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Abstract
We say that a set of points S ⊂ R

d is an ε-nearly k-distance set if there exist 1 ≤
t1 ≤ . . . ≤ tk , such that the distance between any two distinct points in S falls into
[t1, t1 + ε] ∪ · · · ∪ [tk, tk + ε]. In this paper, we study the quantity

Mk(d) = lim
ε→0

max {|S| : S is an ε-nearly k-distance set inR
d}

and its relation to the classical quantity mk(d): the size of the largest k-distance set
in R

d . We obtain that Mk(d) = mk(d) for k = 2, 3, as well as for any fixed k,
provided that d is sufficiently large. The last result answers a question, proposed by
Erdős,Makai, and Pach.We also address a closely related Turán-type problem, studied
by Erdős, Makai, Pach, and Spencer in the 90s: given n points in R

d , how many pairs
of them form a distance that belongs to [t1, t1 +1]∪ · · · ∪ [tk, tk +1], where t1, . . . , tk
are fixed and any two points in the set are at distance at least 1 apart? We establish the
connection between this quantity and a quantity closely related to Mk(d − 1), as well
as obtain an exact answer for the same ranges k, d as above.
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1 Introduction

Let us start with some definitions. We call any point set that determines at most k
distances a k-distance set.We denote bymk(d) the cardinality of the largest k-distance
set in R

d . A balanced complete s-partite graph on n vertices is a graph whose vertices
are partitioned into k groups of size �n/s� or �n/s	, and in which two vertices are
connected by an edge if and only if they belong to different groups. We denote by
T (n, s) the number of edges in a balanced complete s-partite graph on n vertices. A
set P ⊆ R

d is separated if ‖p1 − p2‖ ≥ 1 for any p1, p2 ∈ P with p1 �= p2. Let us
formulate the main result of this paper.

Theorem 1.1 The following holds for k ≤ 3 and any d, and for any fixed k and
d ≥ d0(k).

(i) There exists ε = ε(k, d) > 0, such that for any sequences t1, . . . , tk ≥ 1 of
distances the following is true. If P ⊆ R

d is a set such that for any pi , p j ∈ P
with pi �= p j we have ‖pi − p j‖ ∈ [t1, t1 + ε] ∪ · · · ∪ [tk, tk + ε], then P has size
at most mk(d). (Stated differently, Mk(d) = mk(d).)

(ii) There exists n0(k, d) > 0, such that for any sequence t1, . . . , tk > 0 of distances
the following is true. If P ⊂ R

d is a separated set of size n ≥ n0, then the number
of pairs of points in P whose distance lies in [t1, t1+1]∪· · ·∪[tk, tk +1] is at most
T (n,mk(d − 1)). This bound is sharp. Moreover, the same holds with intervals of
the form [ti , ti + cn1/d ] for some c = c0(k, d) > 0.

Theorem 1.1 (ii) for k = 1 was proved by Erdős et al. [11] (see Theorem 1.5 below).
For k = 2, it was shown by Erdős et al. [10] in a slightly weaker form (see Theorem 1.8
below). Although (i) and (ii) are strongly related, the “max clique” problem in (i) has
not been addressed before. Theorem 1.1 is a combination of Theorems 1.15 and 1.18
below.

In the long introductory section that follows, we tried to address several points:

• First, we relate the study of “nearly-equal distances” to that of “equal distances”.
The history of the latter is summarised in the next subsection, and the relation
between the two notions is developed in Sect. 1.4, in which we give constructions
of nearly k-distance sets and compare them with the known constructions of k-
distance sets.

• Second, we relate the older Turán-type problem on the number of “nearly-equal
distances” to the proposed problem of determining the largest nearly k-distance
set.We give the history of this Turán-type problem in Sect. 1.2, introduce the study
of nearly k-distance sets in Sect. 1.3, and establish the first result that relates the
two questions in Sect. 1.4.

• Third, we introduce some of the more technical, but important, notions used in
the proofs in Sect. 2, and in particular α-flat nearly k-distance sets, defined in
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Sect. 1.3.1. It is via the notion of α-flat nearly k-distance sets that we actually
establish the link between the “nearly k-distance set” problem and the Turán-type
problem.

Our main results are presented in Sect. 1.5, with their proofs in Sect. 2.

1.1 Equal Distances

In 1946, Erdős [6] asked the following two questions, which greatly influenced the
course of discrete geometry. Take a set X of n points on the plane.

Question 1.2 What is the smallest number of distinct distances that X can determine?

Question 1.3 What is the maximum number of equal distances that X can determine?

These questions have a rich history, and we refer the reader to the book of Brass
et al. [4] and the references therein. In the recent years, the development of algebraic
methods in discrete geometry lead to a breakthrough of Guth and Katz [16], who
showed that the quantity in the first question is �(n/log n), which almost matches
Erdős’ upper bound O(n/log1/2n). For R

d with d ≥ 3 Solymosi and Vu [26] proved
that the quantity in the first question is �

(
n(2/d)(d+1)/(d+2)

)
, while Erdős proved the

close and conjecturably sharp upper bound O(n2/d).
Even though Questions 1.2 and 1.3 seem to have exactly the same flavour, (which

is backed by, e.g., the fact that upper bounds in Question 1.3 imply lower bounds in
Question 1.2),much less is knownaboutQuestion 1.3. The best upper boundO(n4/3) is
due to Spencer et al. [27], and the best lower bound is due to Erdős is �(n1+c/log log n)

for some c > 0. Interestingly, this problem becomes much simpler in dimensions
d ≥ 4: there are point sets that determine quadratically many unit distances. (Brass
[3] and van Wamelen [30] determined the maximum number of unit distances exactly
for d = 4 and Swanepoel [28] for even d ≥ 6 and large n, respectively.) Stated slightly
differently, Question 1.2 asks to determine mk(2). The bounds mentioned above give
�(k log1/2 k) ≤ mk(2) ≤ O(k log k). In 1947, Kelly [17] showed that m2(2) = 5.
Larman et al. [22] showed thatm2(d) ≤ (d +1)(d +4)/2. Several years later, Bannai
et al. [1] and independently Blokhuis [2] found the following better bound, which
additionally works for any k:

mk(d) ≤
(
d + k

k

)
. (1)

There is the following very natural construction of a k-distance set in R
d if k ≤ d +1:

in R
d+1, take all vectors in {0, 1}d+1 with exactly k many 1’s. Then they lie on a

sphere in the hyperplane
∑

xi = k and determine only k + 1 distinct scalar products
(and thus only k distinct distances). This gives the lower bound

mk(d) ≥
(
d + 1

k

)
. (2)
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We will refer to (1) and (2) many times in the proofs. Table 1, taken from a paper
of Szöllősi and Östergård [29], summarises the best known lower bounds on (and in
some cases exact values of)mk(d) for small values of k and d. Note also that it is easy
to see that for any d we have m1(d) = d + 1 and for any k we have mk(1) = k + 1.

Table 1 Lower bounds on mk (d)

k�
d 2 3 4 5 6 7 8

2 5 6 10 16 27 29 45

3 7 12 16 ≥ 24 ≥ 40 ≥ 65 ≥ 121

4 9 13 ≥ 25 ≥ 41 ≥ 73 ≥ 127 ≥ 241

5 12 ≥ 20 ≥ 35 ≥ 66 ≥ 112 ≥ 168 ≥ 252

6 13 ≥ 21 ≥ 40 ≥ 96 ≥ 141 ≥ 281 ≥ 505

1.2 Nearly Equal Distances

Most of the results on k-distance sets use proofs with an algebraic flavour and often
use results on incidences of points and surfaces. In the 90s, Erdős et al. [11] proposed
the following variant of the problem, which is not of this type: given a set of n points
on the plane, how many of the distances between the points could be nearly equal,
that is, that fall into the interval [t, t + 1] for some t? To avoid trivialities, we only
consider separated sets.

It turns out that the answer to this question is very different from the answer to
Question 1.3: we can have as many as n2 nearly equal distances in a separated set
of size 2n. To see this, take 2n points of the form (x1, x2), where x1 ∈ {0, n2} and
x2 ∈ {1, . . . , n}. Then any distance between points with different x1-coordinates is
between n2 and

√
n4 + n2 < n2 + 1.

This example turns out to be optimal. The following theorem was proved by Erdős,
Makai, Pach, and Spencer.

Theorem 1.4 [11, Theorem 3] Let P be a separated set of n points in the plane. If n
is sufficiently large, then, for every t > 0, the number of pairs of points in P whose
distance lies in the interval [t, t + 1] is at most �n2/4�. This bound can be attained
for every t ≥ t(n), where t(n) is a suitable function of n.

They have studied two natural types of generalisations: one deals with higher dimen-
sions and the other with more intervals in which the distances may fall.

Theorem 1.5 [11, Theorem 5] Let P be a separated set of n points in R
d . If n is

sufficiently large, then for every t > 0, the number of pairs of points in P whose
distance lies in the interval [t, t + 1] is at most T (n, d). This bound can be attained
for every t ≥ t0(d, n), where t0(d, n) is a suitable function of d and n.

In the case of several intervals, Erdős et al. [9] proved the following theorem.
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Theorem 1.6 [9] Let P be a separated set of n points in the plane, and let k be a
positive integer. Then for any γ > 0 and sufficiently large n the following is true.
For any t1, . . . , tk > 0, the number of pairs of points in P whose distance lies in
[t1, t1 + 1] ∪ · · · ∪ [tk, tk + 1] is at most

n2

2

(
1 − 1

k + 1
+ γ

)
.

This estimate is tight for every fixed k and for some t1 = t1(k, n), . . . , tk = tk(k, n).

Actually, they have proved something stronger: the allowed intervals in Theo-
rems 1.4, 1.7, and 1.6 are of the form [ti , ti + c

√
n], [ti , ti + c(d)n1/d ], and

[ti , ti + c(k, γ )
√
n] respectively, where c, c(d), and c(k, γ ) are constants (only de-

pending on their arguments).
In [23] Makai et al. surveyed the results on this topic and also stated the following

theorem that was supposed to appear in a follow-up paper by Erdős, Makai, and Pach.

Theorem 1.7 ([23, Thm. 2.4], stated without proof) Let d ≥ 2 be an integer and let
P be a separated set of n points in R

d . For any γ > 0 and sufficiently large n the
following is true. For any t1, t2 > 0 the number of pairs of points in P whose distance
lies in [t1, t1 + 1] ∪ [t2, t2 + 1] is at most

n2

2

(
1 − 1

m2(d − 1)
+ γ

)
.

This bound is asymptotically tight for some t1 = t1(n) and t2 = t2(n).

The proof of this theorem was kept in the form of handwritten notes until recently,
when Makai and Pach [10] placed on the arXiv a typed version of those notes (joint
with Paul Erdős). There, they prove Theorem 1.7 in a stronger form.

Theorem 1.8 [10, Thm. 1] The statement of Theorem 1.7 is true. Moreover, even with
intervals of the form [ti , ti + cdn1/d ], where cd > 0 is a constant that depends on d,
the number of such pairs is at most

T (n,m2(d − 1)) = n2

2

(
1 − 1

m2(d − 1)

)
+ O(1)

if d /∈ {4, 5}.
Erdős et al. [10, Thm. 2] also considered a less restrictive variant of the notion of

nearly k-distance sets. Let us denote by Wk(d) the maximum cardinality N such that
for any ε > 0 there exist t1 ≤ . . . ≤ tk and a set S ⊂ R

d with |S| = N such that for
any p1 �= p2 ∈ S we have

‖p1 − p2‖ ∈
k⋃

i=1

[ti , (1 + ε)ti ].
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In [10] they proved that Wk(d) = (d + 1)k , showing that “weakly” nearly k-distance
sets can be much bigger than k-distance sets.

1.3 Nearly k-Distance Sets

We say that a separated set of points P is an ε-nearly k-distance set with distances
1 < t1 < . . . < tk if

‖p1 − p2‖ ∈
k⋃

i=1

[ti , ti + ε]

holds for any p1, p2 ∈ P with p1 �= p2. By analogy with mk(d), for k ≥ 1 and d ≥ 0
let Mk(d) denote the largest number M such that for any ε > 0 there exists an ε-nearly
k-distance set in R

d of cardinality M .1 Obviously, Mk(d) ≥ mk(d). An expression
equivalent to Mk(d) occurs in [10, page 19], where they speculate that “for k fixed, d
sufficiently large probably Mk(d) = mk(d).” We confirm this later.

Note that the difficulty in relating the maximal cardinalities of k-distance sets and
nearly k-distance sets lies in the fact that, in nearly k-distance sets, distances of different
order of magnitude may appear. If we additionally assume that ti+1/ti ≤ K for some
universal constant K in the definitionof nearly k-distance sets, a compactness argument
would immediately imply that mk(d) equals this modified Mk(d) (see Lemma 2.2
below).

For d, k ≥ 1 letMk(d, n) denote the largest numberM forwhich there is a separated
set S ⊆ R

d of n points and k real numbers 1 ≤ t1 ≤ . . . ≤ tk such that the number of
pairs {p1, p2} with p1, p2 ∈ S satisfying

‖p1 − p2‖ ∈
k⋃

i=1

[ti , ti + 1] (3)

is at least M . In these terms, Theorems 1.4–1.8 determine (or asymptotically deter-
mine) the quantity Mk(d, n) for k = 1, 2 and d ≥ 2, as well as for k ≥ 1 and d = 2,
provided that n is large enough. It is natural to state the following general problem.

Problem 1.9 For any fixed k, d ≥ 1 and n ≥ n0(k, d), determine, at least asymptoti-
cally, the value of Mk(d, n).

1.3.1 Flat Sets

A subspace of a Euclidean space means a linear subspace. A plane of a Euclidean
space means an affine plane.

For reasons that appear to be technical, let us also introduce the following notions.
We usually use the notation � (or �i ) to denote linear subspaces of R

d , and � (or �i )

1 Note that the case of d = 0 is trivial: we have mk (0) = Mk (0) = 1 for any k. However, we need to
introduce it for technical reasons.
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for affine planes. The angle between a vector v �= 0 and a non-zero linear subspace �

is the smallest angle that appears between v and the vectors in � \ {0}. For two points
p, q ∈ R

d we denote by p − q the vector pointing from q to p.
For 1 ≤ d ≤ d ′ we say that a set of vectors V ⊆ R

d ′ \ {0} is (d, α)-Flat if there
exists a linear subspace � of dimension d such that the angle between any v ∈ V
and � is at most α. (For d = d ′ this is considered to be true for any α ≥ 0.) If �

is such subspace, we say that V is (d, α)-Flat with respect to �. Let P ⊆ R
d ′

be a
set of points and p be a point in P . We say that P is (p, d, α)-flat (with respect to a
linear d-subspace �p) if {p − q : q ∈ P\{p}} is (d, α)-Flat (with respect to �p). We
call a set P (d, α)-flat if P is (p, d, α)-flat for every p ∈ P . We say P is globally
(d, α)-flat if {p − q : p, q ∈ P, p �= q} is (d, α)-Flat. If |P| ≤ 1, then we define P
to be (p, 0, α)-flat (for any p ∈ P) and (0, α)-flat.

Note that there is a difference between flatness and global flatness. For any
d ≥ 2 and β < arcsin d−1/2, (d, α)-flatness for any α does not in general imply
global (d, β)-flatness. For an example for d = 2, consider the following set in R

3:
{(0, 0, 1), (0, 0, 0), (K , 0, 0), (K , 1, 0)}, where K = K0(α, β) is sufficiently large.
However, if for some universal constant K a set S is (p, d, α)-flat for some p ∈ S
and ‖p1 − p2‖/‖q1 − q2‖ ≤ K for each p1, p2, q1, q2 ∈ S with q1 �= q2, then S is
globally (d, K ′α)-flat, where K ′ is a constant depending on K and d.

For 0 ≤ d ≤ d ′ let Nk(d ′, d) be the largest number N such that for every ε, α > 0
there exists a (d, α)-flat ε-nearly k-distance set in R

d ′
of cardinality N . Note that

Nk(d ′, 0) = 1. For d ≥ 1 we denote Nk(d) := Nk(d, d − 1). Then we have
Mk(d − 1) ≤ Nk(d) ≤ Mk(d). Indeed, any ε-nearly k-distance set in R

d−1 is a
(d − 1, 0)-flat ε-nearly k-distance set in R

d .
Surprisingly, the behaviour of Mk(d, n) is asymptotically determined by the value

of Nk(d) (see Proposition 1.13 and Theorem 1.17), thus the asymptotic solution of
Problem 1.9 reduces to the following problem.

Problem 1.10 For any k, d ≥ 1 determine Nk(d).

Below, we state Conjecture 1.11, which relates the behaviour of Mk(d), Nk(d), and
mk(d).

1.4 Constructions of Nearly k-Distance Sets

In this subsection, we relate the quantities Mk(d), Mk(n, d), Nk(d), and mk(d). For
d ≥ 0 and k ≥ 1 let us define

M ′
k(d) := max

{
s∏

i=1

mki (di ) :
s∑

i=1

ki = k,
s∑

i=1

di = d

}

. (4)

Conjecture 1.11 Nk(d + 1) = Mk(d) = M ′
k(d) holds for all but finitely many pairs

k, d ≥ 1.

We do not have have any examples with Nk(d + 1) > Mk(d) or Mk(d) > M ′
k(d),

and we believe that the first equality should always hold. However, there are con-
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structions, that we will describe later, that suggest there could be some examples with
Mk(d) > M ′

k(d). In Theorem 1.15 we show that the conjecture holds for every k and
sufficiently large d.

Proposition 1.12 Mk(d) ≥ M ′
k(d) holds for every k, d ≥ 1.

Proof Let
∑s

i=1 ki = k and
∑s

i=1 di = d. Then there is an ε-nearly k-distance set
in R

d of cardinality
∏s

i=1 mki (di ) given by the following construction. For each i let
Si be a ki -distance set in R

di of cardinality mki (di ) and such that the distances in Si
are much larger (in terms of ε) than the distances in Si−1. Then S1 × · · · × Ss is an
ε-nearly k-distance set in R

d of cardinality
∏s

i=1 mki (di ). ��
Remark The example given above can be turned into a globally flat set in R

d+1,
providing a lower bound on Nk(d + 1). Actually, we do not know of any case when a
flat set would provide a strictly better bound on Nk(d) than a globally flat set. However,
for some k and d there are extremal examples that are not globally flat. More precisely,
for any α, ε > 0 there is a β > 0 depending only on d, such that we can construct
a (d − 1, α)-flat ε-nearly k-distance set S of cardinality Nk(d) that is not globally
(d − 1, β)-flat.

Indeed, for example, for any α, ε > 0 we can construct (3, α)-flat ε-nearly 2-
distance sets of cardinality N2(4) = m2(3) = 6 (see Theorem 1.15) in R

4 as follows.
Consider an equilateral triangle {p1, p2, p3} in R

4 of side length K spanning a 2-
dimensional plane H . For each i ∈ [3] let pi − qi be a vector of length 1 orthogonal
to H . It is not hard to check that P = {p1, p2, p3, q1, q2, q3} is a (3, α)-flat ε-nearly
2-distance set if K = K (α, ε) is sufficiently large. However, if p1 − q1 and p2 − q2
are orthogonal, then P is not globally (3, β)-flat, where β can be taken to be π/6.

We can give a lower bound on Mk(d, n) in terms of Nk(d).

Proposition 1.13 For any fixed k ≥ 1, d ≥ 2 we have

Mk(d, n) ≥ T (n, Nk(d)) ≥ n2

2

(
1 − 1

Nk(d)

)
+ O(1). (5)

The statement of Proposition 1.13 also holds with Nk(d) replaced by Mk(d−1), since
Mk(d − 1) ≤ Nk(d).

Proof Let α, ε > 0 be sufficiently small, and t1 > 10n2. Consider a (d − 1, α)-flat
ε-nearly k-distance set S′ ⊆ R

d with distances t1 ≤ . . . ≤ tk of cardinality Nk(d).
For simplicity assume that Nk(d) | n.

For each p ∈ S′, let �p be a (d − 1)-dimensional subspace such that S′ is (p, d −
1, α)-flat with respect to �p. Further, let vp be a unit vector that is orthogonal to �p.
Replace each point p ∈ S′ with an arithmetic progression Ap = {p + ivp : i ∈
{1, . . . , n/Nk(d)}}.

If |sin α| < 1/(10n), then the distances between any point from Ap and any point
from Aq for p �= q, are within 1/2 from the distance between p and q. The set
S = ⋃

p∈S′ Ap has cardinality n. Define a graph G on S by putting an edge between
two points if their distance is in [t1 − 1/2, t1 + 1/2] ∪ · · · ∪ [tk − 1/2, tk + 1/2]. Then
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G is an Nk(d)-partite graph with equal parts. By definition, the number of edges in
such graph is T (n, Nk(d)). This argument can easily be modified to deal with the case
when Nk(d) � | n. ��

We point out the following difference between the case of k = 1 and k ≥ 2 of the
known constructions with Mk(d, n) nearly equal distances. Let S ⊆ R

d be a set of
n points and 1 ≤ t1 ≤ . . . ≤ tk be reals such that the number of pairs {p1, p2} with
p1, p2 ∈ S and with ‖p1 − p2‖ ∈ ⋃k

i=1[ti , ti + 1] is Mk(d, n). For k = 1 the known
constructions are all of the type that was described in Proposition 1.13 with S′ being
globally (d − 1, αn)-flat with αn → 0, and thus the normal vectors mv being almost
parallel. However, this is not the case for k = 2. For k = 2, d = 4, as explained
before, there are (3, α)-flat ε-nearly 2-distance sets of cardinality N2(4) in R

4 for
any α, ε > 0 that are not globally (3, π/6)-flat, and hence the corresponding normal
vectors mv are not pairwise almost parallel.

Example from [10]

The authors of [10] suggested that a construction in the same spirit as the one in
Proposition 1.13 should give a close to optimal bound for Mk(d, n). With the two
propositions above in hand, their construction is easy to describe: take k1, . . . , ks ,
d1 ≤ . . . ≤ ds , such that

∑s
i=1 ki = k and

∑s
i=1 di = d − 1. Next, represent the

hyperplane xd = 0 as R
d1 ×· · ·×R

ds . In each R
di , take the following ki -distance set:

either the set that gives the lower bound (2) or, if di = 1, an arithmetic progression of
length ki+1. Then combine the sets in the sameway as in the proof of Proposition 1.12,
obtaining a nearly k-distance set in the hyperplane xd = 0. Then extend it in R

d as in
Proposition 1.13. Assume that either 
 = 0 and d1 > 1, or 
 ≥ 1 and d
 = 1 < d
+1,
and we have chosen arithmetic progressions in the first 
 subspaces. The obtained set
has n2(1 − 1/Q + o(1))/2 distances that fall in the k intervals, where

Q := (k1 + 1) · . . . · (k
 + 1) ·
(
dl+1 + 1

kl+1

)
· . . . ·

(
ds + 1

ks

)
. (6)

One then needs to optimise the value of Q over all choices of di , ki , 
, and s. It is
possible that Q gives the value of Nk(d) and Mk(d + 1) in many cases. Evidently, in
order to maximise Q, one should take k1, . . . , k
 to be nearly equal.

We add the following observation.

Observation For any fixed k, d, there is a choice of s, 
, ki , di that maximises Q and
such that 
 = s − 1, that is, there is only one term of the form

(di+1
ki

)
.

Let us prove this. First, we observe that for any i ≥ l + 1, we may suppose that
ki ≤ di/2. Otherwise, reducing the number of distances does not decrease Q. We need
the following claim.
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Claim 1.14 For any integers a1, a2, z1, z2 such that z1, z2 ≥ 3 and a1 ≤ z1/2, a2 ≤
z2/2, except z1 = z2 = 4 and a1 = a2 = 2, we have

(
z1
a1

)(
z2
a2

)
≤

(
z1 + z2 − 1

a1 + a2

)
. (7)

The proof is a simple calculation and is deferred to the appendix. Using this claim,
we can replace any pair of binomial coefficients with di , d j ≥ 2, i, j > l, in (6) with
one binomial coefficient without decreasing Q, unless both binomial coefficients are(4
2

)
. Moreover, if di = 1 for i > l, then ki = 1 and we may simply replace

(1+1
1

)
by

(1 + 1), making it a term of the first type. Finally, if we have two terms of the form(4
2

)
, then we may replace them with (2 + 1) · (6

2

)
, which is larger, and also uses six

dimensions and four distances.

Examples with fixed k or d

It is not true that Mk(d) = mk(d) holds for every k and d. There are several examples
of k and d for which we need more than one multiplicative term to maximise (4),
and hence Mk(d) ≥ M ′

k(d) > mk(d). Some of these examples we list below. When
needed, we rely on the information from Table 1.

• In R
2 the largest cardinality of a 6-distance set is 13, while the product of two

arithmetic progressions of length 4 (d1 = d2 = 1, k1 = k2 = 3 in (6)) gives an
ε-nearly 6-distance sets of cardinality 16. Thus M6(2) ≥ M ′

6(2) ≥ 16 > m2(6).
• In R

3, the largest 4-distance set has 13 points, while we can construct ε-nearly
4-distance sets of cardinality 15 = 3 · 5 as a product of arithmetic progression of
length 3 and a 2-distance set on the plane of cardinality 5. Thus M4(3) ≥ M ′

4(3) ≥
15 > m4(3).

• In R
2 the cardinality of a k-distance set is O(k log k) by [16], while the product

of two arithmetic progressions of length �k/2� + 1 and of length �k/2	 + 1 gives
an ε-nearly k-distance set of cardinality (�k/2� + 1)(�k/2	 + 1) ≥ k2/4.

• In R
d for d ≥ 3 the cardinality of a k-distance set is O(k(d/2)(d+2)/(d+1)) by the

result of Solymosi and Vu [26]. On the other hand, the product of d arithmetic
progressions of size �k/d� + 1 gives an ε-nearly k-distance set of cardinality
(�k/d� + 1)d ≥ (k/d)d .

The largest 5-distance set in R
2 is of cardinality 12. We may construct ε-nearly

5-distance sets using product-type constructions as described in the list above, also of
cardinality 12. In addition, we can construct an ε-nearly 5-distance set of size 12 that
is not of this product construction, and neither does it have the structure of a 5-distance
set. Take a large equilateral triangle, and in each of its vertices put a rhombus of a
much smaller size with angles π/3 and 2π/3 such that the angle of the corresponding
sides of the rhombus and the triangle is π/2 as shown in Fig. 1. This example makes
us suspect that there could be some exceptions to Conjecture 1.11. Though we also
believe there are only finitely many examples with Mk(d) points that are not products
of ki -distance sets.
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Fig. 1 ε-nearly 5-distance set on the plane that is not product-type

1.5 Main Results

Let us stress that all the sets that we consider in the paper are separated, which we
assume tacitly for the rest of the paper. The first theorem deals with small values of k
and is one of the main results of the paper.

Theorem 1.15 We have Nk(d+1) = Mk(d) = mk(d) for d ≥ 0 if one of the following
holds:

(i) d ≥ d(k), where d(k) is some constant depending on k;
(ii) k ≤ 3.

For fixed d and large k we prove the following simple estimate.

Theorem 1.16 We have Mk(d) = �(kd) and Nk(d) = �(kd−1) for any fixed d ≥ 2.

We conjecture that Mk(d) = (k/d)d + o(kd).

Anothermain result of the paper is the following theorem,which gives the promised
relation between Nk(d) and Mk(d, n).

Theorem 1.17 For any d ≥ 2, k ≥ 1, γ > 0 there exists n0, such that for any n ≥ n0
we have

T (n, Nk(d)) ≤ Mk(d, n) ≤ T (n, Nk(d)) + γ n2. (8)

Moreover, (8) remains valid if in the definition of Mk(d, n) we change the intervals
of the form [ti , ti + 1] to intervals of the form [ti , ti + cn1/d ] for some constant
c = c(k, d, γ ) > 0.
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Theorem 1.17 combined with Theorem 1.15 gives the value of M2(d, n), M3(d, n),
and Mk(d, n) for d ≥ d0(k) asymptotically in terms of m2(d), m3(d), and mk(d). In
the mentioned cases, we can strengthen the result and determine the exact value of
Mk(d, n) for large n. In particular, this extends results of [10] (cf. Theorem 1.8) to the
cases of d = 4, 5.

Theorem 1.18 For n ≥ n0(d, k) we have

Mk(d, n) = T (n,mk(d − 1))

if either k ≤ 3 or d ≥ d(k). Moreover, the same holds with intervals of the form
[ti , ti + cn1/d ] for some c = c(k, d) > 0.

Again, in view of Proposition 1.13, we only need to show that Mk(d, n) ≤
T (n,mk(d − 1)). This is a consequence of the more general Theorem 2.15, pre-
sented in Sect. 2.5. Observe that Mk(d, n) ≤ T (n, Mk(d)) is obvious from Turán’s
theorem and the definition ofMk(d). Hence the difficulty in proving Theorem 1.17 lies
in bounding Mk(d, n) by the maximal cardinality of (d − 1, α)-flat nearly k-distance
sets. Similarly, the difficulty in proving Theorem 1.18 is bounding Mk(d, n) by the
maximal cardinality of k-distance sets in the space of one dimension smaller.

We note that many different classes of dense geometric graphs were studied from
a similar perspective. We mention diameter graphs [19, 21, 28] and double-normal
graphs [20, 24, 25]. In some cases, the relationship between the largest clique and the
maximum number of parts in an arbitrarily large complete multipartite graph is quite
intricate, as it is the case for double-normal graphs, see [20].

Note that an extended abstract [14] of this work with the same title was accepted
for the Eurocomb 2019 conference.

2 Proofs

The structure of this section is as follows. We start by giving sketches of the proofs
of the theorems. The first subsection gives auxiliary results that are going to be used
in the proof of Theorem 1.15, which is doubtless the hardest result in the paper. Most
of this section can be skipped in the first reading. We summarise its content below.
Sections 2.2 and 2.3 are devoted to the proof of parts (i) and (ii) of Theorem 1.15,
respectively. In Sect. 2.4 we give a simple and short proof of Theorem 1.16. This
is largely independent from the previous material. In Sect. 2.5 we give the proofs
of Theorems 1.18 and 1.17. These proofs are almost completely independent of the
previous subsections, they basically only require Theorem 1.15 as an input.

Section 2.1: The section starts with an important Lemma 2.1 which allows us to
find a very precise structure in the graph of distances between the points in case we
can split distances into ‘small’ and ‘large’: it splits into clusters of points at small
distances, and the distances between any two points from different clusters are large.
Lemma 2.2 is a compactness statement, which states that, in case the ratio of the
largest and the smallest distance is uniformly bounded, then a nearly k-distance set
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converges to a usual k-distance set, and, in particular, is at most as big. This gives the
intuition that non-trivial cases in the proof of Theorem 1.15 deal with the case when
ti+1/ti > K for some i and arbitrarily large K . The second part additionally tells us
that, in case the ratio of two consecutive distances tends to 1, then these distances
are ‘glued’, and in the limit we will have a (k − 1)-distance set. Lemma 2.3 gives a
simple upper bound on Mk(d) only based on Lemma 2.2. Lemmas 2.4–2.5 develop
the machinery to deal with almost-flat sets. First, we translate the simple statement
that if a vector (or a set) lies in several planes, then it lies in their intersection to the
almost-flat setting. Somewhat surprisingly, this turns out to be quite tricky. Lemma 2.5
is a culmination of the subsection and is a key complement to Lemma 2.1. It translates
to the almost-flat setting the following simple argument. Assume that we are given
a nearly k-distance set, and there is an i such that ti+1/ti > K for some large K .
Then, using Lemma 2.1, we can split it into ‘red clusters’, such that inside the cluster
each distance is at most ti , while the distance between any two points in different red
cluster is at least ti+1. Moreover, assume that for any red cluster Ri and a point p
outside it the distances between p and points from Ri are very close to the same t j ,
j ≥ i + 1 (for later reference in the sketches, let us call this ‘property �’). Then it is
easy to see that Ri should be nearly orthogonal to p − r for any r ∈ Ri . Thus, the
intuition tells us that all red clusters should be close to planes that are orthogonal to
the plane of B, where B is a set of points that includes exactly one point from each red
cluster. This is not difficult to check for a set B that is ‘not flat’, e.g., an almost-regular
simplex, but it requires preparations in general. In the first reading, we recommend to
read Lemma 2.1, as well as the statements of Lemmas 2.2 and 2.5 and omit the rest.

Proof of Theorem 1.15 (i) The proof is by induction on k. We look for the last ‘big
jump’ in the sequence of distances, and additionally induct on the position i of this
jump (the size of the jump being dependent on the position: the smaller i is, the bigger
the jump is). If i = k (i.e., tk/tk−1 > K ) then we use Lemma 2.5, even in the simple
variant thatwe described above. In this case, the set B forms an almost-regular simplex,
and we conclude that the red clusters must be almost-flat w.r.t. the plane, orthogonal
to the plane of B. We then use the fact thatmk−1(d − j)m1( j) < mk(d) for large d. If
i < k, then the argument is mostly similar, however, it has an additional twist to deal
with one complication. Namely, we may not be able to guarantee that property � holds
if two large distances have very small difference and thus apply Lemma 2.5. But then
Lemma 2.2 (ii) helps us out, telling that in the limit these two distances glue. If this is
the case, we ignore the orthogonality structure that can be given by Lemma 2.5, and
apply a bound of the form mi−1(d)mk−i (d) < mk(d), valid for d large w.r.t. k.

(ii) The proof follows a very similar outline as part (i). The case of two distances
uses the same ideas as part (i), even in a simpler form. The case of three distances,
however, poses some complications. First, if t3/t2 > K then the proof is as in the case
i = k above. If t2/t1 > K > t3/t2 > 1 + 2/K then the proof is as above for i < k,
but with property �, i.e., our main tool is the ‘almost orthogonal decomposition’ via
Lemma 2.5. If t3/t2 < 1+ 2/K then the two largest distances glue, and the argument
as above allows us to finish the proof for d ≥ 6. However, this is not sufficient for
small d, which we deal with separately. We have two subcases in this situation, each
of which allow us to get more information on our nearly 3-distance set. The first
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subcase is when t1 � t3 − t2. In that case, we are again able to guarantee the almost-
orthogonality of red clusters to the almost-regular simplex B (cf. Fig. 2) and again
finish using Lemma 2.5. The second subcase is when t1 is not so large w.r.t. t3 − t2.
We are then able to find additional structure in between any two red clusters, say Ri

and R
. Namely, if both distances t2, t3 appear from r ∈ Ri to points in R
, then at
most one distance can appear between a point r ′ ∈ R
 and any point in Ri . This turns
out to be sufficient to settle this case. Such ‘bizarre’ cases as the last one also should
give a hint on why it is difficult to extend the result to more distances. ��

We also note that an additional complication in both proofs is that we had to work
with a notion of almost-flat sets (defined at the end of Sect. 2.1) instead of flat sets.
This is only needed in order to prove Theorem 1.18. We omit the sketch of proof of
Theorem 1.16, which is short and simple, and go on to the Turán-type results.

Proof of Theorem 1.18 The proof essentially uses certain supersaturation-type results
for Turán’s theorem, and then refines the geometric structure of the relations between
the points until we get a contradiction.We argue indirectly. Let 
−1 be the largest size
of an almost-flat ε-nearly k-distance set. The main (and the one that is less standard)
extremal graph theory tool is the following supersaturation result of Erdős that states
that, once the number of edges in an n-vertex graph is at least T (n, 
 − 1) + 1, it
contains a positive fraction of all (
 − 2)-cliques containing some edge e. Using this
and some other results and ideas from exremal graph theory, we start with a graph
that has one more edge than the theorem states and find the following configuration:
a multipartite graph K1,1,2,...,2 with 
 parts, where any two points in the configuration
lie at a distance � cn1/d , the distances between any two fixed parts all fall into the
same interval [ti , ti + cn1/d ], and any angle pi p jqi for pi , qi belonging to the i-th
part and q j belonging to the j-th part, i �= j , is at most α. Then, after rescaling, we
get a separated set with all distances falling into [t ′i , t ′i + ε] for some i (thus the need
for point of the set before the scaling to be far apart) and that can be shown to be
almost-flat w.r.t. some hyperplanes.

Let us comment on the almost-flatness. Almost -flatness requires that the local
flatness condition is satisfied for all but at most two vertices of the graph, and the
reason for almost-flatness here (and, as a consequence, additional complications in
the proof of Theorem 1.15) is the result of Erdős that we cited. It does not guarantee
a positive density of 
-cliques once we add an extra vertex (to do so, one has to add
γ n2 extra edges, as in Theorem 1.17), it only guarantees a positive density of (
− 2)-
cliques sharing some edge. As a result, the final graph has the first two parts of size 1,
and we cannot ensure the local flatness condition in these vertices. ��

The proof of Theorem 1.17 follows the same logic and thus we omit it here.

2.1 Auxiliary Lemmas

Lemma 2.1 Let S ⊆ R
d be a finite set. Assume that for every p1, p2 ∈ S with p1 �= p2

the pair {p1, p2} is coloured with red or blue, such that the distance between the points
in any blue pair is strictly more than three times as big as the distance between any red
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pair. If B is a largest blue clique in S, then S can be partitioned into |B| vertex-disjoint
red cliques R1, . . . , R|B| having the following properties.

• Each Ri shares exactly one vertex with B.
• If p ∈ Ri , q ∈ R j , and i �= j , then {p, q} is blue.

Proof Take a largest blue clique B = {p1, . . . , ps}. Construct Ri by including in it pi
and all the points that form a red pair with pi . By the triangle inequality each Ri is a
red clique. Further, by the maximality of B, each point from S forms a red distance
with at least one point in B, and thus R1, . . . , Rb cover S. Next, they are disjoint:
if p ∈ Ri ∩ R j , then both {p, pi } and {p, p j } are red, which by triangle inequality
implies that either i = j or that {pi , p j } is red (but the second possibility contradicts
the definition of B). Finally, if p ∈ Ri , q ∈ R j , i �= j , then {p, q} must be blue by
the triangle inequality: otherwise ‖pi − q j‖ ≤ ‖pi − p‖ + ‖p − q‖ + ‖q − p j‖, and
if all the pairs on the right are red, then {pi , p j } is red. ��

Note that a statement similar to that of Lemma 2.1 was also used in [9]. The next
lemma follows by a standard compactness argument.

Lemma 2.2 Let S1, S2, . . . be a sequence such that 0 ∈ Si is an εi -nearly k-distance
set in R

d ′
with distances 1 ≤ ti,1 < . . . < ti,k and with εi → 0. Further, let αi be a

sequence with αi → 0. Then the following is true.

(i) If k = 1 or k ≥ 2 and there is a K such that supi max1≤ j<k(ti, j+1/ti, j ) ≤ K, then
we have lim supi→∞ |Si | ≤ mk(d ′). If additionally there is a 0 ≤ d ≤ d ′ such that
for every i the set Si is (pi , d, αi )-flat for some pi ∈ Si , then lim supi→∞ |Si | ≤
mk(d).

(ii) If k ≥ 2 and there is a K such that supi max1≤ j<k(ti, j+1/ti, j ) ≤ K and for
some 1 ≤ r ≤ k − 1 we have limi→∞(ti,r+1/ti,r ) = 1, then lim supi→∞ |Si | ≤
mk−1(d ′). If additionally for every i , Si is (pi , d, αi )-flat for some pi ∈ Si , then
lim supi→∞ |Si | ≤ mk−1(d).

Proof We only give details of the proof of (ii), part (i) can be done similarly. We
start with the first part of the statement. Take any sequence S1, S2, . . ., satisfying the
conditions and scale each Si by 1/ti,1. Abusing notation, we denote the new sets Si
as well. Then the condition supi max1≤ j<k(ti, j+1/ti, j ) ≤ K implies that there is an
absolute R > 0 such that each Si is contained in a ball B with centre 0 and of radius R.
A volume argument implies that there exists an MK such that |Si | ≤ MK for all i .
Take an infinite subsequence of S1, S2, . . . in which all sets have fixed cardinality
M ≤ MK . Using the compactness of

B × · · · × B︸ ︷︷ ︸
M times

,

select out of it a subsequence Si1 , Si2 , . . . that pointwise converges to the set S :=
{P1, . . . , PM } ⊂ B with distances T1, . . . , Tk , and where Tj = lims→∞(tis , j/tis ,1).
Note that Tr+1 = Tr due to the assumption limi→∞(ti,r+1/ti,r ) = 1. Thus S is a
(k − 1)-distance set, and so M = |S| ≤ mk−1(d ′).
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Let us next show the second part of the statement. Taking the set S as above, we
obtain that it must additionally be (d, 0)-flat. This means that S lies in a d-plane, thus
M = |S| ≤ mk−1(d). ��

The statement below allows us to get a grip on Mk(d).

Lemma 2.3 For any 1 ≤ k, and 0 ≤ d ≤ d ′ we have

Nk(d
′, d) ≤ f (d, k) = max

{
s∏

i=1

mki (d) :
s∑

i=1

ki = k

}

.

In particular, Mk(d) < ∞.

Note the difference in the definition of M ′
k(d) and the function f above.

Proof First note that f satisfies f (d, k1 + k2) ≥ f (d, k1) f (d, k2) for any 1 ≤ k1, k2.
Let S be a (d, α)-flat ε-nearly k-distance set in R

d with distances 1 ≤ t1 < . . . < tk
and with sufficiently small α, ε. We need to show that |S| ≤ f (d, k). For each d we
induct on k.

If ti/(ti−1 + ε) ≤ 3 holds for every 1 < i ≤ k (or if k = 1), then by (i) of
Lemma 2.2 we have |S| ≤ mk(d) ≤ f (d, k). Otherwise, let i be the largest index such
that ti/(ti−1 + ε) > 3. For every p1, p2 ∈ S with p1 �= p2 colour the pair {p1, p2}
with blue if ‖p1 − p2‖ ≥ ti and with red otherwise. Let B be a largest blue clique in
this colouring. By induction, |B| ≤ f (d, k − i + 1) if α and ε are sufficiently small.
Next, by Lemma 2.1, S can be covered by |B| vertex disjoint red cliques R1, . . . , R|B|.
By induction again, the cardinality of any red clique is at most f (d, i − 1), thus

|S| ≤ f (d, k − i + 1) f (d, i − 1) ≤ f (d, k). ��

The next three statements describe some cases when α-flatness with respect to
different subspaces can be “combined” into α-flatness with respect to a smaller-
dimensional subspace. For a linear subspace � we denote by �⊥ the orthogonal
complement of �, and for a vector v ∈ R

d \ {0} we denote by v⊥ the (d − 1)-
dimensional subspace orthogonal to v.

Lemma 2.4 For any γ ′ > 0 there exists β0 > 0 such that the following is true for
all 0 < β ≤ β0 and all d ≥ 1. Let R ⊆ R

d be a set of points, and let p ∈ R.
Further, let V ⊂ R

d \ {0} be a set of vectors such that for every v ∈ V the set R is
(p, d − 1, βd)-flat with respect to v⊥. If j ≥ 1 is the smallest integer for which V is
( j, β j )-Flat, then R is (p, d − j, γ ′)-flat.

Proof We are going to prove that for every γ ′ > 0 there exists β0 > 0 such that
the following is true for every 0 < β ≤ β0. Let w ∈ R

d\{0} be a vector, and let
V ⊂ R

d \ {0} be a set of vectors, such that for every v ∈ V the angle between w and
v⊥ is at most βd . (This is equivalent to |〈w/‖w‖, v/‖v‖〉| ≤ βd , hence also to that the
angle between v and w⊥ is at most βd .) If j ≥ 1 is the the smallest integer for which
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V is ( j, β j )-Flat, and V is ( j, β j )-Flat with respect to �, then the angle between w

and �⊥ is at most γ ′. Applying this for every vector of the form w = q − p, where
q ∈ R\{p}, implies the statement, since �′ is of dimension d − j .

Arguing indirectly, assume that for every β0 there is a β < β0 such that the angle
between w and �⊥ is larger than γ ′. We will show that then V is ( j − 1, β j−1)-Flat
with respect to � ∩ w⊥. If β is sufficiently small, then w /∈ �⊥, thus the dimension of
� ∩ w⊥ is j − 1, contradicting the minimality assumption on j .

We may assume that ‖w‖ = 1 and ‖v‖ = 1 for every v ∈ V . Let {w1, . . . , wd} be
an orthonormal basis of R

d , where additionally {w1, . . . , w j−1} is an (orthonormal)
basis of � ∩ w⊥, further {w1, . . . , w j } is a basis of �, and {w j+1, . . . , wd} is a basis
of �⊥. Then w can be written as w = η jw j + · · · + ηdwd , where

|η j | > sin γ ′, (9)

since w has angle larger than γ ′ with �⊥. Next, any v ∈ V can be written as θ1w1 +
· · · + θdwd , where

θ21 + · · · + θ2j ≥ cos2β j ,

since v has an angle at most β j with �. Further, we have

|〈v,w〉| = |θ jη j + θ j+1η j+1 + · · · + θdηd | ≤ βd ,

since the angle of w and v is in [π/2 − βd , π/2 + βd ]. By the Cauchy–Schwarz
inequality we have

|θ j+1η j+1 + · · · + θdηd | ≤
√

θ2j+1 + · · · + θ2d · ‖w‖ ≤
√
1 − cos2β j = sin β j ≤ β j .

By the triangle inequality and the previous two inequalities, we get

|θ jη j | ≤ |θ jη j + · · · + θdηd | + |θ j+1η j+1 + · · · + θdηd | ≤ 2β j .

If β < (sin2 γ ′)/4, then the inequality above together with (9) implies that |θ j | =
|θ jη j |/|η j | ≤ 2β j/ sin γ ′ < β j−0.5. Thus, if β is sufficiently small, then

θ21 + · · · + θ2j−1 ≥ cos2β j − β2 j−1 ≥ cos2β j−1,

where the last inequality follows from the fact that cos θ = 1 − (1/2 + o(1))θ2 for
small θ . This means that the angle between v and �∩w⊥ is at most β j−1. Since this is
valid for any v ∈ V , we conclude that V is ( j − 1, β j−1)-flat with respect to � ∩ w⊥,
a contradiction. ��
Lemma 2.5 For any d ′ and γ > 0 there exist β ′ > 0 such that the following is true for
any 0 < β ≤ β ′, sufficiently small 0 < α ≤ α(β), and sufficiently large K ≥ K (α, β).
Let B ∪ R ⊆ R

d ′
be a separated set with B ∩ R = {b}, and with the following two

properties.
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(a) Foranyr , r ′ ∈ Rwithr �= r ′ and for anyb′ ∈ B\{b}wehave K‖r−r ′‖ ≤ ‖b−b′‖.
(b) For any b′ ∈ B \ {b} there is a number t > 0 such that for any r ∈ R we have

‖b′ − r‖ ∈ [t, t + βd ′+1].
Further, let j ≥ 1 be the lowest dimension such that B is (b, j, β j )-flat. Assume that
for some r ∈ R and d ≤ d ′ the set B ∪ R is (r , d, α)-flat. Then R is (r , d − j, γ )-flat.

Proof For |R| ≤ 1 the statement holds by definition. So we will suppose that |R| ≥ 2.
Let β0 as in Lemma 2.4 with γ ′ = γ /2, and let β ′ ≤ β0 be sufficiently small, to be
further specified later. Let r ∈ R be any point of R. Assume that B ∪ R is (r , d, α)-
flat with respect to a d-dimensional subspace �r . Let πr (V ) be the projection of
V := {b′ − r : b′ ∈ B \ {b}} on �r . Assume that jr > 1 is the lowest dimension
such that πr (V ) is ( jr , β jr /2)-Flat. Further, let �′

r be a subspace of �r of dimension
jr such that πr (V ) is ( jr , β jr /2)-Flat with respect to �′

r .
By condition (a), for any b′ ∈ B\{b} the angle between b′−b and b′−r is at most α

if K is sufficiently large. The angle between b′ −r and πr (b′ −r) is at most α. Further,
the angle between πr (b′ −r) and �′

r is at most β jr /2. These, together with the triangle
inequality imply that B is (b, jr , β jr )-flat with respect to �′

r if 2α + β jr /2 ≤ β jr . By
the minimality of j , it follows then that jr ≥ j .

Let�r be the affine plane inR
d ′
of dimension jr through r parallel to�r . For a point

p ∈ R
d ′
we denote by π ′

r (p) the projection of p on �r . Similarly, for a set X ⊆ R
d ′
,

let π ′
r (X) denote the projection of X on �r . Note that π ′

r (r) = r . Let (π ′
r (b

′) − r)⊥r

denote the (d − 1)-dimensional subspace in �r that is orthogonal to π ′
r (b

′) − r . Note
that the vector π ′

r (b
′) − r lies in �r .

Claim 2.6 For every b′ ∈ B \{b} and r ∈ R, the projection π ′
r (R) is (r , d−1, βd)-flat

with respect to (π ′
r (b

′) − r)⊥r if α and β are sufficiently small and K is sufficiently
large.

Proof Let r ′ ∈ R \ {r} be any point of R. Condition (b) gives |‖b′ − r‖ − ‖b′ − r ′‖|
≤ 2βd ′+1. Since 1 ≤ ‖r − r ′‖ ≤ (t + βd ′+1)/K , we obtain that ∠b′rr ′ ∈
[π/2 − βd ′

/2, π/2 + βd ′
/2], if β is sufficiently small and K is sufficiently large.

Further, we have ∠r ′rπ ′
r (r

′) ≤ α and ∠π ′
r (b

′)rb′ ≤ α. Thus, ∠π ′
r (b

′)rπ ′
r (r

′) ∈
[π/2 − βd , π/2 + βd ] if α is sufficiently small. Since π ′

r (R) is contained in �r ,
we obtain that for any b′ ∈ B the set π ′

r (R) is (r , d − 1, βd)-flat with respect to
(π ′

r (b
′) − r)⊥r . ��

Now we apply Lemma 2.4 with πr (V ) and γ ′ = γ /2, and obtain that π ′
r (R) is

(r , d − jr , γ /2)-flat. The inequality jr ≥ j implies that π ′
r (R) is (r , d − j, γ /2)-flat.

Since for any r ′ ∈ R the angle between r ′ − r and π ′
r (r

′) − r is at most α, it follows
that R is (r , d − j, γ )-flat if α is sufficiently small. ��

The proof of the following lemma is a simple calculation.

Lemma 2.7 Let S ⊆ R
d be a set such that ‖p1 − p2‖/‖q1 − q2‖ ≤ K holds for any

p1, p2, q1, q2 ∈ S with q1 �= q2. If S is (p, j, α)-flat for some p ∈ S, then S is
(q, j, 20(Kα)1/2)-flat for any q ∈ S.
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Proof Let S be (p, j, α)-flat with respect to �. We will show that for any q, r ∈ S
with q �= r there is a vector v ∈ � such that the angle between q − r and v is at most
20(Kα)1/2. Let vq , vr ∈ � be vectors such that the angle between q − p and vq , and
the angle between r − p and vr is at most α. Further, assume that ‖q − p‖ = ‖vq‖
and ‖r − p‖ = ‖vr‖. The following claim, whose proof is deferred to the appendix,
finishes the proof.

Claim 2.8 The angle between (vq − vr ) ∈ � and q − r is at most 20(Kα)1/2. ��
We need the following seemingly technical variant of α-flatness, which is however

crucial for proving Theorem 1.18. For d ≥ 1 we say that P is almost (d, α)-flat if P
is (p, d, α)-flat for all but at most two p ∈ P . Note that this means if P is almost
(0, α)-flat and α ≤ π/2, then |P| ≤ 2. We also use the convention that for any α > 0
a set P is (0, α)-flat if |P| ≤ 2. Let Ak(d ′, d) denote the largest number A such that
for any ε, α > 0 there exists an almost (d, α)-flat ε-nearly k-distance set in R

d ′
of

cardinality A. Note that Ak(d ′, 0) = 2. For d ≥ 1 let Ak(d) = Ak(d, d − 1).
Let us summarise the trivial inequalities between the different parameters we intro-

duced:
mk(d) ≤ M ′

k(d) ≤ Mk(d) ≤ Nk(d
′, d) ≤ Ak(d

′, d) ≤ Mk(d
′), (10)

for any d ′ ≥ d ≥ 0.

2.2 Proof of Theorem 1.15 (i)

We will prove that for any k ≥ 1 if d is sufficiently large compared to k, then for
any d ′ ≥ d we have Ak(d ′, d) = mk(d). This is sufficient in view of (10). We induct
on k. The case k = 1 is implied by Lemma 2.2 (i). Assume that the statement of
Theorem 1.15 is true for every k′ ≤ k − 1 with d > Dk′ . We will prove the statement
for k and d > Dk , where the quantity Dk is chosen later.

For K > 0 and for an ε-nearly k-distance set S with distances 1 ≤ t1 < . . . < tk
let φS(K ) = 1 if max1<i≤k ti/(ti−1 + ε) < K , and otherwise let φS(K ) be the largest
index 1 < i ≤ k such that ti/(ti−1 + ε) ≥ K .

Lemma 2.9 If εk and αk are sufficiently small and d > Dk for some sufficiently
large Dk, then the following is true for every 1 ≤ i ≤ k. There exist Ki ≥ Ki+1 ≥
. . . ≥ Kk such that if S is an almost (d, αk)-flat εk-nearly k-distance set in R

d ′
, and

for some j ≥ i we have φS(K j ) ≥ j , then |S| ≤ mk(d).

Note that since φS(K ) ≥ 1 holds for any K , Lemma 2.9 with i = 1 implies the
theorem. We phrased Lemma 2.9 in this seemingly strange form, because this way it
is convenient to prove it by backwards induction on i .

Proof The proof is by backwards induction on i .We start by showing that the statement
is true for i = k with some sufficiently large Kk ≥ 4.

Assume that φS(Kk) = k and for every p1, p2 ∈ S with p1 �= p2 colour the pair
{p1, p2} with blue if ‖p1 − p2‖ ∈ [tk, tk + εk] and with red otherwise. Let B be a
largest blue clique in S. Then S can be partitioned into |B| red cliques R1, . . . , R|B|
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as in Lemma 2.1. Let R be a largest red clique and let R ∩ B = {b}. We will apply
Lemma 2.5 to R ∪ B with a sufficiently small γ (to be chosen later) to bound |R|.

Let β ′ be as in Lemma 2.5, and 0 < β ≤ β ′ be sufficiently small, to be set later.
We may assume that αk ≤ α(β) and choose Kk such that Kk ≥ 2K (αk, β). We may
apply Lemma 2.5, as conditions (a) and (b) are automatically satisfied if εk ≤ βd ′+1.
Let j be as in the Lemma with α = αk . Since S is almost (d, αk)-flat, we have that
R ∪ B is (r , d, αk)-flat for all but at most two r ∈ R. If r ∈ R is such that R ∪ B is
(r , d, αk)-flat, then by Lemma 2.5 we obtain that R is (r , d − j, γ )-flat.

Thus, if γ ≤ αk−1 then we have |R| ≤ Ak−1(d ′, d − j). Note also that B is
( j, 20β j/2)-flat by Lemma 2.7, thus |B| ≤ m1( j) = j + 1 by Lemma 2.2 (i) if β and
εk are sufficiently small. These imply that

|S| ≤ |B| · |R| ≤ ( j + 1)Ak−1(d
′, d − j).

We separate two cases in order to bound ( j + 1)Ak−1(d ′, d − j).

Case 1: d − j ≥ Dk−1. In this case we obtain

( j + 1)Ak−1(d
′, d − j) ≤ ( j + 1)

(
d − j + k − 1

k − 1

)
≤

(
d + 1

k

)
≤ mk(d),

where the first inequality is true by induction and by (1), the second is true if d is
sufficiently large, and the third is true by (2).

Case 2: d− j < Dk−1. In this case we have Ak−1(d ′, d− j) ≤ 2+Nk−1(d ′, d− j).
By Lemma 2.3 we have Nk−1(d ′, d− j) ≤ Ck whereCk depends only on k and Dk−1,
hence depends only on k. Thus we obtain

( j + 1)Ak−1(d
′, d − j) ≤ ( j + 1)(Ck + 2) ≤

(
d + 1

k

)
≤ mk(d),

where the second inequality is true d is sufficiently large, and the third inequality is
true by (2).

We now turn to the induction step. Assume that the statement holds for every i + 1
with Ki+1 ≥ Ki+2 ≥ . . . ≥ Kk , and let us prove that if Ki is sufficiently large, then it
holds for i with Ki ≥ Ki+1 ≥ . . . ≥ Kk . Again, for every p1, p2 ∈ S with p1 �= p2
colour the pair {p1, p2} with blue if ‖p1 − p2‖ ≥ ti and with red otherwise. Let B be
a largest blue clique in S. Then S can be partitioned into |B| red cliques R1, . . . , R|B|
as in Lemma 2.1.

Wemay assume thatφ(Ki+1) ≤ i , otherwisewe are done by induction. This implies
that maxi< j≤k t j/(t j−1 + εk) ≤ Ki+1. Thus, by Lemma 2.2 (ii) we may assume that
there exists a sufficiently small constant δ > 0 such that the following is true for
sufficiently small αk and εk :

if min
i< j≤k

t j
t j−1 + εk

< 1 + δ, then |B| ≤ mk−i (d). (11)

123



Discrete & Computational Geometry

Set K ′
i = max {2/δ, Ki+1}. We are ready to verify the statement of the lemma for

sufficiently large Ki > 2K ′
i . We separate two cases.

Case 1:mini< j≤k(t j/(t j−1 + εk)) < 1+δ. If R is a largest red clique thenwe obtain

|S| ≤ |B| · |R| ≤ mk−i (d)Ai−1(d
′, d) ≤

(
k − i + d

k − i

)(
i − 1 + d

i − 1

)
<

(
d + 1

k

)

≤ mk(d),

where the second inequality follows from (11) and the fact that R is an almost (d, αk)-
flat εk-nearly (i − 1)-distance set and that αk, εk are sufficiently small, the third
inequality follows by induction and by (1), the fourth is true if d is sufficiently large,
and the last is true by (2).

Case 2: mini< j≤k(t j/(t j−1 + εk)) ≥ 1 + δ. Let R be a largest red clique and let
R ∩ B = {b}. We will apply Lemma 2.5 to R ∪ B with a sufficiently smal γ (to be
chosen later) to bound |R|. Let β ′ be as in Lemma 2.5 and 0 < β ≤ β0 sufficiently
small to be specified later. We may assume that αk ≤ α(β) and choose Ki such that
Ki ≥ 2K (αk, β). Then condition (a) is satisfied automatically.Wemay further assume
that εk ≤ βd ′+1. Then condition (b) is satisfied as well with β if “all distances from a
point in B to R fall in one interval”. That is, to apply the lemma, we need to as show
that it is not possible to find indices j1 > j2 ≥ i and points b, b′ ∈ B with b �= b′
and r1, r2 ∈ R, such that ‖b′ − r1‖ ∈ [t j1, t j1 + εk] and ‖b′ − r2‖ ∈ [t j2 , t j2 + εk].
If that would have been the case, then, by the triangle inequality t j1 ≤ ‖b′ − r1‖ ≤
‖b′ − r2‖ + ‖r1 − r2‖ ≤ t j2 + ti−1 + 2εk , but, on the other hand, t j1 − t j2 ≥ δti ≥
δKi ti−1 ≥ δti−1 · 2/δ ≥ 2ti−1 > ti−1 + 2εk , a contradiction. Thus, condition (b) is
indeed satisfied as well.

Using Lemma 2.5, we will show that R is almost (d − j, γ )-flat. Since S is almost
(d, αk)-flat, we have that R ∪ B is (r , d, αk)-flat for all but at most two points r ∈ R.
If r ∈ R is such that R ∪ B is (r , d, αk)-flat, then by Lemma 2.5 we obtain that
R is (r , d − j, γ )-flat. Since this is true for all but at most two points r ∈ R, we
obtain that R is indeed almost (d − j, γ )-flat. Thus, if γ is sufficiently small, we have
|R| ≤ Ai−1(d ′, d − j). Note also that

max
i< j≤k

ti
ti−1 + εk

≤ Ki+1,

thus B is ( j, 20(Ki+1β) j/2)-flat by Lemma 2.7. We obtain that |B| ≤ mk−i+1( j) by
Lemma 2.2 (i) if εk and β are sufficiently small. Overall, for |S| we obtain that

|S| ≤ |R| · |B| ≤ mk−i+1( j)Ai−1(d
′, d − j),

if β, αk , and εk is sufficiently small, and K is sufficiently large. We separate two cases
in order to bound mk−i+1( j)Ai−1(d ′, d − j).
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Case 2.1: d − j ≥ Di−1. In this case we obtain

mk−i+1( j)Ai−1(d
′, d − j) ≤

(
j + k − i + 1

k − i + 1

)(
d − j + i − 1

i − 1

)
≤

(
d + 1

k

)

≤ mk(d),

where the first inequality is true by induction and by (1), the second is true if d is
sufficiently large, and the third is true by (2).

Case 2.2: d− j < Di−1. In this case we have Ai−1(d ′, d− j) ≤ 2+Ni−1(d ′, d− j).
By Lemma 2.3 we have Ni−1(d ′, d − j) ≤ Ci where Ci depends only on i and Di−1,
hence depends only on i . Thus, we obtain

mk−i+1( j)Ai−1(d
′, d − j) ≤

(
j + k − i + 1

k − i + 1

)
(2 + Ci ) ≤

(
d + 1

k

)
≤ mk(d),

where the first inequality follows from (1), the second is true if d is sufficiently large,
and the third follows from (2). ��

2.3 Proof of Theorem 1.15 (ii)

For d = 0 the statement is obvious since Nk(1) = Mk(0) = mk(0) = 1 holds for any
k ≥ 1. For d ≥ 1 in Claim 2.10 and in Claim 2.11 we will prove that for any d ′ ≥ d
and k = 2, 3 we have Ak(d ′, d) = mk(d). This is sufficient in view of (10).

Claim 2.10 We have A2(d ′, d) = m2(d).

Proof Let ε, α > 0 be sufficiently small and S be an almost (d, α)-flat ε-nearly 2-
distance set in R

d ′
with distances 1 ≤ t1 < t2. Then for all but at most two points

p ∈ S we have that S is (p, d, α)-flat with respect to a d-dimensional subspace �p.
Let K > 3 be a sufficiently large constant to be specified later. We may assume
that t2/(t1 + ε) > K , otherwise we have |S| ≤ m2(d) by Lemma 2.2 (i). For every
p1, p2 ∈ S with p1 �= p2 colour the pair {p1, p2} with blue if ‖p1 − p2‖ ≥ t2 and
with red otherwise. Let B be a largest blue clique in S. Then S can be partitioned into
|B| red cliques R1, . . . , R|B| as in Lemma 2.1.

Let � be the subspace spanned by B − B = {b1 − b2 : b1, b2 ∈ B} and let j be the
dimension of �. Note that, since B is an ε-nearly 1-distance set, B approximately a
regular simplex. Hence, if ε is sufficiently small, there is an absolute μ > 0 such that
there is no b ∈ B for which the set B is (b, j − 1, μ)-flat.

Let R be any of the red cliques and let B ∩ R = {b}. We will apply Lemma 2.5 to
R ∪ B with a sufficiently small γ (to be specified later).

Let β ′ be as in Lemma 2.5 and let 0 < β ≤ β ′ be sufficiently small. We may
assume that α ≤ α(β) and that K ≥ K (αk, β). We may now apply Lemma 2.5, as
conditions (a) and (b) are automatically satisfied if ε ≤ βd ′+1. If j ≥ 2 and we have
β < μ1/( j−1), then β j−1 < μ. Further, note that since we may assume that there
is at least one blue edge, we have that |B| ≥ 2. Thus, there is no γ for which B is
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(0, γ )-flat. In other words, there is no γ , for which B is ( j − 1, γ )-flat if j − 1. Thus,
if β is sufficiently small, then j is as in Lemma 2.5.

Since S is (p, d, α)-flat for all but at most two p ∈ S, for all but at most two (say
R1 and R2) red cliques R we have that B ∪ R is (r , d, α)-flat for some r ∈ R. Thus by
Lemma 2.5 we obtain that if R is not R1 or R2, then R is (r , d − j, γ )-flat for some
r ∈ R. Now, since R is an ε-nearly 1-distance set, Lemma 2.2 (i) implies that if R is
not R1 or R2, then we have |R| ≤ m1(d − j) = d − j + 1 if ε and γ are sufficiently
small. We also have |R1| + |R2| ≤ 2, since there are only at most two p ∈ S such that
S is not (p, d, α)-flat.

Noting further that |B| = j + 1, we obtain

|S| = |R1| + · · · + |R|B|| ≤ max {( j + 1)(d − j + 1), j (d − j + 1) + 2}.

Then either d = j or ( j + 1)(d − j + 1) ≥ j (d − j + 1) + 2 holds. In the first case,
we have

|S| ≤ d + 2 ≤
(
d + 1

2

)
≤ m2(d)

if d ≥ 3, and

|S| ≤ d + 2 ≤ m2(d)

if d = 1, 2, since m2(1) = 3 and m2(2) = 5. In the second case, we have

|S| ≤ ( j + 1)(d − j + 1) ≤
(
d + 2

2

)2
≤

(
d + 1

2

)
≤ m2(d)

if d ≥ 4, and

|S| ≤ ( j + 1)(d − j + 1) ≤ m2(d)

if d = 2, 3 since m2(2) = 5 and m2(3) = 6 (see Table 1). ��
Claim 2.11 We have A3(d ′, d) = m3(d).

Proof Let ε, α > 0 be sufficiently small and S be an almost (d, α)-flat ε-nearly 3-
distance set in R

d ′
with distances 0 < t1 < t2 < t3. Later we will apply Lemma 2.5

with a sufficiently small γ . Let β ′ be as in Lemma 2.5, and let 0 < β ≤ β ′ be
sufficiently small to be specified later. We may assume that α ≤ α(β) and that K ≥
max {3, K (α, β)} is sufficiently large. We may assume t2/(t1 + ε) ≥ K or t3/(t2 + ε)

≥ K holds, otherwise we immediately obtain |S| ≤ m3(d) by Lemma 2.2 (i) if ε and
α are sufficiently small. We will analyse these two cases separately.

Case 1: t3/(t2 + ε) ≥ K . For every p1, p2 ∈ Swith p1 �= p2 colour the pair {p1, p2}
with blue if ‖p1 − p2‖ ≥ t3 and with red otherwise. Let B be a largest blue clique in
S. Then S can be partitioned into |B| red cliques R1, . . . , R|B| as in Lemma 2.1.

123



Discrete & Computational Geometry

Let � be the subspace spanned by B − B = {b1 −b2 : b1, b2 ∈ B}, and let j be the
dimension of �. Note that, since B is an ε-nearly 1-distance set, B is approximately a
regular simplex. Hence, there is an absolute μ > 0 such that if ε is sufficiently small,
then for no b ∈ B, the set B is (b, j − 1, μ)-flat.

Let R be any of the red cliques and let B ∩ R = {b}. We will apply Lemma 2.5
to R ∪ B with γ . Conditions (a) and (b) of Lemma 2.5 are automatically satisfied if
ε ≤ βd ′+1. Moreover, if j ≥ 2 and we have β < μ, then β j−1 < μ, thus j is as in
Lemma 2.5. (The j = 1 case can be handled in the same way as in Claim 2.10.)

Since S is (p, d, α)-flat for all but at most two p ∈ S, for every red clique R,
for all but at most two points r ∈ R, we have that B ∪ R is (r , d, α)-flat. Thus, by
Lemma 2.5 we obtain that every R is (r , d − j, γ )-flat for all but at most two r ∈ R.
Moreover, since R is an ε-nearly 2-distance set, we obtain that |R| ≤ A2(d ′, d − j)
if γ is sufficiently small. Noting further that |B| = j + 1, overall we obtain

|S| = |R1| + · · · + |R|B|| ≤ ( j + 1)A2(d
′, d − j).

For sufficiently small γ and any red clique R, we have |R| ≤ 2 if d = j . In this case
it follows that |S| ≤ 2(d + 1). Then for d ≥ 4 we have

|S| ≤ 2(d + 1) ≤
(
d + 1

3

)
≤ m3(d),

where the second inequality is true by a simple calculation, and the third is by (1). For
d = 1, 2, 3 we have

|S| ≤ 2(d + 1) ≤ m3(d)

given that m3(1) = 4, m3(2) = 7, and m3(3) = 12 (see Table 1).
If j < d, then |R| ≤ A2(d ′, d − j ′) ≤ m2(d − j), where the second inequality is

by the k = 2 case of the theorem (Claim 2.10) for sufficiently small γ . In this case,
for d ≥ 9 we have

|S| ≤ ( j + 1)m2(d − j) ≤ ( j + 1)

(
d − j + 2

2

)
≤

(
d + 1

3

)
≤ m3(d),

where the second inequality is true by (1), the third by a simple calculation, and the
fourth by (2). For d ≤ 8, using the known values and bounds of m2(d) and m3(d), we
check in the appendix that

( j + 1)m2(d − j) ≤ m3(d). (12)

Case 2: t2/(t1 + ε) ≥ K > t3/(t2 + ε). For every p1, p2 ∈ S with p1 �= p2 colour
the pair {p1, p2} with blue if ‖p1 − p2‖ ≥ t2 and with red otherwise. Let B be a
largest blue clique in S. Using Lemma 2.1, partition the set S into |B| red cliques
R1, . . . , R|B|. We split the analysis into two more subcases.
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Case 2.1: t3/(t2 + ε) > 1+2/K . Let R be one of the red cliques and let R∩B = {b}.
We will apply Lemma 2.5 to R ∪ B with γ , similarly as before. Condition (a) is
automatically satisfied. To check condition (b), note that for any p1, p2 ∈ R and
b′ ∈ B with b �= b′, if |p1 − b′| ∈ [ti , ti + ε] and |p2 − b′| ∈ [t
, t
 + ε], then by the
triangle inequality we obtain that 
 = i if ε is sufficiently small. Thus, condition (b)
is satisfied as well if ε ≤ βd ′+1 and ε is sufficiently small.

Let j be as in Lemma 2.5. If for some p ∈ R we have that S is (p, d, α)-flat, then
R is (p, d − j, γ )-flat by Lemma 2.5. Further, note that the same is true for any red
clique R with the same j . Indeed, since t3/(t2 + ε) < K , Lemma 2.7 implies that if β

is sufficiently small, then there is a j such that B is (b′, j, β j )-flat for every b′ ∈ B,
but there is no b′ ∈ B for which it is (b′, j − 1, β j−1)-flat. This and Lemma 2.2 (i)
imply that for all but at most two red cliques R we have |R| ≤ m1(d − j) = d − j +1
if γ and ε are sufficiently small. Moreover, if the two potential exceptions are say
R1, R2, then |R1| + |R2| ≤ 2. Note also that by Lemma 2.2 (i) we have |B| ≤ m2( j)
if β and ε are sufficiently small. Overall, we obtain

|S| ≤ |R1| + · · · + |R|B|| ≤ max {m2( j)(d − j + 1), (m2( j) − 1)(d − j + 1) + 2}.

Then we either have d = j or j ≤ d − 1, and thus (m2( j) − 1)(d − j + 1) + 2 ≤
m2( j)(d − j + 1). In the first case (d = j) for d ≥ 6 we have

|S| ≤ m2(d) + 1 ≤
(
d + 2

2

)
+ 1 ≤

(
d + 1

3

)
≤ m3(d),

where the second inequality is by (1), the third is by a simple calculation, and the
fourth is by (2). For 1 ≤ d ≤ 5 we have

|S| ≤ m2(d) + 1 ≤ m3(d)

since m2(1) = 3, m2(2) = 5, m2(3) = 6, m2(4) = 10, m2(5) = 16, and m3(1) = 4,
m3(2) = 7, m3(3) = 12, m3(4) = 16, m3(5) ≥ 24 (see Table 1). Finally, in the
second case ( j ≤ d − 1) we do the same analysis as in the end of Case 1.

Case 2.2: t3/(t2 + ε) ≤ 1 + 2/K . First, we will show that |B| ≤ d + 1. Indeed,
we either have that |B| ≤ 2, or there is a b ∈ B such that B is (b, d, α)-flat. In the
latter case, by Lemma 2.7 we obtain that B is (d, 20((1 + 2/K )α)1/2)-flat. Then, by
Lemma 2.2 (ii), if 2/K , α, and ε are sufficiently small, we have that |B| ≤ m1(d) =
d + 1.

Next, we will show that for any red clique R we have |R| ≤ d + 1. Indeed, we
either have that |R| ≤ 2, or there is an r ∈ R such that R is (r , d, α)-flat. In the latter
case, by Lemma 2.7 we obtain that R is (d, 20α1/2)-flat. Then, by Lemma 2.2 (i), if α

and ε are sufficiently small, we have that |R| ≤ m1(d) = d + 1. We obtain that

|S| = |R1| + · · · + |R|B|| ≤ (d + 1)2.
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Fig. 2 Illustration of proof of Claim 2.12

Then if d ≥ 9, it follows by a simple calculation and by (2) that

|S| ≥ (d + 1)2 ≤
(
d + 1

3

)
≤ m3(d).

Further, for d = 7 and for d = 8 we have m3(8) ≥ 121 ≥ (8 + 1)2, m3(7) ≥ 65 ≥
(7 + 1)2 (see Table 1). Therefore, in the rest of the proof we may assume that d ≤ 6.

Case 2.2.1: t1 ≥ K 0.1(t3− t2). Let R be a largest red clique. To bound the cardinality
of R in this case we will not use Lemma 2.5, but we will use Lemma 2.4 directly.

Let R∩B = {b}, and let γ be sufficiently small (to be specified later). For γ ′ = γ /2
let β0 as in Lemma 2.4, and let β ≤ β0 be sufficiently small. Further, let r be any point
of R, and let V = {b′ − r : b′ ∈ B\{b}}. Assume that j ≥ 1 is the smallest integer
such that V is ( j, β j )-Flat, and assume that V is ( j, β j )-flat with respect to �. Let
q ∈ R be any point of R such that q �= r .

Claim 2.12 For every b′ ∈ B \ {b} the angle between the vectors q − r and b′ − r falls
in [π/2 − βd ′

/2, π/2 + βd ′
/2], if K is sufficiently large, and ε is sufficiently small.

Proof Let S2,S3 be spheres centred at b′ and of radii t2 and t3 respectively (see Fig. 2).
Then r is ε-close to one of them. We only spell out the proof in the case when r is
ε-close to S1, as the case when it is ε-close to S3 can be done very similarly. Note
that q is also ε-close to S2 or S3. If q is ε-close to S2, then some simple calculation
shows that for some absolute constant c1 the angle between the vectors q − r and
b′ − r falls in [π/2 − c1/K , π/2 + c1/K ]. If q is ε-close to S3, then we claim that
for some absolute constant c2 the angle between the vectors q − r and b′ − r falls in
[π/2 − c2/K 0.1, π/2 + c2/K 0.1]. Indeed, this follows from the facts that |q − r | ∈
[t1, t1 + ε], t1 ≥ K 0.1(t3 − t2), and that the radius of S3 is much bigger than t1. Thus,
we can conclude that if K is sufficiently large, then the angle between the vectors q−r
and b′ − r falls in [π/2 − βd ′

/2, π/2 + βd ′
/2]. ��

Next, we will show that if for some r ∈ R the set R ∪ B is (r , d, α)-flat, then R is
(r , d − j, γ )-flat. This part of the proof is very similar to the proof of Lemma 2.4, but
for completeness we spell it out with all details.

Assume that B ∪ R is (r , d, α)-flat with respect to a d-dimensional subspace �r .
Let πr (V ) be the projection of V = {b′ − r : b′ ∈ B \ {b}} on �r . Assume that
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j ′r ≥ 1 is the lowest dimension such that πr (V ) is ( jr , β jr /2)-Flat. Further, let �′
r be

a subspace of dimension jr such that πr (V ) is ( jr , β jr /2)-Flat with respect to �′
r .

The angle between b′ − b and b′ − r is at most α if K is sufficiently large and β is
sufficiently small. The angle between b′ − r and πr (b′ − r) is at most α. Further, the
angle between πr (b′ − r) and �r is at most β jr /2. These, together with the triangle
inequality imply that B is (b, jr , β jr )-flat with respect to �′

r if 2α ≤ β jr /2. By the
minimality of j , it follows than that jr ≥ j .

Let �r be the affine plane through r parallel to �′
r . For a point p ∈ R

d ′
we denote

by π ′
r (p) the projection of p on �r . Similarly, for a set X ⊆ R

d ′
, let π ′

r (X) denote
the projection of X on �r . Note that π ′

r (r) = r . Let (b′ − r)⊥r denote the (d − 1)-
dimensional subspace in �′

r that is orthogonal to b′ − r .

Claim 2.13 For any b′ ∈ B \{b} and any r ∈ R, the projection π ′
r (R) is (r , d−1, βd)-

flat with respect to (b′ − r)⊥r if α and β are sufficiently small and K is sufficiently
large.

Proof Let q ∈ R\{r} any point of R. It follows fromClaim 2.12 that if K is sufficiently
large and ε is sufficiently small, then the angle between the vectors q−r and b′−r falls
in [π/2 − βd ′

/2, π/2 + βd ′
/2]. Further, we have∠qrπ ′

r (q) ≤ α. Thus,∠b′rπ ′
r (q) ∈

[π/2 − βd , π/2 + βd ] if α is sufficiently small. Since π ′
r (R) is contained in �r , we

obtain that for every b′ ∈ B the set π ′
r (R) is (r , d − 1, βd)-flat with respect to

(b′ − r)⊥r . ��
Now we apply Lemma 2.4 with πr (V ) and γ ′ = γ /2, and obtain that π ′

r (R) is
(r , d − jr , γ /2)-flat. This, by jr ≥ j , implies that πr (R) is (r , d − j, γ /2)-flat. Since
for any q ∈ R the angle between q − r and πr (q) − r is at most α, it follows that R
is (r , d − j, γ )-flat if α is sufficiently small.

Thus, either there is no r ∈ R for which R is (r , d, α)-flat, in which case |R| ≤ 2, or
there is an r ∈ R such that R is (r , d − j, γ )-flat. In the latter case, by Lemma 2.7 we
obtain that R is (d− j, 20γ 1/2)-flat. Thus, by Lemma 2.2 (i) we have |R| ≤ m1(d− j)
if γ and ε are sufficiently small. Overall, we have that |R| ≤ max {2,m1(d − j)}.

Finally, we claim that |B| ≤ j+1. To see this, note if K is sufficiently large, then the
angle between the vectorsb′−r andb−r is atmostβ j . Then, sinceV is ( j, β j )-Flat,we
obtain that B is (b, j, 2β j )-flat. Lemma 2.7 implies that B is ( j, 20((1+2/K )β j )1/2)-
flat. ByLemma2.2 (ii)we conclude that |B| ≤ m1( j) = j+1 ifβ and ε are sufficiently
small. Overall, we obtain that

|S| ≤ ( j + 1)(d − j + 1) ≤ m3(d),

where the second inequality was already proven in the previous cases.

Case 2.2.2: t1 ≤ K 0.1(t3 − t2). For every 1 ≤ i ≤ |B| let {bi } = B ∩ Ri , and for
m = 2, 3, let S
(i) be the sphere of radius tm centred at bi . We need the following
claim.

Claim 2.14 Assume that for some 1 ≤ i, 
 ≤ |B| with i �= 
 there are points from
Ri in the ε-neighbourhoods of both S2(
) and S3(
). Then R
 is contained in the
ε-neighbourhood either of S2(i) or of S3(i).
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p
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2 (�)
3 (�)S S S S

Fig. 3 Illustration of proof of Claim 2.14

Proof Assume the contrary. We may assume that |bi −b
| ∈ [t2, t2 + ε] (the case with
t2 replaced by t3 can be treated similarly). Then there are points p ∈ Ri , q ∈ R
 such
that p is in the ε-neighbourhood of S3(
), and q is in the ε-neighbourhood of S3(i)
(see Fig. 3). Let p′, q ′ denote the projections of p, q on the line e passing through bi
and b
, and let ri and r
 denote the points of intersection of e and spheres S3(
), S3(i)
respectively. Note that ‖ri − r
‖ ≥ t3 + (t3 − t2).

We claim that ‖ri − p′‖, ‖r
 −q ′‖ ≤ (t3− t2)/10. This would imply that ‖q− p‖ ≥
‖q ′ − p′‖ ≥ ‖ri − r
‖ − 2(t3 − t2)/10 > t3 + ε, which is a contradiction. Let us only
show that ‖r
 − q ′‖ ≤ (t3 − t2)/10, since the other inequality can be proven in the
same way. Due to our condition on t2, we have ‖r
 − q‖ ≤ ‖r
 − b
‖ + ‖b
 − q‖ ≤
2ti + 2ε ≤ 3K 0.1(t3 − t2). Since we have t3 − t2 ≤ 2t3/K , and q lies in the ε-
neighbourhood of S3(i), for the angle γ between the vector q − r
 and the line e we
have 2 cos γ = ‖r
 − q‖/‖q − bi‖ ≤ 3K 0.1(t3 − t2)/t3 ≤ 3K−0.9. Therefore, we
have ‖r
 − q ′‖ = ‖r
 − q‖ cos γ ≤ 3/K 0.8 < (t3 − t2)/10 for sufficiently large K . ��

Assign an ordered pair (ρ1, ρ2) to each ordered pair (i, 
) with i �= 
, if Ri can be
covered by the ε-neighbourhood of ρ1 many spheres out ofS2(
),S3(
), and R
 can be
covered by the ε-neighbourhood ofρ2 many spheres out ofS2(i),S3(i). ByClaim 2.14
we have that (ρ1, ρ2) ∈ {(1, 1), (2, 1), (1, 2)}. If there are τ(i) indices 
1, . . . , 
τ(i) ∈
B\{i} such that we assigned (1, 2) or (1, 1) to (i, 
), then Ri is contained in the
intersection of the ε-neighbourhood of τ(i) spheres of radii t2 or t3 (with centres in
b
1 , . . . , b
τ(i)).

Let γ be sufficiently small, that will be specified later. Using Lemma 2.4, we
will show that for any r ∈ Ri the set Ri is (r , d − τ(i), γ )-flat provided that ε, α are
sufficiently small, and K is sufficiently large. Let β0 be as in Lemma 2.4 for γ ′ = γ /2,
and let β ≤ β0 be sufficiently small.

Wedenote by�′
i the subspace spannedby the set of vectors {b
s−bi : 1 ≤ s ≤ τ(i)}.

Standard calculation shows that if ε and β are sufficiently small, and K is sufficiently
large, then there is no j < τ(i) for which �′

i is ( j, β j )-Flat. (On an intuitive level, this
is the case because B is approximately a regular simplex.) On the other hand, �′

i is of
dimension at most τ(i), thus it is (τ (i), βτ(i))-Flat.

Let p ∈ Ri be such that p �= r . If ε is sufficiently small and K is sufficiently large,
then for any 1 ≤ s ≤ τ(i) the angle of the vectors b
s −r and r − p is (βd ′

/2)-close to
π/2. Indeed, this follows since the lengths ‖b
s −r‖ and ‖b
s − p‖ are ε-close to each
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other, and ‖b
s − r‖ is at least K times as large as ‖r − p‖. Further, if ε is sufficiently
small and K is sufficiently large, then the angle of the vectors b
s − bi and b
s − r is
at most βd ′

/2. Thus, the angle of r − p and b
s − bi is βd ′
-close to π/2.

Assume that for some r ∈ Ri the set Ri ∪B is (r , d, α)-flat with respect to�r . Then
using Lemma 2.4 after projecting to a subspace parallel to �r through r , we obtain
that Ri is (r , d − τ(i), α)-flat. We omitted the details of this argument, as they are
essentially the same as the proof of Lemma 2.5 and of the proof of Case 2.2.1 after
Claim 2.12.

Recall that S is (r , d, α)-flat for all but at most two r ∈ S. Thus, for all but at most
two (say, R1 or R1, R2) sets Ri there is an r ∈ Ri such that Ri is (r , d − τ(i), γ )-flat.
Then Lemmas 2.7 and 2.2 (i) together imply that |Ri | ≤ d − τ(i) + 1 if α if γ is
sufficiently small.

Each pair of vertices contributes to at least one of the τ(i)’s, which implies that

|B|∑

i=1

τ(i) ≥
(|B|

2

)
.

If in all Ri there is an r such that R is (r , d, α)-flat, then we obtain

|S| =
|B|∑

i=1

|Ri | ≤ |B|(d + 1) −
|B|∑

i=1

τ(i) ≤ |B|(d + 1) −
(|B|

2

)
. (13)

Otherwise, repeating the same argument for S′ := ⋃|B|
i=2 Ri or for S′′ := ⋃|B|

i=3 Ri ,and
using |R1| ≤ 2 or |R1| + |R2| ≤ 2, we obtain

|S| =
|B|∑

i=1

|Ri | ≤ (|B| − 1)(d + 1) −
(|B| − 1

2

)
+ 2. (14)

By Lemma 2.2 (ii) we have |B| ≤ d + 1, if K is sufficiently large and ε and α are
sufficiently small. Thus, recalling that we assumed d ≤ 6, in both (13) and (14) the
right hand side is bounded from above by m3(d), by a simple calculation and by the
fact that m3(2) = 7, m3(3) = 12, m3(4) = 16, m3(5) ≥ 24, and m3(6) ≥ 40 (see
Table 1). ��

2.4 Proof of Theorem 1.16

In order to prove the theorem, we will need the spherical analogues of our quantities.
For a set P on a d-sphere Sd ⊂ R

d ′
centred at 0, we say that P is (d, α,Sd)-flat if

for each p ∈ P it is (p, d, α)-flat with respect to a d-dimensional subspace �p that
contains the vector p − 0. Note that we do not impose any conditions on the radius of
the sphere.

Let NSk(d ′, d) denote the largest number M such that for any α, ε > 0 there is a
(d, α,Sd)-flat ε-nearly k-distance set of cardinality M on a d-sphere Sd ⊂ R

d ′
.
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Wecall two subspaces�1 and�2 ofRd intersecting-orthogonal if there is an orthog-
onal basis {v1, . . . , vd} of R

d with indices 1 ≤ i ≤ j ≤ d such that {v1, v2, . . . , v j } is
an orthogonal basis of �1 and {vi , vi+1, . . . , vd} is an orthogonal basis of �2. Slightly
abusing notation, we will also call two affine planes �1 and �2 of R

d intersecting
orthogonal if the subspaces �1 = �1 − �1 and �2 = �2 − �2 are intersecting
orthogonal.

For each d, d ′, with 0 ≤ d < d ′, we are going to prove that Nk(d ′, d), NSk(d ′, d) ≤
2(k + 1)d simultaneously by induction on d. As the proof for Nk(d ′, d) and for
NSk(d ′, d) are very similar, we only spell it out with details for NSk(d ′, d), which
is the slightly more complicated case. Then we will comment on how to modify the
proof for Nk(d ′, d).

The statement for NSk(d ′, d) is clear for d = 0 and for any d ′. Suppose that the
statement holds for d − 1. More precisely, we assume that there exist εd−1, αd−1 > 0
such that any (d − 1, αd−1,Sd−1)-flat εd−1-nearly k-distance set P on a (d − 1)-
sphere Sd−1 ⊂ R

d ′
satisfies |P| ≤ 2(k + 1)d−1. We are now going to prove a similar

statement for d with εd , αd > 0, where εd , αd are sufficiently small compared to
εd−1, αd−1.

Fix some sufficiently small εd , αd > 0. Take a (d, αd ,Sd)-flat εd -nearly k-distance
set P of points on a sphere Sd . Let ρ be the radius of Sd , and let the k distances be
1 ≤ t1 ≤ . . . ≤ tk . Note that we may also assume that t1 ≥ 2. Indeed, to get this,
simply enlarge P from 0. Then the enlarged image is a (d, αd ,Sd)-flat 2εd -nearly
k-distance set with distances 2t1 ≤ . . . ≤ 2tk .

Take any point p ∈ P , and for each i ∈ [k] let Sd−1
i be the (d −1)-sphere obtained

as the intersection of Sd with the d-sphere S(p, ti ) of radius ti centred at p. Note
that every point of q ∈ P \ {p} is contained in the εd -neighbourhood of S(p, ti ) for
some i . Further, let �p be a subspace of dimension d containing the vector p− 0 such
that P is (p, d, αd)-flat with respect to �p.

Let j ′ be the largest index j such that t j < ε
1/4
d ρ, if there is any, and otherwise let

j ′ = 0. Then all points at distance at most t j ′ + εd from p lie in a spherical cap with

centre in p and of angular radius K1ε
1/2
d for some constant K1. Denote the set of these

points by X . For every q ∈ X , let �q be the d-dimensional affine plane (contained in
the (d + 1)-dimensional affine plane spanned by Sd ) tangent to Sd at q. Further, let
�′
q be a d-dimensional subspace parallel to �q . Then one can show (by combining a

projection argument with standard calculations) that there is a universal constant K2

such that X is globally (d, K2ε
1/2
d )-flat with respect to �′

q .
Recall that at the same time for every q ∈ X we have that X is (q, d, αd)-flat with

respect to a d-dimensional subspace �q containing q−0. Since �q contains the vector
q−0, the subspace �′

q is intersecting-orthogonal to �q . Let �′′
q denote the intersection

of �q and �′
q . We can conclude by simple calculation that for any q ∈ X we have that

X is (q, d − 1, αd−1)-flat with respect to �′′
q provided εd , αd are chosen appropriately

small. Thus, by the induction hypothesis we obtain |X | ≤ 2(k + 1)d−1.
Next, let j ′′ be the smallest index such that t j ′′ ≥ (2−ε

1/2
d )ρ (if there is no such j ′′

then we put j ′′ := k + 1). Let Y be the set of those points of P that are at distance at
least t j ′′ from p. Let p′ be the point on Sd that is diametrically opposite to p. Then Y is
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contained in a spherical cap with centre in p′ and of angular radius K1ε
1/2
d . Following

the same argument that we used to bound |X |, we obtain that |Y | ≤ 2(k + 1)d−1.
Now consider the set P ′ := P \ (X ∪ Y ∪ {p}). For every point of q ∈ P ′ there

is an index j ′ < i < j ′′ such that the distance of q and p falls in [ti , ti + εd ]. Note
also that for every point q ∈ P ′ the angle between q − 0 and p − 0 is at least ε

1/2
d .

Standard calculations show that if for some q ∈ P ′ and j ′ < i < j ′′ we have
‖q − p‖ ∈ [ti , ti + εd ], then the distance from q to Sd−1

i is at most K3ε
1/2
d for some

constant K3.
For each q ∈ P ′, replace q with the closest point on the corresponding Sd−1

i . Denote
the resulting set P ′′. Then the distances between distinct points of P ′′ are contained
in

[
t1 − εd−1

3
, t1 + εd−1

3

]
∪ · · · ∪

[
tk − εd−1

3
, tk + εd−1

3

]
,

provided that εd is small enough. Thus, P ′′ is a (2εd−1/3)-nearly k-distance set with
distances 1 ≤ t ′1 ≤ . . . ≤ t ′k , where the first inequality follows from the assumption
that t1 ≥ 2 and that εd−1 is sufficiently small.

Since the set P ′′ is obtained by a small perturbation from a subset of P , we can
show by a simple calculation that there is a constant K4 such that for any q ∈ P ′′ the
set P ′′ ∪{p} is (q, d, αd +K4ε

1/2
d )-flat with respect to a subspace�q containing q−0.

Let �′
q be a rotation of �q by an angle at most α4 + K4ε

1/2
d such that �′

q contains

q − 0 and p − 0. Then, by the triangle inequality, P ′′ is (q, d, 2(αd + K4ε
1/2
d ))-flat

with respect to �′
q .

For every j ′ < i < j ′′ let Mi be the affine (d − 1) dimensional plane containing
Sd−1
i , and let �i be the (d − 1)-dimensional subspace parallel to Mi . If q ∈ P ′′

is in Sd−1
i , then �′

q and �i are intersecting-orthogonal. Moreover, �′
q contains the

centre of Sd−1
i . These imply that the set P ′′

i := P ′′ ∩Sd−1
i is (d −1, εd−1,Sd−1

i )-flat,
where the subspace for the flatness at point q is �′

q ∩ �i . Thus, by induction we have
|P ′′

i | ≤ 2(k + 1)d−1. Overall, we have

|P| ≤ 1 +
j ′∑

i=1

|X | +
k∑

i= j ′′
|Y | +

j ′′−1∑

i= j ′+1

|P ′′
i | ≤ 1 + k · 2(k + 1)d−1 ≤ 2(k + 1)d .

A similar, but simpler proof works for non-spherical sets. Let us sketch the proof.
We fix a point p, decompose the set P into p and the εd -neighbourhoods of k spheres
at distance ti from p. We then project the points on the corresponding spheres and
apply inductive hypothesis for the spherical sets of dimension d−1. The only thing to
verify is that the sets are (d − 1, εd−1, S

d−1
i )-flat, and notably that the corresponding

approximating plane passes through the centre of the sphere Sd−1
i . But wemay assume

that, since the approximating plane �q of any point q ∈ P \ {p} was containing 0 and
was forming an angle at most αd with the line pq. Thus, by a slight perturbation (and
by a possibly slightly weaker approximation), we may assume that both p and 0 are
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contained in �q . Since the centre of Sd−1
i lies on the line p0, it is contained in �q as

well.

2.5 Proof of Theorems 1.17 and 1.18

Let us start with the proof of the upper bound in Theorem 1.18. It is immediately
implied by the following theorem, combined with the fact that Ak(d) = mk(d − 1) in
the cases covered in Theorem 1.18. (This is what we have actually shown in the proof
of Theorem 1.15.)

Theorem 2.15 For any d ≥ 2 and k ≥ 1 there exists n0, such that for any n ≥ n0 we
have

Mk(d, n) ≤ T (n, Ak(d)) ≤
(
1 − 1

Ak(d)

)
n2

2
. (15)

Moreover, (15) remains valid if in the definition of Mk(d, n)we change the intervals of
the form [ti , ti+1] to intervals of the form [ti , ti+cn1/d ] for some constant c = c(k, d).

We first prove Theorem 2.15, that is, we show that (15) holds with intervals of the
form [ti , ti + cn1/d ], where c = c(k, d) is a sufficiently small constant, to be specified
later. The proof of Theorem 1.17 is very similar and is actually simpler. We sketch the
changes needed to be made in order to prove it in the end of this section.

Let 
 = Ak(d) + 1 and let α, ε > 0 be fixed such that there exists no almost
(d − 1, α)-flat ε-nearly k-distance set in R

d of cardinality 
. Assume on the contrary
that (15) does not hold for some set of n points S′′ ⊂ R

d for sufficiently large n. Let
1 ≤ t1 ≤ . . . ≤ tk be the corresponding distances, and let c be the constant from
the statement of the theorem. Our goal is to derive a contradiction by constructing an
almost (d − 1, α)-flat ε-nearly k-distance set of cardinality 
.

In the proof, we will use a hierarchy of “small” constants given below. We write
μ � ν ifμ is a certain (positive, but typically quickly tending to 0) function, depending
on ν only. Thus, the arrows indicate the order of choosing the parameters: from the
right to the left below (and thus, for consistency, one only needs to check that every
condition we impose on a constant in the hierarchy only depends on the constants
that are to the right from it and is of the form “it is sufficiently small compared to
some of the constants to the right”). Note also that all the constants given below are
independent of n.

1

n
� c � c1 � 1

C
� 1

m
� 1

M
, δ, c2, ν � 1

d
,
1

k
, α, ε. (16)

We recommend the reader to refer to this chain of dependencies throughout the proof.
We use the following simple claim.

Claim 2.16 For any k ≥ 0, we have Nk(d) < Ak+1(d).

Proof Take a construction S of a (d−1, μ)-flatμ-nearly k-distance set inR
d in which

the distances are at least K/μ for a sufficiently large K . Pick any p ∈ S, and let � be
a subspace of dimension d − 1 such that S is (p, d − 1, μ)-flat with respect to �. Let
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q ∈ R
d be a point at distance 1 apart from p such that p − q is orthogonal to �. Then

it is easy to see that S ∪ {q} is an almost (d − 1, 3μ)-flat 3μ-nearly (k + 1)-distance
set in R

d if μ is sufficiently small and K is sufficiently large.
Indeed, for any r ∈ S \ {p, q} we have |‖r − p‖−‖r −q‖| ≤ μ if K is sufficiently

large and μ is sufficiently small. Thus, the only distance between points of S ∪ {q}
that is not μ-close to a distance between points of S, is the distance ‖p− q‖. Then by
the triangle inequality we obtain that S is a 3μ-nearly (k + 1)-distance set. Further,
the angle between p − r and q − r is at most μ, if μ is sufficiently small and K is
sufficiently large. Thus, again, by the triangle inequality, for any r ∈ S \ {p, q} we
have that S is (r , d − 1, 3μ)-flat. ��

Using the claim above, we may assume that t1 ≥ c2n1/d . Indeed, assume the
contrary. Since S′′ is separated, a volume argument implies that for each vertex v ∈ S′′,
the number of vertices in S′′ at distance at most c2n1/d from v is at most (4c2)dn. Thus,
removing all edges fromG ′′ that correspond to such distances, we only remove at most
(4c2)dn2 edges. At the same time, we reduce the size of the set of possible intervals
by at least 1. Hence, we apply Theorem 1.17 with ν playing the role of ε, and obtain

Mk(d, n) ≤ (4c2)
dn2 + Mk−1(d, n) ≤ (4c2)

dn2 + n2

2

(
1 − 1

Nk−1(d)
+ ν

)

≤ n2

2

(
1 − 1

Ak(d)

)

by using the hierarchy (16). We note here that in the proof of Theorem 1.17, this step
is automatic, since the removal of edges corresponding to small distances only change
the potential value of γ .

Our next goal is to obtain a sufficiently structured subset of S′′. We need the fol-
lowing result of Erdős.

Theorem 2.17 [8] Every n-vertex graph with at least T (n, 
 − 1) + 1 edges contains
an edge that is contained in at least δn
−2 cliques of size 
, where δ is a constant that
depends only on 
.

Consider the graph G ′′ = (S′′, E), where the set of edges consist of all pairs of
points {p1, p2} for p1, p2 ∈ S that satisfy

‖p1 − p2‖ ∈
k⋃

i=1

[ti , ti + cn1/d ].

Using the theorem above, we will show that the following lemma holds.

Lemma 2.18 For any fixedm, there exists a choice of c1 = c1(m) such that G ′′ contains
a complete 
-partite subgraph K1,1,m,...,m with the distances between any two of its
vertices strictly bigger than c1n1/d .

Proof We construct this multipartite graph in three steps.
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Step 1. Using Theorem 2.17, we find an edge e = {v1, v2} that is contained in at
least δn
−2 cliques of size 
. Let E ′′ be the set of those edges of the 
-cliques, that
are not incident to v1 or v2. Further, let F be the set of the (
 − 2)-tuples formed by
the 
 − 2 vertices of the cliques that are different from v1 and v2. The vertices of e
form the first two parts of the multipartite graph. In what follows, we will work with
the graph G ′′ induced on S′′ \ {v1, v2} by E ′′.

Step 2. We select a set SH of C vertices of G ′′ at random, and define a hypergraph
H ′ on SH as follows. Recall that c1 � 1/C � δ, 1/
, 1/m (see (16); the exact
dependency of C on δ,m and of c1 on C shall be clear later), and consider the induced
subgraph G ′ := G ′′[SH ]. S′′ is separated, hence a volume argument implies that any
vertex in S′′ \ {v1, v2} is at distance strictly bigger than c1n1/d from all but at most
(4c1)dn vertices of S′′ \ {v1, v2}. The number of vertices in S′′\{v1, v2} is n − 2, so
by the union bound we have the following.

(I) With probability at least 1− (C
2

)
(4c1)dn/(n − 2) > 1 − c1, every pair of vertices

in SH is at distance bigger than c1n1/d from each other.

Indeed, the total number of pairs of vertices is
(C
2

)
, and for each pair the probability

that it is at distance ≤ c1n1/d is at most (4c1)dn/(n − 2). The inequality in (I) is
possible to satisfy by fixing 
,C and choosing c1 to be sufficiently small.

Next, we consider the (
 − 2)-uniform hypergraph H ′′ = (S′′ \ {v1, v2}, F). The
following is an easy consequence of a Markov inequality-type argument.

(II) With probability at least δ/2, the edge density of the hypergraph H ′ = H ′′[SH ] is
at least δ/2.

Indeed, the average density of cliques should be the same as of H ′′, i.e., at least δ. But
if (II) does not hold, then the average density is at most (1 − δ/2) · δ/2 + δ/2 · 1 =
δ − δ2/4 < δ, a contradiction.

If we choose c1 < δ/2, then with positive probability both the property in (I) and
in (II) hold. Pick a subset SH ⊆ S\{v1, v2} that satisfies both.

Step 3.We apply the following hypergraph generalisation of the Kővári–Sós–Turán
theorem due to Erdős.

Theorem 2.19 [7] For any 
 ≥ 4, m ≥ 1, δ > 0 there is a constant C(
,m, δ) such
that the following holds for any C ≥ C(
,m, δ). Any (
 − 2)-uniform hypergraph on
C vertices of edge density at least δ/2 contains a copy of a complete (
 − 2)-partite
(
 − 2)-uniform hypergraph with parts of size m.

Applying the theorem to the (
− 2)-hypergraph H ′, we obtain a complete (
− 2)-
partite (
 − 2)-uniform hypergraph with parts of size m. This complete multipartite
hypergraph corresponds to a complete (
 − 2)-partite graph in G with parts of size m
and with all distances between points being at least c1n1/d . Together with the edge e,
this gives the desired 
-partite subgraph K1,1,m,...,m . ��

Let the 
 parts of the K1,1,m...,m in G ′′ be S′
1, . . . , S

′

, with S1 = {v1}, S2 = {v2},

and with |S3| = . . . = |S
| = m, further set S′ = S1 ∪ . . . ∪ S
. S′ has much more
structure than the original set S′′. However, distances from several intervals from
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[t1, t1 + cn1/d ], . . . , [tk, tk + cn1/d ] may appear between the vertices of S′
i and S′

j ,
i �= j . To reduce it to one interval between any two parts, we will do the second
“preprocessing” step using the following version of the Kővári–Sós–Turán theorem.

Theorem 2.20 [18] For any ζ > 0 and r ≥ 1 there exists n0, such that for any n ≥ n0
we have the following. Any graph on n vertices with at least ζ

(n
2

)
edges contains Kr ,r

as a subgraph.

Take S′ and set i := 1. Then do the following procedure.

1. Set j := i + 1. If i = 1, j = 2, set j := 3.
2. Take the subgraph of G ′ induced between S′

i and S′
j . Choose an index ψ =

ψ(i, j) ∈ [k], such that

∣
∣{(vi , v j ) : vi ∈ S′

i , v j ∈ S′
j , |vi − v j | ∈ [tψ, tψ + cn1/d ]}∣∣ ≥ mσ

k
,

where σ = 1 if i ∈ {1, 2} and σ = 2 otherwise. Set Gi j be the graph between S′
i

and S′
j with the set of edges specified in the displayed formula above.

3. If i ∈ {1, 2}, let S′′
i be the set of neighbours of pi in Gi j . If i /∈ {1, 2}, apply

Theorem 2.20 to Gi j and find sets S′′
i ⊂ S′

i , S
′′
j ⊂ S′

j , each of size 1 � m′ � m,
such that the graph Gi j between S′′

i and S′′
j is complete bipartite.

4. Set S′
i := S′′

i , S
′
j := S′′

j , m := m′, j := j + 1. If j ≤ k then go to step 2. If j > k
then set i := i + 1. If i ≥ k, then terminate, otherwise go to step 1.

Clearly, if m in the beginning of the procedure was large enough, then at the end of
the procedure m is still larger than some sufficiently large M . By running a procedure
similar to the one above, we can shrink the parts Si ’s further such that for any pi ∈ Si
and p j , q j ∈ S j , j /∈ {1, 2}, the angle ∠ p j piq j is at most α. If M is sufficiently large
(see the hierarchy (16)), then at the end of this second procedure each Si , i /∈ {1, 2}, has
at least two points. Thus, we obtain a subset S ⊂ S′, such thatG := G ′′[S] is complete
multipartitewith parts S1, . . . , S
 such that |S1| = |S2| = 1 and |S3| = . . . = |S
| = 2,
moreover for any two parts Si , S j there is an index ψ(i, j) ∈ [k] such that

• for any pi ∈ Si , p j , q j ∈ S j we have ‖pi − p j‖ ∈ [tψ(i, j), tψ(i, j) + cn1/d ] and
∠ p j piq j ≤ α.

For each 3 ≤ i ≤ 
 let Si = {pi , qi }. Let P be the set {p1, . . . , p
} scaled by
1/(c2n1/d), that is, let P = (1/(c2n1/d)){p1, . . . , p
}. We will show that P is an
almost (d − 1, α)-flat ε-nearly k-distance set, and obtain the desired contradiction.
Indeed, this set is separated, since all the distances between pi and p j for i �= j were
at least c2n1/d . Further, it is an ε-nearly k-distance set, since the length of each of the
intervals in which the distances fall is cn1/d/c2n1/d = c/c2 ≤ ε.

Finally, we claim that for any i /∈ {1, 2} and any j �= i we have ∠qi pi p j ∈
[π/2 − α, π/2 + α]. Let us show this. Take the point q ′

i on the line through pi , p j

such that ‖qi − p j‖ = ‖q ′
i − p j‖. Then, first, ∠qiq ′

i p j ∈ [(π − α)/2, π/2] since
∠qi p j pi ≤ α and the triangle qiq ′

i p j is isosceles. Second, we have ‖q ′
i − pi‖ ≤

cn1/d . Since ‖qi − pi‖ ≥ c1n1/d , we may assume that ∠q ′
i qi pi ≤ α/2, and thus

∠qi pi p j ∈ [(π − α)/2 − ∠q ′
i qi pi , π/2 + ∠q ′

i qi pi ] ⊂ [π/2 − α, π/2 + α].
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Thus, for every i /∈ {1, 2} we have that P is ((1/(c2n1/d)) pi , d − 1, α)-flat with
respect to the (d − 1)-dimensional subspace orthogonal to pi − qi . This finishes the
proof of Theorem 2.15.

We now turn to the proof of Theorem 1.17.We prove that for every γ > 0 inequality
(8) holds with intervals of the form [ti , ti + cn1/d ] where c = c(k, d, γ ) if n is
sufficiently large. As the proof is very similar to the proof of Theorem 2.15, we only
sketch it, pointing out the differences.

Let 
 := Nk(d) + 1 and α, ε > 0 be fixed such that there exists no (d − 1, α)-flat
ε-nearly k-distance set in R

d of cardinality 
. Assume on the contrary that for every
c > 0 and n0 there is an n ≥ n0, there are k distances t1 < . . . ≤ tk and a set S′′ ⊂ R

d

of n points for which

∣∣{(p, q) ∈ S′′ × S′′ : ‖p − q‖ ∈ [ti , ti + cn1/d ] for some i ∈ [k]}∣∣
> T (Nk(d), n) + γ n2.

Our goal is to derive a contradiction by constructing an a (d − 1, α)-flat ε-nearly
k-distance set of cardinality 
.

After including γ in the hierarchy of constants on the same level as α, the proof is
the same as that of (2.15) up to the point of Lemma 2.18. Instead of Lemma 2.18 we
will use the following.

Lemma 2.21 For any fixed m, there exists a choice c1 = c1(m, γ ) such that G ′′
contains a complete 
-partite subgraph Km,...,m such that the distance between any
two of its vertices is bigger than c1n1/d .

The proof of Lemma 2.21 is very similar to the proof of Lemma 2.18, except that
instead of Theorem 2.17 we use a result of Erdős and Simonovits [12] about the
supersaturation of 
-cliques. (And then work with 
-uniform hypergraphs instead of

 − 2.) Therefore, we only give an outline of the proof.

Theorem 2.22 [12] For any 
, γ > 0 there is a δ such that if a graph G on n vertices
has at least T (n, 
) + γ n2 edges, then it contains at least δn
 cliques of size 
.

Sketch of proof of Lemma 2.21 We construct this multipartite graph in three steps.

Step 1. Using Theorem 2.22, we find δn
 cliques of size 
. Let E ′′ be the set of
the 
-cliques, and F be the set of the 
-tuples. In what follows, we will work with the
graph G ′′ induced on S′′ by E ′′.

Step 2. Select C vertices of G ′′ at random, where c1 � 1/C � δ, 1/
, 1/m.
Denote by SH the set of C vertices that we chose and consider the induced subgraph
G ′ := G ′′[SH ]. A similar calculation as in the proof of Lemma 2.18 implies the
following.

(I) With probability at least> 1−c1, every pair of vertices in SH is at distance bigger
than c1n1/d from each other.

Next, we consider the 
-uniform hypergraph H ′′ = (S′′, F). As before we obtain the
following.
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(II) With probability at least δ/2, the edge density of the hypergraph H ′ = H ′′[SH ] is
at least δ/2.

If we choose c1 < δ/2 then with positive probability both the property in (I) and in
(II) hold. Pick a subset SH ⊆ S that satisfies both.

Step 3. Applying Theorem 2.19 to the 
-hypergraph H ′, we obtain a complete

-partite 
-uniform hypergraph with parts of sizem. This complete multipartite hyper-
graph corresponds to a complete 
-partite graph in G with parts of size m and with all
distances between points being at least c1n1/d . ��

Let the 
 parts of the Km...,m in G ′′ be S′
1, . . . , S

′

, with |S1| = . . . = |S
| = m

and set S′ = S1 ∪ · · · ∪ S
. Running a similar procedure as before we obtain a subset
S ⊂ S′, such that G := G ′′[S] is complete multipartite with parts S1, . . . , S
 such that
|S1| = . . . = |S
| = 2, moreover for any two parts Si , S j there is an ψ(i, j) ∈ [k]
with

• for any pi ∈ Si , p j , q j ∈ S j we have ‖pi − p j‖ ∈ [tψ(i, j), tψ(i, j) + cn1/d ] and
∠ p j piq j ≤ α.

For each 1 ≤ i ≤ 
 let Si = {pi , qi }. Then we can show that P given by
(1/(c2n1/d)){p1, . . . , p
} is a (d − 1, α)-flat ε-nearly k-distance set, and obtain a
contradiction.

3 Concluding Remarks

Let us list some of the intriguing open problems that arose in our studies.One important
step forward would be to get rid of the (almost-)flatness in the relationship between
nearly k-distance sets and the quantity Mk(d, n) that appears in Theorems 1.17
and 2.15. In particular, it would be desirable to prove the first equality in Conjec-
ture 1.11 and, more generally, show the following.

Problem 3.1 Show that Ak(d + 1, d) = Nk(d + 1) = Mk(d) holds for any k, d.

In fact, even showing the first equality would imply that the value of Mk(d, n) for
large n is determined exactly by the value of Nk(d + 1). Another interesting question
that looks approachable is to determine the value of Mk(d) on the part of the spectrum
opposite to that of Theorem 1.15: for any fixed d and k sufficiently large. Note that
the order of magnitude of Mk(d) in this regime is easy to find, as it is shown in
Theorem 1.16.

Problem 3.2 Determine Mk(d) for any fixed d and sufficiently large k.

If resolved, then with some effort it would most likely be possible to determine the
value of Mk(d, n) for large n in this regime as well.
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Appendix

Proof of Claim 1.14 First, assume that a1 < z1/2. Then

(
z1 + z2 − 1

a1 + a2

)
>

(
z1
a1

)(
z2 − 1

a2

)
+

(
z1

a1 + 1

)(
z2 − 1

a2 − 1

)

≥
(
z1
a1

)((
z2 − 1

a2

)
+

(
z2 − 1

a2 − 1

))
=

(
z1
a1

)(
z2
a2

)
.

The proof is the same for a2 < z2/2. Finally, assume that a1 = z1/2 and a2 = z2/2
(and thus that a1, a2 ≥ 2). Since a1 = a2 = 2 is excluded, assume that a1 ≥ 3. We
use the following inequalities:

(
z1

a1 + 1

)
= z1 − a1

a1 + 1

(
z1
a1

)
≥ 3

4

(
z1
a1

)

and
(

z1
a1 − 1

)(
z2 − 1

a2 + 1

)
= a1

z1 − a1 + 1

(
z1
a1

)
z2 − a2 − 1

a2 + 1

(
z2 − 1

a2

)

≥ 1

4

(
z1
a1

)(
z2 − 1

a2

)
= 1

4

(
z1
a1

)(
z2 − 1

a2 − 1

)
.

Using these two inequalities, we can repeat the calculations as above:

(
z1 + z2 − 1

a1 + a2

)
≥

(
z1
a1

)(
z2 − 1

a2

)
+

(
z1

a1 + 1

)(
z2 − 1

a2 − 1

)
+

(
z1

a1 − 1

)(
z2 − 1

a2 + 1

)

≥
(
z1
a1

)(
z2 − 1

a2

)
+

(
z1
a1

)(
z2 − 1

a2 − 1

)
=

(
z1
a1

)(
z2
a2

)
. ��

Proof of (12) Using the known values of m2(d) and bounds on m3(d), we obtain the
following.

d = 8 : max {( j + 1)m2(d − j) : j = 0, . . . , 8}
= max {45, 2 · 29, 3 · 27, 4 · 16, 5 · 10, 6 · 6, 7 · 5, 8 · 3, 9 · 1}
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= 81 ≤ 121 ≤ m3(8);
d = 7 : max {( j + 1)m2(d − j) : j = 0, . . . , 7}

= max {29, 2 · 27, 3 · 16, 4 · 10, 5 · 6, 6 · 5, 7 · 3, 8 · 1} = 54 ≤ 65 ≤ m3(7);
d = 6 : max {( j + 1)m2(d − j) : j = 0, . . . , 6}

= max {27, 2 · 16, 3 · 10, 4 · 6, 5 · 5, 6 · 3, 7 · 1} = 32 ≤ 40 ≤ m3(6);
d = 5 : max {( j + 1)m2(d − j) : j = 0, . . . , 5}

= max {16, 2 · 10, 3 · 6, 4 · 6, 5 · 3, 6 · 1} = 24 ≤ m3(5);
d = 4 : max {( j + 1)m2(d − j) : j = 0, . . . , 4}

= max {10, 2 · 6, 3 · 5, 4 · 3, 5 · 1} = 15 ≤ 16 = m3(4);
d = 3 : max {( j + 1)m2(d − j) : j = 0, . . . , 3}

= max {6, 2 · 5, 3 · 3, 4 · 1} = 10 ≤ 12 = m3(3);
d = 2 : max {( j + 1)m2(d − j) : j = 0, 1, 2} = max {5, 2 · 3, 3 · 1}

= 6 ≤ 7 = m3(2);
d = 1 : max {( j + 1)m2(d − j) : j = 0, 1} = max {3, 2 · 1} = 3 ≤ 4 = m3(1).

��
Proof of Claim 2.8 Let q ′ be a the translate of p by vq , and r ′ be the translate of r
by r ′. Then r ′ − q ′ is parallel vq − vr . Let β1 = ∠qrq ′ and β2 = ∠rq ′r ′. Then the
angle between q ′ − r ′ and q − r is at most β1 + β2, thus it is sufficient to show that
β1, β2 ≤ 10(Kα)1/2. We will prove it for β2, for β1 it can be done similarly. By the
low of cosines we have

cosβ2 = ‖q ′ − r‖2 + ‖q ′ − r ′‖2 − ‖r − r2‖
2‖q ′ − r‖ · ‖q ′ − r ′‖ .

By the triangle inequality we have

‖q − r‖ − ‖q − q ′‖ ≤ ‖q ′ − r‖ ≤ ‖q − r‖ + ‖q − q ′‖ and

‖q − r‖ − ‖q − q ′‖ − ‖r − r ′‖ ≤ ‖q ′ − r ′‖ ≤ ‖q − r‖ + ‖q − q ′‖ + ‖r − r ′‖.

Further, we have

‖q − q ′‖ = 2 sin α · ‖p − q‖ ≤ 2αK ‖q − r‖ and

‖r − r ′‖ = 2 sin α · ‖p − r‖ ≤ 2αK ‖q − r‖,

where in both cases the inequality follows by sin α ≤ α, and by the assumption that
‖p − q‖/‖q − r‖ ≤ K . By denoting ‖q − r‖ = z, the inequalities above imply

1 − cosβ2 ≤ 1 − 2(z − 4αKz)2 − 4(αKz)2

2(z + 4αKz)2
≤ 25αK .

Combining this with β2
2/4 ≤ 1 − cosβ2 we obtain β2 ≤ 10(αK )1/2. ��
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point sets. In: Paul Erdős and His Mathematics (Budapest 1999), vol. 2. Bolyai Soc. Math. Stud., vol.
11, pp. 499–511. János Bolyai Math. Soc., Budapest (2002)

24. Martini, H., Soltan, V.: Antipodality properties of finite sets in Euclidean space. Discrete Math.
290(2–3), 221–228 (2005)

25. Pach, J., Swanepoel, K.J.: Double-normal pairs in space. Mathematika 61(1), 259–272 (2015)
26. Solymosi, J., Vu, V.H.: Near optimal bounds for the Erdős distinct distances problem in high dimen-
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