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Abstract

A novel method of integrating multiple neural networks into one large network via a 

process referred to as a neural network linking process is proposed.

Neural networks are commonly trained to solve a specific problem for an 

encapsulated problem domain. A single network can undertake simple classification 

or generalisation problems. Dividing them into sub-problems, which in turn are 

solved by a sub-network, can disentangle more complicated classification or 

generalisation problems. A controller generally combines sub-network results. A 

controller can be, for instance, a gating network, voting system or a mathematical 

combiner. In each case, every sub-network is used as a separate unit and is not inter-

connected to any other sub-network.

However, with the linking process a novel method for linking trained sub-networks 

into one large network by maintaining the knowledge of each individual sub-network 

is introduced. Furthermore, the linked network will utilize a stimulus process in order 

to distinguish the type of sub-problem to be solved, by largely retaining the accuracy 

of the sub-network, as well as being one step closer to the biological reality.



f

Original Contributions

The original contributions of this thesis may be summarised as follow:

• The creation of a framework for combination of hidden neurons by means of 

linking weight vectors, referred to as the linking process.

• Pruning of trained neural networks using the linking process.

• Introduction of domain membership that is held within neurons so that the 

weight vector length of each hidden neuron can be controlled.

• Study on where domain membership information can be induced into neurons 

to control their individual outputs and subsequently their contribution to the 

output of the overall network.

• Development of a stimuli network that generates input vector domain 

membership information for control of hidden neurons.

• Creation of penalty function to reduce weight updates for the backpropagation 

training algorithm to prevent the saturation of the summed input of hidden 

neurons.

• Linking of entire neural network weight matrixes for sharing of information 

for the purpose of improving the generalisation.

• Application of neural networks to claims reservation for general insurance 

companies and subsequent linking for improving forecasting capability.
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Chapter 1

Introduction

1.1 Introduction

The term linking, as used throughout this thesis, has originated from the 

C programming language. Creating a working program in C from source code, in its 

simplest form, employs two-step process. Step one is the compilation and pre-

processing of the source code into a tokenised form. Step two is to link references 

tokens within the code to existing library functions into the compiled code to create 

the entire program [1, 2, 3],

Already existing code is the foundation of every software program. This is because 

the programmer can concentrate on the business logic that is to be implemented 

instead of writing code to access hard disks or graphics cards. With so many different 

computer hardware configurations, the most efficient method of writing software is by 

using the computers operating system device and function libraries because all 

appropriate drivers are present.

A direct comparison between the program creation of the C programming language 

and neural networks has been the basis of the concept of the neural network linking 

process. Because basic operations are contained in pre-compiled repositories or 

libraries, utilisation of such component libraries is archived by linking them together
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with the program source code in need of the additional functionality, as shown in 

figure 1.1.

Figure 1.1 Linking source code and functions from a general-purpose library.

Most general-purpose functions contained in function libraries are used in 

programming source code to simplify the task for the developer and to speed up 

product development. For the reason that the functions contained in libraries can be 

called from different locations in the programming source code they are referred to as 

being reusable. With this, programming time and the size of the completed program 

can be considerably reduced. General-purpose libraries are a substantial part of every 

programming language. They can be shared, bought or sold on the open market, 

permitting developers to extend their programming environment easily.

In this thesis, the analogy of sharing and re-using libraries in programming languages 

has been successfully applied to the development of neural network structures. To 

date, neural networks are commonly trained to solve one specific problem with data 

from one problem domain. As a consequence, many researchers are continuously 

training new neural networks for data modelling, classification or interpolation issues. 

Once a neural network has been trained it is generally used in isolation without further 

integration of knowledge from other sources. Some attempts have been made to 

include symbolic knowledge into neural networks [4-9]. Every neural network is able 

to gain knowledge from different domains by learning from examples [10, 11]. But
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they are generally trained to solve one particular problem for a single problem 

domain.

Complex problems which belong to more than one problem domain, can be simplified 

by using the divide-and-conquer principle in which a set of specialized sub-networks 

can be combined to form the final network [12-14].

The divide step of the divide and conquer principle can be done either by designing 

different networks for each problem domain or by purely probabilistic methods [15- 

17]. The conquer step can be a specific function of the outputs of one or more sub-

networks or the output of the sub-network with the best performance [18, 19].

This thesis will introduce the utilisation of two different knowledge domains to train 

sub-neural networks which will be combined via a linking process into a single 

network. This follows the analogy of creating an application in a high level 

programming language, where the building blocks are firstly compiled (training of 

sub-networks) and then linked (network linking process).

The combination of neural network outputs to obtain a better result has been well 

researched and documented in the past [20-23], The most common systems separate 

the training data by input space, train several networks for each problem domain and 

recombine the individual results. Such systems called Mixtures of Experts (ME), 

break one problem into sub-tasks, train a neural network and then combine the results 

with an output function or voting scheme [24-27],

The methodology that combines the outputs can be based on a linear or non-linear 

mathematical function (mathematical combiner) [28, 29] or a neural network itself 

(gating network) [30, 31]. Possible voting schemes between experts are Winner Takes 

All (WTA) or democratic systems [32-35], The general concept of a ME system with 

gating network [36] is that a single expert is responsible for the output of a region 

within the input space. Whereby the decision of which network(s) to choose for that 

region lies with the implementation of the network controlling the gate.

Figure 1.2 shows the underlying principles of problem separation, expert training and 

expert recombination in one illustration. Problem separation can be used to divide the
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training data into several domains. In order to find a suitable representation of the data 

for domain separation, linear transformation such as Principal Component Analysis 

(PCA) [37, 38], Factor Analysis (FA) [39, 40], Projection Pursuit (PP) [40] and 

Independent Component Analysis (ICA) [41] can be used. Most of these methods 

reduce the dimensionality so that clusters within the data can be found. Such clusters 

can then be used for the creation of separate knowledge domains and to train domain 

experts.

After separation of the training data into domains, individual neural network experts 

can be trained for optimal performance within their domain. Depending on the 

distribution of data within the domains input space and the location of the desired 

generalisation in hyperspace, the generalisation can be divided into interpolation or 

extrapolation [42],

Expert recombination amalgamates the outputs of the individual domain experts into 

one output. The most recent research topic that involves expert recombination 

currently is Hierarchical Mixture of Experts (HME) [43-49],

Problem Separation'

t . . .  g

-  Expert Training

Expert Recombination

n e
Weighted Summed Linked

Figure 1.2 Linking can be categorised as an expert recombination method.
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1.2 Problem Separation

Breaking up the input space into piecewise solutions will reduce the complexity of 

their interpretation [50-52], In particular, the role of individual parameters and 

individual sub models (domain experts) is easily discerned. This is not the case for 

global models, where it is more difficult to ascertain the role of domain experts [53], 

The advantage of domain experts is that they can be discarded or re-trained if their 

performance is substandard. Other advantages are rapid incremental learning of 

domain experts, fast cross-validation and no major local minima issues [54],

1.2.1 Self Organising Maps

There are several possible methods of partitioning the input space. For example, 

SOM’s have the ability to perform an optimal partitioning of the input space. Their 

hierarchical decomposition of the input space yielded good results in many 

applications [55], SOM’s are beneficial for input space partitioning because of several 

reasons. They are less prone to local minima during the optimisation of the cluster 

centres, clustering results in Voronio tessellation (tiling of space without major gaps), 

the probability density of the inputs is preserved and the map is aligned to the largest 

principle components in the data set, i.e. it performs PCA.

1.2.1 Multi-Layer Perceptron

Other neural networks such as the standard Multi-Layer Perceptron (MLP) network or 

the Radial Basis Function (RBF) neural network, too, have the ability of partitioning 

multidimensional data [56-59], The basic functioning of a MLP neural network is that 

the first hidden layer uses hyperplanes to partition the input space into a number of 

sections by way of dividing space with decision boundaries. The shape or the decision 

boundaries is depending on the neuron activation function e.g. linear, non-linear or 

radial. Decision boundaries are based on the fact that boundaries are located at the
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point in input space where a small change of an input value causes a large change in 

output value [60-62],

1.2.3 Classic Methods

Whatever the partitioning method, it is imperative to consider the scalability of the 

proposed method. Some classic methods for partitioning, for instance, Delaunay 

tessellation [63] is known to optimally partition the input space, yet costs increase 

almost quadratic if the number of samples increases for high-dimensional functions 

[55], This means that the method is prohibitive for problems where many patterns are 

expected. For this reason, many researchers use neural network based methods for 

input space partitioning especially SOM’s [55], Additionally, there are other more 

traditional methods for input space separations such as Fourier transform and 

polynomial approximation.

1.2.4 Avoiding Need for Problem Separation

One of the most uncomplicated way of partitioning the training data input space into 

domains is to prevent mixing domain information in the first place. If data originated 

from different sources that have nothing or very little in common, it can be assumed 

that the extracted data originated from different domains [64, 65], Therefore if the 

data is collected independently or can be separated accurately, the need for complex 

input space separation can be avoided.

1.3 Expert Training

Using multiple experts requires that the problem domain can be separated into 

different partitions and that each partition can be solved by a domain expert that can 

be either rule based, a neural network, a fuzzy system, a genetic algorithm or others.
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Because this thesis is in relation to linking of neural network weight matrixes, only 

neural networks will be used as domain experts.

The quality of expert training and the resulting approximation of the output generated 

depend for the most part on the partitioning of the input space and on the complexity 

of the objective function [66]. If the partitioning algorithm awkwardly chose 

boundaries, continuous partitioning of the input space can further reduce the 

complexity of an objective function to simplify expert training.

Some disadvantages of training multiple experts are poor generalisation performance 

since other domains are not present in training data of a single expert and increased 

memory and disk space since every expert needs to be treated in separation. But the 

linking process eliminates some of the disadvantages caused by multiple experts such 

as inadequate generalisation and increased network size.

1.3.1 Rule Based Systems

Rule based systems are algorithms in form of a computer program that emulates a 

human expert in a well-bounded domain of knowledge [67-69]. Characteristically, a 

rule based expert system consists of three major components as shown in figure 1.3. 

The first one being the dialog structure, second one the inference engine and the last 

one the knowledge base [70], The dialog structure is the interface between the user 

and the system. User interfaces are designed to verbally explain their reasoning, much 

like a human expert would. The inference engine “drives” the computer to perform 

search strategies that arrive at various conclusions. The knowledge base is the set of 

facts and rules (heuristics) about the specific task at hand. Fore more information on 

rule based systems, please refer to the following publications and textbooks [71, 72],

Figure 1.3 Three major components of a rule based system.
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1.3.2 Neural Networks

The inspiration of neural networks originated form the biological nervous system [73- 

78]. A neural network consist of a collection of interconnected processing units 

referred to as neurons that have the ability of performing many computational tasks 

such as classification, generalisation and optimisation [79]. One important feature is 

the capability to adjust the internal representation of the model to the data that is used 

for training. A process referred to as learning or training accomplishes the flexibility 

of a neural network. A neural network consists of two major building blocks, the 

neurons and their connection weights.

Neurons, as used commonly, can have multiple inputs but only one output. The 

responsibility of the neuron is to sum up all incoming connections and process the 

sum by its activation function. This thesis has used sigmoidal-based activation 

functions such as the symmetrical and non-symmetrical sigmoid [80],

Weights determine the strength of connection between neurons in the network. This 

quantity is analogous to the biological synapse that determines the amplitude and sign 

of the signal affecting each neuron. The weights used in this thesis were continuous 

numbers with accuracy of 6 decimal places.

1.3.3 Fuzzy Systems

Fuzzy systems are related to rule based systems introduced in 1.3.1 and distinguish 

themselves mainly by the inference engines. Fuzzy systems are used where a system 

is difficult to model exactly i.e. limited or no data is available as it might be the case 

in a manually operated process.

Such processes are in general controlled by a human operator or expert because 

ambiguity or vagueness is common and key decisions must be made. A typical fuzzy 

system consists of fuzzyfication and defuzzyfication interfaces, a rule base and an 

inference engine as shown in figure 1.4.
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Figure 1.4 Major components of a typical fuzzy system.

The fuzzyfication interface the membership functions defined for the input variables 

are applied to determine the degree of membership for each premise. During the 

inference process, each premises truth-value is computed that is used for the 

conclusion part of each rule.

There are basically two inferences, Min or Product. If Min inference is used, the 

output membership function is clipped at a height that corresponds to the truth-value. 

If Product inference is used, the truth-value is used to scale down the output 

membership function.

During composition all domain memberships are combined to form a single truth- 

value for the entire fuzzy subset. As with the inference stage, there are two possible 

methods of composition, Max or Sum. If Max composition is used, the output fuzzy 

subset is constructed by using the largest output of all fuzzy subsets. If Sum 

composition is used, all fuzzy subset outputs are summed up to form a single output. 

The final stage is the defuzzyfication stage. Its purpose is convert the output of the 

fuzzy subsets into a numeric value. The most common defuzzyfication functions are 

Centre of Gravity (COG) or Mean of Maxima (MOM). If COG is used, the centre of 

gravity of a membership function is used and if MOM is used the mean value of all 

points where the membership function has its highest value.
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For more information on fuzzy systems, please refer to the following publications and 

textbooks [81-84],

1.3.4 Genetic Algorithms

Genetic Algorithms (GAs) are adaptive multi-dimensional search techniques, which 

were introduced by Holland [85-87] and are founded on the genetic processes of 

biological organisms based on Darwinian evolution theory. They have been applied 

successfully to solve many kinds of problems on search, optimisation, and machine 

learning.

Genetic algorithms and their extension to genetic programming make liberal use of 

vocabulary and concepts borrowed from the study of genetics. In particular, the 

existence of a genetic code, and the variation resulting from recombination and 

mutation during the reproductive process are fundamental to these methodologies. It 

is important to note however, that an extremely simplified version of human genetics 

is employed as the basis for genetic algorithms.

A GA operates on a problem that is specified in terms of a number of parameters that 

need to be optimised. One of the main features of GAs is that they hold a population 

of such parameters, so that many points in the problem space are sampled 

simultaneously. The population is generated by some heuristic and referred to as a 

vector or more traditionally as a string. Such strings contain coded data that are 

usually bit strings representing numbers or binary information with regards to a 

possible solution.

The search for the best strings starts by rating each strings solution against some form 

of test performance. A new population is then generated, by choosing the best strings 

preferentially. The simplest technique of doing this is to allocate children in 

proportion to their test performance. With this, the result is that the best string 

increases in number exponentially, and hence rapidly takes over the whole population. 

Other ways are to choose two members of the new population at random, or 

depending on their performance, and produce new offspring by mixing parameters
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from the parents by means of crossover. As a result the strings ABCD and EFGH 

might be crossed to produce AFCD and EBGH.

There are numerous surveys of the GA field such as Goldberg [88] gives a survey of 

the field within a textbook on genetic algorithms, Davis [89-91] who contributed 

numerous research papers and on a more practical matter [92] a handbook of GA and 

Michalewicz [93] gives an overview of genetic algorithms and their applications.

1.3.5 Decision Trees

Decision trees are graphical representations of actions that categorise the decisions 

made. Decision trees have been successfully applied in fields where multiple 

decisions based on an analysis lead to an outcome e.g. medicine and law. In medicine, 

a decision tree can be used to analyse a patient’s condition and suggest a course of 

treatment [94-97]. In law, a decision tree can be used to search existing cases by 

keywords to find similarities [98, 99],

A decision tree consists of a root node, branches and leaves. It represents a series of 

tests where each test is imposed at every step along the tree to form a complete 

analysis. Therefore, representing a functional map of domain knowledge starting from 

the root node, along its branches that are processed in order to reach a conclusion that 

is located in a leaf. Each path from the tree root to a leaf corresponds to a combination 

of tests and the tree itself corresponds to a collection of tests.

In more detail, classifications of instances are made by sorting them along the tree 

starting from the root node until a leaf is reached. Leaves provide classifications of 

the instance that is to be analysed. Every node within the tree denotes a test of some 

attribute and each branch descending from that node matches to one of the available 

values for this attribute. Each instance starts at the root node of the decision tree and 

is moved towards the tree branches whiles testing the attribute specified by each node, 

repeating this procedure until a leaf is reached. For a more complete and accurate 

treatment of the subject, the reader is encouraged to consult one of the many standard 

texts on decision trees [100-102],



Introduction 12

1.4 Expert Recombination

The identification of the conditions under which the combination of an ensemble of 

experts yields improved performance compared to the individual expert is the 

underlying objective of expert recombination.

The creation of experts with de-correlated errors can be accomplished by a variety of 

methods. Such methods include the training of different types of experts, same experts 

with different topologies or structures [103-106], training of expert systems with 

different initial starting points. All these methods can be used to create distinct experts 

on the same data without the need for input space separation.

Other methods that can be used for the same type of experts are training on separate 

or partly overlapping data, experts with different training algorithms using different 

input signals [107] or dissimilar feature representations of the input [108],

It is well understood that combining several experts is often superior to using the 

expert that performed best after training. Generally, each expert can consist of any 

model as illustrated in the previous sections. In its simplest form, experts can be 

combined linearly as a mean average a weighted sum or voting schemes.

There are two distinct types of expert recombination schemes, static and dynamic. 

With the static scheme, experts are evaluated on their performance and connected into 

a scheme of fixed weighting [109], With the dynamic scheme, the certainty of an 

expert in its output or its domain membership towards the input vector is determined 

and the contributions of each expert are evaluated during runtime [110].

The dynamic scheme, that calculates the contribution of each expert, requires some 

means of discriminatory quantity. Mostly the input vector that is applied to the experts 

is evaluated by some implementation of a gating network that is used to weight the 

output of the experts. This is arguably the preferred method because the weights 

connecting the experts are not static but instead depend on the input vector.
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1.4.1 Mathematical Combiners

The process of expert recombination requires a means of combining the outputs of 

experts. Outputs of multiple experts can be combined by means of sum, product, 

weighted sum, or more complex functions that may or may not be dynamic.

One of the most common methods of recombination of experts is the combination of 

their individual outputs via the mean (mean-rule), where the outputs of the individual 

classifiers are averaged. Several studies have been undertaken and shown that mean- 

rule combination reduces the mean-squared error when independent experts produce 

independent errors [111, 112].

Developments in a common theoretical framework for combining classifiers which 

use distinct pattern representations outlined a number of possible combination 

schemes such as product, sum, min, max, and majority vote rules [113]. The results 

demonstrate that the sum rule outperformed the other classifier combination schemes. 

One explanation given was that the sensitivity of various schemes to estimation errors 

and that the sum rule is the most resilient to estimation errors, so almost certainly 

explaining its superior performance.

1.4.2 Gating Network

The purpose of a gating network is to predict the probability that the output of specific 

domain experts is accurate. It is part of the expert recombination process insofar that 

the gating network decides the amount of contribution from each expert to some 

means of mathematical combiner that will produce the overall network output.

Its decision to chose one or more experts from an ensemble of experts could be based 

on many factors. Gating networks are generally connected to the same inputs as the 

experts are but this is not imperative. Gating networks can receive a subset or entirely 

different inputs to the experts located in the ensemble.

Gating networks can consist of SOM, MLP, Hopfield or any other networks. They are 

usually trained to classify input vectors into domain memberships. Subsequently, they
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can be using the same training data as the experts but do not require their targets since 

classification, not generalisation on the data is the objective. Alternatively, gating 

networks can be trained on separate data that contains expert membership information 

generated by i.e. feature extraction or PCA.

During the training of an ensemble with a gating network output and the output of 

experts, each network’s output influences the whole ensemble in a different way. 

Whereas the experts contribute their outputs to the combiner, that forms the output of 

the entire system, the output of the gating network is connected to the combiner. The 

combiner then processes the outputs of the experts and the gating network to generate 

the output(s) of the entire ensemble. With this, the gating network controls the 

propagation of each expert’s output to a greater or lesser extent.

During training the expert networks compete to let their output determine the system's 

output. Each expert network's weights are changed according to the back-propagation 

learning rule, which is applied in order to minimise the error of the whole system. The 

gating network's learning algorithm differentiates between winner and loser expert 

networks. It rewards the winner network by increasing its influence over the output of 

the whole system. This is achieved by increasing a factor for each winner that 

operates within the mathematical combiner. The gating network punishes the losers 

respectively by reducing the factor. The ready trained network is then able to rely on 

the specific task knowledge of the expert networks, as the gating network allows that 

network most suitable for a specific task to influence the output of the whole system 

to the greatest extent [114].

1.4.3 Democratic Systems

Another way of combining experts in an ensemble is the democratic approach of 

classifier voting. There is no controlling network, such as a gating network, in a 

democratic system. Each expert is analysing the incoming data and the output 

response and generate a means of best performance. This is followed by a voting 

system that will make a decision based on each expert’s performance. There are
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several voting schemes that have been researched [24, 25] but the two most popular 

ones are the “maximum votes” and the “majority” schemes. With the “maximum 

votes” scheme the system returns the classification suggested by the most experts 

[115]. With the “majority” scheme the system returns a classification if one is 

suggested by more than half of the modules [116].

1.4.4 Boosting and Bagging

Another method of creating multiple neural networks to solve a complex problem is 

the use of network ensemble methods. Ensemble methods differ from ME models in 

so far that all networks contribute towards the combined result. An ensemble consists 

of a set of individually trained networks whose predictions are combined when 

classifying unseen data for generalisation. Many researchers have proved that 

combination of individual network results in an ensemble improves generalisation. 

The two most popular techniques for creating networks that form part of an ensemble 

are Bagging and Boosting [106, 195, 196],

Bagging creates new training sets of the size of the original training set for each 

individual in the ensemble by randomly redistributing training records. As a result 

some training vectors may be repeated or omitted. This has the effect that each 

network is trained with different training data, therefore separating the input space. It 

is most effective on data with a high sensitivity where small changes in the inputs are 

related to large changes at the output or where similar input vectors have large 

differences in the output value [200],
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Figure 1.5 Bagging is a bootstrap method where every NN receives different training data.
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Boosting is the process of creating a series of classifiers, which are using training data 

based on the performance of the previous classifier. Boosting has received its name 

because it is boosting data samples that have been predicted poorly by the predecessor 

of the current classifier by repeating the most erroneous data sample in the training 

set. Therefore boosting is creating new classifiers in each generation that are better for 

prediction than the current classifier.

Figure 1.6 With boosting poorly performing records are duplicated to boost performance.

1.5 Neural Network Pruning

Real world problems can be solved with highly structured neural networks of large 

size. One of the issues arising with large network sizes is to minimise the size of the 

network whilst maintaining good performance. Neural networks that have been 

optimised in size are less likely to overfit and may thus generalise better on unseen 

data. In principle, there are two approaches to find the optimal size of a neural 

network, network growing and network pruning.

Network growing is a process where the network training has started with a relative 

small number of neurons and neurons are added during training to archive the 

required accuracy [201-203]. Since the linking process is a network reduction 

technique, network growing will not be discussed in great detail.

Network pruning is a process where weights or neurons are removed from a network 

that has started with a relative large number of neurons.
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Pruning is based on evaluation of the performance of a trained network by means of 

determining weights or neurons that do not affect the accuracy to any large extent and 

removing those weights or neurons [120, 204], The most widely used approach to find 

non-contributing neurons is by means of sensitivity analysis [60-62, 119]. In this 

method, a weight or all weights of a neuron are set to zero and the effect on the 

overall network performance is evaluated. Weights or neurons that have little effect 

can be identified and removed [138, 139, 205].

With the removal of non-contributing weights or neurons, pruning techniques can be 

split into three major categories, magnitude based, optimum brain damage and 

optimum brain surgeon.

1.5.1 Magnitude Based Pruning

The Magnitude Based pruning technique (MB) is based on the removal of weights 

that have the least affect on the training error and therefore a small saliency. The 

simplest approach of locating weights that can be removed is where saliencies are 

assumed to be corresponding to the magnitude (weight) value of the neuron 

connections. With this, weights that have small values are thought to have minor 

effect on the overall network output.

The basic approach is to start with an oversized neural network that contains too many 

weights for the objective function. After a reasonable amount of training, training is 

stopped (early stopping) and the weights are analysed. Weights are removed if their 

value lies outside the threshold. This removal process is referred to as weight 

elimination [211], This is generally followed by a continuation of the network 

training. This process is then continued until no more weights below the threshold can 

be found or the training and generalisation error reach satisfactory readings.

Given that neural network training is permanently updating weights into positive and 

negative directions, it cannot be guarantee that once weight values are outside the 

threshold limits that they will fall back into the limits. Therefore a method of “weight 

decay” has been used that will reduce weights by a certain amount during each
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training iteration [197-199]. The simplicity of the basic decay function, shown in 

equation (1.1) makes it a popular choice.

wnew = w 0,d( l - £ )  (1.1)

With e being the decay parameter chosen between 0 and 1 [197]. In this way, weights 

that are not required for reducing the error of the objective function become smaller 

and smaller until they fall within the threshold limits so that they can be removed 

altogether.

Weights that are required for the training to match the objective function cannot be 

decayed indefinitely otherwise the decay may offset the weight update and the 

network may start to oscillate. Furthermore, there is a necessity for determining how 

important additional requirements are in relation to the error of fit. With early 

stopping, it is important to find the best stopping point [206, 207].

The value used for the decay parameter e can be static e.g. 0.1 or dynamic. It is 

important for static weight decay parameters to be so small that they do not reduce the 

generalisation capabilities of the network significantly. They should also be large 

enough in order to prevent the training algorithm from being trapped in local minima. 

Dynamic weight decay values e.g. the quadratic weight decay function uses the sum 

of all vector lengths as a penalty term as shown in equation (1.2) [209],

f (vv) = H |2 = X w ,2 (1-2)
i=N

With N as referring to all weights within the neural network. This procedure operates 

during training by forcing some of the weights in the network to take values close to 

zero, while permitting other weights to retain their relatively large values. With this, 

all the weights in the network are treated equally.

Weights can be treated independently if an additional term is added to the update rule 

that takes the current weight into account. The simplest case uses a term that is
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proportional to the present size of the weight that is subtracted from the standard 

backpropagation weight change. Although usually better than no penalty at all, the 

problem with weight decay for non-linear networks is that it makes it hard for the 

network to develop significant non linearities since these can only be achieved 

through large weights [210].

1.5.2 Optimum Brain Damage

The Optimum Brain Damage pruning algorithm (OBD) aims to iteratively delete 

weights whose deletion will result in the least increase of the recall error of the neural 

network for the purpose of reducing and optimising the architecture of a neural 

network [212].

The OBD algorithm is estimating the importance of the weights for the recall error 

(training error) and ranks the weights accordingly to their saliency. Saliencies can be 

estimated by a second order expansion of the training error around its minimum. For 

weight Wj, the saliency is given by equation (1.3).

s , = - A  H .
V ^  train ^

W„ (1.3)

With Hii as the i-th diagonal element of the Hessian matrix of the un-regularized cost 

function and e as the weight decay associated with Wj. For reasons of simplification of 

the OBD algorithm, the following assumptions have been made:

• Terms of third and higher orders for the deleted weights can be neglected.

• The off-diagonal terms in the Hessian can be neglected (if more than one 

weight is pruned).

By repeatedly elimination of weights with the smallest saliencies (weight values not 

equal to zero) and retraining the resulting network, a size-optimised network is 

obtained. The iterative process can be stopped when the obtained estimate of the 

networks generalisation error is close to a required forecasting accuracy [213].
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1.5.3 Optimal Brain Surgeon

The Optimum Brain Surgeon pruning algorithm (OBS) can be considered as the 

slightly more complex extension of the Optimum Brain Damage (OBD) algorithm. 

Even though OBS and OBD are essentially founded on the same theoretical approach, 

OBS does not make any assumption about the form of Hessian matrix as the OBD 

does as described in section 1.4.5.2. This causes the OBS to be more complex but on 

the other hand more robust than OBD. Many researchers have found that optimum 

brain surgeon (OBS) is superior to magnitude based (MB) and optimal brain damage 

(OBD) techniques. Furthermore, OBS permits the pruning of more weights than other 

methods for the same error on the training set. With this, it has produced better 

generalisation results on test data. The disadvantage with OBS is that the inverse of 

the Hessian matrix has to be computed fully to judge saliency and weight change for 

every link. The computation of the full inverse Hessian matrix makes the OBS a 

complicated algorithm that is quite slow and takes much memory compared to the 

other methods. OBS is only mentioned for reasons of completeness and more detailed 

information can be found in [213-216],

1.6 Structure of the Thesis

This thesis is organised into 6 chapters with contain sections that relate to the subject 

of their corresponding chapters. The next paragraph denotes an executive summary of 

this thesis followed by more comprehensive summaries for each chapter.

Chapter 1 represents a short survey of topics that represent the background required 

to other chapters. Chapter 2 shows how the equations used for linking have been 

derived, this chapter contains the mathematical foundation of the linking process. 

Chapter 3 presents a simple application of linking to pruning. Chapter 4 introduces 

the stimuli network that is used as a classifier for the linked network. Chapter 5
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introduces the linking of two networks for inter and extrapolation. Chapter 6 uses the 

linking process for a real-life data example relating to the insurance industry. 

Furthermore, chapter 3 introduces a standard reporting linking results in table format. 

Once the table layout and contents have been understood, all other linking results can 

be comprehended easily.

1.6.1 Summary of Chapter 2: Derivation of the linking equation

This chapter introduces vectors and their notation in multidimensional space. Since 

neurons are written as weight vectors, they contain the knowledge of the neuron. 

Linking is a process at the heart of neurons because of that, chapter 2 describes the 

process of combining two neuron’s knowledge into one neuron. Neuron linking 

manipulates the network topology since neurons are removed with the objective to 

improve the generalisation capability and reduce the size of a linked network. Linking 

can be used for knowledge optimisation (network pruning) [117, 118] or knowledge 

combination (mixture of experts) [43-49],

Chapter 2 shows that weight vectors pointing in similar directions express similar 

knowledge. It shows how a 2:2:1 network is pruned into a 2:1:1 network by linking 

using 4 different ways of combining the knowledge of both neurons. The first linking 

method uses weight averaging, where weights of two neurons are summed and 

divided to create the mean average. After defining two methods for measuring vector 

component errors, an equivalent rate of error is calculated. The second linking method 

adds a weighting factor into the weight combination process with the objective to 

derive a function that shifts the error towards smaller weights. The third linking 

method derives the weighting factors from vector components, where each vector 

dimension will be individually weighted. The fourth linking method will utilise all 

findings from the previous linking methods. It is additionally introducing a vector 

length manipulation to allow linking of two vectors that have substantial length 

differences but point in the same, or opposite, direction.
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1.6.2 Summary of Chapter 3: Pruning of Neural Network Weight 
Matrixes

This chapter demonstrated the use of linking for pruning weight matrixes. It shows 

how neurons can be combined by linking instead of being removed by more 

traditional pruning algorithms [119-123], A neural network has been trained with a 

mathematical function and the recall and generalisation errors have been logged for 

benchmarking so that the performance of the pruned network can be evaluated.

This chapter discusses the loss of recall accuracy that may occur if hidden neurons are 

linked that have a large angle difference. It visualises weight vectors in 3D graphics to 

illustrate the pruning of complete neurons. In this process, a vector length adjustment 

factor F is calculated for vectors that point in similar, or opposite, directions but differ 

in length.

After the theory of hidden neuron linking has been discussed with a simple 2:2:1 

network, a numerical example with a more complex 2:20:1 network is introduced. 

Pruning by utilisation of the linking algorithm has reduced the network size from 20 

hidden neurons to just 15.

This chapter introduces the standard tables that will be used for analysis of the linking 

process. Such tables are: the list of angles between vectors (table 3.4), results of 

vector combination (table 3.5), vector component change impact analysis (table 3.6), 

vector length change impact analysis (table 3.7) and benchmark comparison (table 

3.8). Once the tables are understood it should be easy to follow all other analysis since 

the order and appearance of the tables is consistent throughout this thesis.

1.6.3 Summary of Chapter 4: The Stimuli Network

This chapter introduces the stimuli-response theory, which originated from the field of 

psychology but it remained unused in the field of neural networks. It describes in its 

simplest form how knowledge held in the brain is accessed if different stimuli 

information is applied [ 124].
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Chapter 4 introduces the activation of neurons by induction of stimuli into a neural 

network. Because the linking process is tagging neurons depending on their domain 

membership(s), each neuron holds information to which domain(s) it belongs. 

Depending on the stimuli information, neurons are encouraged to contribute to the 

overall network output if they belong to the domain(s) activated by the stimuli 

network. This is achieved by multiplication of each domain membership factor 

generated by the stimuli network with weight vector adjustment factors held in each 

linked neuron.

Two stimuli induction points in the neuron have been analysed given that the stimuli 

induction can be made prior or after the activation function. For that reason, an 

analysis of neuron sensitivity has been included. It has been found that neurons that 

have large numbers at their summed inputs prior to the activation function suffer from 

saturation.

To avoid neuron saturation, a modified backpropagation training update algorithm has 

been developed which uses a penalty function to reduce the weight updates of neurons 

that are close to saturation. With reduced weight updates on saturated neurons, weight 

updates of neurons that are not saturated change as usual to create a more uniform 

weight distribution throughout the entire weight matrix during training.

At the end of this chapter, linking of numerical experiments has been carried out with 

combinations of different stimuli induction points, saturated and unsaturated 

networks. Linking equations are calculated in detail including all explicit calculations 

and sub-totals to permit easy understanding. All linking results are subsequently 

compared with results obtained by utilisation of a gating network and a linear 

combiner. The chapter concludes with a direct comparison of recall error between all 

networks and ensemble methods discussed.
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1.6.4 Summary of Chapter 5: Linking of Neural Network Weight 
Matrixes

This chapter introduces linking for the purpose of combining domain knowledge from 

separate neural network weight matrixes. It extends the framework of linking single 

neuron to the linking of entire weight matrixes for the formation of a single entity. 

Such entities will consist of linked and non-linked neurons that have the ability to 

share common information between domains.

For controlling the neurons, a stimuli network has been deployed in order to 

categorise the domain membership of input vectors. Each neuron contains an internal 

table of domain memberships that determine to which domains it belongs. Once a 

domain classification of the input vector has been made, each neuron’s output will be 

depending on a match between the stimuli classification and the neuron’s internal 

classification table.

Furthermore, this chapter introduces the advantage network linking can make to a 

changing environment. Linking is beneficial for the reusability of already trained 

matrixes. This means that already trained networks can be linked with new or 

changing networks without the need to re-train networks that have already been 

successfully trained. With this, a collection of neural network weight matrixes can be 

stored, e.g. in a database and whenever a problem contained by a single domain needs 

solving, all networks that have been trained on sub-domains can be linked to form a 

new network that contains knowledge of the entire problem domain.

This chapter is training two networks with functions describing a path through 

3-dimensional space. After training, the input space is analysed to ensure both 

networks are sharing some input space sections so that the linked network is dealing 

with intersecting domains. Following the training, every single step required for 

linking of entire weight matrixes is presented. After linking, an error analysis on the 

linked weights is shown with tables that present an impact analysis for each linked

neuron.
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At the end of chapter 5, a numerical experiment is included that studies the influence 

that linking can have on interpolation and extrapolation. For that reason, training and 

testing data has been created that uses different sections of the input space, which has 

been spit into quadrants. Each quadrant of the input space represents interpolation or 

extrapolation depending on its position. Several neural networks have been trained 

with different quadrants in the training and testing data to create networks that are 

interpolating or extrapolating.

1.6.5 Summary of Chapter 6: Claims Reservation

This chapter focuses on a real-life application of linking neural networks for claims 

reservation for the insurance industry. Claims reservation is a very important issue for 

non-life Property and Casualty (P&C) insurance companies [125]. Insurance 

companies need to generate financial reserves for many reasons including liability 

management. If claims become payable, financial reserves that were taken from the 

money earned by premiums, need to be used. But how much money is reserved for 

this purpose depends strongly on history data for a particular risk group.

So far, no attempts have been found in the literature where neural networks were used 

for insurance claims reservation. Therefore a detailed analysis of available insurance 

data has been undertaken for the purpose of training data preparation. The result of 

this analysis includes the presentation of claims figures in triangular form and the 

extraction of training and testing data.

Two numerical examples are present in chapter 6. The first one uses data from only 

one insurance company and the second example uses data from two insurance 

companies. In each example, the data has been split into two domains and neural 

networks have been trained for each domain, which were subsequently linked after 

training.

There are already many existing numerical methods of calculating claims reservation. 

The most common one, the basic Chain Ladder Method (CLM) is introduced and
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discussed in detail. The results of the CLM will be used as a benchmark to compare 

the results obtained with the neural networks.

In the first example, training data from one company has been normalised and split 

into two domains, one domain contains information about development years (x- 

direction) and the other domain contains information about years of origin (y- 

direction). Following this, two networks have been trained for each of the domains 

and linked. During each stage, each neural network has been tested on its ability to 

forecast and all forecasting results have been summarised for comparison.

In the second example, training data from two companies has been normalised and 

split into two domains. Two training and testing data files, consisting of data from one 

company each, were used for training and testing. After training, the networks have 

been evaluated for their forecasting capabilities and linked. The objective of this 

numerical experiment was to attempt to transfer knowledge obtained by one company 

to the other company. For this purpose, both networks have been re-evaluated after 

linking and compared with their forecasting performance prior to linking.
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Derivation of the Neural Network Linking 

Equation

2.1 Introduction

Vectors are defined as being complete if the magnitude and the direction are given. A 

vector represents a quantity that has a direction as well as magnitude. A two- 

dimensional vector is shown in figure 2.1, which introduces the notation used in this 

thesis. The magnitude of a Vector is denoted graphically by its length and 

mathematically by its absolute value |w|. The vector direction is represented by its 

angle 9 between a point of reference and the vector itself. To fully describe a two- 

dimensional vector, only two numeric quantities (|w|, 0) are required [126].

W

Figure 2.1 Vectors are defined by direction and magnitude.
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Vector representation can be used for displaying many physical quantities in a 

graphical manner such as force or speed. Vectors can be used for graphical 

representation of neuron weights, as long as their dimensions do not exceed three. The 

most common coordinate system for representing vectors is the Cartesian coordinate 

system where every dimension is perpendicular to each other. This is also applicable 

to dimensions exceeding the all to familiar three-dimensional coordinate system. A 

coordinate system exceeding three dimensions is called Hyperspace because of their 

inherent difficulties of visualisation [127].

Weights associated with a neuron are a set of numbers that can be expressed as a 

vector or a row matrix in mathematical terms shown in figure 2.2.
'With W]B as the neuron bias.

Neuron with three weights Vector representation Row matrix representation

Figure 2.2 Neurons can be written as three-dimensional vectors or a row matrix.

Vectors representing neuron weights are called weight vectors. They are in principle 

ordinary vectors that can be manipulated with all the pre-defined mathematical 

methodologies from the field of vector algebra. Weight vectors contain all the 

knowledge held by a neuron and are the basis of neural network knowledge 

representation [128, 129]. Manipulation of a neuron’s weight vector will manipulate 

the knowledge of the neuron, therefore permitting knowledge manipulation based on 

the well-defined rules of vector algebra.

Linking of neurons is a process at the heart of neurons. It describes the process of 

combining two neuron’s knowledge into one neuron, minimising the inaccuracy of the 

combined knowledge if compared to the original neurons. Neuron linking 

encompasses areas of neural network research where network topology manipulations 

are considered necessary to improve network generalisation for inter- or
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extrapolation. Linking is a new knowledge combination approach, enriching the tools 

of neural network engineering for neural pruning and network fusion. It can be 

applied to the combination of entire neural networks or for the purpose of pruning a 

single network.

2.2 Linking of Neurons

Linking of neurons, which are representing similar knowledge into one single neuron, 

is a network topology manipulation algorithm. Like other topology manipulation 

algorithms, it will improve certain neural network behaviours at the price of loosing 

others. For example, behaviours such as generalisation can be improved but at the 

price of reduction of recall-accuracy [116, 130, 131].

Linking in this sense is effectively the combination of two multi-dimensional weight 

vectors from two neurons A and B into one weight vector of neuron R, as shown in 

figure 2.3. In other words, the removal of neurons will reduce the size of the hidden 

layer but may introduce changes in recall accuracy and generalisation.

Figure 2.3 Linking of neurons A and B into a neuron R with changes in generalisation.
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In the following sections different neuron linking algorithms will be introduced, 

starting with basic vector averaging and ending with weighted vector length and 

weight value averaging with correction factor. All linking algorithms introduced will 

try to link two weight vectors va and Vb to create a resulting vector vr. Vectors va and 

Vb are representing two hidden neurons and follow the standard weight indexing for 

the first two hidden neurons of a fully connected 2:2:1 neural networks as shown in 

figure 2.4. Equation (2.1) expresses the linking of vectors va of neuron A and vb of 

neuron B into vector vr of neuron R in mathematical vector notation.

Figure 2.4 Transforming a 2:2:1 network into a 2:1:1 network by linking hidden neurons.
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2.3 Linking Based on Averaging

Averaging is probably the most basic mechanism for combining two vectors. The 

resulting vector will simply be positioned between the two original vectors. Vectors 

are expressed as components in a Cartesian co-ordinate system or as row vectors. 

Combination of two vectors, which are placed in a two dimensional Cartesian co-

ordinate system, into an averaged vector, involves calculating the mean value of the 

components for each dimension as shown in equation (2.2) and graphically in figure 

2.5.

Figure 2.5 Creation of the resulting vector vr via simple component averaging.
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To be able to compare different ways of vector linking, a measure of error is required. 

A definition of error needs to be defined to suit the purpose to analyse the fitness of 

the resulting vector vr with regards to the original vectors. The most apparent measure 

of error is the distance between the resulting vector vr and each of the original vectors 

va and Vb. It can be expressed as the ratio of the distance between an original vector 

and the resulting vector (e.g.ar) divided by the total distance between the original 

vectors ( ab). Whenever two vectors are linked, as shown in figure 2.5, two errors 

errar and errrb can be calculated as shown in equation (2.3)

err = ar
~ab

err, rb_
ab

(2.3)

In an n-dimensional space, the distance ab between two vectors va and Vb can be 

determined via (2.4). The calculations of the distance ar between vector va and vr and 

the distance rb between vr and Vb are shown in (2.5) and (2.6) respectively.

ab = ^ (a t -Ò ,)2 +(a2 -  b2)2 +... + («„ ~ b n)2

ar = V(a i - n ) 2 + {a2 ~ ri Y + - +  (<*„-r„)2

rb = J{rl -  è ,)2 + (r2 - b 2)2 + ... + (r„ -  bn)2

(2.4)

(2.5)

(2 .6)
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Substitution of the components an, bn and rn for vectors va, Vb and vr from (2.2) into

(2.4) to (2.6) and substitution of ab , ar and rb from (2.4) to (2.7) into (2.3) leads to 

equations (2.7) and (2.8) for the errors of vector va (errar) and vector Vb (errrb) with 

respect to vr.

err,,
V(^n -w i i )2 +(w,2 - w [2)2 + ... + (w,„ - w [„)2 

V(W11 ~ W2l)2 + (W12 - W22)2 + - + ( W.„ ~ W2nf

Z k - < ) 2
7=1

wXj -  w2J Ì

(2.7)

7=1

r r i  \2 / ! \2 77 ; 7  ¿ ( wi7 w2j)
V W l - ^ 2 l )  +{WU - W22) + -  + W h - W 2 J  TH___________

V ( W  11 “ W 2 l ) 2 +  ( W 12 - W 22 ) 2 +  - + ( W 1„ - W 2 „ ) 2 J  ( w |y  -  W 2y ) 2

(2 .8)

In the case of simple vector component averaging, the resulting vector’s components 

are determined as shown in (2.2) or more generally in (2.9). Using (2.9) to substitute 

w’in in (2.7) and (2.8), the errors errar and errrb can be evaluated for the two 

dimensional example from figure 2.5 as shown in (2.10) to (2.12).

Wln + W2n (2.9)

wn +W21
- w ,

\ 2 /  \ 2 ' ' W)2 + W22
2 ■ »O+

err = \ y

V ( wi 1 -  w2l )2 +  (W12 -  W22 )2
(2 . 10)

w2 i~ wn +

err,..
V(W1I ~ W2\)2 + (W12 - W22)2

(2 . 11)

err,,. =
-J {w 2i- w n )2 +(w22- w n )2 J

^/(w,, -  W21)2 + (w,2 -  w22)2 2
(2. 12)
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err■ar (2.13)ab 2 ab 2

Following the same simplifications for errrb as for errar in (2.10) to (2.12) results in the 

equivalent rate of error of 50% between the resulting vector and the original vectors. 

Observation of equation (2.13) proves the equal distribution of the error between both 

original vectors, concluding that ar = rb as expected from an un-weighted mean 

average in (2.9).

2.4 Linking Based on Weighted Average by Vector Length

Linking of neuron weight vectors into one resulting weight vector can be achieved by 

different methods of vector combination. In section 2.3, a simple averaging method

was introduced, which distributed the distance ab between the two vectors va and Vb 

equally to 50% each. But simple weight component averaging does not take into 

account that stronger neuron weights have generally a higher contribution to the total 

neuron output [132, 133], This is specifically true if two neurons point in similar 

directions but have substantially different vector lengths. The linking of two neurons 

where one neuron’s vector length exceeds the other neuron’s vector length by a 

noticeable magnitude, should take this unbalanced contribution towards the total 

neuron output into consideration.

To overcome the disadvantages of the simple averaging method, a weighted average 

can be used. The weighted average used for the linking of neurons is the weighted 

arithmetic mean. There are several other weighted average methods available, such as 

the weighted geometric mean, but for reasons of direct comparison to the simple mean 

average presented in section 2.3, only the weighted arithmetic mean is discussed.
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In this method each neuron weight vector error errar and errrb is weighted with the 

vector lengths |va| and |vb| in such a way that the resulting vector vr is closer to the 

longest vector. A reduced distance towards the resulting vector vr represents a smaller 

error with respect to vr. An association between the vector lengths |va| and |vb| and the 

errors errar and errrb can be implemented to describe almost any functional 

relationship. But for reasons of simplicity a linear inversely proportional relationship 

between the vector lengths |va| and |vb| and their errors errar and errrb towards the 

resulting vector vr has been applied as shown in (2.14) to (2.16).

h i
i l1^l errrb

errar

h i
1 ~ ar ~ errar

errrh
rb

h i errrb _ ab _ rb

h i errar ar ar
ab

(2.14)

(2.15)

(2.16)

Equation (2.16) can be interpreted as the “division of a straight line by a given ratio”.

With this interpretation, the straight line ab is to be divided into ar and rb by the 

ratio Rab as shown in (2.17) and graphically represented in figure 2.6.

R.ab
K j = rb_ 
M ar

(2.17)

Figure 2.6 Division of a straight line ab by a given ratio Rat,.
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The calculation of the position of the resulting vector vr in terms of the ratio Rab is

--- —  —  GV GV
dividing the line ab into ar and rb . Using the distance ratio —  = = —=  and with

ab ar + rb

rb being proportional to |va| (2.14) and ar being proportional to |vb| (2.15) equation 

(2.18) can be derived.

or _ |v6|
(2.18)

ab (2.19)

The objective is to derive a function, which determines the position of vector vr by the 

means of va and Vb, taking into account the weighting constraint. Therefore, following 

the rules of vector algebra of free vectors1, vector vr can be defined by summing up 

the vectors va, vr and distance vector ar as shown in (2.20).

Resolved to ar :

ab vJ+v„

ar
f

v h
\

I k
+

v * i J

Resolved to vr:

va + ar -  vr = 0 

vr =va +ar

Substituting (2.19) into (2.21):

v = v  +
r

V b
\

I k
+ V a \ )

■ ab

(2 .20)

(2 .21)

(2.22)

Equation (2.22) leaves ab as being the only unknown left to conclude. Following the 

same steps as in (2.20), equation (2.23) can be derived and used for substitution in 

(2.22) to obtain (2.24).

V a +  a b  ~  V b =  0 (2.23)

1 Free vectors may be drawn anywhere in n-dimensional space as long its magnitude and direction are 
preserved.
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V = V „ +
f \

Ik + Va\)
• ( v . - v j (2.24)

e,(KKK1)1 (kK~KK) 
Kl+Kl KI+KI

KlV „ + \ KK + KK-lKK
K+ V a\

(2.25)

After simplification of (2.25), the resulting vector vr can be determined as:

v. = KK+Kllv*
1K+ 1 (2.26)

Equation (2.26) can be interpreted as the derivation of the resulting vector vr by 

applying the weighted arithmetic mean to vectors va and Vb so that the error distances

ar and rb between vector va and vr and vector vr and Vb are inversely proportional to 

their vector lengths |va| and |vb|.

To express this result in Cartesian coordinates as shown in section 2.3 equation (2.2)

for the case of simple mean average, let va be 

presented in figure 2.5 so that:

V*W
and Vb be

f w ^ w2\
Vw22 y

as graphically

f + V, w2.

lv J + lv *Vr -
{ < ) V0K 2 + I v i W22

K l + K

(2.27)

Equation (2.27) shows how the components of the resulting vector vr for a two- 

dimensional space are computed by substitution of the vector references in (2.26) with 

coordinate components. It shows that (2.26) is not restricted to any size of the 

dimensions and can be applied to any n-dimensional hyperspace. This is important 

since the number of input neurons, plus bias e.g. wib in (2.1), determine the 

dimensionality of the first hidden layer. The constraint of unlimited dimensionality
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within (2.26) is given and therefore its usability for linking of n-dimensional hidden 

neurons is satisfied.

Following the derivation of (2.26) for weighted vector linking, the error errar and errrb 

in relation to vectors va and Vb can be determined by applying (2.19) to (2.14) and 

(2.15), under the constraint of (2.28).

errar + errrh = 1 (2.28)

ar Kl
ab vhl+h

r 1 I
rb r hi
ab Jh+hi

err,
err + err.rb

err*
errar + errrh

errar
1

= err

errrb
1

= err,

(2.29)

(2.30)

err  - h
hi + hi

hi
hi + hi (2.31)

To verify the correctness of equations (2.31), errrb can be divided by errar in order to 

reconstruct equation (2.16) as shown in (2.32).

e r r rb _ hi hi +hi hi
e r r ar h +Kl h hi

(2.32)

2.5 Linking Based on Weighted Average by Vector Components

This section is introducing a less coarse method of weighted vector linking. It will not 

use the vector lengths as discussed in section 2.4. Instead it will utilise an error 

calculation for each dimension to gain a more precise weighting of the errors. In other 

words, instead of using only one weight ratio (the vector length ratio Rab) for 

weighting the overall error of a vector, each vector dimension will be individually



Derivation of the Neural Network Linking Equation 39

weighted. This can be achieved by creating a dimension specific ratio Rn in order to 

weight individual errors for each dimension.

Figure 2.7 Weighting of individual dimensions by a dimension specific ratio Rn.

Calculation of the ratio Rn for each dimension is based on the individual component 

values j for every dimension n. Each component value is denoted by Wj„, with wn 

being located in the first dimension of neuron 1 (vector va) and W22 being located in 

the second dimension of neuron 2 (vector Vb).

Following the results from section 2.4, equations (2.14) and (2.15), we can substitute 

the vector length |va| with wi„ and |vb| with W2n for each dimension n.

wln---------- winw2n ~ err2n
err,„

err,,

(2.33)

(2.34)

Equations (2.33) and (2.34) can be interpreted as the larger the value of wjn (wi„ or 

W2n), the lower its error errjn (errin or err2n) with respect to the distance of the resulting 

vector component w'in as graphically presented in figure 2.7.
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Following the analogy from section 2.4, equivalent equations to (2.16) and (2.17) with 

respect to individual weighting ratios for each dimension Rn can be derived.

win _ err2n . Wl nW2n
W2n errXn w,

K  = W1 n _ Wi W2n
W2 n Wl n K

(2.35)

(2.36)

Because of the apparent similarities between (2.16) and (2.35) and between (2.17) and

(2.36), the derivations of the equations for the resulting vector components will be 

equivalent to (2.18) to (2.26) with the following substitutions: wi„ for |va|, w2n for |vb|, 

win for va and w2n for vb. Therefore the derivation will not be repeated and only the 

result from (2.26) after substitution is shown in equation (2.37).

Wln ' I%  + W2n • W2n 
+ W2n

WU/  + W2n2 
W,n + W2n

(2.37)

Equation (2.37) can be interpreted as the derivation of the resulting vector 

components vr={w'n, w'i2---w'in} by applying the weighted arithmetic mean to the 

original vector components of va and vb, weighted by the individual components for 

each dimension, with n as the number of dimensions.

To express this result in Cartesian coordinates as shown in section 2.3 equation (2.2)

for the case of simple mean average, let va be 

presented in figure 2.5 so that:

and vb be
v”W

as graphically

v. =
w,
MV

2 \+ w 2l
' )  11 w n + w 2i 

2 , 2— o r more generally: v r —
12 J w n + w 22

1 W12 +  W22 )

(2.38)

v
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Extending the analogy to equations (2.28) to (2.30), equation (2.31) can be expressed 

with reference to the substitutions used to derive (2.37). Consequently, the errors for 

each individual dimension are:

w.,

+ ^2«

w,

+ W2n (2.39)

As for the example in figure 2.5, the two dimensional Cartesian coordinate system 

will find two error figures for each dimension, errn and err2i for dimension 1 (x-axis) 

and erri2 and err22 for dimension 2 (y-axis). Each error can be individually obtained 

by substituting n in (2.39) with 1 and 2 for each dimension respectively.

To determine the overall errors errar and err,t of the resulting vector vr with respect to

the distances ar and rb between the original vectors va and Vb as shown in (2.5), 

equations (2.7) and (2.8) apply. Since the original vector components have 

participated individually for each dimension, the equations (2.7) and (2.8) cannot be 

expressed by the means of |va| or |vb| as in (2.13) or (2.31). For that reason, (2.7) and 

(2.8) cannot be simplified and requires the errors to be calculated as presented.

2.6 Linking Based on Weighted Average by Vector Components 

and Length Manipulation

The combination of two vectors va, Vb into one resulting vector vr will always 

distribute the existing distance ab between the original vectors to some extent. Such 

distribution can be regulated by different error distribution methodologies, which can 

be derived in order to share the overall error under different conditions. These 

algorithms are only manipulating the error distribution but not the overall error. While 

the overall error is proportional to the distance between the endpoints ab of the 

original vectors, it will remain constant unless the original vectors are moved towards 

each other and the distance ab is reduced. But at this stage, the training of the
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network may have already been completed and manipulation of a cluster of trained 

weight vectors with the objective to reduce the distance between two vectors would 

affect the network behaviour to some unknown extent. Therefore, a more precise 

method, which manipulates the resulting weight vectors length |vr|, will be introduced 

in this section.

The objective to reduce the error components errar and errrb of the original vectors va 

and Vb without manipulating their original positions and the constraint for simplicity 

to keep the required computational complexity low, leads to the manipulation of the 

only free parameter, the resulting vector vr. With the findings of sections 2.3 to 2.5, 

the resulting vectors position and length can be adjusted to comply with the aims of 

each particular section to shift the error distribution closer to any one of the original 

vectors. If one of the resulting vector’s parameters (|vr|, 9r) is to be manipulated for 

the purpose of reducing the overall error, it would be the vector length |vr| because the 

vector length can be changed through simple multiplication by a number (scalar) F. 

Multiplying a vector by a scalar F changes the length of the vector by this factor so 

that if F = 4 a vector would be obtained with four times the length of the original 

vector. Multiplication with a negative number inverts the vector direction as well as 

changing its length, allowing even the linking of vectors of opposite direction.

This process is effectively a conversion of two vectors va and Vb into one resulting 

vector vri and a scalar F which can be used to multiply the resulting vector vri to 

change its length in order to get closer to any of the original vectors and subsequently 

reduce the overall error, see figure 2.8.

Error between vr2 and 
original vector vb

Figure 2.8 Reducing the errors between vectors by vector length multiplication.
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Figure 2.9 presents a graphical solution to the calculation of the resulting vector vr 

and the vector length-adjusting factor F. It will be used to aid the derivation of the 

mathematical equations required to find vr and F.

Figure 2.9 Graphical representation of distance reduction by vr vector length adjustment.

The method of deriving the resulting vector vr compared to previous sections in this 

chapter is similar to the method based on weighted average by vector components in 

section 2.5. In this section, one vector vr has been created that has a fixed length and 

location in n-dimensional space. For the purpose of reducing the errors errar, errrb 

between the original vectors and vr, the vector length |vr| is changed so that vr moves 

closer to one of the original vectors. In figure 2.9, vr can be seen as a solid line 

starting from the point Po and ending at Pr. This vector has been calculated with 

equation (2.37) of section 2.5. Analysis of the error errar between va and vr from

section 2.3 has proven a direct relationship between the distance ar and the error 

errar. Hence, reduction of the error errar can be achieved by reducing the distance 

between vector va and vr. This can be achieved by reducing the vector length |vr| so

that the minimum distance ar' , at point Pa between va and Pa, is met by adjusting the 

length of vector vr.
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To formulate the algorithms required finding the optimal vector length of vr towards 

vector va with mathematical means, a graphical solution can be found by producing an 

intersection Pa on vr by a circle ra with its centre point at va. The distance between Po 

and Pa is the length of vector vri, which is unknown. According to the law of

Pythagoras, the distance ar' is part of a right-angled triangle where va is the 

Hypotenuse. Because of this, ar' will always be orthogonal to vr, permitting a 

trigonometric solution as shown in (2.40).

P0Pa = K l I = COS(°0 • K  I (2‘40)

To find the unknown angle a  between vector va and vr the dot product between two 

vectors can be used for substitution into (2.40), shown in equations (2.41) and (2.42).

a .b = \a • \b • cos(a) (2.41)

cos(or) = a .b
|a| • |¿| (2.42)

After substitution of cos(a) and replacement of the letters a and b to the relevant 

vector references, equation (2.43) can be used to find the minimal distance between va

and vri ■

(2.43)

Subsequent replacement of the dot product va . vr with the individual components of 

an n-dimensional vector, equation (2.44) can be formed.

Z ( w.,
with vectors va =

' V
W,2

and vr -v /-l 1 1
k l

, W>nJ

(2.44)
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Given that the direction of vector vr remains unchanged and vri is pointing in the same 

direction, the length of vr must be adjusted by altering the vector component values 

for each dimension. To find the new vector components without changing the vectors 

direction, each angle for each dimension needs to be kept constant. In coordinate 

geometry, if two points are on the same line, then their height distance ratios are 

constant, as illustrated in figure 2.10 and equation (2.45).

AC _ AB 
AD ~ AE

(2.45)

Figure 2.10 Vectors with the same direction have identical component ratios.

In analogy to (2.45), the resulting vector length vr is equivalent to the distance AC 

and the distance AD can be represented by any arbitrary vector component of vr. The 

same is valid for the new error minimised vector vri, the distance AB can represent 

its length equivalent and the distance AE can represent any arbitrary vector 

component.

On the basis that the vector components of vectors vr and vri are defined as in (2.46), 

the replacement of the triangle components in (2.45) with their appropriate vector 

representations, is leading to equation (2.47).

( < )
( w  )  w r  11

II> w 'n

II

..
. 

^ to

Substitution of equation (2.45) with the vector lengths and components from equation 

(2.46) leads to equation (2.47).
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(2.47)

Changing (2.47) in order to show the unknown vector components wrin of vector vri 

to the left, leads to (2.48).

" rta= A " k , |  (2A8)

With equation (2.44), |vri| can be substituted in (2.48), leading to equation (2.49).

wr\n
j-i 7 = 1 (2.49)

Equation (2.49) can be interpreted as follows: Each component of vector vr] (wr]n), 

which has been error minimised with regards to vector va, can be determined by

multiplying any of the n-dimensional components of vr (w'in) with the dot product of
/  v

va . vr or expressed with vector components X ( wi»
V «

wi ) and divided by the

resulting vector length squared |vr|2.

Looking back to figure 2.8, vector vr can be calculated with vectors va and Vb and 

vector vri can be calculated with vectors va and vr. Suppose that vectors va and Vb are 

interchangeable by swapping their indexes, vector vr2 can be calculated with the same 

equations as vector vri except using vector pair Vb and vr instead of pair va and vr.

To find the factor F, which extends the length of vector vri to vector vr2, both vectors 

need to be computed and divided as shown in equation (2.50).

F = so that vr2 -  vrl • F (2.50)
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With equation (2.44) altered to determine vectors vri and vr2, equation (2.51) can be 

derived.

Z k  ' l% )  Z  (w2/ ' w\j)
v ,.l=  M t  |------ and K 2| = 'j=1 I - j------  (2.51)V V| r  | | r I

Utilising the vector lengths |vri| and |vr2| in equation (2.51) for substitution in (2.50), 

equation (2.52) can be constructed.

Z ( W2 j ' K )
i , "V-------------  (2-52)
Kl1 I k — t

7 = 1

Equation (2.52) can be interpreted as the division of the cross products of vectors Vb. 

vr and vectors va . vr. Therefore, equation (2.52) can be expressed in vector algebra as 

the division of two cross products as shown in equation (2.53) or derived in the same 

way as equation (2.52) but using (2.43) instead of (2.44).

V , , V
F = - b~ r (2.53)

k  .v r

To summarise the process of converting the original vectors va and Vb into vri and F 

e.g. with both original vector in two-dimensional space (n=2), the following steps are 

required:

1. Calculation of the resulting vector vr weighted by the original vector 

components as presented in section 2.5 and equation (2.37). 2

M and vb =
( w > w2l

, vector vr =

k .  + ^ 2 1

w n + w 2 ,

2 2

U w 1 ^ 2 2  J l W 1 2 j W 12 +W22 
{ k 2 + W 22  )

2. Modification of the length of vr to obtain vri to minimise the distance between 

vr and one of the original vectors e.g. va as presented in section 2.6 and
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equation (2.49) so that v rl

w ' u  • [ ( w l l ■ W l ' l ) + ( W 12 K ) ]

w i 2  • i w u

1 |2  

N

W i l )  +  ( * ' . 2 • < 2 )

3. Calculation of the length adjustment factor F to obtain vr2 for the minimisation 

of the distance between vr and the second original vector e.g. Vb as presented

in section 2.6 and equation (2.52), n=2, so that F -
(w2l ■w;i)+(w22 -w[2) 

(w .i ■w 'n)+(w i2 -w 'n) '

2.7 Combination of the output weights

With neuron linking only the weights associated to the neurons in question are 

involved in the calculations for the linking process. Because linking is applicable to 

the neurons of the hidden layer, further connections towards the next layer or to the 

output layer must be considered. The fact that two neurons will be converted into one 

neuron is that after linking one connection to the next layer will become superfluous, 

see figure 2.11. Superfluous weight connections cannot just be dismissed. They need 

to be integrated into the weight connection used after linking. Therefore output weight 

connection algorithms or simplifications to avoid inaccuracies need to be derived.

Figure 2.11 Linking hidden neurons requires weight combination from the next layer.



Derivation of the Neural Network Linking Equation 49

Since linking will always involve two neurons at a time as shown in figure 2.11, the 

forward path calculation of a network consisting of two neurons can be written as

shown in equation (2.54).

out = f ( f ( x in m J ) - v 0
r ( « / s: \

f If, ■wu ) •En + / Z \Xj ' W2j) * —12
V 7 \  J=l ^ y

(2.54)

With xin being the input vector, mh being the hidden layer matrix and v0 as the output 

vector. The neuron activation function is denoted as f() and the number of vector 

components in xin is represented as n.

Combination of the weights connecting the next layer should accomplish the same 

output as achieved prior to linking. As a result, it can be assumed that out = out' with 

the linked neuron vectors. Consequently, the forward path of the linked network can 

be written as shown in equation (2.55).

out' — f
/ ( » , \
/ If, K  ) • w 11 • (l + F)

V J y
(2.55)

The term (1+F) is used to expand the single linked neuron into two neurons, namely 

vri and vr2. It represents the length adjustment factor required to allow the linking of 

vectors with distinctive lengths.

In order to equate out (2.54) with out' (2.55) an easy but important simplification is 

made. With the assumption what the neuron activation function is a linear activation 

function with a slope of 1 and going through the point of origin (0,0), all activation 

functions can be ignored. With this assumption, the results of the following equations 

will only be valid for neurons with linear activation functions.

I f
VM

w1 j . +
» , 

I ( -
U=>

X , -w
2  j  ,

W,, =
" / 
I f

U=>

\ ,

w[j ) • w ii ■ (l + F) (2.56)

v J-1 /

(2.57)
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Setting the linked network output equal to the original network output equation ( 2 . 5 6 )  

can be derived. In order to calculate the combined output weight for the next layer, 

equation ( 2 . 5 7 )  is resolved for the output weight w ' n .  Because the input vector values 

can be of any arbitrary value, they have been set to 1 for further simplification.

In a case where the input vector consists of two components (n=2) and the network 

activation functions are all linear, equation (2.58) can be used to calculate the 

combined output weight.

W 11
(wu +wn )-wu +(wn +w22)-wi2 

(w[ i + w[2 ) • (l + .F ) (2.58)

Under perfect conditions w'n = wu, w'n = W12 and w'n • F = W21, w'12 • F -  w22, 

equation (2.59) can be derived.

w 11
{wu + w ]2) - w u + { w 2l + w 22) - w n 

{wu + wl2) + ( w 2l + w 22)
(2.59)

2.9 Conclusion

Neurons and their knowledge can be seen as pure vectors, containing information 

extracted from the training data. If two neurons contain similar knowledge their 

vectors will point in similar directions in hyperspace. But the length of the vectors 

does not seem to represent knowledge as such; it can be seen as a representation of 

certainty or strength of the knowledge. Therefore, neurons can be linked if they 

contain similar knowledge even if their length or certainty differs.

With the introduction of the vector length correction factor F, neurons that point in 

similar or opposite direction can be linked as long as the angle difference does not 

exceed a certain value. If weight vectors are facing opposite directions, the factor F 

will be negative, restricting the angle a vector can point to 0...180 0 instead of

0.. .360° doubling the probability that vectors are pointing in similar directions.
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In this chapter, different types of neuron combination methods have been discussed 

and analysed on their performance on a measure of error. Simple averaging has an 

error distribution of 50% for each vector as shown in equation (2.13). In the case of 

weighted averaging by vector length the error distribution is non-proportional to the 

length of each vector as shown in equation (2.32). If weighting is performed on a 

vector component basis the error distribution for each vector component is it’s 

component length divided by the sum of all component lengths as shown in equation 

(2.39). This weighting of vector components has been further extended to 

accommodate the vector length correction factor F that permits linking of vectors that 

have substantial differences in vector lengths.

There are certainly more possible techniques of linking neuron weight vectors into a 

new vector but the simplicity of the method using weighted vector components and 

length adjustment bears a great advantage.



Chapter 3

Pruning of Neural Network Weight Matrixes

3.1 Introduction

After the derivation of the linking equations in chapter 2, these equations are now 

used to demonstrate their application for pruning of weight matrixes. This chapter will 

highlight the effectiveness of pruning with the linking algorithm on a small, fully 

connected neural network. It will show how neurons can be combined to achieve 

pruning with the linking process instead of being removed to reduce redundant 

information held within the network. For this purpose, a single neural network will be 

trained on a simulated function approximation problem constructed as a numerical 

example of the utilisation of the linking process for pruning of post-trained networks. 

After network training, statistical analysis has been used to measure its accuracy on 

seen and un-seen training data. This analysis has been used as reference for the 

pruning results in order to evaluate its performance.

The outcome of network pruning is heavily dependent on the complexity of the 

objective function contained in the training patterns and the size of the hidden layer(s) 

of the network. If the objective function is uncomplicated, for example linear, not 

many hidden neurons will be required for modelling. If too many hidden neurons have 

been used on a simple objective function, the weights of some redundant neurons will
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have counterweights within the weight matrix that will render them superfluous [134]. 

If only one half of the set of compensating weights is removed, an imbalance can 

occur. Therefore it is important to find compensating weights in couples or groups. 

Furthermore, many redundant neurons can be expected if a simple objective function 

is used in conjunction with a large number of neurons in the hidden layer.

If, on the other hand, the objective function is complex and the number of hidden 

neurons in the hidden layer is small, redundant neurons may not be easily found. For 

the experiment in this chapter, a medium sized network with 20 hidden neurons and a 

reasonable complex objective function have been used in order to find redundant 

neurons that can be linked.

During network pruning the network accuracy may be reduced since trained 

information contained within the neurons is altered. But during pruning the number of 

free parameters is reduced, which will influence the generalisation capabilities of the 

network [135-137],

It is essential to set an objective for initiating the action of network pruning. This 

utilisation objective is dependant on the area of intended use of the network. If the 

network utilisation objective lies within the region of extrapolation, good 

generalisation capabilities outside the input space present in the training data is the 

priority. For this purpose it is recommended that the extracted testing data should be 

close to the extrapolation space.

But if the utilisation objective is interpolation of the input space close to the location 

of the training patterns, recall accuracy of the network must remain high during and 

after pruning.

Therefore it is recommended to analyse the sensitivity of the neurons prior to pruning 

[119, 138, 139], Neurons with high sensitivity towards the overall network 

performance should only be included in the linking process if their induced error is 

low, keeping the overall network performance mainly unchanged. Neuron sensitivity 

analysis as a significance measure can be in included in the linking equation if used 

for weighting of the total error between the weight vectors.



Pruning of Neural Network Weight Matrixes 54

3.2 Linking of two Hidden Neurons

This section gives an introduction to pruning using a simplified numeric example to 

show how two hidden neurons can be linked into one hidden neuron. For this purpose 

a neural network with two inputs, two hidden neurons and one output neuron (2:2:1) 

has been trained on a two dimensional mathematical function. For reasons of 

simplicity and to concentrate on the linking of hidden neuron weight vectors, all 

neurons have a linear activation function f(x) = x. To make it difficult for neurons 

with a linear activation function to exactly memorise the objective function [77], a 

non-linear objective function, shown in equation (3.1), has been used to generate 

training and testing data.

/ (x) = 3.5 ■ x, + 1.5 • *2 +1 (3-1)

The network weights have been initialised in the range of ±0.7 with 400 training and 

100 testing patterns. The stopping criterion has been set to the point where the Sum 

Square Error (SSE) of the testing data set, referred to as the generalisation error,

ASSE en
SSEgen reached a plateau and did not increase any further ------- —  « 0 . After

At

approximately 3000 training iterations this point was found with the learning rate of 

r)=0.01 and the momentum of m=0.3. At this point training was stopped and the SSE 

of the network with the training data SSEtm was 0.4702 as shown in figure 3.1 and the 

testing data SSEgen was 7.681 as shown in figure 3.2.

Although generating the training data is simple, there were considerations to be taken 

into account with regards to the testing data. For a fair measure of the generalisation 

error of a neural network for a simulated problem, the testing data has been extracted 

mainly from the centre of the generated data set to avoid extrapolation issues. In cases 

where the majority of the testing data is taken at the edges of the input space, the 

network will have to extrapolate causing high generalisation errors. Consequently,
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testing data is best taken where training data is surrounding the input space, thus 

leaving input space borders in the training data for better generalisation results [54],

Figure 3.2 SSEgen during training plotted against the number of batch training iterations.
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Simplification of an uncomplicated 2:2:1 neural network into a 2:1:1 network via 

linking of neurons does not seem to bring an advantage to the user at first sight. But 

the principle of combining neurons remains the same regardless of the size of the 

network or the dimensionality of the hidden weight vector. With the ability to link 

neurons, large networks can be pruned or small networks can be linked to alter the 

knowledge of a network. For these reasons, the hidden neurons of the trained 2:2:1 

network are linked into one hidden neuron to emphasise the simplicity of the linking 

paradigm.

Prior to linking, the weight vectors need to be tested for their direction because for the 

linking process to succeed they have to be sufficiently close. In this instance the 

neural network training has been restarted if the hidden weight vectors were not 

sufficiently close in direction, until a suitable set of weight vectors was found.

After only a few restarts, a suitable weight matrix with an angle difference of 172.89° 

was found. Although the angle difference appears to be high, caused by the fact that 

the vectors are pointing in opposite directions, the deployment of a negative 

reconstruction factor F will move both vectors into the same quadrant, leaving an 

angle difference of only 7.11°. The networks hidden and output weight matrixes and 

their vector notations, as denoted in chapter 2, are shown in equations (3.2) and (3.3).

w ,
-2 .94
4.35

-7 .70  -0 .32  
8.21 0.52

wkj = [ 1.04 1.03 -0.39] (3.2)

' -2 .94s "4.35N '  1.04 N

v . = -7.70
,-0 .32,

V6 = 8.21
,0-52,

v 0 = 1.03
-0 .39 ,

With help of the equations derived in chapter 2 for linking two hidden neurons into 

one, the objective is to create only two vectors, one for the resulting hidden neuron 

and a modified vector for the output neuron, since the hidden layer has been reduced
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from 2 to 1 hidden neuron, as shown in figure 3.3. The new hidden and output weight 

matrixes and vectors after pruning are shown in equations (3.4) and (3.5).

W j l  =  k ' i  K  W ' l B ] wu = W  11 W  \B (3.4)

f v O
(  '  \

K
W  11h. 

© 1

y i B , I f f  1 b )

(3.5)

Changing the network topology has created an equivalent network that performed 

similarly on testing data as the original network did. The change from a fully 

connected to the linked network topology is graphically presented in figure 3.3.

Figure 3.3 Transformation of a 2:2:1 network into a 2:1:1 network by linking of a hidden neuron.

Several possible techniques for creating a resulting hidden neuron weight vector v’r 

have been introduced in chapter 2 but only one for the combination of the output 

weight vector v '0. Therefore the combination of the output vector v '0 will be 

introduced in the next section and alternative equations for the creation of the 

resulting vector v 'r will be introduced in later sections.
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3.2.1 Combination of Output Weights

In section 2.7 the equation for the modified output weight vector has been derived. Its 

purpose is to compensate for the loss of one of the hidden neurons involved in the 

linking process. When two hidden neurons are linked, one of the connections to the 

next layer, in this example the output layer, will become superfluous and must 

therefore be combined with the weight used to connect the resulting hidden neuron. 

One of the major simplifications with respect to the combination of the output weight 

vector has been the linear neuron activation function, which has been intentionally 

used for this example to concentrate on linking of hidden neurons.

With equation (2.58) the combined output weight can be calculated with the vectors in 

(3.3) and (3.4) as given in equation (3.6).

wh +  W 12 ) ' f f n  + ( w 2i + w 2 2 ) - ™ n  

(wu +w,2)+(w21 +w22)

(-  2.94 -  7.70)-1.04 + (4.35 + 8.21) -1.03 
(-2.94-7.70)+(4.35+ 8.21)

0.994 (3.6)

Since the bias of the output neuron is not affected by the linking of the hidden 

neurons, no changes to w 'ib take place. Because of this, the bias remains unchanged 

and with the combined weight, the modified output weight vector v '0 for the linked 

hidden neuron can be calculated as shown in equation (3.7).

v’ =
f  ’ \

W 11 "0.994"
1

Ilf ìb) ,-0 .39,
(3.7)
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3.2.2 Linking for the Purpose of Pruning

The essence of linking neurons is to link two hidden neurons trained with the training 

data into one resulting hidden neuron and a reconstruction factor F. The equations 

derived in section 2.6 for hidden neuron linking will now be used for this numeric 

example to create the resulting hidden neuron. For this purpose the following three 

steps are required:

1. Calculation of the resulting vector vr

2. Modification of the length of vr to obtain vri

3. Calculation of the length adjustment factor F.

Step 1 involves the evaluation of equation (2.37) as shown in equation (3.8) below.

v. = w'

\ w xbJ

w,i + w212 3

w u +  w 21
2 2

w n +  W 22

w i2 + w 22
2 2

W IB +  w 2B

v  B +  W2 B J

f  2,942 + 4.352 ^
2.94 + 4.35 

7.702 + 8.212
7.70 + 8.21 

0.322 + 0.522
0.32 + 0.52

- 3 .7 8 0
-7.963
-0.447

(3.8)

For the second step equation (2.49) is used to move the resulting vector vr closer 

towards vector va as shown in equation (3.9).

w r 12

\ WrXBj

K  -((wn - S J + K b 'O Ib ))

w¡2 ■ ((WU ■ )  +  ( W 12  '  K ) + ( W,B ■ W'lB) )

• ( ( ■w'u ) + ( w i2 ■ ^ n ) + h v \B - w 'xb ) )

^-3.523 A 
-7.419 

0.4 1 6 y
(3.9)
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In the last step equation (2.52) is used to calculate the vector length adjustment factor 

F, which is used to stretch vector vri towards vector Vb to minimise the distance 

between the vectors. The computation ofF is given in equation (3.10).

r, . A wn ■w 'n)+(^22-w 'n)+(w2B -w Ib ) _ ,
b - 1 -------- 7X~7-------- TTT7---------TY - ' 1' 1304 (3-10)(wn -wu )+(wl2 ■Wn )+ (w w -wlB)

For easier visualisation, both vectors va and -Vb are shown with their resulting vectors 

vri and -vr2 (vr2 = F • vri) in figure 3.4. It becomes apparent, that vectors va and Vb are 

pointing in opposite directions since the correction factor F is negative. Therefore, 

vectors Vb and vr2 have been inverted in figure 3.4 so that all vectors can be presented 

in the same quadrant for easier visualisation.

Figure 3.4 Linking of vectors va and Vb into one vector vrl and a length adjustment factor F.
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With all calculations completed, the new linked network can be assembled as shown 

in figure 3.5.

Figure 3.5 Network with only one hidden neuron after linking.

3.2.3 Measuring Linked Neurons Output Performance

To measure the performance benchmarks of the network after linking, a modified 

backpropagation forward path calculation needs to be applied. The forward path 

calculation will act as if the linked neuron contains two vectors instead of one. The 

first vector involved in the forward path calculation is vri, without vector length 

adjustment, and the second vector is vr2, which includes the adjustment factor F.

In the current example the hidden layer neurons are denoted with the indices j and the 

output neurons with k. With this notion, the summed input into the neurons are 

denoted as netj and netk and the neurons output as Oj and Ok for hidden and output 

neurons respectively. The linear activation function used caused the neurons output to 

be equal to the neurons summed input Oj = netj and Ok = netk. Following the 

definitions, the forward path can be calculated as given in (3.11).

o \  = net\ = o) ■ w'u +w \B = net',  ■ w'„ + WlB (3.11)

The summed input of the linked neuron net, will act as if the linked neuron contains 

two vectors vri and vr2.

net) = {xin ■ vrl + x m -vr2) = ( x w ■ vH + x in ■ vr, • F )  = (1 + F)  • ■ vrl (3.12)

With Xin as the input vector xin =
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Substitution of the appropriate vector components of vri in equation (3.12) with (3.5) 

will lead to (3.13).

net) = ((*, ■w'n +x2 -w[2 +w ;B)+ (x , •w’11+x2 ■ w'l2 +w[B) - F ) (3.13)

Now substituting equation (3.13) into (3.11) will produce the entire equation for the 

network output Ok with respect to the linked neuron as shown in (3.14).

= ((* w u +x2 + w1B w u +x2 w, + w'lB )• F)- w  n + w \b (3.14)

After reapplication of the training and testing data on the simplified linked network 

the linked network performance benchmarks have been calculated and presented in 

table 3.1. To increase statistical reliability the entire experiment has been repeated 30 

times and the averages, minimums and maximums for training and testing pattern are 

reported. It can be seen, that the neuron linking has caused an improvement of the 

networks overall generalisation accuracy on average from 7.675 to 2.870 a reduction 

of 63%. This result can be based on the fact that the network has been over-trained, 

since the network did learn the objective function very accurately. On the other hand, 

the recall error SSEtm has increased by a significant amount, by factor 13, after 

linking. The low SSEtrn error of only 0.49 confirms that the network was over-trained. 

Overall, linking has reduced the generalisation error but increased the recall error.

Table 3.1 Comparison between trained and linked network benchmarks for 30 runs.

Description Trained Network Linked Network
Min Max Average StDev Min Max Average StDev

S S E trn 0.265 1.221 0.4931 0.2451 5.695 7.486 6.950 0.4484
S S E gen 6.708 8.052 7.675 0.3399 2.466 3.044 2.870 0.1598

With the linking, the network hyperplane has been shifted towards the solution space 

of the linked weight vector vri as shown in figure 3.6, where the complete input space 

for xi and X2 (0 < xi < 1 and 0 < X2 < 1) against the networks output Ok is presented in 

a 3-dimensional coordinate system.
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Figure 3.6 The trained and linked network hyperplanes presented for the entire input space.

This simplified pruning example on a regression-based problem has utilised all 

relevant equations introduced for neuron linking on a small example. It has addressed 

the linking process in detail with little consideration of the combination of the weights 

connected to the neurons output, referred to as the output layer. To overcome the 

problem of combining the weights connecting the linked hidden neurons to the output 

layer, the chosen activation function for the output neuron was linear. In the next 

section a larger network has been trained with a more complex non-linear regression 

problem where the activation function is sigmoidal. This network has the output 

weights set to 1, which are frozen during training, to avoid the constraint of a linear 

activation function in the output neuron.



Pruning of Neural Network Weight Matrixes 64

3.3 Hidden Neuron Linking of a Neural Network for Pruning

For the purpose of conceptual presentation of the linking process applied to pruning, a 

reasonable complex non-linear objective function (3.15) and a medium-size network 

have been chosen. To get around the problem with the combination of weights 

connected to the output of the linked neurons, the weights between the hidden layer 

and the output layer have been set to 1 and frozen, so that they cannot be altered 

during training. By setting the weights between the hidden and output layer to 1, no 

weight combination calculations on the output layer are required. Because of this, a 

more complex activation function than the linear activation function, which has been 

used in the previous section, can be used. Since non-linear activation functions 

perform better on a non-linear objective function, a more complex objective function 

can now be used for the training of the neural network. A summary of the neural 

network configuration parameters used in this section is given in table 3.2.

Table 3.2 The parameters of the neural network used in this section.

Description Value
Input Neurons 2
Hidden Neurons 20
Output neurons 1
Activation Function non-symmetric sigmoid
Initialisation ±0.6
Learning Factor 0.1
Momentum 0.3
Number of training patterns 500
Number of testing patterns 100

The networks topological parameters are 2:20:1 with a non-symmetric sigmoid 

activation function and frozen output weights of the value 1. For the generation of the 

training and testing data a non-linear objective function as shown in equation (3.15) 

has been employed.
(-*1*2)/(* ,,  x2) = 0.5 + 0.5 ■ sin^Oxj) • e (3.15)
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3.3.1 Training of Hidden Neurons

Training and testing data has been generated with random numbers for xi and X2 in 

the input space range of 0 < xi <1 and 0 < X2 <1. After training and testing data 

generation, the network has been initialised with weight values in the range of ±0.7 

and its output together with the target values are graphically presented in figure 3.7.
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Training Pattern Number

Figure 3.7 The objective function compared with the network output after initialisation.

In order to prevent training from being affected by the pattern sequence, if presented 

in a numerical ascending or descending order, xi and X2 have been generated by a 

linear distribution random number generator, which has the same effect as shuffling 

the training data set. Shuffling training patterns prevents the network from learning 

associations between the data, instead of learning the objective function. It is 

important for optimal learning that the various patterns are presented in a different 

order for each training cycle.

Normalisation of the training and testing data was not required since the input range 

was chosen to be limited to a maximum of 1. The range of the network output was 

restricted by the sigmoid activation function and has been indirectly normalised by
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defining the objective function in equation (3.15) in such a way that the largest output 

does not exceed 1.

The training algorithm selected was the standard backpropagation-learning algorithm 

for its good performance and ease of implementation. In the forward pass, the neuron 

errors and weight updates have been computed in batch mode, causing neuron weight 

only to be updated after presentation of the entire training data set. Batch mode 

reduces the risk of oscillation during training and convergence problems, but can only 

be effective if sufficient data samples are present.

Training has been continued until a specified training error stopping criterion was 

met. The stopping criterion has been met if there was no relevant change in the SSEtm 

for more than 1000 iterations. This point can be seen as the energy minimum found by 

the steepest descent.

During training, the training or recall Sum Square Error SSEtm on the training data 

and the generalisation performance on the testing data SSEgen have been collected 

from the point of initialisation to the point where the stopping criteria was met, both 

are shown collectively in figure 3.8.

2.0

Generalisation error SSEgen

A
1.0

0.0

0.5

100k 200k
Training Iteration

Figure 3.8 The recall and generalisation error during training of the neural network.
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After approximately 200,000 iterations the stopping criterion for the training was 

satisfied. To visualise the network performance on the training data, the objective 

function against the network output it is plotted in figure 3.9.
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Figure 3.9 The objective function compared with the network output after training.

It can be seen in figure 3.8 that the SSEtm after initialisation is high and is falling 

during the training. On the other hand, the generalisation error SSEgen is increasing as 

training progresses. This is because the network is getting more specialised as training 

continues. During training, some weight vectors are changed to improve recall 

accuracy on the training data set and as training continues, the changes in weight 

vectors where definite data points are available gradually lessen. Whilst weight 

vectors, which are directly correlated to data points in the training patterns stabilise, 

uncorrelated weight vectors, which are free parameters used for generalisation, 

continue to change in one direction. This is causing the values of the weights to 

increase into extreme areas. Such an increase on one hand will create weights to 

counterweight on the other. These free weight vectors are generally pointing in the 

opposite direction to compensate for large weights of other free vectors. Weight 

vectors, which are most likely to be affected by counter weight increase, are vectors 

that are not associated to a data point in the training data. The problem is that exactly
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these free vectors are responsible for the generalisation performance of the network 

and as a result the generalisation performance is reduced on an over-trained network. 

To overcome the problems with too many free parameters and over-training, the 

generalisation error SSEgen can be monitored during training, which can be stopped if 

the generalisation error has reached a minimum. Another solution is to remove such 

free vectors via pruning [137, 140, 141].

3.3.2 Analysis of Hidden Neuron Weight Vectors

After completion of the training, the hidden weight vectors need to be analysed to 

identify those, which are pointing in the same or opposite directions. Table 3.3 shows 

the weight vectors of all hidden neurons of the network after training.

Table 3.3 Weight vectors of the hidden layer after training.

Vector
Reference W ll Wl2 w , B

Vector
Length

Vl -1.212439 -3.047107 -9.828882 10.362

V2 -48.65868 26.43653 27.10182 61.653

V3 -28.27503 87.87204 -9.422333 92.789

V4 -87.9455 88.14407 -41.08837 131.118

v 5 -0.370743 -6.823745 -10.10476 12.199

v 6 90.95148 19.12648 -34.60433 99.174

V7 -46.05195 -90.5919 67.69712 122.109

Vg -0.5285 -6.055976 -10.09197 11.781

v 9 -53.18032 0.324787 38.83406 65.851

Vio -89.86122 90.19841 -42.12809 134.110

V ii 87.29947 -59.57665 -2.45873 105.720

Vl2 -118.0139 11.72936 15.38128 119.589

Vl3 90.14281 -38.08962 -33.1463 103.321

V|4 -117.8034 11.68759 15.35809 119.374

Vl5 19.48965 64.01544 -56.13136 87.342

V|6 51.67821 73.66065 -81.22998 121.222

Vl7 -59.00057 2.313215 43.91528 73.586

Vis 64.05762 -40.98364 -23.74516 79.667

Vl9 110.1794 -251.8599 74.11477 284.721

v 20 19.74688 -48.62996 -7.57796 53.031
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To find weight vectors suitable for linking, each angle between all vectors needs to be 

analysed. Since the weight matrix contains 20 rows, there are 380 possible angle 

calculations, which have been tested for the vector angle constraint of cp = 10°. 

Weight vectors that have an angle below 10° have been sorted in ascending order as 

presented in table 3.4. Because the sign of factor F can be changed, vectors located in 

Q3 are mapped into quadrant Q1 and vectors located in Q4 are mapped into Q2 as 

shown in figure 3.10.

Figure 3.10 Vectors of quadrants Q3 and Q4 can be mapped into Q1 and Q2 respectively.

By mapping vectors from four quadrants into two, the probability of finding 

acceptably close vectors doubles.

Table 3.4 Angles between weight vectors in ascending order.

Vector p a i r Angle between vectors
V |2, V ,4 0.0102°
V 4, V 10 0.0612°
V9, V i7 1.606°
v8. v5 3.172°
V 2, V , 3 180°-171° = 9°2

2 This vector has been mapped from Q3 to Q1.
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Table 3.4 is presenting a list of vectors where the vector angle does not exceed 10°. 

This angle limitation has been defined as the acceptance angle (p throughout this 

thesis and has been chosen after a sequence of tests. A precise analysis of the effects 

of the acceptance angle on the SSEtm and SSEgen is given in a later section of this 

chapter.

3.3.3 Linking of Hidden Neurons

Subsequent to the vector angle analysis is the process of neuron linking. It follows the 

same method as linking from previous sections but without the requirement of 

combining the weights to the output layer since they have been set to one and frozen 

during training. Without repeating the equations used for linking of weight vector 

pairs listed in table 3.4, table 3.5 presents the linking results.

Table 3.5 Results of the combination of vectors with angles below 10° 
as listed in table 3.4.

Original vector references
Resulting vector vrl

W,1 Wl2 W in Factor
Vl2, V14 -118.015 11.729 15.381 0.9982
v4, v10 -87.899 88.166 -41.140 1.0228
Vs. V]7 -52.933 1.947 39.088 1.1178
Vs. V5 -0.455 -6.343 -9.911 1.0355
v2, V|3 -33.822 24.667 40.552 -1.5698

Table 3.5 lists the components of all linked vectors involved in pruning. The 

components of the first two vector pairs were almost identical. Therefore the linked 

vector components in table 3.5 do not differ significantly if compared to table 3.3. It 

can be noted, that with increasing angle difference, the differences of linked and 

original vector components increase. In section 3.4, a more detailed investigation of 

vector component changes is presented.
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3.4 Linking Analysis

The linking analysis is used to analyse the errors on individual weights of linked 

neurons. Neuron weights after training but before linking will be compared with 

neuron weights after linking by using the relative error with regards to the weight 

prior to linking. This is followed by a comparison of the neural network performances 

after training and after linking.

3.4.1 Analysis of Linked Neurons

To validate the results of table 3.5 an impact analysis on the effects of linking towards 

the differences between the original vectors and the reconstructed vectors vri and vr2, 

the relative errors of the changes in weight values are listed in table 3.6. The notation 

in table 3.6 will be that v ’ 12 and v ’ 14 represent vri and vr2 respectively for all vectors 

involved in the linking process, in accordance with figure 3.4.

Because of the extremely small angle difference of 0.01° between vectors Vn, V14 and 

0.06° between vectors V4, vio, the relative errors of their reconstructed vectors are 

expected to be very small. Consequently, these two vector pairs are ideal candidates 

for linking.

In the case of vector pair V 9 ,  vn, an unbalanced error of almost 500% on W12 can be 

noted. Even if the angle difference between V9 and vn was only 1.6°, see table 3.4, 

such a large error on a single weight was not expected.

The justification for allowing such a high error lies within the relatively small weight 

value of W12 of vg, which is 0.32 compared to W12 of vn, which is 2.31. Since the 

value from W12 of V9 is smaller by several orders of magnitude than the largest weight 

involved (|0.32|«|-59.0|), the increase from 0.32 to 1.94 seems to be acceptable. In 

other words, considering that most absolute weight values of vectors V9 and vn lie in 

the range between 40-60, smaller weights <1 contribute not as much towards the 

overall output compared to the large weights. Therefore small weights can accept a 

higher percentage error than large weights.
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Vectors vg and V5 with an angle difference of 3.17° are pointing almost in the same 

direction. Their component weights are very much in the same range and do not have 

the magnitude problem as encountered with vectors V 9  and v  1 3 .  As a result, the relative 

errors are acceptably distributed among the weight components involved.

Table 3.6 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w’„ W,2 w'lB f(wn,w'n) f(Wl2, w',2) f(w1B, w'1B)
V'l2 -118.015 11.729 15.381 0.00% -0.09% 0.01%

V ' , 4 -117.803 11.698 15.356 0.00% 0.09% -0.01%

V ’ 4 -87.899 88.166 -41.140 -0.05% 0.02% 0.13%

v'10 -89.905 90.178 -42.079 0.05% -0.02% -0.12%

v's -52.933 1.947 39.088 -0.46% 499.39% 0.65%

V ' ] 7 -59.170 2.176 43.693 0.29% -5.93% -0.51%

v's -0.455 -6.343 -9.911 -13.93% 4.74% -1.79%

V's -0.471 -6.568 -10.264 27.05% -3.74% 1.57%

v'2 -33.822 24.667 40.552 -30.49% -6.70% 49.63%

V ' l 3 53.095 -38.722 -63.660 -41.10% 1.66% 92.06%

So far each vector pair was positioned in the same quadrant because the signs for each 

component, which define the vector directions, are the same. Another indicator is the 

sign of the length adjustment factor F, which has been positive for all vector pairs 

except V 2  and V 1 3 .  Their angle difference is 171° without mapping, but if mapped from 

Q3 to Ql, the angle difference turns into 9°, only 1° below the acceptance angle 

threshold. Because of the increased angle, higher component as well as vector length 

errors are expected. Up to this point, the errors with regard to the reconstructed vector 

lengths have been very small, as shown in table 3.7. But without error induction, the 

generalisation error will remain unchanged. With the objective to improve on 

generalisation for the purpose of interpolation, errors will be introduced on vector 

removal to reduce the degree of freedom.
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Table 3.7 Vector length change impact analysis.

Vector Original length Reconstructed
length

Relative Error

V|2 1 1 9 . 5 8 9 1 1 9 . 5 8 9 ( M ) 0 . 0 0 %

V | 4 1 1 9 . 3 7 4 1 1 9 . 3 7 4 ( |V r l |* F ) 0 . 0 0 %

v4 1 3 1 . 1 1 8 1 3 1 . 1 1 8 ( K l D 0 . 0 0 %

Vio 1 3 4 . 1 1 0 1 3 4 . 1 1 0 (k.l*F) 0 . 0 0 %

V9 6 5 . 8 5 1 6 5 . 8 3 0 (|v,i I) - 0 . 0 3 %

V l 7 1 0 3 . 3 2 1 7 3 . 5 8 6 (|v,i|*F) 0 . 0 0 %

V8 1 1 . 7 8 1 1 1 . 7 7 6 (|Vrl |) - 0 . 0 4 %

V5 1 2 . 1 9 9 1 2 . 1 9 5 ( | V r , | * F ) - 0 . 0 3 %

V2 6 1 . 6 5 3 5 8 . 2 8 3 (|Vrl |) - 5 . 4 7 %

V , 3 1 0 3 . 3 2 1 9 1 . 4 9 4 (|vr,|*F) - 1 1 . 4 5 %

3.4.2 Analysis of Linked Network

Pruning has caused the removal of 5 hidden neurons and reduced the size of the 

hidden layer from initial 20 neurons to 15. This represents a network size reduction of 

25%, with the objective of reduction of the generalisation error being successful.

In table 3.8 a comparison of the benchmarks for the trained and the linked networks is 

presented. To increase statistical reliability the entire experiment has been repeated 30 

times and the averages, minimums and maximums for training and testing pattern are 

reported. It can be noted that the recall accuracy has suffered on average by 54.3%, 

while the generalisation error has improved an average of 1 2 .6%.

Table 3.8 Comparison between trained and pruned network benchmarks for 30 runs.

Description Trained Network Pruned Network
Min Max Average StDev Min Max Average StDev

S S E lrn 0.515 1.338 0.785 0.1992 0.709 2.894 1.172 0.6118
S S E gen 0.750 0.963 0.852 0.0499 0.393 0.956 0.757 0.1699

Generally, if recall accuracy is more important than generalisation network pruning is 

not recommended. A graphical representation of the recall accuracy on the training 

data after linking is given in figure 3.11. Please note that all details given in this 

section are referring to the very first run from 30 repeated experiments.
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Figure 3.11 The objective function compared with the network output after linking.

Resuming the analysis of identification of the optimal acceptance angle for linking, an 

iterative approach has been employed where the acceptance tp has been increased in 

steps of 5° for the first run. During this process, the network has been linked for every 

iterative increase of the acceptance angle. To find the optimal acceptance angle for the 

objective to improve network generalisation, the error benchmarks SSEtm and SSEgen 

have been recorded. At the angle where generalisation reaches a minimum, the 

optimal point for linking is found.

Table 3.9 summarises which vectors satisfy the acceptance angle range limitations. To 

find the optimal acceptance angle (popt for generalisation, more and more vectors are 

included in the linking process.

Table 3.9 List of vectors satisfying the acceptance angle limitation

Acceptance angle Linked vectors SSEtrn SSEgen

O o ky
t o vl2, 14; v4, vlO; v9, vl7; v5, v8. 0.31126 0.85867

oOo«o v2, vl33. 0.52827 0.80907

o»0oO

v7, vl5; v3, vl92. 0.86842 0.9278
15° -20° vll,  vl83. 0.92567 1.1628

3 Including all of the above
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Figure 3.12 shows the results from table 3.9 graphically. It has been found that 

acceptance angles above 15° usually worsen the generalisation and recall 

performances of a linked network. Figure 3.12 shows an increase of the recall and 

generalisation error if the acceptance angle cp is increased.

3.8 Conclusion

The linking process is the ideal candidate for the removal of vectors that are pointing 

in opposite directions because opposite vectors will only affect the sign of the length 

adjustment factor F. Compared to pruning methods which are only removing small 

weights or which attempt to cause only small changes in the overall recall error (small 

saliency) on neuron removal, the linking process is able to prune large weights which 

would have a substantial impact on the overall network error (large saliency) if 

removed without further consideration.
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In the first example, two hidden neurons have been linked to create a single hidden 

neuron. For reasons of simplification, linear activation functions have been used 

whilst the linking process is analysed for its suitability of pruning hidden neurons. 

Linear activation functions within all neurons permits the combination of the weights 

of the hidden layer that is required for pruning an entire neuron.

In the second example non-linear activation functions have been used. To overcome 

the combination problem of the output neurons, all weights in the output layer have 

been set to 1 and frozen. Thus permitting the removal of hidden neurons via linking 

without disturbing the integrity of the output layer.

The sum square errors of the recall and generalisation accuracy have been recorded 

prior to and after pruning to perform as benchmarks for evaluation. As a result after 

30 runs of each experiment, pruning has caused an increase in the error of the recall 

accuracy and a decrease of the generalisation error. This behaviour is typical for 

pruning since it reduces the network’s degree of freedom that causes improvement on 

the generalisation but loss on the recall accuracy [142].

Many neural network variables such as the learning rate and momentum are 

dependent on the experience of the engineer responsible for training. The same 

applies for the acceptance angle cp unless an exhausting search for the optimal 

acceptance angle is performed as shown in figure 3.12. Experience of many linking 

applications for pruning by the author has shown that acceptable pruning results were 

still be obtained with an acceptance angle of 15° but angles above 20° resulted in 

intolerable loss of recall accuracy.



Chapter 4

The Stimuli Network

4.1 Introduction

A central area of study in psychology is how organisms change as a result of 

experience, that is, how they learn. Two major kinds of learning are usually 

distinguished: instrumental learning and classical conditioning [124, 143, 144].

In instrumental learning emphasis is placed on what kind of outcomes, reward or 

penalty, follows an action. This type of learning is referred to as reinforcement 

learning and is well known in the neural network research field [145]. In classical 

conditioning a conditioned event, the stimulus, can trigger an unconditioned response. 

Many researchers in the field of cognitive sciences have studied the stimulus-response 

theory, which originated from the field of psychology but its use is not widespread in 

the area of neural networks.

The human brain receives and interprets countless signals, called stimuli, which are 

generated from sensory parts of the body responding to the external environment. 

Physiologists and neurologists have mapped areas of the cerebral cortex and 

determined the purpose of each region as shown in figure 4.1. The crucial relay 

stations for incoming sensory signals can be found in parts of the brainstem. All 

sensory inputs to the brain connect to individual clusters of nerve cells, called nuclei,
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which are stimulating groups of neurons in the cerebral cortex. Although the cortex is 

subdivided into distinct functional areas, fibres interconnect those clusters to share 

information [146].
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Figure 4.1 Functions of the Cerebral Cortex.

Knowledge held in the brain is accessed by the firing activity of ensembles of 

neurons. Present knowledge can be accessed if the right stimuli patterns are generated. 

Precise generation of stimuli in the brain is currently not fully understood but 

scientists can record and graphically present such firing patterns. The functional 

partitioning of the human brain has mainly been derived from analysing such stimuli 

patterns combined with studies of the preserved and impaired abilities in brain-

damaged patients [147].

Reconstruction of sensory stimuli from observation of neural activity has been used to 

form an understanding of information processing in animals. Since visual stimuli can
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be created under controlled conditions, they are used to analyse muscular responses of 

animals. For example, neurons from the visual systems from flies have been used to 

reconstruct stimuli for wing motion [148], Visual stimuli have been reconstructed in a 

salamander retina from recorded responses of salamander cells [149]. Such studies are 

used to characterise neural dynamics in response to controlled stimuli.

In analogy to the brain, where specific tasks are assigned to distinct functional areas 

the linking process combines sub-networks by tagging their hidden neurons with a 

unique identifier, the stimulus code. Hidden neurons, of two or more knowledge 

domains, which have been involved in the vector linking process from chapter 2 , will 

be tagged with more than one stimulus code, thus building the connections between 

the functional clusters, as presented in figure 4.2.

Figure 4.2 Hidden neurons before and after linking.

Different knowledge domains or functional clusters can be activated if a 

corresponding stimulus exists. Neuron activity between various knowledge domains
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will change according to the stimuli they receive. Strong stimuli signals towards a 

knowledge domain resemble a strong membership of the input signal to the domain. 

But input signals can belong to more than one knowledge domain. In such cases, 

stimuli of different strengths for each domain can be generated reflecting their 

membership towards each domain.

There are many different ways of generating stimuli signals. Stimuli signals denote 

the membership of an input signal towards existing domains in a linked neural 

network. The generation of memberships is basically a classification task. Systems for 

classification include neural networks, Fuzzy Logic, statistical methods and expert 

systems [151, 152].

In this thesis, neural networks have been used for input signal classification and 

stimuli generation. The stimuli generated by such a neural network are directly 

induced into clusters of neurons instead of a combiner, as shown in figure 4.3. Such 

neural networks are in many ways similar to gating networks used in hierarchical 

expert systems but differ in one important aspect. They affect a neuron’s output by 

changing its internal activation, thus changing the networks output on a basis of 

manipulating each individual neuron. Gating networks do not affect the overall output 

of a sub-network, they are used to control a linear or non-linear combiner to create an 

aggregated result, as shown in figure 4.4. For this reason, the networks used for 

stimuli generation are referred to as stimuli networks throughout this thesis.

Figure 4.3 Stimuli networks induce stimuli information directly into neurons.
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Figure 4.4 Gating networks regulate overall output via a combiner.

Stimuli networks can activate each knowledge domain or functional cluster, which is 

represented by a cluster of hidden neurons, by sending a stimulus identifier. They are 

generally designed to have outputs for each knowledge domain, which do not 

necessarily sum up to 1. If an input vector does not belong to any domain all outputs 

should be low. Otherwise if an input vector belongs to all domains all outputs should 

be high, activating neurons of all domains. Because of this, more than one output of 

the stimuli network can be high if the membership information request involves 

multiple domains to activate multiple clusters within the linked network.

Any type of expert systems, which has the capability to classify incoming data vectors 

into knowledge domains, can represent a stimuli network. The real distinction 

between stimuli networks and gating networks does not lay with the classifier itself or 

how it is trained. It lies with the points of induction where the classification results are 

used. Because linked neurons carry an internal length correction factor for different 

domains and consequently require integrated functionality for vector length 

corrections, this existing neuron functionality for the purpose of domain membership 

adjustments can be reused by utilisation of a stimuli network.
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4.2 Stimuli Induction

Induction of the stimuli into neurons can be done in different ways. One way is to 

affect a neuron’s netj input, prior to the activation function. Another way is to alter a 

neuron’s output after utilisation of the activation function. There are subtle differences 

at a neuron’s output depending on the point of induction, as illustrated in figure 4.5.

It is important to take into consideration the distinction with respect to the neuron type 

required. There are different types of neurons available e.g. normal neurons, fuzzy 

neurons, GA neurons and linked neurons. Each neuron type can have different points 

of induction depending on its functional layout. As with linked neurons, stimuli 

information can be used to adjust the length of the weight vectors for each domain, as 

described later in this chapter.

One of the major differences between using a stimuli network and a gating network is 

that with a stimuli network domain memberships are depending on the activation 

function of the neurons involved. Whereby gating networks are situated at the overall 

network output and are not affected by the individual neurons configuration.

Figure 4.5 Stimuli network induction points prior and after the activation function.



The Stimuli Network 83

The classification information induction point plays an important role in the neuron’s 

membership function and its contribution to the overall network output. If the 

induction point is located prior to the activation function, it can be seen as a weight 

length correction on the current layer, as illustrated in section 2.6. If the induction 

point is after the activation function, it can be interpreted as a weight length correction 

on the next layer. Consequently, induction of stimuli information into a neuron can be 

interpreted as a means of adjusting the length of the weight vector of a neuron for 

different layers. A more detailed discussion can be found in sections 4.7.3 and 4.7.4.

4.3 Weight Vector Adj ustment

The working principle of a stimuli network can be summarised verbally to explain its 

functionality. A stimuli network classifies the input vector Xjn applied to the linked 

neural network to activate knowledge domains q with relevant information. Each 

identified knowledge domain q is receiving a domain stimulus factor S with a value in 

the range of 0 to 1. The value of the stimulus code S reflects the degree of 

membership of the input vector xm to a specific knowledge domain q. If, for example, 

an input vector belongs 80% to domain A and 20% to domain B, the stimuli produced 

for domain A will be Si = 0.8 and S2 = 0.2 for domain B. Depending on the design of 

the training data for the stimuli network, the sum of all domain memberships can be 

1.0 but is not imperative. The higher the domain stimulus factor S is, the higher the 

contribution of that domain to the overall network output.

The net input calculation of a linked hidden neuron, netj, differs from the normal 

backpropagation feed-forward calculation because the length correction factors F and 

the domain stimulus factors S need to be included. If two neurons of domain A and 

domain B are linked, they result in a linked neuron of domains A and B with factor 1 

for domain A and F for domain B, as introduced in equation 2.50. With the 

consideration of linking q domains, each vector length adjustment factor F can be 

extended with indices starting from l,...,q. Therefore, domain A will use the length
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correction factor Fi (=1), domain B will utilise F2 and the last domain will utilise 

factor Fq, as illustrated in figure 4.6.

Resulting
NeuronWeights

Wii Stimulus:
Wi2 A = F,
W,b B = F2

q = Fq

..■V ^ rtl  =  ^ r * * ^ 'cl

V..
Vr2 = V r t - F 2

V r l - V r i - F ,

Figure 4.6 Vector length adjustments for recalling information for multiple domains.

The equations for the summed input of neurons A and B of domain A and B prior to 

linking are given in equation (4.1) and after linking in equation (4.2).

f  /

A = Z W An  • X” n e t B = Y . W B n - X "  (4.1)
n=\ n= 1

net) = (1 + F) • X  w'rn ■ x, = (1 + F) • x m ■ vrl (4.2)
n=1

In the equations (4.1) and (4.2), A and B are representing two possible knowledge 

domains, i is the number of input neurons of the input layer, net) is the summed input 

of the linked neuron and w 'm is the weight matrix of the linked neuron of domains A 

and B. The vector length adjustment factor is denoted with F and the input vector with

Xin-

On extending equation 3.12 from chapter 3 for the calculation of net) of a linked 

neuron with the notation Fi...Fq for q dimensions as shown in figure 4.6, equation 

(4.3) can be derived.

”e t) = (*,„ ' vrl • Fj + x m • vrl • F2 + ... + x in ■ v rl ■ F J  = x m • vrl • £  Fd (4.3)
j = i
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In the equation above, xm is the input vector, vri is the resulting weight vector of the 

linked neuron and Fi^.^Fq are the vector length adjustment factors for every domain 

involved.

Equation (4.3) has been used in chapter 3 for pruning of two neurons within only one 

domain. Because pruning involves only one domain, both reconstructed vector 

portions (vri and vri • F) in equation 3.12 can be summed up without constraints. 

Because linking of two or more domains is using a stimulus to determine the domain 

membership, an additional factor called a domain stimulus factor S has been 

introduced. For q domains held in a linked network, q stimulus factors S are produced 

for the identification of the membership from each input vector Xjn to every domain. 

The stimulus factor S is created by the stimuli network and will regulate the 

contribution of each linked domain towards the output. Equation (4.4) is analogous to 

equation (4.3) but takes the stimulus factor S for every domain q into account.

net) = x m ■ Wj = x m ■ v rl • £  (Sd ■ Fd) (4.4)
d =1

In the equation above, Sd is the input vector membership and Fd the vector length 

adjustment factor for every domain q involved in the network linking process.

To summarise, each linked neuron r contains a resulting weight vector vri and a 

domain map with vector length adjustment factors Fd for each domain. On data recall, 

the stimuli network generates domain membership factors Sd for each domain by 

utilising the input vector X jn . To calculate the summed input to the linked neuron net), 

the input vector is applied to the weight matrix and multiplied with the sum of all 

domain stimuli multiplied by their vector length adjustments as given in equation 

(4.4). With regard to figure 4.5, equation (4.4) represents stimuli induction prior to the 

activation function.

If all neuron activation functions are linear the vector length correction as described 

will be equivalent to the usage of a gating network with a linear combiner. But with 

non-linear neuron activation functions, domain membership information has to pass 

through the neuron activation function, which will affect the output of the neuron in a
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non-linear manner. Because of this, even a low membership factor multiplied with a 

large weight can create a large neuron output on sensitive neurons.

4.4 Input Neuron Sensitivity

Sensitivity analysis describes methods that produce a measure to determine the 

functional contribution of inputs to outputs. It is a simple method of finding the effect 

an input has on the output of the network. The relationship of an input neuron to an 

output neuron is found by determining the impact that a small change in the input has 

on the output. If a drastic change occurs at the output, the input is considered to be 

one of the key factors in producing the current activation value of the output and 

therefore reasonably high in sensitivity [60-62],

Furthermore, inputs with minor but unique information can be more significant than 

inputs with higher magnitude but redundant information. Inputs with unique 

information are more likely to have a large effect on the overall network output and 

can be defined as being reasonably high in sensitivity. Redundant input neurons are 

likely to represent a low sensitivity to the output and can be subject to pruning [119]. 

The brute-force sensitivity analysis is largely concerned about reducing the number of 

input neurons in a black-box approach. It changes input vectors within a set range to 

determine the effect on the output only. Other mathematical approaches on the weight 

matrixes try to identify sensitive inputs for elimination [139, 153].

Neuron sensitivity is an important factor if stimuli induction methods are used to 

control individual neuron contribution. Sensitive neurons are more dynamic than less 

sensitive neurons if the length of a weight vector changes. Because of this, non-

sensitive neurons represent neurons with an almost constant output and are less 

affected by incoming stimuli. Non-sensitive neurons can still generate a dominant 

contribution to the overall network output, even if the stimulus for the domain they 

belong to is small. This can be a problem since unwanted domain contributions from 

non-sensitive neurons will reduce the accuracy of domains of interest.
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4.5 Hidden Neuron Sensitivity

In order to control neuron outputs via the stimuli method, the summed input netj and 

the activation function need to be considered as important factors. If a domain 

membership expressed as Sd in (4.4) is 0% the neuron contribution to the overall 

network output should be 0. This requires a non-linear neuron activation function that 

will go through the point of origin (0,0) for non-linear objective functions. There are 

several non-linear activation functions available that fulfil this requirement. Because 

of its widespread use, the symmetrical-sigmoid function has been chosen as the 

activation function throughout this thesis, as given in equation (4.5) and illustrated in 

figure 4.7.

/ w ° i +<.2-i-»)~ ‘ (4-5)

Figure 4 .7  S y m m e t r i c - s ig m o id  a c t iv a t io n  f u n c t io n .

The summed neuron input netj plays an important role if the domain membership 

stimulus is applied prior to the application of the neuron activation function. If, for 

instance, netj is large e.g. netj=12, a change in domain membership from S=90% to 

S=30% will change the neurons output from outj=0.999 to outj=0.946 A=5.32%.
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Consequently, large neuron inputs will not follow the domain membership in a linear 

fashion as experienced with linear combiners used with gating networks. If on the 

other hand the neuron input is relative small e.g. netj=1 .2 , a change in domain 

membership from S=90% to S=30% will change the neurons output from outj=0.493 

to outj=0.178 A=63.88%.

It can be said that with stimuli induction the neuron output is not only dependent on 

the domain membership but also on the sum of all weight connections contributing to 

the neuron’s input netj. Equation (4.6) and figure 4.8 and represent the neuron output 

as a function of the neuron’s summed input netj and its domain membership S. Note 

that domain memberships S can be expressed as a negative to reduce the output value.

= <4 '«>

Figure 4 .8  N e u r o n  o u tp u t  o u tj a s  a  f u n c t io n  o f  n e tj a n d  d o m a in  m e m b e r s h ip  S .
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Since the neuron output outj is depending on the summed input net, and the 

membership factor S, the higher netj is, the higher the non-linearity of the domain 

membership factor S, as shown in figure 4.9. If the training data is normalised, for 

example ±1 for a symmetrical-sigmoid activation function, large values of netj for a 

neuron of a hidden layer can only be computed if large weights or many connections 

are present. This form of input saturation can be found in over-trained networks or 

networks with many inputs.

Figure 4 .9  N e u r o n  o u tp u t  o u tj a s  a  f u n c t io n  o f  p a r a m e te r i s e d  n e tj a n d  d o m a in  m e m b e r s h ip  S .

To avoid neuron saturation caused by large weights, penalty terms can be included to 

reduce weights during training. To avoid neuron saturation caused by many incoming 

connections, the learning rate must initially be low and can be increased or further 

decreased during learning [155]. Dynamic parameter adjustments, such as weight 

decay, simulated annealing or pruning, are generally associated with network 

convergence and/or stability issues. But these are not the only problems, which can be 

resolved or prevented by implementing extended training algorithms. The next 

sections will illustrate the problem with reference to domain memberships if the 

neuron saturation problem is ignored.



The Stimuli Network 90

4.6 Neuron Saturation Analysis

Applying increasing input values on the neuron and monitoring the overall network 

output can measure a neuron’s sensitivity. Generally, it can be said that the higher the 

weights attached to a neuron are, the higher its sensitivity. A neuron with a very high 

sensitivity is most likely to suffer from saturation problems, which cause its output to 

remain on activation function extremes e.g. ±1. If a neuron has a very high sensitivity 

it can be stated that it contains large weight connections and therefore it has a higher 

steepness towards its domain membership, as shown in figure 4.9. That means 

sensitive neurons will contribute towards the overall network output even if their 

domain membership is very low.

Linear domain contributions on non-linear activation functions can only be archived 

by utilisation of a gating network in conjunction with a linear combiner. Stimuli 

induction points are dependent on the neuron’s activation function and can only result 

in a linear membership contribution if the neuron’s activation function is linear or 

nearly linear. But training a neural network with a non-linear objective function 

requires a non-linear activation function to achieve acceptable convergence and recall 

errors.

To identity a neuron that can be declared as being saturated, the author has made the 

following definition:

A neuron is saturated for a domain membership S between ±0.8 i f  the area below its 

parameterised activation function is equal or less than the area o f an equivalent 

linear function.

In a graphical context, neurons with a netj equal or below of approximately ±2.3 are 

outside the saturation range for a standard symmetrical-sigmoid function. This value 

has been determined graphically by means of visual analysis of figure 4.10.
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The graphical approach to find netj to avoid neuron saturation, involves a 

parameterised neuron activation function netj and a reference linear function. In figure 

4.10, several parameterised neuron output functions for different netj are printed with 

the domain membership S on the x-axis. For netj=2.3, the area below the curve is 

almost equal to the area below the linear function. An exact figure can be obtained by 

definite integration of equation (4.6) between 0 and 0.8.

Figure 4.10 N e u r o n  o u tp u t  o u tj  f o r  to  d e f in e  p o in t  o f  s a tu r a t io n .

Determine netj, where the area below the curves of f(s) and f(X) are equal.

with : f (S) =
1 + e a n d  f (x) = x (4.7)

0.8 2  0 8  

Area = | -------;----— - \  d S -  \x -dx  =J i , -(«*', s> J0 1 + £ 0

0 . 82 = 0.32
2

(4.8)
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The solution of (4.8) has been obtained with help of figure 4.10 and is:

Area (S, net j) s  +

f

In
f 1 Ì
------+ e ne‘‘
n et,

■ (l - e ' Sne,‘ )
_ \  J / ) _

0.32 (4.9)

With S = 0 and netj = 0, Area = 0, leaving the calculation of netj if S=0.8. Because of 

the complexity of the equation, equation (4.9) has been plotted and an iterative 

approach has been chosen to find a solution for netj with S = 0.8 and Area = 0.32. The 

iterative process resulted in netj = 2.25565.

With a definition of a neuron saturation point and a definite figure for netj, in 

conjunction with the symmetric-sigmoid activation function, a more precise penalty 

term based not on the individual weights but based on the actual neuron input netj can 

be derived. This penalty term, applied to a learning parameter i.e. learning rate, should 

prevent netj exceeding 2.25565 by manipulation of weight updates.

Most weight decay regulators depend only on the network parameters such as weights 

and number of connections. They are generally avoiding that any single weight will 

not exceed a certain determined value and do not take the entire neuron input netj into 

account.

Supervised backpropagation with batch weight updates generally uses a combination 

of training factor and momentum to avoid oscillation, given in equation (4.11). There 

are algorithms such as simulated annealing and weight decay available to avoid large 

weights but most algorithms do not take the total neuron activation into account. 

Equations (4.10) to (4.14) show how the neuron input netj(t+l) is affected by a weight 

update Awj compared to its previous input netj(t). It can be seen from equation (4.14) 

that if netj max(t) and the input vector x for the largest activation are known, the neuron 

input change Anetj, which would arise after the weight update, can be computed. With 

the information on what the largest neuron activation will be prior to updating of the 

neuron’s weights, a penalty term can be applied to keep the neuron away from 

saturation.
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Consequently, neuron saturation can be avoided if the maximum neuron saturation 

netj max and the sum of its associated input vector are stored for each neuron after 

completion of an entire training epoch. After completion of the epoch, this stored 

information on a per neuron basis can be used to determine the penalty term x to be 

applied on the weight update prior to updating of the weights. This process is 

graphically presented in figure 4.11.

netj (t + 1) = net / (t) + A net j (t +1) (4.10)

/
netj(t) = Y,Wj„(t)- x"

n=1
(4.11)

netj (t + 1) = £  (wJn (t) + AWj (t + 1)) • x» 
«=1

(4.12)

1 /
netj (t + 1) = Y j wjn(0  ' * + 1 ) ' 

«=1 «=1
(4.13)

/
A net j( t + 1) = A w(t + 1)

«=i
(4.14)

Figure 4.11 Penalty term to adjust the learning factor during training to avoid neuron saturation.

A constant of 0.1 has been added to the penalty function. Without this constant the 

weight update can reach 0 and the training will stagnate.
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The penalty function shown in figure 4.11 has been developed with the requirement 

that the penalty factor % should be 1 .0, leaving the backpropagation algorithm 

unchanged for small neuron activations. For large neuron activations, the penalty 

factor x should reduce to lower weight updates determined by the batch 

backpropagation algorithm. For large input activations close to 2.25 the penalty factor 

X  should be close to 0.0001, avoiding a further increase of the activation. With all 

these considerations, equation (4.15) has been developed to represent a suitable 

penalty function.

+ 0.1 (4.15)

With e as the function form factor, where f(netj) 

be calculated as shown in (4.16).

f  2 . 2 5 s „  ^£ = ---------7------------r - 2 . 2 5
^ln(O.OOOl)

After calculation of the penalty term, neuron weights can be updated with the 

modified update formula as shown in equation (4.17).

A w(n + 1) = %[ri (<5yo ,) + aAw{n)) (4.17)

= 0.0001 for netj = 2.25, which can

= 16.33703 (4.16)

With the introduction of the penalty term, neurons stay dynamic and are able to 

respond to different levels of domain membership. It should be noted that neuron 

saturation could be prevented by an appropriate input vector normalisation.

This normalisation should not just be restricted to its dynamic range e.g. ±0.9 or ±0.8, 

but also the removal of any constants, which can be determined by calculation of the 

average mean. With the subtraction of the mean and division of all input vectors by 

the largest number from all input vectors in the training set (scaling factor), network 

dynamics can be greatly improved.
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On denormalisation, the mean and the scaling factor can be reapplied to the network 

output. With the penalty function from figure 4.11, the neurons cannot saturate at their 

input activation and therefore stay more dynamic than neurons with a saturated input.

4.7 Numerical Experiment: Linking Saturated and Unsaturated 

Networks

To highlight the effects and the associated problems with neuron saturation, a 

numerical example, based on a mathematical problem, has been carried out. Two 

networks with frozen weights on the output layer have been trained with 400 data 

points from two different domains A and B. Each of the networks was trained with 

data of one domain only. Their topologies are two input neurons, two hidden neurons 

and one output neuron to form a fully connected 2 :2:1 backpropagation network. 

After training, a comparison was made between combining both networks with a 

gating network and with a stimuli network. The purpose of the comparison is to 

analyse differences between the linearly combined output of a gating network with the 

output of a set of linked networks controlled by a stimuli network with unsaturated 

and saturated neurons.

Because neuron saturation problems are examined, comparisons with linearly 

combined networks with gate and linked networks with stimuli have been performed 

each with unsaturated and saturated neurons. Unsaturated neurons can be found in 

networks trained with the penalty function and saturated neurons in networks without 

penalty function, as discussed in section 4.6.

To create training data of different domains, the input space has been divided into two 

sections, one for domain A and one for domain B as shown in figure 4.12. The 

network trained with data of domain A is limited to the input space of domain A and 

will be referred to as network A. The network trained with data of domain B is limited 

to the input space of domain B and will be referred to as network B. With the 

separation of the input space into A and B it is possible to analyse the impact of
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different kinds of assembly methods (linearly combined or linked) of networks trained 

with different input spaces.

The input space division into domains A and B is illustrated in figure 4.12, where 

their corresponding domain memberships are shown as triangular markers (A) and 

square markers (* )  for domains A and B respectively. All input vectors Va  = [xi X2] 

belonging to domain A are located in the top left hand corner and input vectors for 

domain B vb = [xi X2] are located in the bottom right hand corner.

The dividing line in figure 4.12, which separates domain A from B, does not represent 

the actual domain partitioning. This line divides the training data sets into two files 

used for training. Because the training data used resembles two domains, it has been 

physically split into two files, allowing individual network retraining in cases of data 

changes.

Furthermore, for the purpose of investigation of neuron saturation, it is necessary to 

explore the whole input space range of ± 1 , because the activation function used for 

each neuron is the symmetric sigmoid function.

Figure 4.12 Training data for domain A (A) and B (* ) .
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4.7.1 Domain Memberships

In this thesis, a single network trained to perform on one partition of the input space 

only, represents a domain. The domain membership to a domain is defined as the 

weighting factor associated to an input vector to limit its contribution to the overall 

network output. The domain transition is a function of how domain memberships 

change, plotted over the entire input space.

Although the data has been split into two domains for network training, the domain 

transition chosen for the linear combiner used in this experiment is not abrupt. Instead 

each domain transition function gradually changes from domain A to domain B and 

vice versa on a linear scale as shown in figure 4.13.

For example, the further the input vector coordinates Xi and X2 located in domain A 

move towards domain B, the lower the domain membership of A and the higher the 

domain membership of B. Let point pi(0.45, 0.35) have a domain membership of 0.3 

of A and 0.7 of B, if moved towards domain B to become point P2, then point p2(0.5, 

0.35) has a domain membership of 0.2 to A and 0.8 to B. For any point in this 

example, the sum of both domain memberships is 1 .

Figure 4.13 Input vector domain membership distribution of domains A and B
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To present more in depth information about the membership function shown in figure 

4.13, the function has been pseudo programmatically expressed with the conditions 

outlined in equation (4.18).

Membership o f domain A and B as a function o f x / and xv (4.18)

i f  ((xr x,)>0.25){

Membership A = 1 

Membership B = 0 

} else i f  ((x:-xi)<-0.25) ){

Membership A = 0 

Membership B = 1 

} else {

Membership A = 0.5+(0.5*(xj-Xi)/0.25)

Membership B = 1-A

}

The objective of this linear transition between domains is to emphasize the impact a 

linear combiner has on the combined output of two already trained networks. Thus 

permitting comparison between the outputs of a linearly combined and a linked set of 

networks, without taking generalisation or recall accuracy into account. For this 

reason, all 400 data points have been used for training and have not been split into 

training and testing data sets.

4.7.2 Network Topologies

To keep all detailed calculations small and manageable, uncomplicated networks have 

been used to concentrate on the gating and linking processes. Thus, for the training of 

each domain, simple 2 :2:1 backpropagation networks with frozen weights set to 1.0 at 

the output layer and symmetrical sigmoid activation function (see figure 4.7) have 

been used, as illustrated in figure 4.14. The only purpose of the networks is to supply 

weight matrixes with unsaturated and saturated neurons so that linear combination 

using a gating network can be compared with linking using a stimulus network.
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Figure 4.14 Network topology with its frozen output layer.

The network training parameters applied for all networks are presented in table 4.1. 

Note that the weight initialisation is set to ±2.6, which is approximately the maximum 

netj for a single neuron. This rather large starting point increases the probability of 

large weights for the creation of saturated neurons if no restrictive measures are taken 

during training.

To avoid neuron saturation for the first set of weight matrixes, the penalty function 

from section 4.6 has been exercised during training. The resulting weight matrixes 

after training of both networks for domain A and B with unsaturated neurons are 

shown in tables 4.2 and 4.3.

Table 4.1 The parameters of the neural networks used in this section.

Description Value
Input Neurons 2
Hidden Neurons 2
Output neurons 1
Activation Function symmetric sigmoid
Initialisation ±2.6
Learning Factor 0.1
Momentum 0.5
Number of training patterns 400
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Table 4.2 Weight vectors of the hidden layer of domain A 
trained with penalty function.

Vector Vector
Reference wn Wn W1B Length

V| -0.201919 0.103184 -0.68289 0.7195

V2 -0.62344 -0.364037 -1.166956 1.3722

Table 4.3 Weight vectors of the hidden layer of domain B 
trained with penalty function.

Vector Vector
Reference Wn Wl2 Win Length

v3 -0.195099 -0.191644 -0.372048 0.4617

V4 0.306013 -0.498975 1.265225 1.3941

To create saturated neurons, in the second set of weight matrixes, the penalty function 

from section 4.6 has not been exercised during training. Therefore, the resulting 

weight matrixes after training of both networks for domains A and B with saturated 

neurons are much higher in value and are shown in tables 4.4 and 4.5.

Table 4.4 Weight vectors of the hidden layer of domain A 
trained without penalty term.

Vector Vector
Reference wn W,2 Win Length

v5 -6.6214 9.5011 -1.6889 11.7032

V6 7.9496 -2.061 -2.3524 8.5427

Table 4.5 Weight vectors of the hidden layer of domain B 
trained without penalty term.

Vector Vector
Reference W|| Wl2 w1B Length

v? 21.349 -3.595 -6.9314 22.7325

Vs 2.2002 4.0911 -3.1837 5.6315
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4.7.3 Non-Saturated Neurons

Neuron saturation in a neural network reduces the individual neurons dynamic 

characteristics because saturated neurons supply the overall network output with a 

nearly constant contribution. Such constant contributions can be found on over-

trained networks, which have characteristics of erratic behaviour if unseen input 

vectors for generalisation or more precisely for inter or extrapolation are presented. 

The following analysis has been comparing how the overall output of combined 

networks with unsaturated neurons changes if saturated neurons are used. The output 

for this comparison has been produced with linearly combined and linked networks. 

For the purpose of comparing output changes, the individual network outputs are 

plotted with their corresponding input space coordinates in figure 4.15. This graph has 

been used as a reference for comparing combined network outputs created by a gating 

network and a stimuli network for saturated and unsaturated neurons.

a  Domain A 

m Domain B

. out
0.6

0.4

m * » JP*

-0.5

a * *  a
- 0.2

X,
0.5

‘AAftkAA

- 0.6 -

Figure 4.15 Network output for domain A (A) and B (■ ) with small weights.

Besides highlighting the problems of neuron saturation, changes at the output of 

combined networks will determine the suitability of a specific combination method. 

Figure 4.15 shows the problem of domain separation, where each domain only 

responds within the boundaries of its own training data. Such separation issues cannot
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be avoided in cases where data is received from distinct sources, operating in different 

input and output spaces. With the help of network combination methods, individual 

network responses can be combined where contributions of both domains are 

valuable. This is generally the case where clear domain boundaries in the input space 

exist or input vectors are reasonably close to several domains.

In this numerical example, such an area, where both domain responses are important, 

has been introduced in section 4.7.1 and figure 4.13.

4.7.3.1 Linear Combined Output

A linear combined network assembly will apply the received input vector [xj X2] to all 

network inputs in the assembly and additionally to the gating network, which is 

regulating the linear combiner as shown in figure 4.4. The network outputs are then 

weighted for each domain as graphically illustrated in figure 4.13 and summed to 

construct the combined network output.

For reasons of simplification the domain transition function shown in figure 4.13 is 

representing the gating network and the linear combiner as one unit. This eliminates 

the need for training of a domain classifier, thus permitting well-defined domain 

weighting for the network combination analysis.

An extract of five data points from the training set is shown in table 4.6. It includes 

domain memberships calculated with equation (4.18), individual network outputs and 

the linearly combined output.

Table 4.6 Calculation of the linearly combined network output for a selection of 5 data points.

Input x, Input x2 Membership 
domain A

Membership 
domain B

NN output 
domain A

NN output 
domain B

Combined
output

-0.21668 0.59406 1 0 -0.39488 0.10198 -0.39486
0.244674 0.38550 0.7816 0.21833 -0.44466 0.13725 -0.31761
-0.08546 -0.05403 0.56286 0.43713 -0.38924 0.19223 -0.13506
-0.87317 -0.99972 0.24689 0.75310 -0.20905 0.30459 0.177781
0.73945 -0.64336 0 1 -0.47138 0.25678 0.256780
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bars are giving an indication of how much and into which direction a data point has 

moved. The linked output from figure 4.16 has been compared against the individual 

network output from figure 4.15 and the SSE calculated as presented in table 4.7.

Table 4.7 SSE of individual domains.

Domain Sum Square Error (SSE)
A 1.6560
B 1.4840

4.7.3.2 Linked Output

Equally to the gating network in the linearly combined output, the stimuli network for 

the linked output represents a classification network utilising the same classification 

function shown in figure 4.13 and equation (4.18). The most important distinction 

between the stimuli network and the gating network is, that the stimuli network 

controls individual neuron outputs instead of entire network outputs, as it is the case 

with gating networks.

For linking of neurons, vector angle comparisons must be made to find suitable 

linking candidates. Because this analysis is utilising very small networks, several 

training runs were required to find neurons where the angle difference was less than 

10°. The value of 10° was acquired from figure 3.12. The weight matrixes found are 

shown in tables 4.2 and 4.3 and their corresponding angle differences in table 4.8.

Table 4.8 Angles between weight vectors in ascending order.

Vector pair Angle between vectors

v2, v3 9.147°
V |, V3 34.54°
V2, V4 140.95°
V i, V4 166.97°
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An acceptance angle of 10° has been chosen on the basis that a reasonable amount of 

recall accuracy is maintained so that a combined network output can be compared 

with the individual network outputs from figure 4.15. The angle difference between 

vectors \ 2  and V3 is below the acceptance angle of 10° and therefore can be linked as 

outlined in section 2.6 and equation (2.49).

The resulting vector vri after linking is presented in table 4.9 with its relative errors in 

table 4.10. Please note that the vector length correction factor F) utilised for domain A 

is always 1 and F2 utilised for domain B is 0.33224.

Table 4.9 Results of the linking of two 
below 10°.

neurons with acceptance angles

Original vector references
Resulting vector vrl

«'ll «■lZ «'IB Factor F2

v3 -0.62391 0.3645 -1.16656 0.33224

Table 4.10 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors

w'n w ’ i z W ' ib f ( « 'u >« ' , i i ) ffiviz, w'12) fh V lB .w 'lB )

v 'z -0.6239 -0.3645 -1.16656 0.08% 0.13% -0.03%

v ’3 -0.20728 -0 . 1 2 1 1 -0.38757 6.25% -36.81% 4.17%

Table 4.10 shows one of the characteristics of equation (2.49), which is that the 

largest error should be with the smallest weight and the smallest errors with the 

largest weight.

In section 4.2 two different points of stimuli induction to a linked neuron were 

introduced and equations (4.1) to (4.4) were derived for stimuli induction prior to 

activation function. Having determined the output of a linked neuron with stimuli 

induction prior to the activation function in equation (4.19), the change of the stimuli 

induction point after the activation function is easy. It involves simply moving the
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summed product of stimuli Sd and length correction factors Fd outside the activation 

function as shown in equation (4.20).

out) = act ■t ( S d -Fd) (4.19)

out) = act[x(fl • v rl]- £  (Sd ■ Fd) (4.20)
d = 1

Equations (4.19) and (4.20) define the neuron outputs in a linked network for two 

different stimuli induction points. To visualise and verify the appropriateness of both 

equations, figure 4.17 shows a corresponding diagram in more detail as previously 

shown in section 4.2, figure 4.5.

Figure 4 .1 7  L in k e d  n e u r a l  n e tw o r k  f o r  i l l u s t r a t io n  o f  s t im u l i  in d u c t io n  p o in t s .
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4.7.3.3 Stimuli Induction prior to Activation Function

This section is demonstrating the calculation details of the neural network with three 

neurons, as shown in figure 4.17. Because vectors V2 and V3 have been linked, vectors 

vi, vir and V4 correspond to the neurons in figure 4.17. Therefore, the network consists 

of one linked (v)r) and two non-linked neurons (vi and v4). Stimuli induction is prior 

to the activation function and all detailed calculations are referring to the second point 

(0.24467, 0.38550) from table 4.6 and are presented for each neuron at different 

stages, as shown in table 4.11.

Table 4.11 N e t w o r k  o u t p u t  w i th  s t im u l i  i n d u c t io n  p r io r  to  a c t i v a t io n  f u n c t io n .

ref in, in2 netj S netj ■ S outj netk Output
V) 0.24467 0.38550 -0.6925 0.78166 -0.5413 -0.2642 ^
Vri 0.24467 0.38550 -1.4597 0.85420 -1.2469 -0.5535 >-0.6931 >-0.3333
V4 0.24467 0.38550 1.1477 0.21833 0.2506 0.1246 '

Examination of the top row in table 4.11 for a non-linked neuron (vi) with 100% 

membership to domain A yield the following calculations: 

netjvl = (0.24467 •-0.2019)+ (0.38855 • 0.10318) +-0.6829 =-0.6925 

Svl = 1.0 • 0.7816 = 0.7816

= -0.5413netiVl • Svl =-0.6925-0.78166

outjVl = (2/( 1 +EXP(0.54132))-1 ) -0.2642

(4.21)

(4.22)

(4.23)

(4.24)

Examination of the second row in table 4.10 for a linked neuron (vri) with 100% 

membership to domain A and 33.22% to domain B, with factor Fi = 1 from section

4.3 and F2 from figure 4.8, yield the following calculations:

netjvrl= (0.24467 • -0.6239) + (0.38855 • 

Svrl = 1.0-0.7816 + 0.3322-0.2183 

net" 1 ■ Svrl = -1.4597 • 0.8542 

outjvl = (2/(1+EXP(1.2469))-!)

0.3645) + -1.1666) =-1.4597 (4.25)

= 0.8542 (4.26)

= -1.2469 (4.27)

= -0.5535 (4.28)
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Examination of the last row in table 4.10 for a non-linked neuron (V4) with 33.22% 

membership to domain B yield the following calculations:

net/ 4 = (0.24467 • 0.3060) + (0.38855 ■ -0.49898) + -1.2652) = 1.1477 (4.29)

Similar output characteristics of the linked network in figure 4.18 and of the linearly 

combined network in figure 4.16 can be observed. The reason for this is, that small 

weights are causing linear operation of the linked networks, as discussed in section 

4.6 and presented in figure 4.10. On comparison of the SSE’s shown in tables 4.7 and 

4.12, only a slight reduction in domain A is noticeable, which is a result of a reduced 

movement of domain A towards domain B.

a  Domain A 0.6°Ut

Sv4 = 1.0-0.2183 

netjv4 -Sv4 =1.14774-0.21833 

out/4= (2/(l+EXP(-0.25059))-!)

= 0.2183 (4.30)

= 0.2506 (4.31)

= 0.1246 (4.32)

Domain B

0.4

- 0.6

Figure 4.18 Linked output for domain A (A) and B (■ ) with stimuli prior to activation function.

Above, error bars are denoting the directional change of the neuron outputs, whilst the 

input Xi remain the same for all figures showing such error bars. Horizontal dashes 

represent the individual network outputs and the markers represent the current.
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If figures 4.16 and 4.19 are compared, similar characteristics in the change of output 

can be observed. Stimuli induction prior or after the activation function does not differ 

largely when unsaturated neurons are present. The almost identical SSE in table 4.14 

compared to tables 4.7 and 4.12, supports this statement.

Table 4.14 SSE of linked domains with stimuli induction 
after activation function.

Domain Sum Square Error (SSE)
A 1.6035
B 1.5272

A SSE comparison between the three different network combination methods in 

figure 4.20 shows little differences. Linked networks behave similar to linearly 

combined networks if no neuron saturation is present.

SSE
2.0

1.6560
1.6035

Domain A

1.4840 1.4890

□  Linear Combined 
E  Linked Prior Activation 
B  Linked A fter Activation 

1.5272

Domain B

Figure 4.20 Comparison of SSE between different types of network assembles.

In the following sections, saturated neurons will be analysed and a repeat of all tests, 

which have been applied to non-saturated neurons, is made to saturated neurons to 

draw attention to the differences between stimuli induction prior and after neuron 

activation function.



 



The Stimuli Network 112

4.7.4.1 Linear Combined Output

If networks used in an assembly are investigated for their individual performance, 

linear combiners are generally suitable for domain interaction as shown in section 

4.3.7.1. But if networks in an assembly are suffering from over training or high 

sensitivity caused by neuron saturation, linear combiners may not sufficiently 

amalgamate individual network outputs. This section is investigating the effects of 

neuron saturation in a linearly combined network assembly.

Since the training input vectors remained unchanged but outputs have been changed, 

domain membership calculations remain unaffected. Because of this, individual 

network contributions are multiplied by the same magnitude prior to summation, 

computing the overall output with the same weighting factors as in section 4.7.3.1. 

Figure 4.22 shows slight changes in the linearly combined output for domains A and 

B, observable by the error bars. These changes do not show as much knowledge 

domain interaction, if compared to figure 4.16. The reasons for this are that each 

network outputs operate in their own input space and are within extremes of the 

activation function.

out
a  Domain A 1
« Domain B

0.8

-1 -

Figure 4.22 Linear combined output for domain A (A) and B (* ).
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If an input vector has membership of both domains, the output of the domain in which 

it was present during training will be weighted whilst the output of the remaining 

domain is small. Thus only the network with matching domain can contribute. 

Because of this, satisfactory domain interaction cannot be achieved by linear 

combination. With this, the calculation of the SSE between figure 4.21 and 4.22 for 

both domains is relatively small, as shown in table 4.15.

Table 4.15 SSE between individual and linearly 
combined domains.

Domain Sum Square Error (SSE)
A 0.4332
B 0.2880

4.7.4.2 Linked Output

To find suitable neurons with vector angle differences of less than 10° for linking, 

several training runs similar to section 4.7.3.2 have been made. The weight matrixes 

found are shown in tables 4.4 and 4.5 and their corresponding angle differences in 

table 4.16.

Table 4.16 Angles between weight vectors in ascending order.

Vector pair Angle between vectors

V j ,  v 7 128.01°
V5,  v 8 63.24°
V s, v 7 5.078°
V s, Vg 69.88°

An acceptance angle of 10° has been chosen, for the reasons mentioned in section 

4.7.3.2. The angle difference between vectors V6 and V7 is below the acceptance angle 

of 10° and therefore can be linked as outlined in section 2.6 and equation (2.49).
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The resulting vector vri after linking is presented in table 4.17 with its relative errors 

in table 4.18. Please note that the vector length correction factor Fi utilised for domain 

A is always 1 and F2 utilised for domain B is 2.6710.

Table 4.17 Results of the linking of two neurons with acceptance angles 
below 10°.

Resulting vector vrl
w„ W 12 W , B Factor F2

v6, v 7 7 . 9 8 6 8 - 1 . 3 6 9 1  - 2 . 6 0 2 1 2 . 6 7 1 0

Table 4.18 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w'u w'12 w',B hwn.w'n) f(w12> w',2) f(W]B, w ' ib)

v'6 7.9868 -1.3691 -2.6021 0.47% -33.57 % 10.62%

v'7 21.3328 -3.6567 -6.9502 -0.08% 1.70% 0.27%

Table 4.18 shows one of the main characteristics of equation (2.49), which is that the 

largest error should be with the smallest weight and the smallest errors with the 

largest weight.

4.7.4.3 Stimuli Induction prior to Activation Function

In this section both neural networks are linked and controlled by a stimuli network by 

utilising the domain membership function from figure 4.13. This section is equivalent 

to section 4.7.3.3 with the only difference being the network weights used are from 

tables 4.4 and 4.5.

The calculation for stimuli induction prior to the activation function was given in 

equation (4.19). All detailed calculations in equations (4.21) to (4.32) are applicable 

to this section if the corresponding parameters from table 4.19 are substituted. These 

are minor changes to equations (4.21) to (4.32) and further calculation details are 

omitted and the results shown in table 4.19.
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Table 4.20 SSE of linked domains with stimuli induction 
prior to activation function.

Domain Sum Square Error (SSE)
A 0.9394
B 0.6997

4.7.4.4 Stimuli Induction after Activation Function

On observation of the error bars in figure 4.24, a strong shift of domain B towards 

domain A can be seen. This is caused by neuron saturation combined with induction 

of the stimuli after the activation function, which has only a scaling effect on the 

totally saturated output. This loss of information has resulted in the display of the 

sigmoid function for domain A. The saturated neurons of domain B combined with 

the stimuli induction after the neuron activation function has caused a stark domain 

interaction between domain A and B in quadrant 1, shifting the output of network B to 

domain A.

out
a  Domain A 1 -

Figure 4.24 Linked output for domain A (A) and B ( ■ ) networks.
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The large SSE shown in table 4.21 indicates a very strong interaction between 

networks A and B to such an extent that network B has almost the same output as 

network A in quadrant 1.

Table 4.21 SSE of linked domains with stimuli induction 
after activation function.

Domain Sum Square Error (SSE)
A 1.3336
B 4.2573

A SSE comparison between the three different network combination methods in 

figure 4.25 shows a large difference for saturated neurons. Therefore it can be stated 

that the output of a linked network is affected by saturated neurons more severely if 

the stimuli injection is located after the activation function.

SSE
4.5 -

4.0

3.5 j

3.0

2.5

2,0

1.3336

1.0

0.5

0.0
Domain A

□  Linear Combined 
B  Linked Prior Activation 
B  Linked After Activation

4.2573

Domain B

Figure 4.25 Comparison of SSE between different types of network assembles.
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4.8 Conclusion

For the purpose of activating the most appropriate domain experts a stimulus for each 

domain has been introduced. The domain stimuli, generated by a stimuli network, 

have been used to control the outputs of individual experts in order to generate the 

overall network output. One of the major differences of existing multiple expert (ME) 

systems is that the classification results, generated by the stimuli network, are used to 

control individual neurons in each expert, instead of the output of the entire network, 

as shown in figure 4.3. The classification from the stimuli network, referred to as the 

stimuli factor S, has been used in conjunction with the weight vector length correction 

factor F of linked neurons to control the contribution of neurons to the entire network 

output.

Because classifiers networks that produce stimuli act on neurons internally, the 

combined input netj of a neuron should not exceed 2.3, as shown in section 4.6. This 

is because the summed neuron input netj is multiplied with the stimulus factor S and if 

the stimulus S is small the neuron contribution should be reduced, which is not the 

case if netj is very large. Neurons with a large netj have been defined in section 4.5 as 

saturated and neuron saturation should be avoided if the linked neurons should 

operate satisfactory.

The numerical experiment in section 4.7 concludes that the presents of saturated 

neurons has been the cause for interaction between two domains even if the input 

vector originated from one domain only. This is not desirable since the contribution of 

each domain expert should be controllable by the stimuli network, which is not the 

case if saturated neurons are present. Furthermore, the neuron output is less affected 

by saturation if the stimuli induction point is located after the activation function. But 

outputs of neurons that were not saturated had only a slight variation in the recall and 

generalisation errors. Since neuron saturation cannot be prevented in all cases, stimuli 

should be applied prior to the activation function to reduce the effects of saturation.



Chapter 5

Linking of Neural Network Weight Matrixes

5.1 Introduction

This chapter will show how neural networks can be linked to alter their recall and 

generalisation capabilities. In the first example, two neural networks will be trained 

with data describing a 3D path. This example is using the same number of training 

patterns as the number of hidden neurons, causing the network to suffer from 

memorisation or overfitting [38, 138]. In the subsequent examples, the training and 

testing patterns are split into quadrants to investigate the impact of linking to 

interpolation and extrapolation [161, 169],

The next section will extend the framework of neuron linking to the linking entire 

trained weight matrixes, each trained for a particular knowledge domain, to create a 

single entity. This entity will consist of one or more partially linked matrixes to share 

common information between knowledge domains. Furthermore, to categorise the 

domain a possible knowledge request belongs to, a classification network is used 

similar to existing structures of mixtures of expert systems [14, 31, 43, 48, 49], Since 

the linked network structure will generate the overall network output, conventional 

network combination methods as used in mixtures of experts, such as switching, 

averaging or voting, differ substantially to a linked network [156-158].
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Hidden neurons in linked networks differ in their composition and functionality to 

regular hidden neurons used in ordinary neural networks. Regular hidden neurons 

consist only of a weight matrix, a summing input and an activation function [11]. 

Linked hidden neurons additionally contain a vector length adjustment factor F that 

represents information about the degree of membership towards a particular 

knowledge domain. On data recall, the internal activation of a linked neuron depends 

on the input vector, the weight vector and their membership to the knowledge domain 

in question.

Commonly, a classification network is generating the knowledge domain membership 

categorisation [106, 159, 160], This classification network computes the knowledge 

domain membership from the input space of the input vector. While a gating network 

acts generally on the outputs of multiple experts, the classification network for a 

linked network acts on the hidden neurons directly. The difference is that gating 

networks operate on experts as a whole, whereas in the case of a linked network, the 

individual neurons compute their output depending on the domain membership S and 

the vector length adjustment factor F.

Because of the influence of the classification network on the neurons an analogy to 

the terms used in psychology can be introduced. In psychology, respondent behaviour 

describes behaviour that occurs as an automatic response to some stimulus [124]. 

Since in a linked network different neurons are activated for different domain 

requests, the network response is depending on all stimuli received. For that reason, 

the classification network will be referred to as the stimuli network, and the outputs of 

the stimuli network will be referred to as the stimuli.

5.2 The Principles of Linking Sub-Networks

The linking of weight matrixes is bringing a variety of advantages, for example, 

reduced training time, weight matrix reusability, distributed training on different 

locations or computers, parallel training by divide-and-conquer of the training data,
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domain knowledge sharing and improved generalisation caused by the implicit 

mixture of experts strategy. Once a weight matrix contains knowledge it can be added 

to an existing matrix without any re-training. Therefore, knowledge can be reused by 

induction into a system without the need of the original training data, avoiding re-

training and associated issued such as training data preparation.

The linking of entire weight matrixes demonstrates the possibility of combining pre-

trained matrixes with newly trained matrixes as shown in figure 5.1. Pre-trained 

matrixes could have been purchased from third parties or taken out from an existing 

repository.

Figure 5.1 Linking trained weights with pre-trained weights from library.

Linking of trained network matrixes will allow integrating knowledge from different 

sources into one weight matrix without the need for the training data. With linking, 

pre-trained weight matrixes will become available for different problem domains 

without the need for data preparation, network training and testing. It will be much 

easier to build data models on information about different areas of interest, without 

having to comb through masses of data for the purpose of creating training patterns 

containing all the portions of interest. Instead of consolidating the training data, 

separate networks can be trained on independent sets of training data and 

subsequently combined via linking.

Databases are used to collect data subjects of interest e.g. company performance 

figures or weather information, but this can be converted into a collection of pre-

trained neural network weight matrixes that can store similar information about the
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knowledge domain, see figure 5.2. The user of a pre-trained weight matrix needs to 

keep in mind for which purpose a certain weight matrix has been created and for 

which functionality it was optimised. If for example two weight matrixes of two 

different domains are to be linked for the purpose of interpolation, both matrixes 

should have been trained and tested for optimal performance on generalisation for a 

defined input space. Once the individual networks are linked, the combined network 

is able to cover the combined input space of each individual network with confidence.

Figure 5.2 Similar knowledge contained in a database or in a weight matrix.

Further extension of the analogy of C-based programming languages will bring us 

into the more complex field of memory maps, which can be compared with the input 

space for which a weight matrix has been tested and found appropriate for its purpose. 

If a C-based programming language is supplied with a library of functions, it needs to 

have an associated memory map to locate the point of entry, as presented in figure 5.3 

[1-3]. A memory map is a guide for locating where a certain function can be found in 

memory. The equivalent of a memory map in C-programming is the input space of a 

weight matrix for neural networks. In C the memory map defines where a function 

can be found, whereby a description of the tested input space of a weight matrix 

outlines where reliable knowledge can be found. In order to locate reliable knowledge 

in a weight matrix the associated input space is required, this is referred to as a 

knowledge domain map (KDM) in this thesis and is shown in figure 5.4.
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Figure 5.3 In C-based languages use memory maps to locate functions.

Identification of knowledge in a training data set can be achieved via an input space 

analysis. Such an analysis is basically a search for clusters within the input space to 

identify areas of interest where a high data density exists. Areas with high data 

density are higher in recall confidence than areas with sparse data density. Self 

Organising Maps (SOM) [77] or Principal Component Analysis (PCA) [37] are the 

two most common methods to find such clusters of high data density. Both are 

iterative dimension reduction methods, which are based on data observations.

Figure 5.4 A Knowledge Domain Map locates areas of knowledge in a weight matrix.
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5.3 Linking Sub-Networks

The linking process will combine two or more trained and fully connected sub-

networks into one large network. This will be accomplished by comparing hidden 

neuron vectors of each sub-network or knowledge domain. If two or more similar 

vectors have been found, the neuron linking process combines them to create a single 

linked hidden neuron. The weight vectors of the resulting hidden neuron will be 

calculated as specified in section 2.6 and chapter 3. These resulting hidden neurons 

will build links between the sub-networks or knowledge domains and will be shared 

by data requests for a particular domain.

In order to retain the accuracy of each knowledge base, a unique number, referred to 

as a stimulus code, will be assigned to all hidden neurons. This number is used to tag 

every hidden neuron in each knowledge domain prior to linking. If two or more 

hidden neurons of different knowledge domains are linked, the resulting neuron will 

carry both stimuli codes, one from each knowledge domain. The stimuli code is used 

to identify the appropriate vector length adjustment factor to be utilised on data recall. 

All hidden neurons will carry a code for every knowledge domain involved in the 

linking process. Neurons, which do not satisfy the acceptance angle constraint on 

linking from chapter 3, will not contribute to the domain they were linked to. Such 

neurons will still carry a stimuli code reference to the domain linked to, but the 

contribution to the output on data recall will be zero.

If an input vector of a particular problem domain is applied to a linked network for 

data recall, a process of activating hidden neurons to contribute to the domain in 

question is required. This has been achieved by utilising a stimuli network to classify 

the input space of the incoming vector to the input layer and produce one or more 

stimuli. Only neurons, which are contributing to the stimulus categories generated by 

the stimuli network, will be contributing in the feed forward calculation of the linked 

network to produce the overall network output.
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5.3.1 The Neural Network Linking Process

The neural network linking process will combine two or more trained and fully 

connected neural networks into one large network. The linking process can be split 

into five major steps:

1) Training of sub-networks with data from different knowledge domains.

2) Identification of all hidden neurons that satisfy the acceptance angle constraint 

from both sub-networks involved.

3) Calculation of the resulting vectors vri for each group of linked hidden neurons.

4) Tagging all hidden neurons with a stimulus code.

5) Training of a stimuli network, which will be used to produce the input vector 

classification stimuli for the linked network.

5.3.2 Training Sub-Networks

For the purpose of linking, two 2:10:1 neural networks A and B have been trained 

with the standard backpropagation algorithm. The training data used for each of the 

networks describes an arbitrary path in a 3 dimensional space. The testing data used to 

calculate the generalisation error of each of the networks were data points chosen in- 

between training data points plus 10% noise to avoid direct linear relationship to the 

training data. Figure 5.5 portrays two 3D functions A and B used to train both 

networks A and B respectively. Data points used for training are shown as filled 

markers (suffix: tm) and test data points as empty markers (suffix: gen). In order to 

use a symmetric sigmoid activation function, the weights connecting the hidden layer 

to the output layer have been set to 1 and frozen in the sense that they are not adjusted 

during training, permitting simplified linking without taking the weights connecting 

the hidden layer to the output layer into consideration, as mentioned in section 3.3. 

The parameters of the networks used are given in table 5.1.

To emphasise the problem with generalisation for over-trained networks, only 10 data 

points per function have been used to train the 2:10:1 networks. The reason for using
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the same number of training patterns, as there are hidden neurons, is to cause a direct 

mapping of the training data into the hidden layer. With direct mapping, the network 

is effectively learning the input data as a lookup table and will not be able to 

generalise satisfactory, as it is the case with over-trained neural networks.

Table 5.1 The parameters of the neural networks used in this section.

Description Value (for each network)
Input Neurons 2
Hidden Neurons 10
Output neurons 1
Activation Function symmetric sigmoid
Initialisation ±0.7
Learning Factor 0.3
Momentum 0.5
Number of training patterns 10
Number of testing patterns 9 per data set

Figure 5.5 3D plot of the training and testing data for networks A and B.
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During the course of training, the training SSEtm and testing SSEgen errors have been 

recorded as illustrated in figure 5.6.

1 50k 100k
Training Iteration

Figure 5.6 The recall and generalisation error during training of network A.

It can be observed that the generalisation error SSEgen is rising during training whilst 

the recall error SSEtm is falling. After approximately 100,000 training iterations the 

generalisation error as well as the recall error remain unchanged. This is because the 

training patterns are memorised in the hidden weight matrix. Because there are no free 

parameters within the network and the weights between the hidden and output layer 

are frozen, free large weights and large counter weights cannot be created [140, 141]. 

Such increasing weights are responsible for an increase in the generalisation error. 

But without them, the generalisation error is levelling off and remains constant.

With frozen weights in the output layer, the error optimisation used in the 

backpropagation training algorithm can only adjust the parameters of the hidden layer. 

Because of this restriction, the network is not able to use the output layer to 

compensate for a local minimum that it may encounter in the hidden layer. Hence it is 

not able to memorise the training data precisely and therefore a difference between 

the target function and the recall function in recall mode is certain and can be 

observed in figure 5.6. SSEtm and figure 5.7
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Training Pattern Number

Figure 5.7 The target function plotted against the trained function of network A.

The weight matrix of network B, which has been trained on function B from figure 

5.5, has been created with the same configuration as network A. The stopping criteria 

chosen to end training for both networks has been that the generalisation error 

remained almost unchanged for 1000 training iterations in batch update mode, as 

shown in figures 5.6 and 5.8.

S 2.0

Figure 5.8 The recall and generalisation error during training of network B.



Linking of Neural Network Weight Matrixes 129

The output graphs for the training of network B with function B is shown in figure 

5.9. It suffers from the same constraint of frozen output layer weights as network A, 

which is evident from the small difference in the target and recall output functions.

Figure 5.9 The target function plotted against the trained function of network B.

To compare the trained networks performance benchmarks before and after linking 

later in this chapter, the final recall error SSEtrn and generalisation error SSEgen are 

summarised in table 5.2.

Table 5.2 Performance benchmarks of network A and B after training.

Description Network A Network B
SSEtra 0.02 0.019
S S E ge„ 1.243 1.149
RMSE for SSEtm on 10 
training record sets

0.00667 0.00633

RMSE for SSEge„ on 9 
training record sets

0.41433 0.383

Because of the stopping criteria chosen, both networks training objectives have been 

for optimal performance in recall accuracy not for generalisation, thus causing the
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generalisation error being much higher than the recall error. This is evident if recall 

and generalisation error are compared in table 5.2 for each of the two networks.

With the training of the two networks completed, the training data can now be 

represented as weight matrixes in conjunction with knowledge domain maps (KDM) 

as shown in figure 5.4. These components are presented in table 5.3 and in table 5.4 

and describe the training data and their valid input space for each of the networks. The 

knowledge domain maps used are linear approximations, which accommodate 80% of 

the training data in a linear equation of least squares.

Table 5.3 Weight matrixes of the hidden layers of networks A and B after training.

Reference
Network A Network B

W u W 12 W 1B Length Wn  W 12 W in Length

Vl -31.489202 29.520323 1.720558 43.197 -27.725769 14.899946 1.5787 31.515

V2 7.949682 -2.061007 -2.352439 8.543 -2.445928 -1.432772 2.473297 3.762

V3 15.573389 -15.559452 4.65308 22.501 2.200211 4.091093 -3.183682 5.632

V4 -27.809488 26.555424 1.196535 38.471 -1.109374 0.43771 1.62007 2.012

V5 -8.129432 -5.704075 2.906335 10.348 4.130769 -22.998222 2.681815 23.520

V6 -3.471851 -3.113786 -0.185395 4.667 -20.964043 9.694241 1.382 23.138

V7 -8.509409 -17.838032 19.4095 27.701 8.137968 -20.65534 0.620016 22.209

VS -6.621395 9.501069 -1.688886 11.703 -5.420225 -0.115172 0.124454 5.423
v9 -18.781784 20.524035 -1.14477 27.844 -6.010482 -28.537815 7.361526 30.079

Vio 5.840691 4.331159 -9.77996 12.187 21.349447 -3.595532 -6.931421 22.733

Table 5.4 Knowledge Domain Maps for both training data sets.

Network Area which matrixes were trained for
Matrix A 
Matrix B

f(a) = x2 = 1.05 • x, -0 .03 (0.26<X!<0.86) 

f(b) = x2 = 1.47 x, -6 .04  (0.15<x,<0.84)

In table 5.4 the KDMs for each of the weight matrixes have been represented as linear 

equations and the range in which they are valid. The linear equations have been 

derived with help from figure 5.10, where the training data input space xj and X2 has 

been plotted into a 2-dimensional graph for better visualisation. It can be observed 

that the input space region of network A lies mainly below the region separation line 

whereby the input space region of network B lies above. Hence f(a) is situated by
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around 80% of data points from network A and f(b) is surrounded by 80% of data 

points from network B. Functions f(a) and f(b) have been calculated via the least 

squares of their surrounding data points. KDMs are used to coarsely describe the input 

space region for which the weight matrix has been trained. They can be used for 

guidance so that interpolation can be performed with confidence.

To bear in mind, the primary objective for linking of the two networks is to share 

knowledge acquired during training, with the purpose of improved generalisation for 

areas in the input space omitted by the training data of both networks involved. 

Therefore, the right candidates to demonstrate improved generalisation are over-

trained networks of different domains, as used in this section.

To generate the appropriate training data for domain separation, the 2-dimensional 

input space xi and X2 has been divided into two domains, A and B, as demonstrated in 

figure 5.10. Each set of the training data has been used to train one of the networks, 

set A with input space of domain A for network A and set B with input space of 

domain B for network B. The region separation line shown in figure 5.10 resembles 

the best fit for linear domain separation of the input space into A and B.

region

Figure 5.10 Input space separation of the training data.
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Note that outliners from network A can be seen in domain B and vice versa. These 

outliners have been added to avoid total linear input space separation since linking 

requires neurons with similar knowledge. If the networks had been trained with data 

from different domains without any intersections, the probability of finding similar 

neurons would have been reduced, demanding a higher acceptance angle for linking 

with lower recall accuracy.

5.3,3 Sub-Network Linking Process

If two or more hidden neurons from different knowledge domains have highly 

correlated weight vectors, e.g. identical or opposite, then one of them can be made 

redundant by linking both hidden neurons into a single hidden neuron, as discussed in 

chapter 2. Hidden neuron vectors are unlikely to be exactly correlated, they will not 

match accurately. Therefore, an analytical approach utilising the acceptance angle (p, 

as introduced in chapter 3, is used. Hidden neurons will be understood as sufficiently 

correlated if the angle between their weight vectors in hyperspace does not exceed the 

acceptance angle cp.

Correlated hidden neuron weight vectors belong to the same domain and are holding 

similar knowledge. The process of linking correlating hidden neurons from different 

sub-networks of different knowledge domains will partially combine the knowledge 

of each network into one resulting network as shown in figure 5.11. Furthermore, 

removing superior correlations in the hidden layer will reduce the degree of freedom 

and therefore avoid problems such as over-fitting that can lead to an improved 

generalisation capability of the network as shown in section 3.3.4.

Figure 5.11 illustrates a linked network as a result of linking three domains. This 

network combines three knowledge domains A, B and C together into a single 

network and is capable of responding to requests from any of the domains involved. 

Intersecting areas between knowledge domains signify regions where hidden neurons 

have been linked and tagged with stimuli codes as members of the domains. The 

neurons contained in the intersections are used for recalling information by more than
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one domain. If for instance a recall request has been received belonging only to 

domain A, only neurons carrying a membership code for domain A will be included 

in the generation of the overall network response. If, on the other hand, a request is 

received belonging to some degree to domain A and to some degree to domain B, 

neurons with appropriate membership codes of domain A and domain B will 

participate to the overall network response.

A stimuli network is used for classification to generate the degrees of memberships a 

specific input vector request may have. It analyses the input space and generates a 

measure of membership for each domain and each request. Depending on the strength 

of the measure, which has been referred to as the stimulus S, neurons of certain 

domains are activated to contribute to the overall network output.

Linked neurons 
between domain 
A, B and C.

Linked neurons 
between domain 
A and C.

Linked neurons 
between domain A 
and B.

Linked neurons 
between domain B 
and C.

Stimulus S, to activate Stimulus S2 to activate Stimulus S3 to activate 
neurons of domain A neurons of domain B neurons of domain C

▲ i ▲

Stimuli
Network

Input vector
k

Figure 5.11 Linked domain sub-networks activated by a stimuli network.



Linking of Neural Network Weight Matrixes 134

In order to determine whether two hidden neuron vectors can be linked, an angle 

difference calculation must be performed for every weight vector for both sub-

network weight matrixes. If the angle difference between two vectors exceeds the 

acceptance angle cp, the neurons cannot be linked. In this case it can be stated that 

weight vectors are not sufficiently linear dependent. Hidden neuron vectors where the 

angle difference does not exceed the acceptance angle cp can be stated as being 

sufficiently linear dependent and can be linked. However, in practice, there are only a 

few cases in which the weight vectors are exactly linear dependent. Therefore, 

increasing the acceptance angle cp will increase the angle tolerance, which in turn 

increases the probability of finding hidden neurons for linking. For the purpose of 

quantification of the hidden neurons involved in the linking process, a ratio called 

linking rate p has been defined. The more hidden neurons are combined the higher 

the linking rate p. The linking rate, as referred to in this thesis, is computed as the 

sum of all hidden neurons involved in the linking process divided by the sum of 

successfully linked neurons, as given in equation (5.1).

N

(5.1)
z » .¿> = 1

With N  as the number of all hidden neurons from both sub-networks, v as the vector 

reference of neurons of domain A or B in the hidden layer and P as the number of 

successfully linked hidden neurons after completion of the linking process.

5.3.4 Analysis of Hidden Neuron Weight Vectors

Following the training of the domain sub-networks, hidden weight vectors need to be 

analysed for identification of those suitable for linking. For this purpose, all angles 

between vectors of domains A and B have been calculated. The number of angle
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calculations £, required for a full search of matching weights between domains A and 

B is given in (5.2).
t  = N A-NB (5.2)

With Na  and NB as the number of neurons to be linked from domains A and B 

respectively. The total number of angle calculations for the current example is N a = T 0 ,  

N b = 1 0 ,  £,= 100. Once all angles between the vectors of the domains A and B are 

known, they can be sorted in ascending order so that the acceptance angle constraint 

can be applied. Stepwise linking of neurons and measurement of the SSEtm and 

SSEgen has found the best acceptance angle of 13° for lowest generalisation error. The 

search of the 13° angle is presented later in this chapter. Table 5.3 shows the first 

three vector pairs that fall within the acceptance angle constraint of 13°.

Vectors from quadrants Q3 and Q4 have been mapped into quadrants Q1 and Q2 via 

vector inversion as previously mentioned in section 3.3.2 figure 3.10. Vector 

inversion will always be applicable, regardless of the number of vector dimensions, 

because the angle between two vectors is a scalar and the vector length adjustment 

factor F can be negative, as shown in tables 3.4 and 3.5 pruning of vectors \ 2  and V13.

Table 5.5 Angles between weight vectors in ascending order.

Vector pair Angle between
Network A Network B vectors

v2 V |0 5.078°
V7 V3 180°- 169.72 = 10.28° 1

Vio v2 180°- 167.06= 12.94° 1

5.3.5 Linking of Hidden Neurons from Different Domains

Linking of the three vector pairs from table 5.5 with vector angles below 13° follows 

the approach derived in section 2.6 and used in section 3.3.3. After applying equations

1 This vector has been mapped from Q3 to Q 1.
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(2.37), (2.49) and (2.52), as expressed in section 2.6, resulting vectors as shown in 

table 5.6 can be produced.

Table 5.6 Results of the combination of vectors with angles below 13° 
as listed in table 5.5.

Original vector references Resulting vector vrl
Network A Network B W|| W,2 Win Factor F2
v2 V |0 7.986931 -1.369088 -2.602153 2.670965
V7 V3 -9.347131 -18.599433 18.201234 -0.202205
V 10 v2 7.248415 4.406580 -8.547272 -0.311576

Linking will always involve two domains, one domain will use the resulting vector 

vri • Fi = vr] and all other domains will use vri • Fj. Because the length correction 

factor F2 for linking of domains A (d=l) and B (d=2) is only applicable to domain B, 

table 5.6 shows the vector length correction factor as F2 since Fi, which is referring to 

the reference domain, will always be 1. If a third domain would be linked into a 

neuron already containing two domains, a new length correction factor F3 would be 

added to the neuron’s domain lookup table, as illustrated in chapter 4, figure 4.6.

5.4 Linking Analysis

5.4.1 Analysis of Linking Neurons

In order to evaluate the resulting weight vectors after linking, each vector component 

before and after linking is compared and analysed by the means of the relative error in 

percent, as shown in equation (5.3). Once neurons are linked, they contain the linked 

weight vector and a vector length adjustment factor Fa for each knowledge domain d 

involved in the linking process. Since this example involves only two domains (d = 

2 ), only two vector length adjustment factors Fi and F2 and two domain stimulus 

factors Si and S2 are given for each neuron. Whenever two neurons are linked, Fi will
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be 1 and F2 is the weight correction factor as listed in table 5.6. The stimuli factors Si 

and S2, calculated by the stimuli network during data recall, will determine the degree 

of membership of an input vector to each domain A and B.

w — w
f ( w  W ' )  =  ^ ------- i

w „
(5.3)

If the stimuli network has classified an input vector on the input layer with a 100% 

membership to knowledge domain A and 0% to domain B, Si will be 1 and S2 will be 

0. The result will be, that the resulting vector vri will be multiplied with the sum 

(Si • Fi)+(S2 ■ F2), but because S2 = 0 only (Si • Fi) is significant. If, on the other hand, 

an incoming vector has been classified with a 0% membership to domain A and 100% 

membership to domain B, Si will be 0 and S2 will be 1, but with Si=0, only S2 ■ F2 is 

significant.

With this scenario, weights for each knowledge domain can be calculated, which 

serve the purpose that the original weights, prior to linking, can be compared to the 

reconstructed weights, after linking. Possible changes in domain recall accuracy can 

be evaluated with the assumption that small weight changes on small weights will 

have a less prominent effect on the overall network output.

Table 5.7 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w'„ w'lB f(w„, w'„) f(wi2, w'n) f(w1B,w'1B)
A: v'2 7.986931 -1.369088 -2.602153 0.47% -33.57% 10.62%
B: v',o 21.33281 -3.656787 -6.950259 -0.08% 1.70% 0.27%
A: v'7 -9.347131 -18.599433 18.201234 9.84% 4.27% -6.23%
B: v'3 1.890038 3.760902 -3.680384 -14.10% -8.07% 15.60%

A: v'10 7.248415 4.406580 -8.547272 24.10% 1.74% -12.60%
B: v'2 -2.258432 -1.372984 2.663124 -7.67% -4.17% 7.68%

The notation in table 5.7 will be that the reconstructed vectors v '2 and v'io represent 

vri and vr2 respectively for all vectors involved in the linking process, in accordance to
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figure 3.4 in section 3.2.2 and replace vectors \ 2  and vio from table 5.3. Furthermore, 

prefixes A: and B: refer to the knowledge domain for which the network matrix was 

trained for. Equation (5.4) has been utilised to reconstruct the vectors for domains A 

and B. It represents the actual weight matrix calculation for linked networks with 

multiple domains and has been extracted from chapter 4, equation (4.4).

" J = ' > r f i ( S d -Fd) (5.4)
d = 1

Equation (5.4) has been used for the calculation of the reconstructed vectors for input 

vectors solely belonging to domains A and B. For example A: v'2 is the reconstructed 

vector for V2 of network A and can be compared to the original vector as listed in 

table 5.3. It has been computed as v ' 2  = vri • Si • Fi = vri for domain A (d=2, Si=l, 

S2=0, Fi=l, F2=0) from table 5.6. Vector B: v' 1 0 is the reconstructed vector for vio of 

network B. It has been computed as v' 1 0  = vri ■ S2 • F2 for domain B (d=2, Si=0, S2 =l, 
Fi=0, F2=1.0205) from table 5.6.

In section 2.6 the linking equations (2.37) and (2.49), used for this chapter, were 

derived. The primary objective of the equations was to place the lowest errors with 

the highest weights under the assumption that the highest weights have the highest 

sensitivity towards the neuron output. This can be observed in table 5.7, where the 

general tendency is that larger weights have lower errors and smaller weights have 

higher errors. But with an increased acceptance angle, this objective might not be met. 

For instance vectors v' 1 0  and v'2 with the highest acceptance angle of 12.94 0 do not 

fully comply with the primary objective. Their largest relative error lies with 

component w'u of vector v'1 0 , which is the second largest weight value in terms of 

absolute values. The same applies to component w ' i b  of vector v'2 , which is the 

largest weight with the largest error.

One conclusion of the analysis of relative errors is that the larger the angle between 

weight vectors, the larger the relative errors of individual vector components and the 

higher the possibility that the smallest weight will not have the largest error.
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Without inducing changes into an existing weight matrix, the generalisation error will 

remain unchanged. Generally, changes will only worsen the recall accuracy if the 

network was over-trained. Consequently, if the intent is to improve the generalisation 

error, it is required that the linking process is inducing errors into the trained weight 

matrixes. Analysing where errors are induced and to which extent will assist the 

verification of the acceptance angle used. High errors in weight components suggest 

that the chosen acceptance angle (p may be to high and non-correlating vectors are 

linked. The error ceiling depends on the objective, if recall accuracy is insignificant 

and emphasis lies only with generalisation, tolerable errors will be high e.g. up to 

200%, if recall accuracy is significant, tolerable errors will be much smaller e.g. 

below 50%. These margins have been determined by many practical experiments and 

are purely based on experience. The chosen acceptance angle cp determines the field in 

which the linked network performs best, which can be recall or generalisation.

Table 5.8 lists the induced vector length errors of the reconstructed vectors if 

compared against their original lengths from table 5.3. As identified previously in the 

vector component change impact analysis, the vector length change impact analysis 

reveals the same error distribution behaviour. The general tendency is that the larger 

vector in a linked vector pair carries the smaller error and the smaller vector carries 

the larger error with the exception of v'io- This vector’s components suffer from 

increased relative errors, see table 5.7, and therefore has a higher vector length error 

than v'2.

Table 5.8 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
A: v'2 8.542784 8.510973 (|Vr.l) -0.37%
B: v',o 22.732605 22.732509 (K,|*F2) 0.00%
A: v'7 27.700796 27.651269 (|v„|) -0.18%
B: v'3 5.631501 5.591230 (|v„|*F2) -0.72%
A: v',o 12.186887 12.042148 (|v,i |) -1.19%
B: v'2 3.761994 3.752044 (|vr,|*F2) -0.26%
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Because the calculation of the vector length involves all vector components, high 

errors on proportionally small vector components are not impacting the vector length 

error to any large extent, keeping them relatively small. The search for the optimal 

acceptance angle for interpolation or extrapolation is solely determined by the 

generalisation error not errors of individual vector components. Errors in individual 

vector components demonstrate that induction of errors into a trained weight matrix 

will improve generalisation on over-trained networks.

5.4.2 Analysis of Linked Network

The linking of three neurons from two sub-networks each with 10 hidden neurons has 

reduced the overall number of hidden neurons from 20 to 17. This represents a 

network size reduction of 15%. Size reduction is one of many objectives of linking 

sub-networks. Since size reduction is depending on the chosen acceptance angle, the 

network will be trimmed to its optimum size for the field in which the linked network 

should perform.

In order to analyse the linking results without the necessity of training a stimuli 

network for classification, the individual weight matrixes for each knowledge domain 

A and B can be reconstructed in isolation by using equation (5.3), as introduced in 

section 5.4.1. To create a weight matrix where the original vectors after training are 

replaced with vectors involved in linking, vectors from table 5.3 are substituted with 

reconstructed vectors from table 5.7.

Because no stimuli network will be used, the generalisation data points are tested in 

the domain for which they were created. For example data points along the path of 

function A in figure 5.5 will be tested on the reconstructed weight matrix for network 

A. Whereby data points on the path of function B will be tested on the reconstructed 

weight matrix for network B.

With this analysis the recall and generalisation performances of each linked domain 

network can be directly compared to the trained domain network, providing valuable 

information on how both errors change.
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Table 5.9 Weight matrixes of the hidden layers of networks A and B after reconstruction.

Reference
Reconstructed weight matrix for network A Reconstructed weight matrix for network B

W,l Wu Win Length W|1 w,B Length

Vl -31.4892 29.5203 1.7205 43.197 -27.7257 14.8999 1.5787 31.515

V2 7.9869 -1.3691 -2.6021 8.510 -2.2584 -1.3729 2.6631 3.752

V 3
15.5734 -15.5594 4.6530 22.501 1.8900 3.7609 -3.6803 5.591

V4 -27.8095 26.5554 1.1965 38.471 -1.1093 0.4377 1.6200 2.012
V5 -8.1294 -5.7041 2.9063 10.348 4.1307 -22.998 2.6818 23.520

V6 -3.4718 -3.1138 -0.1853 4.667 -20.9640 9.6942 1.382 23.138

V 7
-9.3471 -18.5994 18.2012 27.651 8.1379 -20.6553 0.6200 22.209

V s
-6.6214 9.5011 -1.6889 11.703 -5.4202 -0.1151 0.1244 5.423

V9 -18.7818 20.5240 -1.1448 27.844 -6.0104 -28.537 7.3615 30.079

Vio 7.2484 4.4066 -8.5473 12.042 21.3328 -3.6568 -6.9502 22.732

In table 5.9 the framed row entries on grey backgrounds are vectors that have been 

replaced with reconstructed vectors. With the resulting weight matrixes, evaluation of 

the recall accuracy and the generalisation errors can be repeated for networks A and B 

as shown in table 5.2 for the originally trained networks.

Table 5.10 Comparison between trained and linked network benchmarks.

Description
Network A Network B

Trained Linked Trained Linked
SSEtrn 0.02 0.584 0.019 0.237
SSEgen 1.243 1.047 1.149 1.122
RMSE for SSE,m on 10 
training record sets

0.00667 0.19467 0.00633 0.079

RMSE for SSEgen on 9 
training record sets

0.41433 0.349 0.383 0.374

Re-evaluation on the weight matrixes with 3 linked neurons is shown in table 5.9 and 

has been undertaken with the same data used for the initial evaluation of the recall 

accuracy SSEtm and the generalisation error SSEgen during the training of the 

networks.

On inspection of table 5.10 it can be noted that the recall error has increased and the 

generalisation error has decreased because of the error induction of the linking 

process. Although the generalisation error has been reduced, it has not been reduced
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to any significant amount so that generalisation confidence is boosted. This is because 

the generalisation data has been applied in their original domains and no advantage of 

knowledge domain intersection has been taken. For the re-evaluation of network A, 

generalisation data only from domain A has been used only on weights from domain 

A, without taking into account a possible degree of membership to domain B.

It might be the case that the generalisation data of domain A lies in the region outside 

the input space of the training data of domain A, therefore causing extrapolation 

problems and an increased generalisation error for domain A, as discussed in section 

3.1. Hence, domain B can be included to assist in cases where the input space of an 

incoming input vector covers parts of the input space of domain B.

For this reason, classification by a stimuli network for the purpose of determining the 

degree of membership of unseen data for different domains will reduce the possibility 

of extrapolation errors, since it includes neurons from different domains to create an 

overall network output. Knowledge domain intersection with stimuli network was 

introduced in chapter 4 and will not be repeated at this point.

5.5 Numerical Experiment: Linking of Extrapolating Networks

Practical applications with neural networks very often involve finding functional 

relationships between variables. For such situations, neural networks can be used to 

transform training data into a mathematical data model equation, which is 

representing an approximated mathematical relationship called objective function 

between the training data input and output. The more variables or dimensions that are 

used for the problem representation, the more complex the objective function. To 

determine an equation that represents the objective function, a neural network must be 

trained to model the relationship between the input and output. Once training is 

completed, the data model, contained within the neural network weight matrix can be 

used for estimating data values missing from the training data set. Gaining access to 

results of unknown data values is one of the major utilisation of neural networks. If
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good quality estimations of unknown data can be added to an incomplete database the 

end product will add value to the data, making this process a valuable business tool. 

Depending on the area of interest for the prediction, a neural network can be used for 

interpolation or occasionally for extrapolation of unknown data.

Interpolation is a mathematical procedure, which estimates values of a function at 

positions between listed or given values [161, 162], Interpolation works by fitting a 

"curve", i.e. a function, to two or more given points and then applying this function to 

the input values of the prediction. Generally, the more parameters are used to model 

such an approximated curve, the more accurate its interpolation. But if too many free 

parameters are used, which are represented as hidden neurons in neural networks, the 

easier a network can over-train and interpolation will become unsatisfactory. 

Interpolation in relation to neural networks means that the unknown input vector lays 

inside, or interior to, the given training data, e.g. region C in figure 5.12.

Extrapolation is using a fitted curve for estimating a value of a variable outside a 

known data range, which has been used for creating the approximated curve. It is 

assuming that the estimated value follows logically from the known data values [163]. 

Extrapolation with neural networks is suffering from the same parameterisation 

problems as interpolation, where over-training can occur. Extrapolation in relation to 

neural networks means that the unknown input vector lies outside of, or exterior to, 

the given training data, e.g. region D in figure 5.12.

X

U n k n o w n

R e g io n s

K n o w n

R e g io n
K n o w n

R e g io n s

y

Figure 5 .1 2 :  T r a in in g  d a t a  i n p u t  s p a c e  s h o w n  a s  a  2 D  d ia g r a m .
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Graphical analysis of training data input-space can be used to identify if certain 

regions of interest are encapsulated within known training data, e.g. region C, or 

outside known training data e.g. region D in figure 5.12. But this analysis is limited to 

3-dimension. If more dimensions need to be analysed, a hyperspace navigation system 

of other mathematical analysis is required [164-166].

Because a trained neural network interpolates unknown areas, which are encapsulated 

by known data regions and extrapolates for areas outside known data regions, 

analysing the training data set can answer the question if the area in which the 

unknown values for prediction are located requires interpolation or extrapolation. This 

is an important question since in most cases interpolation can be performed with 

higher confidence than extrapolation [167-169],

Additionally to the objective function complexity, there are two major factors to be 

determined as a measure of an interpolation/extrapolation confidence. They are 

distance from the unknown data to the known training data and the known data 

granularity often referred to as data density [170, 171].

The purpose of this analysis is to train two neural networks each with data containing 

only selected clusters of the available input space and use linking to combine the 

trained networks into one network. The aim is to show how linking of neural 

networks trained with selected input space clusters will change the generalisation 

error on unseen extrapolated clusters not used for training. Depending on where the 

unseen testing data is located in the input space in relation to the training data, 

interpolation or extrapolation will be used to analyse the generalisation performance 

of the linked networks.

5.5.1 Clustering of Input Space

The two-dimensional input space (xi X2)T used for 2:10:1 neural networks are divided 

into 16 equally sized quadrants or clusters, as illustrated in figure 5.13. Each quadrant 

is defined by its position in the coordinate system and its boundaries with respect to xi 

and X2, which are listed in table 5.11. Two numbers compose the numbering of the



Linking of Neural Network Weight Matrixes 145

clusters in clockwise direction. The first number represents the quadrant in which the 

cluster is located for Cartesian systems. The smallest second number 1 is located in 

the outside corner and the largest 4 in the inside corner, with 2 and 3 mirrored on each 

of the axis. With this arrangement, Qxl represent all outside clusters, Qx4 all inside 

clusters and Qx2 and Qx3 clusters in-between.

i l x 2

Q ll Q12

+1
Q22 Q21

Q13
-1

Q14 Q24 Q23
+1

Q43 Q44 Q34 Q33

■w-
Xl

Q41 Q42 Q32
-1

Q31

Figure 5.13 I n p u t  s p a c e  d iv id e d  in to  16 e q u a l ly  s iz e d  q u a d r a n t s .

Each cluster can be used for either training or testing but are mutually exclusive and 

no cluster used for training will be used for testing. By arranging the input space 

graphically into clusters, generalisation by interpolation or extrapolation can be easily 

distinguished, permitting categorisation of the linking results.

Table 5.11 T h e  c lu s te r s  a n d  t h e i r  r a n g e  in  i n p u t  s p a c e .

Quadrant *2 Quadrant
Qll -1.0 < Xi < -0.5 +1.0 < x2 < +0.5 Q13 -1.0 < X, < -0.5 +0.5 < x2 < 0.0
Q12 -0.5 < X] < 0.0 +1.0<x2<+0.5 Q14 -0.5 <Xi < 0.0 +0.5 < x2 < 0.0
Q21 +1.0 < X] < +0.5 +1.0 < x2 < +0.5 Q23 + 1.0 < x, < +0.5 +0.5 < x2 < 0.0
Q22 +0.5 < Xi < 0.0 +1.0 < x2 < +0.5 Q24 +0.5 < Xi < 0.0 +0.5 < x2 < 0.0
Q31 +1.0 < X| < +0.5 -1.0<x2<-0.5 Q33 +1.0 < X] < +0.5 -0.5 < x2 < 0.0
Q32 +0.5 < X, < 0.0 -1.0 < x2 < -0.5 Q34 +0.5 < Xi < 0.0 -0.5 < x2 < 0.0
Q41 -1.0 < X| < -0.5 -1.0 < x2 < -0.5 Q43 -1.0 < X) < -0.5 -0.5 < x2 < 0.0
Q42 -0.5 < Xi < 0.0 -1.0 <x2 < -0.5 Q44 -0.5 <x, < 0.0 -0.5 < x2 < 0.0
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Figure 5 .1 4  D a ta s e t  A  f o r  e x t r a p o la t io n .
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Figure 5 .1 5  D a ta s e t  B  f o r  e x t r a p o la t i o n .

This section is analysing how generalisation performance is changing if two 

extrapolating networks are linked. For this reason the training data used for each 

network is located in the corners of the input space, causing forced extrapolation for 

each unseen quadrant. Extrapolation is forced because all unseen clusters are exterior 

to the clusters used for training.

Network A is trained with dataset A from figure 5.14, which is including all clusters 

of quadrant Q3x. Network B is trained with dataset B, which is including all clusters 

of quadrant Qlx.

5.5.2 Training of Domain Networks

The training and testing data will consist of two inputs xi and X2 and one output oj. 

It’s objective function oi = f(xi, X2) is given in equation (5.5) and is valid for the 

entire input space (0<xi<l; 0 < X 2 < 1 ) .  The chosen objective function shown in figure 

5.16 is non-linear and continuous for the entire input space, thus permitting good 

generalisation for interpolation. The graph has been rotated anti-clockwise by 90° for 

better visualisation because the steepness of Q4x would otherwise cover all other
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quadrants. For easier orientation all quadrants from figure 5.13 have been rotated and 

projected on top of the graph. It can be noted that Q41 has the highest target value of 

approximately 0.80 and Q31 the lowest target value of approximately -0.76.

Training and testing data records have been generated with random values of xj and 

X2, within the cluster boundary constraints of table 5.11, and the target value has been 

calculated with equation (5.5).

The training data of selected clusters has been used to train neural networks, which 

act as domain experts for each of the clusters used. Networks A and B have been 

trained with the same training parameters and stopping criteria from section 5.3.2 and 

are shown in table 5.1. The stopping criteria chosen to end training for both networks 

has been that the SSE remained unchanged for 1000 training iterations in batch update 

mode. This stopping criterion used represents the location of a minimum of the error 

function.
_iL

y = 0.55-e 5 ■ {[(x, -  0.26)- (x2 -  0.73)]- 0.4} (5.5)

Figure 5 .1 6  T h e  o b je c t iv e  f u n c t io n  o f  th e  o u tp u t  f o r  n e tw o r k s  A  a n d  B.
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After training each of the 16 clusters have been presented to each of the networks for 

measuring its SSE with respect to the target values. Tables 5.12 and 5.13 show the 

SSE for each cluster for networks A and B respectively and figures 5.17 and 5.18 

present the data graphically in 2D and figures 5.19 and 5.20 in 3D.

It can be noted that the clusters used for training have low errors. Network A has been 

trained with all data from quadrant Q3. Therefore clusters Q31, Q32, Q33 and Q34 

have the lowest errors. After inspection of table 5.12, it can be seen that quadrant Q1 

and especially Q 11 have the highest error. This is because cluster Q11 has the largest 

distance from quadrant Q3.

T a b l e  5 .1 2  S u m  S q u a r e  E r r o r s  fo r  e a c h  c lu s te r  a f te r  t r a i n in g  o f  n e tw o r k  A .

Cluster SSE Cluster SSE
Qll 5.28756 Q31 0.04748
Q12 2.13071 Q32 0.01790
Q13 3.55409 Q33 0.03569
Q14 1.18332 Q34 0.02579
Q21 0.52109 Q41 0.96923
Q22 0.30077 Q42 0.25616
Q23 0.07540 Q43 1.74874
Q24 0.10328 Q44 0.54570

The distance of Q21 and Q41 to quadrant 3 is the same but the SSE for Q21 (0.52) 

and for Q41 (0.96) differs substantially, see table 5.12. The explanation for this is that 

the target value of Q21 (-0.25) is lower than the target value of Q41 (0.8). High target 

output values require an even higher netj within a neuron because of the squashing 

characteristic of the sigmoid activation function and are therefore more difficult to 

extrapolate.

On inspection of table 5.13, which shows the SSE for each cluster for network B, the 

same extrapolation behaviour as found for network A can be noted. Here, quadrant 

Q1 has been used for training, causing the lowest errors in Ql l ,  Q12, Q13 and Q14. 

Cluster Q31 has the furthest distance to quadrant Q1 and therefore the highest error 

and Q41 has a much higher error than Q21 because of the higher target value.
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Table 5 .1 3  S u m  S q u a r e  E r r o r s  f o r  e a c h  c lu s te r  a f t e r  t r a i n in g  o f  n e t w o r k  B .

Cluster SSE Cluster SSE
Qll 0.01680 Q31 5.24866
Q12 0.00758 Q32 2.41018
Q13 0.01542 Q33 2.49046
Q14 0.00774 Q34 0.88148
Q21 0.52966 Q41 1.32985
Q22 0.12068 Q42 0.52379
Q23 0.73015 Q43 0.35050
Q24 0.16115 Q44 0.12920

As a result, it can be said that the larger the distance Ad of a cluster for extrapolation 

is from the training data, the higher its error and the lower its confidence. 

Additionally, the higher the expected target value |t| of the extrapolation, the higher its 

error and the lower its confidence. With this, a simple proportional equation for a 

confidence measure c can be derived as shown in equation (5.6).

1

Ad- \ t \  (5-6)

S S E
6.00

Q 1 1  Q 1 2  Q 1 3  Q 1 4  Q 2 1  Q 2 2  Q 2 3  Q 2 4  Q 3 1  Q 3 2  Q 3 3  Q 3 4  Q 4 1  Q 4 2  Q 4 3  Q 4 4

Figure 5.17 S S E  f o r  e a c h  c lu s te r  a f t e r  t r a in in g  f ro m  f ig u r e  5 .1 4 .
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F i g u r e  5 .1 8  S S E  f o r  e a c h  c l u s te r  a f te r  t r a in in g  f ro m  f ig u r e  5 .1 5 .

F i g u r e  5 .1 9  3 D  r e p r e s e n ta t i o n  o f  f ig u r e  5 .1 7 .  F i g u r e  5 .2 0  3 D  r e p r e s e n ta t i o n  o f  f i g u r e  5 .1 8 .

The 3D SSE representation of all clusters in figures 5.19 and 5.20 for networks A and 

B shows that the SSE increases with distance Ad and that Q41 is larger than Q21 

located at the opposite corner. In the following section, both networks will be linked
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and all SSE for each cluster will be measured again and compared with the results of 

this section.

5.5.3 Linking of Domain Networks

In order to combine the knowledge of each domain expert networks A and B are now 

linked as described in detail in sections 5.3.3 to 5.3.5. An acceptance angle of 10° has 

been used for linking of both domains. This value has been chosen empirically from 

experience because the intention is not to optimise the generalisation error as was the 

case in section 3.4.2 in figure 3.12, instead the impact of linking on interpolation and 

extrapolation are investigated.

Table 5.14 shows the trained weight matrixes of networks A and B. To find suitable 

vectors for linking, each vector from one domain is compared against the vectors of 

the other domain as described in section 3.3.2 and equation (5.1). The three vectors 

listed in table 5.15 have an acceptance angle below 10 ° and are therefore suitable for 

linking. Vector pairs V7, V3 and V6 and Vi are pointing in opposite directions and are 

mapped from quadrant Q3 to Q1 as indicated in section 3.3.2.

Table 5.14 Weight matrixes of the hidden layers of networks A and B after training.

Reference
Network A Network B

w n W U WlB Length W |i W12 w 1B Length

V| -0.83348 -0.90902 -0.91949 1.53833 1.96033 -1.33922 -0.45051 2.41648

V2 0.50862 0.53704 0.18746 0.76305 -0.68043 -0.04933 -0.09201 0.68839

V3 0.46481 -0.12644 0.05564 0.48490 0.12802 1.23932 0.75058 1.45453

V4 0.46683 -0.05713 0.73720 0.87444 0.21231 0.76366 -0.42105 0.89752

V5 -1.62017 -0.82645 -0.75155 1.96794 -0.69594 0.83353 1.62410 1.95367

V6 -1.93530 1.56101 0.09489 2.48820 0.42754 0.30195 0.02316 0.52393

V7 0.03216 -0.42111 -0.25007 0.49082 -0.98202 -0.55862 -0.71396 1.33648

V8 0.58610 -0.41012 0.81301 1.08291 -1.29074 -0.83226 -0.76685 1.71660

V9 -0.64106 -0.85676 -0.84200 1.36160 -1.74247 -1.31733 -1.04761 2.42261

V10 1.28727 0.32535 -0.35149 1.37348 -0.60833 0.88289 1.57870 1.90836
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Table 5.15 Angles between weight vectors in ascending order.

Vector pair Angle between
Network A Network B vectors

V5 Vg 6.66°
v7 v3 180°- 171.18=8.82° 1
v6 Vi 180°- 170.32 = 9.68° '

Since weight matrixes contain domain knowledge specific to the area they were 

trained for, a knowledge domain map should be supplied, as shown in table 5.4. This 

is particularly important if weight matrixes are exchanged without the presence of 

training data. In table 5.16 the Knowledge Domain Maps (KDMs) for each of the 

weight matrixes have been represented as the boundaries of their training data 

quadrants Q3 for network A and Q1 for network B.

Table 5.16 Knowledge Domain Maps for both training data sets.

Network Area which matrixes were trained for
Matrix A (0<x,<l) and (-l<x2<0)
Matrix B (-1<X|<0) and (0<x2< 1)

Linking of vectors listed in table 5.15 follows the approach derived in section 2.6 and 

the results are shown in table 5.17. Factor F2 is negative for the second and third 

vector because of the mapping from Q3 to Ql. The next section is a short analysis of 

the impact the linking has on the weights if the trained weight matrix is compared 

against the linked weight matrix.

Table 5.17 Linking results of vectors with angles below 10° as listed in table 5.15.

Original vector references Resulting vector vr.
Network A Network B Wu W|J w,B Factor F2
V5 Vg -1.56289 -0.87932 -0.80501 0.87126
V7 V3 -0.02173 -0.41842 -0.24989 -2.97867
V6 V] -1.83004 -0.11512 0.00360 -1.02160

1 This vector has been mapped from Q3 to QL
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5.5.4 Linking Analysis

Linking analysis was introduced in detail in section 3.4 and all items discussed are 

applicable to this section. Table 5.18 is equivalent to table 3.6 and shows that the 

relative errors between the weights are generally lowest for large weights and largest 

for small weights and that the error increases as the angle between the linked vectors 

grows.

Table 5.18 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w’„ W',2 W',B f(wn, w ' ii) f(Wi2, w'12)
A: v'5 -1.56289 -0.87932 -0.80501 -3.54% 6.40% 7.11%

B: v 'g -1.36168 -0.76611 -0.70137 5.50% -7.95% -8.54%

A: v'7 -0.02174 -0.41842 -0.24989 -167.58% -0.64% -0.07%
B: v'3 0.06474 1.24633 0.74433 -49.43% 0.57% -0.83%

A: v'6 -1.83004 -0.11512 0.00360 -5.44% -107.37% -96.21%

B: v \ 1.86956 0.11761 -0.00368 -4.63% -108.78% -99.18%

Table 5.19 is equivalent to table 3.7 and shows that the relative errors between the 

vector lengths are generally lowest on linked vectors with small angle differences and 

increases as the angle between the vectors grows.

Table 5.19 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
A: v'5 1.96794 1.96567 (|Vrll) -0.12%
B: v's 1.71660 1.71261 (|v„|*F2) -0.23%
A: v'7 0.49082 0.48784 (M i -0.61%
B: v'3 1.45453 1.45312 (K,I*f 2) -0.10%
A: v'6 2.48820 1.83366 (|Vrll) -26.31%
B: v'i 2.41648 1.87326 (|vri|*F2) -22.48%

The high linking error between vectors V6 and vi are an indication that the recall 

accuracy will be considerably reduced. This has been caused by network over-training



Linking of Neural Network Weieht Matrixes 154

and is unavoidable if better generalisation is desired. Improving the generalisation 

error that causes loss of recall accuracy has been discussed in the previous chapters. 

Table 5.20 is equivalent to table 3.9 and shows the reconstructed weight matrix for 

domains A and B after linking. In table 5.20 the framed row entries on grey 

backgrounds are vectors that have been replaced with reconstructed vectors. With the 

resulting weight matrixes, evaluation of each of the input space clusters from figure 

5.13 can be repeated for networks A and B as shown in tables 5.12 and 5.13 for the 

originally trained networks. The next section repeats the process of measuring all SSE 

for all clusters as shown in section 5.5.2 for the linked weight matrixes of table 5.20.

Table 5.20 Weight matrixes of the hidden layers of networks A and B after reconstruction.

Reference
Reconstructed weight matrix for network A Reconstructed weight matrix for network B

W n W u W in Length « ' l l «'12 «4b Length

V] -0.83348 -0.90902 -0.91949 1.53833 1.86956 0.11761 -0.00368 1.87326

V2 0.50862 0.53704 0.18746 0.76305 -0.68043 -0.04933 -0.09201 0.68839

v3 0.46481 -0.12644 0.05564 0.48490 0.06474 1.24633 0.74433 1.45312

V4 0.46683 -0.05713 0.73720 0.87444 0.21231 0.76366 -0.42105 0.89752

v5 -1.56289 -0.87932 -0.80501 1.96567 -0.69594 0.83353 1.62410 1.95367

v6 -1.83004 -0.11512 0.00360 1.83366 0.42754 0.30195 0.02316 0.52393

V? -0.02174 -0.41842 -0.24989 0.48784 -0.98202 -0.55862 -0.71396 1.33648

V8 0.58610 -0.41012 0.81301 1.08291 -1.36168 -0.76611 -0.70137 1.71261

V9 -0.64106 -0.85676 -0.84200 1.36160 -1.74247 -1.31733 -1.04761 2.42261

Vio 1.28727 0.32535 -0.35149 1.37348 -0.60833 0.88289 1.57870 1.90836

5.5.5 Linking Results

To evaluate the impact of linking, if the networks involved are used for extrapolation, 

the trained weight matrixes have been replaced with the linked weight matrixes from 

table 5.20. The impact of linking has been measured with regards to the SSE for each 

cluster of the entire input space. By using the linked weight matrixes, the errors for 

each cluster can increase or decrease if compared with the trained SSE results listed in 

tables 5.12 and 5.13 for networks A and B respectively. Table 5.21 contains the SSE
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for each cluster for network A and table 5.22 for network B. It can be noted that the 

linking process has reduced the extrapolation errors with the furthest distance; 

quadrant Q1 in table 5.21 for network A and quadrant Q3 in table 5.22 for network B. 

Quadrant Q4 shows a slight improvement for network A but worsened for network B.

Table 5.21 Sum Square Errors for each cluster after linking of dataset A.

Cluster SSE Cluster SSE
Qll 2.55619 Q31 0.08766
Q12 0.48926 Q32 0.04759
Q13 1.72065 Q33 0.04364
Q14 0.25082 Q34 0.03166
Q21 0.38004 Q41 1.08590
Q22 0.48450 Q42 0.22921
Q23 0.06479 Q43 0.79075
Q24 0.19843 Q44 0.17832

Table 5.22 Sum Square Errors for each cluster after linking of dataset B.

Cluster SSE Cluster SSE
Qll 0.35056 Q31 4.44658
Q12 0.23728 Q32 2.03295
Q13 0.36733 Q33 1.80917
Q14 0.28527 Q34 0.55317
Q21 0.82563 Q41 1.92059
Q22 0.29750 Q42 0.66472
Q23 0.33802 Q43 0.74010
Q24 0.20874 Q44 0.42719

For easier visualisation, figures 5.21 and 5.22 compare the SSE from training with the 

SSE after linking by utilisation of error bars. The horizontal marker of the error bars 

represents the SSE after training and the bar graph the SSE after linking.

Linking of networks of two distinct domains has reduced the extrapolation error for 

quadrants included in the training data of the other network. Quadrant Q1 used to 

train network A has been reduced in SSE error by linking in network B and quadrant 

Q3 used to train network B has been reduced in SSE error in network A after linking. 

The combination of knowledge between both networks has been successful only for
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areas they were trained in but not for areas not contained in both networks. It can be 

observed in figure 5.21 that Q43 and Q44 slightly reduced their SSE after linking but 

quadrant Q2 worsened. But in figure 5.22 quadrants Q2 and Q4 increased their SSE 

after linking.

Q 11 Q 1 2  Q 1 3  Q 1 4  Q 2 1  Q 2 2  Q 2 3  Q 2 4  Q 3 1  Q 3 2  Q 3 3  Q 3 4  Q 4 1  Q 4 2  Q 4 3  Q 4 4

Figure 5.21 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.15.
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Figure 5.22 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.16.
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For an area view of figures 5.21 and 5.22, figures 5.23 and 5.24 are representing the 

SSE measures in 3D.

Figure 5.23 Cluster errors after linking for A. Figure 5.24 Cluster errors after linking for B.

It can be concluded that the linking of two networks trained for generalisation in 

extrapolated areas will reduce the SSE for areas, which were available for training. It 

is evident that after linking the confidence c for a cluster increases even if the relative 

distance Ad to the closest cluster used for training is large. If P denotes the probability 

that a cluster for extrapolation is included in a domain for linking, equation (5.6) can 

be extended to form equation (5.7).

P
C~ ^ [7 j  (5-7)

With Ad as the distance between the cluster for extrapolation and the nearest cluster 

used for training, | t | as the expected target value of the extrapolation and P as the 

probability that the cluster for extrapolation is present in any other domain included in 

the linking process.
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5.6 Numerical Experiment: Linking of Inter- and Extrapolating 

Networks

In the previous example in section 5.5, two networks trained for extrapolation have 

been linked and their changes in extrapolation have been analysed. In this section, two 

networks, one for interpolation and one for extrapolation are linked to investigate the 

impact linking can have on the interpolation and extrapolation errors of each network. 

Interpolation requires unseen testing data to be located in region C and extrapolation 

requires unseen testing data to be located in region D as illustrated in figure 5.12.

This numeric example will follow exactly the same process as the previous example 

in section 5.5. The only difference is the composition of clusters used for training and 

testing for each of the networks involved, which in turn defines if a network is used 

for interpolation or extrapolation.

5.6.1 Clustering of Input Space

The total number of sectors that divide the input space into clusters and their 

numbering are the same as introduced from section 5.5.1 and were illustrated in figure 

5.13. With this, only the clusters used for training and testing of both domain 

networks C and D must be changed according to their purpose of interpolation or 

extrapolation.

This section is analysing how generalisation performance is changing if an 

interpolating and an extrapolating network are linked. For this reason the training data 

used for the interpolating network C is located in each of the comers of the input 

space as indicated in figure 5.25, leaving all other clusters of unseen testing data for 

generalisation surrounded by data. Network D is extrapolating and therefore has its 

training data in a diagonal cluster formation as indicated in figure 5.26 thus, leaving 

all other clusters of unseen testing data for generalisation outside the training data

area.
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In terms of confidence, unseen clusters of testing data with the furthest distance to the 

clusters used for training are Q21 and Q41. These clusters will have the lowest 

confidence and are therefore of prominent interest. Because Q41 has a higher target 

value than Q21 the extrapolation error of Q21 should be lower than the error of Q41.

à l x2 i kx2
+1 +1

Q ll Q12 Q22 Q21 Q ll Q12 Q22 Q21

Q13
-1

Q14 Q24 Q23
+1

Q13
-1

Q14 Q24 Q23
+ 1

Q43 Q44 Q34 Q33
Xi

Q43 Q44 Q34 Q33
Xi

Q41 Q42 Q32
-1

Q31 Q41 Q42 Q32
-1

Q31

Figure 5.25 Dataset C for interpolation. Figure 5.26 Dataset D for extrapolation.

5.6.2 Training of Domain Networks

The training and testing objective function used in this section is exactly the same as 

previously used in section 5.5.2, which is illustrated in figure 5.16 and expressed in 

equation (5.5).

Both domain networks C and D used are equivalent to the ones used in the previous 

section 5.5.2, which are 2:10:1 backpropagation networks with a symmetric sigmoid 

activation function and frozen output weights that are set to 1 .

Because the data contained in each of the clusters remained unchanged, the same 

training parameters with a learning factor of 0.7 and a momentum of 0.5 as presented 

in section 5.3.2 table 5.1 have been used.

After training each of the 16 clusters have been presented to each of the networks for 

measuring its SSE with respect to the target values. Tables 5.23 and 5.24 show the
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SSE for each cluster for networks C and D respectively and figures 5.27 and 5.28 

present the data graphically in 2D and figures 5.29 and 5.30 in 3D.

Table 5.23 Sum Square Errors for each cluster after training of network C.

Cluster SSE Cluster SSE
Qll 0.01543 Q31 0.01644
Q12 0.02860 Q32 0.03608
Q13 0.07019 Q33 0.02550
Q14 0.04451 Q34 0.01569
Q21 0.01548 Q41 0.02478
Q22 0.04949 Q42 0.08384
Q23 0.02615 Q43 0.06368
Q24 0.03627 Q44 0.04345

Table 5.24 Sum Square Errors for each cluster after training of network D.

Cluster SSE Cluster SSE
Qll 0.02270 Q31 0.03522
Q12 0.04658 Q32 0.14554
Q13 0.05418 Q33 0.10358
Q14 0.01799 Q34 0.01826
Q21 1.21126 Q41 1.65331
Q22 0.38512 Q42 0.53847
Q23 0.40224 Q43 0.38204
Q24 0.09621 Q44 0.06228

It can be noted that the clusters used for training have low errors. Network C has been 

trained with data located in the comers Q11, Q21, Q31 and Q41. Therefore these 

clusters have the lowest errors. Clusters used for training are represented in a lighter 

grey colour in figure 5.27 and 5.28 than unseen clusters.

In table 5.23 all interpolation errors are relatively low if compared to the extrapolation 

errors in table 5.24, with none of them exceeding 0.1. The main reason for this is that 

the objective function from equation (5.5) is very smooth and can therefore be 

described quite accurately by a network with 10 hidden neurons, thus permitting 

excellent interpolation.
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In table 5.24, on the other hand, all extrapolation errors are quite large with quadrant 

Q41 and Q21 boasting the highest errors. Even if clusters Q41 and Q21 have the same 

distance Ad to the training data, Q41 has a higher extrapolation error because its target 

value 11 1 is larger (0.96) than the target value of Q21 (0.52).

SSE 
0.10 -

0.09

Q 1 1  Q 1 2  Q 1 3  Q 1 4  Q 2 1  Q 2 2  Q 2 3  Q 2 4  Q 3 1  Q 3 2  Q 3 3  Q 3 4  Q 4 1  Q 4 2  Q 4 3  Q 4 4

Figure 5.27 Error distribution for each cluster after training of clusters from figure 5.25.

SSE
2.00
1 .8 0  -

1 .6 0

1 .4 0

1.20
1.00
0 .8 0

0 .6 0

0 .4 0

0.20
0.00

Q 1 1  Q 1 2  Q 1 3  Q 1 4  Q 2 1  Q 2 2  Q 2 3  Q 2 4  Q 3 1  Q 3 2  Q 3 3  Q 3 4  Q 4 1  Q 4 2  Q 4 3  Q 4 4

Figure 5.28 Error distribution for each cluster after training of clusters from figure 5.16.
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Figures 5.29 and 5.30 show the spatial representation of the cluster errors across the 

input space from figures 5.27 and 5.28 in 3D. It can be noted that the interpolation 

errors shown in figure 5.29 are higher than the errors of the clusters used for training 

(Q11, Q21, Q31 and Q41). The highest interpolation error of 0.083 can be found in 

cluster Q42, followed by Q13 (0.07) and Q43 (0.063). Figure 5.30 shows the 

extrapolation error distribution, which is highest at the clusters Q41 (1.65) and Q21 

(1.21) with the largest distance Ad to the training data.

Figure 5.29 Cluster errors after training for A. Figure 5.30 Cluster errors after training for B.

5.6.3 Linking of Domain Networks

To combine the knowledge of both domain experts, networks C and D are now linked 

as described in section 5.5.3. As in previous chapters, an acceptance angle of 10° has 

been used for linking of both domains. The linking process follows exactly the same 

process as demonstrated in section 5.5.3 and will therefore be described in brief.

Table 5.25 shows the trained weight matrix of networks C and D and table 5.26 shows 

the vectors, which have an angle difference below the acceptance angle. All four 

vectors listed in table 5.26 qualify for linking and table 5.27 shows the resulting 

vectors and their associated length correction factor F2.
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It can be observed that both training domains have intersecting clusters Q11 and Q31 

in datasets C and D. Because of this, more neurons contain similar information and 

are pointing in the same direction in hyperspace. Therefore more neurons have been 

identified for linking than in the previous example in section 5.5.

Table 5.25 Weight matrixes of the hidden layers of networks A and B after training.

Reference
Network A Network B

w„ W 12 WiB Length wn Wl2 WiB Length

Vl 0.01814 0.12714 0.32884 0.35303 -0.20192 0.10318 -0.68289 0.71955

v2 -1.45389 0.74088 1.61548 2.29619 -0.30162 0.03888 -0.64425 0.71242

v3 -0.64706 -0.47454 -0.33795 0.87068 0.43947 -0.48111 0.25449 0.69954

V4 -1.61199 1.73849 4.55330 5.13356 -0.29893 0.00092 -0.81110 0.86443

V5 -2.51647 1.80877 5.94466 6.70397 -1.18565 1.56259 2.60402 3.26012
-1.46253 -2.22265 -4.75988 5.45304 -3.38593 2.23422 7.43186 8.46692

V7 1.80993 -1.22117 2.55825 3.36329 2.02362 -0.98535 2.57601 3.42079

v8 -1.45224 -0.77717 -1.00396 1.92897 -0.62344 -0.36404 -1.16696 1.37222

V9 2.04481 1.01383 -2.60103 3.46042 0.14505 1.12559 0.76522 1.36878

Vio -3.30301 -3.13889 -7.48923 8.76647 -1.87252 -1.64221 -1.31091 2.81454

Table 5.26 Angles between weight vectors in ascending order.

Vector pair Angle between
Network A Network B vectors

V5 V6 1.53°
V7 v7 180°- 174.70=5.30° 1
V3 Vio 180°- 173.32=6.67° '
Vio V8 6.93°

Table 5.27 Linking results of vectors with angles below 10° as listed in table 5.26.

Original vector references Resulting vector vri
Network A Network B wn W ,2 W ,B Factor F2

v5 v6 -2.62866 1.78183 5.90283 1.26314
v7 V7 1.90235 -1.10403 2.53995 1.01694
v3 Vio -0.57040 -0.50546 -0.40698 3.25751
Vio Vs -3.24420 -3.21372 -7.48258 0.15518

1 This vector has been mapped from Q3 to Ql.
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5.6.4 Linking Analysis

Table 5.28 shows the relative errors between the trained weights and the weights after 

linking. It can be observed that the relative errors are generally lowest for large 

weights and largest for small weights and that the error increases as the angle between 

the linked vectors grows. All relative errors are comparatively low with only five 

weights being above 10%. Similarly in table 5.29, which lists the relative errors of the 

vector length, where none of the errors exceeds 1%. 1

Table 5.28 Vector component change impact analysis.

Reconstructed Vector components Relative Errors
Vectors w'n w'12 W'lB ffwn.w'n) f(Wn, w'n) f(wJB, w ' jb)
A: v'5 -2.62866 1.78183 5.90283 4.46% -1.49% -0.70%
B: v'6 -3.32035 2.25070 7.45608 -1.94% 0.74% 0.33%

A: v'7 1.90235 -1.10403 2.53995 5.11% -9.59% -0.72%
B: v'7 1.93458 -1.12274 2.58298 -4.40% 13.94% 0.27%

A: v'3 -0.57040 -0.50546 -0.40698 -11.85% 6.52% 20.43%

B: v'l0 -1.85810 -1.64653 -1.32575 -0.77% 0.26% 1.13%

A: v',o -3.24420 -3.21372 -7.48258 -1.78% 2.38% -0.09%

B: v's -0.50343 -0.49871 -1.16115 -19.25% 36.99% -0.50%

Table 5.29 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
A: v'5 6.70397 6.70285 (brìi) -0.02%
B: v'6 8.46692 8.46662 (|vr,PF2) 0.00%
A: v'7 3.36329 3.35993 (brìi) -0.10%
B: v'7 3.42079 3.41686 (|Vrll*F2) -0.11%
A: v'3 0.87068 0.86399 (brìi) -0.77%
B:v'l0 2.81454 2.81446 (brll*F2) 0.00%
A: v'jo 8.76647 8.76595 (brìi) -0.01%
B: v'8 1.37222 1.36030 (br,l*F2) -0.87%

1 This vector has been mapped from Q3 to Q 1.
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Table 5.30 shows the reconstructed weight matrix for domains C and D after linking, 

where the framed row entries on grey backgrounds are vectors that have been 

replaced with reconstructed vectors. With the resulting weight matrixes, evaluation of 

each of the input space clusters from figure 5.13 can be repeated for networks C and 

D as shown in table 5.23 and 5.24 for the originally trained networks.

Table 5.30 Weight matrixes of the hidden layers of networks A and B after reconstruction.

Reference
Reconstructed weight matrix for network A Reconstructed weight matrix for network B

W u w 12 W i n Length wn W l 2 W i n Length

V| 0.01814 0.12714 0.32884 0.35303 -0.20192 0.10318 -0.68289 0.71955

V 2
-1.45389 0.74088 1.61548 2.29619 -0.30162 0.03888 -0.64425 0.71242

V 3 -0.57040 -0.50546 -0.40698 0.86399 0.43947 -0.48111 0.25449 0.69954

V 4
-1.61199 1.73849 4.55330 5.13356 -0.29893 0.00092 -0.81110 0.86443

v 5 -2.62866 1.78183 5.90283 6.70285 -1.18565 1.56259 2.60402 3.26012

V 6
-1.46253 -2.22265 -4.75988 5.45304 -3.32035 2.25070 7.45608 8.46662

V7 1.90235 -1.10403 2.53995 3.35993 1.93458 -1.12274 2.58298 3.41686

Vg -1.45224 -0.77717 -1.00396 1.92897 -0.50343 -0.49871 -1.16115 1.36030

V 9 2.04481 1.01383 -2.60103 3.46042 0.14505 1.12559 0.76522 1.36878

V i o -3.24420 -3.21372 -7.48258 8.76595 -1.85810 -1.64653 -1.32575 2.81446

5.6.5 Linking Results

The impact of linking of an interpolating and an extrapolating network has been 

measured with respect of the SSE changes in each cluster. Table 5.31 and table 5.32 

list the SSE error of each cluster for networks C and D.

Table 5.31 Sum Square Errors for each cluster after linking of network C.

Cluster SSE Cluster SSE
Qll 0.36684 Q31 0.03593
Q12 0.18797 Q32 0.07329
Q13 0.39388 Q33 0.05525
Q14 0.21208 Q34 0.12181
Q21 0.02651 Q41 0.29644
Q22 0.11790 Q42 0.15367
Q23 0.05978 Q43 0.38837
Q24 0.14428 Q44 0.22603
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Table 5.32 Sum Square Errors for each cluster after linking of network D.

Cluster SSE Cluster SSE
Qll 0.44401 Q31 0.25628
Q12 0.34688 Q32 0.15527
Q13 0.19470 Q33 0.14888
Q14 0.15266 Q34 0.11817
Q21 0.98650 Q41 1.47453
Q22 0.35590 Q42 0.36705
Q23 0.35842 Q43 0.34347
Q24 0.13925 Q44 0.03899

It can be noticed that the interpolation errors have increased substantially. This is 

because the objective function was easy to interpolate for the network used, which has 

resulted in very low interpolation errors to begin with. The error induction into 

network C caused by linking has reduced the networks recall accuracy and its 

interpolation capability on a similar scale. Figure 3.31 presents the SSE of the 

interpolating network in 2D and figure 5.33 in 3D. It can be observed that the 

quadrant with the highest error prior to linking Q42 is now on 8’th position if all 

quadrants are ranked by their errors.

SSE

Q 1 1  Q 1 2  Q 1 3  Q 1 4  Q 2 1  Q 2 2  Q 2 3  Q 2 4  Q 3 1  Q 3 2  Q 3 3  Q 3 4  Q 4 1  Q 4 2  Q 4 3  Q 4 4

Figure 5.31 Error distribution for each cluster after linking 3 neurons of clusters from figure 5.25.
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All errors for each cluster for network D have been exacted in the same manner as 

network C and are listed in table 5.32 and presented in figures 5.32 and 5.34. If the 

errors are compared with the errors after training, a general increase can be noted 

except for the extrapolated quadrants Q2 and Q4, where the error decreased.
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Figure 5 .3 2  E r r o r  d i s t r i b u t io n  fo r  e a c h  c lu s te r  a f t e r  l i n k in g  3 n e u r o n s  o f  c lu s te r s  f r o m  f ig u r e  5 .1 6 .

Figure 5 .3 3  C l u s t e r  e r r o r s  a f te r  l i n k in g  f o r  A . Figure 5 .3 4  C lu s t e r  e r r o r s  a f t e r  l i n k in g  f o r  B .
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5.7 Conclusions

Data commonly held in databases can easily be used for the creation of data models 

for the purpose of forecasting or analysis of input parameters for what-if cases [172], 

With linking, the reusability of trained weight matrixes should be encouraged given 

that linking can be used for rapid integration and combination of knowledge. In order 

to use a trained weight matrix from a third party the input space margins for all input 

parameters should be known so that a generalisation request can be categorised into 

inter or extrapolation for a measure of confidence. In section 5.3.3 two networks with 

objective functions not based on mathematical functions have been trained and linked. 

After linking of three neurons, the linking analysis from section 5.4.2 has shown a 

reduction in the generalisation error but an increase in the recall accuracy error.

To analyse linking results from networks that have been trained for inter or 

extrapolation, the input space of an objective function based on a mathematical 

function has been split into partitions. Depending on the selection of partitions, 

networks have been trained for inter and extrapolation and subsequently linked to 

study their performance change on generalisation based on inter and extrapolation. 

Extrapolation errors for clusters are increasing with distance to the nearest cluster 

used for training and with increasing target value. The larger the extrapolation target 

value, the larger the error because the extrapolation of smaller target values e.g. 0.6 

resulted in smaller errors compared to extrapolation of higher values e.g. 0.8. After 

linking of three neurons, the analysis has shown good improvements for both 

networks with clusters located in the extrapolation areas of the input space.

In section 5.6 one interpolating network C and one extrapolating network D have been 

linked. The objective function was based on a mathematical function and was 

therefore relatively easy to interpolate by the network C, whilst the extrapolation error 

of network D was high. After linking of four neurons, the analysis has shown 

increased recall errors but improved extrapolation was achieved by network D. As a 

result, linking of interpolating and extrapolating networks improved extrapolation.



Chapter 6

Claims Reservation

6.1 Introduction

Claims reservation is a very important topic for non-life or property and casualty 

insurance companies such as liability and accident insurance. Financial reserves are 

needed for accounting, calculation of premium, reinsurance and asset liability 

management [125, 173, 174], Reserves have to be present, due to the legal agreement 

in insurance contracts. Insurance companies must pay a claim if the claim has 

occurred during the insured period and has been delayed by claims processing or long 

court cases. There are two kinds of problematic claims for which reserves have to be 

built: IBNR (Incurred But Not Reported) reserves for claims, that are reported years 

after they occurred and IBNER (Incurred But Not Enough Reserved) for claims that 

have a very long regulation period like liability [175].

With IBNR, the total amount of claim size is not known at the end of the insurance 

period. This is especially true for persons’ injuries (liability). Therefore a variety of 

mathematical methods for estimation of total loss amounts have been developed, one 

of the well known is the Chain Ladder Method (CLM).

A.M. Best International has supplied all of the data used in this chapter and granted 

permission for use of Insight Non-Life. Insight Non-Life contains the data of all major
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non-life UK insurance companies that has been extensively validated and tested for 

correctness, making it the ideal data source for this chapter.

6.2 Claims Reserving

Claims Reserving is a vital topic in general insurance and serves the purpose of 

estimating the cost of claims to be paid out to the insured party by the insurer. 

Estimation of future events and their cost has mainly been part of advanced statistics 

and data modelling [176]. Improving claims estimation reliability and accuracy will 

increase the profitability of insurance companies and ensure their solvency in case of 

paying for claims as part of the contract. Most actuaries will use different methods to 

estimate the required claims reservation for specific groups of risk. Stochastic 

forecasting methods such as the Chain Ladder Technique with and without past 

claims numbers, Exponential Run-off and Curve Fitting have been well established 

and are used in most cases [125, 177, 178], The purpose of this chapter is to apply 

neural network technology to insurance claims reserves estimation.

The insurance industry has the responsibility to meet the future claims of their 

policyholders with the result that the government forces companies to disclose 

information regarding their business activities under the Companies Act. For this 

purpose, general insurance companies secure large amounts for the reserve of 

outstanding claims. As for all insurance companies, the cost of their business lies in 

the future and the unknown extent of these figures is a major uncertainty. Producing 

the best estimate can be the difference between profitability and insolvency.

The problem of taxation of the whole of the claims reserve in the insurance business 

is that they are exempt from tax. Reserves to allow for possible adverse circumstances 

may be seen as a device adopted for the postponement of taxation properly due and 

seem negative from the government point of view. However, over reserving (or 

overprovision) is reducing the amount immediately available for distribution to
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shareholders and reduces it's profitability and its future prospects in the insurance 

sector.

Insurance regulation has been well established over the past decades, preventing 

insurance companies from insolvency and subsequent collapse [179], The Financial 

Services Authority (FSA) requires claims reserves to be broken down both by class of 

business and by year of origin. It’s major interests are to protect the policyholder and 

therefore welcomes generous reserves, while the Inland Revenue is demanding a 

paring down of those same reserves so as to maximise taxable income. The existence 

of two contradictory requirements on the part of the Government apparently poses a 

dilemma when it comes to reserving. There is no absolute correct value for a claims 

reserve, since it depends on the purpose for which the reserve is required [125], 

Statistical analysis of claims reserves is generally based on past and present 

experience. There is a minimum of information required for that process, in that 

statistical estimation of the reserves for very small classes becomes unreliable. For 

such classes, a claims assessor prepares a case-by-case approach for claims 

estimation. Many claims assessors have a life-long day-to-day claims experience, 

which uniquely equips them for the estimation task.

6.2.1 Claims Reserving for Different Types of Business

Insurance companies accept a wide variation of contracts and covers. Dependent on 

the type and nature of the risk, different reserving strategies need to be applied. 

Therefore, a general classification of the business categories into Types of Business is 

required. Types of Business can be distinguished between physical damage and 

liability; direct business and reinsurance; private and commercial business. Because a 

type of business can be composed of a mix of different risks, further subdivision into 

risk groups is required.
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6.2.2 Types of Business

Insurance companies commonly classify insurance risks, other than reinsurance, by 

the following split in types of business:

Table 6.1 I n s u r a n c e  r i s k s  s p l i t  b y  ty p e  of b u s in e s s .

No Description
1 Accident & Health
2 Motor Vehicle
3 Aircraft
4 Shipping
5 Goods in Transit
6 Property Damage
7 General Liability
8 Pecuniary Loss

Characteristics
Large number of policies, similar risks give homogeneity throughout this class. 
Large number of policies, risks must be split into risk groups for homogeneity. 
Small number of contracts requires case-by-case analysis.
Small number of contracts requires case-by-case analysis.
Small number of contracts requires case-by-case analysis.
Large number of policies, split into risk groups, claims settle within 2 years. 
Claims settlement can take 25 years and more, requires split into risk groups. 
Large number of policies, split into risk groups, dependent on economic factors.

6.2.3 Claims Estimation Methods

An insurer who accepts a premium in one year may still be paying claims in respect of 

that policy many years later. This is because bureaucracy, court cases, long-term 

liabilities and so forth can delay claims payments. Therefore, the insurer needs to 

estimate the liability in order to have a basis for future premiums and claims 

reservation calculations. There are generally two distinct procedures the first being 

case-by-case estimation and the second being statistical analysis [125, 180, 181].

The case-by-case approach produces individual estimates, which is done by a claims 

assessor with experience of similar claims. If a large number of policies are available, 

sub-dividing similar claims into homogeneous risk groups can aid the assessor. It is 

then required to add an allowance for direct claims expenses, inflation, social or 

legislative changes and decide when payment is likely to occur. It is worth noting that 

even companies using an aggregated case-by-case approach to report future claims 

must use statistical analysis for taxation purposes.
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Statistical analysis is a generic term covering almost any method that does not rely on 

examination of the individual claim file. Those range from simple ratio methods 

through a range of methods based on claims payment triangles. There is no single 

method, which is universally applicable. Commonly, several statistical methods are 

applied to the same set of data and their results compared. One of the major factors 

for the successful appliance of mathematical methods for estimation purposes is the 

availability of quality insurance data. Sometimes only limited information is available 

in the early years of a new business. In such case comparative methods across 

companies and years is necessary. To assist comparison between companies and 

years, data models of available data can be produced which can help in the process of 

comparing similar pre-existing risk groups of other companies with a new risk group 

introduced by new business. This chapter will concentrate on the construction of such 

data models with neural networks and compare the result with conventional statistical 

methods.

6.3 Data Preparation

The first and most obvious consideration is to determine what history data might be 

available. In order to generate a reliable mathematical estimation, history data of good 

quality on the specific type of business or risk group must be available.

The second consideration is the purpose of the estimate. If the estimate is required for 

published accounts a more cautious basis is required than that used in assessing 

premium rates. This will affect the desired accuracy of the estimate since the 

evaluation of premium rates can be changed on a daily basis, whereby published 

accounts are generally printed once a year. Additional differentiations are type of 

estimation such as long term, short term, interpolation or extrapolation.

A further consideration is the dependence on external circumstances, for example, 

future inflation, interest rate, unemployment, weather conditions and political
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changes. If any of such information is available in data format, they should be 

included for the data model design and in the estimation process.

Producing an estimate with the help of a data model should not be restricted to one 

narrow range. If the range of the estimation is increased, the sensitivity to changes 

within the dependencies can be analysed. Highly sensitive dependencies can be 

pointed out and re-valuation of those can improve the overall prediction.

6.3.1 Types of Data used for Claims Reservation

As mentioned before, the ability to make good projections of past experience lies with 

the quality of historical data. Even with the best quality data available, any future 

projection will be subject to error. But the error can be reduced and confidence in the 

acquired results can be increased if the correct data or the correct combination of data 

items has been included in the modelling process. Furthermore, not only the data itself 

can influence the outcome, the data pre-processing such as the data presentation, data 

normalisation and denormalisation, data validation, data consistency and the data 

classification have significant involvement on the outcome of the estimation.

Historical data such as the number of claims reported, number of claims settled and 

the amounts paid out by way of settlement are the first benchmark data items 

beneficial for data modelling. Besides those data reflecting claims, data such as 

premium written or earned and measures of risk exposure are frequently available and 

may be included in the data model.

Since the future estimations are linked to time and classes of business, the history data 

needs to be split by year of origin and type of business. An insurance policy is not 

definitely restricted in time, some claims may occur years later; therefore the 

information on years of development is required within the history data.
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6.3.2 Statistical Credibility of the Sample

The underlying principle of insurance is statistical in nature. A sufficient number of 

similar but independent risks is required to improve prediction within manageable 

margins and easing prediction of amounts payable in the next financial year. Hence an 

adequate premium can be set with some confidence in advance of the risk period 

itself. This is a result of what is popularly known as "the law of large numbers", 

which appears in statistical theory as the necessary relationship between the variance 

of a sample and its size [182],

Characterisation of claims for prediction can be archived by creating groups of data of 

similar but independent risks. Firstly, the data requires to be split into their main types 

of business. They are reflected in the supervisory authority classification and are law 

within the FSA. But the heterogeneity of many of these main classes is such to make 

further subdivision essential. The further the subdivision the greater the homogeneity 

in each of the resulting data groups.

Individual data groups can lose their statistical credibility because of lack of sample 

size, which in turns can cause a high variance. Data classes should have a similar risk 

profile and claims run-off. Similarities in claims run off can be detected if the overall 

tail length and development figures are alike. Generally, physical damage claims are 

settled within a few years, whereby major liability claims will take much longer.

If only a small number of data samples are available, different groups can be taken 

together for combined prediction and trend analysis if their ratio and business volume 

stays stable in the future.

If a large number of policies exist with the individual amount at stake relatively small, 

the conditions for statistical treatment are good. But if only a small number of policies 

exist within a class with large amounts at stake, case estimates (case-by-case analysis) 

are required [125],
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6.3.3 Representation of Claims Data

Representing data in an understandable format is the first step in data analysis. The 

appropriate representation of data for a specific analysis can reveal certain trends just 

by graphing it as a simple line. Therefore, an appropriate data format should be 

considered if a successful prediction system is to be created.

Assuming a data sample, in which the risk classification, sample size and 

homogeneity is already established. What are the constraints on the data to describe a 

particular claims figure?

To begin with, there will be the claims amount paid during the course of the 

accounting year just past. This claims figure significance for projection purposes can 

be increased if the accounting year, length of the business run-off, the relative age of 

the claims and the relationship to premium income is known.

6.3.4 The Claims Triangle

The most common method for claims data representation is the claims triangle [183], 

In the claims triangle claims data is displayed in Year of Development and Year of 

Origin on their x and y-axis respectively. The Year of Origin is the year in which the 

policy covering risk was taken. The Year of Development is the age of the insurance 

policy in years after a policyholder has taken it out.

For example, an insurance company has started to sell new policies of a new type of 

risk beginning in 1991. Policies sold in 1991 have caused claims to be paid out in

1991.1992.. . 1996, whereby 1991 is the 1 Year of development, 1992 is the 2 Year of 

Development and so forth. Policies sold in 1992 have caused claims in 1992,

1993.. .1996, whereby 1992 is the 1 Year of Development, 1993 is the 2 Year of 

Development and so forth. The date in which the policies have been sold is the Year 

of Origin and the difference between the date in which claims occurred and the date in 

which the policy was bought are the Years of development. It is important to mention 

that this chapter uses a development year counting system based on 1 not on 0.
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If the claims data is displayed in a data grid format displaying the Year of 

Development on the x-axis and the Year of Origin on the y-axis, the following 

triangular shape emerges:

Y e a r  o f  D e v e lo p m e n t------------------------------------------- ►

1 2 3 4 5 6
1991 1001 854 568 565 347 148
1992 1113 990 671 648 422
1993 1265 1168 800 744
1994 1490 1383 1007
1995 1725 1536
1996 1889

Figure 6.1 D a ta  t r i a n g le  o f  in c r e m e n ta l  c l a im s  f ig u re s .

Once the data has been put into the triangular format, it is very expressive of means 

for analysing and prediction of claims. Down the development year columns, the 

figures are indicating on how much money has been paid out in the first, 

second,...,sixth year after a policy has been sold. Across the origin year rows, the 

figures are indicating on how much money has been paid out for a policy sold in 

1991, 1992... 1996. Lastly, the diagonals can be seen to relate to the position in 

succeeding calendar years, with the lowest diagonal representing the calendar year 

immediately past. The sum of the figures in this diagonal is indicating on how much 

money has been paid in 1996, 1995...1991 (e.g. 1996: 1889 + 1536 +... = 5746). 

There is a further variation of the table that is useful. Rather than looking at the year- 

by-year addition to the claims for each year of origin, cumulative development can be 

shown. The cumulative figures are obtained simply by adding the figures along each 

row. The process yields the triangle shown in figure 6.2.

If the data is analysed across the origin year rows, the figures are indicating on how 

much money in total for a specific development year has been paid out for a policy 

sold in 1991, 1992...1996. Summation of the diagonals will indicate how much
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6.3.6 Claims Data Normalisation

Generally, data normalisation will result in a data set in which the value range lies in- 

between 0...1 for non-symmetrical sigmoid activation function or - 1...+1 for 

symmetrical sigmoid or hyperbolic activation functions. This simple method for data 

normalisation is sufficient on a static data set in which global minimum and 

maximum are known.

Time series forecasting with financial data is not static. Whenever dynamic data 

forecasting is required, the global minimum and maximum figures are generally 

unknown. With claims data, the minimum can be assumed to be zero whereby 

negative claims are possible but out of scope for this chapter [187]. This assumption 

is not generally applicable for financial data since e.g. turnover data might be positive 

or negative. The maximum figure for claims normalisation cannot be found within the 

existing history data set since the data forecasting process may result in a new 

maximum. Therefore, the maximum figure contained within the training data set 

needs to be increased by an estimated factor. Initially, this factor could be the 

forecasted inflation for this particular type of business, found via mathematical 

progression or published expert opinion.

Application of such a factor in the normalisation process will result in a maximum 

figure of less than one in the training and testing data, avoiding saturation of the 

sigmoid activation function of the output neuron. Once the network has been trained 

and data prediction started, monitoring of the network output for saturation becomes 

essential.

If the normalised network output becomes close to one, the estimated inflationary 

factor has most probably been too small and output neuron saturation has occurred. In 

such a case, the inflationary factor needs to be adjusted appropriately and training of 

the network needs to be repeated. Besides the fact that the factor can be too small, it 

may be the case that it has been chosen too large. This can be detected by the network 

output being below a certain value, e.g. 0.6. Finding the ideal factor to avoid over- or 

under saturation can become a recurring process and can easily be automated.
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6.3.7 Feature Selection Process

Defining which data items are relevant for the model in question is called feature 

selection. Selecting the right features to describe all pertinent dependencies is the first 

step to build up a fuller and more reliable data model. By definition, Incurred But Not 

Reported (IBNR) claims reserving requires a data model for its estimation. Generally, 

not only one mathematical approach should be used to produce a prediction result. 

The more different the prediction methods are in their background, the better the 

analysis of their confidence limits. But different methods require different features, 

which in turn reduces the ability of correlating the results.

Total claims paid (or incurred) is the amount of money paid to settle claims (generally 

including partial payments and expenses). The claim frequency is a figure reflecting 

the number of claims occurring during the same period as payments are made. 

Division of the total claims paid figure by the claims frequency is resulting in the 

average cost per claim figure. If a company has a large proportion of direct-writing 

business (low reinsurance ceded) the figures can be taken as gross. If a company has a 

large reinsurance proportion (low direct business), figures should be taken as net 

(gross-ceded).

Claim payments are dependent on how many losses can be recovered from 

reinsurance. The ratio between net premiums earned and gross premium written is 

called the retention ratio and determines the proportion of the income, which has not 

been used to pay for reinsurance. If a company changes its risk policy, a distortion in 

the historical data can be caused if the retention levels are changed drastically. In such 

a case, adjustments for changes in the retention limits must be made.

An important choice in claims development methods is whether to use paid or 

incurred loss data. The difference between paid losses and incurred losses are that 

paid losses are the actual paid amount, whereby incurred losses are the sum of paid 

and reserved money. If a claim has been reported and the claims figure is known (or 

estimated) but is not settled, the claims figure can be reserved since a settlement is 

expected. Such reserves are included in the incurred loss figure. If, for example, a



Claims Reservation 181

high percentage of claims occur close to the financial year-end and the money 

required for settlement has been reserved, the figures for paid losses and incurred 

losses would differ. Such difference is reflected in the ratio between the claims settled 

and claims reported which is called the claims settlement rate. If the claims settlement 

rate is lacking of stability across the financial periods, distortions in the projections 

can occur. If the claims settlement rate is constant, projections of paid losses and 

incurred losses are most likely to correlate, increasing confidence in the results. If 

high fluctuations are identified, a worst-case solution is more desirable [125, 188].

6.4 Claims Reservation with Chain Ladder Method

One important part of the business of a general insurance company is to forecast 

outstanding claims and setting up suitable reserves to meet these claims. The profits 

of insurance companies depend not only on the actual claims paid but also depend on 

the forecasts of the claims that will have to be paid.

The reserves that will be set aside to cover future claims to ensure the financial 

stability of the company and the stability of its profit and loss account need to be 

estimated in a reliable manner. There are a number of methods, which have proved 

useful in practice, one of which is extensively used and is known as the Chain Ladder 

Method (CLM) [125, 187],

6.4.1 Chain Ladder Method

This section will present the insurance data in the form of a claims triangle. It should 

be emphasised that this is for notational convenience only: there are no problems in 

extending the methods to other shapes of data. To reiterate, the year in which the 

policy has been written is often referred to as the underwriting year, accident year or 

year of origin. In the years after the policy was written the company may receive
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claims related to that policy, and these claims are often referred to run off year or 

development year.

The data in table 6.2 shows the incremental run-off triangle of AXA Insurance pic for 

total claims. Since the SFA 1996 regulations limit the number of reported years to 10, 

a truncation of the triangle after the 10’th development year can be noticed. This 

slight derivation of the perfect triangle to a rectangle from 1989 onwards will not 

adversely affect any calculations.

Table 6.2 Incremental run-off triangle for AXA with actual 1999 data.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 22277 10285 6565 3382 2552 336 667 324 267 229
1982 27669 12257 7451 4555 1681 2318 918 866 675 751
1983 26038 10963 7965 2807 3363 1226 716 210 341 199
1984 24594 11093 5299 5789 2946 2265 1306 757 378 528
1985 24274 9462 9247 7209 4494 2605 1753 929 651 580
1986 24008 11695 8712 7787 5020 3503 1964 1688 1055 625
1987 23081 14739 9606 7512 6028 3898 3198 2593 1723 171
1988 19373 10551 8917 7632 4490 4815 3241 1947 1978 1909
1989 35790 16960 15252 11216 9667 4935 2779 2410 1391 865
1990 63257 28691 23044 22279 14653 10191 6139 3788 3630 2872
1991 50348 26516 27625 18287 12760 6751 3648 3472 2347
1992 42350 25735 18798 14394 9920 5642 6071 3258
1993 33864 23350 15288 10877 5273 3146 1932
1994 42833 26250 16261 9447 6351 3100
1995 40277 25012 20030 19103 12761
1996 61229 43086 48576 34089
1997 89466 50737 41399
1998 88171 79146
1999 92442

Run-off triangles can be presented in the form of incremental and cumulative claims 

forms for each development year. The data in figure 6.2 is shown as incremental 

figures. The main difference is that incremental figures decrease for higher run-off 

years whereby cumulative figures will increase.

The incremental claims relating to year of origin i and development year j will be 

denoted Zy, so that the observed data can be described in equation (6.1).
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Zy :i = 1 t; j = 1,..., t - i + 1 (6.1)

The neural network approach will use the incremental claim figures, but the CLM is 

applied to the cumulative claim figures, which are described in equation (6.2 ) and 

shown for AXA in table 6.3.

(6.2)
k = \

Table 6.3 Cumulative run-off triangle for AXA without 1999 data.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 22277 32562 39127 42509 45061 45397 46064 46388 46655 46884
1982 27669 39926 47377 51932 53613 55931 56849 57715 58390 59141
1983 26038 37001 44966 47773 51136 52362 53078 53288 53629 53828
1984 24594 35687 40986 46775 49721 51986 53292 54049 54427 54955
1985 24274 33736 42983 50192 54686 57291 59044 59973 60624 61204
1986 24008 35703 44415 52202 57222 60725 62689 64377 65432 66057
1987 23081 37820 47426 54938 60966 64864 68062 70655 72378 72549
1988 19373 29924 38841 46473 50963 55778 59019 60966 62944 64853
1989 35790 52750 68002 79218 88885 93820 96599 99009 100400 101265
1990 63257 91948 114992 137271 151924 162115 168254 172042 175672
1991 50348 76864 104489 122776 135536 142287 145935 149407
1992 42350 68085 86883 101277 111197 116839 122910
1993 33864 57214 72502 83379 88652 91798
1994 42833 69083 85344 94791 101142
1995 40277 65289 85319 104422
1996 61229 104315 152891
1997 89466 140203
1998 88171

Past experience contained in the triangle is the history information that should be used 

for forecasting the data missing in the lower right hand triangle. Sometimes it is also 

useful to extend the forecasts beyond the latest development year (i.e. to the right of 

the claims run-off triangle) but the standard actuarial technique does not attempt to do 

this. This chapter will focus on the forecast of the 1999 development year only since
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forecasting of subsequent years will follow the same procedure. The diagonal 1999 

development year data to be forecast using CLM and neural networks can be seen 

shaded in table 6.2 .

The CLM was developed from the theory that the amount of payments still to be 

made on a group of claims was related in a stable manner to the amount that has 

already been paid on those claims in earlier years. The basic CLM assumes that all 

external factors such as change in the rate of settlement of claims, alterations in the 

mix of business and inflation of claims costs can be ignored [125],

The CLM theory is based on development factors bj. Development factors are ratios 

of cumulative payments in successive development years for each group of claims. 

The assumption is that the cumulative claims for each business year develops 

similarly by each development year, and estimates the development factors as ratios 

of sums of cumulative claims within the same development year. Thus the estimate of 

the development factor b for column j is shown in equation (6.3). Once the 

development factors bj are known for progressive development years they can be used 

to fill in claims reservations for future years.

With the figures from table 6.3 and equation (6.3) the development factor b2 for 

column 2 can be calculated as 1.549 as shown in equation 6.4.

(6.3)

32562 + 39926 + ... + 140203 
22277+ 27669+ ... + 89466

(6.4)

Summing each column in figure 6.3 and calculating the ratio by dividing the current 

column by the previous column will determine the bj factors for the entire table. After 

the calculation of all development factors they can be used to estimate future
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development years Ej by multiplication with the latest loss figure as shown in 

equation (6.5).

In equation (6.5) Cy is multiplied with (bj-1) and because 1 is subtracted from bj, the 

estimated figure Ej is incremental. If Cy had been multiplied with bJ; Ej would have 

been cumulative. Because neural networks will forecast incremental figures, equation

(6.5) is subtracting 1 from bj to permit direct comparison of results.

E j = C i r ( b j - 1)  (6 .5)

If more years are to be forecast, incremental forecasts can to be summed up to create 

cumulative Cy figures or the subtraction of 1 can be omitted. Because one year of 

forecasting is used in this chapter, equation (6.5) is used. Thus, the estimation for 

1999 for all contracts of the origin year 1996 is 152891 -(1.158-1) = 24160. Table 6.4 

shows all development factor ratios and claims forecasts for 1999 obtained by CLM.

Table 6.4 Cumulative run-off triangle for AXA with predicted 1999 data using CLM.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 22277 32562 39127 42509 45061 45397 46064 46388 46655 46884
1982 27669 39926 47377 51932 53613 55931 56849 57715 58390 59141
1983 26038 37001 44966 47773 51136 52362 53078 53288 53629 53828
1984 24594 35687 40986 46775 49721 51986 53292 54049 54427 54955
1985 24274 33736 42983 50192 54686 57291 59044 59973 60624 61204
1986 24008 35703 44415 52202 57222 60725 62689 64377 65432 66057
1987 23081 37820 47426 54938 60966 64864 68062 70655 72378 72549
1988 19373 29924 38841 46473 50963 55778 59019 60966 62944 64853
1989 35790 52750 68002 79218 88885 93820 96599 99009 100400 101265
1990 63257 91948 114992 137271 151924 162115 168254 172042 175672 1790
1991 50348 76864 104489 122776 135536 142287 145935 149407 2446
1992 42350 68085 86883 101277 111197 116839 122910 2685
1993 33864 57214 72502 83379 88657 9179iJ 3100
1994 42833 69083 85344 94791

Y
101142 \ 5224

1995 40277 65289 85319 104422 9208 1
1996 61229 104315 152891—►24160
1997 89466 140203 40165
1998 88171 \ 48424 1

bj N.A. * 1.549 1.286 1.158 1.088 1.052 1.034 1.022 1.016 1.010
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In table 6.4, the brackets and arrows shown graphically illustrate two ratio 

calculations referring to equation 6.3. Furthermore, the forecasting results of the CLM 

for 1999 are shown diagonally in bold and the development factors bj are in bold at 

the bottom. One major limitation of the CLM is that no forecast for 1999 for the first 

year of development can be made, since no development factor bj is available.

The CLM forecasting results are again listed in table 6.5 in a more convenient way. 

They will be used as benchmarks that shall be used to compare the results obtained 

with using neural networks. Because financial forecasting is an extrapolation 

procedure, linking will be used in an attempt to improve the forecast.

Table 6.5 CLM result analysis for 1999.

Year of Origin Claims Occurred CLM Prediction Relative Error
1990 2872 1790 -60.47%
1991 2347 2446 4.04%
1992 3258 2685 -21.32%
1993 1932 3100 37.68%
1994 3100 5224 40.66%
1995 12761 9208 -38.58%
1996 34089 24160 -41.10%
1997 41399 40165 -3.07%
1998 79146 48424 -63.44%
1999 92442 NA NA

Table 6.5 contains the forecasting results from table 6.4 as well as the actual loss 

figure from table 6.2 for reasons of comparison. The forecasting results from CLM 

seem to be relatively reliable since errors are not larger than 65%. This is caused by 

the fact that the chosen company AXA has a very large number of contracts and 

behaves relatively consistent e.g. no major mergers. With this, the law of large 

numbers applies where trends in data sets containing a large number of samples are 

more stable than data sets that contain a small number of samples [182], CLM relies 

on a stable development and requires a fully developed early year.
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6.4.2 Other Forecasting Methods

Claims reserving is not limited to the CLM, there are many other methods of 

calculating future claims. There are numerous methods available for claims 

reservation calculations such as Bomhuetter-Ferguson method, Reid’s method, 

Bayesian forecasting methods, methods based on regression models and other less 

complex curve fitting methods [189], Many of these methods can include inflation, 

IBNR, number of claims, claim size, cost per claim and many other factors relevant to 

the claims reservation process. A discussion of claims reservation methods other than 

the CLM is out of the scope of this thesis but City University and The Faculty and 

Institute of Actuaries have published a comprehensive guide on claims reserving 

called “Claims Reserving Manual” [125],

6.5 Claims Reservation with Neural Networks

Neural networks have been used successfully in several areas of the insurance 

industry’s claims processing. Such areas include detection of fraudulent claims, 

improved claims processing, pricing and prediction of claims duration [190, 191] but 

nothing has been found on the application of neural networks for claims reservation. 

This chapter contains two numerical examples on claims reservation. The first 

example on claims reservation will restrict data availability to one company only. 

Data availability is reduced in cases where certain types of business are written with 

contracts specific to one company or with low policy numbers. The second example 

on claims reservation will use data from two companies. Data availability is high in 

cases where many companies are writing business with similar contracts for a large 

number of contracts. Both numeric experiments will train two neural networks both 

networks will be linked and operated with a stimuli network in an attempt to improve 

forecasting. The forecasting results of the trained only, linked only and linked with 

stimuli networks will be compared.
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6.5.1 Claims Reservation with Data from one Company

To compare neural network training and linking with CLM, data must be homogenous 

to a certain degree else CLM will perform badly. Therefore the risk group Private Car 

Comprehensive with incremental claims reported and outstanding excluding INBR 

from AXA Insurance Company pic has been chosen and its data is shown in tables 

6.2, 6.3 and 6.4. The advantage of this risk group is that insurance contracts have not 

changed significantly over the years thus homogeneity is present.

6.5.1.1 Training Data Preparation

Because data from one company is to be analysed in isolation, two distinct domains 

are created from the run-off triangle from table 6.2 so that two neural networks can be 

trained. For this purpose, training patterns are created in two directions. The first set 

of training patterns are created to follow the data sequence along the x-axis, the 

second set will follow the data sequence along the y-axis. Whilst the data contained in 

the triangle will remain unchanged, the information held in each training pattern will 

describe a different domain.

Data records created along the x-axis will contain information about the development 

years. Data changes in each development year reflect claims management and the 

delay of claims e.g. court proceedings, claims handling and claims processing.

Data records created along the y-axis will contain information about the year of 

origin. Data changes in each year of origin reflect economic factors and the 

occurrence of claims e.g. inflation, traffic management, road conditions and cost of 

claims settlement.

Since financial data contains time dependent information, financial forecasting is 

categorised as time series forecasting [192, 193], The neural network tries to learn 

what the data changes for each time unit are. Time units are represented by individual 

training patterns so that no explicit time information is required in the training data. 

All financial data used in both examples are typical time series that contain 

continuous data changes for a constant time interval e.g. one year.
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Figure 6.3 shows how time series data is split into input and output windows. In the 

example below, four input neurons and one output are used, which required that the 

input window size must be four and the output window one. A data point that was 

used as the target output in a previous pattern becomes an input in the next pattern. 

Data points that were used as inputs are passed along to the next input changing the 

input patterns into a time series.

Figure 6.3 Training pattern generation for time series forecasting.

There are in principle two ways of training a neural network with time-delayed data. 

One way is to use a Time Delay Neural Network (TDNN). A TDNN has time delayed 

input neurons that shift data points from one input neuron to the next. This requires 

that the input neurons store data in memory in order to pass it on to the next. Another 

way is to use a normal MLP neural network where input and output vectors are 

shifted in the training data. With this, previous and next data points are stored within 

the training data file and no special TDNN software is required. Both methods are 

equivalent with the main difference being the location where input data is stored.
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Several experiments with different sizes of input windows have been run and no 

relevant improvements on window sizes greater than five have been noticed. 

Therefore the window size of the input was set to five (five year history trail) with one 

output to predict (the next year’s claim estimate).

Table 6.6 shows the cumulative claims run-off triangle from which training and 

testing data has been extracted. One sample pattern is shown outlined for each domain 

in x-and y direction referred to as the development and origin year direction. The first 

training pattern for development years starts at column 5 and ends at 9 with the output 

located at column 10. Subsequent patterns have been shifted to the left so that the next 

pattern input vector starts at column 4 and ends at 8 with the output located at 9. 

Patterns for origin years will follow the same logic but in a vertical position. The first 

pattern input vector starts at row 1981 and ends at 1985 with the output at row 1986. 

Subsequent patterns will be shifted downwards so that the next pattern input vector 

will start at row 1982 and ends at 1986 with the output at row 1987.

Table 6.6 Creation of training data using time series window size of 5 inputs and one output.
Development Year

l ! .......... 2 3 4 5 6 7 8 9 10

19S1 22277 32562 39127 42509 ; 45061 45397 46064 46388 46655 ; j
1982 27669 39926 47377 51932 53613 55931 56849 57715 58390 59141

1983 26038 37001 44966 47773 51136 52362 53078 53288 53629 53828

1984 24594 35687 40986 46775 49721 51986 53292 54049 54427 54955

1985 24274 33736 42983 50192 54686 57291 59044 59973 60624 61204

1986 24008 35703 44415 52202 57222 60725 62689 64377 65432 66057

1987 23081 37820 47426 54938 60966 64864 68062 70655 72378 72549

1988 19373 29924 38841 46473 50963 55778 59019 60966 62944 64853

1989 35790 52750 68002 79218 88885 93820 96599 99009 100400 101265

1990 63257 91948 114992 137271 151924 162115 168254 172042 175672 ?

1991 50348 76864 104489 122776 135536 142287 145935 149407 ?

1992 42350 68085 86883 101277 111197 116839 122910 ?

1993 33864 57214 72502 83379 88652 '  91798 j ?

1994 42833 69083 85344 94791 |'l01142’ ?

1995 40277 65289 85319 104422 ?

1996 61229 104315 152891 ?

1997 89466 140203 ?

1998 88171 ?

1999 ?
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Continuing the creation of development and origin year patterns 55 and 85 patterns 

have been generated respectively. The development year pattern with the highest 

origin year will be of 1993 because five inputs and one output require six data points 

in horizontal direction therefore 1993 is the last data point available for the 

development year, as shown outlined in figure 6.5. It comes as a disadvantage that 

data from the last five years cannot be included in the training data.

Table 6.6 is not in the shape of an ordinary triangle because it benefits from additional 

history data from 1981 to 1988. If data from 1981 to 1988 would not have been 

available and table 6.6 would be a triangle, pattern creation for origin years would 

have stopped for origin year 1989 and development year 5. This would have caused 

that no training data for development years higher than 5 would be available for 

training. Because extensive history data has been provided, the training patterns for 

origin years include all 10 years. After creation of all patterns or vectors, they have 

been normalised by a vector based normalisation process that is dividing each vector 

component a, by the vector length. This process is used to create normalised vectors 

with the length of 1 and is shown in its general form in equation 6.6.

6.5.1.2 Training of Domain Networks
Two MLP neural networks have been trained with the normalised data from the 

previous section. The topology of both networks used has been chosen to be 5:10:1 

with frozen outputs. All other important network parameters can be found in table 6.7. 

For ease of use, the neural network trained with development year data is referred to 

as x-direction and the one trained with origin year data is referred to as y-direction. 

Training of both networks has been stopped when the generalisation has dropped or 

reached a plateau after a certain amount of training epochs. The data used for 

measuring the generalisation error are patterns containing 1999 data as target values.
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Table 6.7 The parameters of the neural networks used in this section.

Description X-Direction Y-Direction
Input Neurons 5 5
Hidden Neurons 10 10
Output neurons 1 1
Activation Function symmetric sigmoid symmetric sigmoid
Initialisation ±0.7 ±0.7
Learning Factor 0.01 0.01
Momentum 0.5 0.5
Number of training patterns 55 85
Number of testing patterns 5 10

Figure 6.4 shows the recall SSEtm and generalisation error SSEgen during training of 

the x-direction neural network. Training has been stopped after approximately 8000 

iterations where the generalisation error reached the end of a plateau. The reason why 

training has not been stopped earlier when generalisation was low e.g. 0.2 is that the 

recall accuracy was too low e.g. 0.8. Whilst the generalisation error remained almost 

constant at 0.582 between 5500 and 8000 iterations, the recall error has fallen from 

0.374 to 0.339.

Figure 6.4 Recall and generalisation error of network trained with x-direction data.



Claims Reservation 193

Figure 6.5 shows how the recall SSEtm and generalisation error SSEgen change during 

training of the y-direction neural network. Training has been stopped after 

approximately 33,000 iterations where the generalisation error reached local minima. 

The reason why training has not been stopped earlier when generalisation was lower 

e.g. 0.6 is that the recall accuracy was too low e.g. 0.35. Whilst the generalisation 

error first reached an error of 0.719 at 28,000 and again at 33,000 iterations, the recall 

error has fallen from 0.202 to 0.191.

Figure 6.5 Recall and generalisation error of network trained with y-direction data.

After training, the generalisation results of both neural networks have been re-

normalised and added as two differently shaded diagonal entries into table 6.8. The 

first diagonal entry is for the x-direction (x-dir) where forecasting starts at the 1994 

origin year. This is because it is the first year where 5 consecutive origin years 

become available for creation of an input vector. The second diagonal entry is for the 

y-direction (y-dir) where forecasting is available for all years. Since history data for 

1989 to 1981 has been available no origin year limitations exists.
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Table 6.8 Extract of claims triangle with predictions from x and y directions.
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Table 6.9 shows a direct comparison between the occurred claims and forecasted 

claims for both x and y-directions after training.

It can be noted that the x-direction forecasts are particularly inaccurate. The reason 

might be that the development year information contained in the training data does 

not correlate well. A possible reason for this might be changes in jurisdiction, claims 

management, claims handling or claims processing occurred within the last 10 years.

Table 6.9 Forecasting results for x and y directions after training.

Year of Origin Claims Occurred x-Direction Error y-Direction Error
1990 2872 -2361 -182.22% 2884 0.40%
1991 2347 -3522 -250.07% 1115 -52.48%
1992 3258 -2525 -177.51% 786 -75.87%
1993 1932 -5379 -378.46% -386 -119.95%
1994 3100 -9251 -398.42% -1123 -136.24%
1995 12761 NA NA 6317 -50.50%
1996 34089 NA NA 27736 -18.64%
1997 41399 NA NA 21804 -47.33%
1998 79146 NA NA 58610 -25.95%
1999 92442 NA NA 42011 -54.55%

Unlike the poor performance for the x-direction, the y-direction performs reasonably 

well. It is noticeable that both forecasts perform worst for the year 1994 followed by
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1993. A graphical illustration of the x-direction forecast is given in figure 6.6 and the 

y-direction forecast in figure 6.7. Only a slight parallelism in the trend for the years 

1990 to 1992 can be noted in figure 6.6 whereby the prediction in figure 6.7 seems to 

follow the target values to some extent.

4000

o —..................  — -------
1994 1993 1992 1991 1990

Figure 6.6 Prediction of claims reservation for x-direction.

-20000

Figure 6.7 Prediction of claims reservation for y-direction.

The findings that the training for the y-direction performs better than the x-direction 

has been used in later sections where data from 2 companies will be used for training.
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Table 6.10 summarises the recall and generalisation sum square errors of the forecast 

for both domains. To increase statistical reliability the experiment has been repeated 

10 times up to this point and the averages, minimums and maximums for training and 

testing pattern are reported. Even if the average generalisation error SSEgen for the x- 

direction 0.644 is lower than the y-direction 0.723, the RMSE errors are 0.644/5 = 

0.129 and 0.723/10 = 0.0723. This shows that generalisation for the x-direction is less 

accurate than the generalisation for the y-direction, since the x-direction has only 5 

testing patterns compared to the y-direction with 10 .

Table 6.10 Performance benchmarks of both networks after training for 10 runs.

Description x-Direction after training y-Direction after training
Min Max Average StDev Min Max Average StDev

S S E trn 0.113 0.400 0.287 0.0753 0.191 0.328 0.265 0.0458
S S E gen 0.573 0.839 0.644 0.0927 0.688 0.773 0.723 0.0304

Even if the x-direction error is high, it contains trend information. Linking of both 

networks might still be feasible to share some information between x or y-direction in 

an attempt to improve extrapolation for x and y-direction. For the purpose of linking, 

table 6.11 shows the hidden weight matrix of the network trained with x-direction 

data and table 6.12 shows the hidden weight matrix of the network trained with y- 

direction data. Please note that all particulars of the experiment refer to the first run.

Table 6.11 Hidden layer weight matrix of network trained for the x-direction.

Reference
x-Direction

w „ Wl2 W,3 W,4 w ,5 Win Length

V | -0.7061 -0.5966 -0.5052 -0.2110 0.4972 0.0390 1.1844

V2 -0.9418 1.3641 -0.1610 0.8043 0.9280 0.9029 2.2577

v 3 -1.1891 0.2811 0.0521 -0.0836 0.3082 1.0401 1.6369

V4 -0.7141 -0.7614 -0.7024 -0.2328 0.7341 -0.0777 1.4772

Vs -0.1264 -0.3282 0.4906 -0.4421 0.1188 0.3916 0.8528

V6 -0.9531 -0.5827 -0.7651 -0.0577 -0.4088 -0.0391 1.4161

V7 -0.9339 -0.6151 0.2446 -0.2631 -0.5830 0.0159 1.3114

V8 -0.6809 -0.6078 -0.7497 -0.7840 0.3700 0.8829 1.7106

V9 -0.6297 -0.8539 -0.0904 0.4080 0.0946 0.0046 1.1442

Vio 0.8189 -0.9967 -0.4257 -0.4598 -0.2967 1.0662 1.8115
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Table 6.12 Hidden layer weight matrix of network trained for the y-direction.

Reference
y-Direction

«"12 «13 «14 «15 «1B Length

V] -0.4675 -0.5324 -0.1402 -0.3974 -0.6078 0.1928 1.0422

v2 -0.9238 1.8511 1.6697 1.3047 -3.2385 1.1987 4.5492

V3 5.1030 -2.1313 1.3624 0.9956 -0.3296 -0.3267 5.8005

V4 -0.2072 -0.4222 -0.9357 -1.2531 -1.5552 2.1702 3.1298

V5 -1.0807 -0.1954 -0.8365 -0.3476 -1.1061 1.4559 2.3172

V6 -0.6659 -0.2585 -0.2307 -0.5447 -0.9239 0.8789 1.5767

V? -3.0340 2.4388 -2.2279 -0.6553 -0.3719 2.5248 5.2018

V8 -2.4411 -0.9225 -3.3294 -3.0744 2.4209 3.2508 6.6163
v9 -0.5268 -0.5480 -0.0362 -0.3643 -0.5239 -0.0542 0.9947

Vio -0.0272 -2.0419 -0.9483 -1.3387 2.9135 1.4240 4.1686

Both networks have been trained with the algorithm developed in 4.6 to prevent 

neuron saturation. As a result no excessively large weights in any of the two weight 

matrixes can be found. If component values of weight vectors are spread over a wide 

range, e.g. ±20 instead of ±5, the probability of finding vectors pointing in similar 

directions is lower. Therefore equation 4.17 does not only prevent the creation of 

dominant neurons, it keeps neuron vectors closer together thus increasing the chances 

of finding neurons that can be linked.

6.5.1.3 Linking of Domain Networks

To combine the knowledge of both x and y-direction networks, linking as described in 

section 5.5.3 has been performed. Contrary to previous chapters, an acceptance angle 

of 20° instead of 10° has been used for linking since 5 input neurons have increased 

the dimensionality of the vectors from 3 dimensions in previous chapters to 6 

dimensions (5 inputs + 1 bias). An increase in vector dimensions decreases the 

probability of vectors pointing in the same direction therefore an increase in the 

acceptance angle has been required to find sufficient numbers of neurons for linking. 

The linking process follows exactly the same process as demonstrated in section 5.5.3 

and will therefore be described only in brief.
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Table 6.13 shows the vectors, which have an angle difference below the acceptance 

angle of 20°. Both vectors listed in table 6.13 qualify for linking and table 6.14 shows 

the resulting vectors and their associated length correction factor F2.

Table 6.13 Angles between weight vectors in ascending order.

Vector pair Angle between
x-Direction y-Direction vectors

v8 v8 15.71°
v7 v9 19.96°

Table 6.14 Results of the combination of vectors with angles below 20°as listed in table 6.13.

Original vector references Resulting vector vrl
x-Direction y-Direction wn w,2 «13 w14 « 1 5 WlB Factor F2
v8 Vs -0.5976 -0.2317 -0.8294 -0.7579 0.6242 0.7974 4.0270
V? V9 -0.8619 -0.6390 0.2384 -0.3525 -0.6078 0.0498 0.7275

It can be observed that only two neurons comply with the acceptance angle constraint 

of 20°. Because of an increased number of input neurons more vector components are 

present in each weight vector, which has reduced the probability that they are pointing 

in similar directions in hyperspace.

6.5.1.4 Linking Analysis

Table 6 . 1 5  shows that the relative errors between components of the trained weights 

and the weights after linking. It can be observed that the relative errors are generally 

lowest for large weights and largest for small weights and that the error increases as 

the angle between the linked vectors grows. The table shows that the largest 

component error 6 1 . 8 9 %  of vectors vs:v8 (x-direction:y-direction) is much smaller 

than the largest component error - 5 7 9 . 3 0 %  of V 7 W 9 . The reason for this might be that 

the vector angle of 1 5 . 7 1 °  between vsivs is lower than the angle of 1 9 . 9 6 °  between 

V7W9 and the lower the angle is, the better the match between the vector components.
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Even with such a high error between vectors V7W 9, an attempt of linking both vectors 

seems feasible since more than half or all the other errors are less than 30%.

Table 6.15  V ecto r com ponen t change im pact analysis.

Reconstructed Vector Components
Vectors w'n w'u W' 13 w'u W',5 w'lB
x: v'g -0.5976 -0.2317 -0.8294 -0.7579 0.6242 0.7974

y: v'g -2.4065 -0.9329 -3.3400 -3.0519 2.5139 3.2112

x: v’7 -0.8619 -0.6390 0.2384 -0.3525 -0.6078 0.0498

y: V9 -0.6270 -0.4648 0.1735 -0.2565 -0.4422 0.0363

Reconstructed Relative Errors
Vectors f(w,i, w’„) f(Wi2, w'u) f(Wl3, W'13) f(w14, W'u) f(Wi5,w'15) f(W,B, W',b)
x: v 'g -12.23% -61.89% 10.63% -3.33% 68.74% -9.68%

y: v'g -1.42% 1.13% 0.32% -0.73% 3.84% -1.22%

x: v'7 -7.71% 3.88% -2.52% 33.96% 4.26% 212.56%

y= v 9 19.03% -15.18% -579.30% -29.61% -15.60% -166.89%

Similarly to the analysis in previous chapters, table 6.16 lists the relative errors of the 

vector length. It can be observed that the higher error rests with the vectors V7W9 since 

the angle between both vectors is larger than the angle between vs:v8.

Table 6.16  V ecto r leng th  change im pact analysis.

Vector Original length Reconstructed length Relative Error
x: v'g 1.7106 1.6427 (|v,i 1) -3.96%
y: v'g 6.6163 6.6154 (|vr,|*F2) -0.01%
x: v'7 1.3114 1.3054 (M ) -0.45%
y: v's 0.9947 0.9497 (K,i*f 2) -4.52%

Tables 6.17 and 6.18 show the reconstructed weight matrixes for the x-direction and 

y-direction networks respectively. Rows that are framed on grey backgrounds are 

vectors that have been replaced with reconstructed vectors.

With the resulting weight matrixes, evaluation of the forecasting can be repeated for x 

and y-direction without stimuli network. Just as in previous chapters, input vectors 

from the x-direction are tagged as belonging 100% to A and input vectors from the y-
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direction are tagged as belonging 100% to B. Once a stimuli network has been 

trained, domain memberships can be evaluated on a vector-by-vector basis.

Table 6.17 H idden  layer w e igh t m atrix  of netw ork  tra in ed  for the  x -d irec tion  afte r reconstruc tion .

Reference
x-Direction

w„ " ’ll «13 W14 W15 wIB Length

Vl -0.70607 -0.59656 -0.50520 -0.21096 0.49720 0.03905 1.1844
V2 -0.94179 1.36412 -0.16097 0.80429 0.92799 0.90291 2.2577
v3 -1.18914 0.28106 0.05213 -0.08358 0.30823 1.04010 1.6369
V4 -0.71408 -0.76140 -0.70238 -0.23280 0.73415 -0.07767 1.4772

V5 -0.12638 -0.32824 0.49059 -0.44205 0.11879 0.39160 0.8528

V6 -0.95311 -0.58273 -0.76507 -0.05775 -0.40877 -0.03911 1.4161

V? -0.86189 -0.63895 0.23842 -0.35251 -0.60780 0.04983 1.3054

Vs -0.59759 -0.23166 -0.82940 -0.75786 0.62425 0.79740 1.6427
v9 -0.62968 -0.85387 -0.09035 0.40803 0.09460 0.00457 1.1442

Vio 0.81887 -0.99672 -0.42566 -0.45983 -0.29666 1.06618 1.8115

Table 6.18 H idden  layer w e igh t m atrix  of ne tw o rk  tra ined  for the  y -d irec tion  afte r reconstruc tion .

Reference
y-Direction

«'ll W12 W u w14 Wl5 W in Length

Vl -0.46752 -0.53238 -0.14021 -0.39735 -0.60776 0.19281 1.0422
V2 -0.92383 1.85108 1.66970 1.30472 -3.23850 1.19869 4.5492

V3 5.10304 -2.13132 1.36235 0.99565 -0.32957 -0.32667 5.8005

V4 -0.20722 -0.42217 -0.93568 -1.25313 -1.55524 2.17018 3.1298

V5 -1.08066 -0.19543 -0.83652 -0.34756 -1.10606 1.45589 2.3172

V6 -0.66587 -0.25852 -0.23066 -0.54465 -0.92392 0.87887 1.5767

V7 -3.03399 2.43877 -2.22793 -0.65527 -0.37194 2.52485 5.2018

Vg -2.40653 -0.93289 -3.34002 -3.05195 2.51386 3.21116 6.6154

V? -0.62703 -0.46484 0.17345 -0.25645 -0.44217 0.03625 0.9497

Vio -0.02724 -2.04189 -0.94826 -1.33872 2.91345 1.42395 4.1686

After matrix reconstruction and input vector classification for x and y-direction, the 

new forecasting results are shown in table 6.19. This table can be compared with table 

6.9 for an error analysis after linking. It shows that all errors for x-direction and most 

errors for y-direction have fallen and that only a few errors have increased. Figures 

6.8 and 6.9 compare the predicted claims with the actual claims as they occurred.
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Table 6.19  F o recastin g  resu lts  for x and y d irec tions after linking.

Year of Origin Claims Occurred x-Direction Error y-Direction Error
1990 2872 -1305 -145.42% 3693 28.59%
1991 2347 -2218 -194.49% 2103 -10.40%
1992 3258 -1057 -132.46% 3241 -0.51%
1993 1932 -3913 -302.53% 3227 67.01%
1994 3100 -6577 -312.16% -2741 -188.40%
1995 12761 NA NA 11497 -9.90%
1996 34089 NA NA 37992 11.45%
1997 41399 NA NA 32568 -21.33%
1998 79146 NA NA 82406 4.12%
1999 92442 NA NA 98242 6.27%

On comparison of figure 6.8 with figure 6.6, a shift of the forecasted claims towards 

the actual claims can be noticed. This shift has reduced the generalisation error from 

0.339 to 0.209. Looking back to table 6.15 where vector component errors are listed, a 

high error in the bias values of V7.W9 of 212.56% can be found. Therefore it can be 

assumed that the high error of the x-direction vector bias value caused by linking has 

shifted the predicted claims towards the target claims.
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Figure 6.8 P red iction  o f  c la im s reserva tion  fo r x -d irec tion  afte r linking.
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Figure 6.9 P red iction  o f  c la im s reserva tion  fo r y -d irec tion  afte r linking.

Comparing figures 6.9 and 6.7 shows that the errors for 1999-1995 have been 

reduced. This seems rather peculiar since no information for these years was present 

in the weight matrix of the x-direction network. Looking back to table 6.12 and table 

6.15, the higher errors affecting the y-direction lie with V9 components W13 and w]B. 

For the reason that wiB has only changed from -0.0542 to 0.0363 (-166%), its effect 

can only assumed to be lower than the effect of wB with a change from -0.0362 to 

0.1735 (-579%).

Table 6.20 summarises the forecasting results for both domains after training and 

linking for a total of 10 runs. It shows that the generalisation error has fallen on 

average by 14.24% and 13.79% for x and y-direction respectively, whereby the recall 

error has increased by 129.49% for the x-direction and 69.97% for the y-direction. 

The high percent increase of the recall errors is somewhat alarming but since 

reduction of the generalisation error is the objective, the increase in recall error 

appears to be acceptable. The largest drop in generalisation error encountered during 

10 runs was 54% for x-direction and 47% for y-direction. But increases of 25% and 

17% were also encountered.
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Table 6.20  Perform ance  com parison  o f  trained  and linked ne tw orks fo r 10 runs.

Description x-Direction after training y-Direction after training
Min Max Average StDev Min Max Average StDev

S S E lrn 0 .1 1 3  0 .4 0 0 0 .2 8 7 0 .0 7 5 3 0 .1 9 1  0 .3 2 8 0 .2 6 5 0 .0 4 5 8

S S E gen 0 .5 7 3  0 .8 3 9 0 .6 4 4 0 .0 9 2 7 0 .6 8 8  0 .7 7 3 0 .7 2 3 0 .0 3 0 4

x-Direction after linking y-Direction after linking
S S E trn 0 .2 9 4  1 .4 3 0 0 .6 6 0 0 .3 7 5 6 0 .3 3 5  0 .6 5 9 0 .4 5 1 0 .1 4 1 4

SSEgen 0 .3 6 2  0 .7 5 5 0 .5 5 3 0 .1 5 5 5 0 .3 6 3  0 .8 2 8 0 .6 2 3 0 .1 2 6 7

6.5.1.5 Training of Stimuli Network

A stimuli network is used as a classification network within in a linked network 

environment. Its purpose is to classify incoming input vectors to domain memberships 

that can be used to control vector lengths for neurons that have been linked or not. 

Therefore, the stimuli network is actually controlling each neurons contribution to the 

overall network output.

Since the stimuli network must be aware of the entire input space, all training patterns 

that have been used to train x and y-direction neural networks must be utilised. As the 

stimuli networks awareness is only required within the input space, all target values of 

the training data can be omitted. Instead of using the target values for x and y- 

direction, they can be replaced with classification information.

Table 6.21 shows an extract of the training data used for training of x and y-direction, 

which will be referred to as domain A and B. It should be noted that two domains 

A&B require the stimuli network to have two outputs (out A and out B), one for each 

domain and 5 inputs since it uses the same input vector as the neural networks.

In table 6.21 the output values have been replaced with clustering information in such 

a way that input vectors used for training of domain A should generate 1-0 outputs 

and input vectors used for training of domain B should generate 0-1 outputs. This type 

of 1-0  and 0-1 clustering is limited and only indicates the physical pattern file location 

of each input vector. Input vectors of domain A are stored in a different pattern file 

than domain B therefore generate a different classification and do not represent the 

real domain membership that is required from the stimuli network.
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Table 6.21 Stim uli ne tw o rk  train ing  da ta  w ith  c lu s te red  1 or 0 ou tputs.

in 1 in 2 in 3
-Direction 
in 4 in 5 out A out B in 1 in 2

)
in 3

-Direction 
in 4 in 5 out A out B

0.59 0.46 0.29 0.17 0.11 1 0 0.26 0.23 0.26 0.25 0.43 0 1
0.62 0.34 0.29 0.25 0.14 1 0 0.20 0.15 0.32 0.49 0.43 0 1
0.67 0.39 0.22 0.11 0.16 1 0 0.32 0.21 0.37 0.35 0.39 0 1

The 1-0 clustering training for the stimuli network did not produce good training 

results because the classification of 1-0 for A and 0-1 for B did not represent the true 

classification for improving the network output. They simply signified the physical 

separation into 2 files but not their true classification. Instead of using 1-0 and 0-1 

classifications, a simple brute force linear search for the optimal classification target 

has been carried out. Figure 6.10 shows how the stimuli network can be used to find 

close matches for domain memberships of A and B by incrementing the memberships 

in 0.01 steps and collecting the output of the network for each step. A linear search of 

this kind requires 1/0.01 * 1/0.01 = 10,000 iterations. Since the target values of all 

training vectors are known, the output value closest to the target value will determine 

the domain memberships for A and B.

Searching through the domain space by using a brute force linear algorithm will result 

in meaningful target values for the training of the stimuli network. Table 6.22 shows 

input vectors in combination with improved A&B domain memberships where the 

overall network output is closest to the initial training target value.

Figure 6.10 G enera tion  o f  c lassifica tion  data  by linear search .
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Table 6.22 shows an extract of six training data patterns for x and y-direction. The 

stimuli network has been trained with 55 + 85 = 140 patterns each one with one 

output for domain A and B.

The linear search through 140 patterns with a granularity of 0.01 requires 140 * 

10,000 = 1,400,000 iterations. With today’s technology (2.6 GHz P4) this process 

took less than 25 seconds. Reducing the granularity from 0.01 to 0.1 can speed up this 

process, although this will cause less accurate domain memberships for A and B.

Table 6.22 S t im u l i  n e tw o r k  t r a in in g  d a t a  w i th  g e n e r a te d  m e m b e r s h ip s .

in 1 in 2
x-Direction 

in 3 in 4 in 5 out A out B in 1 in 2
5

in 3
-Direction 
in 4 in 5 out A out B

0.59 0.46 0.29 0.17 0.11 0.22 0.05 0.26 0.23 0.26 0.25 0.43 0.66 0.01

0.62 0.34 0.29 0.25 0.14 0.59 0.09 0.20 0.15 0.32 0.49 0.43 0.47 0.07

0.67 0.39 0.22 0.11 0.16 0.18 0.3 0.32 0.21 0.37 0.35 0.39 0.53 0.13

With the availability of the training data, the stimuli network will have to match the 

data insofar that it must have 5 inputs and 2 outputs. To find the best number of 

hidden neurons experiments with 5, 10 and 20 hidden neurons have been carried out 

and the best training performance has been found with 10 hidden neurons. Table 6.23 

presents a list of all significant network parameters used for the stimuli network.

Table 6.23 T h e  p a r a m e te r s  o f  th e  s t im u l i  n e tw o r k .

Description Setting
Input Neurons 5

Hidden Neurons 10

Output neurons 2

Activation Function symmetric sigmoid

Initialisation +0.7

Learning Factor 0.01

Momentum 0.3

Number o f training patterns 110

Number o f testing patterns 30
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Figure 6.11 shows how the recall SSEtm and generalisation error SSEgen change 

during training. Training has been stopped after approximately 295k iterations where 

the generalisation error reached a plateau. The reason why training has not been 

stopped at earlier is that the recall accuracy has fallen from 1.93 to 1.72 whilst the 

generalisation error remained nearly unchanged at about 0.83.

Table 6.24 summarises the recall and generalisation sum square errors of both domain 

memberships for A and B. Even if the recall error SSEtm for both domains is high, the 

RMSE is acceptable because of the high number of 110 training patterns.

Table 6.24 P erfo rm ance  benchm arks o f  stim uli ne tw o rk  a fte r train ing .

Description Stimuli Network
SSElrn 1.721
SSEgen 0.830
RMSE for SSEnn 0.164 (110 records)
RMSE for SSEge„ 0.151 (30 records)
Iterations 295,000
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The linear search has yielded a much more reliable stimuli classifier system compared 

to a stimuli network that has been trained with data where the domain memberships 

were simply set to 1-0 and 0-1 for A and B correspondingly. With this, the trained 

stimuli network can now be used for classification of input vectors for linked 

domains.

6.5.1.6 Linking Results

To evaluate the impact of linking with utilisation of a stimuli network, the forecasting 

of claims reservation for 1999 has been repeated and is shown in table 6.25. If this 

table is compared with table 6.18 a reduction for all x-direction and half of the y- 

direction forecasts can be noticed.

Table 6.25  Forecasting  resu lts  for x and y  d irections afte r linking.

Year of Origin Claims Occurred x-Direction Error y-Direction Error
1990 2872 480 -83.30% 2876 0.13%
1991 2347 1444 -38.46% 2961 26.17%
1992 3258 616 -81.09% 2092 -35.78%
1993 1932 977 -49.45% 3470 79.61%
1994 3100 223 -92.79% 2977 -3.97%
1995 12761 NA NA 10290 -19.36%
1996 34089 NA NA 30856 -9.48%
1997 41399 NA NA 42951 3.75%
1998 79146 NA NA 71279 -9.94%
1999 92442 NA NA 85313 -7.71%

On comparison of figure 6.12 with figure 6.8 a further shift of the forecasted claims 

towards the actual claims can be noticed. This shift has reduced the generalisation 

error from 0.211 to 0.187. Because the weights have remained unchanged since figure 

6.8, this shift is attributable to the input vector classification of the stimuli network. A 

comparison of figures 6.13 and 6.9 shows further reduction of the y-direction 

forecasting errors.
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3 5 0 0  -

Figure 6.12 Pred iction  o f  c la im s reserva tion  fo r x -d irec tion  afte r link ing  and  stim uli netw ork .

Figure 6.13 Pred iction  o f  c la im s reserva tion  for y -d irec tion  afte r link ing  and stim uli netw ork .

Table 6.26 summarises the recall and generalisation errors for 10 runs. All three 

stages encountered during the linking process are presented and figure 6.14 shows 

them graphically. The % changes for the generalisation error during linking and 

linking with stimuli were -14.24%, -42.53% for x-direction and -13.79%, -21.17% for 

y-direction.
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Table 6.26  P erfo rm an ce  com parison  o f  tra ined , linked  and linked  w ith  stim uli a fte r 10 runs.

Description x-Direction after training y-Direction after training
Min Max Average StDev Min Max Average StDev

SSEtrn
SSEgen

0.113 0.400 0.287 0.0753 
0.573 0.839 0.644 0.0927

0.191 0.328 0.265 0.0458 
0.688 0.773 0.723 0.0304

x-Direction after linking y-Direction after linking
SSEtrn
SSEgen

0.294 1.430 0.660 0.3756 
0.362 0.755 0.553 0.1555

0.335 0.659 0.451 0.1414 
0.363 0.828 0.623 0.1267

x-Direction after linking with stimuli y-Direction after linking with stimuli
SSEtrn
SSEgen

0.895 2.293 1.486 0.4069 
0.141 0.584 0.318 0.1647

1.168 2.567 1.690 0.3830 
0.231 0.672 0.491 0.1534

Figure 6.14 P réd iction  o f  d a im s  réserva tion  fo r y -d irec tion  afte r linking and  stim uli netw ork .

With the use of the stimuli network the recall errors of the x and y-directions have 

increased substantially. The reason for this is that the membership training for the 

stimuli network has been stopped to as soon as it performed well on the generalisation 

data, but not the data used for training and measuring the recall accuracy. Therefore 

the classification on the recall data is poor but good for the generalisation data, 

resulting in poor recall accuracy but improved generalisation. Since the objective has 

been to optimise the generalisation error, this has been achieved but with the price of 

a high recall error on the training data.
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6.5.1.7 Comparison with Single Network

To supply a baseline comparison to the previous example, both datasets of x-direction 

and y-direction have been combined into one training file to analyse if divide and 

conquer did make a difference to the forecasting results.

For this purpose networks have been trained each with combined training data and 

generalisation data totalling to 140 training patterns and 15 testing patterns. The 

network used for the composite training was a standard 5:10:1 backpropagation MLP. 

All other important network parameters can be found in table 6.27.

Table 6.27 T h e  p a r a m e te r s  o f  th e  n e u r a l  n e tw o r k  u s e d  in  t h i s  s e c t io n .

Description Both Domains
Input Neurons 5

Hidden Neurons 10

Output neurons 1

Activation Function symmetric sigmoid

Initialisation ±0.2

Learning Factor 0.01

Momentum 0.3

Number o f training patterns 140

Number o f testing patterns 15

a  S S E  

■  S S E
trn

gen

3 .0

Figure 6 .1 5  R e c a l l  a n d  g e n e r a l i s a t i o n  e r r o r  o f  n e tw o r k  t r a in e d  w i th  b o th  d o m a in s .
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Figure 6.15 shows the average recall SSEtrn and generalisation error SSEgen during 

training of the composite neural network. Training has been stopped after 

approximately 24,000 iterations where the generalisation error reached the end of a 

plateau. To increase statistical reliability the entire experiment has been repeated 30 

times and the averages, minimums and maximums for training and testing pattern are 

reported in table 6.28.

Table 6.28  T ra in in g  resu lts  o f  single N N  tra ined  for both dom ains.

Description Single neural network with both domains
Average Min Max Std Dev

SSEtrn 0.4245 0.3571 0.4979 0.0418
SSEgen 1.2289 1.1412 1.3873 0.0620

All forecasting results from the 30 networks trained have been de-normalised into 

numerical figures and are shown in table 6.29 for x-direction and in table 6.30 for y- 

direction. All relative errors refer to the difference between the averages and the 

actual Claims Occurred figures.

T a b le  6 .29  x -D irec tion  forecasting  o f  single N N  tra in ed  w ith both dom ains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 2872 3044 2961 3150 57 5.66%
1991 2347 -5945 -8184 -4516 696 139.48%
1992 3258 751 343 1032 176 -333.71%
1993 1932 -1009 -2068 -292 428 291.40%
1994 3100 -14798 -20414 -11680 1706 120.95%
1995 12761 NA NA NA NA NA
1996 34089 NA NA NA NA NA
1997 41399 NA NA NA NA NA
1998 79146 NA NA NA NA NA
1999 92442 NA NA NA NA NA

Figures that cannot be forecasted in the x-direction because of the window size 

restriction are marked NA.
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Table 6.30 y-Direction forecasting of single NN trained with both domains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 2872 -4411 -6140 2872 1440 165.11%
1991 2347 -5945 -8184 -4516 696 139.48%
1992 3258 -6241 -7997 -5185 681 152.20%
1993 1932 -8433 -11920 -6515 1014 122.91%
1994 3100 -2198 -3331 -1175 619 241.03%
1995 12761 1682 918 2206 304 -658.77%
1996 34089 26293 25028 27230 549 -29.65%
1997 41399 22663 19275 25310 1833 -82.67%
1998 79146 57176 56242 58920 673 -38.43%
1999 92442 34391 27408 39302 3018 -168.80%

Comparing network training results from table 6.28 with table 6.26 requires the 

division of the average errors by the number of patterns since 55 training, 5 testing ( x -  

direction), 85 training, 10 testing (y-direction) were used for table 6.26 and 140 

training, 15 testing were used for table 6.28. Table 6.31 shows the RMSE to allow for 

an equal comparison of both tables.

Table 6.31 RMSE results from tables 6.26 and 6.28.

Type Desc. Patterns Errors after training Errors after linking Errors after stimuli
Average RMSE Average RMSE Average RMSE

SSElrn 55 0.2875 0.00522 0.6598 0.01200 1.4861 0.02702
x-Direction

SSEgen 5 0.6445 0.12880 0.5527 0.11054 0.3176 0.06352

y-Direction
SSElrn 85 0.2653 0.00311 0.4509 0.00530 1.6904 0.01989
SSEgcn 10 0.7227 0.07230 0.6230 0.06230 0.4911 0.04911
SSElrn 140 0.3912 0.00279 0.7992 0.00571 2.2508 0.01608

V*2 + / SSEgen 15 0.9683 0.06455 0.8328 0.05552 0.5848 0.03899

Composite
SSEtrn 140 0.4245 0.00303 NA NA NA NA
SSEgen 15 1.2289 0.08192 NA NA NA NA

It can be noticed that the training results of the composite network are worse than the 

sum of SSE errors for the x- and y-direction. The generalisation error of the 

composite network is also higher. Furthermore, if the composite network is compared 

to the linked or even to the linked with stimuli network, the composite network 

performed even worse.
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6.5.2 Claims Reservation with Data from two Companies

In the previous section 6.5.1, data of one company has been used to create two 

distinguished domains by generating two distinct time series. In this section, data 

from two companies will be used to generate two distinct time series. It has been 

taken into account that both companies have been writing comparable business types 

in order to contribute knowledge to each other. For this purpose, Co-operative 

Insurance Society Ltd and Legal&General Insurance Ltd have been chosen since both 

write business that can be classified by the risk group: “Private Car Comprehensive, 

Claims reported and outstanding excluding INBR”.

Probably the most likely scenario of training neural networks is where data from one 

or more company is used for training. It can then be used to produce a trained network 

for the purpose of forecasting. A problematic situation will occur if companies are to 

be added or removed frequently from the data model. With linking, the re-training of 

networks containing data from all companies can be avoided since only sub-networks 

need re-training. This section will discuss the framework for linking two companies.

6.5.2.1 Training Data Preparation

In section 6.5.1 where one company’s data was used for creation of time series 

information in x and y-direction, training success for x-direction was moderate 

compared to y-direction. Consequently, the time series used for training of both 

companies in this section will be exclusively for the y-direction. Data for training and 

testing will very much follow the arrangement outlined in section 6.5.1.1 for the y- 

direction referred to as the year of origin. Table 6.32 and table 6.33 show incremental 

claims reported and outstanding excluding INBR for Co-operative and 

Legal&General. The creation of time series patterns for Co-operative from table 6.32 

starts at 1981:1 with 14846 as the first input and ends with 25018 as the output. 

Subsequent patterns should be 8628... 11680, 4670... 11107 with the last one being 

34028...47350. All data from 1999 should be forecasted and should therefore be 

separated from the training data. The first pattern in this file should start with 33770
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as the first input and 61365 as the target output. Subsequent patterns should be 

22923...27901, 22759...21894 with the last one being 116...1031. Since all patterns 

are normalised on a vector-by-vector basis, training and testing data sets can be 

normalised individually. If the data were to be normalised on a column basis, the 

minimal and maximal figures of the entire data set (or each column) would be needed, 

thus preventing the split into training and testing set prior to normalisation.

Table 6.32 Incremental claims triangle for Co-operative.

Development Year
1 2 3 4 5 6 7 8 9 10

1981 14846 8628 6470 4250 3012 2097 1468 1050 848 422
1982 14210 7409 5160 3844 3294 2611 1586 1087 976 384
1983 12245 6038 4505 3467 2594 1670 1182 638 418 299
1984 16073 6570 5059 4107 3646 3706 2681 2148 1455 965
1985 17306 10533 7416 6247 4837 3562 3492 1443 1005 116
1986 11680 11107 8875 7381 7190 5349 4891 4194 4874
1987 34384 18729 16794 13742 10213 8101 6845 4115 2449 1475
1988 41929 21434 20014 18696 14530 12006 11257 7050 4079 2425
1989 46408 24967 22191 20284 16270 13562 9975 7194 5838 5462
1990 52032 30601 23004 17895 13215 8468 4394 2557 2318 1031
1991 46485 31425 28117 25181 19828 15215 10804 8567 6382
1992 38394 25693 22759 20607 18191 12123 8780 2690
1993 34028 22923 20765 14471 11602 7878 3271
1994 33770 20467 14833 13149 9395 5644
1995 35103 19002 15599 14781 14401
1996 35115 19022 22483 24967
1997 37958 22279 21894
1998 47350 27901
1999 61365

The creation of time series patterns for Legal&General from table 6.33 starts at 

1981:1 with 3932 as the first input and ends with 6039 as the output. Subsequent 

patterns should be 1927...3014, 1383...2227 with the last one being 7783...47350. 

The 1999 forecasting data should start with 7573 as the first input and 7177 as the 

target output. Subsequent patterns should be 4027...6231, 2782...2436 with the last 

one being 313... 55. With this, the total number of training patterns created for each 

company is 85 and 10 patterns for testing.
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After creation of all training and testing patterns, a vector based normalisation has 

been used as shown in equation (6.6).

Table 6.33 Incremental claims triangle for Legal&General.
Development Year

1 2 3 4 5 6 7 8 9 10
1981 3932 1927 1383 1078 1264 193 94 41 29 17
1982 3049 1154 656 364 188 180 153 128 109 32
1983 3361 1372 1061 942 760 788 713 175 72 74
1984 5120 2306 1878 1350 754 577 566 357 195 155
1985 5241 2257 1610 1237 1005 607 678 564 330 313
1986 6039 3014 2227 1738 1595 972 428 170 107 48
1987 4925 2246 2357 1885 1668 1459 1325 1701 1713 343
1988 5200 2348 2051 2216 1749 840 617 138 43 69
1989 4695 2224 1794 1935 1367 741 468 451 113 78
1990 5767 2844 2233 1963 1118 484 365 182 58 55
1991 6780 3349 2250 1723 1405 990 753 441 -1
1992 7795 3815 2782 2536 1693 502 634 190
1993 7783 4027 3254 2300 967 609 113
1994 7573 5027 3889 3344 1833 1326
1995 5576 2861 2160 1581 747
1996 6126 3887 3056 1990
1997 6807 4426 2436
1998 9338 6231
1999 7177

It can be noticed that the claims figures of Co-operative are about 6 times higher for 

the first 4 years of development compared to Legal&General. This is because Co-

operative has on average 4 times more claims during the same interval than 

Legal&General (source: Insight Non-Life A.M. Best International).

6.5.2.2 Training of Neural Networks

Two MLP neural networks have been trained with the normalised data of both 

companies as referred to in the previous section. The topology of both networks used 

has been chosen to be 5:10:1 with the output layer set to 1 and frozen. All other 

important network parameters can be found in table 6.34.
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Table 6.34 The parameters of the neural networks used in this section.

Description Co-operative Legal&General
Input Neurons 5 5
Hidden Neurons 10 10
Output neurons 1 1
Activation Function symmetric sigmoid symmetric sigmoid
Initialisation ±0.7 +0.7
Learning Factor 0.01 0.01
Momentum 0.5 0.5
Number of training patterns 85 85
Number of testing patterns 10 10

Figure 6.16 shows the recall SSEtm and generalisation error SSEgen during training of 

Co-operative. Training has been stopped after approximately 40,000 iterations where 

the generalisation error reached local minima of 0.1982. At this point the recall error 

was only 0.0586, which is very low indeed. With the low generalisation and recall 

errors, inclusion of information from another company seems almost unnecessary. 

Despite this, a second network has been trained with data from Legal&General for the 

purpose of linking.

Figure 6.16 Recall and generalisation error of network trained with Co-operative data.
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Figure 6.17 shows the recall SSEtrn and generalisation error SSEgen during training of 

Legal&General. Training has been stopped after approximately 25,000 iterations 

where the generalisation error reached local minima of 0.4505. At this point the recall 

error was only 0.0786, which is again very low. The generalisation error of 

Legal&General is almost twice as high as the error for Co-operative. Therefore 

moving knowledge from Co-operative into Legal&General might be beneficial to 

Legal&General, but if any improvement on the generalisation error for Co-operative 

can be achieved is uncertain.

Table 6.35 shows a direct comparison between the occurred claims and forecasted 

claims for both insurance companies after training. It can be noticed that the highest 

error in the Co-operative forecast is only 48%, with an average of only 15.06%. On 

the other hand, Legal&General has high errors e.g. 100.21% and 68.07%, with an 

average of 32.02%, twice as high as Co-operative.

With both companies, the bulk of the higher errors are within the first four years from 

1990-1993. This is probably caused by the low target values for these years. Because
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the error is given as percentage, any forecast differing by a few hundreds will have a 

high impact on the percentage error.

Table 6.35 Forecasting results for Co-operative and Legal&General after training.

Year of Origin Occurred Co-operative Error Occurred Legal&General Error
1990 1031 1991 48.23% 55 145 62.11%
1991 6382 6434 0.81% -1 485 100.21%
1992 2690 4199 35.94% 190 595 68.07%
1993 3271 5223 37.38% 113 283 60.04%
1994 5644 6511 13.31% 1326 1372 3.37%
1995 14401 13560 -6.20% 747 913 18.19%
1996 24967 24304 -2.73% 1990 1963 -1.38%
1997 21894 22955 4.62% 2436 2467 1.25%
1998 27901 27627 -0.99% 6231 6114 -1.92%
1999 61364 61156 -0.34% 7177 6922 -3.69%

Figures 6.18 and 6.19 are graphical illustrations of the numerical values from table 

6.35 for Co-operative and Legal&General respectively. Both graphs show that the 

forecasting results for both insurance companies are excellent. In figure 6.18, only the 

years 1997, 1993 and 1992 show room for improvement and in figure 6.19, the years 

1990-1993, 1995 and 1999 show room for improvement.

7 0 0 0 0  ------------------------------------------------------------------------------------------------------------------------------------------- -------------- -------------------------------------------
—A—- Target

Figure 6.18 Prediction of claims reservation for Co-operative after training.
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-1 0 0 0  --------  ----------  -------

Figure 6.19 Prediction of claims reservation for Legal&General after training.

To increase statistical reliability the experiment has been repeated 10 times up to this 

point and the averages, minimums and maximums for training and testing pattern are 

reported. A summary of generalisation and recall errors after 10 runs for both 

companies can be found in table 6.36. Legal&General reached its minimum 

generalisation error point on average after 25,000 iterations, much earlier than Co-

operative, which reached its minimum generalisation error point on average after 

40,000 iterations. Continuous training of Legal&General beyond 25,000 iterations 

only yielded an increase in generalisation error as indicated in figure 6.17.

Table 6.36 Performance benchmarks of both networks after training for 10 runs.

Description Co-operative after training Legal&General after training
Min Max Average StDev Min Max Average StDev

SSEtrn 0.0255 0.0667 0.0499 0.0158 0.0499 0.0863 0.0736 0.0108
SSEgen 0.1338 0.2230 0.1878 0.0326 0.3519 0.5584 0.4504 0.0788

The weight matrixes of the hidden layer from both insurance companies are shown in 

tables 6.37 and 6.38. During training, the algorithm for the prevention of saturated 

neurons from section 4.6, equation (4.17) was used. Therefore no excessively large
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weights can be found in both weight matrixes and the highest and lowest weights are 

in the region of ±6. It shall be repeated that weights connecting the hidden neurons to 

the output neurons are set to 1 and were frozen during training to prevent alterations.

Table 6.37 Hidden layer weight matrix of network trained for Co-operative.

Reference
Co-operative

W || W , 2 W , 3 w,4 W ,5 w1B Length

Vl 2.1495 -0.3596 2.0154 0.0173 -1.5016 1.1796 3.5296

v2 -2.1826 -1.1504 -1.5728 -5.7996 -0.2293 5.7315 8.6659

V3 -2.1204 -0.7700 2.2681 1.8108 1.7291 -0.6245 4.1099

v4 0.1954 0.5565 -1.2248 -1.0643 -1.0793 1.1519 2.3394

v5 -0.3229 0.1614 0.0433 0.2695 -0.1806 -2.0185 2.0765

v6 -0.4960 0.0064 -0.1975 0.0336 -0.2105 -1.4475 1.5575

V7 -1.6915 -1.4217 -3.1498 0.9425 1.6507 2.9953 5.2333

Vg 1.5662 0.4022 0.1878 -0.2764 -2.6136 2.5917 4.0341

V9 -0.1234 -0.6458 -4.0680 1.2124 -2.0004 3.5142 5.8993

Vio -0.2752 -3.5429 0.1869 -4.3828 -2.4116 5.9578 8.5547

Table 6.38 Hidden layer weight matrix of network trained for Legal&General.

Reference
Legal&General

Wn Wl2 w13 w14 Wis WlB Length

Vl -3.2228 1.9822 -5.5717 1.3595 -4.0979 4.8785 9.3702

V2 -4.0550 -2.6476 -0.3744 -6.7180 0.1078 5.7267 10.0763

V3 0.1306 0.2276 -1.1178 0.3580 -1.4020 -0.7603 1.9976

v4 -0.3927 0.6945 0.9167 -0.3111 -0.6912 0.3546 1.4756

V5 0.6112 -0.8240 3.1986 -1.6984 -2.4395 1.7406 4.8114

V6 2.3534 -3.4938 -1.3883 0.6541 0.8635 2.5418 5.2257

V7 0.2291 2.4486 3.5602 0.3380 -0.9691 -0.0907 4.4480

V8 -0.5930 -4.8081 -0.9721 2.3082 -0.7187 1.7282 5.7658

V9 -0.7853 1.0394 -0.0427 1.1062 3.4995 -1.3572 4.1244

Vio 3.6956 1.6511 -2.8522 -2.4665 -0.7880 1.9100 5.9052

The next steps involve vector angle calculations and vector-by-vector comparison to 

find hidden neurons that can be linked. The acceptance angle has been set to 20° but 

might be reduced or increased in order to find at least two hidden neurons that can be 

linked to match the linking process from the previous section 6.5.1.
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6.5.2.3 Linking of Domain Networks

The linking of both weight matrixes from tables 6.37 and 6.38 follows exactly the 

same procedures as demonstrated in 6.5.1.3 and former sections.

The first two vectors that have the closest angles are listed in table 6.39. It can be 

noticed that the vectors V3 and vjo in the second row have an angle that exceeds the 

acceptance angle of 20° that has been agreed on initially. But for the purpose of 

consistency and comparability with section 6.5.1, where two neurons were linked, the 

acceptance angle has been increased to 22° so that two vectors can be linked.

Table 6.39 Angles between weight vectors in ascending order.

Vector pair Angle between
Co-operative Legal&Gencral vectors

v2 V2 15.25°
v3 Vio 21.39°

Table 6.40 shows the resulting vectors and their associated length correction factors 

F2. The negative vector length correction factor F2 in the second row indicates that 

both vectors (V3 and vio) were pointing in opposite directions.

Table 6.40 Results of the combination of vectors with angles below 22°as listed in table 6.39.

Original vector references Resulting vector vr]
Co-operative Legal&General w„ W12 w13 W|4 W15 W'iB Factor F2
v2 v2 -3.0547 -1.9714 -1.2061 -5.6537 -0.1711 5.1475 1.1686
v3 Vio -2.3627 -1.0377 1.9632 1.6569 1.0859 -1.2060 -1.4655

6.5.2.4 Linking Analysis

Table 6.41 shows the relative errors between vector components of the trained 

weights and the weights after linking. It can be observed that largest component errors 

of over 200% are within the Legal&General vector with the lower acceptance angle of 

15.25°. This is somewhat unexpected because the higher errors can generally be
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found with vectors that have a higher angle difference. On further inspection of table 

6.41 it can be noticed that all errors are quite large if compared to table 6.14 from 

section 6.5.1.4. This can be seen as a warning that the information contained in both 

vectors may not necessarily be of the same kind.

Table 6.41 Vector component change impact analysis.

Reconstructed Vector components
Vectors

w ' „ W,2 W ',3 W ',4 w ' i s Wie
Coop: v '2 -3.0547 -1.9714 -1.2061 -5.6537 -0.1711 5.1475

L&G: v'2 -3.5698 -2.3038 -1.4095 -6.6070 -0.2000 6.0155

Coop: v'j -2.3627 -1.0377 1.9632 1.6569 1.0859 -1.2060

L&G: v',o 3.4626 1.5207 -2.8771 -2.4282 -1.5913 1.7674

Reconstructed Relative Errors
Vectors

f ( w u ,  w ' l , ) f(w,2, w'12) f ( W i 3 , w ' i 3) f (W l4 ,  W14) f(w15,w ',5) f ( W iB t W ' , B)

Coop: v '2 39.96% 71.37% -23.31% -2.52% -25.38% -10.19%

L&G: v '2 -11.97% -12.99% 276.45% -1.65% -285.51% 5.04%

Coop: v '3 11.43% 34.76% -13.44% -8.50% -37.20% 93.13%
L&G: v '10 -6.30% -7.89% 0.87% -1.55% 101.93% -7.46%

Table 6.42 lists the relative errors of the vector length change. It can be observed that 

the largest errors rest with the vectors V3:vio since the angle between both vectors is 

the largest.

Table 6.42 Vector length change impact analysis.

Vector Original length Reconstructed length Relative Error
Coop: v'2 8.6659 8.5535 ( |V r , D -1.30%
L&G: v'2 10.0763 9.9958 ( | v h | * F 2 ) -0.80%
Coop: v'3 4.1099 3.9866 ( b r i  D -3.00%
L&G: v ' i o 5.9052 5.8423 (|vr,|*F2) -1.07%
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The reconstructed weight matrixes for both companies are shown in tables 6.43 and 

6.44. Rows that are framed and shown on grey backgrounds are vectors that have 

been replaced with reconstructed vectors.

In the previous section an analysis on the linked network has been made without the 

use of a stimuli network. This step has been left out for this experiment and the linked 

network has been utilised directly with a stimuli network.

Table 6.43 Hidden layer weight matrix of Co-operative after reconstruction.

Reference
x-Direction

« ' l l Wl2 W,3 Wj4 «15 Win Length
Vi 2 . 1 4 9 5 - 0 . 3 5 9 6 2 . 0 1 5 4 0 . 0 1 7 3 - 1 . 5 0 1 6 1 . 1 7 9 6 3 . 5 2 9 6

v2 - 3 . 0 5 4 7 - 1 . 9 7 1 4 - 1 . 2 0 6 1 - 5 . 6 5 3 7 - 0 . 1 7 1 1 5 . 1 4 7 5 8 . 5 5 3 5

V3 - 2 . 3 6 2 7 - 1 . 0 3 7 7 1 . 9 6 3 2 1 . 6 5 6 9 1 . 0 8 5 9 - 1 . 2 0 6 0 3 . 9 8 6 6

v4 0 . 1 9 5 4 0 . 5 5 6 5 - 1 . 2 2 4 8 - 1 . 0 6 4 3 - 1 . 0 7 9 3 1 . 1 5 1 9 2 . 3 3 9 4

V5 - 0 . 3 2 2 9 0 . 1 6 1 4 0 . 0 4 3 3 0 . 2 6 9 5 - 0 . 1 8 0 6 - 2 . 0 1 8 5 2 . 0 7 6 5

V6 - 0 . 4 9 6 0 0 . 0 0 6 4 - 0 . 1 9 7 5 0 . 0 3 3 6 - 0 . 2 1 0 5 - 1 . 4 4 7 5 1 . 5 5 7 5

v7 - 1 . 6 9 1 5 - 1 . 4 2 1 7 - 3 . 1 4 9 8 0 . 9 4 2 5 1 . 6 5 0 7 2 . 9 9 5 3 5 . 2 3 3 3

Vg 1 . 5 6 6 2 0 . 4 0 2 2 0 . 1 8 7 8 - 0 . 2 7 6 4 - 2 . 6 1 3 6 2 . 5 9 1 7 4 . 0 3 4 1

V9 - 0 . 1 2 3 4 - 0 . 6 4 5 8 - 4 . 0 6 8 0 1 . 2 1 2 4 - 2 . 0 0 0 4 3 . 5 1 4 2 5 . 8 9 9 3

Vio - 0 . 2 7 5 2 - 3 . 5 4 2 9 0 . 1 8 6 9 - 4 . 3 8 2 8 - 2 . 4 1 1 6 5 . 9 5 7 8 8 . 5 5 4 7

Table 6.44 Hidden layer weight matrix of Legal&General after reconstruction.

Reference
y-Direction

Wll w u W,3 w , 4 « 1 5 «'IB Length
V| - 3 . 2 2 2 8 1 . 9 8 2 2 - 5 . 5 7 1 7 1 . 3 5 9 5 - 4 . 0 9 7 9 4 . 8 7 8 5 9 . 3 7 0 2

V2 - 3 . 5 6 9 8 - 2 . 3 0 3 8 - 1 . 4 0 9 5 - 6 . 6 0 7 0 - 0 . 2 0 0 0 6 . 0 1 5 5 9 . 9 9 5 8

v3 0 . 1 3 0 6 0 . 2 2 7 6 - 1 . 1 1 7 8 0 . 3 5 8 0 - 1 . 4 0 2 0 - 0 . 7 6 0 3 1 . 9 9 7 6

v4 - 0 . 3 9 2 7 0 . 6 9 4 5 0 . 9 1 6 7 - 0 . 3 1 1 1 - 0 . 6 9 1 2 0 . 3 5 4 6 1 . 4 7 5 6

V5 0 . 6 1 1 2 - 0 . 8 2 4 0 3 . 1 9 8 6 - 1 . 6 9 8 4 - 2 . 4 3 9 5 1 . 7 4 0 6 4 . 8 1 1 4

V6 2 . 3 5 3 4 - 3 . 4 9 3 8 - 1 . 3 8 8 3 0 . 6 5 4 1 0 . 8 6 3 5 2 . 5 4 1 8 5 . 2 2 5 7

V7 0 . 2 2 9 1 2 . 4 4 8 6 3 . 5 6 0 2 0 . 3 3 8 0 - 0 . 9 6 9 1 - 0 . 0 9 0 7 4 . 4 4 8 0

Vg - 0 . 5 9 3 0 - 4 . 8 0 8 1 - 0 . 9 7 2 1 2 . 3 0 8 2 - 0 . 7 1 8 7 1 . 7 2 8 2 5 . 7 6 5 8

V9 - 0 . 7 8 5 3 1 . 0 3 9 4 - 0 . 0 4 2 7 1 . 1 0 6 2 3 . 4 9 9 5 - 1 . 3 5 7 2 4 . 1 2 4 4

Vio 3 . 4 6 2 6 1 . 5 2 0 7 - 2 . 8 7 7 1 - 2 . 4 2 8 2 - 1 . 5 9 1 3 1 . 7 6 7 4 5 . 8 4 2 3
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6.5.2.5 Training of Stimuli Network

Stimuli networks need to be able to classify incoming input vectors into domain 

memberships. All details about the stimuli network previously mentioned in section

6.5.1.5 will apply to this section. Again, the domain memberships of the input vectors 

have been generated by means of linear search as described earlier in section 6.5.1.5 

and figure 6.10. Table 6.45 shows an extract of the training data used for the stimuli 

network training of both domains.

Table 6.45 Stimuli network training data with memberships generated by linear search.

in 1 in 2
x-Direction 

in 3 in 4 in 5 out A out B in 1 in 2
5

in 3
-Direction 
in 4 in 5 out A out B

0.11 0.47 0.27 0.45 0.65 0.65 0.48 0.34 0.40 0.46 0.46 0.45 0.61 0.51
0.12 0.40 0.33 0.57 0.59 0.35 0.72 0.35 0.26 0.27 0.43 0.65 0.62 0.46
0.12 0.01 0.62 0.19 0.31 0.63 0.30 0.35 0.40 0.42 0.53 0.30 0.74 0.38

Because of the layout of the training data, the stimuli network required 5 inputs and 2 

outputs. The number of hidden units used remained 10 thus resulting in a 5:10:2 

network, unchanged to section 6.5.1.5. Table 6.46 is presenting a list of all significant 

network parameters used for the stimuli network.

Table 6.46 The parameters of the stimuli network.

Description Setting
Input Neurons 5
Hidden Neurons 10
Output neurons 2
Activation Function symmetric sigmoid
Initialisation +0.7
Learning Factor 0.01
Momentum 0.3
Number of training patterns 130
Number of testing patterns 40

Figure 6.19 shows how the recall SSEtm and generalisation error SSEgen change 

during training. Training has been stopped after approximately 400k iterations where 

the generalisation error reached a minimum of 1.135. At this point the recall error was



Claims Reservation 225

1.847, which is relatively large. The recall error SSEtrn is generally increasing the 

more training patterns are used. To acquire a comparable figure that is independent on 

the number of patterns, the RMSE needs to be calculated. Table 6.47 shows a 

summary of generalisation and recall errors for the stimuli network. A comparison 

between tables 6.47 and 6.24 confirms that the performances of both stimuli networks 

are somewhat comparable.

This large number of 400k iterations was mainly caused by the low learning factor 

that was set to 0.01. Because the network was small and not many training records 

were used a 3.6 GHz P4, 2GB RAM computer (2004), the approximate training time 

needed was only 6 minutes.

^  S S E trn 

□  S S E gen

Figure 6.20 Recall and generalisation error of network trained with Legal&General data.

Table 6.47 Performance benchmarks of stimuli network after training.

Description Stimuli Network
SSElm 1.847
SSEgen 1.135
RMSE for SSElm 0.162 (130 records)
RMSE for SSEgen 0.179 (40 records)
Iterations 400,000
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6.5.2.6 Linking Results

To evaluate the impact of linking with utilisation of a stimuli network, the forecasting 

of claims reservation for 1999 has been repeated and is shown in table 6.48. If this 

table is compared with table 6.35 improvements can only be noticed in the early years 

from 1990 to 1994. A graphical illustration of the forecasting results listed in table 

6.48 for both insurance companies is presented in figures 6.21 and 6.22.

Table 6.48 Forecasting results for Co-operative and Legal&General after linking.

Year of Origin Occurred Co-operative Error Occurred Legal&General Error
1990 1031 1868 44.81% 55 4 -1352.71%
1991 6382 5561 -14.77% -1 11 109.43%
1992 2690 2093 -28.54% 190 286 33.65%
1993 3271 3902 16.18% 113 187 39.61%
1994 5644 8975 37.11% 1326 1548 14.33%
1995 14401 13387 -7.57% 747 403 -85.54%
1996 24967 33145 24.67% 1990 2242 11.24%
1997 21894 8046 -172.10% 2436 1984 -22.76%
1998 27901 35511 21.43% 6231 6033 -3.28%
1999 61364 69585 11.81% 7177 6527 -9.96%

Figure 6.21 Prediction of claims reservation for Co-operative after linking and stimuli network.
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Figure 6.22 Prediction of claims reservation for Legal&General after linking and stimuli network.

Comparing figures 6.21 and 6.18 with utilisation of table 6.48 shows that only the 

forecasts for the years 1990, 1992 and 1993 have reduced generalisation errors of 

3.42%, 7.40% and 21.20%. The years 1997 and 1996 have had the highest increase in 

errors of 167.48% and 21.94%. Comparing figures 6.22 and 6.19 with utilisation of 

table 6.48 shows that only the forecasts for the years 1992 and 1993 have reduced 

generalisation errors of 34.42% and 20.43%. The years 1990 and 1995 have had the 

highest increase in errors of 1290.60% and 67.35%.

Table 6.49 Performance comparison of trained, linked and linked with stimuli after 10 runs.

Description Co-operative after training Legal&Gencral after training
Min Max Average StDev Min Max Average StDev

S S E trn 0 .0 2 5 5 0 .0 6 6 7  0 .0 4 9 9 0 .0 1 5 8 0 .0 4 9 9 0 .0 8 6 3 0 .0 7 3 6 0 .0 1 0 8

S S E gen 0 .1 3 3 8 0 .2 2 3 0  0.1878 0 .0 3 2 6 0 .3 5 1 9 0 .5 5 8 4 0.4504 0 .0 7 8 8

Co-operative after linking Lcgal&Gencral after linking
S S E trn 0 .1 0 5 6 0 .4 0 3 6  0 .2 3 9 2 0 .0 9 5 6 0 .0 8 2 4 0 .8 4 1 5 0 .4 7 2 6 0 .3 0 1 9

S S E ge„ 0 .1 1 2 6 0 .2 7 6 5  0.1928 0 .0 5 8 2 0 .3 2 7 1 0 .5 4 5 0 0.4226 0 .0 8 8 9

x Co-operative linking with stimuli Legal&General linking with stimuli
S S E trn 0 .4 9 1 6 1 .2 9 5 3  0 .7 8 7 0 0 .2 3 5 1 0 .5 6 2 9 1 .2 0 5 4 0 .8 5 3 3 0 .2 2 6 5

S S E ge„ 0 .1 3 9 0 0 .4 9 2 3  0.2600 0 .1 0 4 0 0 .1 3 1 9 0 .4 7 4 3 0.2763 0 .1 1 7 6

Even with the generalisation error reduced by 0.1741 (38.65%) from 0.4504 to 0.2763 

, as shown in table 6.49, the forecasting results for Legal&General do not seem to 

have improved whatsoever. The reason the generalisation error has fallen is that the
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main contributors to the error, shown bordered in table 6.50, have been reduced 

during linking, as indicated by arrows. This decrease in difference prior to 

denormalisation has not caused a relative percentage reduction after denormalisation. 

The reason for this is that the relative error has been measured with regards to the 

forecasted figure, not the target figure as show in equation (6.7). Therefore the 

improvements for the years 1990-1994 can be seen in the normalised network output 

but are not evident in the percentage figures.

E rr* =
^ forecast - 1 arg et '' 

forecast
(6.7)

Table 6.50 Error analysis for Legal&General.

Normalised 
target(neural 
network 
training target)

Neural
network output 
after training

Neural
network output 
after linking

Difference 
between target 
and output 
after training

Difference 
between target 
and output 
after linking

0.1250 0.3200 0.0087 ; 0.1950 - f  0.1164
-0.0006 0.3001 0.0068 ; 0.3007 - f  0.0074
0.1132 0.3417 0.1697 1 0.2285 f  0.0565
0.0946 0.2332 0.1559 I 0.1385 4  0.0613
0.6147 0.6300 0.6839 0.0153 0.0691
0.2434 0.2946 0.1331 0.0512 0.1103
0.3670 0.3625 0.4084 0.0045 0.0414
0.3511 0.3552 0.2902 0.0041 0.0610
0.5494 0.5412 0.5355 0.0082 0.0139
0.4200 0.4068 0.3860 0.0132 0.0339
Claims occured Forecast after Forecast after Error after Error after
(target) training linking training linking

55 145 4 62.11% -1352.71%
-1 485 11 100.21% 109.43%
190 595 286 68.07% 33.65%
113 283 187 60.04% 39.61%
1326 1372 1548 3.37% 14.33%
747 913 403 18.19% -85.54%
1990 1963 2242 -1.38% 11.24%
2436 2467 1984 1.25% -22.76%
6231 6114 6033 -1.92% -3.28%
7177 6922 6527 -3.69% -9.96%
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Figure 6.23 shows the average recall SSEtrn and generalisation error SSEgen during 

training of the composite neural network. Training has been stopped after 

approximately 250,000 iterations where the generalisation error reached the end of a 

plateau. To increase statistical reliability the entire experiment has been repeated 30 

times and the averages, minimums and maximums for training and testing pattern are 

reported in table 6.52.

Table 6.52 Training results of single NN trained for both domains.

Description Single neural network with both domains
Average Min Max Std Dev

SSEtm 0.1650 0.0877 0.2592 0.0541
SSEgen 0.4977 0.3869 0.6241 0.0649

All forecasting results from the 30 networks trained have been de-normalised into 

numerical figures and are shown in table 6.53 for Co-operative and in table 6.54 for 

Legal&General. All relative errors refer to the difference between the averages and 

the actual Claims Occurred figures.

Table 6.53 Co-Operative forecasting of single NN trained with both domains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 1031 1231 576 2543 469 16.25%
1991 6382 6633 6019 7225 303 3.79%
1992 2690 3688 3178 4353 309 27.07%
1993 3271 4730 3519 6078 493 30.85%
1994 5644 7340 4567 8678 1049 23.10%
1995 14401 13657 12807 14666 488 -5.45%
1996 24967 22459 19451 24962 1333 -11.17%
1997 21894 20117 18739 23532 1194 -8.83%
1998 27901 26252 24791 28364 933 -6.28%
1999 61364 60663 58415 63103 1314 -1.16%

Compared to table 6.29, all years can be forecast since the data preparation for the 

Year of Development permits a trail long enough for creation of training patterns.



Claims Reservation 231

Table 6.54 Legal&General forecasting of single NN trained with both domains.

Year of Origin Claims Occurred Average Min Max Std Dev Error
1990 55 97 -9 180 45 43.26%
1991 -1 464 196 640 124 100.22%
1992 190 706 190 1192 229 73.09%
1993 113 277 240 319 22 59.24%
1994 1326 1229 1109 1303 52 -7.88%
1995 747 862 768 923 43 13.32%
1996 1990 1975 1737 2245 116 -0.75%
1997 2436 2259 2065 2388 91 -7.85%
1998 6231 5847 5367 6616 297 -6.56%
1999 7177 6804 6438 7238 185 -5.49%

Comparing network training results from table 6.49 with table 6.52 requires the 

division of the average errors by the number of patterns since 85 training and 10 

testing patterns were used for Co-operation and Legal&General in table 6.49 and 170 

training and 20 testing patterns were used for table 6.52. Table 6.55 shows the RMSE 

to allow for an equal comparison of both tables.

Table 6.55 RMSE results from tables 6.49 and 6.52.

Type Desc. Patterns Errors after training Errors after linking Errors after stimuli
Average RMSE Average RMSE Average RMSE

C o- SSElrn 85 0.0499 0.00059 0.2392 0.00281 0.7870 0.00926
operative SSEgen 10 0.1878 0 .0 1 8 7 8 0.1928 0 .0 1 9 2 8 0.2600 0.02600

L egal& SSEtrn 85 0.0736 0.00087 0.4726 0.00556 0.8533 0.01004
General SSEgen 10 0.4504 0 .0 4 5 0 4 0.4226 0 .0 4 2 2 6 0.2763 0 .0 2 7 6 3

C o-op  + SSEtn, 170 0.0889 0 .0 0 0 5 2 0.5297 0.00312 1.1608 0.00683
L& G SSEgen 20 0.4880 0 .0 2 4 4 0 0.4645 0.02323 0.3794 0 .0 1 8 9 7

C om p osite
SSEtrn 170 0.1650 0 .0 0 0 9 7 NA NA NA NA

SSEgen 20 0.4977 0 .0 2 4 8 9 NA NA NA NA

It can be noticed that the training results of the composite network are worse than the 

summed errors for Co-operative and Legal&General (Co-op+L&G). Whilst the 

generalisation for Co-operative increases after linking and after stimuli, it reduces for 

Legal&General. Nevertheless, the combined generalisation error (Co-op+L&G) has 

been reduced after linking and after stimuli.
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6.6 Conclusions

It can be concluded that claims reservation can be accurately forecast using MLP 

neural networks with five input one output time series training data. The training 

patterns created in the direction of year of origin (y-direction) seem to achieve better 

training results than patterns created in the direction of development year (x- 

direction). Vector based training pattern normalisation on 5:10:1 neural network have 

performed well and linking with acceptance angle of 20° seems to cause high loss of 

recall accuracy, although this was expected. The generation of stimuli training 

patterns by applying input vectors and target values by means of linear search 

produced very reliable domain classification.

In the case where data from one company was used, a comparison between CLM and 

the results of neural network training for origin year (y-direction) table 6.5 and table 

6.18 shows that NN training has produced better forecasting results. Comparison 

between CLM table 6.5 and table 6.25 shows that linking has reduced the forecasting 

error even further. In the case where data from two companies was used, a 

comparison between the generalisation errors after training and after linking in table 

6.49 shows only a slight improvement for Legal&General. Whereby the 

generalisation error of Co-operative has increased.

Table 6.56 summarises the changes in the generalisation errors after linking and after 

linking with stimuli network. The first example has caused a reduction of forecasting 

error in both instances for both domains. In the second example only domain B 

benefited. One explanation for this could be that the testing data was somewhat 

correlated to the training data and therefore an increase in the recall accuracy can 

cause an increase in the generalisation.
Table 6.56 Summary of generalisation error change for both examples.

Linking without stimuli Linking without stimuli
Domain A Domain B Domain A Domain B

2-Directions -14.24% -13.79% -42.53% -21.17%
2-Companies 2.66% -6.16% 34.82% -34.63%
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Conclusions and Future Work

7.1 Conclusions

This thesis has introduced the first building blocks of a framework for a neural 

network linking process. Linking of knowledge contained in C-based source code and 

programming libraries has been so successful, that the application for linking of 

knowledge contained in neural network weight matrixes seemed overdue.

The linking process has been applied to vectors that represent knowledge held in each 

trained neuron thus utilising the existing and well-established field of vector algebra. 

Most beneficial has been the simplicity underlying the linking equations since only 

basic geometrical and vector algebra has been used.

The versatility of linking has been shown in the areas of pruning and in the 

combination of domain experts. Linking can be used for establishing the optimal size 

of a neural network by combination of similar neurons. Its purpose is to combine 

vectors that are holding similar knowledge and has been successfully applied to 

problems that could be described by a mathematical function and to real life data from 

the insurance industry. With this, knowledge of distinct domains has been linked for 

the benefit of improved generalisation.
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7.2 Future Work

A number of possibilities for future work into linking have been described in each 

chapter of this thesis. These and other suggestions are listed in this section.

This section is a discussion of future work that is mainly relating to possible research 

into areas that represent a simplification or an enhancement. Simplifications have 

been made where it has been found to be important to continue the momentum in the 

research of linking without being sidetracked. Enhancements are suggested where a 

clear disadvantage exists in the methods of linking discussed in this thesis.

7.2.1 Simplifications

7.2.1.1 Combination of Output Layer Weights

The first simplification used in this thesis has been the setting of the output layer 

weights to 1 and freezing them so they do not change during network training. The 

requirement for this simplification originated from the need for non-linear activation 

functions that complicate the combination of the output layer weights. Therefore 

neural networks have been trained by updating their hidden layer weights but omitting 

the output layer weights. There are basically two possible solutions. The first one is a 

transformation of the output layer weights to 1 and the second one is the actual 

combination of the output layer weights. A preliminary transformation algorithm has 

been developed that successfully converted output layer weights to 1 by changing the 

weights of the hidden layer so that the network performance remained largely 

unchanged. Since this work has been mainly preliminary, it has not been included in 

this thesis.
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7.2.1.2 Search for Similar Knowledge in Neurons

Another simplification that was used was the search for matching vectors that comply 

with the acceptance angle restriction and for linking. This search has been brute force 

where each vector has been compared with all other remaining vectors. Whilst this 

type of search is fine for small matrixes, the search time will increase exponentially if 

larger matrixes are used. This problem can easily be improved by using more 

sophisticated search algorithms

7.2.2 Improvements

7.2.2.1 Dynamic Pruning and Growing

Linking of neurons is a versatile process that combines neurons; only two possible 

scenarios, the pruning and combination of networks have been introduced in this 

thesis. Other areas such as dynamic pruning in combination with dynamic growing 

during training are possible future application areas for neuron linking. Dynamic 

pruning could combine neurons during the training that contain similar knowledge. In 

this instance, neurons are linked during network training and if found equivalent, 

linked so that one can be removed. Such dynamic pruning algorithms are generally 

used in conjunction with dynamic growing algorithms in cases where over-pruning 

occurred [118].

7.2.2.2 The Need for a Stimuli Network

The introduction of the stimuli network has been caused by the need to generate 

domain classification information. If two or more networks are linked that originate 

from the same domain, no stimuli network is required. In such a case, all networks 

involved in the linking will not need to store domain membership information. 

Because of this, the linking of networks from the same domain will be similar to the 

process that has been used for pruning but no such work has yet been undertaken.
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1.2.2.3 Linking Multiple Networks

For the introduction of linking it was sufficient to demonstrate its paradigm with the 

use of two neural networks from two domains. But one of the real strengths of linking 

is that knowledge from multiple domains can be combined to form a complex 

structure. Linking of multiple domains will follow the same concept as demonstrated 

for two domains with the exception of the training of the stimuli network. The more 

domain memberships the stimuli network needs to distinguish, the lesser the accuracy 

with which each domain will be identified. Therefore the focus on linking of multiple 

domains may lie with the development of a more sophisticated stimuli network or the 

omission of the stimuli network as mentioned in 1.2.2.2.

1.2.2 A  Extension of Linking Equation

The linking equation has been derived in its basic form and proven to perform well 

for combining similar neurons. But the definition of similar neurons has been 

restricted to neurons that point in similar directions in hyperspace. This definition can 

be extended so that other neuron attributes are included such as the neuron sensitivity 

or relative error between weights. Such an extension to the definition of similar 

neurons can be included into the linking process by means of manipulation of the 

linking equation or insertion of an additional process.

7.2.2.5 Extension of Linking for Different Types of Networks

In this thesis, the linking process has concentrated only on MLP neural networks that 

were trained with the backpropagation algorithm. Naturally, linking is not restricted to 

MLP neural networks or backpropagation. For example, a very interesting subject the 

linking process could be applied to would be the reduction of dimensionality in a 

SOM network. Because the linking process is applied to vectors any expert system 

that uses vectors, globally referred to vector machines [194], can benefit from the 

linking process.
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7.2.2.6 Extension of Linking for Different Types of Fields

Combination of similar vectors for the purpose of eliminating one in exchange for a 

single scalar factor is not restricted to the application of neural networks. Algorithms 

that reduce the amount of parameters required to store information are generally 

referred to as compression algorithms. Compression algorithms are a substantial part 

of communication since they reduce the required bandwidth for the transmission of 

the same information and therefore can increase transmission volume and speed. With 

this and the simplicity of the linking equation, it can be used to compress data prior to 

transmission for the purpose of reducing bandwidth.
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