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Introduction 
Imagine you are in your car driving to meet a friend at a restaurant you 
have never been to before. As an experienced driver, you don’t need 
to deliberately direct your gaze. Instead, your attention is automatically 
drawn to crossings far off in the distance, other moving vehicles, and 
relevant road signs. Without having to assert effort, your brain 
suppresses details in your immediate surroundings to enhance 
relevant information. When you arrive at the restaurant, you swiftly 
search through the crowd of strangers, assessing whether everyone is 
your friend within a fraction of a second. Your brain effortlessly 
evaluates each person with templates in your memory, first on crude 
features such as hair colour or height, and for anyone who fits these 
criteria, assessment is carried out on finer facial features. With our 
ability to use logical inferences based on experience we build 
templates of a target, which we use to efficiently scan through our 
environment. Regardless of how mundane this everyday task might 
seem; its completion requires several fundamental computational 
problems to be overcome. When driving a car and when searching a 
crowded room, you need to selectively enhance and suppress visual 
information, as processing all information equally is an inefficient use 
of resources. It can take several hundred milliseconds to fully process 
a complex natural scene (Kar et al., 2019), meaning that the 
processing of several visual objects must be happening in parallel. To 
add to this complexity, humans are continuously updating their goals 
(first, search for the bar across the whole room, then search for a 
person at the bar) based on information we are gaining within each 
moment. In this dissertation, I will address how the brain organizes 
information into categories, how items that are processed in parallel 
can interfere with each other, and at what levels of processing these 
interferences occur.  
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Even though between 20% and 30% of the cortex is dedicated to vision 
(Essen, 2003), our visual perception is not a veridical representation 
of the objective world. We fail to observe most of the enormous 
information flow present in our environment. While this may seem like 
a shortcoming, this failure to process information can be considered 
advantageous. Humans have evolved an impressive set of tools that 
enable us to quickly sift through the massive amount of data 
surrounding us, picking out and acting on what is most important. We 
can rapidly isolate important regions in our visual field and allocate 
additional resources, i.e., attend to that specific area (Posner et al., 
1980). In our daily life, we take this ability for granted and it is easy to 
forget how impressive this achievement is. Combined, the hypothetical 
situation above illustrates a grand performance, which encompasses 
object recognition, saccade planning, working memory updating, goal 
definition, and integration with memories, held together by a 
sophisticated attentional system. Our environment constantly 
bombards us with information, and one of the most daunting tasks of 
the brain is to select the relevant information and filter out noise (i.e., 
signals that are non-informative for our task goals). This selection 
process is not without biases. The Baader-Meinhof phenomenon (or 
the frequency illusion) nicely illustrates how selective attention biases 
our perception in daily life. For example, have you ever learned a new 
word and then suddenly seen this word everywhere you look? In 
reality, you have been walking around all your life with this word 
frequently reaching your retina but not reaching your conscious 
awareness. What are the factors that lead us to become consciously 
aware of a specific stimulus? Are these factors all just related to our 
task-goals or are there stimuli that we inherently treat differently? Is it 
possible to manipulate our perceptual system in such a way that we 
are more likely to perceive certain objects? These are pertinent 
questions we need to answer to build a comprehensive theoretical 
framework of perception. 
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Object recognition and representation 
Humans can classify and act upon objects within a fraction of a second 
(Kirchner & Thorpe, 2006). In fact, a mere 13-millisecond exposure of 
a visual scene is enough for us to retain the information in neural 
constellations so we can process the semantic meaning (Broers et al., 
2018). Visual information is first received and processed in the retina, 
located at the innermost part of the eye. Here, spatial resolution is 
highest in the fovea and strongly declines toward the periphery of the 
visual field (Daniel & Whitteridge, 1961). The retina consists of rods 
and cones, two types of photoreceptors that provide vision in dim light 
and photopic (colour) vision, respectively (Bowmaker & Dartnall, 
1980). The simplicity of this retinal setup comes with a few 
computational problems. For example, since the retina lies like a flat 
sheet in the back of the eye, the information reaching our brain is by 
nature two-dimensional, the brain, therefore, needs to infer depth. 
Another problem is that the same object can produce an immense 
variation in appearance depending on viewing angle (Logothetis & 
Steinberg, 1996). Therefore, to perceive the environment coherently it 
is necessary for the brain to construct view-invariant object 
representations without causing a combinatorial explosion in the 
number of cells required. To solve these problems, neurons with the 
same response properties are not randomly distributed throughout the 
visual system. Instead, neurons in the early visual cortex are organised 
retinotopically, which means that neurons' spatial organisation in the 
cortex corresponds to the locations in the visual field. Following the 
retinotopic organisation, bundled neurons in the early visual cortex 
respond to low-level stimulus features such as orientation (Swindale 
et al., 1987), spatial frequency (Tootell et al., 1981), and colour (Tootell 
et al., 2004). These features are later combined into more complex 
representations further along the visual stream, which runs from the 
most posterior to the anterior part of the brain (Figure 1). An influential 
idea of the visual system is the two-streams hypothesis (Goodale & 
Milner, 1992; Ungerleider & Mishkin, 1982) which posits that as 
information exists the occipital pole there is a partitioning of processes 
into the dorsal and ventral visual stream. A simplified description is that 
the dorsal stream encodes spatial properties such as size and location 
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(known as the “where”-stream) and the ventral stream encodes the 
identity of an object (known as the “what”-stream). However, the two 
streams are not independent, but characterized by many reciprocal 
connections (Budisavljevic et al., 2018; Cloutman, 2013; Zhong & 
Rockland, 2003) and informational integration between the streams is 
thought to happen at several levels, including continuous cross-talk 
between the streams (Budisavljevic et al., 2018; van Polanen & 
Davare, 2015), and shared target regions in frontal areas 
(Rauschecker & Scott, 2009), which in turn may facilitate integration 
through recurrent feedback loops (Cloutman, 2013). Despite this 
interconnectedness between the two streams, the predominant 
interest in the field of visual cognition has been with the ventral visual 
stream. This is presumably since within the ventral visual stream, 
specifically the human inferior temporal cortex (ITC, Figure 1), 
researchers have found patches of category-specific areas. For 
example, there are patches within the ITC that respond to places 
(Epstein et al., 1999), faces (N. Kanwisher et al., 1997), bodies 
(Downing et al., 2001), and 3D (Janssen et al., 2000); and the more 
posterior the patch, the more invariant the responses are to viewing 
angle (Bao et al., 2020). One recently proposed mechanism for these 
patches is that they are an emergent property of the evolutionary 
pressure of metabolic constraints, where it is more energy efficient to 
organise neurons responding to similar objects adjacent to each other 
to shorten the length of the axons in the lateral connections between 
them (Lee et al., 2020). Nevertheless, the behavioural relevance of 
this category-dependent organisation is a topic of active debate in the 
field of neuroscience, and answers to questions regarding the 
relationship between object representations and behaviour could help 
researchers understand the underlying mechanisms for these 
emergent structures. 
 



Chapter 1 
   

 12   

 
Figure 1. A) Approximate anatomical divisions within the ventral visual 
stream. V1 (red) is the first cortical area to receive visual input. Information is 
then passed on to V2-V3-V4-V5 (green) before it reaches ITC (blue). B) 
Ventral view of the brain. Known areas that respond selectively to certain 
categories of visual stimuli. More patches are known to respond to faces, 
scenes and bodies, however, these locations are the most studied. C) 
Representational depiction of visual features processed at different stages. 
Early in the visual processing, simple features such as contrast and 
orientation are processed (left), later, more complex features are processed 
(middle) and eventually category-specific responses are found in the ITC 
(right). Colours of the underlying bars are reflecting areas as shown in A. 
 

Animacy and behaviour 
One of the most notable functional divisions in ITC is between animate 
and inanimate objects. Here, researchers have found a continuum 
from the medial to the lateral, where the more animate an object is, the 
more lateral in the ITC is its representation encoded (Sha et al., 2015). 
Behavioural studies have shown that humans performing visual 
search are quicker to find animals compared to non-animals (Jackson 
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& Calvillo, 2013), better at remembering words describing animals 
(Nairne et al., 2013), and that animals seem to have privileged access 
to our conscious perception (Guerrero & Calvillo, 2016; Lindh et al., 
2019). This division makes sense from an evolutionary perspective 
given how important it is to monitor potential threats such as predators 
in our surroundings. New et al. (2007) showed that subjects were 
quicker at detecting non-human animals than vehicles in a change 
detection task. The authors argued that if visual expertise was driving 
performance, we should predict the opposite - that is, that vehicles 
would be more quickly detected due to their prevalence in everyday 
life compared to exotic animals. This led New and colleagues to 
propose the “animate monitoring hypothesis”, emphasising the 
evolutionary relevance of detecting animals for ancestral hunter-
gatherer societies. This idea of an innate predisposition for detecting 
animals has been further corroborated by the existence of animate/in-
animate distinct regions in the ventral visual stream in both sighted and 
congenitally blind subjects (Mahon et al., 2009). 
 
The specific representational relationship between animals and non-
animals in late visual areas seem to dictate how efficiently they are 
being processed. For example, (Carlson et al., 2014) trained a support 
vector machine (SVM) on voxels within the ITC to classify whether a 
presented stimulus was an animal or not. The resulting “confidence” 
of the classifier for each image was used as a measure of how much 
of an animal an object was according to the voxel wise activation in 
ITC. This “confidence” was later shown to correlate with reaction time 
in a speeded judgement task, with animals higher on the animal 
spectrum leading to faster response times. This study supports the 
notion that representations in visual areas are meaningful for 
behaviour and the representations we extract through multivariate 
approaches reflect information used in decision making 
(Grootswagers et al., 2018). One of the key questions in this 
dissertation is regarding how different semantic categories, eliciting 
grouped patches of activation throughout the visual stream, affect 
conscious awareness. I address this question directly in chapter 2 and 
further explore a more general mechanism for this in chapter 3 and 
chapter 4.  
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Convolutional neural networks 
In the field of computational vision, the difficulty of turning pixels into 
view-invariant categorical representations has not been eluded. 
Computational scientists have attempted for decades to develop 
algorithms that can detect and classify objects in natural images, with 
a wide range of biologically inspired and more statistically based 
methods. This has been such a prominent problem in the field that it 
has inspired the annual ImageNet Large Scale Visual Recognition 
Challenge (ILSVRC) (Russakovsky et al., 2015), which consists of a 
large open data set of manually annotated natural scenes. The 
challenge is to construct computational models that classify objects 
within natural scenes into 1000 different categories. In 2012, 
(Krizhevsky et al., 2012) entered the competition using a deep 
convolutional neural network (DCNN, Figure 2) leading to a turning 
point for large-scale object recognition (this network has later been 
named AlexNet as a homage to the first author Alex Krizhevsky). 
Despite the fact that neural networks have been present since the 
1980s (Fukushima, 1980), they have been deemed computationally 
intractable for many decades due to the large amount of parameters 
(AlexNet has 61 million parameters!), giving preference to less 
complex models such as Fisher vectors (Sanchez & Perronnin, 2011) 
and Support Vector Machines (SVM) (Anthony et al., 2007) for object 
classification. However, with the recent advances in GPUs, optimised 
for fast matrix calculations, Krizhevsky and colleagues were the 
undisputed winners of the 2012 competition, inspiring DCNNs to 
completely dominate the competition the following years. The 
architecture of DCNNs (Figure 2) is biologically inspired in that they 
consist of several hierarchical layers, equipped with “neural” units that 
either are activated or not depending on their input. Information is fed 
through each layer before reaching the final output layer, reminiscent 
of the brains’ ventral visual stream in which information propagates 
through visual areas V1/V2/V3/V4 to ITC (Figure 1). The main 
revelation underpinning these models is that the progressive build-up 
in invariance properties of neural responses along the ventral visual 
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stream could be approximated by a series of convolutions (multiplying 
areas of the image with learned filters) and local pooling operations 
(non-linearly combining the output of these filters). In the case of 
AlexNet (Krizhevsky et al., 2012), this network consists of eight layers 
where the first five layers are convolutional layers preserving 
retinotopical information (Figure 2). In each layer, each convolution is 
pooled into smaller representations, successively decreasing the 
retinotopic information. The last three layers are fully connected layers 
where retinotopical information is lost, giving way to view-invariant 
representations of high-level visual features. Even though AlexNet 
now has been surpassed in terms of classification accuracy by more 
complex models, it strikes a good balance between architecture-
complexity and performance and is still widely used as a model of the 
human visual system. 
 
 

 
Figure 2. Pictorial representation of the AlexNet architecture. AlexNet 
consists of five convolutional layers and three fully connected layers. The 
input image is fed into layer 1 (Conv1), and after a series of operations, 
information is fed forward to the next layer. Each convolutional layer consists 
of a bank of learned filters, that iteratively convolve separate parts of the 
image to estimate the presence of progressively more abstract visual 
features. In the fully connected layers, “retinotopical” information is lost and 
general view-invariant features are processed. Eventually, information 
reaches the response layer (FC8) where each node represents a category. 
The node with the highest activity becomes the network's best guess of what 
object is present in the image. 
 
The emergence of DCNNs sparked interest in comparing the internal 
representations produced within these models with the 
representations of stimuli at different stages of the ventral visual 



Chapter 1 
   

 16   

stream. Despite the fact that the main engineering purpose of DCNNs 
was to solve object recognition, initial computational neuroscience 
work showed that AlexNet fit activity in the ITC significantly better than 
any other commonly used vision model (Khaligh-Razavi & 
Kriegeskorte, 2014). A series of consecutive studies further showed 
that the hierarchical order of the layers in DCNNs corresponds 
progressively to brain data along the ventral visual stream (Cichy et 
al., 2016; Eickenberg et al., 2017; Güçlü & van Gerven, 2014; Yamins 
et al., 2014) and the evolving representations over time (Cichy et al., 
2016; Greene & Hansen, 2018). With the development of DCNNs 
came an increase in depth, with DCNNs winning the ILSVRC using 
>150 layers (He et al., 2016). Interestingly, even though increased 
depth has led to a lower error rate in image classification, to such a 
degree that the interest for ILSVRC has stagnated, initial studies did 
not show that the VGG-net (Simonyan & Zisserman, 2014), with its 19 
layers, exhibited a better goodness-of-fit to the brain compared to the 
relatively parsimonious AlexNet (Abbasi-Asl et al., 2018). However, 
later studies have confirmed that increased depth (Kar et al., 2019) 
and recurrent connections (Kar et al., 2019; Kietzmann et al., 2019), 
increasing the depth of processing without adding more layers, 
substantially improves the model’s ability to explain variance in the 
ventral visual stream. The current challenges have been to train 
models on semantics rather than image classification with, so far, 
promising results (Devereux et al., 2018). Just like Carlson et al. 
(2014) who showed that voxel activity in the late ventral visual stream 
is relevant for decision making, DCNNs can potentially be utilised to 
predict behaviour contingent on how successfully they model the 
visual processing hierarchy in the brain. Showing that DCNNs not only 
predict brain activity but also predict behaviour in a similar way as fMRI 
and EEG, is a crucial step to validate the models. Additionally, these 
models can eventually be used to probe the human perceptual system 
non-intrusively by treating them as never-ending variations of lab 
animals (Scholte, 2018). For these reasons, another main topic of this 
dissertation is not only to compare DCNNs with brain activation but 
also to evaluate how well DCNNs can be used to predict behaviour.  
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Temporal Object Recognition 
Despite the computational difficulties of view-invariant object 
recognition, our ability to detect objects is remarkably fast. Broers et 
al. (2018) showed that a presentation of 13 ms per image was enough 
for their subjects to process semantic information. This impressive 
ability requires the brain to selectively process sensory inputs using a 
variety of mechanisms, collectively referred to as selective attention 
(for a recent review, see Fiebelkorn & Kastner, 2019). In early 
accounts from one of the first psychologists William James (James, 
1890), attention "is the taking possession by the mind, in clear and 
vivid form, of one out of what may seem several simultaneously 
possible objects or trains of thought. It implies withdrawal from some 
things to deal effectively with others". At its core, selective attention 
refers to both enhancing relevant information as well as filtering out 
distracting information over both space and time. Researchers have 
developed many tools designed to test selective attention at the edge 
of our abilities. One of the most prevalent tools at our disposal is the 
rapid serial visual presentation (RSVP) display, where stimuli are 
presented in a quick fashion on a screen and subjects are asked to 
detect targets within the stream. By varying the speed of presentation, 
and what type of targets are presented at what time, researchers can 
examine processes related to attention, working memory, and 
conscious perception. Two of the most common findings using this 
paradigm are known as Attentional Blink (AB) (Raymond et al., 1992) 
and Repetition Blindness (RB) (Kanwisher, 1987; Kanwisher & Potter, 
1990). These phenomena are closely related but each has important 
distinctions. Understanding these distinctions will give researchers a 
better understanding of how to optimally utilise these phenomena to 
elucidate fundamental mechanisms of human perception.  
 
In a typical AB experiment, a series of distractors are presented at a 
rate of about 10 images per second. Within the stream of distractors, 
two targets (named T1 and T2) are presented at different temporal 
positions in the stream. Each position is often referred to as lags in 
relation to T1, where the items that are immediately following T1 are 
defined as lag-1, lag-2, etcetera (Figure 3A). In trials where T2 is 
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shown between 200-500 ms after T1 (lag-2 and lag-5, respectively 
when the speed of presentation is 10 items/s), participants show a 
clear reduction in performance (Figure 3B). This effect is abolished 
(Raymond et al., 1992), or in some cases partially (Folk et al., 2002; 
Maki & Mebane, 2006), when subjects are asked to ignore T1. This 
implies that the reason participants fail to report T2 is because of the 
attention required for T1. This phenomenon is like a blink of the mind 
caused by a lapse of attentional resources instead of a physical blink. 
One of the first, and most influential, models of the AB is the two-stage 
model (Chun & Potter, 1995). The two-stage model posits that pre-
attentive initial processing can be done in parallel, such as processing 
the visual features of both targets. However, the second stage, where 
targets are encoded into working memory and become reportable, is 
constrained by a processing bottleneck to protect stimuli from being 
overwritten. Thus, the two-stage model proposes that the first target in 
the stream needs to be encoded fully into working memory before the 
second target can be processed. In support of this model, Vogel and 
Luck (2002) showed that, while both T1 and T2 are followed by a P3, 
an event-related potential (ERP) component strongly linked to working 
memory consolidation (Başar-Eroglu et al., 2001; Dolu et al., 2005), 
the P3 following T2 was delayed, suggesting that the brain was still 
consolidating T1 at the time of T2’s presentation (Vogel & Luck, 2002).  
 
Interestingly, studies have shown that when T2 is presented 
immediately after T1, i.e., when T2 is presented at lag-1, the effect of 
the AB is eradicated (n.b., this is not always the case, for discussion 
see Visser, 2015; Visser et al., 2009). This finding has been dubbed 
“lag-1 sparing”, and although the T2 performance is almost as high on 
lag-1 as on late lags (lag-6 and upwards), it comes with order-inversion 
errors. Chun and Potter (1995) presented participants with a stream of 
symbols and asked participants to report two digits embedded within 
the stream. Participants were not instructed to report the targets in the 
correct order, however, they noticed that at lag-1, where T2 
performance was high, participants often reported T2 first, implying a 
reversal of order of the targets. Later studies have not only 
corroborated this finding but also showed extended lag-1 sparing 
where several targets in a row, without intervening masks, can be 
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detected (Olivers et al., 2007). This extended sparing of multiple target 
detection and identification is direct evidence against the notion that 
the AB is due to a bottleneck in processing capacity as indicated by 
earlier models of the AB such as the two-stage model (Chun & Potter, 
1995). Instead, newer models of AB assume that attention is chunked 
into separate episodic events. The closing of these events can be 
prolonged as long as new targets are being presented (Wyble et al., 
2009), allowing up to 4-5 targets in a standard RSVP (Olivers et al., 
2007; Wyble et al., 2009). The idea of our perceptual reality being 
organised into separate sections of incidents is contrary to our 
introspective notion of a continuous, coherent conscious experience 
of the world, however, this idea is neither new nor without substantial 
supporting evidence, for example, see (di Lollo, 1980).  
 

 
Figure 3. Attentional Blink and Repetition Blindness. A) Typical 
RSVP setup for AB and RB. A stream of masks is shown for about 100 ms 
each. Within the stream two targets are presented, in all experiments in this 
thesis, targets are defined by being non-scrambled natural images. Subjects 
report which was the first and second target after the stream. During lag-2 
trials (Left, one intervening distractor) subjects typically show difficulties 
reporting the second target compared to lag-7 (middle, six intervening 
distractors) trials. When targets are repeated, subjects often show an 
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additional deficiency in reporting T2. B) A cartoon plot illustrating the typical 
AB and RB results (see for example Chun, 1997). During trials when targets 
are not repeated subjects often show a lag-1 sparing, however, this is typically 
not as prominent when targets are repeated.  

 
In normal memory tasks, the repetition of stimuli usually enhances 
memory consolidation (Gathercole, 2006). However, early on in the 
history of RSVP, a series of experiments (Kanwisher, 1987; Kanwisher 
& Potter, 1990) showed that the second occurrence of an item in a 
stream is often omitted from the report at the end of the stream, 
dubbed Repetition Blindness (RB, Figure 3A). This effect was even 
present when a word omitted from a sentence by the subject led to a 
grammatically incorrect sentence. While the original study used letters, 
digits, and symbols, RB is also found when the stimuli consist of 
objects and natural images (Buffat et al., 2013; Coltheart et al., 2005; 
Harris & Dux, 2005). Interestingly, RB does not require the repetition 
of the exact same item (Bavelier, 1994; Bavelier & Potter, 1992). Sy 
and Giesbrecht (2009) showed that when participants were asked to 
identify the emotional expression of faces, the repetition in the task-
relevant domain (i.e., two different angry faces) led to a decrease in 
T2 performance, but a repetition in gender (two female targets) did not. 
This finding was reversed when participants were asked to identify the 
sex of the target faces. Similarly, Stein et al. (2009) showed that 
emotional faces, which generally affect performance, only affected 
performance when participants were required to report on emotional 
content, i.e., when emotion was the task-relevant domain. This 
provides strong evidence for the importance of task goals in producing 
the RB effect.  
 
RB is similar to another repetition deficit, the Ranschburg effect 
(Jahnke, 1969). However, RB and the Ranschburg effect are 
differentiated on their time scale. RB is only observed when items are 
presented at a fast rate (100-180 ms per item). The Ranschburg effect, 
on the other hand, is found with a presentation rate of 1 second per 
item indicating that there is a time interval distinguishing these two 
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paradigms. The RB and the Ranschburg effects are intriguing findings 
that reveal a systematic memory failure (Fagot & Pashler, 1995) at 
different processing levels. Likewise, AB and RB share many 
similarities but are also differentiated in their time scale (Arnell & 
Shapiro, 2011). While AB leads to impaired performance of T2 
reportability around 200-500 milliseconds after T1, usually with a 
sparing of the first target (i.e. lag-1 sparing), the detrimental effect of 
RB is most pronounced in the first few lags with the largest effect on 
lag-1 (Chun, 1997). However, despite the overlaps between AB and 
RB and how the AB paradigm is used in the literature to study 
attention, working memory, and conscious experience, very few 
researchers try to control for these confounds. Considering how much 
parallel information we are tasked with processing while our eyes 
quickly move around, investigating our complex surroundings, 
understanding how representations overlap at different stages of 
processing is crucial for interpreting the processes underlying our 
perceptual content.  
 

Embracing the complexity of natural images 
Historically, studies of AB and RB have mostly concerned themselves 
with simple stimuli such as digits and letters. This has its own 
advantages of maximising control over the stimuli; however, it misses 
out on the complexity offered by natural images. Recent developments 
in machine learning, such as DCNNs, have facilitated research that 
embraces the complexity of natural stimuli. Another important 
development is the increased popularity in using multivariate analysis 
tools, including representational similarity analysis (RSA; Kriegeskorte 
et al., 2008), which allows for comparing the representational 
geometries (Figure 4A) between different modalities. Put simply, RSA 
allows us to measure how distant the representation of two stimuli is 
in a certain brain region in the high-dimensional space offered by the 
voxels within the region. By doing a pairwise comparison of all possible 
stimuli combinations we achieve a representational dissimilarity matrix 
(RDM). This can be done for the different layers of a particular CNN 
architecture, which transforms the idiosyncratic organisation of 
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features from one modality to a general “representational geometry 
space”, i.e., the specific pairwise relationship between stimuli. This 
transformation not only allows for different modalities (such as brain 
representations and CNNs) to be compared directly but also allows 
them both to be used to predict behaviour in a comparable way. 
Previous studies of RB with natural images often use category as a 
proxy for similarity, where for example two faces are more similar than 
a house and a face. While this assumption is oftentimes entirely valid, 
it misses out on the nuance between and within categories, for 
example, a strong association between a picture of a golf club and a 
golf ball in a certain brain area despite a lack of any shared visual 
features. By measuring the distance (or similarity) in representation 
using multivariate distance/similarity metrics from different brain areas 
and different layers of a CNN, it is possible to appreciate the complex 
relationship between each pair of images.  
 

 
Figure 4. Representational similarity analysis and drift diffusion 
modelling. A) Pictorial representation of the creation of a representational 
dissimilarity matrix (RDM). First, images are presented to a participant or a 
vision model. Second, multivariate representations are extracted for each 
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image. Here different channels refer to dependent variables from the 
measured modality, for example voxels recorded with fMRI, electrodes from 
EEG or units from DNN. Third, a pair-wise comparison of how far away these 
representations are in high-dimensional space. One common measure of 
distance is the 1 - Pearson correlation, however, many other distance metrics 
exist. B) Illustration of what different fitted parameters of the drift diffusion 
model (DDM) correspond to. In the DDM framework, several latent 
parameters are estimated which are believed to be evident in the reaction 
time distribution of correct and incorrect trials. Evidence is accumulated over 
time for two alternatives (for example a house or a face), when evidence for 
one of the alternatives reaches a boundary, a perceptual decision is made. 
The a-parameter corresponds to the distance between the starting point and 
the decision boundary, colloquially describing the decision criterion. The v-
parameter refers to the drift rate, the steepness of the evidence accumulation 
and describes how efficiently a participant accumulates information over time. 
Other parameters are the t-parameter for non-decision time (for example 
motor responses and the time it takes a stimulus to reach cortical processing 
areas) and the z-parameter for bias (for example if a participant is more 
inclined to respond “house” over “face”). C) Cartoon distributions of reaction 
distribution if the drift rate (v-parameter) is high (top plot) or low (bottom plot). 
When drift rate is high, the reaction time distribution will shift with a higher and 
earlier mode for correct (blue) trials compared to incorrect (red) trials. In 
comparison when drift rate is low the two distributions are indistinguishable.  
 
 
In all three following chapters, we combine well-known behavioural 
RSVP paradigms, such as AB and RB, with state-of-the-art brain 
analyses and machine learning to answer three main questions. 1) 
What is the relationship between target categories and their propensity 
to be consciously accessed. 2) How does the relationship between 
targets affect performance at different levels of processing. 3) In 
addition to explaining neural data, can CNNs also be used to explain 
behaviour? In Chapter 2 we specifically ask whether categories 
grouped together in multivariate high-dimensional space in ITC are 
also differentially affected by the AB time window. Using natural 
images depicting everyday objects from several distinct categories 
known to be grouped together in high-dimensional space (Charest et 
al., 2014; Kriegeskorte et al., 2008), we show that there is an extensive 
variance between semantic categories in the AB. We further 
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demonstrate that the variance between images in AB can be predicted 
using high-level visual features, as opposed to low-level visual 
features. Finally, we show that similarities between targets in terms of 
visual features, which are not the dimension used by participants to 
report targets, increase the probability of correctly reporting T2.  
 
The finding in Chapter 2 that target similarity leads to better T2 
performance was a surprising contrast to RB which led to the 
experiment in Chapter 3, wherein we extended our analysis and 
included individual brain representations from both functional 
magnetic resonance imaging (fMRI) and electroencephalography 
(EEG). The main difference between fMRI and EEG is resolution in 
space and time. fMRI measures oxygenated blood flow in small voxels 
(volumetric pixels) and can reach millimetre precision in identifying 
which brain area is active. However, the drawback is that blood flow is 
slow, and the presentation of stimuli needs to be separated by several 
seconds to get a reasonable signal-to-noise ratio. Meanwhile, EEG 
measures electrical activity outside the scalp and is often recorded 
with a temporal precision of ~500-1000 Hz but with the caveat, the 
electrodes on top of the scalp produce an imprecise estimate for the 
origin of the signal. However, by combining both fMRI and EEG and 
designing different behavioural paradigms that let us achieve high 
signal-to-noise in both, as well as using representations in AlexNet, we 
show that when targets are similar in high-level semantic space there 
is a decrease in T2 performance. This reflects previous RB findings 
but with the important extension that the effect of similarity between 
targets is a gradient, and an exact repetition is not necessary to 
produce this behaviour. Furthermore, we show that when targets are 
similar in low-level visual features (such as in V1, the first cortical area 
to receive visual input), there is an increase in T2 performance. This 
replicates our findings from Chapter 2 and shows that target similarity 
can lead to both increased and decreased T2 performance, depending 
on the level of process in which the targets interact. To our knowledge, 
this is the first demonstration of such an RSVP effect.  
 
In the AB literature, it is well-known that some participants do not seem 
to “blink”, referred to as “non-blinkers'' (Martens & Valchev, 2009). 
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Seeing that several clinical conditions, such as ADHD (Amador-
Campos et al., 2015; Armstrong & Munoz, 2003) and schizophrenia 
(Goddard, 2004; Wynn et al., 2006), also lead to individual differences 
in the attentional blink, it is pertinent that we understand the underlying 
mechanism behind “non-blinkers''. We investigated individual 
differences by looking at overall performance for each participant and 
isolated which brain areas correlated with their performance in terms 
of similarity between image pairs. We found that participants that have 
large representational distances between images in the right 
temporoparietal junction (rTPJ) and the right inferior frontal gyrus 
(rIFG) perform significantly better at the task. These areas have been 
proposed to constitute a bottom saliency network (Corbetta et al., 
2008), and our finding corroborates this network as an important target 
for investigating idiosyncratic perceptual processing. 
 
While RB is believed to impair memory-related functions (Fagot & 
Pashler, 1995), we reasoned that the effect of V1-similarity found in 
Chapter 3 is related to processes prior to working memory updating. 
Specifically, in Chapter 4 we hypothesised that the T1-evoked 
activation in V1 would facilitate evidence accumulation rate for T2 if 
both shared similar representations, regardless of the semantic 
content of the two natural scenes. Furthermore, one of the key 
concepts of AB is the role of attending or ignoring T1. In all models of 
AB, attending T1 has a central role, and to show that target-target 
similarity to be pertinent for AB it also needs to be modulated by 
attention. To investigate this, we created a modified RSVP task where 
participants were presented with two targets and instructed to make a 
speeded judgment on whether T2 (i.e., the second target) contained 
an animal. Participants completed two blocks, one where they were 
asked to ignore the first target and one where they were instructed to 
memorise and report the first target after the stream. When using 
reaction time and accuracy for T2 as dependent variables it is common 
to look at each variable separately. However, the caveat is that there 
is a trade-off between speed and accuracy such that when participants 
are faster, they often make more mistakes. Another problem is that 
reaction time distributions are rarely normally distributed, so a point-
estimate (such as the mean) is rarely a good description of the 
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distribution. Instead, to test our idea, we used Drift Diffusion Modelling 
(DDM) (Ratcliff & McKoon, 2008; Voss et al., 2004). DDM allows 
researchers to infer latent variables associated with the decision 
process in two-alternative forced-choice tasks. Assuming two 
boundaries (one for each alternative) with a decision value placed 
somewhere in between. This decision value will vary over time 
depending on the incoming information. The subject performing the 
task will reach a decision when the accumulated information reaches 
one of the two boundaries. By looking at the performance and the 
reaction time distribution (Figure 4B), DDM infers several latent 
variables that are associated with the decision process, such as drift-
rate (the rate of evidence accumulation over time), bias (if participants 
have a preference towards one of the two alternatives), criterion (how 
much evidence does the subject need before making a decision), and 
non-decision time (length of motor responses and encoding to working 
memory). The shape of the reaction time distribution for the two 
alternatives can be described with different values of the latent 
variables (Figure 4B). We, therefore, fit the variables in such a way 
that it describes the RT distributions in the best way where the most 
interesting variable is drift-rate. We show that V1-similarity between T1 
and T2 increases drift-rate for detecting T2 targets, lending support to 
the notion that this facilitation of T2 performance is driven by pre-
attentive processes. Importantly, we show that attending T1 is 
necessary for the effect of target-target similarity in V1 to affect T2 drift 
rate. 
 
In combination, this series of studies make use of cutting-edge 
technological advances combined with well-established paradigms to 
answer a set of questions impossible to answer just a few years ago. 
We show that the representational geometry present throughout visual 
cortices has important behavioural relevance. Semantic categories 
that are grouped together in the high-dimensional space within the 
ventral visual stream are differentially processed, where mainly 
animate objects have a higher propensity for conscious access. The 
inter-stimuli differences measured with brain imaging tools and CNNs 
provide explanations for contradictory behaviour. While the processing 
of two stimuli that share high-level, task-relevant similarities have been 
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argued to be related to memory encoding failures (Fagot & Pashler, 
1995), our findings suggest that this is related to neurally overlapping 
representations in late processing stages. In contrast, the similarity in 
low-level visual features boosts the processing speed of objects in the 
evidence accumulation stage. Furthermore, not only can CNNs predict 
neural activation, but they also successfully predict behaviour. The 
implication of this is that the representational overlap between CNNs 
and the brain is not only relevant in direct terms, but they are 
applicable in a behavioural sense, corroborating CNNs as a promising 
model of the visual system.  
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Abstract  
Conscious perception is crucial for adaptive behaviour yet access to 
consciousness varies for different types of objects. The visual system 
comprises regions with widely distributed category information and 
exemplar-level representations that cluster according to category. 
Does this categorical organisation in the brain provide insight into 
object-specific access to consciousness? We address this question 
using the Attentional Blink (AB) approach with visual objects as 
targets. We find large differences across categories in the AB. We then 
employ activation patterns extracted from a deep convolutional neural 
network (DCNN) to reveal that these differences depend on mid- to 
high-level, rather than low-level, visual features. We further show that 
these visual features can be used to explain variance in performance 
across trials. Taken together, our results suggest that the specific 
organisation of the higher-tier visual system underlies important 
functions relevant for conscious perception of differing natural images. 
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Introduction 
A long-standing question in cognitive neuroscience is how visual 
information is transformed from segregated low-level features to fully 
conscious and coherent representations. Prevailing object recognition 
models propose that rapid object identification is accomplished by 
extracting increasingly complex visual features at various 
stages/locations of the visual stream 1 3. Objects are first processed 
through a hierarchy of ventral visual areas where computations evolve 
from image feature detection, shape and part segmentation, before 
more invariant, semantic representations of the objects are 
established 4 6. Previous research has shown that animate objects are 
preferably processed in a broad range of perceptual tasks7. This led 
us to question whether or not animacy also has a preferential access 
to consciousness, and furthermore, if this could also be true for sub-
categories within the animate/inanimate distinction. 
 
Animate versus non-animate object processing has been extensively 
studied, showing distinct processing pathways throughout the visual 
stream8. Behavioural studies have shown that animate objects are 
more often consciously perceived in rapid serial visual presentations 
(RSVP)9 11, more quickly found in visual search7, elicit faster 
responses in discrimination tasks12 13, and animate words are better 
retained in working memory14. Aggregated, these findings point to a 
preferential visual processing of animate objects, most likely also 
reflected in the representational organisation of the visual stream12 13. 
However, the animate categorical division contains several sub-
categories also known to cluster together, such as scenes in the 
parahippocampal place area15, faces in the fusiform face area16 and 
body parts in the extrastriate body area17 (for review see Martin, 
200718). It remains unclear how such sub-categories also might differ 
in visual processing. We address this question by testing differences 
across several categories (i.e., fruits and vegetables, processed foods, 
objects, scenes, animal bodies and faces, human bodies, and faces), 
known to cluster together throughout the visual stream, in their 
propensity to conscious access using the Attentional Blink paradigm 
(AB)19. 



Chapter 2 

 36   

 
In the AB paradigm, two targets (T1 and T2) are embedded in a rapidly 
presented stimulus stream (RSVP). The frequently replicated finding 
is a reduced ability to report T2 when it is presented in a temporal 
window of 200-500 ms after a correctly identified T1. This effect 
disappears when subjects are asked to ignore T119, indicating that the 
fundamental explanation for this effect is attentional rather than 
perceptual. Most theoretical accounts of the AB suggest a two-stage 
information-processing model20 21. First, both targets are rapidly and 
automatically processed to a high-level representational stage. This is 
followed by a capacity-limited second stage, where the percept is 
transformed into a reportable state (i.e., working memory). Neural 
findings22 26 have suggested that the AB arises at the second stage, 
after semantic processing of the object. This is in contrast to 
backwards masking, which is known to interrupt feedback loops in 
early processing27 29. Since feedback loops between visual areas are 
thought to be intact in the AB26, combined with a behavioural outcome 
that typically yields a significant number of both correct and incorrect 
trials, this paradigm is an ideal approach to investigate the bifurcation 
between conscious and unconscious visual processing.  
 
One potential problem of studying categorical differences is that many 
categories share low-level scene statistics30, which also are known to 
explain behaviour31. Consequently, an issue that must be taken into 
account is how to control for low-level scene statistics in a neurally 
plausible way. We address this issue by using a Deep Convolutional 
Neural Network (DCNN)32 which is designed in a hierarchy 
encompassing feature representations of increasing complexity, 
similar to the visual system. Recent studies using DCNNs trained to 
classify a large corpus of natural images have revealed a significant 
correspondence between DCNN layers and the visual hierarchical 
organisation in the brain both using fMRI33 36, and MEG5 37. This makes 
DCNNs attractive for modelling visual features rather than relying on 
manually labelling image features without knowing their relevant 
correspondence to the visual system.  
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Figure 1. Modulating conscious access using the Attentional Blink Paradigm. 
Due to copyright reasons, all photos except for the faces (which were 
photographed by one of the authors but have been anonymised) have been 
replaced by representational images. Eye regions are occluded above in the 
images to protect privacy but were not occluded in the experiment. A) We 
presented a rapid serial visual presentation to participants, with two targets 
(T1 and T2) following each other within a stream of distractors. On the left, 
the second target (T2) is shown 200ms after the first target (T1), and on the 
right, 800ms after the T1. In every trial, participants had to detect and later 
recall both T1 and T2 targets. B) We used a deep convolutional neural 
network (DCNN; yellow insert; 5 convolutional layers and 3 fully connected 
layers) to model the stimulus representational geometries (left) and predict 
our participants’ behaviour (right). The visual stimuli were fed into the DCNN, 
providing a hierarchical representation for each image. These unit activations 
were then analysed layer-by-layer and used to predict behaviour. 

 
The main question of the current study is if the organisation of the 
visual system promotes conscious access to certain objects more than 
to others. A priori, we had two related hypotheses: first we 
hypothesised that categories will differ in their access to 
consciousness. Our second hypothesis was that variance in conscious 
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access between image exemplars could be predicted using high-, as 
opposed to low-, level features derived from the DCNN. These two 
predictions are consistent with our current understanding of the 
categorical organisation of the ventral visual stream4 6 38 39, the high 
resemblance in representational geometry between the brain and 
DCNNs33 37, and theoretical models positing the AB as a disruption of 
late selection20 21. In addition, we explore whether trial-by-trial variance 
in performance is related to the similarity between the two targets in 
terms of visual features. We asked whether this relationship has any 
impact on conscious access and, if so, at what stage of processing do 
the two targets interact? To test this formally, we used a method called 
representational sampling, where trials of the AB are constructed with 
stimuli selected according to their location in DCNN representational 
geometries. To foreshadow, we show that there are categorical 
differences in the probability of conscious access. Differences across 
images are predicted using mid- to high-level visual features. 
Furthermore, we find a facilitating interaction effect between targets, 
increasing the probability to recover T2.  

Results 

Experiment 1 

Differences in AB magnitude as a function of category 
Participants were presented with Rapid Serial Visual Presentations 
(RSVP), consisting of scrambled masks, and two embedded targets. 
The targets were selected from a stimulus set of 48 images derived 
from 8 different categories – fruits and vegetables, processed foods, 
objects, scenes, animal bodies, animal faces, human bodies, and 
human faces. At the end of each trial, participants were requested to 
recall the first and the second target (see Figure 1A). First, we 
observed a significant AB effect using a two-tailed dependent t-test in 
T2 performance (T2 performance is always conditional on T1 correct 
trials; T2|T1) between lags (Lag 2; accuracy M = 0.704, SD = 0.041, 
Lag 8; M = 0.847, SD = 0.129, t(18) = -6.427, p < 0.001, see Fig 2A). 
We first pooled the images according to animate and inanimate 
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(excluding scenes) objects (see Table 1). Animate and inanimate 
objects have previously been shown to be differentially affected during 
the AB9 11. Similarly here, a repeated measures 2x2 ANOVA with lag 
and animacy as factors showed a main effect of lag (F(1,18) = 34.09, 
p < 0.001, η² = 0.654) and animacy (F(1,18) = 27.72, p < 0.001, η² = 
0. 606) as well as a significant interaction effect (F(1,18) = 45.63, p < 
0.001, η² = 0.606; see Fig 2B). Thus, in accordance with previous 
studies, the AB was less pronounced for animate images. For each 
sub-category (Table 2), using a repeated measures ANOVA, we 
observed a main effect of T2-lag (F(1,18)=42.87, p < 0.001, η² = 0.704) 
and category (F(7,126) = 45.49, p < 0.001, η² = 0.716), along with an 
interaction between category and T2-lag (F(7, 126) = 23.99, p < 0.001, 
η² = 0.571). Beyond the expected AB effect, the interaction effects 
reveal that different categories exhibit different attentional blink 
magnitudes (ABM; difference in performance between lag 8 and lag 
2). Separate AB effects were tested by contrasting lag 8 and lag 2 
performance within each category using a two-tailed dependent t-test 
(Fig 2C) – Fruits and Vegetables ( (18) = 6.912, p < .001), Processed 
foods (t(18) = 6.748, p < .001), Objects (t(18) = 3.003, p = .004), 
Scenes (t(18) = 8.073, p < .001), Animal bodies (t(18) = 5.259, p < 
.001), Animal faces (t(18) = 2.712, p = .007), Human bodies (t(18) = 
1.162, p = .13), Human faces (t(18) = 2.632, p = 0.008). 
 

Table 1: Mean and SDs for T2 performance for animacy. 
An macy Mean (Lag 2) SD (Lag 2) Mean (Lag 8) SD (Lag 8) N 

An mate 0.792 0.171 0.872 0.126 19 
Inan mate 0.683 0.185 0.871 0.097 19 

 
Table 2: Mean and SDs for T2 performance for each category. 

Category Mean (Lag 2) SD (Lag 2) Mean (Lag 8) SD (Lag 8) N 

Fru ts Vegetab es 0.651 0.199 0.867 0.139 19 
Processed Foods 0.595 0.214 0.853 0.110 19 
Objects 0.806 0.173 0.893 0.079 19 
Scenes 0.406 0.234 0.695 0.237 19 
An ma  bod es 0.642 0.232 0.822 0.159 19 
An ma s faces 0.782 0.197 0.858 0.134 19 
Human bod es 0.859 0.179 0.879 0.153 19 
Human faces 0.886 0.133 0.927 0.085 19 
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Figure 2. Animate objects elicit weaker attentional blink. A) The 
accuracy in detecting the second target conditional on having detected the 
first target for lag 2 and lag 8. Individual dots represent the mean performance 
for each subject, bold dots represent the mean performance across subjects, 
and error bars indicate 95% confidence interval around the mean in all plots. 
B) Performance plotted separately for animate and inanimate T2 targets. 
Attentional Blink Magnitude (ABM) is defined as the difference in performance 
between lag 8 and lag 2. Asterisk indicate significant difference in ABM 
between animate and inanimate. C) T2 performance for each category 
separately. Asterisks indicate p-values significant difference in ABM from 
zero. Two-tailed dependent t-test * = p < 0.05, ** = p < 0.01, *** = p < 0.001. 

Mid and high-level image features explain ABM variance  
For each image we extracted unit activations from all the layers 
throughout an AlexNet DCNN (see methods). For the convolutional 
layers, we averaged over the spatial domain to obtain feature 
activations. It is important to note that this DCNN was trained on 
classifying objects into categories from a different set of images than 
those presented in our experiment, and at no point was trained on the 
AB. To increase the generalization of the model fits to the test data, 
we selected informational features through a variance thresholding 
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approach. The feature selection was done by calculating the variance 
across samples in the training data (important to note that the test data 
was never part of the feature selection) and removing features with 
near-zero variance from both training and test data. The remaining 
feature activations were then applied to a cross-validated linear 
regression model aimed at predicting each image’s ABM. From these 
predicted ABMs, we can compute in each participant the mean 
absolute error (MAE). For significance testing, we permuted the image 
labels, repeated the cross-validated linear regression model, and 
computed the average MAE across subjects. We repeated this 
permutation procedure 3000 times to estimate the distribution of MAE 
under the null hypothesis that our image labels are interchangeable. 
We then compared our observed MAE (averaged across subjects) to 
this null distribution and obtained p-values. We were able to 
significantly (Bonferroni corrected alpha = 0.00625) predict the ABM 
using features derived from layer conv4 (MAE M = 0.19, STD = 0.04, 
p = 0.003), conv5 (M = 0.179, STD = 0.04, p < 0.001), fc6 (M = 0.159, 
STD = 0.033, p < 0.001), fc7 (M = 0. 1593, STD = 0.033, p < 0.001), 
and fc8 (M = 0.191, STD = 0.048, p < 0.001). To see if one layer had 
significantly lower error than any other layer, we tested the MAE for 
each pair-wise comparison of layers across subjects with a two-sided 
dependent t-test. In Fig 3B we show a summary of this result, where 
we find that Layer 7 (Fig 3C) has a significantly lower error than layer 
1 (mean difference = -0.21, t(17) = -6.14, p < 0.001), layer 2 (mean 
difference = -0.15, t(17) = -7.8, p < 0.001), layer 3 (mean difference = 
-0.16, t(17) = -10.83, p < 0.001), layer 4 (mean difference = -0.18, t(17) 
= -5.8, p < 0.001) and layer 8 (mean difference = -0.18, t(17) = -5.17, 
p < 0.001).  
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Figure 3. DCNN activation units predict attentional blink magnitude. A) 
Permutation test distributions. Histograms show the mean absolute error 
(MAE) after averaging the prediction across participants with randomised 
image labels. Circles point to the observed MAE. The Bonferroni corrected 
alpha value for 8 tests is p < 0.00625. B) Layer by layer comparisons of MAE. 
Comparisons are done row-wise, where green indicates a lower MAE, or 
better fit, in comparison to the corresponding column. Only significant 
(Bonferroni corrected) comparisons are denoted with mean differences in 
MAE between comparisons. C) ABM per image. Due to copyright reasons, all 
photos except for the faces (which were photographed by one of the authors) 
have been replaced by representational images. Eye regions are occluded 
above in the images to protect privacy but were not occluded in the 
experiment. Black bars indicate the observed Attentional blink magnitude 
(ABM), red line is the average predicted ABM based on features from Layer 
fc7 (which outperformed all other layers, see panel B). Individual dots 
represent individual participants and error bars indicate the 95% confidence 
interval. Layer fc7 explained 46% of the variance observed. The insert panel 
shows the average predicted ABM on the y axis, and the average observed 
ABM per image, on the x axis. 
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Shared image features between targets predicts performance 
In addition to predicting the ABM for each image, we sought to better 
understand the trial-by-trial differences in the AB. For each trial, we 
correlated the two targets (T1 and T2) based on their features 
(Pearson correlation, Fig 3B) to obtain a T1-T2 similarity measure 
within each layer. We then averaged the similarity for all hit and miss 
trials for each participant and tested the difference for each layer using 
a two-tailed dependent t-test. Our test revealed a significantly higher 
representational similarity between targets in hit-trials compared to 
miss-trials for layer conv2 (Hit; similarity M = 0.375, SD = 0.008, Miss; 
M = 0.354, SD = 0.014, t(18) = 4.967, p < 0.001, Cohen’s d = 1.761), 
conv3 (Hit; M = 0.329, SD = 0.010, Miss; M = 0.299, SD = 0.016, t(18) 
= 6.273, p < 0.001, Cohen’s d = 2.130), conv4 (Hit; M = 0.257, SD = 
0.009, Miss; M = 0.244, SD = 0.012, t(18) = 3.505, p = 0.003, Cohen’s 
d = 1.258), conv5 (Hit; M = 0.131, SD = 0.007, Miss; M = 0.119, SD = 
0.011, t(18) = 3.311, p = 0.004, Cohen’s d = 1.233), fc6 (Hit; M = 0.023, 
SD = 0.002, Miss; M = 0.018, SD = 0.004, t(18) = 4.009, p = 0.001, 
Cohen’s d = 1.520), fc7 (Hit; M = 0.026, SD = 0.003, Miss; M = 0.021, 
SD = 0.005, t(18) = 3.189, p = 0.005, Cohen’s d = 1.093), fc8 (Hit; M 
= 0.139, SD = 0.013, Miss; M = 0.104, SD = 0.022, t(18) = 6.134, p < 
0.001, Cohen’s d = 1.864; Fig 4B). This suggests that the ongoing 
visual processing of T1 can lower the conscious access threshold for 
T2, if T2 shares visual features with T1. This was true for all layers 
except for layer 1. 



Chapter 2 

 44   

 
Figure 4. DCNN representational distance and target similarity 
explain trials of the AB. A) Depiction of analysis procedure. For each 
layer, DCNN representations are extracted for each image. These feature 
activations were then compared for all image pairs (Pearson correlation), to 
estimate the similarity between pairs. Due to copyright reasons, all photos 
except for the faces (which were photographed by one of the authors) have 
been replaced by representational images. B) Mean similarity between T1 
and T2, based on feature activation of each layer, for lag-2 missed and hit 
trials separately. Separate dots represent single subjects. The mean similarity 
across subjects is represented by a large black diamond and black bars 
denote 95% confidence interval. Two-tailed dependent t-test * = p < 0.05, ** 
= p < 0.01, *** = p < 0.001. 
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Experiment 2 

Constructing AB trials using representational sampling 
The finding that T1-T2 similarity influences T2 performance prompted 
us to design a follow-up study. We sought to investigate the causal 
effect of target-target similarity by manipulating the targets’ category 
and feature similarity. We developed a procedure called 
representational sampling, which first characterises a variety of 
stimulus response profiles, and samples a subset of stimuli tailored for 
our experiment. We used unit activations from layer 5 (see methods 
for rationale) of the DCNN as stimulus response profiles. We 
measured these unit activations on 250 images, derived from 
ImageNet40, to yield 16 images as our T2s; in turn chosen to represent 
four categorical groups equally (mammals, insects, vehicles, and 
furniture). For each image we then selected two T1s based on 
category (same or different) and similarity within layer 5 (similar or 
dissimilar), resulting in eight T1s per T2. This allowed us to examine 
the specific contribution of high-level feature similarity and category 
membership separately. We presented these four conditions to 24 new 
participants in an AB task similar to that of Experiment 1. 
 
 

Table 3: Mean and SDs for T2 performance in experiment 2. 
T2|T1  

Category  Similarity  Mean  SD  N  

Same   Similar   0.85  0.10  2
4   

   Dissimilar   0.81  0.09  2
4  

 

Different   Similar   0.82  0.08  
2
4   

   Dissimilar   0.74  0.12  2
4   
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Table 3 shows the group means of T2 performance for each of the four 
conditions. The probability of correctly reporting T2 was the highest 
when T1 came from the same category and had similar visual feature 
activation in layer 5 of the DCNN (M = 0.849, SD = 0.097). In contrast, 
the lowest probability of correctly reporting T2 was observed when T1 
came from a different category and was dissimilar (M = 0.741, SD = 
0.123). A 2x2 (Category by Similarity) repeated measure ANOVA 
showed a significant main effect for both category (F(1,23) = 20.68, p 
= <.001, η2 = 0.473) and similarity (F(1,23) = 45.468, p = <.001, η2 = 
0.664), as well as an interaction effect (F(1,23) = 5.413, p = 0.029, η2 
= 0.191). The larger effect size for the similarity factor indicates that 
visual features over semantic relevance determine behaviour. 

 
Figure 5. Target similarity between T1 and T2 explains T2 
performance. A) Representational sampling was used to construct trials of 
experiment 2. Each of the sixteen T2s were either preceded by a T1 from the 
same/different category and similar/dissimilar in representational space within 
layer 5 of the DCNN. To ensure that participants did not use low-level 
statistics (such as colour) when reporting the targets, we switched the 
response menu to a semantic task. B) Behavioural results from experiment 2. 
Our results show that features similarity explain a significant portion of T2 
performance. Individual dots correspond to individual subjects. Error bars 
indicate the 95% confidence interval. Statistics were performed using a 
repeated measures ANOVA (see results). * = p < 0.05, ** = p < 0.01, *** = p 
< 0.001. 
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Discussion 
We investigated the effect of category membership and image 
features on conscious access using natural images in the Attentional 
Blink19 paradigm (Fig 1A and B). By testing images spanning several 
categories we first show a clear division in performance between 
animate and inanimate objects, where animate objects reveal a 
reduced AB caused by the processing of the T1 (Fig 2B), in line with 
previous reports9 10. We further show that this bias is not only 
expressed between this super-ordinate division, but also extends to 
various sub-categories. Using a DCNN to model the stimulus visual 
features, we show that mid- and high-level features in natural images 
(Fig 3) regulate the AB magnitude. In addition, we show that target-
target similarity (Fig 4 and 5) interacts with target selection, providing 
a mechanistic explanation of the AB phenomenon and of conscious 
access in object recognition.  
 
Previous studies have shown differences between categories in the 
AB, most extensively between animate and inanimate objects9 11 41. 
The animacy bias in visual processing has been attributed to 
evolutionary relevance, as opposed to visual expertise, reflected in its 
importance for ancestral hunter-gatherer societies (The animate 
monitoring hypothesis)42. Evidence for this hypothesis comes from a 
wealth of behavioural studies showing that animate objects are more 
quickly and more often detected in different types of attentional 
tasks7 42. Likewise, animate and inanimate objects are distinctly 
represented throughout the ventral visual stream8 43, which has been 
argued to be an evolutionary phenomenon and not contingent on 
visual experience44. In our current study, we find that the AB 
magnitude (ABM – performance difference between Lag-8 and Lag-2) 
is larger for inanimate objects, similar to Guerrero and Calvillo 
(2016)10. The finding by Guerrero and Calvillo has been contested by 
Hagen and Laeng (2017)11 who showed that animate objects are 
simply reported more often, but that the ABM is unaffected. Our results 
argue against the findings of Hagen and Laeng and, more importantly, 
reveal that differences in AB magnitude exist in a myriad of sub-
categories. Here we examine a significant number of categories, which 
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are known to cluster throughout the visual cortex. We show a high 
variance in the effect of the AB across categories (Fig 2C), implying 
that distinctive sub-categories have special privilege in the path to 
conscious access. One possible mechanism for categorical 
differences in conscious access can be related to the findings of 
Carlson et al. (2014)12, who showed that animate objects that are 
neurally coded as more animate (as assessed by a decoding scheme) 
in the human analogous of inferior temporal cortex (hIT) are more 
quickly categorised as animate in a speeded discrimination task. 
Translated to our task, this would mean that certain categories are 
more distinctly represented, with less representational overlap to other 
images, leading to more robust processing of these categories. It is 
important to note that by looking at the differences between Lag-8 and 
Lag-2, effectively baselining each image with its own Lag-8 
performance, our results cannot be explained by differential effects of 
masking. Importantly, this implies a dissociation between attentional 
relevance and conscious access, since it would be reasonable to 
assume that attentional relevance would affect Lag-2 and Lag-8 
equally.  
 
The finding that the ABM varies across categories (Fig 2C) is hard to 
interpret without properly examining image features of different 
complexities. Many semantic categories share low-level statistics30 31 
and, without delving further than categorical membership, one cannot 
disentangle at which level of processing the differences occur. The 
prediction of ABM across visual objects achieved by modelling DCNN 
unit activations from the mid to late layers explained a large proportion 
of AB variance across images (~46% of the variance in layer fc7, Fig 
3C). This implies that the bottleneck produced by the AB is due to late 
visual processing and probably reflects the particular categorical 
organisations within higher-tier visual areas. This relationship between 
neural representation of images and behavioural outcomes is 
supported by recent work showing that the particular representational 
organisation in late visual areas predicts certain behavioural 
measures, such as reaction time12 13 45. This ‘conceptual’ approach to 
conscious access promotes a more fundamental view to how visual 
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consciousness might operate by focusing on the organisation of the 
visual system rather than on top-down mechanisms. 
 
Our experiments further enabled us to explore the importance of T1-
T2 similarity. Only a handful of studies have investigated target-target 
similarity in the context of AB9 41 46 48. In one of the earliest attempts to 
study target-target similarity and its effect on T2 performance, Awh et 
al. (2004)46 concluded that similarity between targets is detrimental to 
T2 reportability. This led to the multiple-resource channel hypothesis 
(MRCH)46. According to the MRCH, two targets (T1 and T2) can be 
processed in parallel, but only if their visual features are different 
enough to be processed through distinct feature channels. While a few 
following studies have corroborated this notion41 47 48, our study reveals 
that similarity is beneficial for performance. The difference in results 
might be explained by the way we define similarity by image features. 
Previous studies used categorical membership as a proxy to similarity, 
and thus it is possible that our findings reflect a facilitation effect not 
found in the previous studies (but see9). Importantly, while visual 
features function as stepping stones toward semantic meaning, it is 
unclear that such visual features would be maintained in working 
memory in our paradigm. Task-relevant similarity (i.e. the semantic 
content stored in working memory necessary to successfully carry out 
the task) between targets has been shown to be key for inducing a 
larger blink48. We would argue that the visual features within the DCNN 
models processes that precede working memory representations. As 
such, the target-target similarity rather enhances visual processing of 
T2, leading to a more probable recovery. The combined findings of all 
these studies highlight a relatively unexplored aspect of AB, where the 
relationship between the targets might play a significant role in 
explaining many AB phenomena. Further questions could be explored 
using a combination of brain measures to determine representational 
similarity within subjects, which might potentially also explain 
individual differences in performance.  
 
In conclusion, we present compelling evidence that there are 
categorical differences in conscious access in object recognition. 
Specifically, we present findings that attribute differences in conscious 
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access between image exemplars to difficulties in representational 
readouts of features in higher-tier visual areas. This visual feature-
related bias is reflected in a stable functional organisation, where fine-
grained category distinctions have a larger impact on conscious 
access than previously believed. Moreover, we point to a more 
dynamic way in which the context (i.e. the similarity between T1 and 
T2) biases the probability for a target to be consciously perceived. In 
summary, our findings suggest that object categories and high-level 
visual features constrain conscious perception of natural images. 

Methods 

Experiment 1 

Participants 
Twenty participants (19 females; age range: 19-22; mean = 20.1 ± 1.2) 
were recruited for the study. We excluded two participants due to 
incomplete data. One additional participant was excluded for the 
image-by-image analyses due to lack of trials where T2 was correct 
for one image after filtering for T1 correct. All participants provided and 
signed informed consent and were rewarded for their time via course 
credits or financial compensation (at the standard rate of £7/h). All 
participants had normal or corrected-to-normal vision, and no known 
history of neurological disorders. The Ethical Review Committee of the 
University of Birmingham approved the experiment. 

Procedure 
Participants viewed visual objects in a rapid serial visual presentation 
(RSVP), and were asked to detect two targets (T1 and T2) embedded 
into a stream of distractors (Fig 1A). Following the stream, a response 
menu was presented for T1, which included the T1 and two foils, and 
the participant had to identify the target with a button press. A similar 
response menu was then presented to identify the T2. The foils in the 
menu always belonged to the same category as the targets (Fig 1A, 
right panel). 
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Design and Stimuli 
Participants were seated 60 cm away from a Stone monitor (60Hz 
refresh rate), and stimuli covered 5 degrees of visual angle centrally 
on a grey background. Stimulus presentation was achieved using the 
Psychtoolbox extension (version 3; Brainard, 1997) in MATLAB 2016b 
(MathWorks Inc., Natick, USA). Stimuli consisted of 48 images, 
derived from eight different categories: fruits and vegetables, 
processed foods, objects, scenes, animal bodies, animal faces, 
human bodies, and human faces (Fig 1B). It’s important to note that 
images were displayed in greyscale to reduce performance for human 
observers. To generate the items used as distractors in the stream, 
each image was divided into 5 x 5 (25 total) squares. Each square was 
then inverted and randomly assigned to a new square position. 
Following a standard Attentional Blink (AB) paradigm19, each trial 
started with 300 ms of fixation, followed by a rapid serial visual 
presentation (RSVP) consisting of 19 images. Each image was 
presented for 16.7 ms with a stimulus-onset asynchrony (SOA) of 100 
ms (Fig 1A). Embedded into the stream of distractors, two non-
scrambled targets (T1 and T2) were presented at two different lag 
conditions (Lag-2: 200ms and Lag-8: 800ms). The T1 was always 
presented as item 5 in the stream, while T2 was either presented as 
item 7 (Lag 2) or item 13 (Lag 8). Each participant completed 12 runs 
(excluding one practice run of 5 trials). Across all runs each image was 
presented 12 times as T2 for both lags, for a total of 24 repetitions per 
image, and a total of 1152 trials. All 48 images were presented on an 
equal number of trials either as T1 or as T2, randomized within blocks 
with no trial having the T1 and T2 coming from the same superordinate 
category. Importantly, the same pair of T1 and T2 was always 
presented in both the Lag-2 and Lag-8 conditions, within the exact 
same stream of distractor masks in the RSVP trial. Participants had to 
press one out of three buttons to identify the correct target from the 
foils, or a fourth button when they missed the target. The two foils 
came from the same category as the target.  
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Deep Convolutional Neural Network (DCNN) 
We employed a DCNN (AlexNet, see Fig 1C)32, implemented through 
Python and Caffe49, as a model of the visual cortex for extracting 
hierarchical visual features from our stimuli (we don’t intend the use of 
model here to mean an exact biological model, but merely to 
approximate the hierarchical architecture that is known to exist in 
both). We chose AlexNet due to its relative simplicity, compared to 
more recent DCNNs, and its well-studied relation to the human visual 
system33 36 43. AlexNet consists of eight layers of artificial neurons 
stacked into a hierarchical architecture, where preceding layers feed-
forward information to the next layer (Fig 1B). The first five layers are 
convolutional layers, whereas the last three are fully connected layers. 
While the fully connected layers (fc6, fc7, and fc8) consist of one-
dimensional arrays (sizes of 4096, 4096, and 1000 units respectively), 
the convolutional layers have the dimensionalities of: layer 1 (conv1) - 
96x55x55 (96 features, over 55 x 55 retinotopic units), layer 2 (conv2) 
– 256x27x27, layer 3 (conv3) – 384x13x13, layer 4 (conv4) – 
384x13x13, and layer 5 (conv5) – 256x13x13. For all analyses we 
averaged the values in the convolutional layers for each image over 
the spatial dimension, leaving them with the vector length of 96, 256, 
384, 384, and 256 respectively. This network was pre-trained on 1.3 
million hand-labelled, natural images (ImageNet; Russakovsky et al., 
2015) for classification into 1000 different categories (available at 
http://caffe.berkeleyvision.org/model zoo.html), reaching near-human 
performance on image classification (Krizhevsky et al., 2012). Our test 
set of 48 images were analysed through the network, and we used the 
last processing stage of each layer as model output for further 
analyses. To keep the images as close to the training data as possible, 
and to avoid distortions of all levels of feature representations, the 
colour versions of the images were used.  

Analyses of behaviour and image features 
For each image, we calculated mean T2 accuracy at both Lag-2 and 
Lag-8 across subjects. We then computed attentional blink 
magnitudes (ABM) by subtracting Lag 2 mean accuracy from Lag 8 
mean accuracy. ABM then becomes a measure of how much the AB 
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time window affects the recall of each image separately. In the interest 
of quantifying image features, within our DCNN, we extracted unit 
(neuron) activation patterns for each image from all the layers. For the 
first five convolutional layers, we averaged the activation over the 
spatial dimension. These activation patterns were incorporated into a 
multivariate linear regression model, with the activation patterns from 
each layer as features in the model to predict each image’s ABM within 
subjects. The prediction pipeline followed a leave-one-image-out 
procedure (i.e., train on forty-seven images and test on one left out 
image) – where, based on the training data, the features were 
thresholded to have a larger variance than 0.15, to remove near-zero-
varying features, and later standardised to unit variance with a mean 
of zero. Our choice of a threshold of 0.15 was arbitrary and had little 
to no effect when compared to only removing zero variance features. 
It’s important to note that the test data was never part of any feature 
selection, as this would constitute double dipping. All pre-processing 
and fitting procedures were implemented using Sci-kit learn50, for 
python code see [https://github.com/Charestlab/abdcnn]. 

Target-target similarity  
We further tested the effect of target-target similarity on conscious 
access. Here, we go beyond using predetermined categories as a 
proxy for feature similarity and examine the representational distance 
between images within a given layer of the DCNN. For each layer we 
calculated the Pearson correlation between all possible T1-T2 pairs 
(Fig 4A), we then averaged the similarity for hit and miss trials 
separately. This allowed us to test the difference between hit and 
misses in terms of the relationship between the targets. 

Experiment 2 

Participants 
We recruited 24 participants (Age - M= 19.38, SD = 0.95, females = 
19, males = 5) with normal, or corrected-to-normal, vision. All 
participants provided and signed informed consent and were rewarded 
for their time via course credits or financial compensation (at the 
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standard rate of £7/h). The experiment was approved by the ethics 
committee at the University of Birmingham. 

Procedure and stimuli 
Unless stated otherwise, all procedure and visual presentations were 
identical to Experiment 1 (see fig 5A). Sixteen images, a subset of 250 
labelled and processed images from the ImageNet database40, were 
selected as T2s. The T2s derived from four different categories 
(mammals, insects, vehicles, and furniture), and each category was 
uniformly represented in the T2 selections. Similarity between images 
was determined by their Pearson correlation coefficient within layer 5 
of the DCNN. The layer 5 was chosen because it was a high-
performing layer in the first study and to still maintain the retinotopic 
information for an additional analysis not used in this study. To model 
the layer-wise unit activations for this new set of images, we used the 
same pre-trained network (AlexNet)32 as in Experiment 1. For each T2, 
we selected two similar and two dissimilar images from the same 
category and any of the other categories as T1. This resulted in eight 
potential T1s for each T2 in a 2-by-2 factorial design (Similarity X 
Category) (Fig 5A). Each condition had the following mean Pearson 
correlation between T1 and T2, Same category/Similar layer 5 
representation (Pearson r M = 0.43, SD = 0.114), Same 
category/Dissimilar (M = 0.136, SD = 0.113), Different category/Similar 
(M = 0.337, SD = 0.114) and Different category/Dissimilar (M = -0.056, 
SD = 0.099). T1 was always placed at position 11, and T2 at position 
13 (in a RSVP of 19 items for each trial). Each block consisted of a 
presentation of each T2 paired with every possible T1, for a total of 
128 trials per block divided into 4 runs (32 trials per run). Each 
participant completed 2 blocks for a total number of 256 trials per 
session (64 trials per condition).  

Data availability 
Supplementary data associated with this article can be found, in the 
online version, at [https://github.com/Charestlab/abdcnn/].  
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Code availability 
Code associated with the manuscript is available at 
[https://github.com/Charestlab/abdcnn/]. 
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Abstract 

Attention is a crucial component for our survival. By selectively 
attending to objects in our environment, we can allocate cognitive 
resources where they are needed. One way to investigate our 
attentional processing abilities is to push our senses to the limit by 
presenting consecutive stimuli at a fast pace, known as a rapid serial 
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visual presentation (RSVP). One common finding in RSVPs, is that 
when a stream of distractors has two targets embedded (T1 and T2, 
respectively), T2 is often omitted when placed 200-500 ms after T1, 
known as the Attentional Blink (AB). In a previous study we showed 
that when both targets share visual features, T2 performance is 
enhanced. This finding contrasts with repetition blindness (RB), a 
phenomenon where a direct repetition, or two targets that are similar 
in the task-relevant domain, often leads to additional impairments of 
T2 performance. One explanation to this incongruence could be 
related to how similarity between two targets is defined. The visual 
system follows a hierarchical structure, by extracting low-level features 
first in the early visual cortex. These features are later combined and 
aid the processing of more complex features until semantic properties 
emerge. This implies that targets can be similar at many stages of 
processing and investigating how similarities of targets at different 
levels of processing affect performance can provide novel insights into 
AB and RB. In a previous study we found that similarity in visual 
features between two targets increases T2 performance, in direct 
contrast to RB. Here, we investigate this apparent conflict between our 
findings and the literature by defining similarities between targets 
using functional magnetic resonance imaging, 
electroencephalography, and a convolutional neural network. We 
show that target similarity in low-level visual features, such as in V1, 
decreases the AB magnitude which corroborates our previous 
findings. We also find that similarities in late stages of processing 
increase the AB magnitude, in line with RB findings. Furthermore, we 
also show that individual differences in performance can be explained 
by a wider representational space in the right temporoparietal junction 
and inferior frontal gyrus. These findings elucidate how object 
recognition and conscious access is shaped by attention, concurrent 
processes, and the context in which objects are presented in. We 
discuss implications and further studies.  

Keywords: Attention; Working memory; CNN; fMRI; EEG; 
Consciousness  
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Introduction 

 
Every second our brain is flooded with an overwhelming amount of 
visual information from our environment. Our eyes move quickly over 
the visual field, sampling information several times per second. 
Therefore, humans have evolved to be exceptionally quick at 
recognizing objects in natural scenes. For example, studies have 
shown that we can make a saccade towards an animal in 120 ms1 and 
extract semantic information from only 13 ms of exposure2. This rapid 
processing of objects is believed first to follow a feedforward 
hierarchical organisation3 4. Low-level image statistics are processed 
in posterior visual areas (e.g. in the primary visual cortex; V1) and 
progressively more complex visual features are then abstracted in 
multiple anterior brain areas with a distributed neural population that 
encodes semantic categories5 7. This initial forward stream is then 
followed by recurrent information from higher-tier visual areas re-
entering lower visual areas8 10 making it likely that subsequent 
fixations lead to overlapping object processing. There are several 
outstanding questions as to how the brain processes temporally 
adjacent information, especially when similar neural representations 
are evoked. Here we address several of these questions with a well-
studied task to measure temporal attention using state-of-art methods 
to extract representational similarities between image pairs from 
functional magnetic resonance imaging (fMRI), electroencephalogram 
(EEG), and a deep convolutional neural network (DCNN)11 trained on 
object categorisation. 

 
A common method to investigate temporal processing is rapid serial 
visual presentation (RSVP), where one or more targets are embedded 
within a stream of distractors. Two well-known phenomena were 
discovered using this approach, the attentional blink (AB)12 and 
repetition blindness (RB)13 14. In the AB, a lapse of attention is 
generated when the second target (T2) is presented 200-500 ms after 
the first target (T1). Due to the ongoing processing of T1, participants 
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are often unable to report T215. Specifically, when subjects are asked 
to ignore T1, the T2 performance improves significantly12. This implies 
that deliberate processing of T1 interferes with T2, however, the exact 
neural mechanism by which this interference occurs is unknown. 
Similar to AB, RB describes a phenomenon where T2 is missed due 
to a repetition of the target, where theoretical accounts suggest that 
task-relevant dimensions need to be repeated for RB to occur13 16 17. 
For example, Sy and Giesbrecht showed that when gender was the 
task-relevant feature, the feature to be reported, repeating the 
emotional content (for example two happy faces) did not negatively 
affect performance. However, performance was impaired when both 
T1 and T2 were of the same gender. This implies that RB is not a low-
level repetition suppression effect evoked by an exact repetition of the 
stimulus, but rather is due to repetition in higher-level representations 
that are related to the task goals and a failure of separating targets into 
separate working memory representations. 

Interestingly, in contrast to findings from RB, Lindh et al. (2019)18 found 
that targets that share low-level visual features can be beneficial for 
reportability of T2. Previous studies that have examined target-target 
similarity have opted to use simple heuristics such as categorical 
adherence as a proxy for similarity16 19. For example, two target images 
containing horses can be similar at the level of semantics but 
depending on viewpoint they are not necessarily similar in low-level 
visual features. Therefore, these methods are likely to be limited in 
how well they can describe actual overlap in representational space in 
the brain. In contrast, Lindh et al. (2019)18 defined similarities between 
targets using different layers of a deep convolutional neural network 
(DCNN)11. This DCNN was trained on object categorisation within 
natural images, which have been shown to lead to a remarkable 
similarity in representational geometry to the human inferior temporal 
cortex20, with early and late layers of the DCNN corresponding to the 
posterior-anterior hierarchical ordering found in the visual system21 24. 
The usage of the DCNN and the complexity of the scenes could 
provide a different continuum of image similarity, which had not been 
considered before. In a multi-target RSVP where several objects are 
processed simultaneously, it is inevitable that the processing of these 
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targets interact at some level within the visual hierarchy. Given that AB 
seems to be driven by deliberate processing of T112, one contributing 
process could be an interaction between the two targets. Studying 
target-target similarity at different processing levels in the human brain 
could thus provide insights in how overlapping target representations 
affect conscious access to visual stimuli.  

 
To fill this gap in our knowledge, we examine to what extent 
representational similarity between targets affects reportability. We 
define similarity using a broad spectrum of modalities, including fMRI, 
EEG, and DCNN. Critically, all three modalities provide a hierarchical 
account of object processing: brain activity patterns can reflect 
increasing complexity in space (fMRI; with a posterior-to-anterior 
gradient) and in time (EEG), and in units (DCNN) as the latter respond 
to increasingly complex features with increasing network depth, with a 
gradient from low-level features to high-level features across layers. 
This allows an examination of the full breadth of possible target-target 
representational relationships to an unprecedented degree. In the 
present research we ask how (1) target-target similarity correlates with 
behavioural performance trial-by-trial, (2) how overall similarity affects 
AB magnitude for an image and (3) how representational similarity can 
be used to explain individual differences in AB. To foreshadow, our 
results merge previous incongruent findings in regards to RB13 16 25, 
where target-target similarity leads to an impairment of performance, 
and to the conclusions drawn by Lindh et al. (2019)18, where target-
target similarity improves performance. We show that similarity in low-
level visual features enhances the probability of successful report, 
while representational overlap in late processing stages leads to an 
attenuation of conscious access to a second target occurring 200 ms 
after the first. Importantly, this analysis explains significant variance in 
both trial-by-trial performance and differences in AB magnitude 
between images. These results are stable to a large degree regardless 
of if we use fMRI, EEG or the DCNN to define target-target similarities. 
We also find that individuals who have larger distances in the 
representational space of images in the right temporoparietal junction 
(rTPJ) and right inferior frontal gyrus (rIFG), two brain areas commonly 
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associated with working memory updating26, show less of an AB 
impairment. 

 

 
Figure 1. Predicting conscious access from pattern-similarity estimates. 
Different stages of processing for each image were captured using fMRI, EEG 
and a deep convolutional neural network. We extracted the pairwise 
comparison for all images and used these similarity values to relate to 
conscious access in three different levels of analysis: lag-2 performance, 
attentional blink magnitude per image, and individual differences in conscious 
access performance.  

Results 

Previous studies have shown that similarities between T1 and T2 can 
both facilitate18 and impede conscious access 13 14 16 19 25. An important 
difference between these studies involves the level of complexity used 
in defining similarity. For example, the improved performance of the 
T2 report was shown using visual features derived from a DCNN while 
(visual features in contrast to semantic information). To investigate the 
role of target-target similarity in conscious access we used multivariate 
representations of images in fMRI, EEG and DCNNs, providing a 
precise account of similarity at various levels of description (Figure 1). 
Specifically, we test whether similarity in early- (V1, early EEG time 
points and early DCNN layers) vs late-object processing stages 
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(ventral stream, late EEG time points and late DCNN layers) yields 
different accounts of the role of target-target similarity for conscious 
access. Participants (n=16) viewed natural scenes depicting visual 
objects (animate and inanimate objects) in four sessions of EEG while 
performing an attentional blink task (Figure 2A). Whole-brain fMRI (3T, 
3mm3 ; TR=0.764s; multi-band 4) data were collected in two separate 
sessions, while participants performed a simple working memory task 
(Figure 2B). The DCNN was a convolutional neuronal network with 5 
convolutional layers and 2 fully connected layers trained on object 
recognition11. Critically, the same natural scenes were used in the fMRI 
and EEG experiments, and modelled through the DCNN, enabling the 
use of RSA for comparisons to the attentional blink behavioural data.  

 

 

 

Figure 2. A) Attentional Blink (AB) paradigm. Targets (T1 and T2) were 
embedded in a rapid serial visual presentation of scrambled mask distractors. 
We manipulated two lags of the AB. For Lag 2 trials, the T2 was presented 
200ms following T1 and the two targets were separated by 1 distractor. For 
Lag 7 Trials, T2 was presented 700ms after T1 (with 6 distractors in between). 
Participants then had to report the identity of both targets. The behavioural 
performance for lag-2 and lag-7 shows a significant difference in T2 
performance between the two lags, indicative of an AB effect. B) The working 
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memory task in the scanner. Participants performed a simple memory task 
while we collected brain activity patterns using fMRI. Each trial started with 2-
10 seconds of fixation, followed by a brief presentation of an image (0.7 
seconds), a 4.5-second-long retention period and finally a response menu 
where participants were asked whether or not the word shown corresponded 
with the centrally positioned object in the image. We observed no significant 
difference between the memory performance between the scanning sessions 
indicating that participants could reliably do the task in both sessions. 

Attentional Blink behaviour 
The attentional blink task consisted of a rapid serial visual 
presentation, where two target images were embedded in a stream of 
scrambled distractors. Each session consisted of 8 blocks of 120 trials. 
Each trial started with 1.25 seconds of fixation, followed by a stream 
of 19 images in rapid succession (one frame every 16.7 ms). Within 
the stream, the two targets (T1 and T2) were presented at either 200 
ms (Lag-2) or 700 ms (Lag-7) apart. The residual 17 images were 
mask distractors constructed by combining random images (see online 
methods). Participants showed a higher T2 performance at lag 7 (M = 
0.93, SD = 0.068) than at lag 2 (M = 0.823, SD = 0.05, t(15) = -7.79, p 
< 0.001, Figure 2A), indicating the commonly found attentional blink 
effect (Figure 2). In the scanner, participants completed a working 
memory task (Figure 2B), specifically designed for the low temporal 
resolution of fMRI. We used this task to characterise object 
representations from early visual perception to conscious access, 
emulating the stages of processing known in the attentional blink task 
but with a temporal resolution that leads to better SNR in fMRI. To 
avoid fatigue and discomfort, the ethical committee of University of 
Amsterdam allows for a maximum of 90 minutes in the scanner per 
session. Therefore, we divided up our working memory task in the 
scanner into two 1-hour sessions with 1 hour rest in between. We 
observed no difference in performance between session 1 (M = 0.96, 
SD = 0.04) and session 2 (M = 0.95, SD = 0.06, t(16) = 0.75, p = 0.46, 
Figure 2B). 
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EEG decoding of attentional blink targets 
Before measuring target-target similarity based on the scalp activity in 
the EEG trials, we trained a shrinkage linear discriminant classifier27 to 
decode the identity of the targets presented in the attentional blink. We 
used a k-fold cross-validation procedure applied to each EEG time-
point separately. The classifier was trained on T1 trials, where there is 
the least disruption of the EEG signals, and tested on either the T1, T2 
presented at lag 2, or T2 presented at lag 7 (see online methods). We 
trained and tested the linear classifier across all possible pairs of 
conditions that we presented as targets in the AB, and here we report 
the average decoding accuracy across all pairs (see Supplementary 
Figure 1). The topographies elicited by the attentional blink targets 
provided enough representational detail to decode the identity of the 
targets in all conditions of the AB in a time-window starting at around 
80 ms until around 650 ms post-target onset. Moreover, we observed 
significantly greater decoding accuracies for the T2 presented at lag 7 
(in contrast to the T2 presented at lag 2) between ~160 ms and 620 
ms post-target onset.  
 

Target-target similarity explains intertrial differences in T2 
performance 
For each trial, we calculated the representational pattern similarity 
between T1 and T2 in the spatial (fMRI), hierarchical (DCNN) and 
temporal (EEG) domain (Figure 3A). Using 40 natural images that 
could either be the T1 or the T2, but without ever repeating the same 
image twice, we end up with 780 different T1-T2 combinations. For 
each participant, we binned the trials into 20 bins based on the 
similarity between T1 and T2. Then we averaged the T1-T2 similarity 
and the hit-rate within each bin and correlated the two measures for 
each participant independently using Pearson’s correlation. We tested 
the resulting correlation coefficients against 0 using a two-tailed one-
sample T-test. For fMRI, we found that trial performance and T1-T2 
similarity in V1 showed a significant positive correlation (M = 0.039, 
SD = 0.037, t(15) = 3.927, p = 0.002), while Ventral Stream (M = -
0.076, SD = 0.054, t(15) = -5.342, p < 0.001) showed a significant 
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negative correlation. In EEG, a cluster-level permutation test (5000 
permutations, t-threshold for defining clusters = 3) revealed a 
significant negative correlation around ~200 ms, peak correlation was 
at 196 ms, with M = -0.503, SD = 0.215, in line with late processing 
and confirming the finding in late visual areas in fMRI. Similar to V1 in 
fMRI, in early layers of the CNN we find that target-target 
representational similarity correlated positively for layer 1 (M = 0.103, 
SD = 0.064, t(15) = 6.042, p < 0.001). However, we do not find that 
later layers show an opposite effect, as with high-level processing 
areas of the brain. All p-values are FDR corrected for multiple 
comparisons. In regard to our fMRI results, we recognize a 
discrepancy between the EEG (showing similar results as the Ventral 
Stream ROI using fMRI) and the DCNN (analogous to the V1 result 
using fMRI). In combination, our fMRI results suggest that low-level 
interaction of the targets increases the probability of T2 to be perceived 
while high-level representational overlap interferes with the processing 
of T2. While the EEG data confirmed the late processing interference, 
the CNN data confirmed the early process facilitation of T2. 
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Figure 3. fMRI, DCNN and EEG results. Early and late processing of objects 
is presented for all modalities - V1, layer 1 and early EEG time points reflect 
early processes while ventral stream, layer 8 and late EEG time points reflect 
late processes. A). Lag-2 T2 performance and T1-T2 similarity correlations. 
Left, V1 and ventral stream, capturing low-level and high-level visual 
processing respectively. When T1 and T2 are similar in V1, we see an 
increased ability to recover T2. This is contrasted when T1-T2 are similar in 
higher visual areas, i.e. ventral stream. Middle, layer 1 of the DCNN show the 
same results as V1 with the fMRI data. However, layer 8 does not replicate 
the reverse effect as seen in the ventral stream. Right, EEG time series. T2 
performance has a negative correlation with target-target similarity during 
120ms-300ms, mirroring the results of the negative behavioural effect of 
target-target similarity found in the ventral stream. B) Image specific 
Attentional Blink Magnitude (ABM: lag 7 performance - lag 2 performance) 
correlates with an image’s overall similarity to all other images. Left, fMRI 
results show that images that are in general similar to other images in V1 
show a lower ABM, while images that are in general similar to other images 
in the ventral stream have larger ABM. Middle, DCNN results show identical 
patterns for layer 1 and layer 8 as with fMRI. Right, EEG results mirror the 
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result of the ventral stream in fMRI and layer 8 in the DCNN with images that 
are generally like other images at around 120-300 ms show a larger ABM. 
Shaded areas indicate 95% confidence interval. The black bar denotes time 
point clusters significant from zero. * = p < 0.05, ** = p < 0.01, *** = p < 0.001 
 

Overall image distinctiveness as an explanation for differences in 
ABM 
Building on the finding that target-target similarity affects T2 
processing, we set out to investigate if the representational 
distinctiveness of an image can explain why some images seem to be 
more sensitive to the AB window (i.e., the temporal window at which 
conscious access to the T2 is impaired). To test this, we calculated the 
Attentional Blink Magnitude (ABM) for each image by comparing the 
performance at lag-7 to the performance at lag-2. This way we are 
baselining each image with its performance outside the AB window, 
which sets this measurement apart from simply looking at lag-2 T2 
performance as in the previous section. Based on pattern 
representations for each ROI in fMRI, a time point in EEG, and a layer 
of CNN, we calculated the average similarity of one image in respect 
to all other images (Figure 3B). This yielded one value per image, 
indicating how similar this image is overall to the rest of the data set. 
We then correlated the average similarity with the ABM for each image 
within participants and tested the correlation coefficient against zero 
using a one-sample T-test. In accordance with the previous analysis, 
we find a positive correlation between overall distinctiveness and ABM 
in V1 (M = 0.056, SD = 0.081, t(15) = 2.683, p = 0.026), indicating that 
images that are generally similar to other images in V1 show less of 
an ABM. Conversely, we find robust positive correlations in the ventral 
stream (M = -0.111, SD = 0.167, t(15) = -2.570, p = 0.027). In EEG, a 
cluster permutation test (5000 permutations, t-threshold for cluster 
definition = 3) showed that images that are generally similar to other 
images in a time window between ~150 – 210 ms (peak time = 188 
ms, M = 0.248, SD = 0.091) exhibit a larger ABM (Figure 3B), 
consistent with when late visual processing is predicted in higher-order 
processing brain areas. We tested the layers 1 and 8 (representing 
initial low-level and later more category related visual features) in the 
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CNN with the same methods as the ROIs in fMRI. Identically to fMRI, 
we find a negative correlation between average similarity and ABM in 
layer 1 (M = -0.150, SD = 0.147, t(15) = -3.963, p = 0.003), while layer 
8 (M = 0.114, SD = 0.130, t(15) = 3.398, p = 0.008) showed a positive 
correlation. All p-values are corrected for multiple comparisons using 
FDR. Even though ABM is a different measure than T2 performance 
in lag-2, these results mirror each other since a low ABM score is 
equivalent to better performance while a low T2 performance in lag-2 
is indicative of a bad performance. 
 

Individual differences in conscious access 
One question that has intrigued researchers in attention literature is 
the finding that some participants don’t exhibit an AB28 30 (Figure 4A). 
Importantly, looking at individual differences has been argued to be a 
promising method to understand the processes underlying the AB28. 
Here we investigated the notion of representational richness as a 
factor in explaining the large variability between subjects in the typical 
AB task. Specifically, we tested the overall similarity between all 
objects for a given region of the brain related to participants ABM. 
Here, a large representational richness would be reflected in large 
differences in the neural representations between objects. Using a 
searchlight procedure on the fMRI data, iterating over each brain voxel 
as a centre for a sphere, we averaged the representational similarities 
(measured using Pearson’s correlation) for all pairwise comparisons 
of the activity patterns elicited by our object stimuli. This average 
representational similarity score provided a representational richness 
index in each spherical searchlight for each participant. Across 
participants, for each sphere, we correlated the representational 
richness indices to the participants’ ABM. The searchlight revealed five 
main clusters positioned on the right hemisphere of the brain (Figure 
4, MAX R = 0.78; MNI 1, 36, 30; see supplementary table 1 for all 
regions and MNI coordinates, False Discovery Rate cluster forming 
threshold = 0.01, cluster threshold = 20). Specifically, we found that 
participants with more representational richness in the right 
temporoparietal junction (rTPJ) and right inferior frontal gyrus (rIFG) 
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are more vulnerable to the attentional blink, and conversely, 
participants with rich and decodable representations in this network 
perform better in the AB (Figure 4). This network is primarily known for 
its putative role in bottom-up saliency26, but has also been specifically 
noted in the AB31 34.  
 

 
Figure 4. Individual differences. A) (left) Example participants in the 
attentional blink task. The blue line shows the performance of a typical 
“blinker” participant, and the orange line shows the performance of a typical 
“non-blinker” participant. The right panel shows the multidimensional scaling 
projection on a two-dimensional plane of the representational dissimilarity 
matrix measured in a temporoparietal junction region of interest in each 
participant. Blue circles indicate animal and red circles indicate a non-animal. 
B) We performed a searchlight analysis to relate individual differences in 
representational richness to participants’ performance in the attentional blink. 
In each volumetric spherical searchlight, we measured Pearson’s correlation 
between the average representational distance and the attentional blink 
magnitude measured from each participant. The resulting correlation map 
was corrected for multiple comparisons using a False Discovery Rate 
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procedure (cluster forming threshold = 0.01, cluster threshold = 20). The 
searchlight analysis revealed a right-lateralized distributed network of cortical 
areas, including anterior inferotemporal cortex, temporoparietal junction, 
supramarginal gyrus, and inferior frontal cortex where the representational 
richness of a participant predicts that participant’s performance at the 
attentional blink task.  
 

Discussion 

In the current study we measured brain activity from functional 
magnetic resonance imaging and electroencephalography to 
investigate conscious access in object recognition. Specifically, we 
measured representational geometries at various levels of processing 
using representational similarity analysis (RSA) applied to fMRI data 
(using V1 and the ventral stream ROIs as representative of “early” and 
“late” visual processing respectively) and EEG data (at different 
moments in time following target presentation). We further completed 
this analysis framework with RSA applied to layers of a deep 
convolutional neural network. We tested the hypothesis of a 
relationship between target similarities and conscious access in the 
attentional blink. Previous work has established that similarity between 
T1 and T2 in a RSVP can lead to both increased18 or 
decreased13 14 16 19 25 35 likelihood of consciously perceiving the second 
target. We show that these two effects are dependent on where in the 
hierarchical stage of processing the targets are interacting. Critically, 
we show that our representational similarity framework can be used to 
explain three core components of conscious access in object 
recognition. First, we show that low-level and high-level similarities 
between T1 and T2 across trials predicts the likelihood of detecting the 
second target in opposite directions, where similarity in V1 increases 
T2 performance while similarity in the late ventral stream decreases 
T2 performance (Figure 3A). Second, image-specific brain activity 
patterns account for the attentional blink variability across stimulus 
conditions (Figure 3B). Third, representational richness measured in 
a core network involved in bottom-up attention explains individual 
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differences in conscious access. Altogether, our results provide a 
comprehensive view of the underlying mechanisms supporting 
conscious access in object recognition at the levels of processing in 
the brain. 

 

In the decades-long history of rapid serial visual presentation (RSVP) 
research, two main phenomena have been established: the attentional 
blink (AB) and repetition blindness (RB). The AB12 is by far the most 
prominent of these two, with hundreds of papers being published 
every year either using the AB as a method to induce failures to report 
T2 or to understand the mechanism underlying AB. The AB is defined 
as the inability to perceive a second target (T2) in a stream of 
distractors when the first target (T1) precedes it by 200-500 ms. On 
the other hand, RB14 is defined as when subjects are unable to 
recollect the second target if it is a repetition of the first target. This 
effect has later been extended to not necessarily be a repetition of the 
exact same stimuli, but has also been shown to be present when two 
words are homophones (e.g. allowed/aloud), when two words from 
different languages describe the same concept (e.g. Caballo/Horse)36, 
two visual objects from different angles25 and rotated images37. These 
studies indicate that it is not the perceptual similarities between targets 
that impede performance, but rather semantic relationships related to 
the task. In fact, task-relevance has been shown to be imperative for 
the repetition blindness effect16 17, implying that this is a working 
memory related phenomenon and not perceptual. Conversely, we 
have shown in a previous study18 that similarity between targets can 
also be beneficial for performance. In this current study, we explain 
the discrepancies between earlier findings by first showing that trials 
where T1 and T2 have a similar multivariate representation in V1 and 
the first layer of the DCNN also lead to a higher probability of 
successful T2 report (Figure 4A). This effect could not be found in the 
temporal EEG data, which might reflect difficulties in differentiating 
these early signals from other perceptual processes. However, we 
would argue that this is a reliable finding considering that we find this 
effect in two out of three modalities (fMRI and DCNN) and that we 
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have found a similar effect in a previous study using a DCNN18. 
Second, we find that similarities between T1 and T2 in the ventral 
stream and EEG time-points between 120-290 ms has a detrimental 
effect on T2 performance (Figure 4A). This is in line with earlier 
findings of RB13 14 35, however, to the best of our knowledge we are the 
first to connect similarities of brain representations to this specific 
effect. Sy and Giesbrecht (2009) showed that this repetition effect is 
dependent on task-relevance by demonstrating that subjects are less 
likely to remember that T2 was a male if T1 also was a male face, but 
only when this was the to-be-reported dimension. Since our 
experiment has semantic task-demands, it corroborates the notion 
that T1-T2 similarities in later stages interfere with T2 working memory 
updating. While RB has been described as an inability to individualize 
a separate episodic token for T2 when it is similar to T114 and 
computational models of AB38 39 have proposed that T2 is being 
attenuated to protect the target to be reported (i.e. the working memory 
representation of T1) it is unclear as to why T1-T2 similarity in low-
level visual features would lead to larger probability of perceiving T2. 
Previous studies have shown a delayed working memory engagement 
of T2 at short lags40 41, indicating that the T2 representation lies 
dormant until resources are freed up and working memory can be 
engaged to encode T2. If the T2 neural trace must be maintained 
within lower-level visual areas until WM resources are freed up, 
recurrent information from higher-order processing of T1 might 
interfere with the T2 pattern. Considering the fragility of the percept, 
this interference would logically be more severe if the two targets are 
very different at this stage of representation. In other words, there 
might be a cost associated with having ambiguous information 
represented in lower-level visual areas, however, further studies are 
needed to answer this. Aggregated, our data support the notion of 
repetition blindness, where target-target similarities in representational 
space during late stages of processing affect T2 performance 
negatively, while a shared representational space between targets in 
early visual processing is beneficial for T2 performance. 

 
Previous studies have shown that certain types of stimuli are less 
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affected by the AB window. For example, the AB can be modulated by 
animacy18, emotional content17, and by attentional biases such as 
gambling-related stimuli in gamblers42. Following our finding that T1-
T2 similarity at different levels of processing affect T2 performance we 
set out the test if the Attentional Blink Magnitude (ABM: T2|T1 Lag-7 
performance - T2|T1 Lag-2 performance) for one image is related to 
how similar a particular image is to all other images. By using the ABM, 
we are effectively baselining each image’s performance during lag-2 
with its performance at lag-7. This way, when comparing between 
images, we can assure that the difference between images is not due 
to variability in how our specific choice of masks interfered with the 
processing of one image. We find that the ABM of an image is 
modulated by its overall similarity to all other images (Figure 4B). 
Images that in general share a lot of low-level (V1 in fMRI and Layer 
1 of the DCNN) similarities with other images are less affected and 
images that are like other images in high-level (ventral stream in fMRI, 
120-290 ms time points in EEG and layer 8 of the DCNN) 
representations are more affected by the AB window. In addition, we 
also conducted a searchlight43 procedure which revealed an extensive 
language/reading-related network focused on the dorsal visual 
stream, the left temporal cortex, and the left inferior frontal gyrus 
(Supplementary Figure 3). Many of the areas that showed a positive 
correlation with ABM have a history in the language processing 
literature such as the Visual Word Form Area44, Wernicke's Area, and 
Broca’s Area45. Given the semantic nature of our task, these are areas 
where you would expect relevant processing for working memory 
functions and where interference of tokenization14 for T2 would occur. 
The left oriented network we found also carries resemblances to the 
semantic control/episodic network 46 and the top-down control network 
as described by Corbetta and colleagues26 47, which is proposed to 
enable selection of goal-driven stimulus processing. The overlap 
between the top-down control and semantic network implies that 
representational similarities are malleable depending on task-
demands, which is in line with previous studies showing the 
importance of task-relevance when investigating the different effects 
of target repetition16 and emotional processing17 in RSVPs. These 
findings expand on previous studies and underline the effect of 
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concurrent processing of T1 on conscious perception of T2 and how it 
can explain variability in performance between different types of 
stimulus inputs.  

 
Another method that has been suggested to shed light on the 
mechanism of the AB is to evaluate individual differences in 
performance 28 29 48. Throughout the three decades of investigating the 
AB, studies have found that a significant proportion of the population 
seem almost unaffected by the AB and have thus been termed “non-
blinkers” 28 29. Investigating how these individuals differ from others is 
crucial to understand to explain the processes that underlie the AB 
phenomenon. Earlier reports on individual differences have suggested 
that non-blinkers show a faster peak of the P3, indicating that they are 
quicker to consolidate information into working memory 29. However, 
some previous research has indicated that cognitive processing speed 
is not what best describes individual differences49. For example, vocal 
naming tasks50 and fluid intelligence51 do not predict individual 
differences in ABM. On the contrary, executive control functions51 52 
and being able to filter out irrelevant stimuli53 can significantly predict 
individual differences. A larger ABM has also been observed in 
patients with lesions in the right inferior parietal lobe, overlapping with 
the right temporoparietal junction (TPJ) 54. Several studies have 
implicated the right TPJ in AB performance, where grey matter density 
in the right TPJ55, connectivity between right TPJ and inferior frontal 
gyrus31 55 and transcranial magnetic stimulation (TMS) on the right TPJ 
all modulate performance in the AB33 56. Other lesion studies of the 
right TPJ show that some patients develop visual extinction, a 
phenomenon that describes the unsuccessful perception of 
contralesionally events during competition between the two visual 
hemifields (in contrast to temporal competition) 57. That is, when one 
item is being shown in each visual hemifield, patients report no 
awareness of the item presented in the left hemifield, an effect that is 
amplified when the two targets are the same in the task-relevant 
domain 58. This post-perceptual role of the right TPJ is also noted in 
the change detection literature where semantically incongruent 
changes in a change detection task are more often detected than 
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when scene congruent items are added. Importantly, this difference 
between congruent and incongruent change detection was eradicated 
with TMS to the right TPJ59. In line with the literature, we find that 
individual differences in ABM were related to subjects' average 
representational similarity in right TPJ and right IFG (Figure 4, Table 
S2). These two areas are closely associated with the stimulus-driven 
control network as proposed by Corbetta and colleagues26 47. Rather 
than being activated by expectations, this network responds to the 
detection of task-relevant stimuli, see Corbetta et al., 2008 for 
review26. This is very similar to how the P3 has been described in the 
literature, which is one of the reasons why it has been argued that the 
P3 originates from the TPJ60. Thus, our results corroborate earlier 
findings that non-blinkers show faster working memory updating29 and 
attribute this to the separation of image representations, and therefore 
unambiguous target separation during working memory encoding, in 
the ventral attentional network26. Specifically, we argue that subjects 
who have a larger representational space for objects in this key brain 
network for working memory updating are quicker at resolving object 
identity and can consequently evade the attentional blink window. This 
argument is further supported by findings showing that the slope of the 
P3 is related to evidence accumulation61, however, future studies 
should also investigate if representational space in the ventral 
attentional network explains individual differences in evidence 
accumulation. 

In conclusion, we show that not only can representational overlaps 
explain trial-by-trial variance but also explain why some objects are 
more probable to reach conscious processing in AB. We conclude that 
target-target similarity can both have a positive and a negative effect 
on performance and this depends on the stage of processing in which 
the targets are interacting. While repetition blindness related effects 
have been studied to some extent, more research is needed in 
situations when target-target interaction leads to positive performance. 
It is unclear as to what type of processes are affected by these target 
interactions, if they are perceptual or non-perceptual by nature, and 
future studies could potentially investigate this using speeded 
judgment tasks rather than a report after the RSVP. Also, we also 
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propose object separation in the right ventral attentional network26 as 
a viable explanation for individual differences in the attentional blink. 
In line with recent work showing that the distances captured with 
multivariate methods using fMRI is indeed related to the decision-
function used when humans do animate/inanimate speeded 
categorisation62, we show that the representational similarities 
captured by all three of our modalities have substantial power in 
explaining variance in performance at multiple levels.  

Methods 
20 participants (mean age = 23, range = 18 to 44, 13 females) 
participated in the study. Participants completed 4 sessions of the 
attentional blink task (while we recorded EEG, see below) and two 
sessions of functional magnetic resonance imaging (fMRI). Three 
participants did not complete all conditions and were thus excluded 
from further data analyses. All participants provided informed consent 
and were compensated for their time (at the rate of €10 per hour for 
EEG, €20 per hour for fMRI, and €50 for completion for a total of €210). 
The experiment was approved by the ethics committee at the 
University of Amsterdam. 

Stimuli 
The visual objects presented in both tasks consisted of forty natural 
scene images depicting objects positioned in the centre of the image 
(twenty animals, twenty non-animals) from the ImageNet database63. 
The final set of 40 stimuli was chosen to have a proclivity for high blink 
rate in a pilot experiment (see supplementary materials). The 
experiment was programmed using Psychtoolbox Version 3 (PTB-3; 
MATLAB and Statistics Toolbox Release 2016, The MathWorks, Inc, 
Natick, Massachusetts, United States). The distractors were created 
by dividing an empty image up into a 10x10 grid (each grid cell 
containing XX pixels, equating to roughly 0.5 visual degrees) and then 
sample image information from the corresponding grid cell from a 
random image of our set. 
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Attentional Blink task 
Participants were comfortably sitting in front of a 19” monitor 
positioned at 60 cm. Targets and distractors were displayed in the 
centre of the screen subtending 5 degrees of visual angle on a 
constant grey background. At the beginning of each trial, participants 
attended a white fixation cross for 1.25s. This was followed by a 
stream of 19 images (17 distractors and 2 targets). Images were 
shown for 16.67 ms with a stimulus onset asynchrony (SOA) of 100 
ms. The first target (T1) was randomly presented at position 4, 5 or 6 
in the stream and the second target (T2) was presented either two (lag 
2) or seven (lag 7) items further away (Figure 1A).  
 
After each trial, participants were prompted with a response menu for 
T1 and asked to choose which of the four possible words 
corresponded to the first target (Figure 1A). Following this, a similar 
menu was displayed for T2. T1 and T2 were never the same image. 
Participants completed four sessions of approximately three hours of 
AB (including EEG preparation). Each session comprised 8 runs of 
120 trials, where each image was presented 2 times as T2 in lag 2 and 
1 time as T2 in lag 7 for a total of 96 repetitions for each image. In 
total, each participant completed 3840 trials of AB across sessions. T2 
performance was computed as a proportion of correct identification. 
Attentional Blink Magnitudes (ABM) were computed as the difference 
between T2 performance in the lag 2 and lag 7 conditions for all 
images separately. 

Working memory task 
The same natural visual objects were used in the working memory task 
completed during fMRI scanning. Images were shown with a 5 degrees 
visual angle through a back-projected screen visible via a head-
mounted mirror. The fMRI consisted of two sessions of 1 hour each 
completed within the same day with 1-hour rest in between. Within 
each session, participants completed up to 10 runs. Within each run, 
each of the forty images was displayed two times. The event-related 
design was created using optseq64, with the number of time points 
(ntp): 610, psdwin: 3.056, nsearch: 10000, nkeep: 500. Each trial 



 
 

 81 

started with an image displayed for 500 ms followed by 4084 ms of 
retention before a word was displayed (500 + 4084 = 6 TRs with a TR 
of 764 ms). Participants were asked to respond whether the word 
corresponded to the semantic content of the image or not using the 
buttons placed under the left or right index finger. This task was 
designed to accommodate the slow BOLD response but still capture 
the working memory and conscious access components of the AB task 
a1fnd this way provides a canonical working memory representation 
of all images. Trial onsets were timed to TR onset. Fixation time 
between trials varied based on the output from optseq between 2-16 
seconds.  

fMRI acquisition 
Participants completed two sessions of fMRI on the same day with one 
hour rest in between. Each session was designed to last for an hour, 
to ensure that subjects could stay vigilant for the entire period. fMRI 
data were acquired using a Philips Achieva 3T MRI scanner and a 32-
channel SENSE head coil. A survey scan was made for spatial 
planning of the subsequent scans. After the survey scan, a 3-min 
structural T1-weighted scan was acquired using 3D fast field echo (R: 
82 ms, TE: 38 ms, flip angle: 8, FOV: 240 x 188 mm, 220 slices 
acquired using single-shot ascending slice order and a voxel size of 
1.0 x 1.0 x 1.0 mm). For the working memory task, functional T2*-
weighted sequences were acquired using single shot gradient echo, 
echo planar imaging (EPI; TR: 764 ms, TE: 27.62 ms, flip angle: 60, 
FOV: 240x240x118.5 mm, number of slices: 36, slice thickness: 3 mm, 
slice gap: 0.3 mm, voxel size: 3x3x3 mm, multi-band factor: 3), 
covering the entire brain.  

fMRI pre-processing 
fMRI data was converted to BIDS65, before being pre-processed using 
fMRIPrep66. EPI images were corrected for spatial alignment and 
normalised to the Montreal Neurological Institute (MNI) ICBM template 
space67. Top-up scans were included as an option in fMRIPrep to 
mitigate field inhomogeneities. No slice-time correction was made 
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given our sub-second TR (764 ms) and multi-band acquisition 
parameters.  

fMRI analyses 
Beta weights for each stimulus condition were obtained using 
GLMdenoise68 69, implemented in MATLAB 2016b (MathWorks) and 
converted into pseudo t-statistics by dividing the betas with the pooled 
variance obtained from the bootstrapping in GLMdenoise. Regions of 
interest (ROI) were defined using the Glasser atlas parcellations 
(Glasser et al., 2017). Each ROI was registered from fsaverage to 
subject space, then transformed from surface to volume and 
registered to functional space using the warp-file provided by the 
fMRIPrep output using Advanced Normalization Tools (ANTs)70. 
Pattern similarity from each ROI was measured using Pearson’s 
correlation across all pairs of condition pseudo t-patterns. For narrative 
reasons we choose to stick with the non-inverted Pearson correlation 
which we refer to as “similarity” between two multivariate patterns (the 
1-Pearson coefficient is commonly used in RSA and is often referred 
to as a “distance”). Searchlight procedure was done using a custom 
Python script (https://github.com/Charestlab/pySearchlight) with a 
sphere of 6 voxels radius centred around every voxel. For each voxel 
position, we did a pair-wise comparison of all images using a Pearson 
correlation based on the voxels contained within the sphere. 

EEG acquisition and pre-processing 
Electroencephalographic (EEG) activity was collected with 64 scalp 
electrodes (BioSemi ActiveTwo System). EEG electrodes were 
arranged according to the International 10–10 system, in addition to 
two reference electrodes on the left and right mastoids. Eye 
movements were monitored using two electrodes placed above and 
below the pupil of the left eye. The EEG signal was recorded with a 
1024 Hz sampling rate. The data pre-processing was performed using 
mne-python 71 72. For preprocessing, data were first down-sampled to 
256 Hz and then a 0.001 Hz high-pass filter was applied. Epochs were 
defined with T2 presentation as time 0, with each epoch starting at -
800 ms and ending at +700 ms. Automatic rejection of trials was done 
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using AutoReject73, where peak-to-peak rejection thresholds are 
determined automatically through 10-fold cross-validation using the 
built-in Bayesian optimization method for thresholding. Epochs were 
then baselined using the mean of the time window between 1900 ms 
– 1800 ms before T2 onset. This window was always within the fixation 
phase before each trial. Bad channels were defined by manual 
inspection and later interpolated over based on the nearest neighbour 
approach.  

EEG analyses 
In contrast to fMRI, where we are able to remove shared noise 
between voxels using GLMdenoise68 before correlating patterns, there 
is, to the best of our knowledge, no established method of estimating 
the noise pool for our particular EEG data set. Therefore, in order to 
obtain representational similarities in pattern representation between 
images using EEG, we trained a shrinkage (Ledoit-Wolf lemma 
shrinkage74) linear discriminant analysis (LDA, Sci-kit learn)75 classifier 
with for each pair of images, separately for each time-point. For each 
image pair, we trained on trials when these images were presented as 
T1 and time 0 was centred around the onset of T1. To evaluate an 
overall distance between images, we evaluated the performance using 
10-fold cross-validation. The resulting accuracies were then defined 
as our representational distances between each image pair. To 
conform to the similarity measure from the Pearson coefficient in fMRI, 
we inverted the decoding scores to obtain “similarity” rather than 
“distance”.  
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Supplementary 
 
Supplementary Table 1. Brain clusters defined from the searchlight 
procedures on individual differences. 
 

cluster id MNI x peak MNI y peak MNI z peak 
Peak value (Pearson 
r) Volume mm aal 

1 36 30 7.8 0.77654 6771.6 Insula R 

2 63 -45 7.8 0.763386 5256.9 Temporal Mid R 

3 42 -24 54 0.722177 1930.5 Postcentral R 

4 51 -30 -8.7 0.695877 415.8 Temporal Mid R 

5 45 -27 1.2 0.663015 237.6 Temporal Sup R 

 
 

 
 
Supplementary Figure 1. Average decoding accuracy for all pairwise 
comparisons, separately T1 (green curve), T2 Lag-2 (blue curve) and T2 Lag-
7 (red curve) trials. A classifier was trained using T1 presentations when T2 
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was at lag-7, to avoid any more than necessary noise, and then tested on lag-
2 trials. Green, blue and red bars denote time points where the decoding for 
T1, Lag-2 and Lag-7 (respectively) is significantly different from chance-level 
(cluster-permutation test, cluster threshold (t-value) = 3). The gray bar 
denotes time points where the decoding of lag 7 trials was significantly more 
accurate than the decoding of lag 2 trials.  
 

 
 
Supplementary Figure 2. Average decoding accuracy for all pairwise 
comparisons, separately for hit (purple) and miss (brown) trials (Lag-2). A 
classifier was trained using T1 presentations when T2 was at lag-7, to avoid 
any more than necessary noise, and then tested on lag-2 trials. In green, T1 
decoding using a 10-fold crossfold for comparison. Green, purple and brown 
bars denote time points where T1, hit and misses (respectively are significant 
from zero (cluster-permutation test, cluster threshold (t-value) = 3). The black 
bar denotes time points where hit and miss is significantly different.  
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Supplementary Figure 3. Target-target similarity in late perceptual and 
semantic brain networks is related to inflated AB magnitude. Using a whole-
brain searchlight procedure to correlate behaviour (AB magnitude) with the 
overall similarity of one image in relation to the rest of the image set, we 
identified a left hemisphere semantic brain network. Images that are like other 
images in these areas showed a significantly larger impairment within the AB 
windo
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Abstract 
When a complex natural scene is quickly presented, the human visual 
system is remarkably fast at detecting and identifying characteristics 
of the image that are diagnostic of the semantic content. To study this 
ability, researchers often use rapid serial visual presentations (RSVP), 
where a set of stimuli is presented at a high rate and participants are 
asked to detect one or several targets within a stream of distractors. 
One common finding is that when the second target (T2) is presented 
200-500 ms after the first target (T1), participants are often unable to 
report T2 correctly. However, when participants are asked to ignore T1 
and only report T2, participants are again remarkably good at reporting 
T2. This phenomenon where attending T1 attenuates T2 processing is 
called Attentional Blink. In two previous studies, we have shown that 
similarity between targets modulates the AB effect in two different 
ways depending on the level of processing targets share 
representational overlap. First, in the literature it is well known that 
repetition of targets often leads to a memory failure where T2 is 
omitted. We have previously corroborated these findings and have 
shown that T2’s that are similar to T1 in posterior parietal cortex and 
within a left semantic brain network are less often reported. On the 
other hand, we also showed that when images are similar early on in 
processing (V1) T2 performance is elevated. In the current study we 
sought to test how similarity between targets interacts with attending 
T1, one of the core components of AB. We test this using a hybrid task 
where participants were asked to either attend or ignore T1 and to 
make a speeded judgment if the T2 scene contained an animal or not. 
By modelling the reaction time distribution using drift diffusion 
modelling we find several important notions. We find that attending T1 
affects both perceptual and non-perceptual processes, undermining 
theoretical frameworks that propose a bottleneck, such as the two-
stage model of AB. We also show that attending T1 is imperative for 
the beneficial V1 similarity to affect T2 targets. These findings outline 
a series of behaviours present in humans that can be used to 
benchmark future models of attention in RSVP settings.  
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Introduction 
While exploring our surroundings, our eyes move and sample 
information at a high rate (~4-5 saccades per second). Through a 
collection of processes, often referred to as attention, our brain can 
selectively filter out noise and efficiently process important information 
that helps us navigate our complex environment. Investigations into 
how attention modulates visual representations, and how the 
processing of distinct items interact at different stages is crucial for our 
understanding of the human perceptual system. One of the most 
common paradigms to probe our ability of temporal information-
selection is a rapid serial visual presentation (RSVP). In an RSVP, one 
or several targets are embedded within a stream of distractors, often 
presented at a rate of ~10 items per second. Interestingly, when two 
targets (T1 and T2, respectively) are embedded in the RSVP, 
participants often miss T2 when it is presented 200-500 ms after T1. 
This phenomenon is known as the Attentional Blink (AB) (Raymond et 
al., 1992) and is one of the most well-studied attentional paradigms, 
with thousands of studies done since its discovery 30 years ago. One 
core aspect of the AB is that when participants are asked to ignore T1, 
reportability of T2 is high regardless of what position in the stream T2 
is presented (Dux & Marois, 2009; Raymond et al., 1992). This 
indicates that deliberate engagement with T1 is interrupting T2 
processing at some critical stage, causing participants to miss the 
second target. Most theories of AB are so-called two-stage models 
(Chun & Potter, 1995), which posit that both targets can be processed 
in parallel in an identification stage (first stage). However, by attending 
to T1 and encoding the item into working memory (the second stage), 
which is assumed to be a serial bottleneck, it is effectively interfering 
with the encoding of T2 causing participants to be unable to report T2. 
Neural evidence of these two-stage, bottleneck, models consists of 
studies showing that high-level stimulus information is still present in 
neural code (Dehaene et al., 2006; Luck et al., 1996; Marois et al., 
2004), despite participants’ inability to correctly report T2. Other 
evidence for a bottleneck account comes from (Vogel & Luck, 2002) 
who showed that masking T2, and thereby impairing T2 performance, 
leads to delayed working memory engagement. Despite all of this 
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evidence for T1 disrupting the working memory encoding of T2, there 
is still no reason to think that T1 cannot also affect perceptual 
processes as well, however this idea has been proven harder to test. 
We attempt to test this idea by conceptualizing ideas from reaction 
time modelling and our previous findings of interaction between 
targets. 
 
In a previous study (Lindh et al., 2021) we showed that different levels 
of similarity between targets affect T2 performance in opposite ways. 
Specifically, we showed that when the two targets are similar in high-
level visual/semantic brain areas, participants are less likely to 
perceive T2. This finding is in line with another RSVP phenomena, 
known as repetition blindness (RB) (Buffat et al., 2013; Kanwisher, 
1987; Kanwisher & Potter, 1990; Park & Kanwisher, 1994). Previous 
studies have shown that RB can occur for several types of repetitions, 
for example, with direct repetitions such as “ink/ink” and “3/3” 
(Kanwisher, 1987; Kanwisher & Potter, 1990), the same objects from 
different viewpoints (Buffat et al., 2013), phonetically similar words 
such as “won/one” (Bavelier & Potter, 1992) but also in bilingual 
participants where the two targets are in different languages but have 
the same meaning, for example Caballo/Horse (MacKay & Miller, 
1994). However, in certain contexts target repetitions can also prime 
and therefore increase performance. For example, when T2 is missed 
in a three target RSVP (with T1, T2, and T3 targets), T3 no longer 
exhibits an AB but is instead primed if the missed T2 was a repetition 
(Shapiro et al., 1997). Similarly, categorical repetitions (for example T1 
and T2 both being animate objects) can also improve T2 performance 
when participants report identity (for example horse and dog) (Evans 
& Treisman, 2005). Related to this, an additional important factor is 
task-relevance - what type of information is to be encoded into working 
memory. For example, (Bavelier, 1994) showed that a picture of a sun 
(T1) induced an RB on the word “son” (T2) when the task required 
phonetic encoding. (Sy & Giesbrecht, 2009) presented participants 
with faces and asked them to either report gender or emotional 
expression. When the two target faces had the same gender there was 
a significant decrease in T2 performance, but contingent on 
participants reporting gender and not emotional expression. To most 
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people familiar with priming (Schacter & Buckner, 1998), RB is 
unintuitive, but decades of research proposes that RB occurs in very 
specific contexts due to the similarity in neural codes initially used in 
short-term memory (Bavelier, 1994). 
 
Studies looking at similarities between targets often resort to using 
categories as a proxy for similarity. However, the visual system has 
been shown to follow a hierarchical structure (Felleman & Van Essen, 
1991), implying that overlap in neural representation between two 
targets can occur at multiple levels. Our previous study extended these 
ideas and showed the extent of the brain network at which similarity 
between targets is detrimental for performance, which included inferior 
temporal cortex, posterior parietal cortex, and along the left lateral 
sulcus (Lindh et al., 2021). Interestingly, in contrast to RB, we also 
showed that when targets were similar in V1, the earliest cortical 
processing stage for visual information, T2 performance instead 
increased. This increase in performance, based on low-level visual 
feature similarities, were in line with our previous study utilising a 
convolutional neural network (CNN) to define similarities (Lindh et al., 
2019). While RB has been investigated extensively (Buffat et al., 2013; 
Chun, 1997; Fagot & Pashler, 1995; Harris & Dux, 2005; Kanwisher, 
1987; Kanwisher & Potter, 1990; Park & Kanwisher, 1994), and seems 
to be related to late-stage memory functions (Bavelier, 1994; Fagot & 
Pashler, 1995), our knowledge of the enhancing effect of low-level 
visual feature similarity is limited to our own two studies. One possible 
mechanism behind enhanced performance related to target-target 
similarity in V1 is neural adaptation. Neural adaptation to recent 
stimulus history can significantly alter perception through neural 
suppression (Sawamura et al., 2006), neural enhancement (Kasper 
Vinken et al., 2017) or shifts in tuning functions (Dragoi et al., 2000). 
One of the main computational roles of neural adaptation that has 
been proposed is that it facilitates detection by increasing sensitivity to 
small changes in the environment (Clifford et al., 2007). In a recent 
study, (K. Vinken et al., 2020) showed that, after an adapter phase 
with a noise pattern, the following presentation of an object had a 
higher detection rate when the background noise was the same as 
during the adapter phase. Importantly, they continued to show that a 
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CNN with local neural adaptation implemented on a unit-level 
replicated these results, while a CNN without local adaptation was 
unable to. It is conceivable that neural representational overlap 
between two targets in V1 also leads to facilitation of object 
identification in natural scenes. Therefore, it logically follows that this 
would increase the speed of evidence accumulation, related to the 
quality of stimulus information, for target objects embedded in natural 
scenes. Here, we test this hypothesis by modelling the reaction time 
distribution of speeded judgments of T2. It is possible that target-target 
similarities at different levels are unrelated to AB. In order to 
investigate this we also manipulated attention to T1, one of the core 
ideas derived from the AB literature.  
 
In the current study, we investigate how target-target similarity affects 
processing of T2 while manipulating one of the core aspects of the AB, 
attending or ignoring T1. AB and RB are two phenomena that imply 
that when targets are presented adjacently in time, the processing of 
the targets will interact at one or several stages. How this interaction 
affects different aspects of the decision process (evidence 
accumulation) and non-decision variables is unknown. Using natural 
images from the Microsoft Common Objects in Context (COCO) image 
dataset (Lin et al., 2014) and neural data from the natural scenes data 
set (NSD) (Allen et al., 2021), we tested how attending T1, target-
target similarity, and their interaction modulated the speed of evidence 
accumulation. Given our experimental approach (Figure 1), we do not 
expect an RB effect due to the different task-demands for T1 and T2, 
however, we hypothesized that T1-T2 similarity would prime T2. This 
is in line with previous passive high-level priming findings using 
animals and vehicles (Evans & Treisman, 2005), and our own studies 
showing priming of low-level features (Lindh et al., 2019; Lindh et al., 
2021). We further predicted that if target-similarity is related to the AB 
phenomenon, we expect an interaction effect of attending to T1 and 
similarity in regards to evidence accumulation. The results reveal a 
complex relationship between target-target similarities at different 
stages of processing and attention. These findings elucidate how 
multiple items are interacting, what type of processes are being 
affected and present additional challenges for models of attention.  
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Figure 1. Pictorial description of the dual task. A) Participants were 
presented with a stream of four masks (100 ms SOA) followed by T1 (200 ms), 
T2 (300 ms) and four more masks. Participants were asked to ignore T1 and 
to make a speeded judgment if an animal was present in the T2 scene. B) In 
a different session, participants were instructed to do the same as A, however, 
with the added instruction to attend T1 for the report after the stream. C) 
Example images from the NSD / COCOs data set. Top row: randomly selected 
images from the 1000 seen by all participants in the NSD dataset. 2nd row: 
The images selected to be maximally similar to the top row in V1. 3rd row: 
images that are maximally dissimilar in V1 to the top row. 4th and 5th row: 
same concept but using similarities based on AIT. 



Chapter 4 
 

 98   

Methods 

Participants! 65 participants (60 female, 5 male, age M = 19.5, SD 
= 2.15, age range = 18-35) were recruited through a participant 
website hosted by the University of Birmingham. Of these, 13 were 
excluded due to sub-chance performance (≤50% accuracy on T2 
response) or zero performance due to technical difficulties. This 
resulted in a sample size of 52 participants, all of whom had provided 
informed consent anonymously, and were rewarded with 1 psychology 
course credit. All participants reported to have normal- or corrected-
to-normal vision. The experiment was approved by the ethical review 
board of the School of Psychology at the University of Birmingham.  
 
Stimuli. From the 1000 images derived from the COCOs 
dataset (Lin et al., 2014) and seen by all participants in the Natural 
Scenes Data set (NSD (Allen et al., 2021)), see estimating V1 and AIT 
similarity below), we removed all images that contained humans 
resulting in 562 potential target images. For our T2s, we randomly 
selected 50 images that contained animals and 50 images with no 
animals. We then selected T1 images such that they would represent 
a balanced variety of V1 similarities (equal selection of low/mid/high 
V1 similarity between T1 and T2, see Supplementary Figure 1 for 
distributions of similarities) for each T2, half of the T1s either contained 
animals or not. For the total of 100 T2s, each T1-T2 combination (3 
(similarity low/mid/high) x 2 (T1 animal/non-animal)) was only shown 
one trial for a total of 600 trials. Masks were made by subdividing an 
image into a 10 x 10 matrix, and for each cell we copied the content 
from the same location from a random image within the data set (see 
Figure 1A for examples). A total of 200 masks were made and for each 
trial, masks were randomly selected without replacement. Stimuli were 
presented on a grey background, and images were sized such that 
they covered one third of the screen. This data was collected online 
using the Meadows Research online platform (http://meadows-
research.com). Therefore, we could not control the distance between 
participants and their screen and opted for displaying images in the 
same size relative to the window size for each device. We argue that 
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since participants were only allowed to participate using a computer, 
and that we have a within-subject design, any differences between 
conditions cannot be explained by the variance of image sizes 
between participants. The task was programmed using the Python 
library PsychoPy (Peirce et al., 2019), which was converted into 
PsychoJS for the online platform. 
 
Procedure.  Due to the COVID-19 pandemic of 2020, we 
administered the task online using the Meadows Research 
(http://meadows-research.com) online platform. Each participant 
completed two sessions, one of which participants were asked to 
ignore T1 and in the other to attend T1 to report after the stream. Each 
session consisted of 600 trials, divided into 10 blocks. Each trial 
started with a central fixation cross over a grey screen for 500 ms, then 
four masks followed, presented for 100 ms immediately following each 
other. After the masks, T1 was presented for 200 ms followed by the 
presentation T2 for 300 ms followed by four masks of 100 ms SOA. 
The absence of intervening masks between T1 and T2 and the SOAs 
were chosen to optimise the influence of T1 on T2, and to ensure that 
T2 was presented long enough for it to be solved in the inferotemporal 
(IT) cortex. Previous monkey studies have shown that object 
categories within complex visual scenes can be linearly decoded in IT 
within 120-250 ms (Kar et al., 2019). Participants were instructed to 
make a speeded judgment to indicate if an animal was present in T2, 
‘Z’ for ‘Yes’ and ‘M’ for ‘No’, as soon as it was presented. In one of the 
sessions, participants were either instructed to attend or ignore T1 with 
the order of sessions counterbalanced across participants. After the 
stream of items, the true T1 image (50% of trials) or a random image 
was shown, and participants were asked to indicate if this was the T1 
or not. In the other session, participants were asked to ignore T1 and 
after the end of the stream participants were asked to press space to 
continue. For all participants, the order of session one and two was 
counterbalanced. Importantly, in our pilot studies we noticed that the 
Attend T1-condition (which included a task-switch from memorising T1 
and to convert the T2 decision into an immediate motor response, see 
figure 1B) was hard for participants to properly carry out and there was 
confusion regarding the task instructions. Therefore, before each 
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session, participants completed two training blocks of 6 trials each. In 
the first training block, the RSVP stream was slowed down by a factor 
of ten and instructional text was presented to indicate when to react to 
T2 and whether to ignore or attend to T1. The second training block 
had the same presentation speed as the actual experiment. We found 
that this significantly increased the participants' performance on the 
real task. 
 

Estimating V1 and AIT similarity 
We estimated pairwise similarities in V1 using the Natural Scenes 
Dataset (NSD, REF). The NSD consists of 8 participants who in total 
viewed >70 000 images (1000 shared images) from the Microsoft 
COCOs dataset (Lin et al., 2014), while brain responses were 
recorded using a 7T Siemens Magnetom 48 passively-shielded 
scanner and a single-channel-transmit, 32-channel-receive RF head 
coil. Whole-brain functional data were collected with 84 axial slices, 
1.8277 mm slice thickness, 216 mm (FE) and 216 mm (PE) field-of-
view, 1600ms TR, 62° flip angle, 0.66 echo spacing, and multiband 
slice acceleration factor 3. For more details and quality testing of this 
data set, please see (Allen et al., 2021). Functional data was pre-
processed using a novel development of GLMdenoise (Charest et al., 
2018; Kay et al., 2013), which allows for single-trial beta estimations 
(https://github.com/kendrickkay/GLMdenoise). The NSD comes with a 
collection of regions-of-interests (ROIs) where the visual areas were 
hand drawn using population receptive field (pRF) data by two cortical 
surface experts. We selected our ROIs, V1 and anterior inferior 
temporal cortex (AIT), based on our previous study (Lindh et al., 2021). 
For each of the 8 participants, we computed the pairwise similarity 
between each of the 1000 shared images using Pearson correlation 
on the z-scored beta estimates for both V1 and AIT. These pairwise 
similarities were then averaged across participants, resulting in one 
1000 x 1000 representational similarity matrix. For each T1-T2 
combination, we then indexed at the appropriate row and column to 
identify their similarity coefficient. It is important to note that the 
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participants in NSD were different from the ones participating in our 
behavioural study. 
 

Behaviour 
In addition to drift diffusion modelling (DDM, see below), to describe 
the accuracy performance difference between the attend and ignore 
T1 conditions, we calculated d-prime, and criterion based on the T2 
responses. 
 

Drift diffusion modelling 
Hierarchical Diffusion Decision Modelling (HDDM; (Wiecki et al., 
2013)) implemented in Python 2.7 was used to model the reaction time 
distributions for T2 correct and incorrect responses. A hierarchical 
model controls the shrinkage of the parameter space by centring the 
individuals prior to the group mean and can thus be seen as an optimal 
combination of fixed and random effects. Therefore, HDDM is 
preferable for small sample sizes (20-100 participants) (Ratcliff & 
Childers, 2015). Similar to SDT, DDM makes assumptions based on 
popular computational decision making ideas which posit that sensory 
evidence for a decision is accumulated over time until it reaches a 
certain boundary (Gold & Shadlen, 2007; Ratcliff & McKoon, 2008). 
Translated to our task, when T2 is presented, from starting point z 
(bias, however, we modelled correct or incorrect responses, so this 
variable was not included in our model) evidence (in favour for either 
“animal” or “no-animal”) is accumulated with drift-rate v (evidence 
accumulation) until it reaches boundary a (decision criterion, see 
Supplementary Figure 2). Another important parameter is t, or the non-
decision time parameter, which describes ancillary latent variables 
unrelated to the decision process (such as encoding to working 
memory or conversion into motor response). Similar to d-prime in SDT, 
drift rate reflects the quality of the sensory information and is directly 
related to perceptual processing (Voss et al., 2004). Therefore, our 
parameter of interest was first and foremost drift-rate v (or evidence 
accumulation speed) and how our manipulations and trial-by-trial 
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covariates affected this metric. In a full model using both sessions, we 
first removed all responses < 100 ms (considered too fast to be a 
properly evaluated response) and then we added the following 
regressors of interest on the drift-rate parameter: 1) V1 similarity 
between T1 and T2. 2) AIT similarity between T1 and T2. 3) Attend or 
Ignore T1 condition. 4) Interaction between V1 similarity and attending 
T1. 5) Interaction between AIT similarity and attending T1. In addition, 
we also added covariates that we reasoned could potentially bias our 
results: Covariate 1) If T1 and T2 were from the same category (both 
animal/both non-animal or targets were from different categories, 
henceforth known as category congruence). Since we modelled 
correct/incorrect responses, estimating the bias (z) was not possible. 
However, for example, it is possible that the T1 animal / T2 animal 
pairs would differ from T1 non-animal / T2 animal pairs in both 
similarity and their semantic relationship and potentially confound the 
results. Covariate 2) T1 complexity. Upon visual inspection of a 
previous pilot (see Figure 1C) and further simulations (Supplementary 
Figure 3) we observed that T1 images that were “dissimilar” in V1 from 
our T2s regularly had a lower scene complexity. Scene complexity is 
known to affect performance (Seijdel et al., 2021). In the AB literature, 
T1 difficulty is well-known to affect T2 performance (Akyürek et al., 
2007) and was thus a necessary covariate. In addition, we added one 
regressor of interest for the non-decision variable t: 1) Ignore or attend 
T1. HDDM uses Markov Chain Monte Carlo (MCMC) sampling to 
estimate the latent decision parameters associated with DDM (as well 
as the coefficients for the regressor of interests and covariates for drift 
rate) by generating samples from the posterior distribution by means 
of constructing a reversible Markov-chain which is centred around its 
ground truth posterior distribution. We ran 25000 samples in total. As 
recommended when sampling with MCMC, for stable estimates, we 
burnt the first 1000 samples (discarded), resulting in 24000 samples. 
For each sample, a small step is made in parameter space from the 
current parameter position and is accepted if the probability of the new 
parameters (given our data) is higher than the previous. Therefore, the 
resulting trace for a given coefficient on drift-rate can be used in 
hypothesis testing by comparing the values against zero, however, 
note that this is different from the p-value in classical statistics. A priori, 
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we decided that we would accept the H1 (there is an effect) of any 
coefficient if > 95% of the accepted posterior estimates were below or 
above zero. After running the full model, which included both sessions, 
we ran the two sessions separately using the following regressors of 
interest: 1) V1 similarity between T1 and T2. 2) AIT similarity between 
T1 and T2. We also modelled the two same covariates as described 
for the full model.  

Results 

Attending T1 does not decrease sensitivity, but impairs reaction 
time 
In the Attend T1 condition, we confirmed that participants executed the 
task properly with a high accuracy on T1 (M=89.6% correct, 
SD=6.23%, d-prime M=2.78, SD=0.689). For T2 performance we 
evaluated both d-primes for both the Attend and Ignore T1 conditions. 
We found no significant difference between the conditions in terms of 
d-prime; Ignore T1 (M = 2.50, SD = 0.72), Attend T1 (M=2.57, 
SD=0.68), t(51)=-0.95, p=0.346). The finding of no difference in d-
prime is not surprising considering the 300 ms presentation time of T2, 
10 Hz presentation rate (Shapiro et al., 2017) and masking (although 
see Nieuwenstein et al., (2009)) are crucial components for detecting 
AB effects. However, there was a significant difference in median 
reaction time between the two condition; Ignore T1 (M = 611ms, SD = 
188ms), Attend T1 (M=669ms, SD=181ms), paired t-test (t(51)=-2.29, 
p = 0.026, Cohen’s d = -0.315). See Figure 2. We further investigated 
the effect of an animal being present in T1 or not by conducting a 
repeated measures ANOVA with T1 attention (attend or ignore) and 
T1 animacy (animal present or not) as factors. For d-prime there were 
no main effect of attending T1 (F(1,51) = 0.893, p = 0.349) or T1 
animacy (F(1,51) = 0.087, p = 0.769), and further no interaction effect 
of attending T1 and T1 animacy (F(1,51) = 0.025, p = 0.874). For 
reaction time, the ANOVA confirmed the main effect of attending T1 
(F(1,51) =5.301, p = 0.025, η2 = 0.093), but with no main effect of T1 
animacy (F(1,51) = 0.145, p = 0.705) and no interaction effect (F(1,51) 
= 0.243, p = 0.624). We evaluated the convergence of the chains for 
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the different parameters through visual inspection (Supplementary 
figure 2). 
 
 
 

 
Figure 2. A) Reaction time distributions on speeded judgment for animal-
detection in T2 for the Ignore T1 (blue) and Attend T1 (red) condition. There is 
a qualitative difference between the distributions, with a larger peak for the 
Ignore T1 condition. B) D-prime (sensitivity to stimulus) for detecting animals 
in T2. No significant differsence in the two conditions. C) As implied by the 
distribution plot in A, there was a significant difference in median reaction time 
between attending and ignoring T1 conditions. With a Cohen’s d of 0.315 (see 
Attending T1 does not decrease sensitivity, but impairs reaction time under 
results), this can be considered to be a small to medium sized effect. * = p < 
0.05, ** = p < 0.01, *** = p < 0.001. 

 



 
 

 105 

Attending to T1 affects drift rate in opposite directions for V1 
similarity and AIT similarity 
Note that with 24000 samples our precision is 1/24000 = 0.00004 
implying that if all the chains end up on either side of zero it can only 
be described as > 0.99996. For the full model (both sessions, Figure 
3A), the estimated decision-related DDM-parameters were the 
following: parameter a (criterion, M=1.74, SD=0.052), v (drift-
rate/accumulation speed, M=1.55, SD=0.07), t (non-decision time, 
M=0.2, SD=0.012). The estimated coefficients from the five 
regressors-of-interest on drift-rate (as ordered in Methods Drift 
diffusion modelling): 1) No main effect of V1 similarity between targets 
on drift rate (M=-0.027, SD=0.067, P(coefficient > 0) = 0.3). 2) A main 
effect of target-target similarity in AIT on drift rate (M=0.438, 
SD=0.035, P(coefficient > 0) > 0.99996). 3) Attending T1 led to a 
decreased drift rate of T2, showing that attending T1 affects perceptual 
processes (M=-0.223, SD=0.055, P(coefficient < 0) > 0.99996). 4) We 
found an interaction between attending T1 and V1 similarity, implying 
that attention to T1 is imperative for the beneficial effect of V1 similarity 
(M=0.169, SD=0.05, P(coefficient > 0) > 0.9729). 5) We also found a 
negative interaction between attending T1 and AIT similarity, which 
corroborates the notion that attending T1 increases the amount of 
interference between targets in late processing stages (M=-0.15, 
SD=0.05, P(coefficient < 0) > 0.9996). For our two covariates we got 
the following estimates: Covariate 1) A positive effect on drift rate for 
category congruence, meaning that when both targets were from the 
same category (animal or not) participants were faster at accumulating 
evidence for the correct target category (M=0.367, SD=0.013, 
P(coefficient > 0) > 0.99996). Covariate 2) A negative effect of T1 
complexity, showing that when T1 is less complex (in terms of number 
of available visual features) it interferes less with T2 processing (M=-
0.0059, SD=0.0007, P(coefficient < 0) > 0.99996). We evaluated the 
fit using the Deviance Information Criterion (DIC), deviance (the 
function of the probability density) and pD (DIC - deviance). DIC= 
30149.584, deviance = 29987.991, pD = 161.593.  
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Figure 3. Posterior probabilities of coefficients on drift rate from 24000 
MCMC samples (see methods). The posterior probabilities can be used in 
hypothesis testing by accepting any outcome that is 95% (0.95 fractional, see 
(Cavanagh et al., 2011) for similar methods) above or below 0. A) Full model 
with regression coefficients on drift rate for Attending T1, AIT similarity, AIT x 
Attending T1 interaction, V1 similarity, and V1 similarity x Attending T1 
interaction (see methods for the complementary covariates). Attending T1 
was associated with a negative coefficient on drift rate, implying that attending 
T1 reduces the speed of evidence accumulation. While the main effect AIT 
similarity increases the drift rate, V1 similarity showed no such effect. 
However, the interaction effect with attending T1 was significant for both 
levels of similarity. These interaction effects were interestingly in opposite 
directions, where attention interferes with the priming effect of AIT similarity 
but enhances the effect of V1 similarity on drift rate. B) By repeating the 
analysis on the Attending T1 condition separately, we confirm that there is a 
main effect of both AIT and V1 similarity. C) The same analysis on the Ignore 
T1 condition showed no main effect of V1 similarity on drift rate, but an effect 
of AIT similarity was present. 
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AIT and V1 similarity affect drift rate when attending to T1 
Separately for the Attend T1 condition (Figure 3B) we estimated the 
same DDM parameters as in the full model: parameter a (criterion, 
M=1.663, SD=0.057), v (drift-rate/accumulation speed, M=1.4, 
SD=0.06), t (non-decision time, M=0.28, SD=0.013). For our 
regressors of interest we estimated these coefficients on drift-rate: 1) 
Target-target similarity in V1 (M=0.123, SD=0.075, P(coefficient > 0) = 
0.95). 2) Target-target similarity in AIT (M=0.381, SD=0.036, 
P(coefficient > 0) > 0.99996). Similar to the full model, we also 
estimated these covariates: Covariate 1) Category congruence 
(M=0.367, SD=0.013, P(coefficient > 0) > 0.99996). Covariate 2) T1 
complexity (M=-0.0056, SD=0.001, P(coefficient < 0) > 0.99996). 
These results show that attention modulates the effect of similarity 
differently depending on where the two targets overlap in neural 
representation. It is important to note that we included condition 
repetition (if both targets were animate or if both were inanimate), so 
the effect AIT similarity was not just present regardless of if T1 was 
attended or not, but it cannot be explained by response bias. We 
evaluated the convergence of the chains for the different parameters 
through visual inspection (Supplementary figure 2). 
 

AIT similarity only modulates drift rate when ignoring T1 
Since we did not find any main effect of V1 similarity on drift rate, but 
there was an interaction effect with attention, we decided to analyse 
both sessions separately. We first analysed the Attending T1 condition 
(Figure 3B) and estimated the same model parameters as with the full 
model: parameter a (criterion, M=1.663, SD=0.05), v (drift-
rate/accumulation speed, M=1.407, SD=0.065), t (non-decision time, 
M=0.286, SD=0.013). We also included the same covariates as the full 
model (condition repetition and T1 complexity) and these regressors 
of interest: V1 similarity (M=0.123, SD=0.07, P(coefficient > 0 = 0.95)) 
and AIT similarity (M=0.381, SD=0.036, P(coefficient > 0 = 0.99996)). 
We then analysed the Ignore T1 condition (Figure 3C): parameter a 
(criterion, M=1.759, SD=0.054), v (drift-rate/accumulation speed, 
M=1.481, SD=0.075), t (non-decision time, M=0.211, SD=0.012). For 
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our regressors of interest we estimated these coefficients on drift-rate: 
1) Target-target similarity in V1 (M=0.021, SD=0.071, P(coefficient > 
0) = 0.62). 2) Target-target similarity in AIT (M=0.339, SD=0.031, 
P(coefficient > 0) > 0.99996). Similar to the full model, we also 
estimated these covariates: Covariate 1) Category congruence 
(M=0.0496, SD=0.016, P(coefficient > 0) > 0.99996). Covariate 2) T1 
complexity (M=-0.0058, SD=0.001, P(coefficient < 0) > 0.99996). 

Discussion 
 
The aim of the current study was to evaluate the role of target 
competition in RSVP, specifically the effect of target similarity on 
perceptual decisions in RSVPs. We presented participants with two 
targets (T1 and T2) embedded with distractors and instructed them to 
make a speeded judgment if an animal was present in T2. Participants 
in separate conditions were instructed either to ignore or to attend T1 
for a subsequent report. This allowed us to investigate how attention, 
one of the core theoretical elements of AB, interacts with target 
similarity at either the stage of V1 or AIT. It further allowed us to test 
one aspect of the most popular models of AB, the two-stage model 
(Chun & Potter, 1995), which posits that attending T1 has no effect on 
the perceptual processing of T2. Using HDDM (Wiecki et al., 2013) we 
estimated coefficients for our conditions on two latent parameters 
within DDM, i.e., drift rate (speed of evidence accumulation) and the 
non-decision variable (associated with encoding and motor response). 
We find that attention exhibits a push and pull relationship with target 
similarity, whereby attention increases the speed of evidence 
accumulation for targets that are similar in V1 while decreasing 
evidence accumulation of T2 when targets are similar in AIT (Figure 
3).  
 
In two previous studies (Lindh et al., 2019; Lindh et al., 2021), we have 
shown that target-target similarity in low-level visual features of natural 
images can enhance T2 performance in an AB task. These findings 
have been at odds with another well-known phenomena where 
repetition of a stimulus lead to impairment of reporting T2 (RB, 
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(Bavelier, 1994; Buffat et al., 2013; Fagot & Pashler, 1995; Kanwisher, 
1987; Kanwisher & Potter, 1990; Park & Kanwisher, 1994)). However, 
consistent with theories of RB, we have also shown that 
representational similarity between targets in high-level visual and 
semantic brain areas is detrimental for T2 performance (Lindh et al., 
2021). RB is a counterintuitive notion, considering the robustness of 
priming phenomena (Monahan et al., 2008; Schacter & Buckner, 
1998). RB-like effects seem to depend on task-relevance (Bavelier, 
1994; Sy & Giesbrecht, 2009), where it is crucial that the two targets 
are reported on the same dimension, implicating memory failure, and 
not perceptual interference, as the underlying cause (Fagot & Pashler, 
1995). In our experiment we controlled for target-congruence (if T1 and 
T2 both contained an animal or if both did not), therefore, any effect of 
AIT similarity cannot be due to a response bias but an inherent effect 
of similarity in other high-level visual features. We show that target-
target similarity in AIT increases the drift rate for T2, regardless of 
whether participants were asked to attend or ignore T1. This was an 
expected effect based on the different task requirements for T1 and 
T2. However, a clear negative interaction effect between AIT similarity 
and attending T1 was found, indicating that attention reduces the 
priming effect of similarity in higher-tier visual areas, suggesting a 
complementary type of deficiency to RB. Furthermore, we corroborate 
our previous findings of a facilitating effect through V1 similarity on T2 
performance (Lindh et al., 2021) by showing that V1 similarity also 
increases speed of evidence accumulation. However, this effect is only 
present when participants are asked to attend T1 (Figure 3B). In the 
introduction we argued that one potential mechanism for V1 similarity 
to enhance performance is through neural adaptation. Attention is 
known to amplify neural activity (Luck et al., 1997; Posner & Gilbert, 
1999; Roelfsema et al., 1998), and attention can modify neural 
adaptation (Alais & Blake, 1999), presumably through recurrent 
mechanisms (Quiroga et al., 2019). Therefore, it is possible that 
attending T1 is necessary to increase the adaptation effects, which in 
turn leads to faster evidence accumulation if T2 shares similar scene 
statistics with T1.  
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It has been argued that AB and RB are two distinct phenomena (Arnell 
& Shapiro, 2011; Chun, 1997), however, our results imply that they 
might be closer to each other in certain respects. The AB typically 
requires two preconditions, lag and attention to T1. In our previous 
paper (Lindh et al., 2021) we showed that AB magnitude (ABM, 
defined as the difference in lag-7 and lag-2 performance) can be 
explained in part by the similarity between targets arising at different 
levels of processing. The task in our current experiment is neither a 
pure AB nor RB task, in the traditional sense, considering our design 
has longer presentation times with a speeded judgment on T2. 
However, this setup allowed us to test the second concept of AB, 
attention to T1, with a more sensitive measure than pure T2 
performance by instead modelling reaction time distributions together 
with accuracy. We show that the attention to T1 also modulates how 
similarity between targets affects perceptual processes associated 
with T2. This interaction with attention and evidence accumulations 
has clear consequences for many popular theories of AB. Specifically, 
most AB theories revolve around the two-stage model (Chun & Potter, 
1995; Dux & Marois, 2009). Simplified, in a two-stage model, the two 
targets are first processed, in parallel, up to a semantic level without 
interference. In the serial second stage, T1 is being consolidated into 
memory and T2 cannot be consolidated until T1 has been fully 
processed. DDM allows for an important distinction between 
perceptual decision parameters (the a, v, and z parameters) and the 
non-decision parameter t. The non-decision parameter is associated 
with auxiliary processes such as motor initiation and memory 
encoding. A strict two-stage, late bottleneck, model predicts that 
attending T1 would only affect the t-parameter, and not interfere with 
the perceptual processing of T2. While we find that attending T1 does 
affect the t-parameter, corroborating the notion of a bottleneck, we also 
find that attending T1 also affects drift rate (Figure 3). Not only is the 
main effect of attention present, but also interaction effects with both 
AIT and V1 similarity between targets. First, this implies that attending 
T1 affects both decision-related and unrelated processes, where 
attention has double negative consequences for T2 processing by 
increasing the non-decision time as well as slowing down the drift rate. 
Second, it points to a duality where attention interacts with similarity in 
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opposite directions depending on where in the visual hierarchy the 
targets share neural representations.  
 
In this study we elucidate the role of similarity between targets and 
attention in animacy detection. Looking at similarities between targets 
at different levels of processing provides a new window into 
mechanisms underlying phenomenon such as AB and RB. This 
provides further information into how processing of several targets 
interacts, depending on where in the visual hierarchy they overlap in 
representational space. We show that attending T1 interacts with how 
similarity between targets in V1 and AIT affects the speed of evidence 
accumulation of animal detection in natural scenes. Interestingly, this 
interaction goes in opposite ways for V1 and AIT, where attention is 
needed for V1 to increase evidence accumulation while attention 
suppresses the effect of AIT. Our data provides evidence that 
attending T1 disrupts T2 processing by both prolonging the non-
decision time as well as slowing down the speed of evidence 
accumulation, providing specific behaviour which can be utilized to 
evaluate future models of attentional blink. 
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Supplementary 

 

Table S1 

D-prime for attending/ignoring T1 and T1 animacy 

Attend T1 T1 animal Mean SD N 

Attend  Animal  2.453  0.646  52  

   Non-animal  2.499  0.862  52  

Ignore  Animal  2.380  0.652  52  

   Non-animal  2.397  0.960  52  

 

  

 
 



 
 

 115 

 
Supplementary Figure 1. Distributions of image similarities within all 
types of conditions. No visible difference between animal and non-
animal distributions, indicating no bias between conditions. 
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Supplementary Figure 2. Posterior plots for DDM parameters. By visually 
inspecting the normal distribution of the chains one can infer that the chains 
have converged. While there is no guarantee of convergence for a finite 
sample set, ensuring that there are no drifts or jumps in the trace (the trace 
seems to overall be fluctuating over a specific value) is a good heuristic for 
convergence. Another heuristic is to ensure that the autocorrelation is 
relatively low. A) Posterior values for parameter a (threshold) indicates how 
much evidence (criterion) needed for subjects to make a decision. Top-left 
panel indicates the values for each chain, the right panel shows the 
distribution of these values. A normal distribution is indicative of converging 
chains. Bottom-left panel shows the autocorrelation. B and C shows the same 
for t (the non-decision time) and v (drift-rate). 
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Supplementary Figure 3. In a pilot study we noticed that when selecting 
image-pairs based on similarity from V1 and AIT that the T1 complexity 
became biased. As it is known that more complex T1 images (see Figure 1) 
would be processed quicker (Kar et al., 2019) we argue that this would affect 
the influence of T1 on T2 processing positively. We defined the complexity of 
an image by its average activation of the first layer of an AlexNet, where if the 
image would activate more feature units in layer 1 of AlexNet it would be 
considered more complex. To simulate the bias, we randomly selected 50 
animate and 50 non-animate hypothetical T2s and then selected T1s that 
were either similar or dissimilar in V1 and AIT. We then saved the average 
complexity of T1 for each condition. This procedure was repeated 1000 times 
to obtain a confidence interval. This simulation confirmed that when image 
pairs are selected based on V1 similarity, dissimilar T1s are less complex and 
would thus lead to a quicker T2 processing. This effect was reversed for AIT 
similar
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General discussion 
In every waking moment in our lives an immense amount of 
information reaches our sensory organs. The ability to filter out non-
essential information is crucial for preserving computational resources 
used to recognise the objects which are pertinent for our current goals. 
Decades of research has given us a good understanding of the visual 
processing stream, from the retina to early visual areas to the more 
category-dependent and view-independent representations in inferior 
temporal cortex (ITC; DiCarlo, Yoccolan, and Rust 2012). The 
realisation of this hierarchical organisation has inspired a new 
generation of computational vision models; deep convolutional neural 
networks (DCNNs; Krizhevsky, Sutskever, & Hinton 2012). These 
networks mimic the hierarchical structure seen throughout the human 
visual system and are arguably the most promising models of the 
brain's visual system to date (Khaligh-Razavi and Kriegeskorte 2014). 
In both the brain and in DCNNs, the further along the processing 
stream the more the representations become category-specific and 
view-invariant. With a large corpus emerging where networks are fine 
tuned to fit brain data even better, an increased interest is also 
surfacing to use DCNNs as models for clinical conditions (Bonnen, 
Yamins, and Wagner 2020) or to manipulate neural populations 
(Bashivan, Kar, and DiCarlo 2019). To complement this, in this thesis 
I explore the usage of the intrinsic representations within DCNNs and 
the brain to predict behaviour in rapid object recognition. However, no 
sensory stimulus is an island. The perception (and the concomitant 
neural responses) of a target is strongly dependent on both spatial 
(what surrounds the object) and temporal (what was observed in the 
past) context. Processing a stimulus in isolation is challenging enough, 
however, the complex world we live in does not provide information in 
discrete, easily distinguishable portions but rather with an abundance 
of information perpetually reaching our sensory organs. In this thesis, 
I sought to understand how object recognition, parallel processing of 
natural images and conscious access relate to each other. I evaluate 
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the role of the relationship between object representations, both 
between specific image pairs and between categories of stimuli, and 
the propensity for conscious access to rapidly presented natural 
scenes. With this, this thesis attempts to provide a nuanced view of 
how semantic categories and target interactions during parallel 
processing affect our ability to perceive the world. 
 
In chapter two we investigated categorical differences regarding their 
propensity of conscious access during short and challenging 
presentation rates. Previous research has indicated that animate 
objects are more efficiently processed compared to inanimate objects 
(Jackson and Calvillo 2013; Nairne et al. 2013; Guerrero and Calvillo 
2016; New, Cosmides, and Tooby 2007), and the specific 
representational geometry in the human ITC predicts how quickly an 
object is correctly identified as animate (Carlson et al. 2014). This 
implies that the categorical organisation within ITC might reflect a bias 
towards processing certain categories over others. However, beyond 
the broad category boundaries between animate and inanimate, there 
is not much knowledge regarding how more specific categorical 
groups might differ. We narrowed this gap in our knowledge by 
selecting groups of visual objects known to cluster together in a 
distributed multivariate representational code within ITC (Charest et al. 
2014). By presenting two targets (T1 and T2, respectively) embedded 
into a stream of distractors, we tested the difference in propensity for 
conscious access between semantic categories. In a typical 
Attentional Blink (AB) task, participants are impressively good at 
identifying a single target within the stream, even at very rapid 
presentation rates. However, when two targets are presented and T2 
follows T1 by 200-500 ms, participants are often unable to correctly 
report the T2 identity (Raymond, Shapiro, and Arnell 1992). We first 
show that animate objects are less affected by the AB window, 
corroborating previous evidence that animate objects are more 
efficiently processed (New, Cosmides, and Tooby 2007; Guerrero and 
Calvillo 2016; Jackson and Calvillo 2013). This finding is different from 
only detection (for example only looking at lag-2 performance) since 
we baseline each image with its performance at lag-7, meaning that 
the effect cannot be attributed to the choice of masks and their 
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influence on performance for each category. Furthermore, we show 
that there is a significant variance between smaller sub-categories 
within the animate and inanimate division, extending previous notions 
of categorical differences in visual processing. Using the hierarchical 
organisation of a DCNN we tested which type of features (derived from 
different layers of the DCNN) best predict the variance of AB 
magnitude (ABM) between images. Here, importantly, the variance in 
ABM was best predicted by high-level visual features implying that it is 
the categorical organisation, not the shared low-level visual features 
within categories, which explain the differences in processing priority. 
In an exploratory phase, we further tested how similarity between 
features in the DCNN between targets affects the T2 reportability. We 
found, contrary to the literature on repetition blindness, that similarity 
between targets is beneficial for T2 reportability. In a second 
experiment, we confirm this finding by directly creating trials where T1 
and T2 were either similar or dissimilar in terms of mid-level visual 
features, and thus directly manipulating participants' reportability 
rather than post hoc correlations. We hypothesised that our finding is 
since these visual features are not used in working memory 
consolidation of the actual object, whereas previous studies have 
shown how important task-relevance is for repetition blindness. It is 
possible that the proclivity in the literature for using simple stimuli, such 
as letters and digits, have prohibited researchers from discovering this 
effect earlier. By embracing the complexity of natural scenes with the 
usage of multivariate analysis methods and DCNNs, this enabled me 
to not only to show that categorical differences in ABM are due to high-
level visual features but also that there is an effect of similarity that 
affects T2 reportability. 
 
In the third chapter, inspired by our finding of target-target similarity 
enhancing performance, we continued to probe a conundrum of target-
target similarity. On one hand, we have a large corpus of repetition 
blindness findings, where a repetition of targets leads to an 
impediment of the T2 report. On the other hand, we note in chapter 
two an improvement of T2 reportability when targets have similar 
visual features. By utilising similarity measures between natural 
images using functional magnetic resonance imaging (fMRI), 
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electroencephalogram (EEG), and a DCNN we asked how target-
target similarity at different levels of processing affects T2 
performance. Here, we replicated repetition blindness findings and 
showed that when targets are similar in high-level visual and brain 
areas associated with semantic representations (Binder et al. 2009) 
the T2 reportability suffers. This finding extends previous experiments 
of repetition blindness and implies that overlap in neural 
representation is key to the deficiency. Prior research on repetition 
blindness has shown that an exact replication of the stimulus is not 
necessary to obtain the effect. Participants will miss the second target 
even when the two targets are represented differently, e.g., 7 and 
“SEVEN” or homophonic word pairs such as rain/reign. Indeed, these 
previous studies imply that the suppressive mechanism is not related 
to visual features per se, but to phonological overlap. However, our 
results suggest that this is only part of the story, with target-target 
similarity in several brain areas associated with high-level visual 
features, semantics as well as phonological processing all correlate 
with behaviour.  
 
We replicate our findings from chapter two to show that similarity in V1 
between T1 and T2 leads to increased T2 performance. There are 
several possible reasons for our opposing findings, where the 
similarity between targets can both increase and decrease the 
probability for correct T2 reports depending on which level the 
processing of targets is interacting. Previous research has shown that 
when T2 is preceded with a cue of the same colour, T2 performance 
is enhanced (Nieuwenstein et al. 2005), implying that T2 processing is 
susceptible to subtle priming by low-level visual features. However, 
although this finding was robust using similarities from fMRI brain data 
and DCNN, it was not reflected in similarities derived from EEG. Here, 
we would expect this to be seen in the early time points (around 100 
ms and onwards) where the initial decoding of images is often found. 
This might reflect a difficulty of extracting similarity measures from 
rapidly presented stimuli (stimuli was only shown for 16 ms) or possibly 
the difference in estimating distances (with Pearson correlation used 
in CNN and fMRI and decoding used in EEG). Furthermore, while the 
DCNN modelling successfully replicated the results of V1 similarity, it 



General discussion  
 

 122   

failed to replicate findings of impaired T2 performance for trials when 
targets were similar in high-level semantic brain areas and late 
processing stages from the EEG. This might reflect the fact that 
AlexNet is trained on object recognition, for example, to locate distinct 
visual features that represent a dog compared to a cat, rather than 
semantics, i.e., realising that a dog is related to a leash without 
displaying any similar visual features. Recent efforts to train DCNNs 
with semantics have indeed led to better fit to neural data from the late 
ventral visual stream (Devereux, Clarke, and Tyler 2018). However, 
one caveat is that many objects that we reason are semantically 
related are defined by how they are used together in action.  
 
While representational overlap in V1 and high-level visual and 
semantic brain areas seem to explain inter-stimuli and trial variance of 
ABM, we also asked if representational distinct representations could 
explain individual differences. We, therefore, ran a searchlight 
procedure where we correlated individual performance with the 
average similarity between targets based on iteratively centring a 
sphere on each voxel in the brain and including all voxels within the 
sphere in a pairwise similarity metric. We found that participants who 
perform well in the task have a larger distance between target 
representations in the right temporoparietal junction (rTPJ) and right 
inferior frontal gyrus (rIFG). These areas have previously been 
associated with a bottom-up saliency network (Corbetta, Patel, and 
Shulman 2008) and are believed to be crucial for working memory 
updating. Furthermore, recent research on individual differences has 
also highlighted rTPJ, with higher grey matter density and connectivity 
with IFG (Zhou et al. 2020). Connectivity between rTPJ and IFG has 
also been shown to be a hallmark sign for successful reports of T2 
(Gross et al. 2004). Earlier research has argued that the speed of 
encoding, indicated by an earlier P300 peak, explains why certain 
participants are so called “non-blinkers” (Martens et al. 2006). 
Therefore, it is important to note that our task in the fMRI was a slow 
working memory task, designed to achieve a high signal-to-noise ratio 
and stable representations for each image, and only several weeks 
later did participants do the RSVP task. The task in the fMRI was like 
the RSVP in the regard that participants needed to encode an image 
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in working memory for several seconds, engaging attention, 
perception, and memory-related processes. However, an important 
difference is that the display time of stimuli in the fMRI task was at 700 
ms and participants had ample time to encode the natural scene and 
participants performed at the ceiling. It is then possible that this more 
distinct representation between objects in the bottom-up saliency 
network, evident when encoding slowly presented images, facilitates 
fast processing during RSVP. Further research is needed to evaluate 
this possibility. 
 
In the fourth chapter, we probed the relationship between image 
similarities and attention to T1. Within the AB, there are two main 
concepts: temporal distance between targets (i.e., lag) and attending 
or ignoring T1. In chapters two and three we focused on AB 
magnitude, the difference in T2 performance between lag-7 and lag-2. 
This is a common measure to evaluate how much performance suffers 
from being within the AB window, that is, when T2 is presented 200-
500 ms after T1. However, the reason the phenomenon was named 
“attentional” blink was due to the fact that when participants were 
asked to ignore T1, performance on T2 was improved indicating that it 
was an attention-related depletion that lead to the main effect 
(Raymond, Shapiro, and Arnell 1992). In fact, most theories of AB 
have been focused on how attending T1 affects T2 processing. To 
investigate how our findings of target-target similarity effects on T2 are 
related to attending T1 we designed a hybrid task with modulation of 
attention to T1, where participants were asked to make speeded 
judgments on whether the T2 scene contained an animal. In two 
different sessions we also asked participants to either ignore T1 or 
memorise T1 to report after the stream. This allowed us to collect 
reaction time on T2 as well as accuracy allowing for more informative 
dependent variables. We modelled several latent decision variables 
using drift diffusion modelling, where we were primarily interested in 
drift rate (speed of evidence accumulation) and non-decision time as 
a way of separating between perceptual and non-perceptual 
processing. While RB has been associated with memory failure (Fagot 
and Pashler 1995), we hypothesised that V1 similarity will prime 
perceptual processing before memory processes are engaged. 
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Surprisingly, we did not find a main effect of V1 similarity on drift rate, 
however, we did show a positive interaction effect between attending 
T1 and V1 similarity on drift rate. Further post-hoc analysis showed 
that target-target V1 similarity did affect drift rate, but only in the 
“attending T1”-condition. This implies that attending T1 is a necessary 
condition for V1 similarity between the targets to affect perceptual 
processing of T2. Furthermore, many models of the AB are based on 
strict bottleneck ideas, where attending T1 affects T2 processing in 
late stages after T2 has been perceptually processed. In corroboration 
of this we do find that attending T1 does, in fact, affect the non-decision 
time which is more associated with motor initiation and memory 
encoding. However, we also show that attending T1 negatively 
modulates drift rate, indicating that attending T1 both prolongs the non-
decision time and slows down drift rate. 

Neural mechanisms underlying performance modulation of 
competing stimuli 
There are two related neurophysiological ideas that are interesting 
candidates for explaining our findings of similarity between targets, 
repetition suppression and more general, neural adaptation. 
Adaptation, in the context of neural processing, refers to the idea that 
neurons that are continuously firing will gradually lower their response 
over time (Whitmire and Stanley 2016). The proposed main advantage 
of such a mechanism is that it facilitates detection of changes in the 
environment by suppressing static information flow, where activation 
based suppression would decrease the salience of recently seen 
visual features (Schwartz, Hsu, and Dayan 2007). This neural 
adaptation is increased along the visual hierarchy (Dhruv and 
Carandini 2014), implying that there are cumulative contributions at 
multiple stages. Adaptation is known to change the tuning function of 
neurons (Whitmire and Stanley 2016), referring to the sensitivity a 
neuron has for a specific feature dimension. For example, for a neuron 
that encodes orientation, it will have a preferred angle to which 
responds the most with a gradual lower response to more distant 
angles. By presenting an orientation grating stimulus of a larger angle, 
for example 45 degrees larger than its preferred angle, the tuning 
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function of the neuron will shift temporarily in the opposite direction 
(Dragoi, Sharma, and Sur 2000). The timing of the following stimuli 
can drastically change if its representation is being attracted to or 
repulsed from the previous orientation (Quiroga, Morris, & Krekelberg, 
2019), i.e., biasing the perception of the second orientation away or 
towards the first orientation. This idea could potentially explain how 
similarity in low-level visual features might be beneficial when two 
targets are presented in short succession. 
 
Another interesting notion is how adaptation is used as a mechanism 
to discount the effects of visual noise. Vinken et al. (2020) presented 
participants with an adaptor image (a random noise pattern) for an 
extended time, and then superimposed a target-object using the same 
background adapter image or another noise pattern. The authors 
showed that when the object was presented with the same noise 
pattern as the adaptor image there was a significant increase in 
detection performance. By implementing a simple local “neuron” 
adaptation mechanism into an AlexNet DCNN architecture, the 
network exhibited a similar behaviour as to humans. One of the 
proposed functions for neural adaptation is that it increases our 
sensitivity to small changes in the environment, taking advantage of 
statistical regularities in image structures to optimise sensory coding 
(Schwartz, Hsu, and Dayan 2007). This idea was the rationale for why 
evidence accumulation speed might be enhanced when two targets 
share low-level similarities. By adapting to irrelevant scene statistics, 
and thus decreasing the neural response, the visual system could 
potentially be more efficient at evaluating the scene. Future work could 
attempt to model the findings reported in chapter four, with the 
interaction effect of attention and similarity, using a similar model as 
Vinken et al. (2020) together with an intrinsic attention module. At least 
on the surface, our findings in the fourth chapter reveal a seemingly 
idiosyncratic behaviour, which could imply a specific architecture and 
definite processing modules. To successfully recover these results 
using a simple local neural adaptation model would be a convincing 
finding and an inspiring start to refine models of the Attentional Blink. 
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While neural adaptation is best studied using single cell recordings, a 
related phenomenon from the fMRI literature is repetition suppression. 
Repetition suppression refers to the fact that the Blood Oxygen Level 
Dependent (BOLD) signal, or the MRI contrast of blood 
deoxyhaemoglobin, decreases in certain brain areas when an image 
is repeatedly shown. This effect distinguishes itself from neural 
adaptation since fMRI integrates signals from millions of neurons, 
where a decrease in BOLD does not necessarily relate directly to the 
lowered firing rate of single neurons. However, a recent study showed 
that the only model that captures a large variety of second order 
statistics, within fusiform face area (FFA) and V1, was a local scaling 
model which outperformed competing models such as neural tuning, 
repulsion or attraction models (Alink, Abdulrahman, and Henson 
2018). This corroborates a link in the literature between local neural 
adaptation and repetition suppression in fMRI. Like repetition 
blindness, which is a behavioural phenomenon, repetition suppression 
does not always occur. For example, in FFA, an area known to 
respond strongly to faces (Kanwisher, McDermott, and Chun 1997), 
repeating face stimuli lead to repetition suppression but only when a 
face or symbol is familiar (Henson, Shallice, and Dolan 2000). Here, a 
repetition of unfamiliar stimuli instead led to an increase of BOLD 
response. Interestingly, a similar finding has been reported for 
repetition blindness, where repetitions of known words induce an 
impairment of reporting the second target but not a repetition of 
nonsense words (Coltheart and Langdon 2003). However, due to the 
complications of capturing fMRI data together with behaviour, to the 
best of my knowledge, there are no current studies that have 
successfully shown that repetition suppression and neural adaptation 
are the main mechanisms behind the behavioural effects of repetition 
blindness. Nevertheless, they can be argued to be one of the top 
contenders and further research is needed to establish their role.  

Modelling the attentional blink 
Throughout my years of investigating object recognition and conscious 
access using the AB as a tool, I have considered many of the available 
models that strive to explain all the different findings from the AB 
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literature. A model that describes the AB behaviour would be of great 
utility, not only for understanding attention but also to inform 
researchers using AB as a tool, allowing them to design more precise 
experiments. In an attempt to make a brief summary of the best known 
models, I’ll start with the inhibition theory (Raymond, Shapiro, and 
Arnell 1992), which proposes that an attentional “gate” opens when T1 
is observed. Immediately following stimuli is suppressed (gate closed) 
to reduce confusion during feature binding. However, Chun and Potter 
(1995) showed that both perceptually and categorically defined targets 
led to a blink, showing that the AB is not due to feature binding 
problems. Chun and Potter, in their two-stage model, instead 
proposed that all targets are initially processed perceptually, but need 
to pass a capacity-limited second stage to be impervious to 
decay/overwriting. Although, this notion didn’t seem to work either. Di 
Lollo et al. (2005) showed that participants can report 3 consecutive 
targets (known as the extended lag-1 sparing), which arguably seems 
inconsistent with a capacity-limited account (Olivers, Van Der Stigchel, 
and Hulleman 2007). Di Lollo and colleagues instead proposed the 
temporal loss of control (TLC) model which posits a filter that selects 
targets and excludes distractors. A T1+1 distractor causes a disruption 
in the filter's configuration (loss of control) leading to slower processing 
of the following target. In the boost and bounce model (Olivers and 
Meeter 2008), T1 ignites an attentional “boost”, which allows the T1+1 
distractor to be processed. However, the detection of a non-target 
distractor elicits a “bounce” mechanism that inhibits T2, causing it to 
be overwritten and forgotten. In both TLC and the boost and bounce 
model the distractors are a crucial component for AB, however, the 
effect of AB has been observed even without intermediate distractors 
(Nieuwenstein, Potter, and Theeuwes 2009). Furthermore, as seen in 
our fourth chapter, where we don’t have any intermediate distractors, 
a clear deficiency can be found in the drift rate when attending T1. It 
is possible that solely considering accuracy, where you only have 
“correct” or “incorrect” responses for each trial, is not sensitive enough 
to detect the scope of processing deficiencies induced by attending 
T1.  
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My personal, probably contentious, opinion of directly modelling AB is 
that it is a backwards notion at best. The reason for this, is that I argue 
that AB is an epiphenomenon of an attentional system that has 
evolved to expect new stimuli to occur at a certain cyclic rate. One of 
the main contenders for this cyclic expectation is the fact that humans 
make about 4-5 saccades per second (or once every 200-250 ms). 
This means that every day, from the time you wake up to the time you 
go back to bed, you are continuously sampling your environment, 
processing objects at the focal point of your current fixation and 
updating your working memory. Or in other words, the precise timings 
for AB are aligned with the sampling rate to which your brain is 
adherent to every waking moment. This sampling rate of 4-5 Hertz is 
known as theta when applied to brain waves and the phase of theta 
has a crucial role in object detection. For example, when measuring 
theta in monkeys at the frontal eye fields, lateral intraparietal area, and 
the mediodorsal pulvinar, studies have found that performance is 
significantly higher when a target is presented concurrently with the 
theta phase being at its peak (for review see Fiebelkorn and Kastner 
2019). Interestingly, saccades modulate activity in thalamus 
(Leszczynski et al. 2020), early visual cortex (Purpura, Kalik, and 
Schiff 2003), as well as hippocampus (Hoffman et al. 2013). In fact, 
neurons in V1 are particularly responsive to targets presented within 
100-150 ms after a saccade (Lowet et al. 2016; Gallant, Connor, and 
Van Essen 1998), implying a reset of an attentional episode with 
expectations of incoming stimuli. A similar reset can be argued to 
relate to theta waves within the hippocampus (Lisman and Jensen 
2013), a brain area associated with episodic (or temporal) memory 
(Umbach et al. 2020). Within the hippocampus, the theta-phase has 
been theorised to support encoding at the trough and retrieval at the 
peak (Hasselmo, Bodelón, and Wyble 2002), and saccades reset the 
theta-phase, such that, at every new fixation the theta phase is at its 
peak (Hoffman et al. 2013). These studies corroborate the idea that 
saccades are central to the cyclic expectation that underlies attentional 
episodes. Attentional episodes refer to the fact that although your 
experience of the world seems continuous, the brain rather seems to 
integrate information within ‘‘volleys’’ of activity occurring in a cyclic 
manner at around 4-5 Hertz. If you hypothesise that target detection in 
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an RSVP is similar to a saccade, in the respect that it resets an 
attentional episode, then these animal studies (Lowet et al. 2016; 
Gallant, Connor, and Van Essen 1998) provide direct evidence for why 
we have lag-1 sparing and why target detection after 200-500 is 
impaired. 
 
However, in the AB literature there is little mention of the role of 
saccades when explaining why a second target presented 200-500 ms 
after a first target is missed. To the best of my knowledge, there is only 
one study that investigates the role of saccades in the AB. The authors 
of this study demonstrated an improvement of T2 performance when 
participants were asked to make a saccade directly after T1 
(Kamienkowski, Navajas, and Sigman 2012), thereby (theoretically) 
making a hard reset of the attentional episode. Therefore, I argue that 
we should not model the AB per se. Instead, we should strive to make 
models that have the same constraints as humans in terms of 
processing ability. Although our eye muscles are the fastest muscle 
movement, we are capable of, in a sense, our perception of the world 
is constrained by our actions (or ability to act). Therefore, a model with 
similar constraints, such as small focal points and a limitation to how 
fast it can make saccades to sample new information, and later trained 
to do object recognition of visual scenes could potentially be a 
promising model of AB. In fact, the idea of constraining a recurrent 
neural network with a small fovea, and the ability to sample new 
information, has been successfully implemented and trained on 
handwritten digits (Mnih et al. 2014). These restrictions enhanced the 
model’s performance, indicating a computational role for saccades 
(Mnih et al. 2014). In my view, the most promising model of the AB 
would not model the epiphenomenon but instead the phenomenon. 
That is, a model with similar types of constraints as humans together 
with local neural adaptation to model the interaction potentially also 
between targets when they share representational geometry at 
different stages of processing. 
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The role of DCNNs in neuroscience 
Most of the current studies on DCNNs and brain data have been 
focused on correlating the representations within the brain and 
DCNNs. These studies have successfully shown that DCNNs are our 
current most reliable model of the representational geometry at 
different stages of processing in the visual ventral stream (Khaligh-
Razavi and Kriegeskorte 2014; Yamins et al. 2014), following a similar 
hierarchical structure as the visual stream (Eickenberg et al. 2017; 
Cichy, Pantazis, and Oliva 2014; Greene and Hansen 2018; 
Kietzmann et al. 2019). In recent years several studies have shown 
that representational geometry in high-level visual areas predict 
behaviour (Charest et al. 2014; Carlson et al. 2014; Ritchie, Tovar, and 
Carlson 2015). These findings provide crucial evidence for the notion 
that the information that is being decoded from these areas also have 
behavioural consequences as opposed to just being epiphenomenal 
(Grootswagers, Cichy, and Carlson 2018). Almost a decade after 
DCNNs changed the field of vision science, we are now starting to use 
DCNNs as models of clinical conditions (Bonnen, Yamins, and Wagner 
2020) and researchers have been able to produce images designed 
to activate only a select population of neurons (Bashivan, Kar, and 
DiCarlo 2019). Overall, models of the visual system can be infinitely 
useful, and it is up to researchers to find ways of using them to propel 
knowledge.  
 
In chapter two we show two creative ways of how DCNNS can be used 
to explain and manipulate behaviour, both of which are. First, after our 
finding that there are categorical differences in AB magnitude, we were 
posed with the conundrum that visual categories not only share high-
level visual features but also low-level features (Torralba and Oliva 
2003). By taking advantage of the hierarchical structure of AlexNet, 
where low-level visual features are processed in the first few layers 
and high-level information emerges in later layers, we showed that the 
prediction of AB magnitude increased with each layer. We thereby 
provide evidence that the best explanation for the categorical 
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differences in AB magnitude is that they are due to the high-level visual 
features. This implies that some semantic categories, that are known 
to share a distributed code in ITC (Charest et al. 2014; Bao et al. 2020; 
DiCarlo, Yoccolan, and Rust 2012; Kriegeskorte, Mur, and Bandettini 
2008; Kanwisher, McDermott, and Chun 1997; Downing et al. 2001), 
are more likely to be consciously accessed and their high-level visual 
features best explains their differences. Second, we also show that 
similarity between the two targets can affect behaviour. In order to 
manipulate behaviour, we used the inner representations of AlexNet 
to select image pairs that were either similar or dissimilar. We showed 
that similar image pairs lead to an increased probability of correct T2 
report, a notion that seems to contradict the repetition blindness 
literature (Kanwisher 1987; Coltheart, Mondy, and Coltheart 2005; 
Fagot and Pashler 1995; Park and Kanwisher 1994; Bavelier and 
Potter 1992). However, the usage of DCNNs allowed us to define 
similarity in a different, more objective, way than relying on perceptual 
intuitions, ratings or similar methods that are subject to our own biases. 
Since the network we used was trained on strict object classification, 
the similarities between images are probably related to specific object 
features. However, one can imagine that training networks on different 
tasks, from semantics to perceptual qualities, will yield a larger range 
of similarities which in turn can be used in a more systematic way to 
investigate the interactive effects of representational overlap. 
 

Problems with DCNNs as models 
Despite the success of DCNNs in vision sciences, their presence has 
not been without criticism. The main concerns can be summarised into 
three problems: (1) DCNNs do not learn the way humans do, (2) 
DCNNs make mistakes humans would never do, (3) and we are just 
substituting one black box with another. These problems have been 
argued over for many decades, but with the recent upsurge of DCNNs 
it seems as if more researchers are finding them useful and 
acceptance in the field is increasing.  
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First, neural networks were for many decades considered a pipe 
dream for scientists due the difficulty of determining how modifying the 
weights one unit would affect the system's overall behaviour. However, 
this changed in the 1980s with the popularisation of backpropagation 
(Rumelhart et al. 1985; LeCun et al. 1988), a method where errors of 
the output layer are propagated backwards throughout the network 
and therefore solving the problem by iteratively moving the parameters 
closer to a state that produces a desired output. The brain also learns 
by adjusting the connection strength between neurons, but feedback 
connections in the brain seem to have a very different role (Gilbert & 
Li 2013; Lamme, Supèr, and Spekreijse 1998) and human children 
seem to learn unsupervised, without the correct labels on every item 
in their surroundings. Despite these differences, recent proposals 
have been made arguing that the brain might approximate 
backpropagation as a learning mechanism using locally computed 
errors (Lillicrap et al. 2020). This is a drastically different idea than the 
commonly accepted Hebbian notion of learning, which states that 
“cells that fire together, wire together” (Hebb 1949). That is, correlated 
activity between connected neurons leads to a stronger synaptic 
connection between them, a principle that has been successful in 
explaining a wide range of plasticity mechanisms (Sumner et al. 2020). 
However, even if neural networks learn differently from humans, one 
could argue that the learning process is inconsequential if the final 
model shares computational characteristics with the brain.  
 
The second problem is related to the fact that DCNNs are well-known 
to be vulnerable to network adversarial attacks (Goodfellow, Shlens, 
and Szegedy 2014). This can be done by adding an imperceptibly 
small amount of designed noise on top of an image of (for example) a 
panda, and the network would classify it as a gibbon with over 90% 
confidence (Goodfellow, Shlens, and Szegedy 2014). However, 
Firestone (2020) argues that these examples of unhuman behaviour 
do not reflect a meaningful difference in how information is processed. 
Instead, Firestone argues that humans also differentiate in how they 
perceive world, where some are scared of spiders, some perceive a 
blue and black dress to be gold and white (Schlaffke et al. 2015) and 
some humans make errors when constructing sentences, e.g., 
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Spoonerisms (Palmquist 1980). But importantly, neural networks have 
different constraints than humans that make them vulnerable to 
different types of errors that are attributable to their constraints rather 
than their competence (Firestone 2020). This idea is illustrated in a 
study wherein by constraining a DCNN with a retina model and then 
perturbing an image of a cat until the network misclassified it to a dog. 
Importantly, the resulting image also fooled humans (Elsayed et al. 
2018). Overall, biologically constrained DCNNs as a way of increasing 
robustness is gaining more ground in recent years (Girard et al. 2021; 
Zhang et al. 2019; Evans, Malhotra, and Bowers 2021). Developing 
neural networks with biological constraints might not only be beneficial 
in making them more like human cognition but biology can also inspire 
engineers to make more computationally efficient models. 
 
Finally, Kay (2017) contends the idea of DCNNs as useful models of 
the visual system. He argues that neither the implementation nor the 
goals of the neural networks are comparable to humans, and therefore 
their utility to understand the brain is trivial at best. He also iterates a 
common critique of DCNNs; the enormous parameter space, in 
combination with non-linearities, makes for an opaque black box which 
is equally mysterious as the brain. In response to Kay (2017), (Scholte 
2018) agrees that on an implementation-level DCNNs and brains are 
different but this is not a problem if we instead consider DCNNs the 
same way we do with animal models. In a sense, the complexity 
argument against DCNNs should also apply to animal models. For 
example, using rodent brains as models for medical treatments or 
understanding basic perception has been invaluable for science 
despite not having a full understanding of how their brains work. 
Having a potentially unlimited zoo of neural networks with different 
architectures, trained on different data sets with a variety of task goals 
could yield new knowledge unreachable with conventional methods. 
These models can be lesioned and manipulated with precision, 
enabling us to probe and make predictions about human behaviour 
and brain function. The discussion for the role of DCNNs in vision 
science will most certainly continue for a long time (unless they get 
replaced by newer ideas, such as transformers (Tuli et al. 2021)), but 
their impact on the field the past ten years is impossible to dismiss.  
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Relationship to clinical populations 
Although all the chapters in this thesis include only healthy participants 
with no known neurological diseases, some of our findings may shed 
some light on the understanding of certain clinical populations. Many 
types of disorders have been associated with a lower AB performance, 
such as schizophrenia (Wynn et al. 2006), attention deficit 
hyperactivity disorder (Armstrong and Munoz 2003), and lesions in the 
parietal lobe (Husain et al. 1997; Shapiro, Hillstrom, and Husain 2002). 
Two related, but dissociable, neural disorders that connect to our 
findings are visual extinction and simultanagnosia. In visual extinction, 
most associated with a lesion around the right TPJ, the patient can 
attend to an object in the contralesional field (i.e., the left visual field) 
as long as there is no other salient object in the ipsilateral (to the 
lesion) visual field. In this case, it seems as if attending to the right 
visual field interferes with the patient's ability to perceive any object in 
the left visual field. In contrast, simultanagnosia describes the inability 
to perceive two objects even when presented within the same visual 
field. A patient with simultanagnosia being presented with a table with 
food and cutlery would for example only perceive a spoon. While visual 
extinction is associated with unilateral damage, simultanagnosia 
occurs after bilateral damage to the parietal lobe. The main 
commonality is that in both instances patients have an inability to 
resolve attentional conflict - an inability similar to that which causes the 
AB. 
 
Damage to the right TPJ has been associated with a clear reduction 
of performance in the AB (Husain et al. 1997; Shapiro, Hillstrom, and 
Husain 2002), where the maximal extinction occurs when the 
ipsilateral object is presented slightly before the contralateral object 
(Cate and Behrmann 2002). Similarly, our findings in chapter 3 showed 
that individual differences in AB can be related to a more differentiable 
neural code between visual objects in high dimensional 
representational space within the right TPJ. In our data, there were no 
clear categorical organisations within the right TPJ, however, 
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participants who overall had more distinct representations between 
objects in TPJ were more successful in the task. This implies that this 
region does not maintain the semantic input itself but is instrumental 
in transferring perceptual information into working memory, resolving 
attentional conflict when multiple objects are being processed 
simultaneously. Furthermore, in both visual extinction and 
simultanagnosia there is evidence for the notion that similarity 
between the objects exacerbates the condition (Rafal et al. 2002; Ptak 
and Schnider 2005; Baylis, Driver, and Rafal 1993; Coslett and Lie 
2008). For example, Rafal et al. (2002) asked patients with visual 
extinction to report the value of digits and numerical words presented 
simultaneously in each visual field. Patients showed a decreased 
ability to correctly report the left target when it was paired with a right 
visual field target that required the same response (e.g., 1 vs 1) 
regardless of if they were visually similar or not (e.g., 1 vs ONE). 
Similar to findings in repetition blindness (Bavelier and Potter 1992), 
Rafal et al. (2002) also found that phonologically similar pairs (e.g., 
ONE vs WON) led to a direct reduction in performance for reporting 
the item in the left visual field. One interpretation of this is that the 
deficits these patient experiences are not perceptual per se, but rather 
on a response level and related to the current task demands. This is 
mirrored in RSVPs studies with healthy participants showing that 
similarity between targets only affects performance when they are 
similar in the task-relevant domain (Sy and Giesbrecht 2009). 
Interestingly, even in a healthy population, with intact parietal function, 
when instructing participants to report two simultaneously presented 
stimuli (one in each visual field), participants show “pseudoextinction” 
(Goodbourn and Holcombe 2015), where targets in the right visual field 
more often omitted. Together, these findings indicate that even healthy 
individuals exhibit similar deficits (and due to the same competitive 
mechanism) as patients who suffered damage to the parietal lobe 
when they are put under highly demanding situations, such as RSVP. 
By furthering our understanding of the mechanisms behind all types of 
RSVP phenomena, we might be able to model the experience of 
certain clinical populations. 
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Conclusions 
The goal for a researcher in any field is to investigate the world around 
them while attempting to describe an unfathomably complex reality 
while constrained by the limits of our language and cognitive abilities. 
We often use terms such as “understanding” to describe the pinnacle 
of our efforts. However, without a clear definition of what the term 
“understanding” means, it rather becomes an umbrella term used by 
researchers to avoid defining their exact desires. In psychology and 
neuroscience research, the word “understanding” often ends up 
meaning “is there a difference between these two conditions”, which 
indeed is an important starting point when there isn’t sufficient 
knowledge available to make any other predictions. However, I’d 
argue that modelling, prediction, and precise manipulation based on 
models are necessary, but perhaps not sufficient, goals for proper 
understanding.  
 
Throughout this dissertation, these have been the key concepts used 
for understanding. In chapter 2 our initial question started with the 
examination of semantic categories and if they are differentially 
sensitive to the AB window. We found a large variance between 
categories and continued by predicting the individual images AB 
magnitude using hierarchical visual features derived from a DCNN. 
This allowed us to conclude that we can predict how likely an image is 
to gain conscious access based on its high-level visual features, 
demonstrating a new understanding at what level processing the AB 
might be occurring. In an explorative phase we also found that 
similarity in visual features between targets are beneficial for 
performance. We replicated this finding by selecting T1-T2 pairs based 
on their similarity in visual features, thereby using our model to 
manipulate behaviour. These findings seemed contrary to the current 
literature where similarity between targets often led to lower 
performance. In the two following studies (chapter 3 and 4) we show 
that the word “similarity” has been arguably under-defined in previous 
studies in the sense that natural images are complex, just like the 
world around us, and what it means for two natural scenes to be similar 
depends on where in the brain they are being processed at a given 
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moment. This denotes one of the main contributions of this thesis. 
Traditionally, studies of attention, perception, and working memory 
has made use of simple stimuli (such as simple geometric shapes, 
letters, digits, etc.) which has allowed a great deal of control over the 
experimental conditions. However, by embracing the complexity of 
natural images using DCNNs, fMRI and EEG together with multivariate 
methods lends utility in exploring the intricacies of the brain. The 
concept of a dog can be presented in unlimited variations, with 
different breeds, viewing angles, low-level scene statistics etc. On the 
other hand, the letter “G” does not allow for the same breath of 
variation, which thus limits the range of analyses for the researcher. 
Arguably, our findings of low-level similarity in V1 being beneficial for 
performance and conflict in high-level vision and semantic brain areas 
would probably not be possible without the usage of complex stimuli.  
 
In conclusion, the complexity of our environment has shaped our 
brains, our bodies, and how we interact with our surroundings. The 
evolutionary relevance of certain categories has not only affected our 
preferences but also how the multivariate representations of 
categories in high-level visual areas are related to their proclivity to 
conscious access. By embracing the complexity of natural images, 
and utilizing a range of methods from machine learning, deep learning, 
fMRI/EEG, and cognitive modelling I have shown a nuanced picture of 
how natural images interact at different levels of processing and 
emerge into a state underlying conscious report of stimuli. Specifically, 
V1 similarity in multivariate representational space between images 
interacts with attention and enhances the speed of accumulating 
evidence for targets. Meanwhile, high-level similarity between targets 
has a negative impact on target performance where attention has an 
opposite effect compared to V1-similarity and decreases this 
impairment. These are important findings that not only shed new light 
on how object processing and attention interacts but can also be used 
by future modelling work as benchmark behaviours the models should 
exhibit.  
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Nederlandse samenvatting 
Als we onze ogen snel over een visuele scène heen laten gaan, 
verwerken we allerlei informatie zonder enige schijnbare moeite en lijkt 
de informatie continu over de tijd heen geïntegreerd te worden. 
Mensen zijn zo goed in het verwerken van visuele scènes dat de 
betekenis van een scène al geduid kan worden als een plaatje heel 
kort (13 ms) wordt aangeboden (Broers, Potter en Nieuwenstein, 
2018) en binnen een fractie van een seconde kunnen mensen al 
reageren op specifieke informatie uit een scène (Kirchner en Thorpe 
2006). In de afgelopen decennia is vastgesteld dat deze buitengewone 
prestatie bereikt wordt door de inrichting van ons hiërarchische, 
visuele systeem. Met name visuele kenmerken die laag in de visuele 
hiërarchie verwerkt worden, zoals randen, oriëntaties en kleur, worden 
heel snel verwerkt en deze basale visuele kenmerken worden later in 
de visuele hiërarchie gecombineerd tot complexere visuele 
kenmerken die vaak semantische eigenschappen hebben (DiCarlo, 
Yoccolan en Rust 2012). 
 
In een reeks onderzoeken heb ik verschillende varianten van het 
zogeheten “Rapid Serial Visual Presentation” (RSVP) paradigma 
gebruikt om te achterhalen waarom specifieke semantische informatie 
makkelijker in het werkgeheugen terecht komt en hoe scènes die kort 
na elkaar gepresenteerd worden elkaar beïnvloeden. Twee 
veelvoorkomende bevindingen bij multi-target RSVP's zijn de 
zogeheten “Attentional Blink” (AB: Raymond, Shapiro en Arnell 1992) 
en “Repetition Blindness” (RB: Kanwisher 1987). In het AB paradigma 
worden twee target-plaatjes (T1 en T2) kort na elkaar gepresenteerd 
binnen een serie van afleider-plaatjes. Als het tweede target-plaatje 
(T2) 200-500 ms na het eerste target-plaatje (T1) wordt getoond, 
kunnen proefpersonen de T2 vaak veel minder goed 
detecteren/rapporteren. In het RB-paradigma (Kanwisher 1987) 
presteren proefpersonen veel minder goed als zowel T1 als T2 
relevant zijn voor de taakprestatie (Sy en Giesbrecht 2009). Een groot 
probleem in het al bestaande AB- en RB-onderzoek is dat de gebruikte 
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stimuli vaak erg simpel en kunstmatig zijn. Daardoor is het moeilijk te 
begrijpen hoe interacties tussen de visuele targets leiden tot 
veranderingen in taakprestatie. Recente ontwikkelingen in analytische 
methoden maken het mogelijk om verschillen tussen complexe, 
naturalistische stimuli mathematisch te beschrijven. Hierdoor is het 
mogelijk om interacties tussen targets op verschillende niveaus in de 
visuele hiërarchie te kwantificeren en daarmee beter te begrijpen 
waardoor interacties tussen T1 en T2 tot veranderingen in 
taakprestaties in de AB- en RB-paradigma’s leiden. 
 
In mijn onderzoek heb ik verschillende neuroimaging-methoden (EEG, 
fMRI) en computationele modellen (drift diffusion modelling, DDM; 
convolutionele neurale netwerken, CNN) gecombineerd om beter te 
begrijpen, waardoor de “Attentional Blink” en “Repetition Blindness” 
worden veroorzaakt. Het lijkt erop dat visuele target-plaatjes elkaar op 
meerdere verschillende visuele verwerkingsniveaus kunnen 
beïnvloeden en dat afhankelijk van waar deze interactie plaatsvindt 
(laag in de visuele hiërarchie vs. hoog in de visuele hiërarchie) de 
veranderingen in taakprestaties tegengesteld kunnen zijn. Met behulp 
van een rijke dataset aan natuurlijke scènes laat ik zien dat als target-
plaatjes op elkaar lijken hoog in de visuele hiërarchie (waar taal en 
semantiek tot stand komen), dat er dan een verslechtering in 
taakprestaties plaatsvindt. Dit impliceert dat als de betekenis van de 
targets te veel overeenkomt, er slechts 1 scène kan worden 
gerepresenteerd het werkgeheugen (Kanwisher 1987; Wyble et al. 
2011). Als target-plaatjes juist op elkaar lijken laag in de visuele 
hiërarchie (waar basale beeldeigenschappen worden verwerkt), dan 
worden taakprestaties beter, wat doet denken aan de welbekende 
priming-effecten. Ook lijken target-plaatjes sneller verwerkt te worden 
als de beeldeigenschappen overeenkomen laag in de visuele 
hiërarchie, wat extra evidentie is dat er dan priming plaatsvindt.  
 
Samenvattend lijkt het erop dat deze nieuwe onderzoeksbenadering, 
waarbij natuurlijke scènes worden gebruikt als stimuli in staat is om 
vrijwel alle, soms tegenstrijdige bevindingen, in de AB- en RB-
literatuur te verklaren. 
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