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Immunosuppressive niche engineering at the onset
of human colorectal cancer
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The evolutionary dynamics of tumor initiation remain undetermined, and the interplay

between neoplastic cells and the immune system is hypothesized to be critical in transfor-

mation. Colorectal cancer (CRC) presents a unique opportunity to study the transition to

malignancy as pre-cancers (adenomas) and early-stage cancers are frequently resected.

Here, we examine tumor-immune eco-evolutionary dynamics from pre-cancer to carcinoma

using a computational model, ecological analysis of digital pathology data, and neoantigen

prediction in 62 patient samples. Modeling predicted recruitment of immunosuppressive cells

would be the most common driver of transformation. As predicted, ecological analysis reveals

that progressed adenomas co-localized with immunosuppressive cells and cytokines, while

benign adenomas co-localized with a mixed immune response. Carcinomas converge to a

common immune “cold” ecology, relaxing selection against immunogenicity and high

neoantigen burdens, with little evidence for PD-L1 overexpression driving tumor initiation.

These findings suggest re-engineering the immunosuppressive niche may prove an effective

immunotherapy in CRC.
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The classical model of colorectal carcinogenesis is the
adenoma-carcinoma pathway that describes the accumu-
lation of (epi)mutations in benign (non-invasive) adeno-

mas, which underpin the development of invasive carcinoma1,2.
However, while the risk of developing colorectal cancer (CRC) is
certainly increased by adenoma formation3,4, it appears that few
adenomas actually progress to cancer in a human lifetime: bowel
cancer screening programs detect approximately five “high-risk”
adenomas for every cancer found4,5, and longitudinal endoscopic
surveillance of adenomas reveals that <2% of adenomas progress to
cancer within 3 years6. Consequently, there appears to be a sub-
stantial “evolutionary hurdle” that must be overcome for an ade-
noma to become invasive.

Immune predation is known to modulate and indeed suppress
neoplastic growth7. As in lung cancer8,9, the evolution of immune
evasion is therefore likely to be a key barrier on the evolutionary
path to CRC. Newly arising somatic mutations in a tumor may
generate neoantigens, which can then serve as targets for
immune-cell recognition and destruction (in particular CD8+
cytotoxic T lymphocytes). However, the negative selective pres-
sure imposed by the immune system provides positive selection
pressure for strategies to avoid elimination, a process known as
immunoediting10,11. Such immune evasion has been described as
a hallmark of cancer12, and there are many mechanisms by which
tumor cells may escape immune predation including, but not
limited to, blockade of cytotoxic T cell attack via expression of
programmed death-ligand 1 (PD-L1), recruitment of immuno-
suppressive cells such as macrophages and neutrophils, and dis-
ruption of the antigen presentation machinery13–17.

In CRC, multiple lines of evidence suggest a critical role for
immunological surveillance in regulating tumor growth. The
density of tumor-infiltrating T cells is highly prognostic, with
greater infiltration associated with a better prognosis18,19. More-
over, non-metastatic CRC has an increased level of T cell infil-
tration as compared to metastatic CRC20. Genomic analysis reveals
that a higher predicted neoantigen burden is associated with
increased tumor lymphocyte infiltration9,21,22. Large-scale genomic
analysis indicates immune evasion mechanisms have evolved in the
majority of CRC11. Immune modulation studies in mouse models
of CRC also provide support for a critical regulatory role of the
immune system in colorectal carcinogenesis23–25.

The progression from colorectal adenoma (CRA) to CRC likely
requires the accumulation of multiple (epi)genetic aberrations.
The overall single-nucleotide alteration (SNA) burden appears
comparable between CRA and CRC, including SNAs for putative
driver genes, with the exception of TP5326. Moreover, analysis of
the evolutionary dynamics of sub-clones within CRC indicates a
frequent lack of differential selection operating between
subclones27, suggesting that at the point of invasion, the founder
cancer cell had already acquired all the alterations necessary for
its malignant phenotype and also that the bulk of tumor cells was
not experiencing markedly differential immune predation. Thus,
malignant potential and immune evasion may be established
together when cancer growth is initiated, and conceivably
immune evasion could be the key phenotypic trait governing the
transition from adenomas to cancers.

By integrating mathematical modeling, ecological analysis of
whole slide images, and multi-region neoantigen prediction, here
we have investigated the role of immune escape in the evolution
of CRC from precursor CRA. We hypothesized that immune
surveillance represents a key hurdle that prevents the outgrowth
of invasive cells within a benign CRA. For the neoplastic cells, the
acquisition of mutations responsible for progression must be
balanced against the risk of accumulating too many neoantigens
that would lead to immune elimination. To investigate this idea,
we developed a mathematical model that simulates tumor

evolution under immune predation and escapes in order to define
the expected patterns of immune activity and antigenic intratu-
mor heterogeneity (aITH) throughout tumor progression from
benign to malignant. We then looked for these signatures in a
cross-sectional cohort of CRA as well as early- and later-stage
CRC using the expression of 17 markers (by immunohis-
tochemistry (IHC) and RNA in situ hybridization (ISH)) and
called neoantigens from multi-region whole-exome sequencing
(WES) data. We leveraged several ecological tools to describe and
compare the cellular composition of tumors as biological units,
providing a holistic view of how tumors change through pro-
gression. Comparison of the model and data indicates a key role
for immune evasion at the onset of malignancy in CRC.

Results
Immune suppression is the superior escape strategy. Ecologists
have long used mathematical models to simulate the dynamics of
interacting species. Lotka-Volterra models, in particular, have been
used to study predator–prey dynamics, competition, mutualism, and
amensalism28–30. Such models have frequently been adopted by
mathematical oncologists to study the evolution of resistance under
different therapeutic regimens, as well as tumor–immune
interactions31–34. Here we combine various forms of deterministic
Lotka-Volterra models to understand the role of the immune system
in tumor initiation and progression under immune predation and
subsequent escape from immune control via two distinct “strate-
gies.” The first strategy, Blockade, gives tumor cells the ability to
effectively neutralize cytotoxic T cells by blocking their attack. Two
biological examples of Blockade would be PD-L1 and PI-9, the first
of which inhibits cytotoxic T cells35, while the latter inhibits cyto-
toxic T cell-induced apoptosis by blocking the perforin/granzyme B
pathway36. The second strategy, Suppression, gives tumor cells the
ability to recruit immunosuppressive cells, such as M2 macrophages.
Many of these immunosuppressive cells are also involved in wound
repair and thus create a microenvironment that not only suppresses
the anti-tumor immune response but also promotes cellular growth
via angiogenesis, production of growth factors (e.g., epidermal
growth factor), and matrix metalloproteinases37–39.

In our Lotka–Volterra model of competition, predation,
mutualism, and amensalism, tumor cells compete with one
another, are preyed upon by cytotoxic T cells, and are supported
by “mutualist” immunosuppressive cells that suppress immune
attack and promote growth:
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Each ith subpopulation of tumor cells, with population size Ni,

is composed of cells that have four unique traits:
(1) Antigenicity (γi), which defines the immune kill rate and is

determined by the collection of neoantigens carried by the cells in
the ith subpopulation40;

(2) Degree of Blockade (ϕi), a cell-intrinsic mechanism that
reduces the effective killing rate by cytotoxic T cells on the ith
subpopulation;

(3) Degree of Suppression (σ i), which determines the
ability of tumor cells to recruit immunosuppressive cells;
this has a dual effect of reducing immune kill and enhancing
growth for the ith population (reviewed in refs. 13,14,16,17);

(4) Species (j), determined by the number of driver mutations
accumulated by each cell in the stochastic model. Populations
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with <2 driver mutations are “normal”; those with 2 or 3
mutations are adenomas (CRA), while those with 4+ mutations
are carcinomas (CRC). The species of the population determines
the population’s division rate, carrying capacity, and interactions
with other tumor populations (see next section for more details).

Each subpopulation has a distinct carrying capacity (Ki, the
maximum viable size of the subpopulation), division rate (ri), and
interactions with other species, defined in the interaction matrix,
α. We assume that all subpopulations have the same intrinsic
death rate, δ.

In simulations of the model, two distinct trajectories emerged.
The first trajectory, which we dub “Get Lucky”, is when tumor
cells acquired only mutations that had low antigenicities but
lacked an active escape mechanism (σ i ¼ 0; ϕi ¼ 0) (Fig. 1a, top
left panel). The second trajectory, termed “Get Smart”, is when
tumors acquired one or more mutations that facilitated escape
from elimination by the immune system (σi > 0 and/or ϕi > 0);
this, in turn, reduced the selection pressure against high
antigenicity mutations (Fig. 1c). These two trajectories demon-
strated that it was necessary for tumor cells to mitigate immune
attacks if they were to grow. Cells that did not avoid immune
predation (i.e., having antigenicity too high and having no/weak
escape mechanisms) were always eliminated (red dots in Fig. 1a).

Tumors are heterogeneous, and it is likely that cells following
the Get Smart and Get Lucky trajectories would, at some point,
co-exist in a single tumor. To determine the outcome of Get
Lucky versus Get Smart competition, which would define the
tumor’s susceptibility to immune attack (and thus immunothera-
pies), we conducted a steady-state analysis of the pairwise
competition between the Get Lucky strategy (σ i ¼ 0; ϕi ¼ 0), and
the range of possible Get Smart strategies (combinations of σi ≥ 0,

ϕi ≥ 0) (Fig. 1b). This competition was conducted over a range of
antigenicities (0≤ γi ≤ 1) for each strategy, which allowed us to
examine the role of the immune response in determining which
strategy would win and which would be eliminated. We assumed
that both strategies existed within the same “species” of tumor
cell, and thus had the same division rate, shared a carrying
capacity, and, aside from the strategy, neither population had any
intrinsic advantage over the other (i.e., αij ¼ 1).

The Get Lucky versus Get Smart analysis indicated that out of
the 11,025 parameter combinations, in 71% of the simulations
Get Smart out-competed Get Lucky, regardless of the starting
sizes of each population. Get Lucky only won 3.3% of the time,
which occurred only when the competing Get Smart population’s
protection was insufficient to overcome its elevated antigenicity.
Given that coexistence was rare (0.25% of simulations), these
results suggest that clones which have the ability to escape
immune attack (Get Smart) will sweep through the population,
resulting in the extinction of immune-susceptible clones.

Given that Get Smart is expected to almost always outcompete
Get Lucky, we next determined under which inflammatory
conditions each individual escape strategy, Blockade or Suppres-
sion, could (co)exist. Suppression populations were modeled by
setting 0≤ σ i ≤ 1 and keeping ϕi ¼ 0, while Blockade populations
were modeled by setting 0≤ ϕi ≤ 1 and keeping σ i ¼ 0. By
conducting steady-state analyses over all combinations of σ i; ϕi; γi
(each varying between 0 and 1 in increments of 0.05), we could
thus determine the outcome of all pairwise competition models of
Blockade versus Suppression, each subject to their own immune
pressures as determined by their antigenicity.

The Blockade versus Suppression analysis revealed that
immune suppression was the superior strategy, as it outcompeted

Fig. 1 Model results predict that immune suppression is the dominant escape mechanism. a Maximum size (i.e., number of cells) of each strategy for
different values of suppression (S, σ, columns), blockade (B, ϕ, rows), and antigenicity (inset x-axes). Red dots indicate that the population is eliminated by
immune predation, highlighting that clones must have some way to avoid immune predation, either by having low antigenicity (Get Lucky) or actively
mitigating attack (Get Smart). As population growth was simulated using an epithelial division rate, these results indicate immune escape should be an
early event if the clone is to survive increased predation due to the accumulation of neoantigens associated with the mutation. b, c Outcome of
competition, where “Co” means neither strategy would go extinct and could co-exist, “N”, indicates either strategy could win, but the one that does must
have a larger starting population size, and “X” means that neither population survived immune predation. b Outcomes of competition between Get Lucky
(GL) and Get Smart (GS), over a range of suppression values (S, σ), blockade values (B, ϕ), and antigenicities (γ), such that for GL σ= 0, ϕ= 0, and for GS
0≤ ϕ≤ 1, 0≤ ϕ≤ 1. Get Smart wins out over Get Lucky 71% of the time (7778 out of 11025 parameter combinations). c Outcomes of competition between
Suppression (S) and Blockade (B), over a range of suppression values (S, σ), blockade values (B, ϕ), and antigenicities (γ), such that for P σ= 0, 0≤ ϕ≤ 1,
and for S ϕ= 0, 0≤ σ≤ 1. Out of the 11,025 parameter combinations, Suppression (S) wins the majority of the time, 55% (6047 parameter combinations),
with Blockade (B) winning 17% of the time (1862 parameter combinations). Combined, these results highlight that Get Smart almost always wins out over
Get Lucky, while Suppression wins against Blockade. This indicates that having an immune escape strategy (Get Smart), particularly immune suppression,
significantly increases a clone’s fitness, allowing it to sweep through the population, often by engineering an immunosuppressive niche.
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Blockade in the majority of simulations (55%, 6047 out of
11025 simulations) due to the ability to both increase growth and
reduce immune kill rates, which resulted in a higher net growth
rate (Fig. 1d, e and Supplemental Fig. 1). Only rarely did initial
population size matter (0.054% of simulations, Fig. 1c), as
Suppression won frequently even when it had a smaller starting
size than Blockade. As in the Get Lucky versus Get Smart
analysis, coexistence between the individual strategies was rare
(0.25%). Together, these observations suggest that clones which
can recruit immunosuppressive cells should sweep through the
population, even outcompeting cells capable of blocking immune
attack directly.

These modeling results suggest that active immune escape
mechanisms (as opposed to passive escape by getting lucky)
should frequently be observed in established cancers and that the
recruitment of immunosuppressive cells that also increase tumor
cell viability is expected to be common among successful tumors.

Immune suppression expected to occur early, increase risk, and
shape intra-tumor antigenic heterogeneity. While deterministic
Lotka-Volterra models are readily tractable, they are limited in
that they simulate interactions between a fixed number of species,
meaning that they cannot simulate the evolution of novel clones,
nor generation of intra-tumor heterogeneity. In order to simulate
the emergence and subsequent evolution of tumor clones, we
created an evolutionary branching process version of the model,
which allows us to determine the timing of immune escape, how
much it increases the risk of progression to cancer, and how the
ecology and aITH changes through the progression of CRC. We
also simulate the accrual of somatic mutations (see supplemental
methods), the evolution through “tissue compartments” (from
healthy tissue (E) into an adenoma (CRA) and then carcinoma
(CRC)), and explicitly represent the interactions with immune
cells (Fig. 2a).

Simulations are initiated with a homogenous, non-antigenic
epithelial population that lacks immune-escape mechanisms.
Each cell acquires new antigenic mutations at a rate µ per
division, and strict inheritance of mutations means a new mutant
daughter cell (and its subsequent clone) will always be more
antigenic than its parent since it carries all parental mutations
along with the new mutation. Cells can also acquire the ability to
block the immune attack (ϕi>0), recruit immunosuppressive cells
(σ i>0), or gain a single driver mutation at per-division rates of
3.7e−6 for blockade and suppression, and 9.26e−5 for gaining a
driver gene (Fig. 2b, and see Supplemental materials for details on
the calculation of mutation rates). We assumed an epistatic model
of progression41, such that the acquisition of two driver
mutations defined the transition from E to CRA, and the
acquisition of a further two driver mutations defined the
transition to CRC. We modeled competition among species
based on the space they occupied: E and CRA clones have no
interactions because adenomas grow superficially to the epithe-
lium, whereas we assumed that CRC subpopulations were
strongly interacting with both E and CRA populations to describe
an overgrowth of the adenoma and invasion through the
epithelium (Fig. 2a).

We assume that the number of immunosuppressive cells will
be proportional to the product of the immunosuppressive cell
recruitment parameter and the size of the immunosuppressive
cell-recruiting population (Niσ i). Likewise, we assume that the
number of cytotoxic T cells reactive to a subpopulation would be
proportional to the subpopulation size, its antigenicity, and ability

to recruit immunosuppressive cells, Niγi 1� σ i
γi

� �

. We can

therefore calculate the number of immunosuppressive cells,
cytotoxic T cells, and the number of cells with the immune

blockade. Figure 2c shows a representative simulation run of
the model.

In order to understand the role of immune blockade and
suppression in determining the risk of cancer development, we
conducted a parameter sweep over the ranges of blockade
strength (ϕ) and suppression strength (σ). This also allowed us to
see how each strategy affects aITH and also when they emerge in
the timeline of cancer progression. The sweeps ranged from 0 to 1
by increments of 0.04 for each of the two parameters. A mutation
rate of 2.91e−9 was used in accordance with measurements from
Werner et al.42. We furthermore conducted 100 runs of each
parameter set to be able to explore the effects of the stochasticity
in the model.

There were four possible outcomes of each simulation: (1) The
tissue remained healthy for 100 years, which occurred when
either no CRA/CRC populations evolved, or remained under 100
cells in size if they did evolve; (2) a CRA evolved but was
eliminated; (3) a CRC evolved but was eliminated; (4) a CRC
evolved from a CRA, and the CRC existed for 1 year, thus
considered malignant. In Cases 2 and 3, the simulations were
concluded after these elimination events, and the time was
recorded.

As we observed in the previous model (Fig. 1), the Get Smart
strategy dominated the CRC outcome in this expanded model.
We examined the immune escape status of these populations in
more detail, using a total 21,723 simulations where a CRC
formed. Recall there are 3 Get Smart strategies (immunosuppres-
sion, blockade, or immunosuppression+ blockade), and in
75.87% of those simulations, the ability to suppress immune
attack was an early event; immunosuppression was a trait of the
precursor CRA, meaning that the first CRC cell arising from a
driver mutation already possessed the immunosuppressive
phenotype (Fig. 3a). When the precursor CRA relied on a Get
Lucky strategy, the emerging CRC was founded by a clone with
the ability to suppress immune attack in 8.72% of simulations.
Across all parameter combinations, only 1.45% of CRC (and thus
their pre-cursor CRA) were successfully established without
active immune escape (i.e., these tumors had completely followed
the “Get Lucky” trajectory).

Greater immune suppression, which resulted from stronger
recruitment of anti-inflammatory pro-growth immune cells,
significantly increased the risk and rate of progression from
CRA to CRC (Fig. 3b, c). In contrast, no matter its strength, the
ability to reduce immune kill through increased blockade had
little effect on risk and rate of progression. Tumors also became
more antigenic as immune suppressive mechanisms became more
effective. This phenomenon occurs because immune suppression
relaxes selection against high antigenicity, allowing more
antigenic mutations to persist (Fig. 3d).

Immunosuppressive niche construction begins early. We next
examined primary human tumors to determine the dominant
escape trajectory in CRC, and the time at which it emerged, using
model predictions to guide the analysis. Specifically, we con-
sidered 21 CRAs, 15 CRCs, and 26 “carcinoma-in-adenoma”
(CIA) samples, the latter of which consist of a nascent carcinoma
(C-CIA) adjacent to an adenoma (A-CIA) (Figs. 4–7). As such,
we consider the A-CIA samples as progressed/late adenomas, as
they are likely either the precursor of the adjacent carcinoma or in
a similar state as that carcinoma’s actual precursor.

We performed multi-color IHC analysis to characterize the
immune microenvironment (tumor ecology) in all n= 86 cases
(62 samples, with each of the 26 CIA samples having both an
A-CIA and C-CIA region) (Fig. 4 and Supplemental Figs. 2–6).
We used multi-region WES to measure neoantigen intra-tumor
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heterogeneity (aITH) in a subset of n= 16 cases (160 exomes, as
each was downsampled 10 times to normalize depth, for n= 6
CRA, n= 3 CIA, and 7 CRC).

Our modeling predicts that early acquisition of immune
suppression is the dominant escape strategy in CRC, and is
crucial for progression. Given these expectations, we selected a
panel of 17 markers to describe the immune response in each
tumor type (Fig. 4, Supplemental Figs. 2 and 3). Samples were
stained in two sets: the first set comprised 12 CRA, 25 CIA, and 15
CRC, with IHC staining for tumor cells (CK), cytotoxic T cells
(CD8), neutrophils (elastase), macrophages (CD68), B cells
(CD20), immune checkpoint inhibition (PD-L1), vasculature
(CD31), proliferation (Ki67), fibroblasts (αSMA), DNA damage
(γH2AX), and COX2. The second set of samples comprised 9
CRA, 9 CIA, and 9 CRC, with IHC staining for macrophages
(CD68), M1 macrophages (iNOS) and M2 macrophages (CD163),
and RNA ISH for expression of immunosuppressive cytokines IL-
10 and TGF-β, and inflammatory cytokines TNF-α and IL-6. Nine
CIA and 9 CRC were in both sets and therefore were stained with
all 17 markers. These cases are referred to as the “Intersection Set”.

We then examined how cell-type abundances, and the tumor
and microenvironment as a whole, changed through progression.
The Virtual Alignment of pathoLogy Image Series (VALIS)
registration software43 was used to create whole-slide composite
images from the multi-color IHC and/or RNA ISH (Fig. 4,
Supplemental Figs. 2 and 3). This composite image was then
divided into 250 μm× 250 μm quadrats, and the number of pixels
positive for each stain was determined for each quadrat (Fig. 4

and Supplemental Figs. 4–6). Quadrat counts were used to
perform a spatial analysis, while the abundance of each cell type
was approximated by dividing the total number of positive pixels
by the total area sampled. See Supplemental Figs. 7 and 10 for
details of the statistical tests and significance values.

Our modeling predicted an increase in immunosuppressive
cells and a drop in anti-tumor inflammation during the evolution
from A-CIA to C-CIA to CRC. Correspondingly, the immuno-
suppressive cytokine IL-10 showed a significant increase in
expression through progression, and this correlated with greater
numbers of putatively tumor-promoting neutrophils (elastase)
and macrophages (CD68) (Fig. 5). Anti-tumor cytotoxic CD8
T cells were progressively excluded through progression (Fig. 5a).
There was also a significant drop in TNF-α through progression,
a powerful pro-inflammatory cytokine44. These patterns were
directly evident within individual CIA lesions (e.g., comparing
A-CIA directly to its descendant C-CIA). These changes
culminate in an immunosuppressed, pro-growth ecology that
supports a higher abundance of tumor cells (CK) in CRC, having
significantly less inflammation (TNF-α and CD8) and more pro-
tumor factors, including macrophages (CD68), TGF-β, and
vasculature (CD31) as compared to benign adenomas (CRA).
Together, these data suggest that CRA elicits a strong anti-tumor
immune response, and the evolution of an immunosuppressive
microenvironment is associated with progression to CRC.

We next used ecological methods to describe and compare the
overall cellular compositions of tumors as a whole, as opposed to
one cell type/cytokine at a time. Indicator species analysis (ISA)

Fig. 2 The competition model in Eq. (1) was expanded to include mutation, allowing for simulation of evolution from pre-tumor epithelium (E) to
adenoma (CRA) to carcinoma (CRC), with the possibility to acquire driver mutations and immune escape strategies (blockade or suppression). a This
model simulates cell–cell competition, predation by cytotoxic T cells, mutualism between tumor cells and immunosuppressive cells, and reduction of T cell
infiltration by immunosuppressive cells (amensalism). Red bars indicate inhibitory interactions while green arrows represent positive interactions. b The
model is initiated with a large population of homogenous non-immunogenic epithelial cells. Mutation may occur during division, resulting in the creation of
a new population that inherits all ancestral antigens and mutations from its parent. Each mutation is accompanied by the generation of a neoantigen, which
stimulates increased attack by cytotoxic T cells at a rate proportional to the neoantigen’s randomly assigned recognition potential. With low probability,
cells may also acquire one of three beneficial mutations: (1) the ability to recruit immunosuppressive cells, which decreases T cell attack while increasing
growth rates; (2) the ability to block T cell attack, reducing immune kill; and (3) acquisition of driver mutations, which increase division rates and carrying
capacities once enough have accumulated. If an epithelial population acquires two driver mutations it is considered an adenoma, which grows in a separate
niche atop the epithelial tissue, limiting interactions between the two populations. CRA become carcinomas when they acquire four driver mutations in
total. CRC has the ability to grow both atop and into the epithelium, allowing carcinomas to invade and destroy epithelial and adenoma clones. Due to
inheritance, there may eventually be clones that accumulate multiple beneficial mutations. c Example simulation, where an E population evolved into a CRA
after 1390 days, which in turn evolved into a CRC. The dominant CRC phenotype had a high antigenicity (top) and strong immunosuppression (middle),
resulting in an increase in immunosuppressive cells and a drop in T cells (bottom). Over 200,000 phenotypes developed in this simulation, but only those
populations with >50,000 cells are shown.
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determines which cell types (or factors), if any, uniquely define a
group of tumors45. First, we explored the cell types that defined
tumor stages. ISA revealed that a defining characteristic of benign
CRA is an abundance of CD8+ T cells and PD-L1 expression,
consistent with the notion that CRA remains under immune attack
but avoids elimination due to having a protective mechanism
(Fig. 6a). Indicator species characteristic of CRC were an
abundance of tumor cells, increased vasculature, and potentially-
immunosuppressive neutrophils. Alternative analysis using con-
strained principal coordinates (CAP) and permutational multi-
variate analysis of variance (PERMANOVA)46–48 (Fig. 6c)
confirmed these results. This further reiterates that CRA is defined
by cytotoxic T cells, while CRC is defined by immune suppression.

If tumors are engineering an immunosuppressive niche to
escape immune predation, as predicted by the model, we would
expect to see a correlation between differences in tumor
microenvironment and differences in immune composition. We
tested for this relationship using the Mantel test49 to detect
correlations between the ecological dissimilarities in immune-cell
lineages (T cells, B cells, macrophages, and neutrophils) and
dissimilarities in non-immune cells of the microenvironment
(tumor cells, fibroblasts, PD-L1, and vasculature) that could affect
the behavior of the aforementioned immune cells. Results indicate
that differences in immune composition correlate significantly
with differences in non-immune ecology (p= 0.003), indicating
there is a significant relationship between environmental
similarity and immunological similarity (Supplemental Fig. 8).

Our initial modeling (Fig. 1) predicted that immune suppres-
sion is under strong positive selection, as it offers a significant
advantage over other escape strategies. This selective process

would be expected to decrease both intra-tumor and intra-stage
heterogeneity, as we would expect a shift from a mixed immune
response (pro- and anti-inflammatory cells) to one dominated by
immunosuppressive cells (lower intra-tumor heterogeneity),
resulting in a cold immune ecology common to carcinomas
(low intra-stage heterogeneity). To test these predictions, we used
Simpson’s index to measure intra-tumor heterogeneity, which
was then compared across stages, and found a significant drop in
ecological diversity from CRA to CRC (p = 0.0052, Jonckheere-
Terpstra test for decreasing trends) (Fig. 6b).

Intra-stage heterogeneity was calculated using PERMDISP250,
which tests for significant differences in intra-group homogeneity
across groups, where here groups are tumor stages. This analysis
revealed that CRCs are more homogeneous than precursor
A-CIA and C-CIA (Fig. 6d). That is, CRC has ecologies more
similar to one another than A-CIA are to one another or C-CIA
are to one another. This signal of low intra-CRC heterogeneity is
consistent with the hypothesis that CRC has converged to a
shared, immune cold ecology.

Like CRC, CRA intra-stage heterogeneity is also lower than
that of A-CIA and C-CIA. This finding is surprising as, consistent
with modeling, one would expect that had they not been resected,
some of the observed CRA would progress while others would
remain benign, due to having different immune ecologies. We
believe the lower intra-stage heterogeneity of CRA may arise for
several reasons. First, while CRA has similar mixes of cells
(resulting in low intra-stage heterogeneity), it may be that the
more important factor is the spatial configuration of cells within
the tumor (Fig. 7). Second, progression from adenoma to
carcinoma is rare4,5, and so the signal of any outliers (i.e., CRA
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Fig. 3 Immune escape occurs early and increases the risk of tumor formation. a Comparison of the adenoma (CRA) founder’s immune escape phenotype
to the eventual founding branch of the carcinoma (CRC) population, where GL= founder relied on Get Lucky, B= founder had Blockade, S= founder had
Suppression, and SB= founder had Suppression and Blockade. Out of the 21,723 simulations, 75.87% of the simulations had the acquisition of Suppression
as an early event, occurring in the CRA founder and later inherited by the CRC founder. b The probability of a carcinoma forming under various strengths of
immune escape. Probability is calculated as the number of times a carcinoma existed for 1 year, divided by the number of times that parameter set was run,
in this case, 100 times each. The gradient from left to right indicates that immune suppression increases the probability of tumor formation, while lack of a
gradient from top to bottom suggests that immune blockade has little effect on the probability. c The average amount of time, in days, between CRA and
CRC formation, i.e., the transition time, for each parameter set. Tumors that progressed most rapidly from CRA to CRC are those with an
immunosuppressive strategy, which reduces immune predation and relaxes selection against high antigenicity. d Averages of each malignant tumor’s mean
antigenicity (weighted by each population’s size) for each parameter combination. The horizontal gradient indicates that immune suppression allows for
increased antigenicity, as immune suppression relaxes selection against immunogenicity.
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that would have progressed) is low, meaning that most CRA has
similar ecologies. Third, modeling predicts that the transition to
CRC is rapid when immune suppression is strong (Fig. 3c), and
so the chances of catching CRA at the very earliest stages of
transition could be rare. As is the case with the second hypothesis,
the signal from such rare CRA would be drowned out by the
majority of CRA that remain under immune control.

We believe the higher intra-stage heterogeneity of A-CIA and
C-CIA is related to their being resected at different points in the
transition to an immune cold ecology. As many microenviron-
mental changes would occur during tumor evolution and
construction of the immunosuppressive niche, it would be
expected that the resected CIA samples (A-CIA, C-CIA) are at
different points along their transition to an immune cold ecology,
and thus exhibit the observed high intra-stage heterogeneity.
However, all of the microenvironmental changes eventually lead
to the cold immune ecology shared by CRC, hence a lower intra-
stage heterogeneity found in the final CRC stage.

Carcinomas are isolated from immune attack. We next deter-
mined how spatial associations between cell types and cytokines

change during tumor progression (Fig. 7c–f, Supplemental Figs. 9
and 10). We created “species association networks”51 that
quantify the spatial co-localization between cell types using the
data derived from quadrat counts (Fig. 7). This method has an
advantage over some other spatial statistics, such as correlation or
nearest-neighbor distances, as each network describes the con-
ditional dependence relationships between all species, rather than
only pairwise spatial distances or correlations in isolation. By
accounting for the spatial distribution of all cell types at once,
these networks are able to remove indirect effects (i.e., cases
where species A and B are correlated because they both interact
with C but do not interact with each other) that can confound
some other spatial statistics. By controlling for these indirect
effects, we have more confidence that the spatial associations are
valid. The result is a description of how species are associated in
space, after controlling for all other species in the dataset. The
resulting complex collection of individual pairwise spatial asso-
ciations (Supplemental Fig. 9) was then organized into mean-
ingful cell type/cytokine spatial clusters by performing
community detection on each stage’s averaged network
(Fig. 7c–f). This was accomplished using the Leiden algorithm to
detect communities on each tumor stage’s multiplex graph (one
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Fig. 4 Example of a single sample used to describe the tumor ecology. a To describe the spatial distribution of cell types and gene expression, 10 serial
slices were taken from each sample and each stained with one or two markers. There were two sets of serial slices, one with CK, CD8, elastase, SMA,
CD68, Ki67, CD20, γH2AX, CD31, COX2, and PD-L1. The second set included IL-6, IL-10, TNF-α, TGF-β, CD163, CD68, and iNOS. b After aligning the
images in the two sets, each slice was divided into quadrats of 250 μm× 250 μm, and stain segmentation was performed to determine the abundance of
each marker at ×40 magnification. c Quadrat counts for all 18 markers in one colorectal carcinoma (CRC) sample (there are 17 unique markers, but CD68
is in both Set 1 and Set 2). The same process was repeated for n= 12 colorectal adenomas (CRA), n= 26, “carcinoma-in-adenoma” (CIA), and n= 15 CRC,
using the first set of markers, and for n= 9 CRA, n= 9 CIA, and n= 9 CRC using the second set of markers. This process was repeated for all samples,
allowing us to describe changes in the tumor ecology, cell abundance/gene expression, and spatial associations. Values in each plot are scaled to reflect
the minimum and maximum values of that marker in the image. See Supplemental Fig. 3 for more detailed images of each marker and Supplemental
Figs. 4–6 for figures showing quadrat counts for all samples.
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graph of average positive associations and the second graph of
average negative associations)52,53.

Benign adenomas (CRA) showed signs of being locked in a
battle between pro- versus anti-inflammatory cells, as tumor cells
clustered with cytotoxic T cells and macrophages, which in turn
clustered with both anti-tumor M1 (iNOS) and pro-tumor M2
(CD163) macrophage markers (cluster 3-4 in Fig. 7c). It is worth
noting that macrophages are plastic and can express both M1-
and M2-associated markers, so the observation that the CRA
macrophages express both markers suggests that they were not
polarized to the extremes of either the M1 or M2 phenotypes54.
CRA was the only stage where tumors clustered with cytotoxic
T cells, and also had significantly higher abundances of cytotoxic
T cells (compared to A-CIA and CRC), and inflammatory TNF-α
(compared to CRC) (Fig. 5). Together, these observations suggest

that the immune system is successfully mounting an attack
against tumor cells (cytotoxic T cells, M1 macrophages), despite
tumor cell PD-L1 expression and presence of M2 macrophages
(CD68 and CD163).

In contrast to benign adenomas (CRA), the spatial organiza-
tion of progressed adenomas (A-CIA) was broadly distinct,
nevertheless with some similar individual pairwise spatial
associations (Supplemental Figs. 9 and 10). Instead of clustering
with cytotoxic T cells, tumor cells in A-CIA cluster with
macrophages (CD68) and B cells (CD20), both of which can
produce IL-10 (also found in the A-CIA tumor cluster). IL-10 is
known to polarize macrophages towards the M2 phenotype
(cluster 3 in Fig. 7d)38,55–57. The macrophages in A-CIA also
cluster with the immunosuppressive cytokine TGF-β, which can
too polarize macrophages towards the M2 phenotype. These

Fig. 5 Significant changes in average cell type abundance and cytokine expression profiles show that immunosuppressive niche engineering is
observed early at the progressed adenoma (A-CIA) stage and continues through colorectal carcinoma (CRC). In a–c, the center line of each boxplot
indicates the median, the top and bottom of the box indicate the 75th and 25th percentiles, respectively, the top whisker the largest value that is no further
than 1.5 interquartile range (IQR) from the 75th percentile, the bottom whisker the smallest value no more than 1.5 IQR from the 25th percentile, and points
indicate outliers. In addition to showing the distribution of abundances, we also provide histological examples of differences in abundance/gene expression
in each category. Results shown in a, b and Set 1 in d are based on n= 12 independent colorectal adenomas (CRA), n= 25 independent A-CIA, n= 26
independent early carcinomas (C-CIA), and n= 15 independent CRC. Results in c and Set 2 in d are based on comparing n= 9 independent CRA, n= 8
independent A-CIA, n= 9 independent C-CIA, and n= 9 independent CRC. a Benign adenomas (CRA) have significantly higher cytotoxic T cell
abundances than A-CIA or carcinomas (CRC). b Changes that accompany the transition from adenoma to carcinoma were revealed using paired tests to
directly compare adenomas (A-CIA) to their descendant carcinomas (C-CIA). Here, we show the significant increase in neutrophils from each A-CIA to its
descendant C-CIA. c Expression of the inflammatory cytokine TNF-α (red) significantly decreased during progression from progressed adenoma (A-CIA)
to early carcinoma (C-CIA) to malignancy (CRC), culminating in CRC having significantly less TNF-α, and more immunosuppressive TGF-β (blue) than
benign adenomas (CRA). d Table showing the abundance of each marker (columns) for each sample (rows). Shapes below each marker signify that there
were significant changes in abundances across the specified group. Green indicates that the marker increased from the first group to the last group, while
purple indicates that the abundances decreased. These results are based on a suite of statistical tests. Please see Supplemental Fig. 7 for p values.
Examination of changes in cell and cytokine abundances reveal that, among other things, there is a significant decrease in the abundance of cytotoxic
T cells from benign adenoma (CRA) to adenomas that progressed (A-CIA) (purple diamond). Paired tests reveal that when directly compared to their
ancestral adenoma (A-CIA), carcinomas (C-CIA) have significant increases in the abundance of macrophages (CD68), neutrophils (elastase), and cytokine
IL-10, all of which can be associated with immune suppression. These trends are also observed when quantifying changes from late adenoma (A-CIA) to
nascent carcinoma (C-CIA) to mature carcinoma (CRC), along with additional increases in B cells (CD20) and vasculature (CD31), and accompanied by a
decrease in the inflammatory cytokine TNF-α. Together, these patterns indicate that during the evolution of a malignant tumor, the engineering of an
immunosuppressive ecology begins early in the adenoma stage, and continues through to malignant CRC formation.
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observations strongly suggest these macrophages are of the
immunosuppressive M2 type (cluster 4)38. With the exception of
TNF-α, clusters 3 & 4 suggest that tumor cells in progressed
adenomas exist within a predominantly immunosuppressive
niche, with low CD8 T cell infiltration (note the negative spatial
association between CD8 and CK).

Tumor cells in nascent carcinomas (C-CIA) appear to be
highly proliferative, clustering with Ki67 (cluster 1, Fig. 7e), while
having weak spatial associations with immune cells (clusters 2), a
trend that continues in CRC. Compared to benign adenomas,
tumor cells in CRC have significantly weaker spatial associations
with cytotoxic T cells (Supplemental Fig. 9), and significantly
lower abundances of cytotoxic T cells and TNF-α (Fig. 5),
suggesting that the anti-tumor response has been suppressed in

CRC, which frees tumor cells to divide at higher rates (increased
CK/Ki67 spatial association).

Benign adenomas are highly immunogenic, while immune cold
carcinomas exhibit antigenic neutrality. As neoantigens elicit an
immune response, it should be expected that changes in the
tumor ecology that alter the immune composition will lead to
changes in aITH. Our modeling suggests that under immune
predation the average neoantigen recognition potential should be
low, as tumors must rely on the “Get Lucky” strategy. However,
immune escape reduces the selection pressure against high anti-
genicity, permitting the existence of clones bearing neoantigens
that have high recognition potentials (Figs. 1a and 3d). With the

Fig. 6 Whole-tissue ecological analysis reveals adenomas and carcinomas have unique and distinct hot and cold ecologies, respectively. Set 1 included
n= 12 independent colorectal adenomas (CRA), n= 26 “carcinoma-in-adenoma” (CIA = A-CIA & C-CIA), and n= 15 independent colorectal carcinomas
(CRC). The Intersection Set included n= 9 CIA and n= 9 CRC. a Indicator species analysis was performed to determine which, if any, cells or cytokines
define each tumor stage. The indicator value (IndVal) describes how strongly each cell/cytokine defines the tumor stage. CRA is uniquely defined by
cytotoxic T cells (CD8), PD-L1, and fibroblasts (SMA), while CRC is defined by tumor cells (CK), vasculature (CD31), and neutrophils (elastase). b Intra-
tumor heterogeneity, as measured by Simpson’s index. Intra-tumor heterogeneity decreases, as might be expected if immune suppression reduces the
abundance of pro-inflammatory cells (Jonckheere–Terpstra test for decreasing trends). c Plotting results from constrained analysis of principal coordinates
(CAP) of ecological dissimilarities reveals that CRA and CRC have unique mixes of cell types that create significantly distinct ecologies, as determined by
PERMANOVA tests. d As determined by the two-sided Kruskal–Wallis rank-sum test, CRC ecologies are significantly more similar to one another than the
precursor A-CIA and C-CIA, suggesting that CRC have converged to a common immune-cold ecology defined by vasculature, tumor cells, and neutrophils.
This was determined using PERMDISP2, which describes the amount of intra-stage ecological heterogeneity by comparing intra-group dispersions of
ecological dissimilarities. In the boxplots in b, d, the center line indicates the median, the top and bottom of the box indicate the 75th and 25th percentiles,
respectively, the top whisker the largest value that is no further than 1.5 Interquartile range (IQR) from the 75th percentile, the bottom whisker the smallest
value no more than 1.5 IQR from the 25th percentile, and points indicate outliers. Pairwise significance of differences was determined with Dunn’s test of
multiple comparisons using rank sums.
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relaxation of selection pressures, antigenicity effectively becomes
a quasi-neutral trait, resulting in an increase in aITH and
neoantigen burden. Given this understanding of the relationship
between the tumor ecology and aITH, we next used multi-region
neoantigen prediction from WES to qualitatively infer the selec-
tion pressures experienced during each stage of progression.

CRA was the most immunogenic of all samples, with significantly
higher mean neoantigen recognition potentials, when weighting each
recognition potential by its associated neoantigen’s variant allele
frequency (VAF) (Fig. 8a). Conversely, CRC had the highest number
of predicted neoantigens of any tumor stage (Fig. 8b), but fewer
neoantigens at high VAF which also had high recognition potential.
These observations are consistent with our modeling predictions
that neoantigens are free to accumulate following escape from
immune predation, and our ecological measurements indicate the
establishment of a T cell-excluded immunosuppressive microenvir-
onment in CRC, but not adenomas.

We used principal component analysis (PCA) to gain a holistic
picture of the tumor-immune eco-evolutionary dynamics by
examining aITH, tumor ecology, and tumor stage together
(analysis restricted to samples for which we had both genomic
and histological data; Fig. 8c). The first two components, which
explained 67.3% of the variance (44.5 by PC1, and 22.8% by PC2),
were positively correlated, with negative PC1 and PC2 associated
with signs of a cytotoxic T cell response associated with high
weighted recognition potentials. Larger PC1 and PC2 values were
associated with growth and immune suppression (proliferation,
vasculature, macrophages, neutrophils) and an increased neoanti-
gen burden that would be expected to accompany a loss of
selection against antigenicity, much like how neutral mutations
accumulate freely58. Benign CRA and malignant CRC samples
prove to be opposites, with CRA clustering in the inflammatory
“corner,” and CRC clustering in the opposite immunosuppres-
sion, pro-growth corner.

Fig. 7 Changes in direct spatial associations. a Composite images were created by aligning each sample’s collection of serial slices. This example shows
only five markers, but all markers were used for the spatial analysis. b Each composite image was then divided into quadrats 250 microns in width and
height, wherein each marker was quantified at ×40 magnification. This image shows the quadrat positions overlaid on one image in the aligned series. c–f)
Averaged spatial association networks, clustered by spatial communities (black boxes), with the tumor community labeled in red. The Set 1 samples
included n= 10 colorectal adenomas (CRA), n= 16 progressed adenomas (A-CIA), n= 17 early carcinomas (C-CIA), and n= 13 colorectal carcinomas
(CRC), while the Set 2 samples included n= 8 CRA, n= 6 A-CIA, n= 9 C-CIA, and n= 7 CRC. The order of cell types within each community does not
have meaning. The color of each element in the lower diagonal indicates the average spatial association between the marker pair, with positive blue values
indicating clustering, and negative red values meaning cell types/cytokines are found in separated areas. The color of the circle on the diagonal denotes the
ranked abundance, e.g., CD8 is highest in CRA (yellow circle) and lowest in CRC (black circle). The interaction networks for both sets have been overlaid
on one another using CD68, the only marker found in both datasets (Set 1 and Set 2). Tumor cells in CRA cluster with a mix of pro- and anti-tumor immune
cells, suggesting that an anti-tumor immune response is being mounted despite the presence of immune escape mechanisms. In contrast, tumor cells in
progressed adenomas (A-CIA) reside in a predominantly immunosuppressive niche, being associated with B cells (which can promote an M2 macrophage
phenotype) and macrophages, which are in turn clustered with immunosuppressive cytokines (IL-10, TGF-β).
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Model predicts benign adenomas are unable to overcome
immune attack despite signs of immune suppression. A sur-
prising finding of the ecological analysis was that progressed (A-
CIA) and benign adenomas (CRA) exhibit similar levels of some
immunosuppressive markers, such as similar abundances of
macrophages (CD68), M2 markers (CD163), and immunosup-
pressive cytokines (IL-10, TGF-β), with CRA even having sig-
nificantly stronger positive spatial associations between CD163/
CD68 (M2 macrophages) (Fig. 5, Supplemental Figs. 9 and 10).
However, this appears to be counterbalanced by an anti-tumor
inflammatory response, with CRA (compared to A-CIA) having
significantly higher levels of CD8 and weighted neoantigen
recognition potentials, whilst also forming spatial clusters con-
sisting of a mix of pro- and anti-inflammatory cells (Figs. 5–8).

Both progressed and benign adenomas (A-CIA and CRA,
respectively) show signs of immune suppression. We hypothe-
sized that the key enabler of progression to invasive disease is the
development of more effective immune suppression by eventually
invasive lesions that is sufficient to overcome the higher
immunogenicity of the progressed lesions. To test the plausibility
of this hypothesis, we returned to our model to compare benign
and progressed adenomas in simulations where benign adenomas
had similar/higher levels of immune suppression and greater
cytotoxic T cell infiltration and immunogenicity compared to
progressed adenomas. We used a Monte Carlo accept-reject
method to find model parameters that reproduced our observa-
tions that, compared to progressed adenomas (A-CIA), benign
adenomas (CRA) were: significantly more immunogenic (higher
CD8 abundances, higher neoantigen recognition potentials,
residing in spatial niche containing CD8 cells and M1 macro-
phages); had more immune blockade (PD-L1); similar levels of
immunosuppressive cells/cytokines (CD68, CD163, IL-10, TGF-
β) (data analyses in Figs. 5–8, Supplemental Figs. 9 and 11).

The parameters that reproduced our observations all had a
narrow range of high immune suppression values, 0.58–0.83

(25th and 75th percentiles), but a wide range of immune blockade
values 0.17–0.71 (25th and 75th percentiles) (Fig. 9a). Within
these simulations, the difference between adenomas that
progressed and those that remained benign was that the former
had a higher ratio of immune suppression to antigenicity
(Fig. 9b–d). Going back to the data, we then quantified the ratio
of immunosuppressive cytokines (TGF-β, IL-10) to inflammatory
cytokines (TNF-α) in benign and progressed adenomas (Fig. 9e,
f). In both cases, we found that progressed adenomas had
significantly higher ratios of immunosuppressive cytokines to
inflammatory cytokines. These findings are consistent with the
model prediction that a key difference between progressed and
benign adenomas is that immune suppression is more effective in
progressed adenomas due to them having a reduced inflamma-
tory response, making it easier to overcome. This builds upon the
model’s general conclusion that immune suppression is expected
to be present at tumorigenesis, adding that immune suppression
must also be sufficiently strong to overcome the tumor’s
immunogenicity, which is most easily accomplished by having
immune suppression coupled with low immunogenicity: the
pattern observed in progressed adenomas (A-CIA).

Additionally, model fitting also suggests that immune suppres-
sion is fairly strong in CRC, as most fitted values had high levels
of immune suppression (Fig. 9a). It seems also that the role of
PD-L1 is minimal, as there was a wide range of immune blockade
strengths that fit the data. In other words, high protection from
blockade occurred as frequently as low protection, likely because
it is playing a secondary, almost supportive, role to immune
suppression, and therefore the added benefit is minimal.

Discussion
Integration of mathematical modeling, ecological analysis of
whole slide images, and quantification of intra-tumor antigenic
heterogeneity (aITH) paint a clear picture of the origins and

Fig. 8 Observed patterns of aITH indicate benign adenomas (CRA) are highly antigenic and remain under immune control, while colorectal carcinomas
(CRC) have escaped elimination via immune suppression. Sample sizes are n= 6 CRA, n= 3 “carcinoma-in-ad” (CIA = A-CIA and C-CIA), and n= 7
CRC. In the boxplots shown in a, b, the center line of each boxplot indicates the median, the top and bottom of the box indicate the 75th and 25th
percentiles, respectively, the top whisker the largest value that is no further than 1.5 Interquartile range (IQR) from the 75th percentile, the bottom whisker
the smallest value no more than 1.5 IQR from the 25th percentile, and points indicate outliers. a Distribution of neoantigen recognition potentials (RP),
weighted by their variant allele frequency (VAF). Comparisons across groups indicate that currently benign CRA are significantly more antigenic than all
other tumor types, as determined using Dunn’s test of multiple comparisons using rank sums. b CRC have significantly higher neoantigen burdens than all
other cell types, and modeling indicates that this occurs when selection against antigenicity is relaxed due to immune suppression. c For the samples in
which there was both imaging and genomics (n= 2 CRA, n= 1 CIA, n= 3 CRA, each with 10 downsampled replicates, thereby normalizing for sequencing
depth), principal component analysis (PCA) of all cell/environmental markers, neoantigen burden, and weighed recognition potentials reveals that CRA is
highly antigenic and inflammatory, while CRC is associated with immunosuppressive cells and high neoantigen burden.
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progression of human CRC. Benign adenomas are unable to pass
through an immunogenic bottleneck due to high immunogenicity
and insufficient immune suppression. Conversely, adenomas that
progress do so by avoiding cytotoxic T cell infiltration via
immune suppression that is sufficiently strong to overcome their
significantly lower immunogenicity. The immunosuppressive
niche of progressed adenomas continues to expand during pro-
gression to carcinoma, resulting in a highly proliferative tumor
existing within an immune-cold ecology (Fig. 10).

This conclusion is supported by the observations that, com-
pared to progressed adenomas (A-CIA), benign adenomas (CRA)
exhibit significantly higher abundances of cytotoxic T cells, likely
due to their also significantly higher immunogenicity (Figs. 5d
and 8a). These higher levels of cytotoxic T cells and immuno-
genicity are so severe that they drive unique ecological and
genomic signatures for CRA (Figs. 6a and 8c). CRA also exists
within a spatial community of both pro- and anti-tumor immune
cells (Fig. 7c), suggesting that the immune system is successfully
mounting an attack against the tumor, despite the presence of

immunosuppressive cells and cytokines. In contrast, progressed
adenomas reside within a predominately immunosuppressive
spatial community (niche), separated from cytotoxic T cells
(Fig. 7d). While progressed adenomas (A-CIA) have similar
abundances of immunosuppressive cells and cytokines, another
critical difference is that A-CIA has significantly fewer cytotoxic
T cells and lower antigenicity (Figs. 5d and 8a). Together, these
observations suggest that, unlike benign adenomas (CRA), the
combination of lower immunogenicity and an immunosuppres-
sive niche more successfully reduces immune predation, which
will allow the tumor to persist and eventually progress.
Throughout progression from adenoma to carcinoma (A-CIA to
C-CIA to CRC), there is a trend of decreasing abundances of
cytotoxic T cells and TNF-α, coupled with increases of tumor, M2
macrophage markers, and immunosuppressive cytokines
(Fig. 5d), suggesting that immune suppression continues to
strengthen. The net result of these changes is the generation of a
homogenous immune-cold ecology common to carcinomas,
allowing them to reside within a spatial community isolated from

Fig. 9 An accept/reject statistical inference method was used to determine which model parameters could recreate the observation that benign
adenomas (CRA) were more immunogenic and also had more immunosuppressive cells than progressed adenomas (A-CIA). a Heatmap showing the
number of times each combination of Blockade (ϕ) and Suppression (σ) produced a benign CRA that had higher antigenicity, more immune suppression,
and more immune blockade than A-CIA using that same parameter combination. The narrow range of high suppression values (0.583–0.83, 25th and 75th
percentiles, respectively), and wide range of immune blockade values (0.167–0.71, 25th and 75th percentiles, respectively), suggests that, in colorectal
cancer, immune suppression is strong, and the effect of the blockade is minimal, as there is no clear gradient along the Blockade axis. b, c Heatmaps
showing the relationship between antigenicity and immune suppression of simulated benign and progressed adenomas that fit the data, with the red line
showing a 1:1 relationship. For any given antigenicity, simulated progressed adenomas have more immune suppression compared to benign adenomas. d
Ratio of suppression to antigenicity in benign and progressed adenomas in the 8,571 simulations that fit the data. Progressed adenomas’ higher ratio allows
them to effectively reduce immune predation. e, f Observed spatial ratios of immunosuppressive cytokines (TGF-β, IL-10) to inflammatory cytokines (TNF-
α), based on marker abundances within each samples’ quadrats (n= 9 independent CRA, n= 9 independent CIA (A-CIA and C-CIA), and n= 9
independent colorectal carcinomas (CRC)). Dunn’s test was used to calculate the unadjusted p-values. As predicted by modeling, compared to benign
adenomas (CRA), progressed adenomas (A-CIA) have significantly higher ratios of immunosuppressive cytokines to inflammatory cytokines. While the
effects of cytokines may not be equal, these results suggest that the effect of immune suppression will be greater in progressed adenomas than in benign
adenomas. In d–f, the center line of each boxplot indicates the median, the top and bottom of the box indicate the 75th and 25th percentiles, respectively,
the top whisker the largest value that is no further than 1.5 interquartile range (IQR) from the 75th percentile, the bottom whisker the smallest value no
more than 1.5 IQR from the 25th percentile, and points indicate outliers.
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the immune system, where they are free to divide and accumulate
neoantigens (Figs. 6b, d, 7f, and 8a–c).

Our data-driven hypothesis that CRA remain controlled due to
an anti-tumor immune response that is minimally suppressed is
consistent with our mathematical model, where we showed that
benign adenomas have a lower ratio of immune suppression to
antigenicity, compared to adenomas that progressed (Fig. 9b).
While it has been shown that cytotoxic T cell infiltration is a
marker of good prognosis18–20, and immune suppression is a
marker of poor prognosis12,59,60, our hypothesis suggests that it is
important to consider both inflammation (e.g., cytotoxic T cells,
M1 macrophages, inflammatory cytokines, etc.) and immune
suppression when assessing the risk of progression. If we had
considered only the abundance of immunosuppressive cells and
cytokines, we might have predicted that our benign adenomas
would progress. However, when we incorporated tumor immu-
nogenicity and the spatial organization of the tumor micro-
environment, we saw clear signs that the immune system was
mounting a response against the tumor, despite the presence of
immunosuppressive cells and cytokines. In other words, without
considering both pro- and anti-tumor inflammation, we might
have mistakenly predicted the adenoma had a high risk of
progression.

A second clinical implication of our work is that immune
blockade appears to play little role in the pathway to malignancy.
Modeling suggests that immune suppression is the superior
strategy and that it will outcompete those relying solely on
blockade (Figs. 1 and 3). This is because, similar to the immune
blockade, immune suppression offers protection, but also creates
an environment more supportive of tumor growth. These features
of immune suppression make blockade redundant: if there is
already immune suppression, blockade offers little to no addi-
tional benefit. Our ecological analysis reinforces this prediction
that immune suppression obviates the need for the immune
blockade, for example when compared to benign adenomas, PD-
L1 is found at significantly lower levels in progressed adenomas
and carcinomas, suggesting it does not play an important role in
tumorigenesis or progression (Fig. 5d). Thus, we suspect that
while PD-L1 may help prevent CRA from being eliminated at the
very earliest stages, it is not an important feature of any stage of
the pathway from A-CIA to C-CIA to CRC.

Our hypothesis that PD-L1 does not play a large role in
tumorigenesis or progression may help explain why MSI-low
tumors respond poorly to immune checkpoint inhibitors61–63.
Similarly, given that immune suppression appears to be the
dominant escape strategy, and that CD8 T cells are isolated from
the tumor, we predict that therapies designed to increase cyto-
toxic T cell killing, such as dendritic cell vaccines and chimeric
antigen receptor (CAR) T cell therapy, would have limited success
unless the immunosuppressive niche is addressed with additional
therapy.

Given that the immunosuppressive niche seems to be the
driver of immune escape, more effective treatments of CRC might
be those that seek to re-engineer a hot immune ecology, possibly
by re-polarizing immunosuppressive cells, a treatment currently
being explored for macrophages64–67. An additional benefit to re-
engineering the immunosuppressive niche is that doing so could
shift the fitness landscape for all cells within the tumor. This is in
contrast to targeted therapies aimed at eliminating only those
cells that carry a particular mutation, an approach that suffers
from almost inevitable acquired resistance and relapse. Thus, a
major benefit to re-engineering the immunosuppressive niche is
that by targeting a common underlying mechanism of tumor-
igenesis, it casts a wider net on the heterogeneous population of
cells, potentially reducing the risk of evolving resistance.

In summary, we provide evidence of a critical role for immune
predation in preventing colorectal malignancy, implying that
immune evasion represents a key bottleneck in disease progres-
sion. In CRC, our analysis strongly suggests that it is the con-
struction of an immunosuppressive niche by the tumor that is the
predominant pathway through this bottleneck. As the immuno-
suppressive niche is fundamental to progression and persistence,
re-engineering the microenvironment towards an immune-hot
phenotype may prove to be an effective form of immunotherapy.

Methods
Sample collection and processing. FFPE samples (n= 54) representing adeno-
mas (CRA, n= 13), adenomas with foci of cancer (“ca-in-ads”, CIA, n= 24), and
carcinomas (CRC, n= 17) were selected from the histopathology archives of
University College Hospital, London, under UK ethical approval (07/Q1604/17) or
John Radcliffe Hospital, Oxford under ethical approval (10/H0604/72). Written
informed consent was waived by the relevant RECs due to the retrospective and
anonymous nature of this study. From each block, 7 serial sections were taken at

Fig. 10 Progressed adenomas construct an immunosuppressive niche. This suggests that benign CRA are stuck at the immunogenic bottleneck. CRA that
do progress instead appear to initially survive using the Get Lucky strategy, while eventually shifting to a Get Smart one as immune suppression
strengthens. As immune escape relaxes selection against antigenicity, colorectal carcinomas (CRC) rely less on Get Lucky, and are able to accumulate
neoantigens, increasing neoantigen burden. These conclusions are consistent with the observation that antigenicity and cytotoxic T cells are good
prognostic markers, but also suggest that altering the immunosuppressive ecology, as opposed to targeting checkpoint inhibitors, may prove to be a more
successful treatment strategy.
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4-micron thickness, the first was stained with hematoxylin and eosin (H&E) and
used for histopathological classification by two expert pathologists (M.R.-J. and
M.J.). The remaining 6 sections were used for dual-color IHC staining. A further
6 sections at 5 micron were taken from a subset of blocks (n= 10) and used for
DNA extraction.

DNA extraction. Different histopathological regions within individual lesions were
demarcated on H&E slides by an experienced GI pathologist. This was used to
guide careful needle dissection and DNA was then extracted from these discrete
areas using the DNA QIAamp Mini Kit (Qiagen) and standard protocols.

Whole-exome sequencing. Multi-region WES was performed on a subset of
samples representing CRA (n= 4 with two regions each), CIAs (n= 3, with one
region from the carcinoma region and two from the adenoma region), and CRC
(n= 3, with two regions each). The quality of extracted FFPE DNA was verified
using a multiplex PCR as previously described (van Beers et al.68). Briefly, 1 ng of
FFPE DNA is used as the template for a multiplex PCR reaction using four sets of
primers against the GAPDH gene, generating products of 100, 200, 300, and 400 bp
in length. Amplification of high-quality FFPE DNA produces all four amplicons;
however, DNA that is heavily degraded will only produce the shorter fragments.
Only DNA samples that showed successful amplification of fragments >300 bp in
length were considered for WES. DNA input of 50 ng was used to prepare
sequencing libraries with the Nextera Rapid Capture Exome kit, according to the
manufacturer’s instructions (Illumina, Cambridge, UK). Libraries were sequenced
with a target depth of 60× on Illumina’s HiSeq 2500 with 125 bp paired-end reads
(v4 chemistry). Additional samples were added from (Sottoriva et al.69) adding to
the total number of multi-region CRA and CRC (n= 3 and n= 3, respectively).
Alignments to the hg19 reference genome were conducted using the BWA-mem
algorithm70 and processed using the GATK best practices workflow (Van der
Auwera et al.71) for downstream analysis.

Variant calling. Prior to calling variants, we normalized binary alignment/map
(BAM) by downsampling to the lowest observed average depth across samples.
First, we calculated the average depth for target capture regions using samtools
1.272. Once the average depth was calculated for each sample, the proportion of
reads needed for each sample to reach the minimum average depth was calculated.
Down-sampling was then performed using this proportion for each BAM file using
PICARD 2.17 (Broad Institute, 2017). This was conducted on each sample’s region
to generate ten replicate BAM files. Variant calling was then performed for each
replicate sample group (multiple regions against normal) using multiSNV 273, a
joint calling method specifically designed for multi-region same patient experi-
mental designs. Criteria used for assessing variant candidates dictated a minimum
mapping quality of 30, a minimum base quality of 20, with at least five reads in the
tumor and normal regions, and two variant alleles. Once a variant call set was
obtained variants were further scrutinized for additional criteria. A total of ten
reads were required within all normal sites and variant sites with no variant alleles
present in the normal. Furthermore, a variant must be supported by a minimum
number of two variant reads for at least one region; while the minimum variant
allele frequency in one region is 0.1.

Neoantigen predictions. Human leukocyte antigen (HLA) haplotypes (A, B, and
C) were called using PolySolver (Shukla et al.74) prior to downsampling on all
normal regions for each patient. Neoantigen predictions were performed using
NeoPredPipe 1.0 (Schenck, Lakatos, Gatenbee, Graham, & Anderson, 2019), which
utilizes ANNOVAR75 for variant annotations and NetMHCpan 4.0 (Jurtz et al.76),
NeoPredPipe is specifically designed to handle multi-region sequence samples.
Only MHC-class I neoantigens were assessed for peptides of 8, 9, and 10-kmer
lengths. A minimum cut-off of 500 nM binding affinities were used to be con-
sidered a putative neoantigen. To assess T cell receptor binding potential, Łuksza
et al.’s77 recognition potential algorithm implemented within NeoPredPipe was
used.

Dual-color IHC. Sequential dual-color IHC of 10 markers was performed
according to standard protocol. Briefly, 4 μm serial sections were dewaxed, rehy-
drated, and immersed in 3% hydrogen peroxide for 20 min to quench endogenous
peroxidase activity. Antigen retrieval was carried out at 95 °C for 20 min in sodium
citrate buffer (pH 6.0) unless otherwise specified (Supplementary Table 2). After
cooling, sections were incubated with blocking buffer (phosphate-buffered saline
supplemented with 2% goat serum and 1% bovine serum albumin) for 1 h at RT.
Primary antibodies were diluted in blocking buffer and applied for 1 h at RT or
overnight at 4 °C (see Supplementary Table 2 for antibody details). Sections were
then incubated with a biotinylated secondary antibody at RT for 45 min, followed
by incubation with streptavidin–biotin peroxidase solution at RT for 45 min.
Visualization of the first antibody binding was carried out using DAB, according to
the manufacturer’s instructions (Vector Labs, Peterborough, UK). Slides then
underwent a second round of antigen retrieval, generally at 95 °C for 5 min in
sodium citrate buffer (pH 6.0), before applying the blocking buffer for a further 1 h
at RT. The second primary antibody was then applied (see Supplementary Table 2
for details), followed by incubation with a biotinylated secondary antibody at RT

for 45 min and incubation with streptavidin–alkaline phosphatase. Visualization of
the second antibody binding was performed using Fast Red, according to the
manufacturer’s instructions (Abcam, Cambridge, UK). Finally, sections were lightly
counterstained using Gill’s hematoxylin and allowed to dry before mounting and
digitizing using the Pannoramic 250 high-throughput scanner (3D Histech,
Budapest, Hungary).

In situ hybridization. Dual-color RNA ISH was performed to detect the expression
of TGFβ, TNFα, IL6, and IL10 using commercially available reagents (Advanced
Cell Diagnostics, Newark, CA). The RNAscope 2.5 HD Duplex Reagent Kit
(catolog number 322430) was used according to the manufacturer’s instructions
with the probes Hs-TGFB1 (400881), Hs-TNFA-C2 (310421-C2), Hs-IL10
(602051), and Hs-IL6-C2 (310371-C2).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The quadrat count data gathered for each image and the multi-region neoantigen
predictions are available on Zenodo.

Code availability
Code used to conduct simulations is available on GitHub.
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