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Abstract. We determine the effective (macroscopic) thermoelastic properties of two-phase 
composites computationally. To this end, we use a physics-informed neural network (PINN)-
mediated first-order two-scale periodic asymptotic homogenization framework. A diffuse interface 
formulation is used to remedy the lack of differentiability of property tensors at phase interfaces. 
Considering the reliance on the standard integral solution for the property tensors on only the 
gradient of the corresponding solutions, the emerging unit cell problems are solved up to a 
constant. In view of this and the exact imposition of the periodic boundary conditions, it is merely 
the corresponding differential equation that contributes to minimizing the loss. This way,  the 
requirement of scaling individual loss contributions of different kinds is abolished. The developed 
framework is applied to  a planar thermoelastic composite with a hexagonal unit cell with a circular 
inclusion by which we show that PINNs work successfully in the solution of the corresponding 
thermomechanical cell problems and, hence, the determination of corresponding effective 
properties. 
Introduction 
Accurate prediction of the effective (macroscopic) material properties is crucial for the high-
fidelity simulation of the deformation processes of heterogeneous media. Although there exist  
analytically derived bounds, e.g., (arithmetic) Voigt and the (harmonic) Reuss averages;  
and effective-medium theories, e.g., the Maxwell, self-consistent, and differential effective-
medium approximations, these fall short of providing accurate predictions for materials systems, 
including high property contrast and varying phase volume fractions [1]. This  is due to the limited 
microstructural descriptors considered in their formulation, e.g., the phase volume fraction and 
shape. As a remedy, full-field computational micro-macro transfer techniques, e.g., finite element 
method-based computational homogenization schemes, have been proposed [2-5]. This requires 
solving the boundary value problem, in this context also referred to as the cell problem, over the 
discretized periodic unit cell, or, in general, a representative volume element (RVE). 

Since the founding work of Lagaris et al., [6] deep neural networks (DNNs) have emerged as 
an alternative method to solve partial differential equations (PDEs). Physics-informed neural 
networks (PINNs) use the universal approximation property [7-9] of DNNs in approximating the 
solution of PDEs in physical problems[10]. This is accomplished through an optimization 
procedure in which  the DNN hyper-parameters are found by minimizing loss functions.  
Whereas the classical machine learning approaches identify the corresponding error in terms of 
distance to a dataset, it is the residual norm of the governing differential equation and associated 
initial and boundary conditions (BCs) which forms the loss function in PINNs [6, 11-13]. As 
opposed to standard discretization techniques, e.g., the finite element method (FEM), which 
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requires domain discretization and construction of a weak form, PINNs allow solving the PDE in 
its strong form and in a meshless manner providing a differentiable solution which proves helpful 
in  subsequent calculations[6]. For an extensive survey regarding the state of the art of PINNs, the 
reader is referred to [14].  

This work considers the determination of the effective  thermomechanical properties of periodic 
two-phase composites. This is accomplished by two-scale asymptotic and computational 
homogenization. Unlike many references that conventionally use FEM in the solution of the cell 
problem, see, e.g., [2-5], we use PINNs by considering that the micro- (constituent-level) 
\MP{scale} is described by Duhamel-Neumann and Fourier laws. Solving the unit cell problems 
up to a constant and an exact imposition of the periodic boundary conditions eliminates loss 
contributions from the boundary conditions of different kinds. It should be noted that the property 
tensor computations rely on the integrals of the gradient of the corresponding solutions.  
DeepXDE is used as the scientific ML and physics-informed library[10]. A 2D periodic hexagonal 
unit cell with a central circular inclusion is selected as an application problem. Our work shows 
that PINNs successfully solve the cell problem, i.e., the local thermomechanical boundary value 
problem, and determine corresponding effective properties. For an extended treatment of the 
framework in generic elliptic PDEs, with $n-$dimensional applications including phase contrast 
and interface sharpness effects on  the solution accuracy, see [15]. 
Planar Thermoelasticity 
We consider planar thermoelasticity in which the relation between mechanical and thermal fields 
is constructed through the following Duhamel-Neumann law [16,17] for i,j,k,l = 1,2 

𝜎𝜎𝑖𝑖𝑖𝑖 = C𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖ϵ𝑖𝑖𝑖𝑖 − β𝑖𝑖𝑖𝑖Θ  (1) 

𝛽𝛽𝑖𝑖𝑖𝑖 = C𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑘𝑘𝑘𝑘  (2)         

Here, Cijkl, βij , and αkl denote components of the fourth-order planar elasticity tensor C, and planar 
second-order thermal expansion tensors β and κ, respectively. The temperature field is denoted by 
Θ whereas σ represents the stress tensor. Letting x denote the position vector, the components of 
the strain tensor ϵ  are computed from the displacement field u with 

𝜖𝜖𝑖𝑖𝑖𝑖 = 1
2
�𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� (3) 

Letting κ denote the second-order thermal conductivity tensor; it is assumed that Fourier law 
relates the heat flow vector to the temperature with 

𝑞𝑞𝑖𝑖 = −𝜅𝜅𝑖𝑖𝑖𝑖
𝜕𝜕Θ
𝜕𝜕𝑥𝑥𝑗𝑗

  (4) 

In view of Eq. 1 and 4, and letting b and f denote the internal body force and heat source density, 
respectively, the linear momentum balance and the stationary heat balance equations respectively 
read 

𝜕𝜕𝜎𝜎𝑖𝑖𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝑏𝑏𝑖𝑖        𝑎𝑎𝑎𝑎𝑎𝑎        𝜕𝜕𝑞𝑞𝑖𝑖
𝜕𝜕𝑥𝑥𝑖𝑖

= 𝑓𝑓 (5) 

Considering planar thermoelastic isotropy, we have 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝜆𝜆𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑘𝑘𝑘𝑘 + 𝜇𝜇�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗� ,        𝛽𝛽𝑖𝑖𝑖𝑖 = 𝛽𝛽𝛿𝛿𝑖𝑖𝑖𝑖 ,        𝑎𝑎𝑎𝑎𝑎𝑎        𝜅𝜅𝑖𝑖𝑖𝑖 = 𝜅𝜅𝛿𝛿𝑖𝑖𝑖𝑖   (6) 
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for i, j, k, l = 1, 2. Here, λ and μ represent planar Lamé constants, whereas β and κ denote isotropic 
thermal expansion and heat conduction coefficients. In matrix notation, the isotropic property 
tensors C, β, and κ whose indicial representations are given in Eq. 6, correspond to the following 
3 x 3, 2 x 2, and 2 x 2 matrices, respectively 

[𝐶𝐶] = �
𝜆𝜆 + 2𝜇𝜇 𝜆𝜆 0
𝜆𝜆 𝜆𝜆 + 2𝜇𝜇 0
0 0 𝜇𝜇

�  ,     [𝛽𝛽] = �𝛽𝛽 0
0 𝛽𝛽�  ,     [𝜅𝜅] = �𝜅𝜅 0

0 𝜅𝜅�  (7) 

First-Order Asymptotic Homogenization 
We are interested in material systems of two periodically distributed phases showing linear 
physical properties. For such systems, a repeating material domain ν, which is also referred to as 
a unit cell, encapsulates all material characteristics. Henceforth, let x denote the cell-scale 
(microscale) position and capture fast field variations. It is linked to the macroscale position Mx 
which captures fields slow variations, with x = Mx/ϵ, where 0 < ϵ << 1 scale separation parameter. 
Following [17], we apply a two-scale asymptotic expansion of the nondimensional thermoelastic 
problem-solution in terms of the displacement and temperature fields uϵ(Mx) and Θϵ(Mx) results in 
the following representation 

𝑢𝑢𝜖𝜖� 𝑥𝑥𝑀𝑀 � = 𝑢𝑢(0)� 𝑥𝑥𝑀𝑀 , 𝑥𝑥� + 𝜖𝜖𝑢𝑢(1)� 𝑥𝑥𝑀𝑀 , 𝑥𝑥� + 𝜖𝜖2𝑢𝑢(2)� 𝑥𝑥𝑀𝑀 , 𝑥𝑥� + 𝑂𝑂(𝜖𝜖3)  (8) 

Θ𝜖𝜖� 𝑥𝑥𝑀𝑀 � = Θ(0)� 𝑥𝑥𝑀𝑀 , 𝑥𝑥� + 𝜖𝜖𝑢𝑢Θ(1)� 𝑥𝑥𝑀𝑀 , 𝑥𝑥� + 𝜖𝜖2𝑢𝑢Θ(2)� 𝑥𝑥𝑀𝑀 , 𝑥𝑥� + 𝑂𝑂(𝜖𝜖3)  (9) 

Here, u(i) and Θ(i) are ν periodic functions in x. Using Eq. 1 and 4 to derive the expansions for the 
stress tensor and heat flux vector, σϵ and qϵ, substituting the expansions in Eq. 5 and comparing 
coefficients of powers in ϵ and applying separation of variables, we reach the following 
macroscopic property tensors C⋆, β⋆, and κ⋆, respectively 

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖∗ = 1
|𝜈𝜈|∫ �𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝑈𝑈𝑚𝑚𝑘𝑘𝑘𝑘(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑛𝑛

�𝜈𝜈 𝑑𝑑𝑑𝑑  (10) 

𝛽𝛽𝑖𝑖𝑖𝑖∗ = 1
|𝜈𝜈|∫ �𝛽𝛽𝑖𝑖𝑖𝑖 − 𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝜕𝜕𝐿𝐿𝑚𝑚(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑛𝑛

�𝜈𝜈 𝑑𝑑𝑑𝑑  (11) 

𝜅𝜅𝑖𝑖𝑖𝑖∗ = 1
|𝜈𝜈|∫ �𝜅𝜅𝑖𝑖𝑖𝑖 − 𝜅𝜅𝑛𝑛𝑛𝑛

𝜕𝜕𝑀𝑀𝑖𝑖 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑛𝑛

�𝜈𝜈 𝑑𝑑𝑑𝑑  (12) 

In Eq. 10, 11 and 12, Ukl
m, Lm and Mi for m, k, l, i = 1, 2 correspond to ν - periodic corrector 

functions which constitute the solutions of the following cell-problems, respectively 

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝑈𝑈𝑘𝑘

𝑚𝑚𝑚𝑚(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑙𝑙

� = −𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑗𝑗
  (13) 

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝜕𝜕𝐿𝐿𝑘𝑘 (𝑥𝑥)
𝜕𝜕𝑥𝑥𝑙𝑙

� = 𝜕𝜕𝛽𝛽𝑖𝑖𝑖𝑖(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑗𝑗
  (14) 

𝜕𝜕
𝜕𝜕𝑥𝑥𝑗𝑗

�𝜅𝜅𝑗𝑗𝑗𝑗
𝜕𝜕𝑀𝑀𝑖𝑖(𝑥𝑥)
𝜕𝜕𝑥𝑥𝑙𝑙

� = −𝜕𝜕𝜅𝜅𝑖𝑖𝑖𝑖(𝑥𝑥)

𝜕𝜕𝑥𝑥𝑗𝑗
  (15) 
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Physics-Informed Neural Networks (PINNs) 
In the representation of the corresponding theory, we follow the works by Lu et al. [10] and 
Haghighat et al. [13]. Let NL(x;Θ) : Rdimin → Rdimout represent the surrogate model, an L-layer neural 
network with L - 1 number of hidden layers, that gives the approximate solution for the unknown 
u of the differential equation. Let x and y denote the input and output vectors, respectively, and  
Θ := {W, b} represent the set of trainable network parameters, i.e., the weight matrix W and the 
bias vector b. dimin and dimout denote the network input and output dimensions, respectively. With 
the input-output relations z0 ← x and y ← zL, the propagation of the input through the layers of a 
feed-forward network is accomplished with the following sequence of operations 

𝑧𝑧𝑘𝑘 = 𝜎𝜎(𝑊𝑊𝑘𝑘𝑧𝑧𝑘𝑘−1 + 𝑏𝑏𝑘𝑘) ,        1 ≤ 𝑘𝑘 ≤ 𝐿𝐿 − 1  (16) 

𝑧𝑧𝐿𝐿 = 𝑊𝑊𝐿𝐿𝑧𝑧𝐿𝐿−1 + 𝑏𝑏𝐿𝐿  (17) 

Here, σ is the nonlinear activation function, and qk, zk ϵ Rqk ,Wk ϵ Rqk×qk−1 and bk ϵ Rqk
 denote the 

number of neurons, the outputs, the weight matrix, and the bias vector of each layer k,  espectively. 
Fig. 1 depicts a schematic plot of a PINN used in the solution of PDEs for the input x and output 

û, as an approximation of the actual solution u. P and B respectively denote the  differential and 
boundary operators and the subscripts P and B associations with the PDE and the boundary 
operators, respectively. For a given training set (collocation points) T , the loss function L (θ; T ) 
then comprises a weighted sum (with ωP and ωB denoting the loss weights) of the residuals of the 
PDE and the boundary terms which are denoted by LP(θ; TP)) and LB(θ; TB)), respectively, to give 

𝐿𝐿(𝜃𝜃;𝑇𝑇) = 𝜔𝜔𝑃𝑃𝐿𝐿𝑃𝑃(𝜃𝜃;𝑇𝑇𝑃𝑃) + 𝜔𝜔𝐵𝐵𝐿𝐿𝑃𝑃𝑃𝑃(𝜃𝜃;𝑇𝑇𝐵𝐵)  (18) 

The neural network minimizes the loss function by varying the network parameters θ by means of 
a process referred to as training. At the end of the training, a converged parameter set θ⋆ is reached, 
providing the optimum output. 
 

 
Fig. 1. Schematics of a PINN used in the solution of a PDE with P and B denoting differential 

and boundary operators, respectively. The image is adapted from [10]. 
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Applications 
As an illustrative example, we consider a two-dimensional hexagonal composite domain with a 
circular inclusion. The selected unit cell corresponds to the Wigner-Seitz cell of the hexagonal 
Bravais lattice; see Fig. 2. An inclusion volume fraction of ϕi = 0.30 is selected. 

Letting a(x) denote a generic isotropic property; the inclusion and matrix properties are denoted 
as ai and am, respectively. For convenience we consider the values  
ai = λi = μi = βi = κi = 2 and am = λm = μm = βm = κm = 1. This corresponds to a property contrast of 
2. The case for phase interchange with ai = 1 and am = 2 is also investigated. 

Considering Eq. 13, 14 and 15, the computation of the source terms requires property 
derivatives with respect to position. To make this possible, we use a diffuse interface approach 
given by 

𝑎𝑎(𝑥𝑥) = 𝑎𝑎𝑚𝑚 + 𝑎𝑎𝑖𝑖−𝑎𝑎𝑚𝑚
2

�1 − tanh �|𝑥𝑥|−𝑟𝑟
𝜉𝜉
��  (19) 

where the regularization parameter ξ is chosen to satisfy L/ξ = 200. In view of Neumann’s principle 
[18, 19], the macroscopic thermoelastic properties of the material system represented by the 
periodic composite unit cell given in Fig. 2 possess planar isotropy. Consequently, we can compute 
the thermoelastic property tensor components through the solutions Ukl

m, Lm and Mi of Eq. 13, 14 
and 15 using only one source term in each, which we denote by bU, bL and fM, respectively, and 
are given in matrix form as 

[𝑏𝑏𝑈𝑈] = �

𝜕𝜕[𝜆𝜆(𝑥𝑥)+2𝜇𝜇(𝑥𝑥)]
𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥2

�  ,        [𝑏𝑏𝐿𝐿] = �

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥1
𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥2

�  ,        𝑎𝑎𝑎𝑎𝑎𝑎        𝑓𝑓𝑀𝑀 = 𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑥𝑥1

  (20) 

The above problem is implemented into DeepXDE, a scientific ML and physics-informed library 
[10]. As for the NN hyperparameters, the density and depth of the neural network are selected as 
50 and 3, respectively. 25000 collocation points are selected over the problem domain. In 
optimization studies, a learning rate of 0.01 is used with 30000 epochs. The first 5000 of the 30000 
epochs belong to adam optimizer, whereas the remaining 25000 to the L-BFGS optimizer. 

 
Fig. 2. The selected hexagonal unit cell centered at the origin of the selected Cartesian plane  
(e1, e2). The regular hexagon has an edge length of L and the circular inclusion a radius of r.  
A diffuse phase interface formulation makes the function differentiable when computing the 

source terms. 
 

Results and Discussions 
Using the PINNs framework, the cell problems dictated by Eq. 13, 14 and 15 are solved for the 
load cases given in Eq. 20 considering phase properties with ai/am = 2 and am/ai = 2. Fig. 3 gives 
the normalized loss function training histories for the PINN solutions. During the iterations, the 
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first 5000 epochs belonged to the first-order and stochastic adam optimizer. It is observed thatat 
the latter stages of adam optimization, the loss hardly improves. Reverting to L-BFGS optimizer 
considerably reduces loss by providing a monotonic convergence. 
 

 
Fig. 3. Training histories of the loss function for the PINN solution of the cell problems given in 

Eq. 13, 14 and 15. The first 5000 epochs (marked with a red dashed line) belong to adam 
optimizer, whereas the remaining to L-BFGS. All results are normalized with respect to the 

initial state. 
 

Resultant contour plots for the property, as well as resultant fields, are given in Figs. 4, 5, and 
6. The symmetry and periodicity in the solution fields match that of the composite unit cell. The 
phase interchange results in the interchange of zones of maximum and minimum in the field 
distributions.  

Computing the integral expressions given in Eq. 10, 11 and 12, we determine the effective 
property tensors. For ai/am = 2 and phase content of ϕi = 0.30, the (arithmetic) Voigt and the 
(harmonic) Reuss averages yield a*V = 1.300 and a*R = 1.176, respectively, which also correspond 
to upper and lower bounds, respectively. 
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Fig. 4. The contour plots for the solution of Eq. 13 considering the load case bU given in Eq. 20. 

The property field a(x) is given for ai/am = 2 in (a) and for am/ai = 2 in (d). The strain 
components are computed using the corresponding corrector function U with ϵ11 = ∂U1/∂x1,  

ϵ22 = ∂U2/∂x2 and γ12 = [∂U1/∂x2 + ∂U2/∂x1]. 
 

 
Fig. 5. The contour plots for the solution of Eq. 14 considering the load case bL given in Eq. 20. 

The property field a(x) is given for ai/am = 2 in (a) and for am/ai = 2 in (d). The strain 
components are computed using the corresponding corrector function L with ϵ11 = ∂L1/∂x1,  

ϵ22 = ∂L2/∂x2 and γ12 = [∂L1/∂x2 + ∂L2/∂x1]. 
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Fig. 6. The contour plots for the solution of Eq. 15 considering the load case fM given in Eq. 20. 

The property field a(x) is given for ai/am = 2 in (a) and for am/ai = 2 in (d). 
 

This is, however, under sharp interface conditions, which is not the case in our PINN computations. 
In our PINN solution, we have the following matrix representations 

[𝐶𝐶∗] = �
3.621 1.207 0
1.207 3.621 0

0 0 1.207
�  ,     [𝛽𝛽∗] = �1.207 0

0 1.207�  ,     [𝜅𝜅∗] = �1.224 0
0 1.224�   

This corresponds to the effective planar Lamé constants of λ* = μ* = 1.207. Selecting λ = μ and 
keeping a constant ratio between the λ, μ, and β values of the matrix and the inclusion corresponds 
to the assumption of an identical thermal expansion coefficient α for the phases. Consequently, 
one expects to recover α* = αi = αm = 1/4 as the effective thermal expansion coefficient for the 
composite. Our solutions with β* = λ* = μ* agree with this statement and confirm our computations. 
Taking am/ai = 2 and phase content of ϕi = 0.30, the (arithmetic) Voigt and the (harmonic) Reuss 
averages, considering sharp interface conditions, yield a*V = 1.700 and a*R = 1.538, respectively. 
In our PINN solution, we have the following matrix representations 

[𝐶𝐶∗] = �
4.830 1.610 0
1.610 4.830 0

0 0 1.610
�  ,     [𝛽𝛽∗] = �1.610 0

0 1.610�  ,     [𝜅𝜅∗] = �1.638 0
0 1.638�  

This corresponds to the effective planar Lamé constants of λ* = μ* = 1.610. As before, our solutions 
with β* = λ* = μ* agree with the condition of α* = αi = αm = 1/4. Although these results show that 
the emerging effective properties lie between those of the constituent phases and the analytical 
bounds, the computed magnitudes do not follow conventional rules of mixtures. 
Summary 
We presented a physics-informed neural network-based first-order two-scale periodic asymptotic 
computational homogenization framework to determine the effective (macroscopic) thermoelastic 
properties of two-phase composites. The developed framework allowed the exact imposition of 
the periodic boundary conditions. Solving the relevant thermomechanical unit cell problems up to 
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a constant was sufficient to compute the integrals giving the effective properties. These allowed 
the training loss terms devoid of boundary condition contribution, eliminating the need for 
identifying the associated weights. We applied the developed framework to a planar composite 
with a circular inclusion of a hexagonal periodic unit cell.  We showed that PINNs work 
successfully to solve emerging cell problems yielding the determination of effective 
thermomechanical properties. 
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