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Abstract  22 

Models of visual cognition generally assume that brain networks predict the contents of a 23 
stimulus to facilitate its subsequent categorization.  However, understanding prediction and 24 
categorization at a network level has remained challenging, partly because we need to 25 
reverse engineer their information processing mechanisms from the dynamic neural signals. 26 
Here, we used connectivity measures that can isolate the communications of a specific 27 
content to reconstruct these network mechanisms in each individual participant (N=11, both 28 
sexes).  Each was cued to the spatial location (left vs. right) and contents (Low vs. High 29 
Spatial Frequency, LSF vs. HSF) of a predicted Gabor stimulus that they then categorized. 30 
Using each participant’s concurrently measured MEG, we reconstructed networks that 31 
predict and categorize LSF vs. HSF contents for behavior.  We found that predicted contents 32 
flexibly propagate top-down from temporal to lateralized occipital cortex, depending on task 33 
demands, under supervisory control of prefrontal cortex.  When they reach lateralized 34 
occipital cortex, predictions enhance the bottom-up LSF vs. HSF representations of the 35 
stimulus, all the way from occipital-ventral-parietal to pre-motor cortex, in turn producing 36 
faster categorization behavior. Importantly, content communications are subsets (i.e. 55-37 
75%) of the signal-to-signal communications typically measured between brain regions.  38 
Hence, our study isolates functional networks that process the information of cognitive 39 
functions. 40 

 41 

Significant Statement 42 

An enduring cognitive hypothesis states that our perception is partly influenced by the 43 
bottom-up sensory input, but also by top-down expectations. However, cognitive 44 
explanations of the dynamic brain networks mechanisms that flexibly predict and categorize 45 
the visual input according to task-demands remain elusive. We addressed them in a 46 
predictive experimental design, by isolating the network communications of cognitive 47 
contents from all other communications. Our methods revealed a Prediction Network that 48 
flexibly communicates contents from temporal to lateralized occipital cortex, with explicit 49 
frontal control, and an occipital-ventral-parietal-frontal Categorization Network that 50 
represents more sharply the predicted contents from the shown stimulus, leading to faster 51 
behavior. Our framework and results therefore shed a new light of cognitive information 52 
processing on dynamic brain activity.  53 
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Introduction 54 

Since Helmholtz’s “unconscious inferences”, vision scientists have worked with the 55 
hypothesis that what we visually perceive is influenced by the bottom-up sensory input, but 56 
also by top-down expectations of what this input might be (Kinchla and Wolfe, 1979; De 57 
Lange et al., 2018). Expectations predict upcoming visual information contents (Yuille and 58 
Kersten, 2006; Friston, 2010; Clark, 2013), thereby facilitating their disambiguation from the 59 
noisy input (Gilbert and Sigman, 2007; Kok et al., 2012) to speed up categorization behavior 60 
(Bar et al., 2006).  61 

Studies of the dynamic predictive brain have mainly focused on how predictions can top-62 
down modulate neural signals. For example, predictions can induce patterns of local 63 
stimulus-specific activation, in hippocampal, ventral temporal, and primary visual cortex (Kok 64 
et al., 2014, 2017; Hindy et al., 2016; Margalit et al., 2020), or enhance gamma and reduce 65 
low-alpha oscillations in visual and frontal cortex (Benedek et al., 2011; Haegens et al., 2011; 66 
Michalareas et al., 2016; Lobier et al., 2018). Predictions can also enhance high-alpha 67 
synchronization in the frontal-parietal-occipital network (Lobier et al., 2018). However, key to 68 
understanding the mechanisms that top-down predict visual contents to facilitate their 69 
bottom-up categorizations is to reconstruct, from such neural signal modulations, the elusive 70 
network that process (i.e. predict and categorize) specific information depending on the 71 
demands of the cognitive tasks. To address these points, we reverse engineered 1) the 72 
Prediction Network that top-down communicates specific stimulus contents, before the 73 
stimulus is shown, to the expected contra-lateral occipital hemisphere, and 2) the 74 
Categorization Network, that bottom-up processes these predicted contents from the 75 
stimulus to speed up its categorization.  76 

Specifically, our research addresses three fundamental information processing questions 77 
pertaining to the prediction and categorization of visual contents (illustrated in Figure 1): 78 

1) When, where, and how does a Prediction Network of brain regions flexibly represent 79 
and communicate the predicted contents of a stimulus? 80 

2) When, where, and how does a Categorization Network represent and communicate 81 
these contents when presented in the stimulus for behavior? 82 

3) How do predicted contents in (1) change stimulus content in (2) to speed up 83 
categorization behavior? 84 

 85 

[FIGURE 1] 86 

 87 

Materials and Methods 88 

Participants  89 

Eleven participants (18-35 years old, mean=26.8, SD=3.0, 4 males and 7 females) took part 90 
in the experiment and provided informed consent. All had normal or corrected-to-normal 91 
vision and reported no history of any psychological, psychiatric, or neurological condition that 92 
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might affect visual or auditory perception. The University of Glasgow College of Science and 93 
Engineering Ethics Committee approved the experiment (Application Number: 300210118). 94 

Stimuli 95 

Stage 1 of the experimental design (see Figure 2) used two location cues (one for left- and 96 
one for right-cued trials).  Stage 2 used 3 different sweeping sounds, serving as LSF, HSF 97 
and neutral auditory cues.  Stage 3 used 2 locations × 2 spatial frequencies × 3 orientations 98 
Gabor patches as stimuli.  We detail them below.  99 

Stage 1 Location Cues 100 

Participants sat at a 182 cm viewing distance from the screen. We presented a green dot of 101 
1 deg of visual angle diameter for 100 ms to the left (vs. right) of a fixation cross (2 deg of 102 
visual angle eccentricity).    103 

Stage 2 SF Cues 104 

Three 250 ms sweeping sounds started with auditory frequency of 196Hz (cueing LSF), 105 
2217Hz (cueing HSF) or 622Hz (no prediction), with a sweep rate of 0.5 rising 106 
octave/second. 107 

Stage 3 Gabor Stimuli 108 

Left (vs. right)-cued Gabor patches were presented (diameter, 7.5 visual degrees; left and 109 
right eccentricity, 12.5 visual degree), with LSF (vs. HSF) contents of 0.5 cycle/degree (vs. 110 
1.2 cycle/degree) shown at one of three randomly chosen orientations (-15 deg, 0 deg, +15 111 
deg). Prior to the task, we calibrated the LSF and HSF Gabor contrast independently for 112 
each participant, using an adaptive staircase procedure (target accuracy set at 90%). On 113 
each calibration trial, a left (vs. right) green dot presented for 500ms predicted the upcoming 114 
left vs. right location of the LSF or (HSF) Gabor patch, itself presented for 100ms. 115 
Participants responded “LSF” vs. “HSF” vs. “don’t know” without feedback. We adaptively 116 
adjusted LSF vs. HSF contrast as follows: 117 

Contrast = Contrast – 1*(Correct vs. Incorrect – target accuracy)/Shifting Count, 118 

where Shifting Count counts the number of direction changes (i.e., increasing to decreasing, 119 
or decreasing to increasing). The adaptive staircase stopped when the adjustment step was 120 
< 0.01, setting each SF contrast for this participant’s Gabor stimuli in the actual experiment. 121 

Procedure 122 

Each three-stage trial started with a central fixation cross presented for 500ms (Figure 2A 123 
accompanies the description below): 124 

 125 

Stage 1. A green dot presented for 100ms appeared to the left or right of the central fixation 126 
cross, predicting the left vs. right location of the upcoming Gabor with a validity of 1. This 127 
was followed by a jittered blank screen [1000-1500ms]. 128 

Stage 2. Three sweeping sounds presented for 250ms predicted the Gabor stimulus 129 
presented at Stage 3. On, predictive trials, the 196Hz (vs. 2217Hz) sound predicted the 130 
upcoming LSF (vs. HSF) Gabor (both with .9 validity). The 622Hz sound was a neutral cue 131 
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without predictive value. This neutral cue was followed by LSF vs. HSF Gabors with .5 132 
probability, on 33% of the trials (neutral trials). 133 

Stage 3. The LSF vs. HSF Gabor stimulus appeared at one of the three rotations on the left 134 
vs. right screen location for 100ms. The Gabor was either LSF or HSF, with one of three 135 
randomly chosen orientations, followed by a 750 to 1,250ms inter-trial interval (ITI) with jitter. 136 
We instructed participants to respond “LSF” vs. “HSF” vs. “Don’t know” as quickly and as 137 
accurately as they possibly could. They did not receive feedback. We counterbalanced the 138 
use of the three keys (i.e., LSF, HSF, don’t know) across participants, which helped to 139 
minimize any effect from specific fingers. 140 

The experiment comprised several blocks of 54 such trials (see Table 1 for details). 141 
Participants performed 10-14 blocks in a single day, with short break between blocks. They 142 
completed the total of 38-45 blocks over 3-4 days. Participants completed at least 499 trials 143 
in each condition (of left vs. right presentation of LSF vs. HSF Gabors). Participants learned 144 
the correct relationships between the auditory cues and predicted SF within ~2 blocks of 145 
trials, without explicit instructions. We therefore removed these first two blocks from all 146 
subsequent analyses. 147 

[TABLE 1] 148 

Auditory localizer. Prior to the experiment, we ran an MEG localizer to model the bottom-up 149 
processing of each one of 3 auditory cues. For each cue, each localizer trial started with a 150 
blank screen for 500ms, followed by the auditory tone for 250ms, then a blank screen for 151 
1250ms ITI. In a block of 12 trials, 10 of the trials presented the same tone and the two other 152 
tones were catch tones.  Participants had to press a key whenever the tone was a catch 153 
tone. Each participant completed 36 such blocks (i.e., 12 blocks per type of tones), with 154 
block order of “low frequency”, “middle frequency”, “high frequency”, repeated 12 times. 155 

MEG Data Acquisition and Pre-processing 156 

We measured participants’ MEG activity with a 248-magnetometer whole-head system 157 
(MAGNES 3600WH, 4-D Neuroimaging) at a 508Hz sampling rate. We performed the 158 
analysis according to recommended guidelines using the FieldTrip toolbox (Oostenveld et al., 159 
2011)  and in-house MATLAB code. 160 

For each participant, we discarded the runs (i.e., blocks) with the head movements more 161 
than 0.6cm, measured by pre-run vs. post-run head position recordings. We then applied a 162 
1Hz high-pass filter (5th order two-pass Butterworth IIR filter) to the remained data, and 163 
removed the line noise using discrete Fourier transform. We epoched the raw data into trial 164 
windows, separately for each stage: Stage 1, -200ms pre-dot onset to 1,000ms post-dot 165 
onset (henceforth [-200ms 1,000ms] around onset); Stage 2: [-200ms 1,000ms] around 166 
sweeping sound onset; Stage 3: [-200ms 600ms] around Gabor patch onset. We de-noised 167 
the epoched data via a PCA projection of the reference channels. We rejected noisy 168 
channels with a visual selection and rejected jump and muscle artifacts with automatic 169 
detection(Oostenveld et al., 2011). We decomposed the output dataset with ICA, identified 170 
and removed the independent components corresponding to artifacts (eye movements, 171 
heartbeat—i.e. 2-4 components per participant).  172 

Source Reconstruction 173 
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For each participant, we co-registered their anatomical MRI scan with their head shape 174 
recorded on the first session and normalized the volume data to standardized MNI 175 
coordinate space(Gross, 2019). Using brain surfaces segmented from individual warped MRI, 176 
we then prepared a realistic single-shell head model. We resampled each epoched dataset 177 
(i.e., each stage) at 512 Hz, low-pass filtered the data at 25Hz (5th order Butterworth IIR 178 
filter), specified the time of interest between 0-500ms (post cue at Stage 2; post Gabor 179 
stimulus at Stage 3) and computed covariance across the entire epoch. We then computed 180 
the forward model with a 6mm uniform grid warped to standardized MNI coordinate space, 181 
and performed the Linearly Constrained Minimum Variance Beamforming (LCMV) analysis 182 
to reconstruct the time series of each source, with parameter ‘lambda=6%’. Following the 183 
above steps, for each participant we obtained single-trial time series of 4,413 MEG cortical 184 
sources at a 512Hz sampling rate between 0 and 500ms that we used to analyze the 185 
dynamic information processing in the Prediction and Categorization Networks—i.e. at 186 
Stages 2 and 3, see Figure 1.  187 

We applied the same pre-processing pipeline to the MEG localizer, using the epoched data 188 
[-200ms 500ms] around tone onset. We applied the LCMV analysis 0-500ms post tone, to 189 
reconstruct the source representation of the MEG localizer data.  190 

Analyses 191 

Cueing improves behavior 192 

At a group-level, we discarded invalid predictive trials and applied a 2 (left vs. right location 193 
cues) × 2 (valid predictive vs. neutral cueing) × 2 (LSF vs. HSF Gabor patches) ANOVA on 194 
the median RTs (excluding incorrect response and outliers) and on the accuracy of all 195 
participants. We found a significant main effect of valid predictive vs. neutral SF cueing on 196 
RTs, showing that valid predictive trials are significantly faster than neutral trials 197 
(F(1,10)=20.8, p=0.001); and a significant interaction effect between location cue and Gabor 198 
SF (F(1,10)=17.4, p=0.002). Further analysis showed that this predictive vs. neutral cueing 199 
effect is significant (p<0.05, after Bonferroni correction) for each of the 4 experimental 200 
conditions (left vs. right locations × low vs. high SFs), quantified by a paired-sample t-test, 201 
independently for each condition. For categorization accuracy (ACC), the ANOVA was 202 
significant only for valid predictive vs. neutral cueing, showing that ACC is significantly 203 
higher in valid predictive than neutral trials (F(1,10)=22.5, p=0.0008); and a significant 204 
interaction between location cue and Gabor SF (F(1,10)=13.8, p=0.004). Further analysis 205 
showed that this effect of SF cue is significant (p<0.05, Bonferroni correction) for all but the 206 
left-LSF experimental conditions (paired-sample t-test independent for each condition). 207 

Stage 2: Prediction Network  208 

Prediction representations  209 

To understand the Stage 2 network of regions that propagates the LSF vs. HSF auditory 210 
prediction prior to stimulus onset, we computed the representation of the cue across the 211 
whole brain, separately for left- and right-cued trials. 212 

For each participant, we computed the single-trial MI(<LSF vs. HSF auditory cue; Stage 2 213 
MEGt>), at each time point from 0 to 400ms following Stage 2 auditory cue onset, on each 214 
occipital source (lingual gyrus, cuneus, inferior occipital gyrus), temporal (fusiform gyrus, 215 
inferior temporal gyrus, middle temporal gyrus, superior temporal gyrus), parietal (superior 216 
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parietal lobe, inferior parietal lobe, angular gyrus, supramarginal gyrus), premotor (precentral 217 
gyrus, postcentral gyrus), and frontal (orbitofrontal gyrus, inferior frontal gyrus, middle frontal 218 
gyrus, medial frontal gyrus, superior frontal gyrus). We computed MI with the Gaussian 219 
Copula Mutual Information (GCMI) estimator(Ince et al., 2017) that supports multi-220 
dimensional variables. This semi-parametric estimator fits Gaussian (maximum entropy) 221 
copula, but does not make any assumption about the marginal distributions of the variables. 222 

Prediction periods clustering 223 

To compute the number of space x time periods of prediction representations, we applied k-224 
means clustering analysis on all 4413 x 204 (source x time points) dimensional trials as 225 
follows: 226 

Step 1: Peak time extraction. First, for each participant, and independently for left- 227 
and right-cued trials and source, we extracted the peak time MI(<LSF vs. HSF auditory cue; 228 
Stage 2 MEGt>), 0 and 400ms post auditory cue onset. 229 

Step 2: Matrix computation. Across participants and cued conditions, in each ROI 230 
(occipital, temporal, parietal, pre-motor and frontal), we summed the numbers of sources 231 
that peak during each 10ms-step time window between 0 and 400ms post auditory cue 232 
onset (i.e. 39 time windows), producing a 5 (ROIs) x 39 (time windows) matrix of MI peaks. 233 
This matrix represented the total brain volume of prediction representation dynamics over 234 
time. 235 

Step 3: Clustering. We k-means clustered (k = 1 to 30, repeating 1,000 times) the 236 
matrix from Step 2, using the 39 time windows as samples and selected k as the elbow of 237 
the within-cluster sums of point-to-centroid distances metric. 238 

The result shows Stage 2, with k = 4 as a good solution, starting with a period 0, before any 239 
prediction representation, and then 3 distinct timed periods with temporal, frontal, occipital of 240 
peak representations of the prediction. 241 

Prediction network nodes (supports Figure 3A) 242 

To reveal the dynamics of MI(<LSF vs. HSF auditory cue; Stage 2 MEG>) representation of 243 
the prediction, we localized the source peaking around the first peak in the 90-120ms time 244 
window (start), the last peak in 120-200ms (midway) and >200ms (end). We computed the 245 
group mean of these 3 source-localized peaks across participants (see Figure 3A for group 246 
mean). Further, we applied 2 (left vs. right-cued prediction) * 2 (left vs. right hemisphere) 247 
ANOVA on the prediction representation on occipital sources to test the interaction effect 248 
(i.e., the contra-lateral effect). 249 

Prediction network reconstruction (supports Figure 3B) 250 

To reconstruct the Stage 2 Prediction Network, we computed Directed Feature Information 251 
(DFI, where F is the auditory cue predicting the upcoming LSF vs. HSF Gabor) in each 252 
participant, for each pair of identified network nodes (i.e., sender: temporal, receiver: frontal; 253 
sender: frontal, receiver: occipital) as follows: 254 

Step 1: Source selection. We selected the highest MI source for the sending and 255 
receiving regions in the time window of interest (temporal: 90-120ms, frontal: 120-200ms, 256 
occipital: >200ms).  257 
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Step 2: Directed Information (DI). DI (i.e. event-related Transfer Entropy) quantifies 258 
all the information communicated from sending to receiving sources, removing information 259 
sent from the receiver itself. For the receiver at time x, with a communication delay y from 260 
the sender, DI is computed as the Conditional Mutual Information (CMI) between RAx and 261 
SAx-y conditioned on RAx-y: 262 

DI = CMI<RAx; SAx-y|RAx-y>                                            (1) 263 

Thus, we computed DI between each sender and receiver source, for each receiver 264 
time point between 0 and 400ms post auditory cue onset, and for each communication delay 265 
between 0 and 300ms. This produced the receiver-time × transfer-delay DI matrix.  266 

Step 3: DI conditioned on Feature (DI|F). DI|F removes from DI the information 267 
communicated about the predictive LSF vs. HSF feature itself. We computed DI|F for each 268 
receiving-time × communication-delay. 269 

Step 4: DFI. The difference between DI and DI|F isolates the information 270 
communicated about the predictive cue. We computed DFI as: 271 

DFI = DI – DI|F                                                      (2) 272 

for each receiving-time × communication-delay cell of the matrix. 273 

Step 5: Statistical significance. We repeated 200 times DFI computations with 274 
shuffled feature labels (i.e., LSF vs. HSF), using as statistical threshold the 95th percentile of 275 
the distribution of 200 maxima (each taken across the DFI matrix of each shuffled repetition, 276 
FWER, p<0.05, one-tailed).  277 

Step 6: Communication proportions. To compute the proportion of communications 278 
about a feature in total network communications between two regions, we computed ratio 279 
DFI/DI, at the maximum receiving-time × communication-delay of the DFI measure.  280 

We applied Step 1-6 to reconstruct the Stage 2 Prediction Network of each individual 281 
participant. Figure 8 shows the individual participants' DFI networks; Figure 3B shows the 282 
group average network. Note here we established the same statistical significance test for 283 
each participant and reported a combination of frequentist and Bayesian estimation(Ince et 284 
al., 2021a). The Bayesian approach contains a two-level analysis, where the first-level 285 
analysis involves null hypothesis significance testing (NHST) within participants and the 286 
second level is the Bayesian estimation of population prevalence.  287 

Prediction network mediation (supports Figure 4) 288 

We then tested whether frontal cortex is a necessary mediator of Stage 2 prediction 289 
communications between temporal and occipital cortex, by isolating the role of the frontal 290 
region in these communications. We then compared network communications with and 291 
without frontal mediation. The steps below detail how we computed frontal mediation in the 292 
Prediction Network of each participant. 293 

Step 1: Frontal Mediation, DFI. On the selected temporal and occipital sources, for 294 
receiving time points between 0 and 400ms post auditory cue onset and for each delay 295 
between 0 and 300ms, we computed the receiving-time × communication-delay of temporal-296 
to-frontal DFI and then frontal-to-occipital DFI (each computed as in Prediction network 297 
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reconstruction). This quantifies the mediating role of the frontal region in the communication 298 
of the predictive cue (cf. Figure 4B).   299 

Step 2: Direct Communication, DFI|Frontal. To isolate the role of frontal mediation, 300 
we also computed temporal-to-occipital DFI conditioned on the frontal activity. Specifically, 301 
for each time point in the combination of (1) receiving time x between 0 and 400ms post 302 
auditory cue onset (2) communication delay y between 0 and 300ms (3) and mediation time 303 
z between receiving time and sending time (i.e., x and x-y), we computed DFI received by 304 
occipital at time x, sent by temporal at x-y, conditioned on frontal activity at time z. This 305 
produced the 3D DFI receiving-time × communication-delay × mediation-time conditioned 306 
DFI matrix. We took the minimum conditioned DFI across the mediation time as the directed 307 
communication (i.e., without frontal mediation, Figure 4A).  308 

Step 3: Statistical significance. We recomputed Steps 1 and 2 and their difference, 309 
shuffling the LSF vs. HSF labels—i.e. 200 repetitions, using the 95th percentile of 200 310 
maxima as statistical threshold, each maximum taken across the DFI minus DFI|F matrix of 311 
each shuffled repetition, FWER, p<0.05, one-tailed. This isolated the receiving-time ×312  communication-delays showing significant enhancement with vs. without frontal mediation.  313 

We applied Steps 1-3 to each participant. Figure 4A and B show the results of a typical 314 
participant. Figure 9 shows all individual results. Figure 4C shows the group mean difference 315 
and its Bayesian prevalence.  316 

Stage 3: Categorization Network  317 

Stimulus representations 318 

To reconstruct the Stage 3 Categorization Network, on predictive trials, we computed for 319 
each participant the dynamics of LSF vs. HSF Gabor stimulus representation across the 320 
whole brain, separately for left- and right-cued trials—i.e. MI(LSF vs. HSF Gabor; Stage 3 321 
MEGt), on each source in occipital, temporal, parietal, premotor and frontal regions, at each 322 
time point from 0 to 500ms following Gabor onset. 323 

Categorization periods clustering 324 

To compute the number of space x time stimulus representations period, we applied again k-325 
means cross-trials clustering analysis on all 4,413 sources x 256 time points as follows: 326 

Step 1: Peak time extraction. First, for each participant, and independently for left- 327 
and right-cued trials and source, we extracted the peak LSF vs. HSF representation MI in 50 328 
10-ms time windows spanning 0-500ms post Gabor. 329 

Step 2: Matrix computation. Across participants and conditions, we counted the 330 
number of sources per ROI (occipital, temporal, parietal, pre-motor and frontal) that peak in 331 
each time window, producing a ROI x time matrix of MI peaks. 332 

Step 3: Clustering. We k-means clustered (k = 1 to 30, repeating 1,000 times) the 333 
matrix from Step 2, using the 50 time windows as samples and selected k as the elbow of 334 
the within-cluster sums of point-to-centroid distances metric. 335 

Stage 3 comprised k = 4 clusters. A first period with no LSF vs. HSF stimulus representation, 336 
followed an occipital-ventral (150-250ms, start), parietal (250-350ms), and premotor-frontal 337 
(>350 ms) periods of stimulus representation. 338 
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Categorization network nodes (supports Figure 5A) 339 

To reveal the dynamics of MI(LSF vs. HSF Gabor; Stage 3 MEG), in each participant, we 340 
localized the source peaking in each one of the three representational periods.  We then 341 
computed the group mean of these 3 sources across participants. Figure 5A presents the 342 
group mean. 343 

Categorization network reconstruction (supports Figure 5B) 344 

To reconstruct the Stage 3 Categorization Network that communicates the Gabor SF across 345 
occipital, parietal, premotor regions identified earlier, we computed DFI communications of 346 
the LSF vs. HSF stimulus information. That is, in each participant, for each pair of regions 347 
(i.e., sender: occipital, receiver: parietal; sender: parietal, receiver: premotor), we performed 348 
the following three steps. 349 

Step 1: Source selection. We selected one sender and one receive source with 350 
highest Stage MI representation of Gabor LSF vs. HSF in the time window of interest 351 
(occipital: 150-250ms, parietal: 250-350ms, premotor: >350ms).  352 

 353 

Step 2: DFI. For each receiver time points between 0 and 500ms post Gabor 354 
stimulus onset, and for each sender delays between 0 and 300ms, we computed the 355 
receiver-time × communication-delay of LSF vs. HSF stimulus representation with DFI (see 356 
specific computations in Prediction network reconstruction). 357 

Step 3: Statistical significance was established recomputing DFI with shuffled LSF vs. 358 
HSF labels—i.e. 200 repetitions, using as statistical threshold the 95th percentile of 200 359 
maxima, each taken across the DFI matrix of each shuffled repetition, FWER, p<0.05, one-360 
tailed. 361 

Step 4: Communication proportions. To compute the proportion of communications 362 
about a feature in total network communications between two regions, we computed ratio 363 
DFI/DI, at the maximum receiving-time × communication-delay of the DFI measure.  364 

We applied Steps 1-4 in each participant, reconstructing the occipital-to-parietal and parietal-365 
to-premotor network that communicates the LSF vs. HSF Gabor contents (Figure 10 shows 366 
all individual results; Figure 5B shows the group average). 367 

Stage 2 to Stage 3: Influences of Prediction Network on Categorization Network 368 

Prediction enhances stimulus representation (supports Figure 6A) 369 

To understand how Stage 2 predictions of LSF vs. HSF facilitate their Stage 3 categorization 370 
when the stimulus is shown, we compared LSF vs. HSF Gabor representations between 371 
Stage 3 valid predictive and neutral trials, in each participant and Categorization Network 372 
region (i.e., contra-lateral occipital-ventral, parietal, premotor). Specifically, we computed MI 373 
as follows: 374 

Step 1: Source selection. We selected one Stage 3 source per region with highest 375 
MI(LSF vs. HSF Gabor; Stage 3 MEGt ) during the time window of interest (occipital-ventral: 376 
150-250ms; parietal: 250-350ms; premotor: >350ms).  377 
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Step 2: MI computation. For each selected source, we computed source-by-time 378 
MI(LSF vs. HSF Gabor; Stage 3 MEG), every 2ms between 0 and 500ms post Gabor onset, 379 
separately for valid predictive and neutral trials. For this computation, we matched number of 380 
valid predictive trials with neutral trials (random selection). We averaged the MI matrices for 381 
valid predictive trials from 5 such random trial selections.  382 

Step 3: Statistical significance of difference was established by recomputing the 383 
source-by-time MI with shuffled valid predictive and neutral trials (repeated 200 times), 384 
calculating the difference of peak between recomputed valid predictive and neutral MI in the 385 
time window of interest, using as statistical threshold the 95th percentile of 200 maxima, each 386 
taken across the source-by-time difference of each shuffled repetition (FWER, p<0.05, two-387 
tailed).  388 

We repeated above Step 1-3 for each participant. Figure 6A shows the group-level results. 389 

Prediction modulates Categorization Network source activity and RT (supports Figure 6B) 390 

To demonstrate where and when valid predictions modulate premotor MEG activity to 391 
facilitate behavior, we compared the effect of valid predictive vs. neutral at Stage 2 on Stage 392 
3 Categorization Network brain activity and behavioral RT. 393 

Step 1: Co-Information. We computed positive Co-I(<predictive vs. neutral; Stage 3 394 
MEGt; RT>), information theoretic redundancy, as follows: 395 

Co-I = MI(<predictive vs. neutral; Stage 3 MEGt>) + MI(<predictive vs. neutral;  RT>) – 396 
MI(<predictive vs. neutral; Stage 3 MEGt, RT>), 397 

on every source of the Categorization Network and at every 2ms between 0 and 500ms post 398 
Gabor onset, producing a vector in Stage 3 time. Specifically, this estimator supports multi-399 
dimensional variables, so the joint information MI(predictive vs. neutral; Stage 3 MEGt, RT) is 400 
computed by combining the copula-normalised Stage 3 MEGt, and RT variables into a 2d 401 
variable.  402 

Step 3: Statistical significance was established by recomputing the Co-I with shuffled 403 
predictive vs. neutral labels, 200 repetitions, using as statistical threshold the 95th percentile 404 
of 200 maxima, each taken across the vector of each shuffled repetition, FWER, p<0.05, 405 
one-tailed. 406 

We applied Step 1-3 to each participant. Figure 6B shows the group results. 407 

Control Analyses  408 

Stage 1: Dot Representation 409 

To check whether representation of the dot cue from Stage 1 remains present until 410 
representation of the auditory cue in occipital cortex at Stage 2, we computed the dot cue 411 
representation with MI(<left vs. right dot; Stage 1 MEGt>), on each occipital source in lingual 412 
gyrus, cuneus and inferior occipital gyrus, at each time point (a) from 0 to 1000 ms following 413 
Stage 1 dot cue onset and (b) from -100ms to 0ms around auditory cue onset at Stage 2. 414 
We then averaged the time courses of dot representation across the sources. Figure 7A 415 
shows the results. 416 

Stage 2: Auditory Decoding 417 
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We used classifiers trained on auditory localizer data to cross-decode the bottom-up 418 
processing of the auditory cues at Stage 2 as follows. 419 

Step 1: Training. We trained linear classifiers (MVPA-Light(Treder, 2020)) to 420 
discriminate the LSF vs. HSF auditory cue, every 2 ms between 0 and 400ms post stimulus, 421 
using MEG sensor responses from the auditory localizer as the training set. 422 

Step 2: Testing. Every 2 ms between 0 and 400ms post Stage 2 auditory cue, we 423 
computed the classifier decision value from single-trial MEG sensor response. This 424 
produced a 2D (training time × testing time) matrix of decision values on each trial. To 425 
quantify decoding performance, across trials we computed for each combination of training 426 
time and testing time the MI between single-trial classification decision value and the true 427 
stimulus label (LSF vs. HSF auditory cue). To establish statistical significance, we repeated 428 
the decoding procedure described 1,000 times with shuffled cue labels, applying threshold-429 
free cluster enhancement (TFCE(Smith and Nichols, 2009), E=0.5, H=0.5), and using as 430 
statistical threshold the 95th percentile of 1,000 maximum values (each taken across all the 431 
time points per shuffle after TFCE) (i.e., FWER, p<0.05, one-tailed). We took the maximum 432 
decoding performance across all training time points.  433 

Step 3: Source representation reconstruction. At the time point of peak performance, for 434 
all 4,413 sources, we computed MI between single-trial decision value and single-trial source 435 
activity. 436 

We repeated Steps 1 to 3 to generate the performance curves and source representations of 437 
each participant. Figure 7B averages them across participants. 438 

 439 

Results 440 

1. Prediction speeds up behavior 441 

Our three-stage cueing design is depicted in Figure 2A. On each trial, a location cue at 442 
Stage 1 (green dot) briefly displayed left vs. right of a central fixation cross (Posner 443 
cueing(Posner and Petersen, 1990)) predicted the visual hemifield location (left vs. right) of 444 
an upcoming Gabor patch (henceforth, Gabor, see Methods, Stimuli) with 100% validity, 445 
followed by a 1-1.5s blank screen. Stage 1 introduced a left vs. right hemisphere task-446 
demand that a flexible prediction pathway should accommodate. At Stage 2, all trials started 447 
with an auditory cue. On “predictive” trials (66% of total), a 250ms sweeping tone (196 Hz vs. 448 
2217 Hz) signalled the Spatial Frequency content (SF, Low vs. High, with an equal split of 449 
trial numbers) of the upcoming Gabor stimulus with 90% validity. On “neutral” trials (33% of 450 
total), a 622Hz tone had no association with the upcoming stimulus. The auditory cue was 451 
followed by another 1-1.5s blank interval (“prediction period”). Figure 2B depicts the 452 
couplings between auditory cues and Gabors. Finally, at Stage 3, one of two (LSF vs HSF) 453 
Gabor stimuli appeared in the participant’s left or right visual hemifield for 100ms, with fixed 454 
brightness and contrast. Each participant (N = 11, see Methods, Participants) categorized 455 
the Gabor SF as quickly and accurately as they possibly could without feedback (i.e. 3-AFC, 456 
with responses “LSF” vs. “HSF” vs. “don’t know”, see also Methods, Procedure).  457 
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 458 

[FIGURE 2] 459 

 460 

As expected, SF prediction (in valid, predictive trials) improved categorization accuracy 461 
(compared to neutral trials), on average by 2.58% (96.9% vs. 94.3%), F(1,10)=22.5, 462 
p=0.0008, and sped up Reaction Times (RTs), on average by 87.7ms (454.4ms vs. 463 
542.1ms), F(1, 10)=20.8, p=0.001. Significant RT improvements applied to each Gabor 464 
location × SF presentation condition (see Figure 2C, and Table 2 and Methods, Cueing 465 
improves behavior) and individual participant – i.e., Bayesian population prevalence(Ince et 466 
al., 2021b, 2022), with maximum a posteriori probability (MAP) estimate of the population 467 
prevalence of the effect of 11/11 = 1 (95% highest posterior density interval, HPDI [0.77 1]). 468 
That is, this experiment provides evidence that this within-participant result generalises to 469 
most individuals, if they participated in the same experiment.  470 

 471 

[TABLE 2] 472 

 473 

This speeding up of categorization behavior following prediction should involve the 474 
information processing mechanisms of a flexible, task-demand sensitive Prediction network 475 
at Stage 2 and a Categorization Network at Stage 3. To understand where, when and how 476 
their mechanisms led to faster RTs, we reconstructed and analyzed these networks in each 477 
participant (from 4,413 MEG sources covering the whole brain, see Methods, MEG Data 478 
Acquisition and Pre-processing).   479 

 480 

2. Prediction Network 481 

To identify the brain regions that flexibly communicate the SF prediction over Stage 2, before 482 
stimulus onset (cf. Figure 1), we computed how strongly each MEG source dynamically 483 
represents the prediction, separately for left- and right-cued trials at Stage 1 (to reveal 484 
lateralization of prediction communication into occipital cortex(Flom et al., 1963) at Stage 2). 485 

Specifically, for left- and right-cued trials at Stage 1, we computed the Stage 2 spatial-486 
temporal representation of the predictive SF auditory cue and MEG source activity using 487 
Mutual Information(Ince et al., 2017)–i.e. MI(LSF vs. HSF auditory cue; Stage 2 MEGt), over 488 
4,413 MEG sources, every 2ms between 0 and 400 ms post Stage 2 cue onset, see 489 
Methods, Prediction representations.  In each participant, this computation produced two 490 
source-by-time matrices (for left- and right-cued trials at Stage 1) whose MI values indicate 491 
the strength of SF prediction representation at Stage 2.   492 

To reveal the spatial-temporal unfolding of prediction representation, we applied a data-493 
driven clustering analysis to these MI matrices (see Methods, Prediction periods clustering). 494 
We found three distinct spatial-temporal periods (i.e. clusters) in both left- (see Figure 3A, 495 
first row) and right-cued trials (see Figure 3A, second row). Figure 3A summarizes their 496 
dynamics at group level, by plotting the sources with maximal Stage 2 prediction 497 
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representation (i.e. peak MI) in each color-coded period. These periods replicated in each 498 
individual participant.  499 

 500 

Specifically, Figure 3A shows that Stage 2 prediction representation dynamics start with an 501 
early Temporal Lobe (TL) peak (auditory cortex, blue, Period 1), moving to prefrontal cortex 502 
(dorsal lateral PFC, [120-200ms], magenta, Period 2), and then finally to the occipital cortex 503 
(OC) contra-lateral to the predicted location ([>200ms], orange, Period 3).  Of note, Stage 2 504 
prediction representations were contra-lateralized on occipital sources–i.e. to the Stage 1 505 
cued spatial location, group-level ANOVA, 2 (left vs. right prediction) by 2 (right vs. left 506 
hemisphere occipital cortex), F(1, 10) = 18.87, p = 0.0015), replicated in 10/11 participants, 507 
Bayesian population prevalence = 0.91 [0.64 0.99], MAP [95% HPDI].  508 

 509 

[FIGURE 3] 510 

 511 

The dynamics of prediction propagation suggest a functional network that specifically 512 
communicates the predictive cue. Reconstructing this network requires quantifying the 513 
communication of the predictive information separately from all other communications. We 514 
did this by computing Directed Feature Information (DFI) (Ince et al., 2015a), which 515 
quantifies directed, time-lagged region-to-region communication about a specific feature 516 
(here, the predictive cue).  We computed DFI (of LSF vs. HSF prediction, henceforth P) 517 
between pairings of the three sources identified earlier (i.e. one per color-coded period, that 518 
is, temporal, prefrontal and occipital), for each possible time lag, and separately for left- and 519 
right-cued trials–i.e. DFIP(regionAt1→regionBt2), see Methods, Prediction network 520 
reconstruction.  521 

 522 

Figure 3B shows these prediction communications as the cross-participant DFI matrix 523 
between sender (y-axis) and receiver sources (x-axis), across different time delays (FWER-524 
corrected, p<0.05, one-tailed), in right-cued trials. The PFC source (x-axis, left panel) 525 
receives the predictive cue ~160ms, sent from the temporal TL source ~50ms earlier (y-axis, 526 
right panel); PFC then flexibly sends the predictive cue (y-axis, right panel) contra-laterally to 527 
left occipital (lOC) sources on right-cued trials (x-axis, right panel), with a 100-200ms delay. 528 
We replicated these communications in individual participants as follows (see prevalence bar 529 
in Figure 3B): TL->PFC: left-cued trials (unfilled) 11/11, right-cued (filled) trials 11/11, 530 
Bayesian population prevalence = 1 [0.77 1] MAP [95% HPDI]; PFC->rOC: left-cued trials, 531 
9/11, Bayesian population prevalence = 0.81 [0.53 0.96], MAP [95% HPDI]; PFC->lOC: right-532 
cued trials,10/11, Bayesian population prevalence = 0.91 [0.64 0.99], MAP [95% HPDI], see 533 
Figure 7 for individual results.  534 

Importantly, we found that SF communications in the Prediction Network comprise only a 535 
percentage of the total region-to-region communications (calculated by Directed 536 
Information(Massey, 1990), see Methods Prediction network reconstruction Step 3 and 6). 537 
These results emphasize the importance of isolating communications of contents–i.e. across 538 
participants, 74.2±13.1% of temporal-to-prefrontal for left-cued trials, 69.4±19.0% for right-539 
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cued trials; 60.3±19.0% of prefrontal-to-occipital communications, left-cued trials, and 540 
67.1±22% for right-cued trials.     541 

We now know that PFC flexibly communicates the prediction from TL to lateralized OC, 542 
depending on task-demand stimulus location at Stage 1. We also know that prefrontal cortex 543 
synchronises with visual cortex (signal-to-signal) in top-down visual predictions tasks (Bar et 544 
al., 2006; Lobier et al., 2018). Now we test the hypothesis that PFC flexibly mediates the 545 
communication of prediction contents between TL and OC as a function of task demands. To 546 
directly test this mediation, Figure 4 contrasts a direct communication of the prediction from 547 
TL to OC, without (vs. with) PFC mediation–i.e. computing DFIP(TLt1→OCt3)|PFC t2, see 548 
Figure 4A (vs. DFIP(TLt1→OCt3), see Figure 4B) and Methods, Prediction network mediation. 549 
Figure 4 reveals that PFC does indeed flexibly mediate the predictive cue from TL to left vs. 550 
right OC. That is, these communications are conditional on PFC source activity–and 551 
replicated for left- and right-cued trials in ≥ 10/11 participants, see Figure 8, Bayesian 552 
population prevalence = 0.91 [0.64 0.99] (MAP [95% HPDI]). Thus, PFC actively and flexibly 553 
mediates the network communications of the prediction from TL to lateralized OC. 554 

 555 

[FIGURE 4] 556 

 557 

3. Categorization Network 558 

Next, we similarly reconstructed the Stage 3 Categorization Network that processes the 559 
presented Gabor SF stimulus for behavior. First, on predictive trials, we computed the Stage 560 
3 dynamic representation of the stimulus to identify space-time regions that represent Gabor 561 
SF for categorization—i.e. by computing MI(Gabor SF; Stage 3 MEGt), on each source and 562 
time point, separately for left- and right-cued trials. Clustering these space-time MI matrices 563 
revealed again three periods of Gabor stimulus representation (see Figure 5A and Methods, 564 
Categorization periods clustering). Specifically, stimulus representation starts with an early 565 
lateralized occipital-ventral peak ([150-250ms], orange, Period 4), followed by a parietal lobe 566 
peak ([250-350ms], red, Period 5) and a premotor-frontal cortex peak ([> 350ms], brown, 567 
Period 6), independently for left- and right-cued trials and replicated in all participants–see 568 
Methods, Categorization Network, Categorization periods clustering. 569 

Then, we reconstructed in each participant the DFI Categorization Network that 570 
communicates the LSF vs. HSF contents–i.e., computed as DFI(regionAt1→regionBt2), see 571 
Methods, Categorization network reconstruction.  Figure 5B shows that these group-572 
averaged communications develop from contra-lateral occipital-ventral cortex to parietal and 573 
then to premotor cortex. We replicated these communications in individual participants as 574 
follows (see prevalence bar in Figure 5B): rOC->PL, left-cued trials (unfilled) 10/11, 575 
Bayesian population prevalence = 0.91 [0.64 0.99], MAP [95% HPDI]; lOC->PL, right-cued 576 
trials (filled) 9/11, Bayesian population prevalence = 0.81 [0.53 0.96], MAP [95% HPDI]; PL-577 
>PMC, left- (unfilled) and right-cued (filled) trials 9/11 participants, Bayesian population 578 
prevalence = 0.81 [0.53 0.96], MAP [95% HPDI], see Figure 9 for all individual results. Here 579 
again, SF feature communications were a proportion of the total region-to-region network 580 
communications–i.e. 56.0±27.0% of total occipital-ventral to parietal communications, for 581 
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left-cued trials and 62.8±17.7%, for right-cued trials; 59.1±20.5% of total parietal-to-582 
premotor communications for left-cued trials and 56.2±23.2%, for right-cued trials. 583 

 584 

[FIGURE 5] 585 

 586 

4. Stage 2 prediction influences Stage 3 stimulus SF representation for faster 587 
categorization 588 

Here, we sought to understand the network mechanisms whereby Stage 2 SF predictions 589 
change Stage 3 SF representations from the shown stimulus, leading to faster categorization 590 
behavior. We proceeded in two steps, where the first one addresses how prediction changes 591 
SF stimulus representation and the second step isolates the Categorization Network 592 
components that speed up behavior due to prediction. 593 

Step 1. Does prediction enhance SF discrimination for categorization?  594 

We analyzed how Stage 2 SF predictions change Stage 3 stimulus SF representation in 595 
each Categorization Network region and participant. Specifically, we computed the 596 
difference of SF stimulus representation with and without prediction–i.e. the difference of 597 
MI(Gabor LSF vs. HSF; MEGStage3), separately computed for valid predictive and neutral 598 
trials (see Methods, Prediction enhances stimulus representation).  These representational 599 
differences are presented in the boxplots of Figure 6A, in each color-coded space-time 600 
region and participant–i.e. on the source that maximizes the difference in this region, against 601 
the null hypothesis of no difference, see 0 dash line. Boxplots show that valid predictions 602 
enhanced SF discriminations on occipital-ventral (150-250ms), parietal (250-350ms) and 603 
PMC (>350ms) sources, FWER, p<0.05, two-tailed. 7/11 participants replicated these results 604 
in contra-lateral OC, for left- and right-cued trials, Bayesian population prevalence = 0.64 605 
[0.33 0.85] (MAP [95% HPDI]), 9/11 participants in parietal lobe and PMC, Bayesian 606 
population prevalence = 0.81 [0.53 0.96], MAP [95% HPDI] (see prevalence bars in Figure 607 
6A). 608 

Step 2. Where and when does prediction speed up behavioral RT in the Categorization 609 
Network?  610 

Next, we identified the space-time regions of the Categorization Network that relate to faster 611 
Stage 3 RT following Stage 2 prediction. In each participant, we computed the Co-612 
Information(valid predictive vs. neutral cue trials; MEGStage3; RT), for each source in the three 613 
network regions and separately for left vs. right-cued trials, see Methods, Prediction 614 
modulates source activity and RT. Co-Information quantifies the influence of prediction that 615 
is shared, trial by trial, by MEG and RT. It therefore reveals prediction-related MEG source 616 
activity that directly relates to faster RT. Figure 6B plots these results as the participant 617 
average of the source with maximal Co-Information at each time point. They reveal two 618 
peaks post ~250 ms that maximally relate prediction influence on source activity and faster 619 
RT in the Categorization Network at Stage 3. Small brains locate these peaks in the parietal 620 
lobe and PMC–replicated in all individual participants, separately for left- and right-cued trials, 621 
Bayesian population prevalence = 1 [0.77 1] MAP [95% HPDI].  622 

 623 
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[FIGURE 6] 624 

 625 

In sum, SF Stage 2 predictions enhanced Stage 3 stimulus SF representations in all regions 626 
of the Categorization Network, across the time course of processing, though only the parietal 627 
lobe and premotor cortex speed up RTs. 628 

 629 

Control analyses and Individual results 630 

At Stage 2, besides reconstructing Prediction Network, we additionally conducted analyses 631 
to control for the potential influence from Stage 1 dot presentation to Stage 2 and the 632 
bottom-up processing of the auditory cues. First, we demonstrate in Figure 7A that the Stage 633 
1 dot representation ceases prior to the onset of the auditory cue, providing evidence that 634 
the contra-lateralization observed at Stage 2 is not a residual effect from Stage 1. Equally 635 
importantly, to control for the bottom-up processing of the auditory cues, we traced their 636 
representations at Stage 2 using linear classifier(Treder, 2020) trained to discriminate LSF 637 
vs. HSF auditory cues from localizer data. Figure 7B shows their decoding performance. We 638 
localized the source contributing to the decoding peaks in each time window of the prediction 639 
dynamics. We found that the source representation of the auditory cues remains within TL. 640 

 641 

[FIGURE 7] 642 

 643 

Importantly, we applied a new approach to statistics where we seek to replicate each result 644 
above in each individual participant. We then estimate the Bayesian population prevalence 645 
of the results from the experimental sample of participants, thereby alleviating most 646 
problems of the replication crisis(Ince et al., 2021a, 2022).  Having reported the Bayesian 647 
population prevalence, below we show the individual results in detail. 648 

We replicated TL->PFC-OC communications in Stage 2 Prediction Network in individual 649 
participants as follows: TL->PFC: left-cued trials (unfilled) 11/11, right-cued (filled) trials 650 
11/11, Bayesian population prevalence = 1 [0.77 1] MAP [95% HPDI]; PFC->rOC: left-cued 651 
trials, 9/11, Bayesian population prevalence = 0.81 [0.53 0.96], MAP [95% HPDI]; PFC->lOC: 652 
right-cued trials,10/11, Bayesian population prevalence = 0.91 [0.64 0.99], MAP [95% HPDI]. 653 

 654 

[FIGURE 8] 655 

 656 

We replicated the result that TL to OC communications are conditional on PFC source 657 
activity for left- and right-cued trials in ≥ 10/11 participants, Bayesian population prevalence 658 
= 0.91 [0.64 0.99] (MAP [95% HPDI]).  659 

 660 

[FIGURE 9] 661 
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We replicated OC->PL->PMC communications in Stage 3 Categorization Network in 662 
individual participants as follows (see prevalence bar in Figure 5B): rOC->PL, left-cued trials 663 
(unfilled) 10/11, Bayesian population prevalence = 0.91 [0.64 0.99], MAP [95% HPDI]; lOC-664 
>PL, right-cued trials (filled) 9/11, Bayesian population prevalence = 0.81 [0.53 0.96], MAP 665 
[95% HPDI]; PL->PMC, left- (unfilled) and right-cued (filled) trials 9/11 participants, Bayesian 666 
population prevalence = 0.81 [0.53 0.96], MAP [95% HPDI], 667 

 668 

[FIGURE 10] 669 

Discussion 670 

We isolated the network mechanisms that dynamically predict specific visual contents. Then, 671 
we examined specifically where, when and how prediction changes stimulus representation 672 
to speed up categorization behavior. Our three-stage experimental design used a location 673 
cue to predict the left vs. right visual field location of an upcoming Gabor stimulus at Stage 1, 674 
to study the effects of prediction on stimulus representation, specifically in the occipital 675 
cortex contra-lateral to stimulus presentation, depending on task demands. The Stage 1 676 
location cue was followed at Stage 2 by an auditory cue that predicted the LSF vs. HSF 677 
contents of the upcoming Gabor stimulus that appeared on the screen at Stage 3. We 678 
reconstructed a Prediction Network that propagates the auditory predictive cue from 679 
temporal (90-120ms post Stage 2 cue) to occipital cortex (200-400ms), via prefrontal cortex 680 
(120-200ms), all pre-stimulus. We showed that prefrontal cortex (mainly, dIPFC) mediates 681 
communication of the predictive cue from temporal to the left vs. right occipital cortex, 682 
depending on cued location at Stage 1, demonstrating that the prediction pathway is flexible 683 
depending on the demands of the task. When the Gabor stimulus is finally shown at Stage 3, 684 
we reconstructed post-stimulus the Categorization Network that propagates the LSF vs. HSF 685 
feature from occipital-ventral cortex (150-250ms post Stage 3 Gabor), parietal lobe (250-686 
350ms post Stage 3 Gabor) and premotor cortex (>350ms post Stage 3 Gabor). We then 687 
showed how predictions change the Categorization network and found that they enhance 688 
LSF vs. HSF representations of the shown stimulus, from occipital cortex to pre-motor 689 
cortex, leading to faster behavior. Together, our results quantitatively reveal cognitive 690 
network mechanisms that flexibly communicate top-down the prediction of a specific content 691 
to occipital cortex, which enhances the bottom-up representation of these contents in the 692 
stimulus to speed up behavior. 693 

Functional networks predict and then represent stimulus contents  694 

Methodologically, we reconstructed a functional network that flexibly communicates a 695 
specific auditory prediction of visual contents (LSF vs. HSF) from temporal to left vs. right 696 
occipital cortex, with mediation of the PFC. That is, PFC is necessary to flexibly propagate 697 
the predictive cue. Such connectivity analyses involve individual MEG sources acting as 698 
sending and receiving network nodes. Importantly, DFI functional connectivity differs from 699 
other signal-to-signal connectivity analyses (such as Granger causality or transfer entropy) 700 
because DFI isolates what the communication is about (at Stage 2, the auditory prediction of 701 
LSF vs. HSF) as a percentage of the full signal-to-signal connectivity (Ince et al., 2015a). At 702 
this stage, the specific function of the communications between brain regions that are not 703 
about the stimulus features remains to be characterized. They could be about other stimulus 704 



 

 19

features (e.g. its orientation, or contrast), other aspects of the task (i.e. task engagement) or 705 
related to dynamic state effects (such as attentional engagement or fatigue). Furthermore, 706 
the remaining communications could relate to the synchronisation between sender and 707 
receiver nodes that is necessary to form a carrier network to convey the feature information 708 
(Ziemer and Tranter, 2006; Lobier et al., 2014; Sherblom, 2019). 709 

A similar logic isolated the mediatory role of PFC. Thus, DFI addressed the first question 710 
schematized in Figure 1, of the functional network of regions that dynamically (and multi-711 
modally) propagate a prediction of visual information to the PFC that translates a prediction 712 
from auditory cortex into a predictive signal in occipital cortex that subsequently influences 713 
the representation of stimulus contents, when shown.  714 

These Stage 2 effects were obtained from the contrast between the two auditory cues, and 715 
therefore might reflect only bottom-up processing of these auditory signals (not the predicted 716 
visual contents). However, our demonstration that PFC mediates the propagation addresses 717 
this point, by showing a high-level modulation distinct from the dynamic representation of the 718 
tone itself (tested with the localizer prior to the experiment, see Figure 7).  Also, we proved 719 
the visual specificity of the Stage 2 prediction with end point in occipital cortex contra-lateral 720 
to the predicted location (cf.  Figure 3). Thus, the propagation of the visual prediction at 721 
Stage 2 is distinct from that of the auditory input. 722 

To address the question of how prediction influences Stage 3 processing of the stimulus, we 723 
compared Stage 3 stimulus representation with and without prediction. A key unresolved 724 
question about the role of predictions is whether they enhance vs. dampen stimulus 725 
representation (De Lange et al., 2018). Evidence for one or the other typically relies on 726 
enhanced vs. impaired decoding performance of the predicted stimulus in the regions of 727 
interest (Lee and Mumford, 2003; Kok et al., 2012; Blank and Davis, 2016; Kumar et al., 728 
2017). Here, we showed that predictions enhance the representation of LSF vs. HSF 729 
stimulus contents, locating these enhancements in source space and time. Most participants 730 
(7/11) showed that prediction enhances LSF vs. HSF discrimination in occipital cortex and 731 
(9/11) in parietal cortex and (9/11) in premotor cortex, the latter relating to faster behavioral 732 
categorization. Thus, our evidence supports the hypothesis that prediction enhances 733 
stimulus representation in the Categorization Network.  734 

The mediation (i.e. control) role of prefrontal cortex 735 

An interesting finding of our functional network is that prefrontal cortex mediates the 736 
temporal to occipital communication of the predictive cue. More precisely, we located the 737 
sources with highest representation of the predictive cue in the dorsolateral prefrontal cortex 738 
(dlPFC, (Sanches et al., 2009)), often related to working memory (D’Esposito et al., 1998; 739 
Rowe et al., 2000; Friedman and Robbins, 2022), selective attention (Goddard et al., 2022) 740 
and task performance (Collette et al., 2005). Prefrontal cortex could orchestrate the 741 
information of the auditory cue (i.e. upcoming LSF vs. HSF) together with the memory of the 742 
upcoming stimulus location (i.e. left vs. right visual field) and selectively prepare the contra-743 
lateral occipital sources to the upcoming contents. Our results are compatible with this 744 
hypothesis, because representation of the prediction on occipital sources at Stage 2 is 745 
indeed contralateral to the predicted visual field where the stimulus will appear at Stage 3—746 
i.e. left occipital sources for a predicted right visual field stimulus and vice versa. Future work 747 
that fuses MEG and high-field fMRI will seek to resolve the specific cortical laminar layer that 748 
receives the prediction at Stage 2 (e.g. central laminar layer (Lawrence et al., 2019)), and 749 
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how this prediction then interacts with the cortical layer representation of the feedforward 750 
flow when the stimulus is shown at Stage 3 (e.g. in peripheral laminar layers (Lawrence et al., 751 
2019)). 752 

Predictions and representations of face, object, body and scene stimuli. 753 

We used DFI to reconstruct the dynamic Prediction and Categorization Networks. Our 754 
approach to the neuroimaging of cognitive tasks differs from most other approaches in 755 
several critical ways.  First, our overarching goal is to reconstruct, for each individual 756 
participant, the network of MEG sources that communicate (i.e. send and receive) the 757 
information (e.g. an auditory cue; a visual feature) that is necessary to resolve the cognitive 758 
task under study (Schyns et al., 2009, 2022; Jaworska et al., 2022).  These cognitive tasks 759 
play a critical role to shape the communications of specific stimulus and memory information 760 
across the networks of the brain (Schyns, 1998; Smith et al., 2004; Jaworska et al., 2022; 761 
Schyns et al., 2022; Kay et al., 2023). Second, to do so, we use a new measure of functional 762 
connectivity (i.e. DFI (Ince et al., 2015b, 2016)) that differs from most other signal-to-signal 763 
measures of connectivity (e.g. Granger causality(Bressler and Seth, 2011) or transfer 764 
entropy(Lobier et al., 2014)). DFI quantifies communication of specific information between 765 
network nodes.  For example, at Stage 2 of our Experiment, nodes communicate the 766 
information about the auditory prediction of LSF vs. HSF.  DFI communication is expressed 767 
as a percentage of the full signal-to-signal connectivity between pairs of nodes. With DFI, we 768 
can uniquely interpret neural signal communications in terms of the specific information 769 
contents that the brain networks flexibly communicate to achieve a cognitive task. This is 770 
important to isolate because we showed in our prediction experiment that communications of 771 
the predicted features is only about 55%-75% of all signal-to-signal communications 772 
between brain regions. A direct consequence of DFI connectivity is that we can locate the 773 
network nodes where different information converges (i.e. the hubs–e.g. contra-lateral 774 
occipital representations of the left and right eyes of a face converge into the right fusiform 775 
gyrus hub(Schyns et al., 2007; Ince et al., 2016; Zhan et al., 2019; Jaworska et al., 2022)).  776 
In turn, we can analyze whether hub nodes perform specific linear and nonlinear 777 
computations on their inputs(Jaworska et al., 2022). And these analyses apply equally to 778 
bottom-up and top-down information flows in the network. Here, they revealed mechanisms 779 
that top-down propagate predictions of LSF vs. HSF stimulus feature, from temporal to 780 
lateralized occipital cortex, depending on task demands. In turn, these predictions enhance 781 
bottom-up LSF vs. HSF representations, from occipital cortex to pre-motor cortex, to speed 782 
up categorization behavior. Thus, our approach enables a unique mechanistic, algorithmic 783 
understanding of the information processing network that realize a specific cognitive task, 784 
which is the ultimate explanatory goal of cognitiveneuroimaging(Schyns et al., 2009, 2022; 785 
Jaworska et al., 2022). 786 

Generalizing from Gabor stimuli to more naturalistic face, object and scene categorization 787 
tasks will incur several challenges to study the visual features that categorizes faces, objects 788 
and scenes (Schyns et al., 2009, 2020). A key challenge is that the stimulus features 789 
participants use to predict and then categorize can differ across behaviors and levels of 790 
expertise (e.g. categorizing the same picture as “city” vs. “New York”) (Gauthier et al., 1999; 791 
Malcolm et al., 2014). We therefore need to characterize these features per participant and 792 
task to then study their predictions and representations for behavior in functional networks 793 
(Jaworska et al., 2022; Schyns et al., 2022; Kay et al., 2023). In particular, a methodological 794 
challenge remains to understand the compositionality of visual predictions, as they 795 
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decompose from their integrated representation high in the visual hierarchy (e.g., right 796 
fusiform gyrus), to their contra-lateral components for occipital cortex, down to their simplest 797 
Gabor representation in the lower hierarchical levels.  This would require fusion of brain 798 
measures (e.g. high-field fMRI to finely tap into laminar layers (Gilbert and Li, 2013) and 799 
E/MEG (Ince et al., 2015b) to trace the dynamics of these representations across layers in 800 
the occipito-ventral-dorsal streams). 801 

Thus, to understand complex dynamic predictions and representations in the brain, we must 802 
understand the categorization task (e.g. “city vs. New York”), the hierarchical composition of 803 
features that represent each category in the participant’s memory, trace their hierarchical 804 
predictions in the feedback flow (Yuille and Kersten, 2006) and their subsequent 805 
representation in the feedforward flow when the stimulus is shown. Once the 806 
compositionality of representations is understood, we could study how sensory hierarchies 807 
decompose predictions to facilitate stimulus processing and behavior. 808 

 809 

Conclusions 810 

We sought to isolate and understand the propagation of specific cognitive predictions in a 811 
Prediction Network and then how these predictions change the Categorization Network that 812 
processes the predicted contents in the stimulus.  We showed that the Prediction Network 813 
dynamically propagates predictions of visual contents from temporal to occipital regions, via 814 
the flexible mediation role of prefrontal regions. Then, we showed that predicted contents 815 
were more sharply represented when the stimulus is shown in the Categorization Network, 816 
from occipital-ventral to pre-motor cortex, via parietal cortex, leading to faster decision 817 
behavior. Our Prediction and Categorization Networks split the communications on specific 818 
contents from overall signal-to-signal connectivity, in principle generalizing to other stimulus 819 
features and sensory modalities.  820 
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Figure Legends 956 

Figure 1. Three key questions. 1) Prediction Network: Where, when and how does it flexibly 957 
represent and communicate a predictive cue depending on task demands (here P, an auditory cue 958 
that predicts a visual content).  2) Categorization network: When, where and how does it process 959 
the stimulus contents (here S, the LSF vs. HSF of a Gabor stimulus)? 3) Influence of prediction on 960 
categorization: How does content prediction influence stimulus representation, leading to faster 961 
behavior?  962 

 963 

Figure 2. Experimental design and behavioral results. (A) Task procedure. Each trial started with 964 
a 500ms fixation.  At Stage 1, a 100ms green dot (i.e. location cue) predicted the left vs. right task-965 
demand location of the upcoming Gabor patch, followed by 1000-1500ms blank screen.  At Stage 2, a 966 
250ms sweeping sound (i.e., SF cue) predicted the LSF vs. HSF content of the upcoming Gabor, 967 
followed by a 1000-1500ms blank screen with jitter. At Stage 3, the Gabor stimulus was presented for 968 
100ms. Participants categorized its LSF vs. HSF, followed by a 750-1250ms inter-trial interval (ITI). (B) 969 
Cue-Gabor couplings. At Stage 1, the left vs. right location cue predicted the left vs. right location of 970 
the upcoming Gabor with 100% validity. At Stage 2, on predictive trials, the 196 Hz vs. 2217 Hz 971 
auditory cues predicted the Gabor LSF vs. HSF contents with 90% validity; on neutral trials, a 622 Hz 972 
auditory cue served as neutral control on 33% of the trials contained no prediction (i.e. with .5 973 
probability of LSF vs. HSF). (C) Behavioral results. Boxplots show that prediction (i.e., valid 974 
predictive cueing, dark brown) sped up median LSF vs. HSF Gabor categorization RTs in left and 975 
right-cued trials, compared with neutral cueing (light brown). Black dots (vs. light grey dots) indicate 976 
the per-participant median categorization RTs in predictive (vs. neutral) trials, linked to show 977 
directional RT differences replicated in each individual participant. 978 

 979 

Figure 3. Stage 2 Prediction Network. (A) Network regions (see iconic brain). In each participant, 980 
we computed the Stage 2 prediction representation (as MI(LSF vs. HSF cue; MEGt), Y-axis), between 981 
0 and 0.4s post auditory cue (X-axis), on each source, separately for left- and right-cued trials (see 982 
Methods, Prediction representations). We then localized the single source with maximum MI value in 983 
each color-coded period—i.e. [90-120ms], [120-200ms], [>200ms], see Methods, Prediction Network, 984 
Prediction periods clustering.  Glass brains show the cross-participant mean of maximum MI for these 985 
sources, revealing a temporal sequence of prediction representation propagation from temporal (TL, 986 
cyan) to prefrontal (PFC, magenta) to occipital (orange, contra-laterally to the left vs. right cued 987 
stimulus location lOC vs. rOC). (B) Prediction communications. For each participant, we used these 988 
three sources (i.e. one per color-coded period) as the three functional nodes to reconstruct their 989 
Prediction Network. With DFI (Ince et al., 2015a) we computed the Stage 2 communications of the 990 
prediction across these three network nodes—i.e. TL->PFC and PFC->OC. Plots show these 991 
communications averaged across participants, in the time course of the receiving node (X-axis), as 992 
delays from the sending node (Y-axis)–e.g. TL sends predictive cue P to PFC, with a 50ms delay, 993 
then PFC sends P to OC, with a 100-200ms delay (as illustrated in the iconic brain below).  994 

 995 
Figure 4. Prefrontal cortex mediates prediction communication. (A) Direct communication of 996 
the prediction from TL to OC, illustrated in a typical participant. We removed (i.e. conditioned out) the 997 
mediation role of PFC in communicating prediction P between TL and lateralized left (l) or right (r) OC. 998 
The matrices express these P communications in the time course of the receiving lOC source (X-axis), 999 
as delays from the sending TL source (Y-axis). (B) Prefrontal mediation in communicating P from TL 1000 
to lOC, with a 100-150 ms delay, illustrated in a typical participant. The significant difference between 1001 
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(A) Direct and (B) Mediated communications is indicated with a red solid curve in the participant plot 1002 
(right-cued trials, FWER corrected, p<0.05, one-tail).  (C) Group generalization. The plot shows the 1003 
cross-participant mean significant difference between (A) Direct and (B) Mediated prediction 1004 
communication for right-cued trials. The effect replicated in 11/11 participants for left-cued trials 1005 
(FWER corrected, p<0.05, one-tail), Bayesian population prevalence = 1 [0.77 1] MAP [95% HPDI], 1006 
and in 10/11 participants for right-cued trials, Bayesian population prevalence = 0.91 [0.64 0.99], MAP 1007 
[95% HPDI]. PFC therefore actively mediates network communications of P from TL to lateralized OC. 1008 

 1009 

Figure 5. Stage 3 Categorization Network. (A) Network regions (see iconic brain). In each 1010 
participant, we computed the Stage 3 Gabor stimulus LSF vs. HSF representation (as MI(LSF vs. 1011 
HSF Gabor; MEGt), Y-axis), between 0 and 0.5s post stimulus (X-axis) on each source, separately for 1012 
left- and right-cued trials. We then localized the single source with maximum MI value in each color-1013 
coded period—i.e. [150-250 ms], [250-350 ms], [>350 ms]. Glass brains shows the cross-participant 1014 
mean of maximum MI for these sources, revealing the temporal sequence of stimulus representation 1015 
propagation starting in contra-lateral occipital-ventral cortex (OC, orange), then parietal lobe (PL, red), 1016 
and finally premotor and frontal cortex (PMC, brown), independently for left- and right-cued trials. (B) 1017 
Stimulus communications. For each participant, we used these three sources (one per color-coded 1018 
period) as the three functional sources to reconstruct their Categorization Network.  With DFI (Ince et 1019 
al., 2015a), we computed the Stage 3 communications of Gabor stimulus across these three network 1020 
nodes—i.e. OC->PL->PMC. Plots show these communications averaged across participants, in the 1021 
time course of the receiving node (X-axis), as delays from the sending node (Y-axis)–e.g. lOC sends 1022 
stimulus S contents to PL, with a 100 ms delay (as illustrated in the iconic brain plots below).  1023 

 1024 

Figure 6. Interaction between Prediction Network (Stage 2) and Categorization Network (Stage 1025 
3). (A) Does prediction enhance SF discrimination for categorization? Boxplots comprise the 1026 
highest per participant source-level difference of Stage 3 stimulus SF representation–i.e. difference of 1027 
MI(LSF vs. HSF; MEGStage3) for valid predictive vs. no prediction trials against the null hypothesis of 1028 
no difference, FWER, p<0.05, two-tailed, in each color-coded region and time window (contra-lateral 1029 
occipital-ventral: 150-250ms; parietal: 250-350ms; PMC: >350ms). These representational 1030 
enhancements of stimulus SF replicate in each region and time window (see prevalence bar adjacent 1031 
to boxplots, for left- and right-cued trials). (B) Where and when does prediction speed up 1032 
behavioral RT in the Categorization Network? To identify the Stage 3 Categorization Network 1033 
regions whose sources relate to faster RTs following valid predictions (vs. no prediction), we 1034 
computed Co-I(Predictive vs. neutral trials; MEGStage3; RT), FWER-corrected, p<0.05, separately for 1035 
left- (dashed line) and right-cued trials (plain line) on all Stage 3 Categorization Network sources 1036 
(contra-lateral occipital cortex, parietal lobe and premotor cortex). Plain (right-cued trials) and dashed 1037 
left-cued trials) curves plot the averages of the per-participant maximum Co-I across sources at each 1038 
time point. They reveal two sequential peaks post ~250ms, in parietal lobe and pre-motor cortex. 1039 
Small locate shows the mean Co-I of the individual participant sources that contribute to these peaks. 1040 

 1041 

Figure 7. Control analyses for Stage 2. (A) Dot representation before auditory cue onset. For 1042 
each individual participant, we computed the representation of the dot cue (as MI(left vs. right dot; 1043 
MEGt), Y-axis). We computed the trial-by-trial dot cue representation, by computing MI(<left vs. right 1044 
dot; Stage 1 MEGt>), at each 4ms time point between 0 to 1000 ms following Stage 1 dot cue onset, 1045 
and also each at time point from -100ms to 0ms before Stage 2 auditory cue onset, on each source in 1046 
lingual gyrus, cuneus and inferior occipital gyrus. We then averaged time courses of dot 1047 
representation across the sources. Results show the dot representation ceases prior to the onset of 1048 
auditory cues. (B) Auditory processing decoding. Curves show the auditory decoding performance 1049 
of the LSF vs. HSF cue, separately for left-cued (upper panel) and right-cued (lower panel) conditions. 1050 
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We trained classifiers on the auditory localizer to discriminate LSF vs. HSF cue, every 2ms between 0 1051 
and 400ms; and tested these classifiers on Stage 2, every 2ms between 0 and 400ms. We quantified 1052 
the decoding performance (FWER-corrected, p<0.05, one-tailed) as MI (classifier decision value; 1053 
ground truth LSF vs. HSF cue), and took the highest significant performance across training time 1054 
points. The curve shows the averaged decoding performance across participants – shaded regions 1055 
denote ± standard errors of the mean. Cortical surface maps reveal the MEG sources that contribute 1056 
to the decoding peaks in each time window of the prediction dynamics, computed as MI(classifier 1057 
decision value; MEG source activity), indicating the source representation of the auditory cues 1058 
remains within TL from left hemisphere to the right. 1059 

 1060 

Figure 8. Stage 2: Communications (DFI) of the LSF vs. HSF prediction in the Prediction 1061 
Network of individual participants. Using DFI, separately for (A) left-cued trials and (B) right-1062 
cued trials, we computed in each participant (each grey-framed panel) the communications of the 1063 
prediction across network nodes (i.e. TL -> PFC and PFC -> OC), every 2 ms between 0 and 400ms 1064 
post auditory cue onset for the receiver, and every 2 ms communication delay between 0 and 300ms 1065 
from the sender. These time x time plots represent the significant (FWER-corrected, p<0.05) 1066 
prediction communications between receiver (X-axis) and sender (Y-axis), where a green diagonal 1067 
indicates the timing and duration of the prediction communications.  1068 

 1069 

Figure 9. Stage 2: PFC mediation of prediction communications in the Prediction Network of 1070 
each participant. Separately for (A) left- and (B) right-cued trials, we computed the difference of TL 1071 
to OC Stage 2 prediction communication, between direct (removing frontal mediation) and mediated 1072 
(with frontal mediation) DFI (for each receiver time point every 2 ms between 0 and 400ms post 1073 
auditory cue onset, and for each sender communication delay every 2 ms between 0 and 300ms). 1074 
Each plot presents the significant (FWER-corrected, p<0.05, one-tailed) PFC-mediated Stage 1075 
communication of the cue between TL(Y-axis) and OC (X-axis). 1076 

 1077 

Figure 10: Stage 3: Communications (DFI) of the LSF vs. HSF Gabor stimulus in the 1078 
Categorization Network of each participant. Separately for (A) left- and (B) right-cued trials, we 1079 
computed in each participant (each grey-framed panel) the DFI communications between 1080 
categorization network nodes OC -> PL and PL -> PMC, every 2ms between 0 and 500ms post 1081 
Gabor onset for the receiver, and for sender communication delays every 2ms between 0 and 300ms. 1082 
Each plot presents the significant (FWER-corrected, p<0.05) communications of LSF vs. HSF Gabor 1083 
stimulus between receiver (X-axis) and sender (Y-axis).    1084 
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 1085 

Table 1. Stimulus repetition in one cueing-categorization block 1086 

 Location cue SF cue Visual stimuli  

(random from 3 orientations)

Repetitions/type 

27 left cues 

9 LSF cues 8 left-LSF + 1 left-HSF 

9 HSF cues 8 left-HSF + 1 left-LSF 

9 neutral cues 9 left-random LSF/HSF 

27 right cues 

9 LSF cues 8 right-LSF + 1 right-HSF 

9 HSF cues 8 right-HSF + 1 right-LSF 

9 neutral cues 9 right-random LSF/HSF 

Sum 54 

 1087 

 1088 

Table 2.  Group-level effect of cueing on mean LSF vs. HSF, left- and right-cued Gabor 1089 
categorization RTs (paired samples t-tests).    1090 

 1091 

Gabor type RT (valid predictive, 
ms) RT (neutral, ms) 

RT 
Improvement 

(ms) 
t value  p value 

Left LSF 530.9 456.8 74.1 t(10) = 3.60 p = 0.005 

Left HSF 555.4 447.7 107.7 t(10) = 5.87 p = 0.0002 

Right LSF 556.3 483.6 72.6 t(10) = 3.37 p = 0.007 

Right HSF 525.9 429.5 96.4 t(10) = 4.82 p = 0.0007 

 1092 






















	Enlighten Accepted coversheet
	299830

