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Abstract— Semantic segmentation is vital for many emerging 
surveillance applications, but current models cannot be relied 
upon to meet the required tolerance, particularly in complex 
tasks that involve multiple classes and varied environments. 
To improve performance, we propose a novel algorithm, neural 
inference search (NIS), for hyperparameter optimization pertain-
ing to established deep learning segmentation models in conjunc-
tion with a new multiloss function. It incorporates three novel 
search behaviors, i.e., Maximized Standard Deviation Velocity 
Prediction, Local Best Velocity Prediction, and n-dimensional 
Whirlpool Search. The first t wo b ehaviors a re exploratory, 
leveraging long short-term memory (LSTM)-convolutional neu-
ral network (CNN)-based velocity predictions, while the third 
employs n-dimensional matrix rotation for local exploitation. 
A scheduling mechanism is also introduced in NIS to manage 
the contributions of these three novel search behaviors in stages. 
NIS optimizes learning and multiloss parameters simultane-
ously. Compared with state-of-the-art segmentation methods and 
those optimized with other well-known search algorithms, NIS-
optimized models show significant improvements across multiple 
performance metrics on five s egmentation d atasets. N IS also 
reliably yields better solutions as compared with a variety of 
search methods for solving numerical benchmark functions.

Index Terms— Convolutional neural network (CNN), hyperpa-
rameter optimization, multiloss function, semantic segmentation.

This work was supported in part by the European Regional Development 
Fund (ERDF); in part by RPPTV Ltd., through the Joint Funding of a Ph.D. 
Studentship via the Intensive Industrial Innovation Program North East 
(IIIPNE) under Grant 25R17P01847; and in part by Innovate U.K. Smart 
Grants. (Corresponding author: Li Zhang.)

Sam Slade is with the Department of Computer and Information Sciences, 
Northumbria University, NE1 8ST Newcastle upon Tyne, U.K. (e-mail: 
samuel2.slade@northumbria.ac.uk).

Li Zhang is with the Department of Computer Science, Royal Holloway, 
University of London, TW20 0EX Surrey, U.K. (e-mail: li.zhang@rhul.ac.uk).

Haoqian Huang is with the College of Energy and Electrical Engineering, 
Hohai University, Nanjing 210098, China (e-mail: hqhuang@hhu.edu.cn).

Houshyar Asadi and Chee Peng Lim are with the Institute for Intelli-
gent Systems Research and Innovation, Deakin University, Waurn Ponds, 
VIC 3216, Australia (e-mail: houshyar.asadi@deakin.edu.au; chee.lim@ 
deakin.edu.au).

Yonghong Yu is with the College of Tongda, Nanjing University of Posts and 
Telecommunications, Nanjing 210049, China (e-mail: yuyh@njupt.edu.cn).

Dezong Zhao is with the James Watt School of Engineering, University of 
Glasgow, G12 8QQ Glasgow, U.K. (e-mail: Dezong.Zhao@glasgow.ac.uk).
Hanhe Lin is with the School of Science and Engineering, University of 

Dundee, DD1 4HN Dundee, U.K. (e-mail: hlin001@dundee.ac.uk).
Rong Gao is with the School of Computer Science, Hubei University of 

Technology, Wuhan 430068, China (e-mail: gaorong@hbut.edu.cn).

I. INTRODUCTION

SEGMENTATION methods form a key component in many
vision-related tasks, e.g., automated medical diagnosis,

autonomous driving, and robotic navigation, all of which stand
to revolutionize many industrial sectors. Poor segmentation
performance causes incorrect medical diagnosis and dangerous
course trajectories leaving apprehension in the uptake of these
innovations. Consistently accurate segmentation algorithms
are required to meet the stringent safety standards of these
systems. Unfortunately, no existing methods can satisfy this
requirement.

The existing segmentation techniques range from traditional
methods such as k-means clustering [1] to modern deep learn-
ing methods [2], [3]. convolutional neural networks (CNNs)
appear to be very successful in tackling segmentation problems
with multiple semantic classes and complex shapes. Critically,
this success depends upon selecting an appropriate loss func-
tion that sensibly measures the error and choosing appropriate
hyperparameters for the gradient optimization algorithm and
loss function. If these factors are not met, then CNN training is
unlikely to produce well-generalized models. Acknowledging
this, we seek to enhance the accuracy of CNN and transformer
architectures through automated hyperparameter selection and
appropriate loss function construction.

This research proposes a new search algorithm namely
neural inference search (NIS) for fine-tuning hyperparam-
eters of CNN and transformer-based segmentation models.
Our research motivations are as follows. Swarm intelligence
algorithms such as particle swarm optimization (PSO) employ
fixed search parameters and do not adaptively adjust local
and global search behaviors according to different search
stages, therefore it constrains model capabilities in balancing
between local exploitation and global exploration. By adopting
global best solutions as the guiding signals, most swarm
intelligence algorithms tend to converge prematurely. To tackle
such limitations, NIS uses a neural network-based velocity
updating strategy to dynamically predict optimal directions
and magnitudes of velocities for updates, allowing for a
better balance between diversification and exploitation. Such
effects are further strengthened using an adaptive scheduler
function. The neural network-based velocity prediction process
also employs diverse local and global optimal signals for
new velocity generation to overcome local optima traps. NIS
introduces three new search strategies, namely: 1) maximized
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standard deviation velocity prediction; 2) local best velocity
prediction; and 3) n-dimensional Whirlpool Search, along with
a Staged Discrete Adaptive Wave Function to schedule these
behaviors. The first search action maximizes the standard
deviation of the swarm to increase search territory and avoid
repeatedly searching the same regions. The second operation
moves particles to local optimal regions for faster conver-
gence while diversifying the search process. The third strategy
fine-tunes optimal regions around the global best solution
using angle-driven whirlpool-style granular movements. The
Staged Discrete Adaptive Wave Function dynamically adapts
the contribution of each search behavior based on different
search stages, emphasizing diversification and intensification
in the early and final search stages, respectively.

Our proposed solution enhances CNN-based models’ seg-
mentation performance by integrating several error measures
into a loss function. This approach increases the availability
of various information and facilitates the selection of optimal
hyperparameters for training. Additionally, our solution, NIS,
addresses attention and expert knowledge issues that arise
in manual searches while improving convergence rates and
avoiding local optima traps. The prescribed search behaviors
and staged scheduling method enable these benefits. The
research’s key contributions are summarized as follows.

1) A new multiloss function is proposed to capture multiple
error measurements with respect to semantic segmenta-
tion, enhancing feedback during CNN training. Specif-
ically, the combination of the mean of Cross Entropy,
Focal, and Dice losses is exploited. Cross Entropy loss
provides a measurement of the overall pixel-wise class
accuracy. Focal loss introduces the term α to apply
a weighting factor to the classes that are present or
nonpresent in the ground truth (GT) masks, in order
to prevent over-fitting. Additionally, it adds a γ term
to weight the contribution of well-classified examples,
contrasting the error contribution of poorly classified
ones. The Dice loss calculates a soft version of the mean
intersection over union (mIoU) measurement, which can
provide more insight into the discrepancy in shape and
consistency of the classification. By combining these
loss functions, multiple aspects of the error signal can
be leveraged to design more effective training strategies.

2) To automate hyperparameter tuning, NIS is proposed.
In particular, NIS incorporates three novel behaviors:
1) maximized standard deviation velocity prediction,
which employs a long short-term memory (LSTM)-CNN
to predict the velocity vectors that increase standard
deviation of the particle positions, ensuring agents do
not search in the same local areas; 2) local best velocity
prediction, which predicts the velocity vectors that point
to local areas of best fitness; and 3) n-dimensional
whirlpool search, which produces the velocity vectors
via a dot product of an n-dimensional rotation matrix
at a defined angle with a vector pointing toward the
global best position. As such, the particles are forced
to explore multiple dimensions of the search space.
The contribution of these three behaviors are adjusted
at every iteration with a novel scheduling function,
namely the Staged Discrete Adaptive Wave formula

ensuring a better trade-off between exploration and
exploitation. This is achieved by leveraging discrete
stages factored with a slowly decreasing or increasing
sinusoidal function, allowing each behavior to be dis-
abled or emphasized whilst approaching global optimal-
ity. The scheduling function, in conjunction with these
three innovative behaviors, operates synchronously to
automate hyperparameter selection and address the issue
of stagnation. To the best of our knowledge, we are
the very first few works that use LSTM-CNN to predict
optimal velocities to guide the search process.

The remaining of this article is structured as follows.
Section II presents state-of-the-art related studies on image
segmentation and optimization techniques. In Section III, the
details of NIS are explained, including diverse proposed strate-
gies and multiple loss functions. Following this, Section IV
presents the evaluation of the proposed NIS algorithm for
hyperparameter fine-tuning in semantic segmentation as well
as solving benchmark functions. Finally, Section V presents
the conclusions and suggestions for future work.

II. RELATED WORK

State-of-the-art related studies on image segmentation and
PSO variants are discussed in this section.

A. Segmentation

Many research studies on semantic segmentation methods
are available in the literature, e.g., [4], [5] [6], for autonomous
driving and robotic navigation. Zhang et al. [7] investigated
the effect of early and late fusion of multimodal deep learning
architectures to solve semantic segmentation for automated
robotic navigation. They proposed a Complex Modality net-
work (CMnet) which utilized a late fusion of two processing
streams to handle both RGB images and supplementary fea-
tures such as near-infrared images. Performance gains were
obtained by using such dual stream architectures for diverse
image segmentation tasks. Saire and Rivera [8] explored multi-
task learning with deep learning for semantic segmentation by
introducing three related auxiliary tasks to be solved simulta-
neously by a single CNN model. A standard encoder-decoder
network was adopted with predictive branches, one for the
main segmentation task while the others for distinct contour
prediction tasks. Each branch used a combination of cross
entropy and soft IoU loss, which were weighted to control
the contribution of the error signals.

Islam et al. [9] proposed a gated feedback refinement
network (G-FRNet) for dense image labeling. Processing
branches were inserted between spatially distinct encoding and
decoding layers. Each branch contained a Gate block linked to
a refinement block, providing spatially relevant features for the
decoder stages. Each stage was supervised by spatially match-
ing GT images. Jègou et al. [10] developed FC-DenseNet by
appending DenseNet with upsampling blocks, while SegNet
was proposed by Badrinarayanan et al. [11] which used the
pooling indices of the maxpooling steps from a VGG16
encoder to perform nonlinear upsampling, for semantic
segmentation.
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Li et al. [12] introduced CTNet, a context-based tandem
network for semantic segmentation. It made use of context
information in both the channel and spatial dimensions of
images through the use of the channel contextual model
(CCM) and the spatial contextual model (SCM). The two
models were connected for interactive training to exchange
context information, where CCM acted as a prior knowl-
edge for SCM. The SCM also introduced a self-attention
mechanism for improved efficiency. CTNet outperformed the
current state-of-the-art models on diverse segmentation tasks.
Cheng et al. [13] proposed a revolutionary deep learning-based
image segmentation model, i.e., masked-attention mask trans-
former (Mask2Former), which utilized a transformer decoder
with masked attention. Their architecture was capable of
addressing image segmentation tasks, such as panoptic,
instance, and semantic segmentation, effectively. The masked
attention component of the model restricted cross-attention
within predicted mask regions, resulting in improved local-
ized feature extraction. The model also included a multiscale
strategy and optimization improvements, leading to superior
performance compared to other state-of-the-art architectures.
Strudel et al. [14] proposed a fully transformer-based encoder-
decoder architecture, namely Segmenter, for semantic segmen-
tation in images. The algorithm split the input image into
patches, which were transformed into patch embeddings by
a transformer encoder. These embeddings were then decoded
by either a linear decoder or a mask transformer to produce
pixel-level class annotations. The model was trained end-to-
end and outputted a single class per pixel at inference time
by applying the argmax to the upsampled output. The mask
transformer decoder generated K masks by computing the
scalar product between the L2-normalized patch embeddings
and class embeddings from the decoder. Qualitative results
showed that Segmenter provided more consistent labels on
large object instances and handled partial occlusions better
compared to DeepLabv3+.

Sun and Li [15] introduced a new method called semantic
structure aware inference (SSA) for object localization and
multilabel tasks. It aimed to expand class activation maps
(CAMs) to capture semantic structure information in images
by incorporating the semantic structure modeling (SSM) mod-
ule, which consisted of two self-affinity (SA) blocks and
a smooth gate. The SSM module used feature maps from
different stages of a CNN to expand the seed CAM, which
was obtained by weighting the last convolution layer’s feature
map with the last classification layer’s weights. The final CAM
was created by combining the expanded CAMs from various
stages of the network. SSA outperformed baseline state-of-the-
art methods for diverse object localization tasks. Sun et al. [16]
introduced a novel approach to few-shot segmentation (FSS)
named singular value fine-tuning (SVF), which addressed the
overfitting issue in FSS. In FSS, the task is to segment novel
class objects with only a few densely annotated samples.
Existing methods froze the pretrained backbone to prevent
overfitting, but this leads to suboptimal performances. SVF
fine-tuned a small part of the backbone parameters, instead
of freezing the entire pretrained model, by decomposing the
backbone parameters via singular value decomposition (SVD).
The results showed the superiority of SVF over traditional

fine-tuning methods in FSS. Du et al. [17] developed a
SwinPA-Net with Swin Transformer as the backbone for
medical image segmentation. Multiplicative feature fusion and
multiscale attention aggregation were adopted to increase
feature learning capabilities of their network. It employed
a Swin Transformer as the encoder to extract multiscale
feature maps, which were subsequently concatenated via a
dense multiplicative connection (DMC) component. A local
pyramid attention (LPA) module was exploited to extract
discriminative spatial features from the multiplicative fused
feature representations of DMC. A CNN was adopted as the
decoder to upsample feature maps to generate the mask output.

Zhou et al. [18] developed multiobjective evolutionary
schemes, genetic operators and filter elimination techniques
for deep architecture compression for image segmentation.
Their work employed multiobjective optimization algorithms
to balance between multiple conflicting goals to yield a set
of Pareto pruned networks. Li et al. [19] exploited a dual
teacher-student architecture for semi-supervised image seg-
mentation, where an exponential moving average of the student
network trained using both labeled and unlabeled samples
was used to construct the teacher model. Konar et al. [20]
developed a shallow self-supervised quantum neural network
for lesion segmentation, while a contextual learning network
with autofocus and panorama embedding was studied by
Wang et al. [21] for fine-grained lung infection segmentation.

B. Optimization Algorithms

As a popular swarm intelligence algorithm, the PSO model
simulates the flocking behaviors of birds. It initializes a num-
ber of agents with each occupying a position x⃗ t

i in the search
space. Each agent is updated in each iteration t via calculating
the velocity v⃗t+1

i and subsequent position x⃗ t+1
i using (1)

and (2). The velocity contains two key terms that affect the
general search behaviors of the particles, i.e., the cognitive
term r1c1( p⃗besti − x⃗ t

i ) and the social term r2c2(g⃗t
best − x⃗ t

i ).
The cognitive term encourages each agent to search around
its personal best solution p⃗besti , while the social term directs
each agent to move toward the global best position g⃗best. The
contributions of these terms are determined by the acceleration
coefficients c1 and c2, randomized by r1 and r2 sampled from
a uniform distribution U (0, 1). In addition, the influence of
the current velocity v⃗t

i to the new one is signified by w

v⃗t+1
i = wv⃗t

i + r1c1
(

p⃗t
besti − x⃗ t

i

)
+ r2c2

(
g⃗t

best − x⃗ t
i

)
(1)

x⃗ t+1
i = x⃗ t

i + v⃗t+1
i . (2)

PSO shows great efficiency in identifying optimal CNN
architectures and hyperparameters for vision and signal pro-
cessing tasks. A PSO model embedded with multisurrogate
schemes was proposed by Hu et al. [22] for feature selection,
while an environmental PSO with probability-based fitness
surface prediction was developed by Slade et al. [23] for
human action recognition. Zhang et al. [24] exploited a PSO
variant with super-ellipse formulae inspired hybrid leaders
and root-finding algorithm-based local exploitation for audio
respiratory abnormality classification. A swarm intelligence
algorithm with crossover operators based on sine, cosine, and
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tanh functions was also utilized by Zhang et al. [25] for bidi-
rectional LSTM network generation pertaining to video action
recognition. Lawrence et al. [26] developed a PSO variant
with a residual group-based encoding mechanism for residual
CNN generation. PSO with population aggregation measure-
ment was integrated with generative adversarial networks
(GANs) for facial image generation in Zhang and Zhao [27].
A multiobjective PSO combined with reinforcement learning
was used by Zhang et al. [28] for multiUAV path planning.

III. NIS-OPTIMIZED MULTILOSS CNN MODEL FOR
SEMANTIC SEGMENTATION

We propose an NIS-optimized CNN model for image seg-
mentation. It includes NIS and a multiloss function for CNN
training. We use NIS to select optimal hyperparameters, such
as learning rate, momentum, and loss coefficients α and γ. The
hyperparameters α and γ, respectively, balance the effects of
loss on present and absent classes in the GT masks and weigh
the contributions of well/poorly classified examples. Using
the identified hyperparameters, we train a new optimized
CNN model for pixel-wise probabilistic class predictions for
semantic segmentation. Moreover, the optimization of hyper-
parameters such as learning rate and weight decay has also
been conducted for state-of-the-art transformer architectures to
tackle more complex segmentation tasks. We present details
on these components in Sections III-A and III-B.

A. Proposed Search Algorithm

The proposed NIS algorithm encompasses three unique
search behaviors, i.e., LSTM-CNN based Maximized Stan-
dard Deviation Velocity Prediction for global exploration,
LSTM-CNN based Local Best Velocity Prediction for search
diversification and n-Dimensional Whirlpool search for local
exploitation of the optimal regions. These innovative methods
for velocity vector generation incorporate machine learning
techniques to better estimate/interpret different search spaces
so that it can generate more effective velocity vectors, with
the goal of improving both exploration and exploitation in
the optimization process. A Discrete Adaptive Wave function
is formulated to provide different emphasis of these three
search behaviors at different search stages. The proposed
velocity and position operations combining the above three
search mechanisms scheduled by the Discrete Adaptive Wave
function are defined in the following equations, respectively,

v⃗′t+1
i = r1cd1(t)u⃗t

σi
+ r2cd2(t)u⃗t

βi
+ r3cu1(t)u⃗t

θi
(3)

x⃗ t+1
i = x⃗ t

i + v⃗′t+1
i (4)

where v⃗′t+1
i and x⃗ t+1

i define the velocity and position vectors of
the i th particle in the t +1th iteration, respectively. In (3), the
velocity update operation consists of three behavioral terms
as mentioned above. Specifically, the first component, i.e.,
r1cd1(t)u⃗t

σi
, deals with exploration led by Maximized Standard

Deviation Velocity u⃗t
σi

to increase search territory. The sec-
ond term, r2cd2(t)u⃗t

βi
, manages local exploration/exploitation

of promising optimal regions guided by Local Best Veloc-
ity u⃗t

βi
, while the third term, i.e., r3cu1(t)u⃗t

θi
, provides an

exploitation mechanism to emphasize search intensification of

Algorithm 1 NIS Algorithm
1: Initialise the swarm size S and particle positions
2: Initialise cd1 and cd2 using Equation 13
3: Initialise cu1 using Equation 14
4: Initialise Velocity Prediction Model (VPM)
5: Initialise training data array Adata

6: while t < T do
7: Update θt using Equations 11-12
8: Update Rθ using Equation 10
9: Collect input data from particle positions and fitnesses

in array Ainput

10: Get VPM predictions M from Ainput

11: Update u⃗t
σ from M0

12: Update u⃗t
β from M1

13: Initialise target data array Agt

14: for each particle i = 1, . . . , S do
15: Update u⃗t

θ using Equation 7
16: Update velocity v⃗′t+1

i using Equation 3
17: Update position x⃗ t+1

i using Equation 4
18: if f (x⃗ t+1

i ) < f ( p⃗t
besti ) then

19: p⃗t
besti = x⃗ t+1

i
20: end if
21: if f (x⃗ t+1

i ) < f (g⃗t
best ) then

22: g⃗t
best = x⃗ t+1

i
23: end if
24: Generate and append target velocity vectors to Agt

25: end for
26: Combine Ainput and Agt and append to Adata

27: Train VPM with Adata

28: end while
29: return g⃗t

best

well-established optimal regions using an angle-driven search
velocity u⃗t

θi
.

The first two vectors, i.e., the Maximized Standard Devia-
tion Velocity u⃗t

σi
and Local Best Velocity u⃗t

βi
, are derived from

the LSTM-CNN predictions, with the third being determined
by a novel n-dimensional spatial spiral algorithm.

These behavioral terms also contain a scheduling factor (cd1,
cd2 or cu1) implemented by the Discrete Adaptive Wave func-
tion. The aim is to determine the overall velocity contributions
of the associated behavioral terms in regard to the current itera-
tion. In addition, parameters r1–r3 contained in these terms are
random scalar factors sampled from the uniform distribution
U (0.5, 1.5). They provide variations in the distance traveled
between particles within the same iteration. As indicated in (4),
after defining v⃗′t+1

i , the particle’s next position can be found
by simply adding the velocity to the current particle position.

Algorithm 1 depicts the proposed NIS algorithm, the details
of which are discussed in the following subsections.

1) Velocity Prediction Using a Neural Network Model:
To generate the velocity vectors u⃗σ and u⃗β , we employ an
LSTM-CNN style network, named the velocity prediction
model (VPM), as shown in Fig. 1. The key advantage of using
the LSTM-CNN in this manner is its ability to directly adapt
the velocity updates to the specific solution space. By learning
from all previously evaluated positions, the model can develop
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Fig. 1. VPM predicts velocity vectors for a number of particles (S)
constrained within a D-dimensional search space. The swarm velocity pre-
dictions M are split into M0, i.e., the maximized standard deviation velocity
predictions at index 0 axis 0, and M1, i.e., the local best velocity predictions
at index 1 axis 0.

an abstract representation of the search space, enabling the
prediction of velocity vectors that maximize both exploration
and exploitation.

Initially, the LSTM-CNN network employs two LSTM
modules to extract sequential information from the network
inputs, i.e., historical information of the particle position and
the associated fitness information defined as Ainput. A convo-
lutional layer is subsequently applied to tackle spatial rela-
tionships between the particles. Fully connected linear layers
are used to make the final predictions through a sigmoid
layer to constrain the values between 0 and 1. By incorpo-
rating the LSTM-CNN design into the VPM, it enables the
simultaneous prediction of both the u⃗σ and u⃗β vectors for
individual particles. This is achieved by representing them as
M0 and M1, respectively, within a single matrix M of shape
(2, S, D), where S denotes the swarm size and D represents
the dimensionality of the search space.

VPM training for velocity prediction with respect to global
exploration is conducted from scratch, collecting and storing
data samples at every iteration as Adata. Initially, the training
data are sparse and the predictions rely on a few samples
to produce the velocity vectors. As the search progresses,
predictions improve since network training is conducted with
comparatively more data collected at each iteration. Specif-
ically, Ainput is collected at the beginning of the loop where
the VPM’s input data consist of the previous particle positions
from the last four iterations with their associated fitness scores,
forming a tensor of shape (1, 4, (D+1)×S). GTs for the target
predictions of u⃗σ and u⃗β are stored in Agt. Once the GTs of
particle’s velocity vector have been collected, Ainput and Agt
are combined into a single data sample with shape (2, S, D)
and stored in Adata. This growing dataset serves to train the
VPM before velocity prediction starts in the next iteration.

Fig. 2. Since the standard deviation of the particle positions at t is higher
than those at t − 1, 1x is taken for each particle as velocity vectors for
the maximized standard deviation velocity GT target prediction. By training
on these GT targets, the VPM causes particles to spread out in the search
space (1-D in this graph). 1x is the difference between the current particle
position at iteration t and the most distant previous particle position within
t − 4 iterations.

Sections III-A2 and III-A3 detail the GT collection processes
for u⃗σ and u⃗β , respectively.

2) Maximized Standard Deviation Velocity: The main inten-
tion of the Maximized Standard Deviation Velocity (u⃗t

σi
) in (3)

is to ensure the searched territory of the swarm sufficiently
encompasses the entire search space in a distributed man-
ner. As such, promising areas for future exploitation can be
identified. This is achieved by predicting global and local
search velocity vectors using the VPM. To obtain the GT
velocity vector required for the prediction of u⃗t

σ , we compare
the standard deviation of the particle positions in the current
iteration with that from the previous iteration. If the standard
deviation of the current iteration is higher, then a vector based
on the difference between the particle’s current position and
its most distant previous position in the last four iterations
is generated. Otherwise, a mirrored vector is yielded. This is
repeated for each particle, yielding a GT that corresponds to
the predictions defined as M0 in Fig. 1, providing a tensor
of shape (S, D). The previous particle positions from the last
four iterations in conjunction with these GT velocity vectors
serve as inputs and outputs, respectively, to train the VPM
as described in Section III-A1; enabling Maximized Standard
Deviation Velocity prediction. To extract Maximized Standard
Deviation Velocity predictions, the VPM swarm prediction
matrix M is indexed at 0 at axis 0 (M0) yielding u⃗t

σ , the predic-
tions for every particle at iteration t , as indicated in (5). This
LSTM-CNN-based Maximized Standard Deviation Velocity
prediction guides the global search process starting from
scratch and generates increasingly improved predictions to
inform diversification of the swarm. As the search progresses,
the predictions result in particles spreading out over the search
space as indicated in Fig. 2

u⃗t
σ = M0. (5)

3) Local Best Velocity: The second proposed search oper-
ation is the VPM based Local Best Velocity prediction (u⃗t

βi
).

This operation is conducted using the same VPM network,
thus employs the same input training data (i.e., the previous
particle positions from the last four iterations) as those used
for Maximized Standard Deviation Velocity Prediction. The
velocity vector target prediction aims to accelerate particle
movements toward local best historical positions, instead of
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Fig. 3. Influence of the VPM accelerates the particles to move toward
personal best positions where t denotes the current iteration. The two boxes
show two particles searching independently and how the velocity vectors (1x)
are collected and used as the training data in a 1-D search space.

global exploration as indicated in the first proposed action.
The target prediction is the vector difference between the most
recent best particle position and the most recent worst particle
position. Target velocity vector predictions are collected for
each particle giving a shape of (S, D) and then used for Local
Best Velocity prediction training via the M1 output tensor
of the VPM. The rationale behind this method is that the
network can predict vectors that lead to the local optimal
position of each particle across the search space, allowing
the swarm to both explore and exploit distinct regions of the
search space independently. This process is shown in Fig. 3.
Similar to Maximized Standardized Deviation Velocity, Local
Best Velocity predictions are taken from the VPM from the
second index of M at axis 0 (M1) yielding u⃗t

β , the Local Best
Velocity Prediction for every particle at iteration t , as indicated
in the following equation:

u⃗t
β = M1. (6)

4) n-Dimensional Whirlpool Search: The proposed
Whirlpool search is an n-dimensional spiral-like search.
It provides exploitation of promising areas in the search space
by applying an iteratively decreasing angular rotation about a
unit direction vector pointing toward the global best solution,
as indicated in the following equation:

u⃗t
θi

= u⃗t
i · R⊺

θ (7)

where R⊺
θ is a transposed rotation matrix for rotating vectors

by θ , u⃗t
i is the nonrotated vector pointing from the i th particle

position toward the global best position g⃗t
best at iteration t , and

u⃗t
θi

being the resultant rotated vector. An example resultant
rotation is displayed in Fig. 4. To increment particle positions
toward the global best position, we define a direction vector,
ût

i , with a variable magnitude that decreases over time to
perform finer movements toward the end of the search. The
largest possible movement is defined as the magnitude of the
vector spanning from opposite corners of the search space
(∥b⃗up − b⃗low∥). This magnitude is decreased by a cosine-based
factor dependent on the maximum and current iterations. When
combined with the direction vector ût

i , the complete angular
rotation velocity vector (u⃗t

i ) is produced. This is formally
expressed in the following equation:

u⃗t
i = cos

(
t

2T
π

)
ût

i

∥∥b⃗up − b⃗low
∥∥ (8)

Fig. 4. gbest refers to the global best position and t represents the current
iteration. The angle θ slowly decreases from (π/2) (green line) to 0 (black
line). u⃗ indicates the initial direction vector and u⃗θ is u⃗ rotated by θ . The
magnitude of u⃗ is defined in (8). The 2-D case is displayed here but (7)–(12)
show the generalization to n-dimensions.

where cos((t/2T )π) is a decreasing factor. The direction
vector ût

i is obtained from the initial vector u⃗t
i by the division

of its magnitude as in the following equation:

ût
i =

g⃗t
best − x⃗ t

i

∥g⃗t
best − x⃗ t

i∥
(9)

where g⃗t
best and x⃗ t

i are the global best position and the
i th particle position at iteration t , respectively. Note that
∥g⃗t

best − x⃗ t
i∥ indicates the magnitude of the difference between

g⃗t
best and x⃗ t

i .
As mentioned previously, the transposed rotation matrix R⊺

θ

defined in (7) enables n-dimensional rotation of the initial
vector u⃗t

i by a given angle θ . A new rotation matrix Rθ

is created at each iteration using two orthonormal vectors
(n̂1 and n̂2) obtained through Gram-Schmidt Orthogonaliza-
tion, as indicated in the following equation:

Rθ = I + n̂2 ⊗ n̂1 − n̂1 ⊗ n̂2 sin θ

+ n̂1 ⊗ n̂1 + n̂2 ⊗ n̂2(cos θ − 1) (10)

with I being an identity matrix whose rows and columns equal
to the dimensionality of the search space, and ⊗ is the outer
product operation. Besides that, θ is a dynamic angular value
moving from (π/2) to 0 in decreasing steps as shown in the
following equation:

θt =
π

2

(
0.8 −

t
T

)
(11)

where T is the total number of iterations. The factor of
0.8 ensures that θ has negative values in the last few iterations.
This value is clipped to stay at 0 using the following equation,
ensuring no rotation occurs toward the very end of the search
leading to a linear global best search:

θt+1 =

 0, if
θt

π
< 0

θt , otherwise.
(12)

This n-Dimensional Whirlpool search conducts angle-driven
granular movements to exploit optimal regions around the
global best solution to increase the chances of finding global
optima.
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TABLE I
8 SETTINGS

5) Staged Discrete Adaptive Wave Function: To maximize
the exploration and exploitation capabilities of all three behav-
ioral terms present in NIS [as defined in (3)], we introduce a
function which adapts the contribution of each behavioral term
based on sequential iteration ranges. These ranges, referred
to as stages, allow each behavior to be configured with a
weighting factor in each stage to increase or decrease its con-
tribution. This enables bespoke macro behaviors to be created
in each defined stage. Additionally, behavioral contributions
to the overall velocity are increased or decreased via a sinu-
soidal function according to whether they are exploitative or
exploratory, respectively. This ensures exploratory behaviors
have a high contribution at the beginning of the search and no
contribution near the end of the search, whereas exploitative
behaviors do the opposite. Details of these mechanisms are
shown in the following equations:

cd =
1
2

(
1 + cos

(
t
T
π

))
8(t, T, s1, s2, s3) (13)

cu =
1
2

(
1 − cos

(
t
T
π

))
8(t, T, s1, s2, s3) (14)

where cd and cu are the functions for producing the increasing
or decreasing behavioral coefficients cd1, cd2, and cu1 seen
in (3). (1/2)(1 − cos((t/T )π)) and (1/2)(1 + cos((t/T )π))
are the decreasing and increasing sinusoidal factors and 8

is the Discrete Adaptive Wave Function. These equations are
displayed in Fig. 5. The Discrete Adaptive Wave Function 8
is constructed through the addition of nth summations of ψ
which produces a function with discrete weighted stages to
schedule NIS behaviors based on the current iteration t of the
search algorithm. In (15), we define three stages starting from
0 to the maximum iteration T in increments of (1/3)T . Each
stage has a corresponding weighting coefficient s1, s2 or s3,
which can be adjusted to increase or decrease the contribution
of a particular behavior depending on the iterations falling
within a given stage. The configurations of these weightings
for Sections IV-A, IV-C, IV-D, and IV-E are displayed in
Table I.

8(t, T, s1, s2, s3) =

1
3 T∑

n=0

ψ(n, t, s1)+

2
3 T∑

n=
1
3 T +1

ψ(n, t, s2)

+

T∑
n=

2
3 T +1

ψ(n, t, s3) (15)

where ψ is a function built upon sinc, often found in analog
to digital signal conversion. We adopt this function as shown
in the following equation for use with the discrete summation
to enable an iteration-based scheduling as shown in (15):

ψ(n, t, s) = s × sinc(π(t − n))

= s ×
sin(π(t − n))
π(t − n)

. (16)

Fig. 5. (a) Equation (15) where s1 = 1, s2 = 2, s3 = 5, and T = 100.
(b) Factors [1 + cos((t/T )π)] (red) and [1 − cos((t/T )π)] (blue) from (13)
and (14), respectively. (c) Equation (13) (red), and (14) (blue), i.e., the
combination of (a) and (b).

As indicated in the velocity and position formulae in (3)
and (4), the Scheduled Adaptive Coefficients (cd1, cd2, and
cd3) are combined with the three previously defined behav-
iors (u⃗t

σi
, u⃗t

βi
, and u⃗t

θi
) from (5)–(7), respectively. The full

algorithm of NIS is indicated in Algorithm 1. Owing to
this Discrete Wave function, the proposed algorithm employs
an adaptive emphasis of the aforementioned three search
behaviors driven by neural network based velocity prediction
and angle rotation-based search movement to balance between
diversification and intensification.

B. Proposed Multiloss Function
Common loss functions for image segmentation include

Cross Entropy, Soft Dice, and Focal loss. Cross Entropy
measures the difference between GT and predicted masks, Soft
Dice uses Sørensen-Dice coefficient to measure similarity, and
Focal loss adjusts the impact of loss contributions for well and
poorly classified examples and classes present and nonpresent
in GT masks.

To take advantage of the loss information from the afore-
mentioned variants, we propose a new multiloss function as
shown in (17). It combines the complementary error sig-
nals from Cross Entropy, Dice, and Focal Loss schemes.
Such a multiloss mechanism is able to provide compound
loss indicators to advise the backpropagation process and
adjust performance. In particular, to balance the effects of
the well/poorly classified examples and contributions of the
classes present/nonpresent in the GT masks, we optimize the γ
and α coefficients in the focal loss function using the proposed
NIS algorithm

ML = FL(γ, α)+ SDS + CE. (17)

Specifically, the α loss coefficient balances the influence
between the classes that are present and nonpresent in the
GT masks at the pixel level. A higher α emphasizes the
classes present in the GT mask, while a lower value shifts
the emphasis toward those that are not present. Each column
in Fig. 6 indicates the impact of different α settings, where the
blue and red lines show the loss contributions of the classes
that are present and nonpresent in the GT masks, respectively.
In each row, the loss graphs are generated using a fixed γ
value (i.e., γ = 0, 1, or 5), with (a) α = 0.1, (b) α = 0.5,
and (c) α = 0.9. To be specific, (a) indicates higher contri-
butions of the classes that are not present in the GT masks,
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Fig. 6. Blue and red lines, respectively, show the loss contributions of the
classes that are present and nonpresent in the GT masks, respectively, for the
focal loss. The graphs are arranged into three columns with varied α values
and three rows with different γ values showing the resultant loss curves.
The figure exhibits three columns of graphs (labeled a, b, c) illustrating loss
contribution variations with different α and γ values. (a) α = 0.1, γ = 0,
1, 5 highlights higher contributions from non-present classes. (b) α = 0.5,
γ = 0, 1, 5 demonstrates balanced effects of present and non-present classes.
(c) α = 0.9, γ = 0, 1, 5 showcases a higher impact of the present classes.

and (b) shows the balanced effects of both classes that are
present and nonpresent, while (c) implies higher impact of the
classes that are present.

The γ loss coefficient balances between pixels with true
positive/true negative predictions and those with false posi-
tive/false negative predictions. We refer to classes with con-
siderable true positive and true negative predictions as well
classified, and those with substantial false positive and false
negative predictions as poorly classified. A higher γ empha-
sizes the contribution of the well-predicted classes at the pixel
level, whereas a lower γ setting increases the contribution
of the poorly classified classes by reducing the influence of
well-classified ones. Each row in Fig. 6 shows the effects of
different γ configurations.

As indicated in Fig. 6, different settings of α and γ loss
coefficients play significant roles in the resultant loss function
behaviors defined in (17). We optimize these two hyperpa-
rameters along with the learning rate and momentum settings
using the proposed NIS algorithm to further fine-tune model
learning behaviors.

IV. EVALUATION

We employ five well-known semantic segmentation datasets,
as well as mathematical numerical test functions to evaluate
the proposed model against several baseline search methods.

A. Segmentation Datasets
We employ five datasets, i.e., CamVid, Freiburg Forest,

MESSIDOR, ADE20K, and Cityscapes for evaluating segmen-
tation models. These datasets are detailed as follows.

The CamVid dataset has a total of 701 images in a reso-
lution of 960 × 720. An official data split is provided with
369 training, 100 validation, and 232 test samples. To reduce
the memory requirements, we compressed the original 32 cat-
egories into the following 12 semantically similar classes, i.e.,
Void, Sky, Building, Pole, Road, Pavement, Tree, SignSymbol,
Fence, Car, Pedestrian, and Bicyclist. The Freiburg Forest
dataset contains 366 images in a resolution of 882 × 490.
It contains classes of object, trail, grass, tree, vegetation, and

TABLE II
RESULTS FOR DICE SCORE, GA, MIOU, AND MCA FOR MODELS

TRAINED WITH DIFFERENT LOSSES ON THE CAMVID DATASET
WITH THE TOP TEN RESULTS HIGHLIGHTED

sky. The tree and vegetation classes are combined since the
latter is not used in the test set. An official split of 230 training
and 136 test samples is provided. The MESSIDOR dataset
contains 1200 color retinal images and binary segmentation
masks at multiple resolutions (1440 × 960, 2240 × 1488, and
2304 × 1536) for segmentation and detection of optic disks.
This study resizes GTs and images to 640×480 using an 80–20
train-test split. ADE20K contains 20 210 and 2000 images
for training and validation, respectively, with 150 semantic
categories. Cityscapes consists of 2975 and 500 images for
training and validation, respectively, with 19 semantic classes.

B. Loss Function Evaluations
We explore NIS-devised networks in combination with

different loss functions and indicate efficiency of the proposed
combined multiloss scheme.

To be specific, each model was trained with one of the
existing three loss functions, i.e., Cross Entropy, Dice, and
Focal loss, commonly used for semantic segmentation tasks,
as well as a diverse combination of these loss functions,
including the newly proposed one. The performance of these
loss functions was evaluated across seven established segmen-
tation models, i.e., FCN [4], DeeplabV3 [3], Unet++ [5],
Linknet [29], LR-ASPP [6], MAnet [2], and PSPnet [30]. Each
model was trained for 50 epochs using the stochastic gradient
descent (SGD) with a learning rate of 0.01 and a momentum
of 0.5. A train-validation split was taken from the original
training sets to preserve the true test data. Four commonly
used segmentation metrics were calculated from the test set
for comparison, i.e., Dice Score, global accuracy (GA), mIoU,
and mean class accuracy (MCA). These results can be found
in Table II.

1) Loss Function Comparison: We present the segmenta-
tion results for the CamVid dataset using each of the three
loss functions in Table II. As indicated in Table II, the top ten
results for each metric for this dataset are mostly distributed
between FCN, DeeplabV3 and Unet++ with the remaining
good results being attained by MAnet. The top result (63%)
for the Dice score is obtained by DeeplabV3 using the Dice
loss function. For the GA rates, the top result (87.6%) is
shared jointly between FCN with Cross Entropy loss and
DeeplabV3 with Focal loss. The DeeplabV3 with Dice loss
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TABLE III
DICE SCORE, GA, MIOU, AND MCA FOR MODELS TRAINED WITH
DIFFERENT COMBINATIONS OF LOSSES ON THE CAMVID DATASET

model achieves both the highest MIoU (52.4%) and MCA
(63.3%) scores. It is clear that the most consistently accurate
models are DeeplabV3, FCN, and Unet++. Regarding loss
functions, models trained with Dice loss often provide the
highest results. To further assess the effectiveness of the
combination of different loss functions, we use the three
best-performing networks for subsequent experiments.

2) Multiloss Function Results: Since each of the previously
used loss functions capture unique aspects of the error present
in the dataset, further investigation was conducted to determine
if the benefits provided by each loss function can be exploited
simultaneously. Toward this end, the three best-performing
networks, i.e., DeeplabV3, FCN, and Unet++, were trained
with every combination of loss functions on the CamVid
dataset using the same training regimen discussed previously.
These results are provided in Table III. The results indicate
that models trained with all three loss functions typically
produce the top results, otherwise yielding the second best
results. The lowest results are almost consistently associated
with models trained with single loss functions. Of these
models, DeeplabV3 and FCN networks typically outperformed
Unet++ with higher metric scores, leading to top results.
These observations justify using DeeplabV3 and FCN and
the combined multiloss function for further evaluation of NIS
optimization on CNN segmentation models.

C. CNN Segmentation Model Evaluation Using CamVid,
Freiburg Forest, and MESSIDOR

In this section, we employ the proposed NIS model for
hyperparameter identification of the best-performing networks,
i.e. DeeplabV3 and FCN. In particular, the multiloss func-
tion identified earlier is used as the fitness function, which
integrates Cross Entropy, Dice, and Focal loss measures. The
Firefly Algorithm (FA) and PSO are utilized as the baseline
methods for optimal hyperparameter selection. The experi-
mental setup is firstly explained. We then analyze the results
and discuss notable patterns with respect to each dataset.
A summary of the combined results from all datasets is also
provided. The selected hyperparameters are presented and
discussed with regard to their effect on model performance.

To evaluate each segmentation network, NIS, PSO, and
FA are employed to identify the optimal settings of the

TABLE IV
HYPERPARAMETERS TARGETED FOR OPTIMIZATION

TABLE V
MEAN RESULTS OF FOUR COMMON METRICS OVER FIVE RUNS FOR THE

NIS-OPTIMIZED DEEPLABV3 MODEL ON THREE DATASETS

learning rate, momentum, γ, and α in the multiloss function.
In particular, γ and α are the loss coefficients for the Focal
loss function, as discussed earlier. The identified hyperpa-
rameters are then used to train the model on the combined
training and validation sets, before being evaluated with the
test set. The optimal hyperparameter identification process is
performed five times. We present the mean results over five
runs for DeeplabV3 and FCN with respect to each dataset in
Section IV-C1.

As a reference, the default results of both DeeplabV3 and
FCN without hyperparameter optimization are also provided.
In the default experimental settings, instead of the multiloss
function, a standard Cross Entropy loss is used. The networks
are trained with an SGD optimizer with a default learning rate
of 0.01 and a default momentum of 0.5. The final results of
each network are obtained by taking the average of five runs.

The following settings remain constant throughout all exper-
iments. All algorithms use a population of 10, a maximum
iteration of 20, and a set of five runs. Each fitness evaluation
trains each CNN model for two epochs before evaluation.
Moreover, the VPM LSTM-CNN network is trained using
the SGD optimizer with the following settings: Lr = 0.0001,
momentum = 0.9, and weight decay = 0.005, which are
determined using trial-and-error.

The search ranges for the optimization targets are shown
in Table IV. The devised DeeplabV3 and FCN models with
optimal settings are both trained with SGD for 50 epochs,
along with a weight decay of 0.005 and a batch size of 4.

1) Results: The Dice score, GA, MIoU and MCA are
used to measure the performance of the NIS optimized
Multiloss CNN models. Evaluation results on the CamVid,
Freiburg Forest and MESSIDOR datasets for the devised
DeeplabV3 and FCN models are shown in Tables V and VI,
respectively. We also analyze the selected hyperparameters in
Section IV-C2.

Tables V and VI depict that NIS yields a superior per-
formance over the standard PSO and FA methods across all
three test datasets for both networks. The search strategies
of NIS contribute toward improved hyperparameter selec-
tion, thus increase model prediction accuracy across all four
metrics. Furthermore, the models trained with optimized
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TABLE VI
MEAN RESULTS OF FOUR COMMON METRICS OVER FIVE RUNS FOR THE

NIS-OPTIMIZED FCN MODEL ON THREE DATASETS

hyperparameters perform better than those trained with typ-
ical default configurations. Specifically, models trained with
default settings use a single Cross Entropy loss function
with default learning settings, while our devised networks are
equipped with an optimized multiloss function in combination
with more effective learning settings. As such, the latter shows
great efficiency in learning from the backpropagation process
to adjust the performance with customized learning behaviors.
These observations are empirically shown across all three
datasets, indicating that using NIS hyperparameter optimiza-
tion together with a multiloss function provides benefits across
multiple problems and model structures.

The improved performance gained from using a multiloss
function results from the combination of diverse and unique
loss calculation mechanisms. Each constituent loss function
measures the error between the prediction and the GT differ-
ently making the error signal inherently more informative. This
leads to better error correction during training as compared
with using a single loss function, yielding improvements in
the predictive capability of the resulting model. In addition,
optimized parameters γ and α enable the multiloss function
to strike a balance between the impact of well/poorly classified
instances and contributions of the classes present/nonpresent
in the GT masks, thus preventing overfitting.

2) Hyperparameter Selection: An overview of the hyperpa-
rameter selection results of each optimization method across
all three datasets are provided in Tables VII and VIII for
the DeeplabV3 and FCN models, respectively. Each table
displays the optimized learning rate (Lr), momentum, α, and
γ configurations.

By analyzing Tables V–VIII, we found that lower values
of learning rate, γ and α, along with higher momentum, lead
to better accuracy for all models and datasets. NIS efficiently
identifies these favorable hyperparameters, while FA and PSO
are more affected by swarm initialization.

Most CNNs use high momentum and low learning rates as
typical hyperparameters. This trend is reflected in the results
of most algorithms. NIS identifies the importance of a low
average learning rate, in addition to a high mean momentum,
contributing to high accuracy in generated networks. A lower
learning rate allows for finer adjustments to network weights
during training, providing greater variation and granularity in
potential internal network representations, resulting in higher
accuracy. High momentum emphasizes the trajectory toward
a global optimum, reducing the likelihood of weights being
trapped in local optima or going beyond global optimum
solutions.

TABLE VII
AVERAGE HYPERPARAMETERS IDENTIFIED OVER FIVE RUNS USING

SEARCH METHODS BASED ON THE DEEPLABV3
MODEL ON THREE DATASETS

TABLE VIII
AVERAGE HYPERPARAMETERS IDENTIFIED OVER FIVE RUNS USING

SEARCH METHODS BASED ON THE FCN MODEL ON THREE DATASETS

Low α loss coefficients configure the focal loss function
to enable CNN to concentrate on classes not present in GT
during training. Low γ loss settings adjust weights to reduce
incorrect predictions instead of improving correct ones, which
can stabilize training in multiclass scenarios. For MESSIDOR
dataset, low α and γ values have a lesser impact due to the
foreground-background binary segmentation process resulting
in a lower number of classes. In such cases, the focus is on
finer weight adjustments with lower learning rates and higher
momentums to avoid local optima.

A detailed analysis of hyperparameters and results from
DeeplabV3 networks was conducted to further examine the
optimization algorithms. Tables V and VII show the segmen-
tation results and hyperparameters identified using DeeplabV3.
Results for the CamVid dataset indicate that NIS outperforms
PSO and FA, as it selects high momentums with low α, γ,
and learning rate configurations, resulting in a Dice score of
79.8%. PSO and FA select moderate α and high γ coefficients.
Such a combination increases error signals from both correctly
and incorrectly classified examples, while reducing the error
signals for moderately classified examples. This leads to less
informative error signals, producing instability in the network
during training and encouraging under-fitting. High learning
rates and momentums identified by PSO and FA, when com-
bined with the above loss function settings, exacerbate the
under-fitting issue. However, the other two loss functions may
compensate for poor configurations identified by PSO and FA,
preventing the models from failing completely.

The results of DeeplabV3 trained on the Freiburg forest
dataset reveal that NIS prefers low α and γ values with high
momentums and low learning rates, yielding a Dice score
of 89%. PSO selects high learning rates, momentums, and
γ values with moderate α values, resulting in a Dice score of
88.3%. FA stands out with a Dice score of 88.2%, selecting
high learning rates, high momentums, moderate α, and low
γ values. However, the performance gain over PSO is minor
because of the high learning rates and momentums. Nonethe-
less, high momentums with low α and γ settings produce
superior results, with minimal variation across models.
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TABLE IX
COMPARISON WITH OTHER REPORTED RESULTS

The MESSIDOR dataset results show that high momen-
tum, low α, low γ, and low learning rate hyperparameters
configurations are preferred by NIS, resulting in a Dice score
of 95.6% for DeeplabV3 model. However, PSO chooses high
values for learning rate, momentum, γ, and α, leading to
a Dice score of 83.6%. FA selects high values for learning
rate and momentum and low values for γ resulting in a Dice
score of 92.5%. Although FA selects high values for learning
rate and α, they are still lower than those selected by PSO.
Whilst FA-optimized configurations with reduced γ values
improve the performance compared to PSO, they have worse
performance than those of NIS.

Similar observations for hyperparameter selection for FCN
are also obtained from Tables VI and VIII. In summary, NIS
outperforms FA and PSO in optimizing DeeplabV3 and FCN
networks across three segmentation datasets by selecting low
α, γ, learning rate parameters, and high momentum settings.

We notice that both FA and PSO lack of an adaptive balance
of exploration and exploitation search behaviors. FA also
struggles with search oscillations and slow convergence since
its agents are guided purely by local brighter individuals.
NIS addresses this issue by introducing an iteration-based
scheduling of novel diversification and intensification oper-
ations through the proposed Discrete Adaptive Wave Func-
tion. This function maximizes or minimizes different search
behaviors in three separate stages using heuristic coefficients.
The proposed search strategies, including LSTM-CNN-based
optimal velocity prediction and Whirlpool search, effectively
avoid early stagnation, as indicated by experimental results.

In Table IX, we present a comparison of the NIS-
optimized DeeplabV3 network against state-of-the-art models
on the three datasets, owing to the efficiency of the devised
DeeplabV3 network. The empirical results indicate that our
optimized network yields improved performance in compari-
son with those of other deep networks across multiple metrics.

D. Evaluation Using ADE20K and Cityscapes
To further test model efficiency, two larger datasets, i.e.

ADE20K and Cityscapes, are also employed in our experi-
mental studies. A transformer network, i.e. Mask2Former [13],
is employed as the base segmenter, because of its superior

global feature learning capabilities in comparison with those of
CNN-based models. We use the source code of Mask2Former
released by its original study [13] in our experiments. Specifi-
cally, Mask2Former with Swin-Large (IN21k) as the backbone
is adopted in our experiments owing to its impressive perfor-
mance for semantic segmentation. Each search method is used
to optimize hyperparameters, i.e. the learning rate and weight
decay, of Mask2Former.

1) Evaluation Using ADE20K: For hypeparameter search,
a subset of 2021 images (10%) is extracted from the training
set of ADE20K. A population size of 10 and a maximum
iteration number of 20 are employed for optimal parameter
selection using NIS. The resulting optimal learning configura-
tions are used to establish the optimized transformer network,
which is trained using the whole training set of ADE20K with
a large number of training iterations. The trained model is then
tested using the official validation set. The above process is
repeated five times for hyperparameter search. Besides imple-
menting the NIS/PSO/FA-optimized Mask2Former, a baseline
Mask2Former with the same backbone is also implemented
where it is loaded with the ADE20K pretrained weights
provided by its original study and subsequently tested using
the validation set. This baseline model employs a learning rate
of 1e−04 and a weight decay of 5e−02, provided by the orig-
inal study. The optimized and baseline Mask2Former models
employ 160 K training iterations to ensure a fair comparison.
Table X illustrates the mean results of the ADE20K validation
set over five runs for optimized and baseline Mask2Former
models based on a single-scale inference. The symbol “*” in
Table X indicates that the results are obtained in our own
experiments. Recommended by [13], MIoU is used as the main
performance indicator. Four NVIDIA 1080ti GPUs are used in
our studies. As indicated in Table X, for ADE20K validation
set, the NIS-optimized transformer model achieves state-of-
the-art performance and outperforms the baseline, and PSO
and FA-optimized transformers, as well as other state-of-the-
art existing studies.

2) Evaluation Using Cityscapes: For Cityscapes, we sub-
sample 298 images (10%) from the training set for hyperpa-
rameter search. The same experimental settings of ADE20K
are also used in this experiment for parameter optimization, i.e.
population = 10, iteration = 20 and trial = 5. Each optimized
Mask2Former is evaluated using the official validation set. The
baseline transformer with pretrained weights of Cityscapes
provided by its original study is also evaluated using the
validation set in our experiments. The mean performances
of the optimized and baseline networks for the Cityscapes
validation set over five runs based on single-scale inference
are also provided in Table X. As indicated in Table X, the
NIS-optimized transformer model also achieves state-of-the-
art performance and outperforms the baseline, and PSO and
FA-optimized transformers, as well as other existing studies.

3) Hyperparameter Selection: Table X also shows the mean
hyperparameter selection results over five runs for each search
method for both datasets. For ADE20K, as indicated in
Table X, NIS, PSO and FA identify comparatively smaller
mean learning rate settings in comparison with that of the
baseline model. Such smaller learning rate configurations
compensate well with the high loss from a large training set,
which leads to delicate weight updates for model training.
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TABLE X
MEAN RESULTS OVER FIVE RUNS FOR THE OPTIMIZED AND BASELINE

MASK2FORMER MODELS ON ADE20K AND
CITYSCAPES VALIDATION SETS

On the contrary, large learning rates as in the baseline model
may cause oscillations in gradient descent, therefore leading
to less competitive performance. Moreover, NIS identifies a
moderate mean weight decay in comparison with the default
and those obtained using PSO and FA, which applies a reason-
able penalty to the loss to maintain sufficient generalization
capabilities. Applying very small weight decays as in FA
and PSO may diminish the effects of the regularization term
to cause overfitting, while adopting very large weight decay
settings as in the baseline method may also squash the weights
down too much to incur underfitting or premature convergence.
The combination of a small mean learning rate and a moderate
mean weight decay in NIS leads to optimal performance.
A similar observation is also obtained for the hyperparameters
identified by NIS for Cityscapes, i.e. a smaller mean learning
rate and a moderate mean weight decay.

These experimental studies for ADE20K and Cityscapes
indicate that the proposed NIS algorithm embedding
LSTM-CNN based maximized standard deviation and local
best velocity prediction and whirlpool search-based local
intensification shows great efficiency in overcoming local
optima traps for optimal hyperparameter search. The
NIS-optimized transformer model is able to extract more
precise long-range global dependencies to inform pixel-wise
probabilistic class predictions for semantic segmentation.

4) Optimization Cost: The following analysis gives insight
into the extra cost incurred by the optimization process
during training. Since fitness evaluation involving CNN or
transformer training and test is the most costly component
in comparison with the dataflow of each search algorithm,
and the same number of function evaluations is used as the
termination criterion for all optimizers, the computational
cost is mostly identical between different search methods.
We provide the mean cost of one function evaluation along
with one implementation of each search method over five runs

TABLE XI
COMPUTATIONAL COST (IN SECONDS) OF A SINGLE FUNCTION

EVALUATION FOR EACH OPTIMIZATION METHOD AND DATASET

in Table XI, for cost comparison. Four NVIDIA 1080ti GPUs
are used in parallel to generate the costs shown in Table XI.

As indicated in Table XI, NIS shows a similar average cost
to those of other search methods. Because of the adaptive
deployment of neural network-based velocity predictions and
the whirlpool search based local exploitation, NIS shows fast
convergence with comparable computational cost for hyper-
parameter search. NIS has a slightly higher cost owing to
machine learning based velocity prediction in comparison with
nonmachine learning based operations in FA and PSO. These
extra costs are only incurred during the hyperparameter search
in the training stage for each search method.

E. NIS Evaluation Using Benchmark Test Functions

To validate the contributions of the Discrete Adaptive
Wave Function scheduling and exploration/exploitation behav-
iors of NIS, we evaluate it against a total of 12 search
methods in solving mathematical test functions, including
PSO, FA [53], Random Search (RA) [54], Memetic Algo-
rithm (MA) [55], Jaya [56], Gravitational Search Algorithm
(GSA) [57], Genetic Algorithm (GA) [58], Flower Pollina-
tion Algorithm (FPA) [59], Cuckoo Search (CS) [60], Arith-
metic Optimization Algorithm (AOA) [61], Adaptive Random
Search (ARS) [62], and Autonomous Particle Groups PSO
(AGPSO) [63].

A total of nine benchmark functions are utilized, i.e.,
Ackley, Dixon Price, Powell, Rastrigin, Rosenbrock, Rotated
Hyper-Ellipsoid, Sphere, Sum Squares, and Zakharov. Each
benchmark function provides a unique challenge for optimiza-
tion algorithms by defining various shapes intended to trap the
algorithm in local optima. The details of these numerical opti-
mization functions are provided in Tan et al. [1]. We adopt the
following experimental configurations for evaluating these test
functions, i.e. 50 particles, 500 iterations and 30 dimensions.
Each algorithm is executed for 30 trials. The mean results are
summarized in Table XII.

The results from Table XII indicate that NIS performs
better than all other methods for all the benchmark functions.
This further indicates the strength of the three behaviors and
the Discrete Adaptive Wave scheduling scheme. In particular,
the effectiveness is highlighted by the performance of NIS
as compared with those of PSO and AGPSO. To ensure
statistical validity of these results, the Wilcoxon rank sum test
is performed, and the results are presented in Table XIII. The
statistical test results confirm that the p-value is smaller than
0.05 for nearly all test functions. The only exception is the
Rastrigin function, where NIS and AGPSO achieve statistically
similar results.

1) Ablation Studies: Ablation studies have been conducted
to indicate the effectiveness of each proposed strategy in NIS
using the benchmark functions. NIS embeds four operations,
i.e.: 1) maximized standard deviation velocity prediction for
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TABLE XII
MEAN RESULTS FOR BENCHMARK FUNCTIONS OVER 30 RUNS WITH DIMENSION = 30

TABLE XIII
WILCOXON RANK SUM TEST RESULTS FOR THE

BENCHMARK FUNCTIONS OVER 30 RUNS

TABLE XIV
MEAN RESULTS OF ABLATION STUDIES ON BENCHMARK

FUNCTIONS OVER 30 RUNS WITH DIMENSION = 30

global exploration; 2) local best velocity prediction for search
diversification; 3) n-Dimensional Whirlpool search for exploit-
ing optimal regions; and 4) the Staged Discrete Adaptive
Wave formula for adjusting effects of the above methods.
We implement four versions of the model with increasing
numbers of operations, i.e., Model 1 (Operation 1), Model 2
(Operations 1 and 2), Model 3 (Operations 1–3), and Model 4
(all four operations).

These four models are tested using the above nine bench-
mark functions. Table XIV shows that all four models improve
test function results incrementally in the majority of the
test cases. Model 1 uses LSTM-CNN to maximize standard
deviation velocity prediction and shows great efficiency in
exploring the search space, but with limited capabilities in
fine-tuning optimal solutions. Model 2 improves the search
by adding LSTM-CNN-based local best velocity prediction,
to increase search diversification while better exploiting local
optimal regions. Model 3 further enhances local exploitation
by adding an angle-driven whirlpool search mechanism to
fine-tune the global best solution. Model 4 uses a Staged
Discrete Adaptive Wave formula to emphasize local and
global search behaviors adaptively and achieves the best
performance.

V. CONCLUSION

This research has proposed a novel NIS algorithm for
optimizing learning and multiloss parameters for segmentation
models. Three new search behaviors have been formulated, i.e.
LSTM-CNN-based Maximized Standard Deviation and Local
Best Velocity Prediction, as well as n-dimensional angle rota-
tion, to improve search diversity. A Staged Discrete Adaptive

Wave function has also been exploited for implementing
a stage-based behavior scheduling to precisely balance the
contribution of each behavior pertaining to intensification and
diversification during the course of hyperparameter search.

The empirical results comparing NIS against PSO and
FA on all five semantic segmentation datasets, in particu-
lar for ADE20K and Cityscapes, reveal the effectiveness of
the proposed novel behaviors and new operation scheduling
regimen introduced in NIS. This has been further confirmed
by the notable performance of NIS against 12 well-known
and modern search methods on several multimodal and uni-
modal benchmark functions. The aforementioned novel neu-
ral network-based velocity prediction, angle-driven whirlpool
search, and the adaptive wave scheduling function work in
tandem to further enhance performance.

Future work will investigate architecture generation for
transformer networks using the NIS algorithm. Hybrid archi-
tectures embedding CNN, LSTM, and transformer models will
be exploited for semantic segmentation and other vision and
signal processing tasks.
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