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Abstract—The polynomial power method repeatedly multiplies
a polynomial vector by a para-Hermitian matrix containing
spectrally majorised eigenvalue to estimate the dominant eigen-
vector corresponding the dominant eigenvalue. To limit the
order of the resulting vector, truncation is performed in each
iteration. This paper extends the polynomial power method from
para-Hermitian matrices to a general polynomial matrix for
determining its dominant left- and right-singular vectors and the
corresponding singular value. The proposed extension assumes
that the dominant singular is positive on the unit circle. The
resulting algorithm is compared with a state-of-the-art PSVD al-
gorithm and provides better accuracy with reduced computation
time and lower approximation orders for the decomposition.

I. INTRODUCTION

The algebra of polynomial matrices has proven to be

useful in solving a variety of problems related to broadband

sensor arrays, particularly through the application of two

main operations: the polynomial eigenvalue decomposition

(PEVD) [1–8] and the polynomial singular value decom-

position (PSVD) [9–11]. The PEVD is restricted to para-

Hermitian matrices only, where the matrix is equal to its

transpose-conjugate time-reversed version [12]. In contrast,

the PSVD can be applied to any polynomial matrix. Thus,

PSVD algorithms find applications in a variety of problems

such as MIMO design [13, 14], paraunitary filter design [7],

or beamforming [15].

Typically, the PSVD is calculated using two PEVDs [10]

or via a polynomial QR decomposition (PQRD) [9], both

of which are computationally expensive. However, a ded-

icated PSVD algorithm exists which is the generalization

of the second-order sequential best rotation (SBR2)[4], and

it exploits the Kogbetliantz transformation[16]. This method

iteratively transfers the energy onto the diagonal. While [16]

performs only an approximate diagonalization, its perfor-

mance is still better than that achieved via PEVD or PQRD

approaches. An SVD with analytic factors exists [17, 18],

such that there are unique singular values that are real on

the unit circle, and left- and right-singular vectors that share a

common ambiguity w.r.t. arbitrary allpass functions. The above

algorithm ignore this coupled ambiguity, and hence typically

yield complex-valued approximations of the singular values.

In order to overcome the deficiencies of the above PSVD

algorithms, in this document, we extend the polynomial power

method [19] from a para-Hermitian matrix to a general
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polynomial matrix for the computation of the dominant left-

and right-singular vector and the singular value. The poly-

nomial power method is an extension of the ordinary power

method [20] to para-Hermitian matrices where a polynomial

vector is repeatedly multiplied by a para-Hermitian matrix,

and the resulting vector converges to the dominant eigenvector

provided that the matrix is spectrally majorised. Similar to the

power method, the generalised polynomial power method can

be coupled with deflation in order to compute an entire PSVD.

II. POLYNOMIAL SINGULAR VALUE DECOMPOSITION

For an analytic, non-multiplexed A(z) ∈ C
M×N ,M ≥ N ,

the analytic SVD exists [18]

A(z) = U(z)Σ(z)V P(z) , (1)

such that Σ(z) = diag{σ1(z), . . . , σN (z)} ∈ C
M×N con-

tains the analytic singular values and the matrices U(z) ∈
C

M×M , V (z) ∈ C
N×N are paraunitary i.e. U(z)UP(z) =

I,V (z)V P(z) = I, and contains the left- and right analytic

singular vectors, respectively. Note that the parahermitian

operation, {·}P, involves a Hermitian transposition and time

reversal of its arguments, such that e.g. UP(z) = (U(1/z∗)H.

Unlike singular values of constant matrices, which must be

real and positive semi-definite [20], the analytic singular values

evaluated on unit circle for z = ejΩ must be permitted to take

on negative values. This is similarly known for matrices that

depend analytically on a continuous, real parameter on some

interval [21, 22].

Generally, the analytic singular values of a matrix A(z)
may intersect. However, if A(z) is estimated from finite data

e.g. via system identification [23], it will have spectrally

majorised singular values

σi(e
jΩ) ≥ σi+1(e

jΩ) ∀ Ω, i = 1, . . . , (N − 1) (2)

with probability one [23]. We therefore assume the property

(2) to hold for the remainder of this paper.

III. POLYNOMIAL POWER METHOD FOR PARAHERMITIAN

MATRIX

The underlying idea is to extend the polynomial power

method, proposed in [19] for para-Hermitian matrices, to

general polynomial matrices for the extraction of the dominant

singular vectors and singular value. Thus this section provides

a brief summary of the polynomial power method. We denote

a para-Hermitian matrix by R(z), which must therefore must

satisfy RP(z) = R(z) [12].
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A. Overall Rationale

This method is an extension of the ordinary power itera-

tion [20] from Hermitian matrices to para-Hermitian matrices

where an arbitrary polynomial vector x(0)(z) is repeatedly

multiplied with a para-Hermitian matrix R(z) to obtain a

sequence of polynomial vectors. After k iterations, we have

x(k)(z) = R(z)x(k−1)(z) = Rk(z)x(0)(z) . (3)

In each iteration, x(k)(z) has to be normalized, such that

x
(k)
norm(z) satisfies x

(k),P
norm(z)x

(k)
norm(z) = 1. This normalization

can be performed on the unit-circle, due to analyticity, with

ease. To limit the order growth of x(k)(z), truncation can be

applied. This can be achieved by either limiting the order to

the estimated support of the eigenvector obtained from [24] by

shifted-truncation [25], or removing any trailing coefficients

below a small threshold. The iterations are stopped once a

suitable defined difference between consecutive polynomial

vectors falls below some threshold. The overall analysis that

connects the polynomial power method with the ordinary

power method is given next.

B. Polynomial Power Method Analysis

The initial x(0)(z) can be represented as a linear combina-

tion of the eigenvectors of R(z)

x(0)(z) = Q(z)c(z)

= c1(z)q1(z) + · · ·+ cM (z)qM (z) , (4)

where qm(z), m = 1 . . . ,M , is the mth analytic eigenvector

of R(z) and c(z) = [c1(z), . . . , cM ]T ∈ C
M is a vector of

analytic weighting factors. Due to analyticity, we can restrict

the analysis to the unit circle. Therefore, z can be substituted

with ejΩ to evaluate and iterate on the unit circle. Combining

(4) and (3) with the fact that R(z) has spectrally-majorised

eigenvalues due to being estimated from finite data, we have

x(k)(ejΩ) = λk
1(e

jΩ)

[

c1(e
jΩ)q1(e

jΩ)

+

M
∑

m=2

cm(ejΩ)

(

λm(ejΩ)

λ1(ejΩ)

)k

qm(ejΩ)

]

. (5)

The summation term will converge towards zero for k →∞.

This permits us to re-write (5) as

x(k)(ejΩ) = lim
k→∞

λk
1(e

jΩ)c1(e
jΩ)q1(e

jΩ) . (6)

The term x(k)(ejΩ) in (6) is normalized in each iteration

such that it has unit norm on the unit circle. This normalisation

is carried out in the DFT domain. If c1(e
jΩ) possesses any

spectral nulls for some Ω, the resulting division by zero in the

normalisation process can be avoided by regularization [19].

For a sufficiently large k, the normalized vectors become

x(k)
norm(e

jΩ) = q̂1(z) = g1(e
jΩ)q1(e

jΩ) , (7)

where g1(e
jΩ) = c1(e

jΩ)/|c1(ejΩ)| is an allpass filter. This all-

pass filter generalises the phase ambiguity of the eigenvectors

of a standard matrix.

Algorithm 1: PPM Algorithm [19]

Input: R(z), ǫ, kmax

Output: q̂1(z), λ̂1(z)
x(0)(z) ∈ C

M , k ← 0, γ =∞;

x̃(0)
norm(z)← normalise & order limit x(0)(z) ;

while γ > ǫ & k < kmax do

k ← k + 1;

x(k)(z)← R(z)x̃(k−1)
norm (z) ;

x
(k)
norm(z)← normalisation x(k)(z);

x̃(k)
norm(z)← order limitation of x

(k)
norm(z);

update γ
end

q̂1(z) = x̃(k)
norm(z);

λ̂1(z) = x̃(k),P
norm(z)R(z)x̃(k)

norm(z);

The stopping criterion for the polynomial power method is

to measure the overall deviation

γ =
1

2π

∫ π

−π

|α(Ω)|2dΩ (8)

of the Hermitan angle α(Ω), defined as

α(Ω) = ∠{x(k)
norm(e

jΩ),x(k−1)
norm (ejΩ)} =

acos

(

|x(k),H
norm (ejΩ)x

(k−1)
norm (ejΩ)|

‖x(k)
norm(ejΩ)‖2 · ‖x(k−1)

norm (ejΩ)‖2

)

.

Once γ falls below a threshold ǫ, the process can be ter-

minated. The corresponding dominant eigenvalue can be ex-

tracted as

λ̂1(z) = x̃(k),P
norm(z)R(z)x̃(k)

norm(z) . (9)

This constitutes the polynomial version of the power method

for spectrally majorised matrices, with the overall procedure

summarised in Algorithm 1. For further details, please refer

to [19].

IV. ORDINARY GENERALISED POWER METHOD

We know that the conventional reduced SVD of A ∈
C

M×N with M ≥ N , given as A = UΛVH with

U = [u1, . . . ,uN ] ∈ C
M×N , Σ ∈ R

N×N and V =
[v1, . . . ,vN ] ∈ C

N×N , can be obtained through the ordinary

power method [20]. In order to determine the right-singular

vectors, the power method can be applied to AHA ∈ C
N×N

as its eigenvectors are in fact the right-singular vectors of A.

After v̂i = ejφvi, i = 1, . . . , N has been found, the singular

values and left-singular vectors can be obtained via

σi = ||Av̂i||2,⇒ ûi =
Avi

σi
= ejφui, i = 1, . . . ,M , (10)

where ejφ is an arbitrary phase shift. Note that the phase

ambiguity of the left- and right-singular vectors is coupled.

Alternatively, the left-singular vector can be determined by

applying the power method to AAH and then the singular

value can be computed later. Since left- and right-singular
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vetors are determined independently, their phase ambiguities

are no longer coupled. Hence, if û1 = ejαu1 and v̂1 = ejφv1,

the resulting estimated singular value will be σ̂1 = ûH
i Av̂1 =

e−jασ1e
jφ i.e. it will not in general be real-valued. However,

real-valuedness, and therefore phase coupling of the left- and

right-singular vectors, can be achieved buy adjusting the phase

of σ̂i. Such a procedure may not be possible in the case of

polynomial matrices as will become clear in the following

section.

This shows that the power iteration is not restricted to

Hermitian matrices, but can indeed be applied to any matrix.

This motivates us to combine the above concept with the

already established polynomial power iterationsw, however.

The aim is to drop the restrictition to para-Hermitian matrices,

such that the dominant singular vectors may be computed in

first instance, with the option of later performing a full SVD

of a polynomial matrix through deflation.

V. GENERALIZED POLYNOMIAL POWER METHOD

We now aim to extend the polynomial power method re-

viewed in Sec. III to generalise the SVD approach summarised

in Sec. IV to the case of a polynomial matrix A(z) : C →
C

M×N .

A. Polynomial Iterations Analysis

For an initial x(0)(z) = V (z)c(z), the polynomial iteration

can be applied to a para-Hermitian matrix AP(z)A(z) where

after k iterations, with z substituted by ejΩ , we obtain

x(k)(ejΩ) = AH(ejΩ)A(ejΩ)x(k−1)(ejΩ)

=

N
∑

n=1

vn(e
jΩ)σ2k

n (ejΩ)vH
m(ejΩ)V (ejΩ)c(ejΩ) ,

(11)

which can be re-written as

x(k)(ejΩ) = σ2k
1 (ejΩ)

[

c1(e
jΩ)v1(e

jΩ)

+

M
∑

m=2

cm(ejΩ)

(

σm(ejΩ)

σ1(ejΩ)

)2k

vm(ejΩ)

]

. (12)

Since the singular values of A(z) are spectrally-majorised, so

are the eigenvalues of the para-Hermitian matrix AP(z)A(z)
i.e. σ2

n(e
jΩ) ≥ σ2

n+1(e
jΩ) n = 1, . . . , N − 1. Hence x(k)(ejΩ)

converges to a scaled version of v1(e
jΩ) for sufficiently large

k similar to (6). Similarly, after normalization, we have

x(k)
norm(e

jΩ) = v̂1(e
jΩ) = g1(e

jΩ)v1(e
jΩ) ∀ Ω , (13)

where g1(z) is an allpass filter. Similar to the power method for

para-Hermitian matrix, this generalised approach also includes

truncation and normalization in each iteration which can be

found in the original algorithm reported in [19]. Similarly,

the problem of singularities in c1(e
jΩ) can be handled either

through regularization a or modification to the initialization if

a spectral zero is encountered.

The estimation of the dominant singular value and the

corresponding left-singular vector is not straightforward and

needs careful consideration. Assuming, we follow the first

method described in Sec. IV in (10), which is to determine

the singular value and then the left-singular vector. For this

method, the frequency dependent version for extracting the

dominant singular value will be

σ̂m(ejΩ) = ||Am(ejΩ)v̂m(ejΩ)||2, m = 1, . . . , N , (14)

which forces σm(ejΩ) to be positive ∀ Ω due to the norm

operator whereas the theory behind the analytic decomposition

existence shows that the singular value can be negative on

the unit-circle [21, 22]. Forcing the singular values to be

positive violates this condition, thus with this method, the

obtained decomposition might differ from the decomposition

given in [18]. Alternatively, if the matrix A(z) is known to

be positive semi-definite, the singular values are guaranteed

to be real and positive and so this method gives the correct

decomposition. Once the singular value is obtained with an

acceptable accuracy, which we discuss further below, via (14)

the dominant left-singular vector can be obtained as

û1(e
jΩ) = A(ejΩ)v̂1(e

jΩ)/σ̂1(e
jΩ) = g1(e

jΩ)u1(e
jΩ) .

(15)

The allpass factor g1(e
jΩ) is the same as that of the right-

singular vector, such that their ambiguities are coupled. This

coupling results in the singular value being real-valued on the

unit-circle. Both (14) and (15) can be implemented in DFT

domain. Adjusting the size of this DFT is discussed further

below.

The second method, described in Sec. IV, determines the

left-singular vector by applying the polynomial power method

to A(z)AP(z) and then computes the singular value as

σ̂1(z) = ûP
1(z)A(z)v̂1(z). This method does not impose

the condition of singular value being positive on the unit

circle, and so it can allow the analytic decomposition given in

(1) to be achievable for any A(z). However, to retain real-

valuedness for the singular values on the unit circle, the

left- and right-singular vector have to have a common allpass

factor. Thus if both the left- and right-singular vectors are

independently extracted by applying the polynomial power

method to AP(z)A(z) and A(z)AP(z), respectively, the all-

pass factor in û1(z) and v̂1(z) will, in general, not be be

coupled. Hence, the second method may not be desireable to

be used unless a common phase shift can be found. Another

reason for avoiding this method is invoking two polynomial

power methods is computationally more expensive compared

to the first approach.

To optimize the computational efficiency of the first method,

we estimate the right singular vector using the polynomial

power method in case of M ≥ N . For the case M ≤ N , all

of the above approaches can used instead to factorise AP(z).

B. Sufficient DFT Size

1) Dominant Singular Value: Once v1(z) is determined

with Algorithm 1, the singular value can be determined via

(14) in the DFT domain. To determine a sufficient DFT size,
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time-domain aliasing can be utilized [2]. Thus (14) can be

evaluated at increasing DFT sizes until

ξσ̂ =
∑

τ

|σ̂(K)
1 [τ ]− σ̂

(K/2)
1 [τ ]|2

|σ̂(K)
1 [τ ]|2

, (16)

where σ̂
(K)
1 [τ ] represents the time-domain equivalent of (14)

obtained with a K−point inverse DFT, until ξσ̂ falls below

a certain low threshold ε1. A small value of ξσ̂ indicates

that K/2 can be considered sufficient for approximate the

dominant singular. If v̂i(z) is extracted with satisfactory

accuracy, a DFT size of K = O{A(z)v̂i(z)} + 1 should

generally suffice, where O{·} measures the polynomial order

of its argument.

2) Left Singular Vector: Similarly, to determine a sufficient

DFT size for (15), time-domain aliasing may be captured via

the error w.r.t. normality in the time-domain as

ξu =
∑

τ

|ûH
1 [−τ ] ∗ û1[τ ]− δ[τ ]|22, τ ∈ Z . (17)

A similar criterion has been utilised for the DFT size in [3].

There, it is shown as a necessary criterion; while sufficiency

has not been proven, in practise is has generally been shown

to suffice in all simulations.

It follows that for a sufficient DFT size ξu will be small

since û1[τ ] should be normal. Thus (15) is implemented

at increasing DFT size until ξu falls below a some given

threshold εu.

VI. SIMULATIONS AND RESULTS

A. Numerical Example

To demonstrate the potential of the generalized polynomial

power method, we assume a simple case of A(z) where we

know the ground truth factorisation according to (1). For these

factors, Σ(z) ∈ C
3×2 contains

σ1(z) =
1

2
z + 4 +

1

2
z−1, σ2(z) =

1

4
z + 1 +

1

4
z−1 , (18)

which are spectrally majorised. The left-singular vector are

constructed via elementary paraunitary operation given as [12]

U(z) =

2
∏

i=1

{I− (1− z−1)eie
H
i )} , (19)

where ei=1,2 = [1, 1,∓1]T/
√

(3) ∈ C
3 are unit-norm vectors.

The right-singular vectors in V (z) ∈ C
2×2 of order 2 are

generated by the same approach with e1 = [1,−1]T/
√
2 and

e2 = [−1, 0]T. The polynomial matrix A(z) is then defined

as U(z)Σ(z)V P(z).
Algorithm 1 is executed with ǫ = 10−12, kmax =

103, R(z) = AP(z)A(z) and x(0)(z) = 1. The truncation

method employed is the order limitation [19] where the

order of x(k)(z) post-normalisation is limited to the estimated

support obtained from [24]. Algorithm 1 converges in 44
iterations resulting in ξv = 1.4 × 10−11. Once the left-

singular vector is esimated, the corresponding singular value

is estimated via (14). With K = 16, the time-domain aliasing

Fig. 1. Polynomial Power method based estimated dominant singular value
coefficients for the numerical example.

Fig. 2. GSBR2 based estimated dominant singular value coefficients for the
numerical example.

ξλ = 8× 10−28. The trailing coefficients of σ̂1[τ ] are truncated

on either side of τ = 0 via a threshold of 10−10. This results

in order of 6 whereas the ground-truth singular value has an

order of 2. The coefficients are illustrated in Fig. 1 where

the coefficients at τ = 0,±1 exactly match the ground-truth

coefficients in (18), whereas the coefficients at τ = ±2,±3 are

smaller than 10−5. The normalized squared difference between

the estimated and the ground-truth singular value, which can

be defined similar to (16) as

ξσ =
∑

τ

|σ1[τ ]− σ̂1[τ ]|2
|σ1[τ ]|2

, (20)

is 3.5× 10−12. The corresponding left-singular vector is then

obtained from (15) with a DFT of size K = 16. Thereafter, the

order is limited by a shifted-truncation to 3, which achieves

a metric of ξv = 9× 10−12.

The GSBR2 is executed with µPU = 10−5, ǫ = 10−5 and

µPH = 10−5 for 1000 iterations and results in ξv = 9.6×10−5,

ξu = 1.5×10−5 and ξλ = 2.7×10−2. The dominant singular

value estimated with GSBR2 has order 8 whose coefficients

are illustrated in Fig. 2. It is evident that the estimated singular

value is neither conjugate symmetric and nor the coefficients

match the ground truth coefficients except at τ = 0 where

σ̂[0] = 3.95 ≈ 4. This loss of conjugate symmetry may be the

cause of large value of ξλ.

B. Ensemble Test

In a more extensive test, we evaluate the proposed method

against the Kogbetliantz transformation-based method [11]

which we refer to as the generalised second order sequential

best rotation (GSBR2) algorithm via an ensemble consisting of

500 randomised instantiations of A(z) ∈ C
3×2 such that each

instance has O{U(z)} = O{V (z)} = 10 and O{Σ(z)} =
20. All the instantiations have spectrally majorised singular

values.
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TABLE I
PERFORMANCE COMPARISON OF GSBR2 AND GPPM

Metrics GSBR2 GPPM

O{û1(z)} 966± 185 10
O{v̂1(z)} 422± 126 10
O{σ̂1(z)} 96± 38 57± 4
ξv (1.2± 0.8)× 10−3 (5.5± 4.5)× 10−5

ξu (1.6± 0.85)× 10−3 (5.5± 4.5)× 10−5

ξσ 0.09± 0.07 (1.5± 1.3)× 10−5

time(s) 0.67± 0.15 0.44± 0.19

For the proposed method, Algorithm 1 is simulated with

ǫ = 10−10, kmax = 103, R(z) = AP(z)A(z) and x(0)(z) =
1. The order of the product vector is limited to 10, with its or-

der estimated through the method in [24], followed by shifted-

truncation [19, 25]. The corresponding singular value and the

left-singular vector are extracted at K = 2⌈log2
(O{A(z)û1(z)})⌉

where ⌈.⌉ denotes ceiling operation. The trailing coefficients of

the estimated left-singular are truncated below a threshold of

10−10 while the right-singular vector is similarly order-limited

to its estimated support.

GSBR2 is simulated with µPU = 10−4, µPH = 2 × 10−10

employing the original truncation method of SBR2/SMD [4,

5]. The algorithm is allowed to perform a maximum of 200
iteration; however, the execution is terminated if the off-

diagonal terms fall below 10−6.

The ensemble average for all the metrics is shown in

Table I. It is evident that the proposed method provides a

more compact order approximation for both the left- and

right-singular vectors and the singular value compared to

the GSBR2. Moreover, the errormetrics ξu and ξv of the

proposed method’s extracted singular vectors reach orders

of magnitude below those obtained with GSBR2. Likewise,

the normalized squared difference between the estimated and

ground-truth singular value is orders of magnitude lower for

the polynomial method than GSBR2. The potential reason

for the large deviation of the GSBR2’s estimated singular

value is likely the imperfect conjugate symmetry due to the

uncoupled allpass ambiguity of the estimated left- and right-

singular vectors. Also, SBR2-type algorithms are known to

only achieves a relatively poor diagonalisation compared to

their DFT-domain counterparts in e.g. [2, 3].

VII. CONCLUSION

The polynomial power method, which was initially pro-

posed form para-Hermitian matrices, has been extended into

the generalized polynomial power method for computing the

dominant left- and right-singular vectors and their correspond-

ing singular value of a polynomial matrix. The proposed

extension provides better estimation of the singular vectors

with lower order approximation as compared to the only

direct PSVD algorithm based on the Kogbetliantz method. The

proposed method promises better results and can be further

utilized to compute the PSVD of a polynomial matrix through

the polynomial matrix deflation analogous to ordinary matrix

deflation.
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