
Journal Pre-proof

Solution techniques for Bi-level Knapsack Problems

Shraddha Ghatkar, Ashwin Arulselvan, Alec Morton

PII: S0305-0548(23)00207-1
DOI: https://doi.org/10.1016/j.cor.2023.106343
Reference: CAOR 106343

To appear in: Computers and Operations Research

Received date : 27 June 2022
Revised date : 29 June 2023
Accepted date : 30 June 2023

Please cite this article as: S. Ghatkar, A. Arulselvan and A. Morton, Solution techniques for
Bi-level Knapsack Problems. Computers and Operations Research (2023), doi:
https://doi.org/10.1016/j.cor.2023.106343.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.cor.2023.106343
https://doi.org/10.1016/j.cor.2023.106343

Journal Pre-proof

LaTeX Source Files Click here to view linked References
Jo
ur

na
l P

re
-p

ro
ofSolution Techniques for Bi-level Knapsack Problems

Shraddha Ghatkara,∗, Ashwin Arulselvana, Alec Mortona

aDepartment of Management Science, University of Strathclyde, 199 Cathedral Street,
G4 0QU, Glasgow, United Kingdom

Abstract

Traditional funding mechanisms for healthcare projects involve ranking the
projects and awarding funds based on their cost to benefit ratio. An alterna-
tive funding mechanism based on Bi-level programming was proposed in the
literature. We refer to this as Donor-Recipient Bi-level Knapsack Problem
(DR-BKP), which we explore further in this work. There are two participants,
a leader (a donor agency) and a follower (recipient country) in this prob-
lem. Both the participants have their individual budgets. There is a set
of projects, each having a certain cost and profit associated. The cost of
projects are common to both the participants however the profits can be dif-
ferent for them. There is an external project that is of exclusive interest to
the follower. The leader decides on cost subsidies to provide for the projects
that is within her budget, while the follower solves a knapsack problem with
the cost subsidised projects and the external project. Two enumerative al-
gorithms were proposed in the literature for Bi-level problems with discrete
upper level variables. We adapt them for DR-BKP that has continuous upper
level variables having non-linear interaction with lower level variables. We
first show the existence of a solution for DR-BKP and show the convergence of
these algorithms. We provide evidence for ΣP

2 -hardness by showing that the
problem is both NP-hard and Co-NP hard. Finally, we have implemented
these two enumerative algorithms and shared the results and analyses of the
computational experiments. A set of fifteen differing data sets each having
randomly generated 10 instances have been solved to evaluate the perfor-
mance of the proposed algorithms.

∗Corresponding author
Email addresses: shraddha.ghatkar@strath.ac.uk (Shraddha Ghatkar),

ashwin.arulselvan@strath.ac.uk (Ashwin Arulselvan), alec.morton@strath.ac.uk
(Alec Morton)

Preprint submitted to Computers & Operations Research June 29, 2023

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofKeywords: Bi-level optimization, Bi-level knapsack problems, Stackelberg

games, Healthcare economics

1. Introduction

A Bi-level Programming Problem (BLPP) can be formally stated as

maximize
y∈Y, x∈X

f(y,x) (1a)

subject to F (y,x) ≤ 0 (1b)

x ∈ argmax
x′∈X

{g(y, x′) : G(y,x′) ≤ 0} (1c)

We have two decision makers. A leader at the upper level with a set of
decision variables, y ∈ Y ⊆ Rm, and a follower at the lower level with a
set of decision variables, x ∈ X ⊆ Rn. The leader and the follower have
their own objective functions, f, g : Rm × Rn → R, and constraint func-
tions, F : Rm × Rn → Rp and G : Rm × Rn → Rq. Decision making is
sequentially done, first by the leader and then by the follower. Once the
leader takes a decision on y, the follower solves an optimisation problem pa-
rameterised by the leader’s decision. Bracken and McGill [1] introduced this
class of optimization models, wherein the feasible region of leader’s optimiza-
tion problem is the optimal solution set of follower’s optimization problem.
Typically, a central planner (or leader), with collective utility as objective,
makes an investment decision based on which one or more agents (or follow-
ers) make decisions that maximises their individual utility. This models the
hierarchical relation between two classes of decision makers. Many bi-level
optimization problems were originally proposed and studied as Stackelberg
games in the field of game theory [2], when there is a hierarchy in decision
making among players.

The BLPPs have two different solution approaches depending on the prob-
lem, namely, (1) optimistic approach and (2) pessimistic approach. Assum-
ing a follower’s optimal solution is not unique, the leader and follower can
cooperate in an optimistic approach permitting the leader to pick the best
solution among the follower’s optimal set of solutions. However, when there
is no possibility of cooperation, it is typically assumed that the follower will
choose the least favourite solution of the leader from the follower’s optimal
set and a pessimistic approach is taken. In this work, due to the nature of
the application, cooperation is assumed and we discuss optimistic strategies.

2

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofWe will not discuss pessimistic approaches. We are dealing with a specific

type of mixed integer BLPPs, where the leader and the follower have a sin-
gle knapsack constraint each. The follower solves a knapsack problem that
is influenced by decisions made by the leader’s knapsack problem. We will
formalise this in the sequel.

Motivation: Significant advancements have been made towards prevention
and treatment of human race against diseases world-wide in the last two
decades [3]. This achievement is attributed not only to the technological
progress in medical science but also to the aid money allocated for health-
care projects (henceforth, referred to as “project”) conducted all over the
world. The projects are primarily funded by the recipient country, where they
are implemented, in partnership with financing organisations like the Global
Fund. These organisations raise funds from public sector contributions of
nations with large gross national income and philanthropic organizations.

The recipient is often a developing country that manages her budget for
healthcare projects alongside numerous other projects such as education,
welfare, infrastructure, defense, etc. The aid money available through the
donors is limited as well. Hence, it is important to identify an efficient and
fair mechanism to allocate the funds available between the donor and the
recipient to these projects.

The most followed approach for allocating the healthcare funds is of cost-
effective analysis. The projects with higher benefits and lower costs are
funded first. However, Morton et al. [4] claim that this approach results
in crowding out of indigenous financing of interventions, and thus results
in under-allocation of resources to healthcare. They instead have proposed
a novel approach for the donor to allocate subsidies to projects that are
just cost-ineffective to a country i.e. the projects that have just missed a
chance to be funded by the country herself will be subsidized by the donor
agency and pulled to the level of marginal projects. Marginal projects are
the projects that are eligible to be funded by the country herself. Figure 1
shows the line of marginal cost-effectiveness, projects funded by the country
herself and projects that can be subsidized and brought to the marginal
line. The given approach assures not only efficient allocation of the available
funds but it is also inline with the idea of “sustainable” aid. The authors
referred to this as Bi-level Knapsack Problem (BKP). In this work, we refer
to this approach as Donor-Recipient Bi-level Knapsack problem (DR-BKP) to
distinguish it from other bi-level knapsack problems that are available in the

3

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Figure 1: Project selection by Recipient Country and Donor subsidies

literature (see Caprara et al. [5]). This model was first reformulated into a
single level mixed integer program under the assumption that the recipient
is a middle income country capable of funding all the health-care projects
from her own budget and then it was solved using a standard optimization
solver in [4]. The assumption made in [4] is relaxed in this paper in order to
generalize the model for wider use.

1.1. Contribution:

The main contributions of this work are extending and adapting the ideas
of two finitely converging exact algorithms, (a) an enumeration algorithm by
Lozano and Smith [6] and (b) a branching technique by Xu and Wang [7]
to solve the DR-BKP model. We differ from both these models in a number
of ways. Firstly, our problem has continuous variables in its upper level and
both continuous and discrete variables at the lower level. Most mixed inte-
ger bi-level problems assume that the lower level problem is parameterised
exclusively by the upper level integer variables. Continuous upper level vari-
ables in the lower level problem impose two difficulties. The first one being
ill-posedness of the problem due to non-compact feasible region i.e. an op-
timal solution may not exist in such cases as shown by Vicente et al. [8].
An example is given by Köppe et al. [9] to illustrate this case. Our up-
per level objective is a discrete function, which circumvents this issue. The
second difficulty lies in the design of the algorithm. The constraints added

4

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofin both [6] and [7] require that the lower level problem is parameterised

by integer upper level variables to avoid open feasible sets. We show that
convergence is guaranteed even without this assumption. In addition, the
upper and lower level variables interact non-linearly at the lower level con-
straints but the parameterised lower level problem is a mixed integer linear
program. This requires us to modify both the constraint and branching rules
of [6] and [7].

We make an assumption on the cost of projects that we will discuss later
in the sequel. With this assumption, we show convergence and the computa-
tional experiments were performed and presented. We also provide evidence
for ΣP

2 -complexity in Section 3.1, by showing the decision version of the
problem is both NP-hard and Co-NP hard.

The problem is formally defined in Section 2 followed by complexity of the
DR-BKP. The enumeration algorithm and the branching technique are given
in Sections 4 and 5 respectively, to solve the DR-BKP. A set of 150 instances
(10 in each of the 15 different data sets) have been solved, compared and
presented in Section 6. These data sets have been generated to mimic the
different scenarios arising in real-life healthcare problems. Finally, the last
section concludes this paper along with findings and suggestions for future
research.

1.2. Previous work

There are several real-life problems modeled as BLPPs, such as trans-
portation network design by Constantin and Florian [10], national agricul-
tural planning by Fortuny-Amat and McCarl [11] and revenue management
by Morton et al. [4], and Côté et al. [12]. Although the application areas are
wide, there are not many implementations seen due to the lack of efficient
algorithms to deal with actual problem sizes in real-life. Hence a lot of at-
tention has been shifted recently to solve these extremely challenging set of
problems. The difficulty of these problems can be realised from the fact that
even in the simplest case of linear BLPPs, wherein the objective functions and
the constraints at both levels are linear, the problem is NP-hard (see Jeroslow
[13]). There are different structures of BLPPs seen in the literature based on
(a) the linearity or convexity of the objective functions and/or constraints in
both levels, (b) variables being continuous and/or discrete in both levels and
(c) occurrence of upper level variables in the lower level problem (see Colson
et al. [14] and Mersha and Dempe [15]). These developed models have dif-
ferent solution techniques depending on the individual problem’s structures.

5

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe latest and by far the largest annotated list of references can be found in

the book by Dempe and Zemkoho [16].
Vicente et al. [8], Dempe [17], and Fanghänel and Dempe [18] discussed

properties and optimality conditions of BLPPs with different structures re-
lated to the integer and continuous variables appearing in both levels of
the models. A Branch-and-Bound algorithm was given by Moore and Bard
[19] for general mixed integer BLPPs, along with some heuristics to trade-
off accuracy for speed and obtain good solutions for larger instances. An-
other Branch-and-Bound algorithm was given by Edmunds and Bard [20] for
mixed integer BLPPs where discrete variables appear only in the upper level.
Later, a Branch-and-Cut approach for integer BLPPs was given by DeNegre
and Ralphs [21] by introducing cutting planes derived in a similar way for
standard Integer Linear Programs (ILPs). This work was improved and a
generalized Branch-and-Cut Algorithm was proposed and implemented in an
open source solver by Tahernejad et al. [22].

Xu and Wang [7] proposed an improved Branch-and-Bound algorithm for
BLPPs with only discrete variables in the upper level, wherein they propose
new pruning rules to eliminate large regions that are not bi-level feasible.
They have proposed another exact solution technique, called “watermelon
algorithm” (See Wang and Xu [23]), for solving BLPPs with discrete vari-
ables in both the levels where they have used multi-way branching to remove
bi-level infeasible points from the search space. For BLPPs with only discrete
variables in the upper level, Lozano and Smith [6] give an exact finite algo-
rithm using optimal-value-function reformulation. They iteratively generate
primal bounds using relaxed BLPP and dual bounds using bi-level feasible
solutions obtained until the bounds are within desired solution gaps.

A finitely-convergent solver was then given by Fischetti et al. [24] for
general mixed integer BLPPs, assuming that the upper level variables that
appear in the lower level must be discrete and bounded. Along with a mod-
ified Branch-and-Bound algorithm for the solver, they have proposed new
classes of linear inequalities that include intersection cuts based on convex
feasible-free sets. This work was improved upon in their proceeding article
[25] in which they have proposed new families of intersection cuts and sep-
aration algorithms. An extensive computational study was done by them
on a set of varying classes of problems from the literature and these results
have been reported in their article. Liu et al. [26] have recently proposed
an enhanced Branch-and-Bound algorithm for BLPPs with discrete variables
that are bounded in both the levels. Their algorithm has improved branching

6

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofrule over that given in [7] and hence can disregard larger bi-level infeasible

spaces in each iteration during the search. The following section gives the
literature that we studied related to bi-level knapsack problems.

Bi-level Knapsack Problems:
In general, there are three variants of bi-level knapsack problems (BKPs)

as discussed by Caprara et al. [5] and Carvalho [27]. We discuss these
along with some of their extensions recently seen in the literature. First is
the Dempe-Ritcher variant by Dempe and Ritcher [28] where the knapsack
budget is decided by the leader and items in this knapsack are selected by the
follower. This model has continuous variables in the upper level and binary
variables in the lower level. The objective of both the leader and the follower
is to maximize their respective profits. A pseudo-polynomial exact algorithm
and polynomial time approximate algorithm were given by the authors. A
Dynamic Programming (DP) algorithm was given by Brotcorne et al. [29] for
BKPs with upper level controlling the continuous capacity of the lower level
knapsack and the follower solves a binary knapsack problem with the chosen
capacity.

Second variant is called the Mansi-Alves-de-Carvalho-Hanafi variant given
by Mansi et. al. [30] in which the knapsack is shared by both the leader and
the follower with a pre-decided budget. A reformulation approach was given
by Brotcorne et al. [31] for integer BKPs, which was then solved using a
two-step algorithm. A DP approach was used to find all possible reactions
of the follower in the first step and all the obtained reactions were used
to reformulate the BKPs as a single level MILP in the second step. This
reformulation was then solved using an MILP solver.

DeNegre [32] has given the third variant of the BKPs. In this variant,
both the leader and the follower have their independent knapsacks and they
select items from a common set of items. The objective of follower is to
maximize her profit whereas that of the leader is to minimize profit of the
follower. This variant is a type of Interdiction models. DeNegre [32] has
developed a Branch-and-Cut framework to solve pure integer framework and
a reformulation approach to solve this variant. Another solver has been given
by Caprara et al. [33], where the authors use continuous relaxation of the
follower’s problem to get a single-level reformulation and then compute the
upper bounds iteratively till a stopping condition is satisfied. Della Croce
and Scatamacchia [34] first compute effective bounds for this variant of the
BKPs. These bounds are then used to explore promising sub-problems through

7

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofconstraint generation and pruning. The authors have extended this solution

approach to the Min-max Regret Knapsack Problem (MRKP), which shows an
improved performance for over a Lagrangian based Branch-and-Cut approach
proposed by Furini et al. [35]. An exact Branch-and-Cut algorithm has been
recently given by Fischetti et al. [36] for Interdiction games that have follower
problem satisfying certain monotonicity property. One of the examples of the
problems that have this property are DeNegre’s variant and the authors have
conducted computational study on the benchmark instances of the variant.

In the literature, we can find approximation-guaranteed algorithms for
some variants of the BKPs. In the problem setup by Briest et al. [37], the
follower has to select a set of items within a given weight and in minimum
cost. Since the follower is computationally bounded, she uses a greedy 2-
approximation algorithm. The authors give a (2+ϵ)-approximation algorithm
to maximize the leader’s revenue in this setup. Other pseudo-polynomial
algorithms are given by Chen and Zhang [38] and then improved upon by Qiu
and Kern [39] for different versions of a BKP variant in which both the leader
and the follower pack their items simultaneously in their own knapsacks. The
follower maximizes her own profit however leader is concerned to maximize
both the profits.

Two variants of BKPs with continuous variables in upper level and binary
variables in lower level are given by Pferschy et al. [40] and Pferschy et al.
[41]. Greedy heuristics and pseudo-polynomial time exact algorithms were
provided for these problems. In these variants, the items of the knapsack
are partitioned as leader and follower’s items. The follower decides which of
these items get picked in the knapsack that are within some budget. There is
a maximum profit level that can be attained for a leader’s item. The leader
decides on the profit levels that she will receive while awarding the remaining
profits to the follower and thereby incentivising the follower to pick the lead-
ers’ items in the knapsack. Incentives can also be offered as weight offsets
in the knapsack and these are deducted from the leader’s profit [40]. For
instance, in the application provided in [40], we have a trader that provides
cost offsets to the products offered to his customers. This is modelled as the
trader having a reduced return due to the cost offset she provides. Typically
traders can borrow and invest the loan for the offset. One would typically
then maximise the return on the profits provided by the products after the
interest from the loan has been deducted. In addition, our methodology
could possibly be applied to other BKPs, whenever the upper level decisions
are present exclusively in the knapsack constraint. For instance, follower’s

8

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofproblem with knapsack precedence constraints (see Johnson and Niemi [42])

will not be affected by our methodology.
One can perceive the BKP that we have proposed in this paper as an

extension or variation of the Dempe-Ritcher variant. In this variant [28], a
subsidy is directly provided to expand the budget of the recipient. In our
model, the leader has a greater control over how the subsidy is allocated by
providing offsets to the costs of the individual projects that are of interest to
the leader. The leader makes a single decision on the continuous budget of
the follower.

2. Notation and Definitions

An instance of a knapsack problem comprises of a budget and a set of items,
each with a profit and cost. The objective is to pick a subset of items (ei-
ther fractionally or wholly) such that their costs are within the budget and
the profit is maximised. An instance of Donor-Recipient Bi-level Knapsack
problem (DR-BKP) comprises of two players, a donor and a recipient. We
have a set, I, of n projects (I = {1 . . . n}) that are common to both players.
Each project i ∈ I, has a profit of wi ∈ N (corr. vi ∈ N) for the donor (corr.
recipient), and a cost ci ∈ N. Let w and v denote the vectors of profits of
the donor and the recipient respectively and c be the vector of costs of these
projects. We have two integer budgets, Bd and Br, corresponding to the
donor and the recipient. Besides the projects in I, the recipient has to allo-
cate her budget to an outside option of projects. This represents a portfolio of
projects that is of no interest to the leader. We will refer to this option as an
“external project”. We will consider the model introduced in [4], where the
external project has a linear profit and linear cost of v0 and c0 respectively.
So an instance of DR-BKP is specified by the input (w,v, c, v0, c0, Bd, Br).
The recipient solves a knapsack problem, where each item of the knapsack
corresponds to a project i ∈ I with a profit vi and cost ci − ciyi, where yi
is the proportion of cost of project i that is subsidised by the donor. These
projects are binary and cannot be fractionally picked. Along with the health-
care projects, the recipient has to fund external project which can be done
fractionally or wholly i.e. only a proportion or entire of cost of the external
project can be funded by the recipient.

A solution to an instance of DR-BKP is to decide on the proportion of cost
to be subsidised, yi, for each project i ∈ I with

∑
i∈I ciyi ≤ Bd such that

profit of the donor is maximised given the projects are in the optimal solution

9

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofset of the recipient’s cost subsidised knapsack problem. We use the notation

y to denote a vector of subsidy. The leader cannot subsidise a project more
than her cost and the total subsidy cannot exceed the leader’s budget. The

set of all valid subsidies is denoted by Y :=
{
y :

∑
i∈I ciyi ≤ Bd,y ∈ [0, 1]n

}
.

We let x to denote a 0-1 vector representing the set of projects that
are picked (ith component of the vector, xi, is 1 if project i is picked and
0 otherwise) and x0 to denote proportion of cost of external project that

is being funded by the recipient. We define the set X :=
{
(x, x0) : x ∈

{0, 1}n, x0 ∈ [0, 1]
}
. Let X := {x1,x2, . . . ,xK} be the set of all possible

subsets of projects. We define the set of all valid projects corresponding to
a subsidy y ∈ Y as

G(y) := {x ∈ X :
∑

i∈I
(ci − ciyi)xi ≤ Br} (2)

The DR-BKP proposed by Morton et al. [4] has been given in (3) and (4)
where the upper level is the donor problem (DONOR) and the lower level is the
recipient problem (RECIPIENT(y)) parameterised on the upper level decision
y.
Problem DONOR:

maximize wTx (3a)

subject to y ∈ Y (3b)

x ∈ argmax(RECIPIENT(y)) (3c)

Problem RECIPIENT(y):

maximize vTx+ v0x0 (4a)

subject to
∑

i∈I
(ci − ciyi)xi + c0x0 ≤ Br (4b)

(x, x0) ∈ X (4c)

We will now introduce few more notations.
Relaxed feasible set:

S =
{
(y, (x, x0)) :

∑

i∈I
(ci − ciyi)xi + c0x0≤ Br,y ∈ Y, (x, x0) ∈ X

}
(5)

10

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofFollower’s rational reaction set for a fixed ŷ ∈ Y :

P (ŷ) =
{
(x, x0) : (x, x0) ∈ argmax

{
vTx+ v0x0 :

∑

i∈I
cixi + c0x0

≤ Br +
∑

i∈I
ciŷixi, (x, x0) ∈ X

}} (6)

Inducible Region:

IR = {(y, (x, x0)) ∈ S : (x, x0) ∈ P (y)} (7)

With these notations, DR-BKP can also be defined as:

maximize wTx (8a)

subject to (y, (x, x0)) ∈ IR (8b)

3. Properties and assumptions

Let R-DR-BKP, given as (9), denote the Relaxed DR-BKP i.e. the DR-BKP

after ignoring the objective function of the RECIPIENT problem. This re-
laxation of a bi-level optimization problem is generally called as High Point
Relaxation (HPR) in the literature.

maximize wTx (9a)

subject to (y, (x, x0)) ∈ S (9b)

The integer constraints in MILPs are relaxed and standard rules are ap-
plied for pruning off low quality solutions in branch and bound solution
techniques. However, this methodology cannot be adopted for mixed integer
BLPPs. Let us call the MILP HPR as HPR after relaxing its integer constraints.
The inducible region of HPR may not contain the inducible region of origi-
nal problem [19]. Also unlike in the case of standard MILPs, unboundedness
of HPR relaxation cannot be used to derive the optimal solution of original
bi-level problem. An unbounded HPR region can imply either infeasible, un-
bounded or occurrence of an optimal solution [7]. This situation however is

11

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofnot an issue in our problem (R-DR-BKP) since the integer variables have finite

bounds. The finite bounds on integer variables also assure that there would
never be a situation when RECIPIENT problem is infeasible or unbounded for
any DONOR decision y.

In general, mixed-integer BLPPs with continuous upper level variables that
appear in the constraints at the lower level problem may have a non-compact
feasible region resulting in no optimal solution even if the feasible region is
non-empty [8], [9]. An example in these works convey the idea that an
optimal solution may never be attained. However in our problem (DR-BKP),
the upper level objective is a discrete function taking discrete variables with
finite bounds as input and hence a maximum always exists. It is not difficult
to see this. For a fixed set of projects, xk ∈ X , let

R(xk) :=
{
y ∈ Y : max

(x,x0)∈X

{
vtx+ v0x0 :

∑

i∈I
(ci − ciyi)xi ≤ Br

}

≤ vtxk + v0x0(x
k,y),

∑

i∈I
(ci − ciyi)x

k
i ≤ Br

} (10)

where

x0(x
k,y) = min

{
1,

Br −
∑

i∈I cix
k
i +

∑
i∈I ciyix

k
i

c0

}

For each such solution xk ∈ X , k = 1, . . . , K, with the corresponding upper
objective wTxk, we are interested in knowing whether R(xk) = ∅ or not and
the non-compactness of R(xk) is not relevant. Due to the finiteness of X , we
could simply order the solutions in X in the decreasing order of their corre-
sponding upper level objective values. More formally, let π be the ordering,
such that wTxπ1 ≥ · · · ≥ wTxπK . Pick the first solution in this order for
which R(xπk) ̸= ∅. So ∃ŷ ∈ Y such that xπk ∈ P (ŷ) and for all ℓ, such that
wTxπℓ ≥ wTxπk we have xπℓ /∈ P (y) for all y ∈ Y . So we have the following
result.

Proposition 1. DR-BKP has a maximum.

We now make the following assumption. The cost of the external project
in RECIPIENT problem is at least equal to the budget of the RECIPIENT, i.e.,

c0 ≥ Br (11)

12

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThe reason for this assumption is given in Section 4. Under this assumption

we have

x0(x
k,y) =

Br −
∑

i∈I cix
k
i +

∑
i∈I ciyix

k
i

c0

From an application perspective, this assumption is not restrictive as the
external option summarises the cost of all other projects that a recipient
country incurs and this typically exceeds the recipient’s budget.

3.1. Complexity of the BKP

Regardless of the cost assumption (11), the results of this section hold.
We now provide evidence for BKP to be Σp

2-hard. We do this by showing
that it is both NP-hard and Co-NP hard. However, there are no immediate
certificates to show that they are in either NP or Co-NP. So, unless NP = Co-
NP, it is likely to be complete in a higher complexity class in the polynomial
hierarchy. We now define the decision version of the DR-BKP to show our
hardness results.

Definition 1. The input to the decision problem D-DR-BKP is an instance of
DR-BKP (w,v, c, v0, c0, Bd, Br) and a number k and it answers

• YES if there is a subsidy ŷ ∈ Y and a project set, x̂ ∈ G(y), such
that for all (x, x0) ∈ P (ŷ), we have vT x̂+ v0x0(ŷ, x̂) ≥ vTx+ v0x0 and
wT x̂ ≥ k

• NO otherwise

Theorem 1. D-DR-BKP is NP-hard.

Proof. We show this by reducing an instance of KNAPSACK problem to
D-DR-BKP. In a KNAPSACK instance, we are given a set of n items with
profits {p1, . . . , pn}, weights {w1, . . . , wn} and a budget B. The decision
version of the problem asks whether there exists a set of items S ⊂ {1, . . . , n}
with

∑
i∈S pi ≥ k and

∑
i∈S wi ≤ B. We create an instance of D-DR-BKP by

creating one project for each knapsack item and there is no external project,
i.e., we have c0 = v0 = 0. The cost of a project is the corresponding knapsack
item’s weight. Both the donor and recipient’s profit will be the corresponding
knapsack item’s profit. The recipient’s budget Br is 0 and donor’s budget Bd

is the knapsack budget B. The D-DR-BKP instance has an optimal value of k
if and only if the KNAPSACK instance has a solution value of at least k. We

13

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofobserve that an item can never be picked unless it is completely subsidised

by the leader. Otherwise it is infeasible to the follower. If KNAPSACK
instance is yes, then the leader could simply subsidise the items in this set
fully. Otherwise, no subset of items that can fully be subsidised (within the
budge B) will have a profit of at least k.

Theorem 2. D-DR-BKP is Co-NP-hard.

Proof. We show this by reducing the inverse subset sum problem (ISSP). An
instance of this problem comprises of a set, A, of n integers a1, . . . , an and
a target integer B. We answer NO to this instance if there exists a subset,
S ⊂ A, of integers that add up to exactly B and YES otherwise. For the
reduction, we take projects in I corresponding to the n integers in A. We
will refer to these projects as integer projects. We also take one extra project
in I. There are no external projects, i.e., we have c0 = v0 = 0. The costs and
the recipient profits of the integer projects are the same as the corresponding
integers. The donor’s profits for integer projects are all 0. The extra project
has a cost of 1 with a donor profit of 1 and recipient profit of 1/2. The
recipient’s budget is B and the donor’s budget is 0. Now the ISSP has a
solution if and only if the constructed D-DR-BKP has a solution value of at
least 1. To see this, first note that donor does not have any budget and
cannot subsidise any project and it is entirely up to the recipient to pick
projects. If there exists a set of integers for ISSP that adds up to B, then the
recipient will pick the corresponding integer projects and get a profit of B
and the extra project will not be picked. If there are no subset of items that
add up to B, then recipient will definitely pick the extra project to maximise
her profits which results in a donor profit of 1.

Unfortunately, we do not have a direct reduction from a Σp
2-complete problem

and we leave this as a conjecture.

4. Enumeration Algorithm

Consider the model (9) after linearising the products of donor subsidies
yi and project selections xi in the lower level budget constraint.

14

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofProblem R-DR-BKP:

maximize wTx (12a)

subject to cTy ≤ Bd (12b)

cTx+ c0x0 ≤ Br + cTy (12c)

yi ≤ xi ∀i ∈ I (12d)

y ∈ [0, 1]n (12e)

x ∈ {0, 1}n (12f)

x0 ∈ [0, 1] (12g)

Constraint (12d) assures that there are no subsidies given in case the
project is not picked. This is not restrictive. For a fixed set of projects, x̂,
if R(x̂) is non-empty then there exists a subsidy ŷ ∈ R(x̂) such that ŷi ≤ x̂i

for all i ∈ I. We can reduce the subsidy of a project for an arbitrary subsidy
vector, which was not picked by the recipient’s optimal solution, to 0. This
will not change the optimal solution of the recipient’s problem. This also
allows us to avoid the bi-linear terms in (4b) and rewrite that constraint as
(12c).

For an optimal solution (x∗, x∗
0,y

∗) of R-DR-BKP to be bi-level feasible to
DR-BKP, we need (x∗, x∗

0) ∈ P (y∗). Since it is a relaxation, we also achieve
optimality. We will formalise this soon. We are now interested to know how
to tighten this relaxation if (x∗, x∗

0) /∈ P (y∗). In other words, we want to
eliminate this point from the search space. In this case, for any (x̄, x̄0) ∈
P (y∗) the inequality

vTx+ v0x0 ≥ vT x̄+ v0x̄0 (13)

will eliminate (x∗, x∗
0,y

∗) from the search space. Since (x̄, x̄0) is optimal to
RECIPIENT(y∗),

x̄0 = x0(x̄,y
∗) (14)

Using this, inequality (13) can be written as

vTx+ v0x0 ≥ vT x̄+ v0x0(x̄,y) (15)

Under assumption(11), we have

x0(x̄,y) =

(
Br −

∑
i∈I ci(x̄i − x̄iyi)

)

c0

15

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofThis gives us linear components in the RHS of (15) and we do not have to

introduce binary variables. We define c′i :=
v0ci
c0

. Inequality (15) can then be
re-written as

vTx+ v0x0 −
∑

i∈I
c′ix̄iyi ≥ vT x̄+

v0
c0
(Br − cT x̄) (16)

However, inequality (16) can only be added if (y, (x̄, x̄0)) ∈ S. Otherwise,
we will cutoff valid subsidies from our search space. This is added as con-
straints (17d) and (17e) below. Big M - M1 and M2 - are used here to handle
the “if-then” nature of the constraint. The choice of big M is discussed
further in Section 6.

maximize wTx (EBKP)

subject to cTy ≤ Bd (17a)

cTx+ c0x0 ≤ Br + cTy (17b)

yi ≤ xi ∀i ∈ I (17c)

cTxk −
∑

i∈I
cix

k
i yi +M1t

k ≥ Br + ϵ ∀k ∈ {1, . . . , K} (17d)

vTx+ v0x0 −
∑

i∈I
c′ix

k
i yi +M2(1− tk)

≥ vTxk +
v0
c0
(Br − cTxk) ∀k ∈ {1, . . . , K}

(17e)

tk ∈ {0, 1} ∀k ∈ {1, . . . , K} (17f)

y ∈ [0, 1]n (17g)

x ∈ {0, 1}n (17h)

x0 ∈ [0, 1] (17i)

For any solution xk ∈ X , constraint (17d) forces the binary variable tk to 1
if the cost of projects in xk that are subsidised by y does not strictly exceed
the budget Br. In other words, tk is set to 1, if xk is a feasible solution to
RECIPIENT(y). We have modelled this using a parameter ϵ to avoid open
feasible sets. In the case tk is set to 1, any solution we pick must be at
least as good as xk with respect to the recipient’s objective for it to be bi-
level feasible. Constraint (17e) ensures this. X is subset of all projects in

16

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofI and can have exponentially many of them. We solve (EBKP) iteratively.

At each iteration we obtain a solution (y∗, (x∗, x∗
0)). We then determine if

(x∗, x∗
0) ∈ P (y∗) by solving RECIPIENT(y∗). If (x∗, x∗

0) ∈ P (y∗), then we
terminate otherwise RECIPIENT(y∗) returns an optimal solution (x̄, x̄0) ∈
P (y∗) that we add as constraints of the form (17d) and (17e). Since these
constraints are of the “If-then” nature, we have to introduce a binary variable
for every such constraint. This is given in Algorithm 1. This procedure is very
similar to the one proposed in [6]. They aggregate their constraints (17d)
and add a single constraint for all xk. This makes sense when the upper
level decision variables are present in many different constraints at the lower
level. We, however, have a single constraint at the lower level in which the
upper level variable is present. We add them as dis-aggregated constraints
that provide a tighter relaxation. This does not affect the running time as
one new inequality of the form (17e) and one new variable have to be added
at every iteration in [6]. We instead add two new inequalities and one new
variable at every iteration. In addition, in order to deal with open feasible
sets and ill-posedness of the problem, in [6], the authors assumed integer
restrictions on upper level variables. We show that for sufficiently small ϵ,
our algorithm would terminate at optimality, which we discuss in Theorem 3.

17

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAlgorithm 1: Enumeration Scheme for DR-BKP

Solve (R-DR-BKP) and Let (x∗, x∗
0,y

∗) be its optimal solution;
Solve RECIPIENT(y∗) and let (x̄, x̄0) be the optimal solution;
Set k = 0, (xk, x̄k

0) = (x̄, x̄0), Set UB = wTx∗, LB = wTxk;

while (UB−LB)
LB

≤ gap do
if vTxk + v0x

k
0 > vTx∗ + v0x

∗
0 then

if wTxk = wTx∗ then
Return (xk, xk

0,y
∗)

else
Set LB = max(LB,wTxk);
Add following constraints to (R-DR-BKP):
cTxk −∑

i∈I cix
k
i yi +M1t

k ≥ Br + ϵ;
vTx+v0x0−

∑
i∈I c

′
ix

k
i yi+M2(1−tk) ≥ vTxk+ v0

c0
(Br−cTxk);

end

else
Return (x∗, x∗

0,y
∗)

end
Set k = k + 1;
Solve (R-DR-BKP) and Let (x∗, x∗

0,y
∗) be its optimal solution;

Set UB = wTx∗;
Solve RECIPIENT(y∗) and Let (xk, xk

0) be the optimal solution;

end

Algorithm 1 gives the Enumeration Scheme to find bi-level optimal solution
for the DR-BKP problem. The R-DR-BKP is solved first using an MILP solver
and from the solution, (x∗, x∗

0,y
∗), subsidy y∗ is used to solve RECIPIENT(y∗).

If (x∗, x∗
0) ∈ P (y∗), then (x∗, x∗

0,y
∗) is returned as a solution, else the

constraints of type (17d) and(17e) corresponding to some optimal solution
(xk, xk

0) ∈ P (y∗) are added to R-DR-BKP and solved again. Note that if
wTxk = wTx∗ then (xk, ⌊y∗⌋) is an alternative optimal to the current iter-
ation of R-DR-BKP, where ⌊y∗⌋ is obtained by setting y∗i to 0 if xk

i = 0 and
to y∗i otherwise. Feasibility is easy to see because (xk, xk

0) ∈ P (⌊y∗⌋) and we
check for optimality in the condition wTxk = wTx∗. Whether we use ⌊y∗⌋
or y∗ as subsidy to obtain xk does not matter to our original bilevel DR-BKP
problem. Every time R-DR-BKP is solved, upper bound of the problem is
updated to the obtained DONOR profit. The lower bound of the problem is
the DONOR profit obtained with the projects selected by RECIPIENT(y∗) and

18

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofit gets updated every time the inner problem is solved. The algorithm runs

till bounds are within some predefined gap.

Theorem 3. Algorithm 1 terminates at an optimal solution.

Proof. We enumerate the set of integer solutions in X , i.e, a subset of projects
in every iteration. And at every iteration, we enumerate a new subset of
projects and there are finitely many of them so the algorithm terminates
in finite time. We say a subsidy ỹ is feasible for a subset of projects x̃ if∑

i∈I(ci − ciỹi)x̃i ≤ Br and infeasible otherwise. The formulation looks for
a set of projects x∗ and corresponding subsidy y∗ that is better than any
subset of projects x̃ (with regards to the inner objective) if the subsidy y∗ is
feasible for x̃. The solution is then obviously bi-level feasible. In order to see
that it is also optimal to the DR-BKP, first observe that we used the parameter
ϵ in (17d) to avoid strict inequalities. Let us refer to the theoretical model
obtained from (EBKP) with (17d) replaced by the strict inequality

cTxk −
∑

i∈I
cix

k
i yi +M1t

k > Br ∀k ∈ {1, . . . , K} (18)

as (OBKP). The strict inequalities require us to search for a solution in an
open feasible set. So, we instead use (EBKP). This, however is not an issue
if ϵ is sufficiently small. Let ϵ1 be numerical tolerance used to solve (EBKP).
Clearly, we need ϵ > ϵ1, otherwise we can set the tk to 0 instead of the
actual value of 1 in (17d). The possible issue arises when we do not consider
a subsidy ỹ that is feasible for (OBKP) but infeasible for (EBKP). This
happens when ỹ is infeasible for some subsets of projects {x̄1, . . . , x̄κ} ⊆ X
but not by ϵ− ϵ1 amount, i.e., for each k = 1, . . . , κ

Br < cT x̄k −
∑

i∈I
cix̄

k
i ỹi < Br + ϵ− ϵ1 (19)

∑
cix̄iỹi + (Br − cT x̄k) < 0 <

∑
cix̄iỹi + (Br − cT x̄k) + ϵ− ϵ1 (20)

We first assume ϵ = n+1
n
ϵ1 and we will soon make the reasoning for this

assumption clear. Since this ensures ϵ > ϵ1, this is a valid assumption.
In addition, with a sufficiently small tolerance, we can assume ϵ < 1. We
can now take a component of ỹ that is non-zero, say i for which x̄k

i = 1
and decrease this value by ϵ−ϵ1

ci
. The idea behind this is that by doing this

19

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofreduction, we can make the infeasibility of the reduced ỹ for x̄k by at least

ϵ− ϵ1. Note that not all ỹi with x̄k
i = 1 can be strictly less than ϵ−ϵ1

ci
. If this

is true, then

0 ≤
∑

i∈I
cix̄

k
i ỹi <

∑

i∈I
ci
ϵ− ϵ1
ci

x̄k
i ≤

∑

i∈I

ϵ1
n
x̄k
i ≤ ϵ1

Since Br and cT x̄k are both integers, one cannot satisfy (20) unless ϵ >
1. Now we need to do reduction of components of ỹ for every subset in
{x̄1, . . . , x̄κ} and in the worst case, we could reduce every component of
ỹ. Let us call this reduced subsidy vector ŷ. For some (x̃, x̃0, ỹ) feasible
for (OBKP), we want to show that (x̃, x̃0, ŷ) is feasible for (EBKP). Now by
construction ŷ will be feasible for constraint (17d). Since we are only reducing
the value of ỹ to get ŷ, (17a), (17c) and (17e) are also feasible. In order to
show feasibility of (17b), we first observe our assumption of ϵ = n+1

n
ϵ1. From

feasibility of (x̃, x̃0, ỹ) to (OBKP), we have

cT x̃+ c0x̃0 ≤ Br + cT ỹ (21)

cT x̃+ c0x̃0 ≤ Br + cT ŷ + n(ϵ− ϵ1) (22)

cT x̃+ c0x̃0 ≤ Br + cT ŷ + ϵ1 (23)

5. Branching Algorithm

In Section 4, we have seen Enumeration Algorithm where two cuts are
added to the R-DR-BKP every time there is an optimal solution (y∗, (x∗, x0))
to R-DR-BKP but (x∗, x0) /∈ P (y∗). After the cuts are added, R-DR-BKP

is resolved again until the bi-level optimal solution is achieved. A mixed
integer program is solved iteratively and in addition we introduce two new
constraints and a binary variable at every iteration. An alternative approach
was proposed by [7], where (y∗, (x∗, x0)) is eliminated from search using a
branching rule. The branching rule proposed in [7] cannot be directly used
for our problem for two reasons. First they require that upper level variables
that are involved in the lower level are discrete. In addition they require
that the upper level variables do not have non-linear interaction with lower
level variable. Neither of these are true in our model. We provide a modified
branching rule that addresses these issues and handles the elimination of
(x∗, x0) /∈ P (y∗) from search space but none of the bi-level feasible solutions.

20

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

cT x̄−∑
i∈I cix̄iyi ≥ Br + ϵ

cT x̄−∑
i∈I cix̄iyi ≤ Br

vTx+ v0x0 −∑
i∈I c

′
ix̄iyi ≥ vT x̄+ v0

c0
(Br − cT x̄)

Incumbent(y∗,x∗, x∗0)
Solve RECIPIENT(y∗)→ x̄, x̄0

Node1 Node2

Figure 2: Branching from an incumbent solution

The pseudo-code of Branching Algorithm is given in Algorithm 2. The
branching rule is created only when an incumbent solution (y∗, (x∗, x∗

0))
is found. The usual rules based on bounds cannot be applied anymore.
First RECIPIENT(y∗) is solved which returns an optimal solution (x̄, x̄∗

0). If
vT x̄ + v0x̄0 = vTx∗ + v0x

∗
0, then we can prune the node as (y∗, (x∗, x∗

0))
is a bi-level feasible solution. Else the solution (y∗, (x̄, x̄0)) is appended
in a queue generated to store potential solutions that need to be branched
(called BrQueue) and then the solution (y∗, (x∗, x∗

0)) is rejected. Every time
the branching callback is activated and there is at least one solution in the
BrQueue, the solution with maximum DONOR profit is used to branch upon.
As shown in Figure 2, there are two branches generated. Node 1 is explored
where a valid subsidy y is such that x̄ is infeasible for RECIPIENT(y). Node
2 is explored where a valid solution (y,x, x0) is such that x̄ is feasible for
RECIPIENT(y) and vTx + v0x0 ≥ vT x̄ + v0x0(x̄,y). This idea is similar to
constraints (17d) and (17e) in MILP-DR-BKP.

21

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofAlgorithm 2: Branching approach for DR-BKP

Define a queue, BrQueue = [];
Solve (R-DR-BKP) and Let (x∗, x∗

0,y
∗) be its optimal solution;

Solve RECIPIENT(y∗) and let (x̄, x̄0) be its optimal solution;
Set k = 0, (xk, x̄k

0) = (x̄, x̄0), UB = wTx∗, LB = wTxk;

while (UB−LB)
LB

≤ gap do
if vTxk + v0x

k
0 > vTx∗ + v0x

∗
0 then

if wTxk = wTx∗ then
Return (xk, xk

0,y
∗)

else
Set LB = max(LB,wTxk);
Append (x̄, x̄0) in BrQueue ;
Reject solution (x∗, x∗

0,y
∗);

end

else
Return (x∗, x∗

0,y
∗)

end
if BrQueue has at least one solution set then

Select solution from BrQueue that yields maximum profit,
say (x̄, x̄0) ;
Make branches as per Figure 2

end
Solve (R-DR-BKP) and Let (x∗, x∗

0,y
∗) be its optimal solution;

Set UB = wTx∗;
Solve RECIPIENT(y∗) and Let (xk, xk

0) be the optimal solution;

end

6. Computational Experiments

To understand, analyze and compare the performance of both the pro-
posed algorithms, the computational study was performed on an HP com-
puter (Windows 10 Enterprise with 64-bit operating system, 3.19 GHz pro-
cessor and 8GB RAM). The algorithms were coded and solved in Python 3.8
using CPLEX 20.1.0.

6.1. Data Generation

Instance generation was guided by the real-world instance presented in [4].
There are 15 data sets generated1 as shown in Table 1 and 10 instances

22

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofClass1 Class2 Class3 DBudget CBudget

DataSet N1 P/C1 α1 N2 P/C2 α2 N3 P/C3 α3 γ (% of TotalHCProjectsCost)

1 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
2 20 1 [1,1] 20 0.7 [1,1] 20 0.5 [1,1] [1,1] 20 30
3 40 1 [1,1] 40 0.7 [1,1] 40 0.5 [1,1] [1,1] 20 30
4 100 1 [1,1] 40 0.7 [1,1] 40 0.5 [1,1] [1,1] 20 30
5 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 10 15
6 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 5 7
7 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [0.5,1] 20 30
8 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1.5] 20 30
9 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1.5,2] 20 30
10 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [2,2.5] 20 30
11 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [2.5,3] 20 30
12 3 1 [0.01,0.5] 24 1 [0.5,1.5] 3 1 [1.5,5] [1,1] 20 30
13 10 1 [1,10] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
14 10 1 [0.1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
15 10 1 [0.01,0.1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30

Table 1: Input Parameters for Data Generation

are generated and solved in every data set. The first data set has total 30
projects (10 in each of the three classes, as given in columns N1, N2 and
N3). Classes of the projects are made based on their profit to cost ratios
of RECIPIENT, as given in columns P/C1, P/C2 and P/C3. These division
of projects in classes were made to understand the allocations preferred by
DONOR and RECIPIENT. A parameter called α is used in each class here to
influence the leader or follower’s decisions. Profit of a project for the DONOR

is the profit of RECIPIENT for that project scaled by the parameter α1 in Class
1, α2 in Class 2 and α3 in Class 3. Both the DONOR and RECIPIENT budgets
are generated as percentage of total cost of healthcare projects (columns
DBudget and CBudget) to be considered for funds allocation. For the profit
values of the external project, a parameter called γ was used. Profit to cost
ratio of external project in each instance is the average of profit to cost ratios
of all healthcare projects in the instance scaled by an input parameter called
γ. The cost values of healthcare and external projects are random integers
in [5000, 10000] and [1000000, 2000000] respectively. In every instance, there
are (2n+1) variables and (n+2) constraints where n is the total number of
projects.

Each data set has perturbation in one of the parameters with respect to
the first data set. These step-by-step changes on the data sets were made to
understand the performance of the developed algorithms on every parame-
ter in the instances generated. For second, third and fourth data sets, the

1All data used in this work is available at https://github.com/ashwin-1983/DR-BKP/

23

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofnumber of projects have been increased to 20 projects, 40 projects and 100

projects in each class respectively. The donor and recipient budgets have
been decreased in data set 5 from 20% and 30% to 10% and 15% of total
cost of healthcare projects respectively, and further more for data set 6. The
γ value has been maintained to 1 for all other data sets except for data sets 7
to 11. The range of γ values has been increased gradually in these data sets.
In case of data set 12, a combination of changes in the parameters ‘number
of projects in each class’ and ‘range of α values’ have been made. In further
data sets, only the ranges of α values have been changed for Class 1 projects.
It will be useful to understand how the project allocations and/or time to
solve these instances are affected by divergence in priorities of DONOR and
RECIPIENT.

6.2. Results

We have conducted the computational experiments to compare perfor-
mance of both the algorithms at two different tolerance parameters (at ϵ =
1e − 2 and ϵ = 1e − 4) for set time limit of 3600 seconds. The value of big
M, M1, in constraint (17c) is set to the tightest possible value - the right
hand side of the constraint i.e. Br + 1 (Br is budget of the recipient). The
value of big M, M2, in constraint (17d) can be either set to right hand side
of the constraint as it changes in every iteration or set to a constant value of∑

vi + v0 which is not as tight as the former. To see the impact of the dif-
fering values on the performance of the algorithm, we solve all the instances
using both of these: (1) M2 = Mk

2 = vTxk + v0
c0
(Br − cTxk) ∀k ∈ 1, . . . K

and (2) M2 =
∑

vi + v0.
The minimum, average and maximum solution times of both the algo-

rithms for solving the 10 instances in each of the data sets are given in
Table 2 when ϵ = 1e − 2 and Table 3 when ϵ = 1e − 4. These are the data
sets that were solved within the set time limit. In cases of data sets 14 and
15, none of the instances were solved to optimality within the set time limit.
Their minimum, average and maximum solution gaps at termination of the
algorithms are given in Table 4 when ϵ = 1e−2 and Table 5 when ϵ = 1e−4.

It can be observed from the result tables that as the number of projects
increases and hence the number of variables in data sets 2, 3 and 4 compared
to data set 1, the average solution time increases for both the algorithms
in case of lower tolerance parameter. However in case of higher tolerance
parameter, both the algorithms take lesser time to solve. From Data Set 1,
5 and 6, we can observe that the algorithms take lesser time to solve if the

24

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofDataSet

BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max

1 0.238 0.348 0.434 0.101 0.157 0.348 0.088 0.171 0.251
2 0.047 0.325 0.916 0.062 0.108 0.341 0.047 0.081 0.203
3 0.049 0.309 0.454 0.062 0.142 0.214 0.080 0.183 0.430
4 0.066 0.458 1.036 0.078 0.166 0.325 0.078 0.168 0.258
5 0.062 0.096 0.133 0.056 0.069 0.094 0.062 0.074 0.093
6 0.078 0.138 0.250 0.061 0.086 0.181 0.061 0.122 0.291
7 0.045 0.085 0.166 0.042 0.084 0.184 0.048 0.118 0.241
8 0.167 2.416 18.089 0.096 14.540 102.491 0.131 12.712 95.759
9 2.116 17.089 43.792 4.100 21.041 59.338 4.918 19.015 56.586
10 1.247 28.504 74.147 6.780 165.973 250.540 6.654 167.280 277.944
11 8.369 62.662 149.575 44.327 114.624 200.056 31.662 131.119 246.953
12 0.057 0.074 0.125 0.047 0.069 0.094 0.047 0.072 0.094
13 0.047 0.192 0.345 0.055 0.103 0.212 0.062 0.110 0.175

Table 2: Average Solution Time (in seconds) for Data Sets that are solved within Time
Limit (Epsilon = 1e-2)

DataSet
BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max

1 0.273 0.599 1.665 0.109 0.448 1.493 0.109 0.445 1.666
2 0.266 0.639 0.994 0.156 0.351 1.366 0.173 0.329 0.830
3 0.328 2.203 5.471 0.270 2.540 10.742 0.283 2.390 11.762
4 5.625 13.370 37.202 0.368 65.958 187.436 0.480 67.152 185.231
5 0.067 0.128 0.165 0.060 0.091 0.199 0.058 0.088 0.217
6 0.095 0.158 0.266 0.057 0.079 0.099 0.063 0.088 0.187
7 0.104 0.289 0.875 0.052 0.222 1.251 0.047 0.353 2.404
8 0.453 10.961 47.005 0.105 35.436 145.728 0.109 26.219 103.939
9 4.601 22.661 49.743 5.316 32.232 111.013 5.408 28.578 92.281
10 2.009 36.293 90.415 8.335 200.500 301.985 12.251 205.050 302.571
11 10.963 72.226 156.519 50.653 128.790 283.821 43.976 147.279 295.884
12 0.053 0.085 0.141 0.040 0.076 0.142 0.047 0.065 0.078
13 0.329 0.574 1.050 0.101 0.250 0.640 0.099 0.238 0.610

Table 3: Average Solution Time (in seconds) for Data Sets that are solved within Time
Limit (Epsilon = 1e-4)

DataSet
BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max

14 6.7% 15.4% 31.2% 5.4% 19.5% 33.5% 7.0% 19.5% 34.8%
15 49.4% 65.6% 81.4% 50.3% 87.3% 109.2% 50.3% 87.3% 109.2%

Table 4: Average Solution Gaps for Data Sets that are not solved within Time Limit
(Epsilon = 1e-2)

25

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofDataSet

BranchingAlgo EnumerationAlgo

Min Avg Max
bigM2 = Mk

2 bigM2 = M2

Min Avg Max Min Avg Max

14 8.8% 18.4% 31.2% 3.4% 19.5% 34.8% 5.0% 19.7% 34.8%
15 74.7% 87.7% 101.5% 76.8% 92.8% 109.2% 76.8% 92.8% 109.2%

Table 5: Average Solution Gaps for Data Sets that are not solved within Time Limit
(Epsilon = 1e-4)

budgets are lower for similar sized instances. When parameter γ is increased
(data sets 8 to 11 as compared to data sets 1 and 7), i.e. external project
has higher profit and start competing with the healthcare projects for the
RECIPIENT budget, Branching Algorithm performs significantly better than
the Enumeration Algorithm for both tolerance limits.

Another complexity of healthcare funds allocation problem is the diver-
gence between valuations of projects by DONOR and RECIPIENT. If the α value
increases above 1 in either of the three classes of projects, the DONOR values
her projects more than the RECIPIENT does in that particular class. Else if the
α value is below 1, the DONOR values her projects lesser than the RECIPIENT.
As seen in data sets 13 to 15, the range of α values for class 1 are decreased
gradually. In data set 13 where the DONOR values her projects more than
the RECIPIENT, all instances are solved using both the algorithms very fast.
However, none of the instances from data sets 14 and 15 are solved where the
DONOR values her projects lesser than the RECIPIENT (refer to Table 4 and
Table 5).

While comparing the performance of enumeration algorithm for both the
mentioned big M values, there is hardly any difference observed in the so-
lution times of all the data sets except for data sets 7 to 11. For these
particular data sets, the γ value is increased gradually. However, since the
solution times are not consistently lower in either for either of the big M
values, we can keep this open for further research.

It can be observed from these results that there is evidence to believe that
the Branching Algorithm performs better when the instances are generated
with more complexity where there is a greater discrepancy in the valuation
of the projects by the two players.

26

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of7. Conclusion

We carried out a complexity study and computational experiments on
DR-BKP that was introduced in [4]. We first showed that the problem is
well-posed. We then extended and adapted the algorithms proposed for
discrete bi-level problems to DR-BKP and proved its convergence. We provided
some complexity results for the problem. A predominant issue of having
continuous upper level decision variables in lower level constraints is the non-
compact feasible set. This complicates both proving existence of a solution
and convergence of algorithms. We have made a simple observation that
existence of a solution can be guaranteed if the upper level objective function
is discrete, involving only the lower level variables, and if the solution set is
finite. This is generalisable and goes beyond DR-BKP. The convergence of
the known enumeration schemes tend to work for our problem despite the
continuous upper level variables. The idea behind these enumeration schemes
is to cutoff the open feasible set at some threshold and restrict the search
space to a closed set. This is easier to do when we have integer upper
level variables. Despite having continuous upper level variables, we showed
that these enumeration schemes work for our problem for sufficiently small
thresholds. We showed this by constructing an equivalent solution in the
closed set for any valid solution cut off. This is dependent on the problem
structure and the generalisability of this procedure is not clear.

A number of questions remain open. We explained the similarity between
our model and the one presented by Dempe in [17]. The authors have shown
that problem has a solution with the inclusion of continuous variable in the
upper level objective. A similar extension to our problem is open. Our
current complexity proof does not rule out a polynomial solution for unary
encoding. A pseudo-polynomial algorithm for this problem (if one exists)
would be a valuable practical tool. We have only provided evidence for
Σ2

p-hardness. A direct reduction from a Σ2
p-complete problem to DR-BKP is

open. We will look into extending our ideas to design algorithms that work
without the need for assumption (11). At the moment, the external project
costs are linear. We want to look at models where the external project costs
are concave.

27

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
ofReferences

[1] J. Bracken and J. T. McGill, “Mathematical programs with optimization
problems in the constraints,” Operations Research, vol. 21, no. 1, pp. 37–
44, 1973.

[2] T. Kleinert, M. Labbé, I. Ljubić, and M. Schmidt, “A survey on mixed-
integer programming techniques in bilevel optimization,” EURO Journal
on Computational Optimization, vol. 9, 2021.

[3] U. Nations, “We can end poverty: Millenium development goals and
beyond,” 2015.

[4] A. Morton, A. Arulselvan, and R. Thomas, “Allocation rules for global
donors,” Journal of Health Economics, vol. 58, pp. 67 – 75, 2018.

[5] A. Caprara, M. Carvalho, A. Lodi, and G. J. Woeginger, “A study on
the computational complexity of the bilevel knapsack problem,” SIAM
Journal on Optimization, vol. 24, no. 2, pp. 823–838, 2014.

[6] L. Lozano and J. C. Smith, “A value-function-based exact approach for
the bilevel mixed-integer programming problem,” Operations Research,
vol. 65, no. 3, pp. 768–786, 2017.

[7] P. Xu and L. Wang, “An exact algorithm for the bilevel mixed inte-
ger linear programming problem under three simplifying assumptions,”
Computers & Operations Research, vol. 41, pp. 309 – 318, 2014.

[8] L. Vicente, G. Savard, and J. Judice, “Discrete linear bilevel program-
ming problem,” Journal of optimization theory and applications, vol. 89,
no. 3, pp. 597–614, 1996.

[9] M. Köppe, M. Queyranne, and C. T. Ryan, “Parametric integer pro-
gramming algorithm for bilevel mixed integer programs,” Journal of
Optimization Theory and Applications, vol. 146, p. 137–150, Feb 2010.

[10] I. Constantin and M. Florian, “Optimizing frequencies in a transit net-
work: a nonlinear bi-level programming approach,” International Trans-
actions in Operational Research, vol. 2, no. 2, pp. 149–164, 1995.

28

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[11] J. Fortuny-Amat and B. McCarl, “A representation and economic in-

terpretation of a two-level programming problem,” The Journal of the
Operational Research Society, vol. 32, no. 9, pp. 783–792, 1981.

[12] J.-P. Côté, P. Marcotte, and G. Savard, “A bilevel modelling approach to
pricing and fare optimisation in the airline industry,” Journal of Revenue
and Pricing Management, vol. 2, pp. 23–36, 2003.

[13] R. G. Jeroslow, “The polynomial hierarchy and a simple model for com-
petitive analysis,” Mathematical Programming, vol. 32, pp. 146–164,
1985.

[14] B. Colson, P. Marcotte, and G. Savard, “Bilevel programming: A sur-
vey,” 4OR, vol. 3, pp. 87–107, 06 2005.

[15] A. G. Mersha and S. Dempe, “Linear bilevel programming with upper
level constraints depending on the lower level solution,” Applied Math-
ematics and Computation, vol. 180, no. 1, pp. 247–254, 2006.

[16] S. Dempe and A. Zemkoho, eds., Bilevel Optimization. No. 978-3-
030-52119-6 in Springer Optimization and Its Applications, Springer,
September 2020.

[17] S. Dempe, “Discrete bilevel optimization problems,” Technical Re-
port D-04109, Institut fur Wirtschaftsinformatik, Universitat Leipzig,
Leipzig, Germany, 2001.

[18] D. Fanghänel and S. Dempe, “Bilevel programming with discrete lower
level problems,” Optimization, vol. 58, no. 8, pp. 1029–1047, 2009.

[19] J. T. Moore and J. F. Bard, “The mixed integer linear bilevel program-
ming problem,” Operations Research, vol. 38, no. 5, pp. 911–921, 1990.

[20] T. A. Edmunds and J. F. Bard, “An algorithm for the mixed-integer
nonlinear bilevel programming problem,” Annals of operations research,
vol. 34, no. 1, pp. 149–162, 1992.

[21] S. T. DeNegre and T. K. Ralphs, “A branch-and-cut algorithm for in-
teger bilevel linear programs,” Book: Operations Research and Cyber-
Infrastructure, pp. 65–78, 2009.

29

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[22] S. Tahernejad, T. K. Ralphs, and S. DeNegre, “A branch-and-cut al-

gorithm for mixed integer bilevel linear optimization problems and its
implementation,” 2017.

[23] L. Wang and P. Xu, “The watermelon algorithm for the bilevel integer
linear programming problem,” SIAM Journal on Optimization, vol. 27,
no. 3, pp. 1403–1430, 2017.

[24] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl, “On the use of in-
tersection cuts for bilevel optimization,” Mathematical Programming,
vol. 172, p. 77–103, 2018.

[25] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl, “A new general-
purpose algorithm for mixed-integer bilevel linear programs,” Operations
Research, vol. 65, no. 6, pp. 1615–1637, 2017.

[26] S. Liu, M. Wang, N. Kong, and X. Hu, “An enhanced branch-and-bound
algorithm for bilevel integer linear programming,” European Journal of
Operational Research, vol. 291, no. 2, pp. 661–679, 2021.

[27] M. Carvalho, Computation of equilibria on integer programming games.
PhD thesis, 04 2016.

[28] S. Dempe and K. Richter, “Bilevel programming with knapsack con-
straints,” Central European Journal of Operations Research, vol. 8, no. 2,
pp. 93–107, 2000.

[29] L. Brotcorne, S. Hanafi, and R. Mansi, “A dynamic programming algo-
rithm for the bilevel knapsack problem,” Operations Research Letters,
vol. 37, no. 3, pp. 215 – 218, 2009.

[30] R. Mansi, C. Alves, J. Carvalho, and S. Hanafi, “An exact algorithm for
bilevel 0-1 knapsack problems,” Mathematical Problems in Engineering,
vol. 2012, 02 2012.

[31] L. Brotcorne, S. Hanafi, and R. Mansi, “One-level reformulation of the
bilevel knapsack problem using dynamic programming,” Discrete Opti-
mization, vol. 10, no. 1, pp. 1 – 10, 2013.

[32] S. Denegre, Interdiction and Discrete Bilevel Linear Programming. PhD
thesis, USA, 2011.

30

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of[33] A. Caprara, M. Carvalho, A. Lodi, and G. J. Woeginger, “Bilevel knap-

sack with interdiction constraints,” INFORMS Journal on Computing,
vol. 28, no. 2, pp. 319–333, 2016.

[34] F. Della Croce and R. Scatamacchia, “An exact approach for the bilevel
knapsack problem with interdiction constraints and extensions,” Math-
ematical Programming, vol. 183, pp. 249–281, 2020.

[35] F. Furini, M. Iori, S. Martello, and M. Yagiura, “Heuristic and exact al-
gorithms for the interval min–max regret knapsack problem,” INFORMS
J. Comput., vol. 27, p. 392–405, 2015.

[36] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl, “Interdiction games
and monotonicity, with application to knapsack problems,” INFORMS
Journal on Computing, vol. 31, no. 2, pp. 390–410, 2019.

[37] P. Briest, L. Gualà, M. Hoefer, and C. Ventre, “On stackelberg pricing
with computationally bounded customers,” Networks, vol. 60, no. 1,
pp. 31–44, 2012.

[38] L. Chen and G. Zhang, “Approximation algorithms for a bi-level knap-
sack problem,” Theoretical Computer Science, vol. 497, pp. 1–12, 2013.

[39] X. Qiu and W. Kern, “Improved approximation algorithms for a bilevel
knapsack problem,” Theoretical computer science, vol. 595, pp. 120–129,
2015.

[40] U. Pferschy, G. Nicosia, and A. Pacifici, “A stackelberg knapsack game
with weight control,” Theoretical Computer Science, vol. 799, pp. 149–
159, 2019.

[41] U. Pferschy, G. Nicosia, A. Pacifici, and J. Schauer, “On the stackelberg
knapsack game,” European Journal of Operational Research, vol. 291,
no. 1, pp. 18–31, 2021.

[42] D. S. Johnson and K. A. Niemi, “On knapsacks, partitions, and a new
dynamic programming technique for trees,” Mathematics of Operations
Research, vol. 8, no. 1, pp. 1–14, 1983.

31

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

 Healthcare funding allocaton roolee eodelled using oi-level o teiiaton fraeework

 Bi-level Kna sack Proolee with contnuous variaoles in u er level and ooth contnuous and

discrete variaoles in lower level

 Evidence for Σ2
p
-hardness of the Bi-level Kna sack Proolee

 Coe arison of two fnitell converging algorithes for solving Bi-level Kna sack Proolees

Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

Shraddha Ghatkar: Methodology, Softwae, wtw cuawtoo, Aowlysis, Waitog - oaigiowl dawf,
Waitog - aeviet & editog. Ashwin Arulselvan: Cooceptuwlizwtoo, Methodology, Vwlidwtoo,
Waitog - aeviet & editog, Supeavisioo, Fuodiog wcuuisitoo. Alec Morton: Methodology,
Vwlidwtoo, Waitog - aeviet & editog, Supeavisioo, Fuodiog wcuuisitoo.

