 11:314, 
1987

124. Bolinder J, Ungerstedt U, Amer P: Long-term continuous glucose 
monitoring with microdialysis in ambulatory insulin-dependent diabetic- 
patients. Lancet 342:1080-1085, 1993

125. Tamada JA, Bohannon NJV, Potts RO: Measurement of glucose in 
diabetic subjects using noninvasive transdermal extraction. Nat.Med. 
1:1198-1201, 1995

126. Schaupp L, Brunner GA, Schaller H, Bodelenz M, Wutte A, Wach P, 
Pieber TR: Glucose monitoring in the adipose tissue of type 1 diabetic 
patients using open-flow microperfusion and microdialysis. 
Diabetologia 44:A46, 2001

143



References

127. Claremont DJ, Sambrook IE, Penton C, Pickup JC: Subcutaneous 
implantation of a ferrocene-mediated glucose sensor in pigs. 
Diabetologia 29:817-821,1986

128. Pfeiffer EF, Meyerhoff C, Bischof F, Keck FS, Kerner W: On line 
continuous monitoring of subcutaneous tissue glucose is feasible by 
combining portable glucosensor with microdialysis. Horm.Metab.Res. 
25:121-124, 1993

129. Mueckler M: Facilita te glucose transporters. Eur.J.Biochem. 219:713- 
725, 1994

130. Kerr D, Cheyne EH, Weiss M, Ryder J, Cavan DA: Accuracy of 
Minimed continuous glucose monitoring system during hypoglycaemia. 
Diabetologia 44:A239, 2001

131. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P: Nitric- 
oxide release accounts for insulins vascular effects in humans.
J.Clin.Invest. 94:2511-2515, 1994

132. Steinberg HO, Brechtel G, Johnson A, Fineberg N, Baron AD: Insulin- 
mediated skeletal muscle vasodilation is nitric oxide dependent. A 
novel action of insulin to increase nitric oxide release. J.Clin.Invest. 
94:1172-1179, 1994

133. Stolic M, Russell A, Hutley L, Fielding G, Hay J, MacDonald G, 
Whitehead J, Prins J: Glucose uptake and insulin action in human 
adipose tissue - influence of BMI, anatomical depot and body fat 
distribution. Int.J.Obesity 26:17-23, 2002

134. Rebec MV, Neal DW, Farmer B, Scott M, Smous J, Melle B, Burson P, 
Cherrington AD: Comparison of plasma and interstitial fluid glucose 
obtained by microperforation. Diabetes 51 :A11, 2002

135. Lee A, Ader M, Bray GA, Bergman RN: Diurnal-variation in glucose- 
tolerance - cyclic suppression of insulin action and insulin-secretion in 
normal-weight, but not obese, subjects. Diabetes 41:750-759, 1992

136. Martin IK, Weber KM, Boston RC, Alford FP, Best JD: Effects of 
epinephrine infusion on determinants of intravenous glucose tolerance 
in dogs. Am.J.Physiol. 255:E668-E673, 1988

144



References

137. Hiatt JF, Kripke DF: Ultradian rhythms in waking gastric activity. 
Psychosomat Med 37:320, 1975

145



Personal Bibliograqhy

Personal Bibliography

Journal Papers

1. Chassin LJ, Wilinska ME, Hovorka R: Evaluation of glucose controllers 
in virtual environment: Methodology and sample application. 
Artif.Intel!.Med. (accepted)

2. Wilinska ME, Chassin LJ, Schaller HC, Schaupp L, Rieber D, Hovorka 
R: Modelling insulin lispro kinetics during CSII in type 1 diabetes. IEEE 
Trans.Biomed.Eng (in revision)

3. Wilinska ME, Bodenlenz M, Chassin LJ, Schaller HC, Schaupp L, 
Pieber TR, Hovorka R: Interstitial glucose kinetics in subjects with type 1 
diabetes under physiological conditions. Metabolism (submitted)

Abstracts

4. Canonico V, Orsini-Federici M, Ferolla P, Celleno R, Akwe J, Timi A, 
Chassin L, Wilinska M, Vering T, Hovorka R, Massi-Benedetti M: 
Evaluation of a feed back model based on simulated interstitial glucose 
for continuous insulin infusion. Diabetologia 45 (Suppl. 2):A322, 2002

5. Chassin, L, Wilinska, ME, and Hovorka, R Virtual type 1 'diabetic' 
treated by CSII: Model description. In: Proceedings of World Congress 
on Medical Physics and Biomedical Engineering, edited by Allen, B. and 
Lowell, N., Sydney, 2003

6. Chassin LJ, Haueter U, Hovorka R, Massi-Benedetti M, Orsini-Federici 
M, Pieber T, Schaller HC, Schaupp L, Vering T, Wilinska M: Closed-loop 
glucose control algorithm: Evaluation methodology by simulation. 
Diabetes Technol.Ther. 4:212, 2002

7. Chassin LJ, Haueter U, Hovorka R, Massi-Benedetti M, Orsini-Federici 
M, Pieber TR, Schaller H, Schaupp L, Vering T, and Wilinska M: 
Closed-loop glucose control algorithm: Evaluation methodology by 
simulation. In: First Diabetes Technology Meeting, San Francisco, 2001, 
A9

146



Personal Bibliograqhy

8. Chassin LJ, Haueter U, Hovorka R, Massi-Benedetti M, Orsini-Federici 
M, Pieber T R, Schaller H, Schaupp L, Vering T, and Wilinska M: 
Simulating control of glucose concentration in subjects with type 1 
diabetes: example of control system with inter- and intra-individual 
variations. In: Adaptive Systems and Hybrid Computational Intelligence 
in Medicine. Special Session Proceedings of the EUNITE-2001 
Symposium, edited by Dounias GD and Linkens DA, Chios: University of 
Aegean. 2001, p. 68

9. Chassin LJ, Wilinska M, and Hovorka R: The effect of temporary loss of 
glucose readings on closed-loop glucose monitor: An evaluation study 
using simulations. In: Third Annual Diabetes Technology Meeting, San 
Francisco, 2003, A145

10. Chassin LJ, Wilinska ME, Hovorka R: Assessing the effect of delay in 
glucose sampling on closed-loop glucose control: A simulation study. 
Diabet.Med. 19 (Suppl. 2):69, 2002

11. Chassin LJ, Wilinska ME, Hovorka R: Simulating closed-loop glucose 
control: Effect of delay in glucose measurement. Diabetes 51 (Suppl.
2):1606, 2002

12. Chassin LJ, Wilinska ME, Hovorka R: In silico methodology to test 
closed loop control system in type 1 diabetes. Int.J.Artif.Organs 26:658, 
2003

13. Hovorka R, Canonico V, Chassin LJ, Massi-Benedetti M, Orsini-Federici 
M, Pieber TR, Schaller HC, Schaupp L, Vering T, and Wilinska, M: 
Control of glucose in type 1 diabetes with subcutaneous insulin infusion: 
Non-linear model predictive control with Bayesian parameter estimation. 
In: Proceedings of World Congress on Medical Physics and Biomedical 
Engineering, edited by Allen B and Lowell N, Sydney, 2003

14. Hovorka R, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini-Federici 
M, Pieber, TR, Schaller H, Schaupp L, Vering T, and Wilinska M: Model 
predictive control algorithm for artificial pancreas. In: First Diabetes 
Technology Meeting, San Francisco, 2001, A26

15. Hovorka R, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini-Federici 
M, Pieber TR, Schaller H, Schaupp L, Vering T, and Wilinska M Model 
predictive control algorithm: using nonlinear model to control glucose 
excursions in subjects with type 1 diabetes. In: Adaptive Systems and 
Hybrid Computational Intelligence in Medicine. Special Session 
Proceedings of the EUNITE-2001 Symposium, edited by Dounias, G. D. 
and Linkens, D. A., Chios: University of Aegean. 2001, p. 44

147



Personal Bibliograqhy

16. Hovorka R, Chassin LJ, Haueter U, Massi-Benedetti M, Orsini-Federici 
M, Pieber TR, Schaller HC, Schaupp L, Vering T, Wilinska M: Model 
predictive control algorithm for artificial pancreas. Diabetes 
Technol. Then 4:221,2002

17. Schaller H, Bodenlenz M, Schaupp L, Plank J, Wach P, Pieber TR, 
Chassin LJ, Wilinska M, Hovorka R, Haueter U, Vering T, Orsini- 
Federici M, Celleno R, Canonico V, Akwe J, and Massi-Benedetti M: 
MPC algorithm controls blood glucose in patients with Type 1 diabetes 
mellitus under fasting conditions using IV-SC route. In: First Diabetes 
Technology Meeting, San Francisco, 2001, A48

18. Schaller HC, Bodenlenz M, Schaupp L, Plank J, Wach P, Pieber TR, 
Chassin LJ, Wilinska M, Hovorka R, Haueter U, Vering T, Orsini- 
Federici M, Celleno R, Akwe J, Canonico V, Massi-Benedetti M: MPC 
algorithm controls blood glucose in patients with type 1 diabetes mellitus 
under fasting conditions using the IV-SC route. Diabetes Technol. Ther. 
4:234, 2002

19. Schaller HC, Bodenlenz M, Schaupp L, Wutte A, Wach P, Pieber TR, 
Chassin LJ, Wilinska M, Hovorka R, Haueter U, Vering T, Orsini- 
Federici M, Celleno R, Canonico V, Akwe J, Massi-Benedetti M: 
Regelung des Blutzuckerspiegels von Patienten mit Typ-1-Diabetes 
mellitus mit hilfe des MPC-Algorithmus. Acta Med.Austriaca (Suppl. 
55):19, 2001

20. Schaller HC, Schaupp L, Bodenlenz M, Wutte A, Plank J, Sommer R, 
Zapotoczky H, Semlitsch B, Chassin LJ, Wilinska ME, Hovorka R, 
Vering T, Wach P, Pieber TR: Avoidance of hypo- and hyperglycaemia 
with a control loop system in patients with type 1 DM under daily life 
conditions. Diabete Metab 29:A2225, 2003

21. Schaller HC, Schaupp LA, Bodenlenz M, Sommer R, Wutte A, Semlitsch 
B, Chassin LJ, Wilinska M, Hovorka R, Wach P, Pieber TR: Feasibility 
of the SC-SC route for an extracorporeal artificial pancreas. Diabetes 
51:462, 2002

22. Vering T, Beyer U, Both M, Heiniger H, Hutzli I, Kalt L, Kaufman H, Patte 
C, Trosh M, Zaugg C, Hovorka R, Chassin, LJ, Wilinska M E, Kohler H, 
Schaupp L, Schaller HC, and Pieber, TR: Minimally invasive control loop 
system for SC-SC control on patients with type 1 diabetes. In: Third 
Annual Diabetes Technology Meeting, San Francisco, 2003, A21

24. Wilinska ME, Chassin LJ, Schaller HC, Schaupp L, Pieber TR, and 
Hovorka R: Modeling insulin lispro kinetics during physiological

148



Personal Bibliograqhy

conditions in subjects with type 1 diabetes treated by CSII. In: 
Proceedings of World Congress on Medical Physics and Biomedical 
Engineering, edited by Allen B and Lowell N, Sydney, 2003

25. Wilinska ME, Schaller H, Schaupp L, Pieber TR, Chassin LJ, Hovorka 
R: Hypoglycaemia reduces and insulin increases interstitial to plasma 
glucose ratio during physiological conditions in subjects with Type 1 
diabetes. Diabetologia 45:960, 2002

26. Wilinska ME, Schaller HC, Schaupp L, Pieber TR, Chassin LJ, and 
Hovorka, R: Modelling interstitial glucose kinetics in subjects with type 1 
diabetes during physiological conditions. In: Proceedings of the Second 
Joint IEEE EMBS-BMES Conference, Houston Texas, October 2002, 
edited by Ghorbel FH, Piscataway, NJ: IEEE, 2002, p. 228-229

27. Wilinska ME, Schaller HC, Schaupp L, Pieber TR, Chassin LJ, Hovorka 
R: Relationship between interstitial glucose and plasma glucose during 
physiological conditions. Diabet.Med. 19 (Suppl. 2):71, 2002

149



Appendix

Appendix

This Appendix contains the menu groups for 32h study reported in Chapter 4. 

The top table specifies how the subjects were allocated to these menu groups
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Appendix

Menu group allocation

Subject No. 1 2 3 4 5 6 7 8 9 10 11 12

Menu group [BE'/day] 14 10 14 14 10 14 14 20 10 14 17 14

1 BE = 12g Carbohydrates

10 BE-Menu group

Meal CHO [%] ([g]) Fat [%] ([g]) Proteins [%] ([g])
Dinner 1 39(38) 29(12) 34(33)

Breakfast 71(48) 12(4) 19(13)

Lunch 41(39) 30(13) 30(29)

Dinner 2 53(40) 35(12) 13(10)

14 BE-Menu group

Meal CHO [%] ([g]) Fat [%] ([g]) Proteins [%] ([g])
Dinner 1 43(48) 26(13) 32(35)

Breakfast 73(61) 11(4) 18(15)

Lunch 48(62) 25(15) 28(37)

Dinner 2 40(52) 46(27) 15(20)

17 BE-Menu group

Meal CHO [%] ([g]) Fat [%] ([g]> Proteins [%] ([g])
Dinner 1 47(59) 24(13) 30(37)

Breakfast 63(73) 25(13) 14(17)

Lunch 49(75) 23(16) 29(44)

Dinner 2 43(64) 44(29) 16(23)

20 BE-Menu group

Meal CHO [%] ([g]) Fat [%] <[g]) Proteins [%] ([g])
Dinner 1 51(73) 23(14) 26(37)

Breakfast 67(86) 23(13) 13(17)

Lunch 52(88) 22(16) 28(47)

Dinner 2 38(71) 46(38) 17(32)
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