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Abstract
Introduction  Small for gestational age (SGA) may be associated with neonatal morbidity and mortality. Our understanding 
of the molecular pathways implicated is poor.
Objectives  Our aim was to determine the metabolic pathways involved in the pathophysiology of SGA and examine their 
variation between maternal biofluid samples.
Methods  Plasma (Cork) and urine (Cork, Auckland) samples were collected at 20 weeks’ gestation from nulliparous low-risk 
pregnant women participating in the SCOPE study. Women who delivered an SGA infant (birthweight < 10th percentile) were 
matched to controls (uncomplicated pregnancies). Metabolomics (urine) and lipidomics (plasma) analyses were performed 
using ultra performance liquid chromatography-mass spectrometry. Features were ranked based on FDR adjusted p-values 
from empirical Bayes analysis, and significant features putatively identified.
Results  Lipidomics plasma analysis revealed that 22 out of the 33 significantly altered lipids annotated were glycerophos-
pholipids; all were detected in higher levels in SGA. Metabolomic analysis identified reduced expression of metabolites 
associated with detoxification (D-Glucuronic acid, Estriol-16-glucuronide), nutrient absorption and transport (Sulfolitho-
cholic acid) pathways.
Conclusions  This study suggests higher levels of glycerophospholipids, and lower levels of specific urine metabolites are 
implicated in the pathophysiology of SGA. Further research is needed to confirm these findings in independent samples.
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1  Introduction

Small for gestational age (SGA) is defined as an infant born 
with a birthweight less than the 10th percentile when com-
pared to population (weight according to gestational age at 
birth) or to customised curves (charts individualized on the 
basis of maternal characteristics) (Sharma et al. 2016b). 
SGA is associated with placental dysfunction (Dessì et al. 
2015) and is a major cause of maternal and neonatal morbid-
ity (Diderholm 2009). Infants born with SGA are at higher 
risks of perinatal mortality and neonatal complications, such 
as asphyxia (Rosenberg 2008) and neurological impairment 
(Grantham-McGregor 1998; Sharma et al. 2016a), as well as 
longer term morbidity, including increased risk of cardiovas-
cular disorders and type 2 diabetes (Dessì et al. 2012). The 
lower the birth centile, the higher the risk of short and long 
term morbidity. SGA can be further classified as moderate 
(birthweight centile in the 3rd to 10th percentile), and severe 
(birthweight less than the 3rd percentile) (Lee et al. 2003). A 
better understanding of the molecular pathways involved in 
the pathophysiology of SGA could enable better prevention, 
earlier detection and potential treatment of this pregnancy 
complication.

Metabolomics is the study of all small weight molecules 
(50–2000 Da), or metabolites, present in a sample. Meta-
bolic profiling in a clinical research setting has led to the 
determination of risk factors and pathophysiology of specific 
diseases (Dunn et al. 2011). Three metabolomics studies 
using plasma or serum samples showed that the physiopa-
thology of SGA appears to affect lipid and fatty acid metabo-
lism (Horgan et al. 2011; Sulek et al. 2014; Delplancke et al. 
2018). In the Greek Rhea cohort study, urine samples taken 
at 11 weeks of gestation, showed an association between 
elevated levels of acetate, tyrosine, formate, trimethylamine, 
lysine and glycoprotein and higher risks of subsequent SGA 
and preterm birth (Maitre et al. 2014).

To maximise the opportunity to observe metabolic 
changes that may explain pathophysiological changes seen 
in SGA, we have analysed maternal plasma and urine. We 
hypothesised that these changes would precede detection 
of disease. The aim of our study was to gain further insight 
into the metabolic and lipidomic pathways involved in the 
pathophysiology of SGA, using urine and plasma metabolic 
profiles of women at 20 weeks of gestation, in geographi-
cally distinct populations of the SCOPE pregnancy cohort.

2 � Material and methods

2.1 � Participants

The present nested case-control study was performed on 
samples selected from SCreening fOr Pregnancy End-
points study (SCOPE, www.scope​study​.net) in Cork, Ire-
land, and Auckland, New Zealand. This study was per-
formed in accordance with the 1964 Helsinki declaration 
and its later amendments. Informed consent and ethical 
approval were obtained (Ireland ECM5 (10) 05/02/08, and 
New Zealand AKX/02/00/364). SCOPE is an international 
pregnancy cohort that recruited 1773 women in Ireland 
and 2034 in New Zealand with low-risk and singleton 
pregnancies (Kenny et al. 2014). Selected participants who 
delivered small for gestational age babies, with custom-
ised birthweights less than the 10th centile (cases), were 
matched to participants who had healthy and uncompli-
cated pregnancies (controls). Controls were matched to 
cases by age (± 5 years), body mass index (BMI ± 3.5 kg/
m2), and ethnicity (Table 1). For definitions of all clini-
cal endpoints used in Table 1, see Australian New Zea-
land Clinical Trials Registry (ANZCTR), using study 
number ACTRN12607000551493. Urine and non-fasted 
plasma samples were obtained from 40 selected SGA 
cases in Cork population and matched with 40 controls. 
In the Auckland population, only urine samples were ana-
lysed, with a similar case-control design: 40 women were 
selected for the SGA group and matched with 40 controls. 
The nested case-control study designs are summarised in 
Fig. 1.

Our study included 40 cases and 40 controls with an 
estimated 95% power to detect small to medium effects. 
The calculation was performed using MEDCALC® (www.
medca​lc.com), and showed that assuming a Type I error 
rate, α, of 5% is sufficient and that will be at least a 50% 
change in mean (with a similar within sample standard 
deviation), with the samples size of 40 cases and 40 con-
trols, that the power of the study was 0.9474.

2.2 � Reagents and materials

Liquid chromatography (LC) grade methanol, methyl 
tert-butyl ether (MTBE), acetonitrile (ACN), isopropanol 
(IPA), formic acid, ammonium formate, and glass tubes 
were obtained from Fisher Scientific (Loughborough, UK). 
LC-MS glass vials were purchased from Waters (Waters, 
Dublin, Ireland).

http://www.scopestudy.net
http://www.medcalc.com
http://www.medcalc.com
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2.3 � Sample preparations

For both Cork and Auckland population, plasma samples 
were prepared and analysed independently. Cork urine 
samples were prepared and analysed independently of 
plasma analysis.

2.3.1 � Plasma samples

Plasma samples taken at 20 weeks of gestation were pre-
pared in a randomised order. The lipid extraction method 
used was based on a protocol described by Matyash et al 
(2008). Plasma samples were taken out of − 80 °C stor-
age and left on ice until thawed; none had been previ-
ously thawed. Plasma samples (200 µl) were transferred 

to glass tubes, pre-chilled methanol (− 20 °C, 600 µl) was 
added, and vortex mixed for 1 min. MTBE was added 
(5 ml) to the samples, which were then incubated at room 
temperature on a shaker for 1 h. Water (1 ml) was added 
and samples were left on a shaker for 10 min at room 
temperature; samples were then centrifuged at room tem-
perature for 10 min at 1000 g. The organic (top) layer was 
transferred into glass tubes and left to evaporate overnight, 
at room temperature. Each sample was reconstituted in 
200 µl of 65:30:5, IPA:ACN:Water and vortex mixed for 
30 s. Lastly, all samples were transferred to LC glass vials 
in preparation for LC-MS analysis. Quality control (QC) 
samples were created by pooling 10 µl from each extracted 
sample. Multiple aliquots of pooled QC (100 µl per ali-
quot) were constructed using several LC vials.

Table 1   Characteristics of participants and pregnancy outcomes in Auckland and Cork populations

Values are shown as mean (SD), median (interquartile range) or n (%)
NA Not applicable; BMI Body mass index; GDM gestational diabetes mellitus; PE pre-eclampsia; GH gestational hypertension; sPTB spontane-
ous preterm birth; all mothers were nulliparous
a Including African, Asian, Maori and Pacific Islander
b adjusted for mother’s height, weight at 15 weeks visit, ethnicity, sex and weight of baby and gestation at delivery of baby; cadjusted with Fish-
er’s Exact Test

Variables Auckland Cork

Control (n = 40) Case (n = 40) p-value Control (n = 40) Case (n = 40) p-value

Participants characteristics:
 Ethnicity
  Caucasian 35 (87.5%) 35 (87.5%) 1.0 40 (100%) 40 (100%) NA
  Othera 5 (12.5%) 5 (12.5%) 0 0

 Socioeconomics index 50 (36.75–50.75) 48 (39.25–59.75) 0.615 43.5 (29.0–50.0) 30 (22.00-45.75) 0.08
 Age (years) 31.00 (28.00-32.75) 31.00 (29.00–34.00) 0.448 29 (23.5–31) 28 (24.25-31) 0.412
 Primigravida 31 (77.5%) 24 (60%) 0.147c 35 (87.5%) 33 (82.5%) 0.755 c

 BMI (kg/m2) at 15weeks of gesta-
tion

23.35 (22.33–26.08) 24.30 (21.68–27.20) 0.969 24.65 (21.58–27.83) 24.85 (23.13–29.38) 0.607

At 20 weeks’ gestation:
 Current smoker 3 (7.5%) 2 (5%) 1.0c 4 (10%) 12 (30%) 0.048c

 Current alcohol consumer 7 (17.5%) 5 (12.5%) 0.755c 6 (15%) 6 (15%) 1.0c

 Current drug user 2 (5%) 1 (2.5%) 1.0 c 0 0 NA
 Gestation (weeks) 19.86 (19.18–20.4) 20.14 (19.43–20.43) 0.228 20.86 (20.33–21.14) 20.71 (20.04–21.14) 0.396

Pregnancy outcome:
 GDM
  Yes 0 1 (2.5%) 0.574 0 0 0.31c

  No 35 (87.5%) 35 (87.5%) 8 (20%) 13(32.5%)
  Unknown 5 (12.5%) 4 (10%) 32 (80%) 27 (67.5%)

 Diagnosed with PE 0 0 NA 0 0 NA
 Diagnosed with GH 0 0 NA 0 1 (2.5%) 1.0c

 sPTB, < 37w 0 1 (2.5%) 1.0c 0 0 NA
 Gestational age at delivery (weeks) 40.22 (39.14–41.07) 39.57 (38.9-40.43) 0.214 40.64 (39.9-41.25) 39.86 (38.25-41) 0.014
 Customised birthweight centileb 54 (30.25–78.75) 3.4 (2–5) < 0.001 49 (35.45–65.83) 2.35 (0.8–4.48) < 0.001
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2.3.2 � Urine samples

Urine samples taken at 20 weeks of gestation were prepared 
in a randomised order, following the Nature Protocol devel-
oped by Want et al (2010). Samples stored at − 80 °C, were 
defrosted on ice, then centrifuged for 10 min at 10,000 g. 
Supernatant (100 µl) was transferred to a new tube and mil-
liQ water with 0.1% of formic acid (FA, 200 µl) was added 
(ratio 1:2, urine: water 0.1%FA). Samples were then trans-
ferred to LC-MS glass vials. Quality control samples (QCs) 
were prepared by pooling 20 µl from each sample; sample 
preparation was then the same as for other samples with 
100 µl of pooled QC subsequently transferred to several LC 
vials.

2.4 � LC analysis

2.4.1 � Plasma samples

LC-MS analysis was performed using an ACQUITY 
ultra performance liquid chromatography (Waters Corp, 

Milford, MA) coupled with a Synapt G2-S quadrupole 
time-of-flight (UPLC-Q-TOF) mass spectrometer (Waters 
Corp, Wilmslow, UK). Samples were analysed on a BEH 
C18 column (1.7 µm, 2.1 × 100 mm) which was maintained 
at 65 °C, whilst samples were maintained at 7 °C. Ana-
lytes were separated over a 23 min gradient using a flow 
rate of 0.4 mL/min. Mobile phase A was a mix of 10 mM 
of ammonium formate in acetonitrile:water (ACN:H2O, 
60:40 (v:v)), and B was a mix of 10 mM of ammonium 
formate in isopropanol:acetonitrile (IPA:ACN, 90:10 
(v:v)). The gradient consisted of initial conditions at 30% 
of B, before increasing to 99% of B at 18 min and main-
taining this for a further 2 min before decreasing to 30% 
of B over 2 min, returning to initial conditions. Column 
conditioning consisted of 8 repeat injections of the pooled 
QC. Samples were analysed as technical triplicates in a 
randomised order with the pooled QC injected every tenth 
injection throughout the analysis.

Fig. 1   Description of selection of participants, plasma and urine samples preparation and analysis
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2.4.2 � Urine samples

LC-MS analysis was performed using an ACQUITY ultra 
performance liquid chromatography (Waters Corp, Mil-
ford, MA) coupled with a Synapt G2-S quadrupole time-
of-flight (UPLC-Q-TOF) mass spectrometer (Waters Corp, 
Wilmslow, UK). Samples were analysed on a BEH C18 
column (1.7 µm, 2.1 × 100 mm) which was maintained at 
40 °C, whilst samples were maintained at 7 °C. Analytes 
were separated over a 15 min gradient using a flow rate 
of 0.5 mL/min. Mobile phase A was water and 0.1% for-
mic acid, and B was methanol and 0.1% formic acid. The 
gradient consisted of initial conditions at 1% of B for 1 
min, before increasing to 15% of B over 3 min, increasing 
to 50% of B over 3 min, and further increasing to 95% 
of B over 3 min and maintaining this for a further 1 min, 
before decreasing to 1% of B over 5 min, returning to ini-
tial conditions.

Column conditioning consisted of 8 repeat injections of 
the pooled QC. Samples were analysed as technical trip-
licates in a randomised order with the pooled QC injected 
every tenth injection throughout the analysis.

Cork plasma samples were analysed in December 
2017 and Cork urine samples in May 2017. Auckland 
urine samples were analysed in July 2017. All samples 
were analysed on the same instrument, using a new BEH 
C18 column for each experiment, following the protocols 
described above.

2.5 � MS configuration

For both urine and plasma samples, data were acquired 
using the data independent acquisition (DIA) mode, MSE 
(Bateman et al. 2002; Silva et al. 2005) using a Synapt G2-S 
Q-TOF mass spectrometer (Waters Corp, Wilmslow, UK). 
Data were acquired in resolution mode, from 50 to 1500 Da, 
first in positive followed by negative electrospray ionisation 
modes (ESI+, and ESI−). Both precursor (low energy) and 
fragment (high energy) ion data were collected during the 
same acquisition, with 0.1 second scan time for each, and 
a total cycle time of 0.2 s. A linear collision energy ramp 
(20–40 eV) was applied for high energy, over the 0.1 second 
scan. Capillary voltage was set at 3.0 kV, sampling cone at 
40 V, extraction cone to 5 V. The source temperature was set 
at 120 °C, and the desolvation temperature was 650 °C. The 
desolvation gas flow rate was set at 800 L/h, and cone gas 
at 50 L/h. Mass calibration was performed using a sodium 
formate mix (Waters, Wexford, Ireland), recommended by 
the manufacturer before each batch analysis. Real time lock 
mass correction was performed using a leucine enkephalin 
(LeuEnk, 1 ng/µL) mix, injected at 10 µL/min through a 
lock-spray probe and acquired every 30 s.

2.6 � Data processing

Using Progenesis QI version 2.4 (Nonlinear dynamics, New-
castle, UK) was used to align and peak pick the LC-MS 
data using Progenesis QI automatic processing facility. An 
appropriate pooled QC was selected by Progenesis QI soft-
ware, from all the QC samples analysed in the same analy-
sis the automatic algorithm chose the best reference from 
these runs. This pooled QC was selected as the alignment 
reference to chromatographically align the data. Data were 
then peak picked, and considered the adducts correspond-
ing with M + H, M + H–2H2O, M + NH4, M + Na, M + K, 
M + 2H, M + 2Na (ESI+), or M–H, M–H2O–H, M–Na–2H, 
M + K–2H, M + Cl, M–2H (ESI−). Downstream statistical 
analysis was performed using the compound measurements 
exported from Progenesis QI.

2.7 � Statistical analysis

Statistical analysis of the demographics and clinical data was 
performed using Student T test, Mann-Whitney U test, or 
Pearson χ2 test, with multiple testing corrections as appro-
priate (IBM SPSS Statistics 24). Results were considered 
statistically significant at p < 0.05 (Table 1). Before sample 
preparation and analysis, a block randomisation based on the 
patients’ BMI and the outcome was performed. No signifi-
cant dependency between measurement order, the outcome 
and biometric and clinical information about patients was 
observed using Mann Whitney U test, Spearman correla-
tion, Chi square test and Kruskal-Wallis test as applicable; 
Benjamini and Hochberg procedure was applied for multiple 
testing correction (Benjamini and Hochberg 1995).

Statistical analyses of the UPLC-MS data were performed 
using the R statistical software(R Core Team 2013) and the 
Bioconductor package limma (Ritchie et al. 2015), and pack-
age ggplot2 (Wickham 2011) was used to create volcano 
plots. Data obtained from analyses of urine and plasma 
samples were subjected to the same statistical analyses 
performed independently. Data were acquired in positive 
and negative electrospray ionisation modes (ESI+, ESI−), 
which are known to show significant differences, and were 
therefore analysed independently. Median normalisation of 
the raw UPLC-MS data, and application of quality control 
procedures (Broadhurst et al. 2018) were performed. Meas-
urement precision of each feature was checked by comput-
ing coefficient of variation (CV) and the missing rate over 
the replicate measurements, using pooled QC samples as 
reference. Features with a missing rate greater or equal to 
20% and features with a CV greater or equal to 30% were 
filtered out. Robust multi-variable methods (Wang et al. 
2018; Brereton and Lloyd 2014) were used to rank and 
select features. Empirical Bayes was used on each feature, 
and the design was adjusted for replicate measures (Smyth 
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2004); features analysed were ranked by adjusted p-value. 
In addition, the Mann Whitney U test was performed on 
the average measurement per patient with multiple testing 
correction (Benjamini and Hochberg 1995). Agreement 
between the two methods (similar trends and results) was 
shown and confirmed the robustness of the results (Data not 
shown). The features of interest were tested for correlation 
with clinical variables, using Wilcoxon-Mann-Whitney Test, 
Spearman Correlation Test, or Kruskal-Wallis Test as appro-
priate. Multiple testing correction (Benjamini and Hochberg 
1995), with a false discovery rate (FDR) cut-off of 25%, was 
applied.

2.8 � Metabolites putative annotation

In accordance with the MSI reporting standards, we have 
achieved metabolite identification level 2, or putatively 
annotated compounds (Sumner et  al. 2007). For each 
dataset, the exact mass of significant features (adjusted 
p-value < 0.05) were searched against Human metabolome 
database (HMDB, version 4.0) (Wishart et al. 2018) and 
Lipidmaps (version of January 2019) (Cotter et al. 2007) 
using Progenesis QI identification tool. The search was per-
formed using the theorical fragmentation MetaScope mode, 
which compared our experimental fragments to theorical 
fragmentation patterns generated by the simulated breaking 
of bonds in the structures of possible identifications. The 
search parameters were set for an exact mass tolerance of 
5 ppm for the precursor ion, and of 10 ppm for the frag-
ment ion. With UPLC-MS, it is common that metabolites are 
detected multiple times due to fragmentation, dimerization, 
chemical adduction, or multiple charging. Putative annota-
tions were reported for unique metabolites, after removing 
duplicates and metabolites of drugs or metabolites originat-
ing from food, and after checking the retention time. For 
each database identification match, the retention time of the 
feature was checked to ensure it was in the appropriate time 
window for the chromatographic separation method used. 
For instance, if a feature with a retention time of 11 min 
matched with a Lysophosphatidylcholine (LPC), which are 
expected to elute early (around 1–2 min) due to their polar-
ity, then it was assumed the feature was not an LPC. Using 
HMDB, the metabolites reported were grouped into chemi-
cal classes.

3 � Results

3.1 � Global lipidomic analysis of plasma samples

Clinical and demographics data from selected Cork SGA 
cases (customised birthweight < 10th centile, and median 
2.35, IQR 0.8–4.48, n = 40) and matched controls are 

presented in Table 1. Cases were matched to controls by 
ethnicity, BMI and age and no significant differences were 
observed in these parameters. Smoking status was signifi-
cantly different between cases and controls, as was gesta-
tional age at delivery (mean 39.19 (SD 2.84) vs. 40.41 (SD 
0.94) weeks gestation; p = 0.007).

In plasma samples, 8328 (ESI+) and 6,842 (ESI−) fea-
tures were detected. After normalisation and data filtration, 
6179 (ESI+) and 5,048 (ESI−) features were further ana-
lysed, and 1167 (ESI+) and 788 (ESI−) features showed 
adjusted p < 0.05. 33 features (22 in ESI + and 12 in ESI−) 
were matched to known lipids and are reported (Table 2). 
Among the 33 lipids putatively annotated, 22 were glycer-
ophospholipids (GPL), including 3 phosphatidylethanola-
mines (PE), 5 phosphatidylserines (PS), 3 phosphatidylcho-
lines (PC) and 1 lysoPC, 1 phosphatidylglycerophosphate 
(PA) and 1 lysoPA, 2 phosphatidylinositols (PI), 2 phos-
phatidylglycerophosphates (PGP), 3 phosphatidylglycerols 
(PG), and 1 cardiolipin (CL). Except for CL(72:2), all these 
glycerophospholipids were detected at higher levels in cases 
when compared to controls. In addition to the glycerophos-
pholipids, 4 sphingolipids were putatively annotated: 2 
ceramides (Cer), 1 ganglioside, and 1 sphingomyelin (SM). 
These 4 sphingolipids were detected in higher levels in cases 
compared to controls. Finally, 3 fatty acyls, 3 glycerolipids, 
one organooxygen compound, and one cholesterol fatty ester 
were identified in Cork plasma samples (Table 1; Fig. 2). 
Box plots showing the distribution of the lipids of interest 
in controls (n = 40), cases with a customised birthweight 
centile below the 3rd (n = 22), and cases with a customised 
birthweight between the 3rd and 10th centile (n = 18) are 
presented in Supplementary File 1.

In addition, we determined whether there was a correla-
tion between the lipids of interest and either smoking status, 
or gestational age at delivery. None of the lipids of inter-
est correlated significantly with gestational age at delivery. 
However, one lipid was significantly associated with mater-
nal smoking status: CL(72:2) (p-value = 5.82 × 10−4 with 
FDR = 0.06) and was excluded from our results. Box plots 
showing the levels of this lipid in smokers and non-smokers 
are shown in Supplementary File 2.

3.2 � Global metabolomics analysis of urine samples

Clinical data and demographics of selected women are 
described in Table 1. Importantly, no significant correlations 
were found between the metabolites of interest and either 
smoking status, or gestational age at delivery, in either the 
Cork or Auckland populations.

In Auckland, urine metabolite profiles detected 11,488 
(ESI+) and 10,513 (ESI−) features. After data normalisa-
tion and filtration, 11,213 (ESI+) and 10,216 (ESI−) fea-
tures were further analysed, and 681 (ESI+) and 948 (ESI−) 
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features showed significant differences between cases and 
controls (adjusted p < 0.05). After a database search, as 
described in methods section, 3 features (2 in ESI+, 1 in 
ESI−) matching with known metabolites are reported 
(Table 3): 1 glucuronic acid (D-glucuronic acid), 1 orga-
nooxygen compound (beta-1,4-Mannosyl-N-acetylglucosa-
mine), and 1 steroid derivative (18-Hydroxycortisol). These 
metabolites were detected in lower levels in cases compared 
to controls.

In Cork, urine metabolite profiles detected 16,008 (ESI+) 
and 8853 (ESI−) features. After data normalisation and 

filtration by CV and missing rate, 15,468 (ESI+) and 8838 
(ESI−) features were further analysed, and 271 (ESI+) 
and 866 (ESI−) features showed significant differences 
between cases and controls (adjusted p < 0.05). After a 
database search, as described in methods section, 4 features 
(1 in ESI+, 3 in ESI−) matching with known metabolites 
are reported (Table 3): 1 bile acid (sulfolithocholic acid), 1 
steroid derivative (estriol-16-Glucuronide), 1 benzaldehyde 
(4-Hydroxybenzaldehyde), and 1 neuropeptide (Neuromedin 
N (1–4)). All four were detected in lower levels in cases 
compared to controls.

Table 2   Lipids that showed significant (adjusted p-value <0.05) differences in SGA group compared to controls in Cork plasma samples

CE  cholesterol fatty ester; Cer Ceramide; CL Cardiolipin; DG diglyceride; LysoPA Lyso- Phosphatidylglycerophosphate; LysoPC Lyso-phos-
phatidylcholine; LysoPE  Lyso-phosphatidylethanolamine; PA  Phosphatidylglycerophosphate; PC  Phosphatidylcholine; PE  Phosphatidylethan-
olamine; PG Phosphatidylglycerol; PGP Phosphatidylglycerophosphate; PI Phosphatidylinositol; PS Phosphatidylserine; SM Sphingomyeline; 
TG triglyceride

Lipids Chemical class Adjusted p-value Fold change Direction in 
SGA group

PE(P-31:0) Glycerophospholipids 2.89E − 03 1.17 UP
PE(42:1) Glycerophospholipids 1.23E − 04 1.36 UP
PE(36:4) Glycerophospholipids 9.68E − 04 1.18 UP
PS(O-37:0) Glycerophospholipids 2.55E − 06 1.39 UP
PS(41:5) Glycerophospholipids 1.60E − 04 1.36 UP
PS(37:2) Glycerophospholipids 1.62E − 04 1.29 UP
PS(43:6) Glycerophospholipids 4.64E − 04 1.54 UP
PS(P-34:0) Glycerophospholipids 1.37E − 02 1.22 UP
PC(O-42:4) Glycerophospholipids 1.24E − 02 1.15 UP
PC(40:5) Glycerophospholipids 9.68E − 04 1.25 UP
PC(38:6) Glycerophospholipids 6.68E − 05 1.25 UP
LysoPC(16:0) Glycerophospholipids 8.57E − 04 1.15 UP
PA(O-36:2) Glycerophospholipids 3.17E − 02 1.16 UP
LysoPA(18:1) Glycerophospholipids 7.53E − 04 1.15 UP
PI(37:1) Glycerophospholipids 1.99E − 04 1.20 UP
PI(P-33:1) Glycerophospholipids 3.51E − 04 1.23 UP
PGP(38:4) Glycerophospholipids 1.13E − 05 1.35 UP
PGP(40:4) Glycerophospholipids 4.87E − 05 1.35 UP
PG(36:6) Glycerophospholipids 5.94E − 04 1.23 UP
PG(39:8) Glycerophospholipids 6.25E − 04 1.29 UP
PG(38:4) Glycerophospholipids 6.43E − 04 1.20 UP
CL(72:2) Glycerophospholipids 9.75E − 04 0.76 DOWN
DG(44:4) Glycerolipids 4.25E − 02 1.12 UP
DG(O-34:1) Glycerolipids 1.73E − 02 1.36 UP
TG(64:15) Glycerolipids 4.84E − 04 0.47 DOWN
N,N-dimethyl arachidonoyl amine Fatty acyl 6.69E − 19 7.86 UP
N-palmitoyl valine Fatty acyl 8.58E − 11 1.99 UP
8S-hydroxy-hexadecanoic acid Fatty acyl 4.93E − 04 0.53 DOWN
SM(34:1) Sphingolipids 6.30E − 05 1.25 UP
Ganglioside GA2 (40:1) Sphingolipids 2.77E − 02 1.56 UP
Cer(34:0) Sphingolipids 3.30E − 02 1.26 UP
Cer(39:2) Sphingolipids 3.77E − 02 1.16 UP
CE(17:0) Steroids and steroid derivatives 3.01E − 04 0.78 DOWN
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Plasma and urine samples from the same Cork partici-
pants were analysed. However, no common metabolite fea-
tures were identified in both urine and plasma.

4 � Discussion and conclusions

This study has highlighted the following main findings: (i) 
altered glycerophospholipids and sphingolipids in plasma 
samples from women with SGA pregnancies, and (ii) lower 
levels of metabolites involved in nutrient transport and 
detoxification pathways in urine samples from women with 

SGA pregnancies. There were no common SGA-associated 
metabolite changes identified in plasma and urine.

Our lipidomics study shows evidence of altered glycer-
ophospholipids (GPL) and sphingolipid pathways associated 
with SGA at 20 weeks’ gestation in Cork plasma samples. 
Phospholipids are the main lipid class present in biological 
bilayer, such as cell membranes, and are involved in inflam-
mation, apoptosis, and storage and breakdown of lipids for 
energy (Baig et al. 2013). Our findings are in agreement with 
a metabolomics study performed using samples from the 
SCOPE study taken at 15 weeks of gestation in Australian 
participants (Horgan et al. 2011). In the Horgan et al. study, 

Fig. 2   Box plots showing the normalised intensity of features sig-
nificantly altered (adjusted p-value < 0.05) in small for gestational 
age group (cases, orange box) compared to control group (blue box), 

from untargeted UPLC-MS analysis of SCOPE Cork plasma sam-
ples (cases n = 40, controls n = 40). Quality control (QCs) group also 
shown (grey box)
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metabolic profiles of maternal plasma, venous cord blood, 
and plasma samples from a rat model of SGA (reduced 
uterine perfusion pressure, RUPP, model) were obtained 
on a UPLC system coupled to a hybrid LTQ-Orbitrap mass 
spectrometer. Horgan et al. identified nineteen metabo-
lites as statistically different in SGA cases as compared to 
controls; these included sphingolipids and phospholipids, 
such as several lysophosphatidylcholines and phosphatidyl-
cholines, most of which were detected in higher levels in 
SGA groups in maternal plasma samples, thereby support-
ing our findings of increased plasma glycerophospholipids 
(GPL) and sphingolipids in SGA. In addition, a recent study 
combining the use of direct infusion MS/MS, LC-MS/MS, 
proton nuclear magnetic resonance (NMR) and artificial 
intelligence showed alteration of several pathways in cord 
blood samples, including phospholipid biosynthesis and 
fatty acid metabolism, to be associated with SGA (Bahado-
Singh et al. 2019). Other pregnancy complications have been 
associated with altered lipid levels when compared to non-
complicated pregnancy, including spontaneous preterm birth 
(sPTB) (Morillon et al. 2020), recurrent miscarriage and 
pre-eclampsia (Baig et al. 2013). An animal model of preg-
nancy loss, where sphingosine kinase, an enzyme part of the 
sphingolipid pathway, was inactivated showed an increased 
rate of early pregnancy loss compared to wild type mice 
(Mizugishi et al. 2007). This further shows the critical role 
of lipids in the pathophysiology of pregnancy complications.

Two fatty acyls were detected in higher levels in 
SGA compared to control group, N,N-dimethyl ara-
chidonoyl amine (adjusted p-value = 6.69 × 10–19; 
fold change FC = 7.86), N-palmitoyl valine (adjusted 
p-value = 8.58 × 10–11; FC = 1.99) and on in lower levels, 
8S-hydroxy-hexadecanoic acid from Table  2 (adjusted 
p-value = 4.93 × 10− 4; FC = − 1.88). To date, the precise 
role of these molecules remains unclear, however, they seem 

to be greatly altered in pregnancy complicated by SGA when 
compared to uncomplicated pregnancy.

Our metabolomics study of urine samples taken at 20 
weeks’ gestation, showed that the metabolites altered in 
SGA were D-Glucuronic acid in Auckland samples, and 
Estriol-16-glucuronide in Cork samples both of which 
are involved in detoxification, and Sulfolithocholic acid is 
implicated in nutrient absorption and transport. None of the 
significantly different metabolites of interest were found in 
both the Cork and Auckland populations, however, several 
are involved in similar pathways and cellular processes. This 
may be attributed to the fact that this independent study was 
run months apart, on a different BEH C18 column therefore 
chromatographic reproducibility was not minimised. Future 
projects will take a more targeted approach to metabolomics 
validation given the inherent problems of chromatographic 
reproducibility.

Overall, the lipidomics and metabolomics analyses per-
formed on samples taken from Cork women suggested pla-
cental insufficiency and inadequate transport of lipids to the 
placenta, resulting in impaired fetal growth (Zhang et al. 
2015) detected as early as 20 weeks of gestation. Indeed, the 
placenta plays a key role in the development of the fetus in 
utero, as it ensures the fetus receives sufficient nutrients—
especially oxygen amino acid, glucose and fatty acids (Lager 
and Powell 2012).

Our study had limitations; one of them was the num-
ber of smoking women in Cork population (30% in the 
SGA group, and 10% in the control group), and another 
was the significant difference of gestational age at deliv-
ery between SGA group and controls in Cork population. 
This latter difference could be attributed to the fact that 
the participants selected for the SGA group delivered 
babies with extremely low customised birthweight centile 
(median of 2.35, IQR 0.8–4.48) compared to the control 

Table 3   Significant (adjusted p-value <0.05) metabolites of interest detected in urine samples

Metabolite Chemical class Biological function or 
pathway

Adjusted p-value Fold change Direction in 
SGA group

Population

Sulfolithocholic acid Bile acid Nutrient absorption and 
transport

Lipid metabolism pathway

7.66E − 03 1.12 Down Cork

Estriol-16-Glucuronide Steroid and steroid deriva-
tives

Detoxification
Lipid metabolism pathway

3.83E − 04 1.12 Down Cork

4-Hydroxybenzaldehyde Hydroxybenzaldehyde 4.79E − 02 1.17 Down Cork
Neuromedin N (1–4) Carboxylic acids and deriva-

tives, neuropeptide
2.71E − 02 1.02 Down Cork

D-Glucuronic acid Glucuronic acid Detoxification 4.10E − 02 1.05 Down Auckland
18-Hydroxycortisol Steroid and steroid deriva-

tives
Lipid metabolism pathway 4.36E − 02 1.13 Down Auckland

Beta-1,4-Mannosyl-N-
acetylglucosamine

Organooxygen compounds 3.88E − 02 1.05 Down Auckland
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group (median 49, IQR 35.45–65.83). Cases and controls 
were matched for age, ethnicity and BMI when the stud-
ies were designed, and exclusion of participants would 
have reduced the power of this study. In addition, using all 
known risk factors associated with SGA to adjust the data 
during statistical analysis would have led to overfitting the 
data. We did, however, use a stringent false discovery rate 
cut-off at 5% to select metabolites and lipids of interest, 
and we further tested the metabolites and lipids of inter-
est to determine if they were significantly correlated with 
clinical factors (in addition to SGA). No significant cor-
relation was observed with any metabolite of interest and 
gestational age at delivery, or smoking status, and just one 
lipid of interest, CL(72:2), was found to be significantly 
correlated with smoking status. However, CL(72:2)was 
also significantly correlated with SGA and further analy-
sis to decipher the biological link between CL(72:2) and 
smoking in preclinical models is warranted to rule out this 
confounding result. Another limitation of our lipidomics 
study is that no lipid standards were used to confirm the 
identities, however library search using accurate mass and 
fragment ion was performed, thus achieving metabolite 
identification level 2 according to the MSI reporting stand-
ards (Sumner et al. 2007).

In conclusion, this study showed that higher levels of 
glycerophospholipids and sphingolipids at 20 weeks of 
gestation, is associated with the onset of SGA in partici-
pants of the SCOPE study in Cork. However, whether the 
correlations represent a cause, or an effect of SGA needs 
to be further investigated. Further studies are needed to 
validate these findings in an independent pregnancy cohort 
and to examine whether there may be the potential to use 
these lipids to predict pregnancies at risk of SGA.
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