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Abstract 196/200 words 1 

The ability of human tissue to reorganize and restore its existing structure underlies 2 

tissue homeostasis in the healthy airways, but in disease can persist without normal 3 

resolution, leading to an altered airway structure. Eosinophils play a cardinal role in 4 

airway remodeling both in health and disease, driving epithelial homeostasis and 5 

extracellular matrix turnover. Physiological consequences associated with 6 

eosinophil-driven remodeling include impaired lung function and reduced 7 

bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis 8 

with nasal polyps (CRSwNP). Given the contribution of airway remodeling to the 9 

development and persistence of symptoms in airways disease, targeting remodeling 10 

is an important therapeutic consideration. Indeed, there is early evidence that 11 

eosinophil attenuation may reduce remodeling and disease progression in asthma. 12 

This review provides an overview of tissue remodeling in both health and airway 13 

disease with a particular focus on eosinophilic asthma and CRSwNP, as well as the 14 

role of eosinophils in these processes and the implications for therapeutic 15 

interventions. Areas for future research are also noted, to help improve our 16 

understanding of the homeostatic and pathological roles of eosinophils in tissue 17 

remodeling, which should aid the development of targeted and effective treatments 18 

for eosinophilic diseases of the airways.  19 

 20 

Keywords 21 

Airway remodeling, eosinophil, asthma, chronic rhinosinusitis with nasal polyps 22 

 23 

Abbreviations 24 

DNA, deoxyribonucleic acid; CCR3, C-C chemokine receptor 3; CRSwNP, chronic 25 

rhinosinusitis with nasal polyps; CT, computed tomography; ECM, extracellular 26 

matrix; ECP, eosinophil cationic protein; EPO/EPX; eosinophil peroxidase; FEV1, 27 

forced expiratory volume in 1 second; FVC, forced vital capacity; GM-CF, 28 

granulocyte-macrophage colony-stimulating factor; IL, interleukin; ILC2, type 2 innate 29 

lymphoid cell; MBP, major basic protein; MMP, matrix metalloproteinase; RGD, 30 

arginyl-glycyl-aspartic acid; RNase, ribonuclease; TGF, transforming growth factor; 31 

uPA, urokinase-type plasminogen activator.  32 
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Introduction  33 

Human tissue has an inherent ability to reorganize or restore its existing structure, so-called 34 

tissue remodeling, which enables normal development and growth and mediates responses 35 

to injury or inflammation. Increasing evidence demonstrates that both the upper and lower 36 

airways can respond to injury by repairing and replacing damaged tissue, through processes 37 

including extracellular matrix (ECM) deposition and degradation and epithelial cell 38 

migration.1 While in healthy tissue this remodeling process contributes to damage repair and 39 

growth, airway disease can occur where the same process is exaggerated and persists 40 

without normal resolution.1,2 As the structural changes associated with airway remodeling 41 

develop during the course of disease, airway function often declines and the response to 42 

standard therapy becomes poor.2  43 

Eosinophils are known historically as end-stage effectors in the inflammatory response to 44 

infection and in eosinophilic diseases such as eosinophilic asthma.3 Now, as proposed over 45 

ten years ago by Lee and colleagues with the Local Immunity And/or Remodeling/Repair 46 

hypothesis,4 eosinophils are also recognized as essential contributors to tissue homeostasis, 47 

repair and remodeling.5 Here, we review evidence for the role of eosinophils in tissue repair 48 

and remodeling in health and in airway disease. We focus on data from studies in severe 49 

eosinophilic asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), two of the most 50 

studied eosinophilic airway diseases for which biologic treatments have been approved. 51 

Data from patients with these conditions, which are associated with substantial morbidity and 52 

in some cases an unmet treatment need, have provided valuable insights into the role of 53 

eosinophils in human airways, validating earlier murine model data.6-11  54 
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The biology of repair and remodeling  55 

Healthy airways  56 

During normal airway tissue development and growth, or in response to injury and/or 57 

inflammation, various structural adaptations contribute to repair and regeneration.12 Tissue 58 

repair is driven by epithelial cell migration to the site of damage and deposition of a 59 

provisional matrix comprising ECM glycoproteins including fibronectin and vitronectin, as 60 

well as basement membrane components such as laminin and collagen IV (Figure 1).13,14 In 61 

addition, underlying mesenchymal cells secrete ECM proteins and cytokines that contribute 62 

to airway repair and stimulate epithelial cell functions.15 The spreading, migration, and 63 

proliferation of epithelial cells during epithelial repair requires the participation of integrins, 64 

which signal through matrix metalloproteinase (MMP)-dependent activation of transforming 65 

growth factor (TGF)-β, a multipotent epithelial and mesenchymal cell growth factor.16-18 66 

Following airway injury epithelial cells are also regulated by WNT/β-catinin signaling 67 

pathways, which play critical roles in the function and behavior of these cells during tissue 68 

regeneration.19-21 Resolution of inflammation and tissue repair in healthy tissue requires the 69 

clearance of activated immune cells and production of lipid pro-resolving mediators that 70 

contribute to normal tissue restoration.22 71 

Airway disease 72 

Pathological airway remodeling is primarily considered a consequence of chronic injury 73 

and/or inflammation that leads to persistently altered airway wall structure and function.23 74 

Some studies (reviewed by Fehrenbach, et al.) also report that airway features of remodeling 75 

in symptomatic children may be evident before a clinical diagnosis of asthma is made, and it 76 

is appreciated that mechanical stress, in the absence of inflammation, may promote tissue 77 

remodeling.12 Primarily, the remodeling changes arise from dysregulated repair and 78 

regeneration pathways, leading to an exaggerated wound repair response culminating in the 79 

accumulation of (myo)fibroblasts and increased ECM deposition (Figure 1).12,24,25 In asthma, 80 

ECM deposition is increased in the reticular basement membrane region, lamina propria, 81 

and submucosa, with deposited proteins including collagen I, III and V, the adhesion proteins 82 

fibronectin and tenascin, plus proteoglycans, which play roles in the interaction between 83 

fibrils and collagen fibrinogenesis considered to be important in the functional consequences 84 

of the remodeling process.26-29 Epithelial-mesenchymal transition, the transformation of 85 

epithelial cells into fibroblast-like mesenchymal cells due to loss of epithelial polarity and 86 

expression of mesenchymal proteins,30-34 contributes to accumulation of fibroblast-like cells. 87 

Moreover, fibroblast transformation into myofibroblasts further increases ECM 88 

deposition.35,36  89 
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TGF-β mediates epithelial-mesenchymal transition32 and stimulates fibroblasts to synthesize 90 

collagens type I and III, fibronectin and proteoglycans.37 TGF-β is activated by integrins, 91 

reactive oxygen species, and mechanical stress, and stimulates downstream Smad2/3 and 92 

Smad4 signaling that mediate gene expression.38 Increased levels of TGF-β are also 93 

associated with increased osteopontin, an ECM protein released by eosinophils that is 94 

implicated in the modulation of inflammation and fibrosis in diseased airways.39-44  95 
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The role of eosinophils in airway repair and remodeling 96 

Eosinophil biology and its relevance for repair and remodeling 97 

Eosinophils are highly complex cells with a wide range of surface molecules and receptors. 98 

Key cell membrane receptors that define the unique biology of eosinophils include C-C 99 

chemokine receptor 3 (CCR3), which binds eotaxins, the lectin (carbohydrate-binding 100 

protein) Siglec-8, which can trigger eosinophil cell death when engaged, and the interleukin-101 

5 alpha receptor (IL-5Rα).45,46 Eosinophils also express receptors for multiple other cytokines 102 

and growth factors, including IL-4, IL-13, IL-33, thymic stromal lymphopoietin, and TGF-β.46 103 

They also express integrin adhesion molecules, through which they can interact with 104 

endothelial and airway cells.47  105 

Eosinophils are equipped to modify their immediate tissue environment; they contain large 106 

specific cytoplasmic granules, which possess a crystalloid structure and can be released into 107 

target tissues upon activation (Figure 1).48 Granules are released by cytolysis or piecemeal 108 

degranulation, during which granule proteins are packaged into secretory vesicles that 109 

deliver specific proteins to the extracellular space while leaving intracellular granules 110 

intact.49-51 Eosinophil granules contain four cationic proteins: major basic protein 1 (MBP1; 111 

[MBP and PRG2]), eosinophil cationic protein (ECP; [RNase3]), eosinophil-derived 112 

neurotoxin (EDN; [RNase2]) and eosinophil peroxidase (EPX; [EPO]).48 Eosinophil granules 113 

also store numerous cytokines, enzymes, and growth factors that promote airway 114 

remodeling and include the major mediator of airway remodeling, TGF-β, and MMPs. Figure 115 

2 provides an overview of the eosinophil proteins involved in airway remodeling.32,39-44,52-75 116 

Activated eosinophils also form extracellular DNA traps (eosinophil extracellular traps 117 

[EETs]) and Charcot–Leyden crystals (CLCs)/galectin-10.76,77 In patients with asthma, EETs 118 

negatively correlate with lung function and may have a hand in airway epithelial damage,78,79 119 

whilst CLCs/galectin-10 have been implicated in mucus production and the tenacity of 120 

mucus plug formation.80 In patients with CRSwNP, EETs and CLCs have been strongly 121 

associated with disease severity and their presence could negatively impact olfaction.81 122 

Eosinophil recruitment to sites of remodeling in healthy tissue  123 

Under normal physiological conditions, human eosinophils typically reside in the bone 124 

marrow, lung, thymus, adipose tissue, and gastrointestinal tract and are thought to spend ~1 125 

day in the circulation, with longer periods at their physiological sites of action, where they 126 

assist in normal tissue processes.82 In health, the eosinophil-specific chemoattractant 127 

eotaxin-1 (CCL11), produced by local epithelial cells, endothelial cells, and fibroblasts, 128 

contributes to eosinophil recruitment to the airways.83-85  129 
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Eosinophil maturation is regulated by granulocyte-macrophage colony-stimulating factor 130 

(GM-CSF), IL-3, and IL-5.86 GM-CSF is also thought to play a role in priming, activation and 131 

survival of tissue eosinophils,49 whilst IL-3 and IL-5 may promote trafficking of eosinophils, 132 

under normal conditions.87 Importantly, IL-5 supports eosinophil generation from CD34-133 

positive bone marrow progenitors, enhancing their sensitivity to eotaxin-1, and sustaining 134 

their survival.88-91 Although the role of type 2 innate lymphoid cells (ILC2s) in airway 135 

homeostasis is yet to be fully elucidated, in other healthy tissues they play a cardinal role in 136 

maintaining circulating IL-5 levels and, thereby, normal eosinophil levels in circulation and 137 

tissues.92-94 ILC2 cells are also responsible for eosinophil tissue recruitment in tumor 138 

regulation.95 139 

Eosinophils potentially contribute to epithelial remodeling by inhibiting cell surface plasmin 140 

generation by bronchial epithelial cells, through the local release of TGF-β.96 Therefore, the 141 

accumulation of eosinophils in bronchial walls may directly promote fibrin deposition and 142 

bronchial tissue repair/remodeling through this network.96 Additionally, eosinophils produce 143 

key factors contributing to coagulation (tissue factor, thrombin) and fibrinolysis 144 

(plasminogen), which are required for wound healing and epithelial remodeling.97 Fibrinogen, 145 

another coagulation and fibrinolysis factor, may be a chemoattractant for eosinophils98 and is 146 

a specific trigger for cytolytic eosinophil degranulation.99 Notably, eosinophils are frequently 147 

present at sites of high epithelial-mesenchymal turnover, during which new layers of 148 

differentiated epithelium are created from the mesenchymal unit; eosinophils are engaged by 149 

chemokines, growth factors, ECM proteoglycans and morphogenetic ligands, secreted by 150 

mesenchymal cells.9 151 

Eosinophils in pathophysiological airway remodeling 152 

Eosinophil recruitment and activation is exaggerated in both lower and upper airway 153 

disease.100-102 There is evidence directly linking the presence of eosinophils to disease-154 

related airway remodeling. This is discussed below, specifically in asthma and CRSwNP.  155 

Asthma  156 

Airway remodeling in asthma is caused by changes in the cellular and extracellular matrix, 157 

which lead to narrowed airways due to thickened airway walls; this is a key pathologic 158 

feature of asthma.26 Eosinophilic inflammation in the airway wall (and in induced sputum) 159 

has been related to the extent of reticular basement membrane thickening in asthma and 160 

eosinophilic bronchitis.103,104 Furthermore, airway eosinophils in patients with asthma display 161 

hyperadhesiveness towards provisional ECM, interacting with ECM components via 162 

expression of specific integrins (CD11c, CD11b, beta 5 integrins) and toll-like receptors.105-163 
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107 Eosinophils are one of the major sources of airway TGF-β in asthma,108 with TGF-β 164 

expression localized to eosinophils in the bronchi of patients with severe asthma.70,109 Aside 165 

from eosinophils, TGF-β is also produced by other immune cells in addition to epithelial cells, 166 

endothelial cells, vascular and airway smooth muscle cells, and fibroblasts.110 As described 167 

in the previous section, TGF-β promotes myofibroblast transformation, and facilitates the 168 

transcription of osteopontin.111,112 This in turn further potentiates airway remodeling,43 since 169 

myofibroblasts have increased synthetic capability for collagen and ECM proteins.113,114 170 

Osteopontin initiates the migration, adhesion, and proliferation of fibroblasts through cytokine 171 

signaling and macrophage activation.115 TGF-β can also promote epithelial detachment and 172 

epithelial-mesenchymal transition,32 which combined with impaired repair processes could in 173 

turn lead to increased ECM deposition. Eosinophil localization to the airway smooth muscle 174 

bundle has also been demonstrated in endobronchial biopsies from patients with severe, 175 

difficult-to-treat asthma.104 In contrast, there is no evidence of elevated eosinophil counts in 176 

the airway smooth muscle of patients with asthma requiring Global Initiative for Asthma Step 177 

1–4 treatment, patients with eosinophilic bronchitis, or healthy controls.104  178 

Co-culture of airway smooth muscle cells and pulmonary fibroblasts with peripheral blood 179 

eosinophils from patients with asthma (especially those with severe non-allergic eosinophilic 180 

asthma) alters the gene expression of  ECM proteins, MMPs, tissue inhibitors of MMPs, and 181 

TGF-β, versus healthy controls, indicating relevant interactions between activated 182 

eosinophils and the structural airways in the remodeling process.116 Furthermore, bronchial 183 

biopsies from patients with asthma show increased eosinophil accumulation, which is 184 

associated with poor epithelial integrity,117,118 and increased basement membrane 185 

thickness.103,119,120 Notably, in these studies, eosinophil accumulation was associated with a 186 

decline in lung function. The presence of intraepithelial eosinophils in asthma is associated 187 

with endogenous airway hyperresponsiveness and IL-5 gene expression;121 high eosinophil 188 

numbers in the bronchial submucosa are a marker of an altered mucus-repair phenotype 189 

and epithelial damage.118 Taken together, these results support eosinophil localization in 190 

areas of airway remodeling. This notion is strengthened by the findings of Drake et al., who 191 

showed that eosinophils co-localized to airway epithelial sensory nerves in endobronchial 192 

biopsies from patients with eosinophilic asthma.122 Eosinophils contributed to substantial 193 

structural remodeling in these patients (demonstrated by increased epithelial nerve density); 194 

they also increased epithelial innervation and neuronally-mediated airway responsiveness in 195 

a transgenic mouse model. 196 

Exaggerated eosinophil recruitment and activation has other indirect effects, which include 197 

epithelial cell damage; this triggers repair pathway activation and epithelial-to-mesenchymal 198 

transition, which underpins airway remodeling.123-125 Secondary effects of this response 199 
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include increased exacerbation frequency and severity due to progressive airway 200 

remodeling, which stems from epithelial cell mechano-stimulation during 201 

bronchoconstriction.23,126 Frequent and repeated exacerbations themselves may also result 202 

in structural airway remodeling.127-130 In addition, repeated bronchoconstriction induces 203 

goblet cell proliferation, subepithelial thickening, and mucus secretion, which together can 204 

lead to further airway obstruction.23 205 

CRSwNP 206 

Chronic rhinosinusitis (CRS) is characterized by inflammation of the paranasal sinuses; 207 

common symptoms include nasal congestion, excess mucus, hyposmia or anosmia, and 208 

facial pain.131 Data on upper airway remodeling in CRSwNP are limited versus asthma; 209 

however, there are similarities between the remodeling changes observed in both diseases. 210 

For example, as with asthma, there is evidence in CRSwNP for extensive epithelial cell 211 

disruption,132 basal cell hyperplasia,133 goblet cell hyperplasia and mucin hypersecretion.134 212 

There is also excess production of ECM components, with increased collagen and 213 

fibronectin, elevated numbers of ECM-producing myofibroblasts, and inflammation facilitated 214 

by eosinophil-derived CLCs, as well as an increase in extracellular matrix remodeling 215 

endopeptidases (MMP-1 and MMP-2, MMP-9, and MMP-7).135-138 In addition, 216 

immunohistochemistry has demonstrated the sinonasal epithelium can transition to a 217 

mesenchymal phenotype, which correlates with airway fibrosis and inflammation.139  218 

Elevated tissue eosinophil counts in CRSwNP, which may be facilitated by delayed 219 

eosinophil apoptosis,140 have been associated with enhanced epithelial-mesenchymal 220 

signaling, with recent evidence suggesting that TGF-β-mediated epithelial-mesenchymal 221 

transition may promote nasal polypogenesis.141 Furthermore, there is significant correlation 222 

between the number of epithelial eosinophils and the extent of epithelial damage, sub-223 

basement membrane collagen deposition and the level of epithelial to mesenchymal 224 

transition in patients with CRSwNP.142,143 At the site of epithelial barrier defects, extracellular 225 

eosinophilic traps can form in patients with CRSwNP, likely as a protective response against 226 

pathogenic bacteria.76 Furthermore, there is a strong correlation between expression of the 227 

eosinophil protein galectin-10 and CRSwNP severity.144 Some studies have demonstrated 228 

correlations between basement membrane thickening and elevated levels of tissue 229 

eosinophils in CRSwNP.139,142 Features of remodeling in CRS have also been associated 230 

with tissue eosinophilia and eosinophil activation.145 231 

Tissue edema in nasal polyps has been linked to an imbalance between coagulation factor 232 

expression and fibrinolytic activity, leading to increased fibrin accumulation, with the 233 

resultant fibrin scaffold trapping plasma proteins to enhance edema.146 Eosinophils are 234 
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involved in this process through the release of tissue factor147 (which enhances initiation of 235 

the clotting cascade) and MBP/EPX basic proteins. These inhibit thrombomodulin, a potent 236 

anticoagulant, thereby impairing fibrin breakdown.148 Tissue plasminogen activator (tPA), 237 

which usually plays a role in fibrin degradation, is decreased in CRSwNP.149 While the 238 

fibrinolytic urokinase-type plasminogen activator (uPA) is increased in CRSwNP (especially 239 

in inflammatory cells) and correlates with ECP, excessive uPA expression might interfere 240 

with the normal TGF-β–activated feedback mechanism of uPA in CRSwNP, resulting in 241 

nasal polyp edema.150  242 

 243 

The role of IL-5 in pathophysiological airway remodeling 244 

Through its well-known effects on eosinophils, IL-5 is likely to contribute to airway 245 

remodeling. Via binding to IL-5Rα, IL-5 promotes the maturation, activation, proliferation and 246 

migration of eosinophils as well as their survival within the airways.151 IL-5 also supports 247 

eosinophil generation from CD34-positive bone marrow progenitors, enhancing their 248 

sensitivity to eotaxin-1, and sustaining their survival.88-91 However, functional IL-5Rα is also 249 

expressed on basophils, mast cells, plasma cells, and bronchial epithelial cells as well as 250 

airway fibroblasts, with effects on the latter two functional cells being of particular relevance 251 

to tissue remodeling.152-155 The enhanced airway collagen synthesis observed in asthma may 252 

be driven by the direct activating effect of IL-5 on fibroblasts, with functional IL-5R 253 

upregulated in asthmatic lung fibroblasts versus healthy controls.155 IL-5 is also associated 254 

with increased levels of airway collagen in allergen sensitivity (which is increased in 255 

asthma).156 In addition, the downregulation of epithelial tight junction genes by IL-5 may be a 256 

factor that increases the susceptibility of epithelium to eosinophilic damage.152 As further 257 

evidence of the importance of eosinophils and IL-5 to asthma-related airway remodeling, 258 

anti-IL-5 biologic therapy is associated with reduced airway eosinophil counts and decreased 259 

airway remodeling and proximal airway wall thickness (assessed by ECM deposition and 260 

thoracic computed tomography [CT] scanning, respectively), in patients with eosinophilic 261 

asthma.157 In patients with asthma, nasal polyposis, and a confirmed diagnosis of aspirin-262 

exacerbated respiratory disease, IL-5 inhibition with mepolizumab leads to decreased 263 

inflammatory eicosanoid production and upregulation of epithelial cell transcripts involved in 264 

tight junction pathways and cilium organization,153 potentially impacting the strength of the 265 

epithelial barrier and evidencing the local detrimental effect of IL-5 exposure on epithelial 266 

function and integrity (a possible contributor to the susceptibility of epithelial cells to 267 

eosinophil-directed damage). Consistent with the importance of eosinophils and IL-5 to the 268 

abnormal tissue remodeling that underlies nasal polyp formation, levels of IL-5 and ECP (an 269 
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eosinophil activation marker) in resected polyp tissue have both been identified as 270 

independent predictors of further nasal polyp recurrence.158 Together, these data support a 271 

central role for IL-5 in pathological airway remodeling.   272 
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Physiological consequences of eosinophil-driven airway remodeling 273 

The airway changes described in this review are pathological features of eosinophilic airway 274 

disease and contribute to the clinical manifestations seen in patients (Figure 3).159-164 In 275 

severe eosinophilic asthma, the structural effects of chronic eosinophil-driven airway 276 

remodeling (goblet cell hyperplasia, decreased epithelial cell and cartilage integrity, 277 

subepithelial collagen deposition with increased thickness of the reticular basement 278 

membrane in the bronchial mucosa, increased airway smooth muscle cell mass, mucus plug 279 

persistence, and angiogenesis of the airways) have been postulated to explain the persistent 280 

airflow obstruction seen in some patients.119,165-172 While it is acknowledged that bronchial 281 

wall thickness measurements using computed tomography (CT) scanning can be influenced 282 

by reversible factors such as edema, airway secretions, and inflammatory cell 283 

infiltration,120,173 quantitative CT imaging studies, in some cases supported by endobronchial 284 

biopsies, have demonstrated proximal airway wall thickness/wall area and structural 285 

changes to predict airflow limitation and lung function impairment (measured by reduced 286 

forced expiratory volume in 1 second [FEV1], postbronchodilator percent predicted FEV1, 287 

FEV1/forced vital capacity [FVC], and forced expiratory flow25–75%), in patients with 288 

asthma.174-176 Several cross-sectional studies in patients with asthma have demonstrated 289 

increased odds of worse lung function177,178 and worse airflow obstruction over time179 in 290 

patients with eosinophilic inflammation. In addition, epidemiologic data have linked elevated 291 

blood eosinophils to worse lung function outcomes, irrespective of the diagnosis of 292 

asthma.180,181 Finally, higher blood eosinophil counts in children with untreated asthma are 293 

predictive of lower growth in FEV1 and FVC during adolescence.182 Interestingly, lung 294 

computational models have demonstrated that a) small airway narrowing is associated with 295 

clinically relevant deterioration in both asthma control and quality of life, and b) biologics 296 

targeting type 2 inflammation could reverse small airway narrowing, suggesting that early 297 

intervention could potentially modify the disease course.183 Altogether these data show that 298 

as a result of airway remodeling, patients may experience irreversible airway obstruction 299 

leading to worsening of lung function, airway thickening, air trapping and potentially reduced 300 

response to bronchodilators.  301 

In CRSwNP, excess mucus can be explained by goblet cell hyperplasia and mucin 302 

hypersecretion,134 downstream consequences of upper airway remodeling. Furthermore, 303 

extracellular connective tissue matrix degradation is likely to be an important pathological 304 

component in CRSwNP, contributing to the loosening of tissue architecture, tissue 305 

expansion, and pseudocyst formation.1  306 

 307 
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Therapeutic implications of eosinophil-driven airway remodeling 308 

Given the substantial contribution of airway remodeling to symptom development and 309 

persistence in patients with airway diseases, targeting the remodeling component of the 310 

disease is an important therapeutic consideration. Currently, the only available treatment 311 

that directly targets airway remodeling is bronchial thermoplasty, a bronchoscopy procedure 312 

that reduces airway smooth muscle cell mass through the local delivery of controlled 313 

radiofrequency energy. While histopathological effects are distinct in different disease 314 

endotypes/phenotypes, bronchial thermoplasty helps control asthma in patients with severe 315 

disease, thus demonstrating the therapeutic value in targeting several components of 316 

bronchial remodeling in this population.184-188 317 

There is evidence that suppressing eosinophilic inflammation may reduce airway remodeling 318 

and disease progression among patients with airway disease. For example, in vitro blocking 319 

of eosinophil arginyl-glycyl-aspartic acid (RGD)-binding integrins significantly reduces 320 

eosinophil adhesion to airway smooth muscle cells, resulting in reduced eosinophil-mediated  321 

TGF-β1, WNT-5a, and ECM protein gene expression and reduced proliferation in airway 322 

smooth muscle cells.189 In animal model studies, eosinophil-deficient mice showed 323 

attenuation of airway remodeling,7,190 with similar results demonstrated in IL-5 knockout 324 

mice.8 In humans with asthma, reduced eosinophil numbers are significantly associated with 325 

greater improvements in airway hyperresponsiveness, when tested with methacholine 326 

treatment.191 Of note, in patients with asthma and rhinitis, house dust mite sublingual 327 

immunotherapy in addition to pharmacotherapy reduced eosinophilic airway inflammation 328 

while improving symptoms and pulmonary function.192 Finally, in a Phase II study of patients 329 

with eosinophilic asthma, the eosinophil-depleting drug dexpramipexole improved lung 330 

function and reduced airway eosinophil granule proteins cognate with the magnitude of 331 

reduction in blood eosinophils.193 Together, these studies demonstrate that eosinophils are a 332 

critical factor driving airway remodeling in asthma and may be an important therapeutic 333 

target. 334 

Biologic intervention 335 

Biologics currently used in the treatment of severe asthma and CRSwNP have the potential 336 

to reverse or reduce the impact of airway remodeling through their effects on eosinophils. 337 

While work to determine whether these agents can reduce or reverse remodeling is still in its 338 

infancy, there are some key studies that support their role in reversing airway remodeling 339 

(Table 1).153,157,194-211 Several asthma studies show that the humanized monoclonal antibody 340 

mepolizumab, which targets IL-5 (the primary cytokine responsible for differentiation, 341 

activation and survival of eosinophils; also of relevance to airway remodeling through its 342 
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direct non-eosinophilic effects on structural airway cells),12,212 reduces airway eosinophil 343 

numbers and ECM/inflammatory mediator expression as well as reducing airway wall 344 

thickness and wall area and lowering rates of FEV1 decline.153,157,200,202,208 In addition, the 345 

anti-IL-5Rα antibody, benralizumab, can reduce eosinophil counts and numbers of tissue 346 

myofibroblasts, as well as improve hyperinflation, airway dysfunction and peripheral 347 

resistance in patients with asthma.197,206,207 The anti-IL-4/IL-13 antibody, dupilumab, 348 

improves epidermal remodeling and inflammation in lesional and healthy skin among 349 

patients with severe atopic dermatitis (detected by dynamic optical coherence tomography), 350 

suggesting that broader targeting of type-2 inflammatory cytokines may have anti-351 

remodeling effects.205 However, dupilumab did not modify airway tissue eosinophil numbers 352 

in a recent randomized, placebo-controlled study in patients with persistent asthma 353 

(NCT02573233; https://clinicaltrials.gov/ct2/show/results/NCT02573233) and there are no 354 

published studies demonstrating an effect in modifying airway remodeling in asthma.198 355 

Finally, the monoclonal antibody tezepelumab, which blocks thymic stromal lymphopoietin, 356 

partially reduces airway tissue eosinophil numbers in asthma, but evidence to date does not 357 

support a significant impact on airway remodeling changes, although there was evidence of 358 

reduced airway hyperresponsiveness and reduced mucus plugging.199,209,213 Studies in 359 

patients with CRSwNP have demonstrated reductions in polyp size following treatment with 360 

omalizumab, mepolizumab, benralizumab or dupilumab,194-196,201,203,210,214,215 suggesting an 361 

effect of anti-immunoglobulin E (IgE), anti-type 2 cytokine, and eosinophil-targeting biologics 362 

on nasal/sinus mucosa remodeling. In contrast, near-complete elimination of eosinophils in 363 

nasal polyp tissue was achieved with dexpramipexole in CRSwNP, without any reduction in 364 

polyp size.204 However, dexpramipexole has been shown in asthma to reduce airway 365 

eosinophil granule proteins cognate with the magnitude of reduction in blood eosinophils, 366 

and to improve lung function,193 a physiological feature that was also evident in the 367 

dexpramipexole EXHALE trial.216 This suggests that the failure of dexpramipexole to improve 368 

symptoms in CRSwNP is not a failure of the drug but that modifying eosinophilic 369 

inflammation alone in CRSwNPS may be insufficient to deliver clinical benefit. Notably, in the 370 

SYNAPSE study, which demonstrated significant reductions in polyp size with mepolizumab 371 

treatment overall, 49.5% of patients did not experience a ≥1-point improvement in total 372 

endoscopic nasal polyp score.203 This indicates there is heterogeneity in response to 373 

targeting IL-5 in patients with severe, recurrent nasal polyps requiring further surgery. A post 374 

hoc analysis of SYNAPSE found no clear differences in baseline clinical characteristics 375 

between patients considered to be mepolizumab responders versus non-responders, 376 

highlighting a need for further investigation of the underlying endophenotypic characteristics 377 

that may predict treatment response.217 With further research, the effects of biologic 378 

therapies on airway remodeling may provide specific clues as to the underlying mechanisms 379 
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of this process. In addition, CRSwNP pathobiology may change at different stages of the 380 

disease, with potential differences in the factors that drive nasal polyp formation versus 381 

those that maintain the edematous polyp state. Accordingly, further work is needed to fully 382 

explore and understand the impact of eosinophil-targeting therapies on remodeling in airway 383 

disease and whether alterations in eosinophil activation (rather than eosinophil numbers) or 384 

the effects of IL-5 inhibition that extend beyond eosinophils themselves, are mechanisms 385 

contributing to clinical impact.  386 

  387 
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Future directions and unanswered questions 388 

While our understanding of the role of eosinophils in airway remodeling in health and 389 

disease is improving, there are still many unanswered questions. A key objective will be to 390 

further understand the relationship between reductions in tissue eosinophil numbers, 391 

eosinophil activation status, and airway remodeling in airway diseases, as well as evaluating 392 

the relevance of the eosinophil-independent local effects of IL-5 on airway structural biology. 393 

Fully characterizing the differences between eosinophils involved in homeostasis and those 394 

involved in disease, observed in both mouse and human studies,218,219 will also be important. 395 

To this end, data on the phenotype and function of airway-resident eosinophils versus those 396 

in other tissues will be useful. Assessing genetic and inflammatory interactions and 397 

overcoming technical barriers to performing single cell sequencing of eosinophils (for 398 

example, eosinophil RNAses) will be integral to addressing this. In particular, studies using 399 

mass cytometry techniques such as cytometry by time of flight and tissue imaging mass 400 

cytometry can produce multidimensional data to help characterize subgroups of eosinophils 401 

with different expression profiles (and identify their presence in different disease 402 

phenotypes), in addition to establishing eosinophil-stromal cell interactions in the tissue 403 

microenvironment.102,220,221 There is also a need to understand airway changes during 404 

clinical remission, particularly remission induced by eosinophil-targeting biologics. 405 

Furthermore, the inclusion of endpoints more relevant to airway remodeling in clinical trials 406 

will help determine whether currently available eosinophil-targeting therapies can reduce the 407 

clinical effects of remodeling. Indeed, it will be important to determine whether airway 408 

remodeling becomes irreversible and, if so, what the contributors to and markers of 409 

irreversible remodeling are. Further characterization of the molecular signaling pathways 410 

involved in eosinophil migration and activation that initiate airway remodeling will also be 411 

useful in identifying novel molecular targets for therapy. For example, Rac1 has recently 412 

been identified as a target that has the potential to simultaneously reduce airway smooth 413 

muscle hyperplasia, airway hyperresponsiveness, and inflammation.222  414 

Although data on eosinophil-driven remodeling in CRSwNP are beginning to emerge, they 415 

are sparser than in asthma. As such, further information on the etiologic role of eosinophils 416 

and downstream signaling pathways in the pathophysiology of tissue remodeling in patients 417 

with CRSwNP is needed. It will be important to further determine what effect the reduction of 418 

eosinophil levels has on tissue remodeling and whether any of the effects of anti-IL-5 419 

biologic therapy are related to inhibitory effects on structural cells expressing the IL-5 420 

receptor, additional to those resulting from modification of local tissue eosinophilic 421 

inflammation.  422 
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Conclusion 423 

There is growing evidence that tissue remodeling contributes to both upper and lower airway 424 

disease. While evidence for remodeling in upper airway disease does not yet fully 425 

correspond with that seen in the lower airways, there are aspects consistent to both, such as 426 

epithelial cell disruption and excess ECM production. Furthermore, there is now evidence 427 

that eosinophil localization is important in upper airway remodeling, a notion already 428 

established in the lower airways. Our knowledge of eosinophils in tissue homeostasis and 429 

remodeling in health and eosinophil-mediated diseases is improving and has highlighted 430 

further therapeutic possibilities. Nonetheless, there is a need to further characterize the roles 431 

of eosinophils in the tissue remodeling that contributes to eosinophil-mediated disease, to 432 

help develop therapeutic interventions that attenuate and even reverse the effects of 433 

remodeling and thereby improve clinical outcomes and symptoms. Such evidence is needed 434 

to understand whether disease modification and prevention of disease progression are 435 

realistic outcomes of targeted therapy, especially in asthma, as the ability to fundamentally 436 

alter the biology underlying exaggerated airway remodeling processes is a key goal of 437 

disease modifying asthma therapy.  438 
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Figures and Tables 1108 

Table 1 Effects of eosinophil-targeting therapies on tissue remodeling  1109 

Treatment Study Number of 
patients 

Patient 
characteristics 

Treatment arms/ 
schedule 

Method of 
measuring 

remodeling/ 
endpoints of 

interest 

Results summary 
(study drug vs placebo/ 

no study drug) 

Asthma 

Mepolizumab  • Biopsy study200 24 • Mild atopic 
asthma  

• Treated only 
with β2 agonists 

• Mepolizumab 
750 mg IV or 
placebo 

• Thickness and 
density of 
markers of 
airway 
remodeling: 
tenascin, 
lumican and 
procollagen III 
in the reticular 
basement 
membrane   

• Significantly 
decreased 
expression of 
tenascin, lumican 
and procollagen III in 
bronchial reticular 
basement membrane 

• Reduced percentage 
and number of 
eosinophils 
expressing TGF-β  

• Randomized, double-
blind, placebo-controlled, 
parallel-group study157  

61 • Refractory 
eosinophilic 
asthma  

• History of 
recurrent 
severe 
exacerbations  

• Mepolizumab 
750 mg IV or 
placebo every 
4 weeks for 12 
infusions  

• CT 
assessment of 
airway wall 
geometry  

• Reduced eosinophil 
counts in bronchial 
biopsy specimens 
(2.1-fold), 
bronchoalveolar-
lavage specimens 
(8.2-fold) and 
bronchial-wash 
specimens (16.0-
fold) 

• Significantly reduced 
airway wall area 
(between-group 
difference in change 
from baseline: 1.1 
mm2) and total wall 
area (between-group 
difference in change 
from baseline: 1.5 
mm2) 

• Real-world, longitudinal 
analysis202 

318 • Severe asthma • Mepolizumab 
100 mg SC vs 

• Lung function 
decline 

• Significant reduction 
in FEV1 decline (0.6 
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 no 
mepolizumab 

vs –11.1% 
predicted/year)  

• Single-visit study153 36 • Aspirin-
exacerbated 
respiratory 
disease with 
asthma and 
nasal polyposis  

• Mepolizumab 
100 mg SC for 
≥3 months vs 
matched 
controls not 
receiving 
mepolizumab 

• Circulating 
granulocytes, 
nasal scraping 
transcripts, 
eosinophilic 
cationic 
protein, 
tryptase and 
antibody 
levels, and 
urinary and 
nasal 
eicosanoid 
levels  

• Decreased 
production of 
inflammatory 
eicosanoids 

• Upregulated tight 
junction proteins 
(likely due to 
decreased IL-5 
signaling on tissue 
mast cells, 
eosinophils and 
epithelial cells) 

• Longitudinal study208  15 • Severe 
eosinophilic 
asthma 

• 1 year of 
mepolizumab 
treatment, pre- 
vs post-
treatment  

• Chest high-
resolution CT 
and 
endobronchial 
ultrasound  

• Significant reduction 
in bronchial wall 
thickness (1.30 vs 
1.26 mm) and its 
layers (0.186–0.2 vs 
0.015–0.88 mm) 
Reduction in 
bronchial wall area, 
significant in patients 
with longer asthma 
duration and lower 
baseline FEV1 (70.08 
vs 62.27%) 

Benralizumab  • Biopsy study197 25 • Eosinophilic 
asthma  

• Single 
benralizumab  
1 mg/kg IV 
infusion or 
placebo, 
benralizumab 
100 mg or  
20 mg SC 
every 4 weeks 
for 3 months or 
placebo223  

• Airway smooth 
muscle mass 
in bronchial 
biopsies 
(using α-
smooth 
muscle actin 
immuno-
staining) 

• Significant reduction 
in eosinophil count in 
airway lamina 
propria (between-
group difference in 
% reduction: 88%) 

• Non-significant 
reduction in airway 
smooth muscle mass 
(between-group 
difference in change 
from baseline:  
-2.6%)  
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• Non-significant 
reduction in number 
of tissue 
myofibroblasts 
(between-group 
difference in change 
from baseline: -21.7)  

• Multicenter, randomized, 
double-blind, parallel-
group, placebo-controlled, 
Phase IIIb study207 

233 (40 in the 
plethysmo-

graphy 
substudy) 

• Severe 
eosinophilic 
asthma 
 

• Benralizumab 
30 mg SC or 
placebo on 
Days 0, 28 and 
56 

• Whole-body 
plethysmo-
graphy 
assessment of 
lung capacity 
parameters  

• Early non-statistically 
significant 
improvements in 
whole-body 
plethysmography 
assessment of 
hyperinflation 
(change from 
baseline at Day 84 in 
residual volume: -
415 vs -208 mL; 
inspiratory capacity: 
119 mL vs  
-268 mL) 

• Single-dose study206  29 • Poorly 
controlled 
asthma (as 
defined by 
GINA  

• Benralizumab 
30 mg on Day 
0 and Day 28, 
pre- vs post-
treatment  

• Airway 
dysfunction 
(VDP) and 
peripheral 
resistance  
(R5–19Hz) 

• Significantly 
improved mean VDP 
on Day 28  

• Significantly 
improved R5–19Hz on 
Day 28  

• Randomized, Phase II 
study198 

42 • Persistent 
asthma  

• Dupilumab  
300 mg SC 
(with a 600 mg 
loading dose) 
or placebo 
every 2 weeks 
for 12 weeks  

• Eosinophil, 
mast cell and 
lymphocyte 
levels in the 
bronchial 
mucosa  

• Non-significant 
change from 
baseline in 
eosinophil count in 
the bronchial 
mucosa  
(-6.04 vs 5.80 
cells/mm2 at Week 
12) 

Tezepelumab  • Double-blind, randomized, 
placebo-controlled, 
parallel-group, Phase II 
study199 

99 • Uncontrolled, 
moderate-to-
severe asthma  

• Tezepelumab 
210 mg or 
placebo every  
4 weeks for 28 
weeks 
(extended up to 

• Reticular 
basement 
membrane 
thickness and 
epithelial 
integrity 

• Reduced airway 
submucosal 
eosinophils (89% vs 
25% at end of 
treatment) 
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52 weeks if 
necessary due 
to COVID-19-
related 
disruption) 

(proportions of 
denuded, 
damaged, and 
intact 
epithelium) 

• No significant impact 
on reticular 
basement membrane 
thickness (between-
group difference in 
change from 
baseline: -0.16 µm at 
end of treatment) or 
epithelial integrity 
(between-group 
difference in change 
from baseline: -
2.20% at end of 
treatment) 

• Significantly reduced 
airway 
hyperresponsiveness 
in an exploratory 
analysis (between-
group difference in 
PD15 of mannitol: 
138.8 mg at end of 
treatment) 

• Double-blind, randomized, 
placebo-controlled, Phase 
II study209  

40 • Asthma and 
airway 
hyperresponsiv
eness  

• Tezepelumab 
700 mg or 
placebo 
intravenously 
every 4 weeks 
for 12 weeks  

• Change in 
airway 
hyperresponsi
veness and 
inflammation 

• Non-significant 
increase in change 
in PD15 from 
baseline to Week 12 
(1.9 vs 1.0) 

• Significantly reduced 
airway tissue (74% 
reduction vs 28% 
increase from 
baseline) and 
bronchoalveolar 
lavage eosinophils 
(75% vs 7% 
reduction from 
baseline)  

CRSwNP 

Omalizumab • Two double-blind, 
randomized, placebo-
controlled studies138 

138 and 127 • CRSwNP 
inadequately 
controlled with 

• Omalizumab 
75–600 mg 
subcutaneously 
or placebo 

• Total 
endoscopic 
NP score  

• Significantly 
improved total 
endoscopic NP score 
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intranasal 
corticosteroids 

every 2 or 4 
weeks, for 24 
weeks 

(-1.08 vs +0.06 and  
-0.90 vs -0.31) 

Omalizumab • Prospective, real-world 
study in tertiary care 
centre211 

22 • Difficult-to-treat 
CRSwNP 

• Omalizumab 
subcutaneous 
injections every 
4 weeks for 24 
weeks, pre- vs 
post-treatment  

• Total 
endoscopic 
NP score  

• Significantly 
improved total 
endoscopic NP score 
(1.00) 

Mepolizumab • Double-blind, randomized, 
placebo-controlled 
study201 

30 • CRS with 
primary or 
recurrent NP 
who had failed 
standard of 
care treatment  

• Two single IV 
injections (28 
days apart) of 
mepolizumab 
750 mg or 
placebo 

• Total 
endoscopic 
NP score 

• Blood 
eosinophil 
counts  

• Significantly 
improved total 
endoscopic NP score 
(between-group 
difference: -1.30 at 
Week 8) 

• Significant reduction 
in blood eosinophil 
count 

• Double-blind, randomized, 
placebo-controlled, Phase 
III study196,203 

407 • Recurrent, 
refractory, 
severe, 
bilateral 
CRSwNP 

• Mepolizumab 
100 mg SC or 
placebo plus 
standard of 
care every  
4 weeks for  
52 weeks  

• Total 
endoscopic 
NP score 
based on 
centrally read 
endoscopies 

• Baseline blood 
eosinophil 
count 

• Significantly 
improved total 
endoscopic NP score 
(between-group 
difference: -0.73)   

• Significant 
reductions in blood 
eosinophil counts 
(between-group 
ratio: 0.19) 

• More patients with 
baseline blood 
eosinophil counts 
≥150 or ≥300 
cells/μL had ≥1-point 
improvement from 
baseline in total 
endoscopic NP score 
(49.5% vs 28.1% 
and 50.4% vs 
28.1%) and ≥3-point 
improvement from 
baseline in nasal 
obstruction VAS 
score (59.1% vs 
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34.1% and 59.0% vs 
32.4%) with 
mepolizumab vs 
placebo at Week 52 

Benralizumab • Randomized, placebo-
controlled, Phase III 
study195 

413 • Severe 
CRSwNP 

• Benralizumab 
30 mg or 
placebo every  
4 weeks for the 
first 3 doses 
and every  
8 weeks 
thereafter  

• Total 
endoscopic 
NP score  

• Blood 
eosinophil 
counts 

• Significant 
improvement in total 
endoscopic NP score 
(between-group 
difference: -0.570 at 
Week 20)  

• Some evidence 
(non-significant) of 
differential effects of 
blood eosinophil 
counts on total 
endoscopic scores 
(data not shown) 

• Double-blind, randomized, 
placebo-controlled, Phase 
II study210 

24 • Severe NP • Benralizumab 
30 mg or 
placebo 

• Total 
endoscopic 
NP score and 
CT scan 

• Blood 
eosinophil 
count 

• Significantly 
improved total 
endoscopic NP score 
(-0.9 at Week 20) 
and CT polyp score 
(-4.2 at Week 20) vs 
baseline 

• Significant reduction 
(97%) in blood 
eosinophil count vs 
baseline 

• Blood eosinophil 
count/positive 
allergen skin prick 
test ratio significantly 
predicts reductions in 
total endoscopic NP 
score and CT scan 
polyp score 

Dupilumab • Two double-blind, 
randomized, placebo-
controlled, Phase III 
studies194 

276 • Severe 
uncontrolled 
CRSwNP 

• Dupilumab  
300 mg every  
2 weeks or 
placebo for  
24 weeks 
(SINUS-24) 

• Total 
endoscopic 
NP score  

• Blood 
eosinophil 
count 

• Significantly 
improved total 
endoscopic NP score 
(treatment 
difference: -1.89 at 
Week 24, -1.80 at 
Week 52) 
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• Dupilumab  
300 mg every  
2 weeks for  
52 weeks, 
placebo for  
52 weeks, or 
dupilumab 
every 2 weeks 
for 24 weeks 
followed by 
every 4 weeks 
for the 
remaining  
28 weeks    

• Transient, non-
significant increase 
in blood eosinophil 
count with dupilumab 
(change from 
baseline: 0.02 to 
0.15 giga/L at Week 
24) 

Dexpramipexole • Prospective, open-label 
study204  

16 • CRSwNP • Dexprami-
pexole 150 mg 
twice daily, pre-
vs post-
treatment  

• Total 
endoscopic 
NP score 

• Blood 
eosinophil 
count 

• Eosinophil 
levels in nasal 
polyp biopsies   

• No significant 
change in total 
endoscopic NP score 
(0.07 at Month 6) 

• Significant reduction 
(94%) in blood 
eosinophil count  

• Significant reduction 
(97%) in nasal polyp 
eosinophilia 

CRSwNP, chronic rhinosinusitis with nasal polyps; CT, computed tomography; FEV1, forced expiratory volume in 1 second; GINA, Global Initiative for Asthma; IL-5, interleukin-1110 
5; IV, intravenous; PD15, 15th percentile lung density; SC, subcutaneous; TGF-β, transforming growth factor-β; VAS, visual analogue scale; VDP, ventilation defect percentage. 1111 
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Figure 1 Airway remodeling in health and disease12-14,24,25,48  1112 

 1113 

In airway disease, the transient tissue injury and subsequent tissue repair/regeneration seen 1114 

in the healthy airway (left hand side) are exaggerated, leading to persistent inflammation and 1115 

repair (right-hand side).  1116 

Callout panel adapted from Vatrella et al. 202214 (CC BY), and depicts the role of eosinophils 1117 

in mediating airway damage, airway remodeling, airway hyperresponsiveness, and mucus 1118 

production in type 2 asthma. 1119 

EPX, eosinophil peroxidase; IL-13, interleukin-13; MBP, major basic protein. 1120 

 1121 

Figure 2 Eosinophil proteins and their roles in airway remodeling32-34,39-44,53-75,224-233  1122 

 1123 

bFGF, basic fibroblast growth factor; ECP, eosinophil cationic protein; EDN, eosinophil-1124 

derived neurotoxin; FEV1, forced expiratory volume in 1 second; Gal-3, galectin 3 gene; HB-1125 

EGF, heparin-binding epithelial growth factor-like growth factor; Ig, immunoglobulin; IL, 1126 

interleukin; MMP, matrix metalloproteinase; mRNA, messenger ribonucleic acid; NGF, nerve 1127 

growth factor; PDGF, platelet-derived growth factor; TGF, transforming growth factor; TIMP, 1128 

tissue inhibitor of metalloproteinases; VEGF, vascular endothelial growth factor. 1129 

 1130 

Figure 3 Physiological consequences of eosinophil-driven remodeling33,34,159,160,162-164,206  1131 

 1132 

The left-hand side of the figure shows schematic cross sections of the airways in patients 1133 

with asthma and the right-hand side of the figure shows schematic cross sections of the 1134 

nasal mucosa in patients with CRSwNP. These schematic cross sections illustrate the 1135 

impact of eosinophilic tissue inflammation in the lower and upper airways and the 1136 

consequences of this in asthma and CRSwNP. 1137 

CRSwNP, chronic rhinosinusitis with nasal polyps. 1138 

 1139 

 1140 
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• Increased levels associated with

 increased levels of osteopontin, an

 extracellular matrix protein released

 by eosinophils that is implicated in

 the modulation of inflammation

 and fibrosis in diseased airways

• Induces epithelial-mesenchymal transition in primary airway epithelial cells

• Promotes differentiation of fibroblasts to myofibroblasts and triggers their proliferation

• Induces the expression of MMPs and TIMPs

• Regulates subepithelial fibrosis by signaling through the Smad7 pathway

• Induces the transcription and translation of mucin in bronchial epithelial cells 

• Epithelial/submucosal expression correlates with basement membrane thickness

 and fibroblast numbers 

• Induces hypertrophy and increased contractility of airway smooth muscle in vitro 

• Increased levels associated with increased levels of osteopontin

TGF-β

• Sputum MMP-9 and TIMP-1 concentrations are higher in patients with asthma  

 compared with controls; the MMP-9/TIMP-1 ratio is lower in patients with asthma  

 and chronic bronchitis, and positively correlates with FEV
1

• Galectin 1 mRNA concentrations are lower in sputum from children with versus  

 without asthma; in vitro knockdown of Galectin 1 promotes proliferation, migration  

 and phenotypic switching in human airway smooth muscle cells 

• Galectin 3 predicts remodeling-associated anti-IgE treatment responses in  

 bronchial biopsy samples from patients with severe asthma 

• Galectin 3 stimulation associated with in vitro MMP-9 release from peripheral  

 blood neutrophils from patients with asthma 

• Sputum galectin 10 concentrations are higher in patients with asthma compared  

 with healthy individuals; levels significantly correlate with sputum eosinophil counts

• High versus low baseline galectin 10 levels do not predict greater improvements in  

 FEV
1
 following 32 weeks of anti-IL-5 treatment

MMP-9 and

TIMP-1

• Bronchial biopsies from patients with asthma exhibit greater immunoreactivity to 

 VEGF, bFGF and angiogenin; immunoreactivity to these factors positively 

 correlates with vascular area 

VEGF, bFGF

and angiogenin

• Damaged airway epithelium produces TGF-β 

• ECP induces fibroblast migration and inhibits fibroblast-mediated 

 proteoglycan degradation

• EDN stimulates MMP-9 in nasal epithelial cells

Specific granule

proteins

• Fibroblasts isolated from bronchial biopsies produce more IL-6 and IL-11 

 (profibrotic cytokines) when stimulated by IL-17

• Promotion of airway smooth muscle cell migration

• Cross-talk with TGF-β resulting in epithelial-to-mesenchymal transition

• Stimulation of inactive fibrocyte maturation to fibroblasts, which deposit collagen

 within extracellular matrix

IL-17

• In vitro, IL-13 induces human bronchial epithelial cells to release TGF-β

• Changes in goblet cell density

 

IL-13

• Recombinant HB-EGF promotes migration of airway smooth muscle cells in vitroHB-EGF • Recombinant HB-EGF promotes

 migration of airway smooth muscle

 cells in vitro

• NGF causes migration of vascular smooth muscle cells and fibroblasts, and

 proliferation of epithelial cells and airway smooth muscle cells

 

NGF

Tissue factor • Reduces airway hyperresponsiveness,

 airway inflammation and airway

 remodeling in asthmatic mice

• Galectin 3 inhibition significantly  

 lowered collagen deposition in an  

 allergic lung inflammation mouse model

• In a chronic asthmatic mouse model,  

 Gal-3 gene treatment reduced  

 lung collagen

• Galectin 3 deficiency associated with  

 decreased airway remodeling  

 following allergen sensitization in mice

• Recombinant galectin 10 crystals 

 promote type 2 immunity and mimic 

 features of asthma in naive mice

• Anti-galectin 10 antibodies reversed 

 the effects of CLCs and house dust 

 mite challenge in a humanized mouse 

 model, reducing airway inflammation, 

 goblet cell metaplasia, bronchial 

 hyperreactivity and IgE synthesis

• Induces secretion of PDGF in nasal and bronchial epithelial cells, sufficient for

 stimulating proliferation of fibroblast and bronchial smooth muscle cells

• Stimulates VEGF production from airway epithelial cells

Thrombin

Galectin 
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INCREASED AIRWAY SMOOTH MUSCLE CELL MASS

Asthma

GOBLET CELL AND MUCUS GLAND HYPERPLASIA 

IMPAIRED TIGHT JUNCTIONS

• Sensitization to

  aeroallergens 

• Increased susceptibility  

  to respiratory virus

• Increased susceptibility 

to respiratory virus 

SUB-EPITHELIAL FIBROSIS (COLLAGEN DEPOSITION)

• Polyp formation

• Persistent symptom 

 expression

• Excess mucus • Mucus plugs

• Narrowing of the airway

• Ventilation defect

• Reduced lung function

• Reduced asthma control

Asthma CRSwNP

CRSwNP

CRSwNP

Asthma

• Increased asthma severity

• Poor lung function with 

 impaired reversibility

• Persistent symptom 

 expression 

Asthma

DECREASED EPITHELIAL INTEGRITY 

• Airway hyperresponsiveness 

• Perpetuating eosinophilic 

 inflammation

• Persistent repair response 

with epithelial mesenchymal 

 signaling 

• Perpetuating 

eosinophilic 

inflammation

• Persistent repair 

response with epithelial 

 mesenchymal signaling 

CRSwNPAsthma

• Increased asthma severity

• Airway narrowing 

• Airway hyperresponsiveness

• Impaired lung function

Key

Airway epithelial cell

Goblet cell

Eosinophil

Neutrophil

Th2 cell

B cell

Dendritic cell

Macrophage

Allergen

Inhaled irritant

Respiratory virus

Collagen
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