

Eosinophils and tissue remodeling: relevance to airway disease

Salman Siddiqui, BM, FRCP, PhD, Claus Bachert, MD PhD, Leif Bjermer, MD PhD, Kathleen M. Buchheit, MD, Mario Castro, MD, Yimin Qin, MD, Hitasha Rupani, MD PhD, Hironori Sagara, MD PhD, Peter Howarth, MD PhD, Camille Taillé, MD PhD

PII: S0091-6749(23)00800-X

DOI: https://doi.org/10.1016/j.jaci.2023.06.005

Reference: YMAI 15994

To appear in: Journal of Allergy and Clinical Immunology

Received Date: 6 January 2023

Revised Date: 15 May 2023

Accepted Date: 2 June 2023

Please cite this article as: Siddiqui S, Bachert C, Bjermer L, Buchheit KM, Castro M, Qin Y, Rupani H, Sagara H, Howarth P, Taillé C, Eosinophils and tissue remodeling: relevance to airway disease, *Journal of Allergy and Clinical Immunology* (2023), doi: https://doi.org/10.1016/j.jaci.2023.06.005.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology.

# Eosinophils and tissue remodeling: relevance to airway disease

Salman Siddiqui BM, FRCP, PhD,<sup>1</sup> Claus Bachert MD PhD,<sup>2-5</sup> Leif Bjermer MD PhD,<sup>6</sup> Kathleen M Buchheit MD,<sup>7</sup> Mario Castro MD,<sup>8</sup> Yimin Qin MD,<sup>9</sup> Hitasha Rupani MD PhD,<sup>10</sup> Hironori Sagara MD PhD,<sup>11</sup> Peter Howarth MD PhD,<sup>12</sup> Camille Taillé MD PhD<sup>13</sup>

<sup>1</sup>National Heart and Lung Institute, Imperial College London, London, UK; <sup>2</sup>Department of Otorhinolaryngology - Head and Neck Surgery, University Hospital of Münster, Münster, Germany, <sup>3</sup>First Affiliated Hospital, Sun Yat-Sen University, International Airway Research Center, Guangzhou, China, <sup>4</sup>Division of ENT diseases, CLINTEC, Karolinska Institute, Stockholm, Sweden; <sup>5</sup>Upper Airways Research Laboratory, Faculty of Medicine, Ghent University, Ghent, Belgium; <sup>6</sup>Department of Clinical Sciences, Lund, Respiratory Medicine and Allergology, Lund University, Lund, Sweden; <sup>7</sup>Jeff and Penny Vinik Center for Allergic Diseases Research, Brigham and Women's Hospital, Boston, Massachusetts; Department of Medicine, Harvard Medical School, Boston, MA, USA; <sup>8</sup>Division of Pulmonary, Critical Care Medicine, University of Kansas School of Medicine, Kansas City, KS, USA: <sup>9</sup>Global Medical Affairs, Global Specialty & Primary Care, GSK, Research Triangle Park, NC, USA: <sup>10</sup>Department of Respiratory Medicine, University Hospital Southampton NHS Foundation Trust, Southampton, UK; <sup>11</sup>Department of Medicine, Division of Respiratory Medicine and Allergology, Showa University, School of Medicine, Shinagawa-ku, Tokyo, Japan; <sup>12</sup>Global Medical, Global Specialty & Primary Care, GSK, Brentford, Middlesex, UK; <sup>13</sup>AP-HP, Bichat Hospital, Pneumology Department, Reference Center for Rare Pulmonary Diseases and University of Paris Cité, Inserm 1152, 75018 Paris, France

# **Corresponding author:**

Name: Professor Salman Siddiqui BM, FRCP, PhD Address: National Heart and Lung Institute, Imperial College London, Norfolk Place, London, W2 1PG Tel: +44 20 7594 5303 Email: <u>s.siddiqui@imperial.ac.uk</u>

**Funding sources and role:** Editorial support (in the form of writing assistance, including development of the initial draft from author discussions, assembling tables and figures, collating authors comments, grammatical editing and referencing) was provided by Laura Gardner, PhD, CMPP, at Fishawack Indicia Ltd, UK, part of Fishawack Health and was funded by GlaxoSmithKline (GSK).

**Conflicts of interests:** SS has received speaker fees from GSK, AstraZeneca, Chiesi, Boehringer Ingelheim, and Novartis; advisory board participation for GSK, AstraZeneca, Chiesi, Boehringer Ingelheim, Novartis, Knopp Biotech, Munipharma, ERT Medical, and Owlstone Medical; membership of the ERS Science Council and the UK Medical Research Council; he is also a co-founder of Eupnoos Ltd. CB is an advisory board member and speaker for Novartis, GSK, AstraZeneca, Sanofi, ALK, and Mylan. LB reports lecture fees from AstraZeneca, Boehringer Ingelheim, Chiesi Pharma AB, GSK, Novartis, and Sanofi Genzyme. KMB reports serving on advisory boards for GSK, AstraZeneca, Sanofi, and Regeneron, and speaking for GSK. MC reports grants/research support from NIH, ALA, PCORI, AstraZeneca, Gala Therapeutics, Genentech, GSK, Novartis, Pulmatrix, Sanofi-Aventis, Shionogi, and Theravance; consulting fees/honoraria from Allakos, Amgen, Arrowhead, AstraZeneca, Genentech, Merck, Novartis, OM Pharma, Regeneron, Sanofi, Teva, Pfizer, and Pioneering Medicines; and royalties from Aer Therapeutics and Elsevier. HR reports speaker fees and investigator-led grant funding from GSK and AstraZeneca, and support for meeting attendance/travel from AstraZeneca. HS reports lecture fees from GSK, AstraZeneca, Sanofi, Novartis, and Boehringer Ingelheim. CT reports lecture or advisory board fees and grants from AstraZeneca, Sanofi, GSK, Chiesi, and Novartis. PH and YQ are employees of GSK and own stocks/shares.

Word count: main text, 4462; abstract, 223 Tables/figures: 4

# 1 Abstract 196/200 words

The ability of human tissue to reorganize and restore its existing structure underlies 2 tissue homeostasis in the healthy airways, but in disease can persist without normal 3 resolution, leading to an altered airway structure. Eosinophils play a cardinal role in 4 airway remodeling both in health and disease, driving epithelial homeostasis and 5 extracellular matrix turnover. Physiological consequences associated with 6 eosinophil-driven remodeling include impaired lung function and reduced 7 bronchodilator reversibility in asthma, and obstructed airflow in chronic rhinosinusitis 8 9 with nasal polyps (CRSwNP). Given the contribution of airway remodeling to the development and persistence of symptoms in airways disease, targeting remodeling 10 is an important therapeutic consideration. Indeed, there is early evidence that 11 eosinophil attenuation may reduce remodeling and disease progression in asthma. 12 This review provides an overview of tissue remodeling in both health and airway 13 disease with a particular focus on eosinophilic asthma and CRSwNP, as well as the 14 role of eosinophils in these processes and the implications for therapeutic 15 interventions. Areas for future research are also noted, to help improve our 16 understanding of the homeostatic and pathological roles of eosinophils in tissue 17 18 remodeling, which should aid the development of targeted and effective treatments for eosinophilic diseases of the airways. 19

20

# 21 Keywords

Airway remodeling, eosinophil, asthma, chronic rhinosinusitis with nasal polyps

# 24 Abbreviations

25 DNA, deoxyribonucleic acid; CCR3, C-C chemokine receptor 3; CRSwNP, chronic

rhinosinusitis with nasal polyps; CT, computed tomography; ECM, extracellular

27 matrix; ECP, eosinophil cationic protein; EPO/EPX; eosinophil peroxidase; FEV1,

- forced expiratory volume in 1 second; FVC, forced vital capacity; GM-CF,
- 29 granulocyte-macrophage colony-stimulating factor; IL, interleukin; ILC2, type 2 innate
- <sup>30</sup> lymphoid cell; MBP, major basic protein; MMP, matrix metalloproteinase; RGD,
- arginyl-glycyl-aspartic acid; RNase, ribonuclease; TGF, transforming growth factor;
- 32 uPA, urokinase-type plasminogen activator.

### 33 Introduction

- 34 Human tissue has an inherent ability to reorganize or restore its existing structure, so-called
- tissue remodeling, which enables normal development and growth and mediates responses
- to injury or inflammation. Increasing evidence demonstrates that both the upper and lower
- airways can respond to injury by repairing and replacing damaged tissue, through processes
- 38 including extracellular matrix (ECM) deposition and degradation and epithelial cell
- 39 migration.<sup>1</sup> While in healthy tissue this remodeling process contributes to damage repair and
- 40 growth, airway disease can occur where the same process is exaggerated and persists
- 41 without normal resolution.<sup>1,2</sup> As the structural changes associated with airway remodeling
- 42 develop during the course of disease, airway function often declines and the response to
- 43 standard therapy becomes poor.<sup>2</sup>
- 44 Eosinophils are known historically as end-stage effectors in the inflammatory response to
- 45 infection and in eosinophilic diseases such as eosinophilic asthma.<sup>3</sup> Now, as proposed over
- ten years ago by Lee and colleagues with the Local Immunity And/or Remodeling/Repair
- 47 hypothesis,<sup>4</sup> eosinophils are also recognized as essential contributors to tissue homeostasis,
- 48 repair and remodeling.<sup>5</sup> Here, we review evidence for the role of eosinophils in tissue repair
- 49 and remodeling in health and in airway disease. We focus on data from studies in severe
- 50 eosinophilic asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), two of the most
- 51 studied eosinophilic airway diseases for which biologic treatments have been approved.
- 52 Data from patients with these conditions, which are associated with substantial morbidity and
- 53 in some cases an unmet treatment need, have provided valuable insights into the role of
- 54 eosinophils in human airways, validating earlier murine model data.<sup>6-11</sup>

# 55 The biology of repair and remodeling

### 56 Healthy airways

During normal airway tissue development and growth, or in response to injury and/or 57 58 inflammation, various structural adaptations contribute to repair and regeneration.<sup>12</sup> Tissue repair is driven by epithelial cell migration to the site of damage and deposition of a 59 60 provisional matrix comprising ECM glycoproteins including fibronectin and vitronectin, as well as basement membrane components such as laminin and collagen IV (Figure 1).<sup>13,14</sup> In 61 62 addition, underlying mesenchymal cells secrete ECM proteins and cytokines that contribute to airway repair and stimulate epithelial cell functions.<sup>15</sup> The spreading, migration, and 63 64 proliferation of epithelial cells during epithelial repair requires the participation of integrins, which signal through matrix metalloproteinase (MMP)-dependent activation of transforming 65 growth factor (TGF)-β, a multipotent epithelial and mesenchymal cell growth factor.<sup>16-18</sup> 66 Following airway injury epithelial cells are also regulated by WNT/ $\beta$ -catinin signaling 67 pathways, which play critical roles in the function and behavior of these cells during tissue 68 regeneration.<sup>19-21</sup> Resolution of inflammation and tissue repair in healthy tissue requires the 69 clearance of activated immune cells and production of lipid pro-resolving mediators that 70 contribute to normal tissue restoration.<sup>22</sup> 71

## 72 Airway disease

73 Pathological airway remodeling is primarily considered a consequence of chronic injury 74 and/or inflammation that leads to persistently altered airway wall structure and function.<sup>23</sup> Some studies (reviewed by Fehrenbach, et al.) also report that airway features of remodeling 75 in symptomatic children may be evident before a clinical diagnosis of asthma is made, and it 76 77 is appreciated that mechanical stress, in the absence of inflammation, may promote tissue remodeling.<sup>12</sup> Primarily, the remodeling changes arise from dysregulated repair and 78 regeneration pathways, leading to an exaggerated wound repair response culminating in the 79 accumulation of (mvo)fibroblasts and increased ECM deposition (Figure 1).<sup>12,24,25</sup> In asthma. 80 81 ECM deposition is increased in the reticular basement membrane region, lamina propria, 82 and submucosa, with deposited proteins including collagen I, III and V, the adhesion proteins fibronectin and tenascin, plus proteoglycans, which play roles in the interaction between 83 84 fibrils and collagen fibrinogenesis considered to be important in the functional consequences 85 of the remodeling process.<sup>26-29</sup> Epithelial-mesenchymal transition, the transformation of 86 epithelial cells into fibroblast-like mesenchymal cells due to loss of epithelial polarity and expression of mesenchymal proteins,<sup>30-34</sup> contributes to accumulation of fibroblast-like cells. 87 88 Moreover, fibroblast transformation into myofibroblasts further increases ECM deposition.35,36 89

- 90 TGF-β mediates epithelial-mesenchymal transition<sup>32</sup> and stimulates fibroblasts to synthesize
- 91 collagens type I and III, fibronectin and proteoglycans.<sup>37</sup> TGF- $\beta$  is activated by integrins,
- 92 reactive oxygen species, and mechanical stress, and stimulates downstream Smad2/3 and
- 93 Smad4 signaling that mediate gene expression.<sup>38</sup> Increased levels of TGF- $\beta$  are also
- 94 associated with increased osteopontin, an ECM protein released by eosinophils that is
- 95 implicated in the modulation of inflammation and fibrosis in diseased airways.<sup>39-44</sup>

# 96 The role of eosinophils in airway repair and remodeling

### 97 Eosinophil biology and its relevance for repair and remodeling

98 Eosinophils are highly complex cells with a wide range of surface molecules and receptors. 99 Key cell membrane receptors that define the unique biology of eosinophils include C-C 100 chemokine receptor 3 (CCR3), which binds eotaxins, the lectin (carbohydrate-binding 101 protein) Siglec-8, which can trigger eosinophil cell death when engaged, and the interleukin-5 alpha receptor (IL-5Ra).<sup>45,46</sup> Eosinophils also express receptors for multiple other cytokines 102 and growth factors, including IL-4, IL-13, IL-33, thymic stromal lymphopoietin, and TGF-B.46 103 They also express integrin adhesion molecules, through which they can interact with 104 105 endothelial and airway cells.47

Eosinophils are equipped to modify their immediate tissue environment; they contain large
 specific cytoplasmic granules, which possess a crystalloid structure and can be released into

target tissues upon activation (**Figure 1**).<sup>48</sup> Granules are released by cytolysis or piecemeal

109 degranulation, during which granule proteins are packaged into secretory vesicles that

110 deliver specific proteins to the extracellular space while leaving intracellular granules

111 intact.<sup>49-51</sup> Eosinophil granules contain four cationic proteins: major basic protein 1 (MBP1;

112 [MBP and PRG2]), eosinophil cationic protein (ECP; [RNase3]), eosinophil-derived

neurotoxin (EDN; [RNase2]) and eosinophil peroxidase (EPX; [EPO]).<sup>48</sup> Eosinophil granules

also store numerous cytokines, enzymes, and growth factors that promote airway

remodeling and include the major mediator of airway remodeling, TGF- $\beta$ , and MMPs. **Figure** 

**2** provides an overview of the eosinophil proteins involved in airway remodeling.<sup>32,39-44,52-75</sup>

117 Activated eosinophils also form extracellular DNA traps (eosinophil extracellular traps

118 [EETs]) and Charcot–Leyden crystals (CLCs)/galectin-10.<sup>76,77</sup> In patients with asthma, EETs

negatively correlate with lung function and may have a hand in airway epithelial damage,<sup>78,79</sup>

120 whilst CLCs/galectin-10 have been implicated in mucus production and the tenacity of

121 mucus plug formation.<sup>80</sup> In patients with CRSwNP, EETs and CLCs have been strongly

122 associated with disease severity and their presence could negatively impact olfaction.<sup>81</sup>

# 123 Eosinophil recruitment to sites of remodeling in healthy tissue

Under normal physiological conditions, human eosinophils typically reside in the bone
marrow, lung, thymus, adipose tissue, and gastrointestinal tract and are thought to spend ~1
day in the circulation, with longer periods at their physiological sites of action, where they
assist in normal tissue processes.<sup>82</sup> In health, the eosinophil-specific chemoattractant
eotaxin-1 (CCL11), produced by local epithelial cells, endothelial cells, and fibroblasts,
contributes to eosinophil recruitment to the airways.<sup>83-85</sup>

- Eosinophil maturation is regulated by granulocyte-macrophage colony-stimulating factor
  (GM-CSF), IL-3, and IL-5.<sup>86</sup> GM-CSF is also thought to play a role in priming, activation and
  survival of tissue eosinophils,<sup>49</sup> whilst IL-3 and IL-5 may promote trafficking of eosinophils,
  under normal conditions.<sup>87</sup> Importantly, IL-5 supports eosinophil generation from CD34positive bone marrow progenitors, enhancing their sensitivity to eotaxin-1, and sustaining
  their survival.<sup>88-91</sup> Although the role of type 2 innate lymphoid cells (ILC2s) in airway
- 136 homeostasis is yet to be fully elucidated, in other healthy tissues they play a cardinal role in
- 137 maintaining circulating IL-5 levels and, thereby, normal eosinophil levels in circulation and
- tissues.<sup>92-94</sup> ILC2 cells are also responsible for eosinophil tissue recruitment in tumor
- 139 regulation.95
- 140 Eosinophils potentially contribute to epithelial remodeling by inhibiting cell surface plasmin
- 141 generation by bronchial epithelial cells, through the local release of TGF-β.<sup>96</sup> Therefore, the
- accumulation of eosinophils in bronchial walls may directly promote fibrin deposition and
- bronchial tissue repair/remodeling through this network.<sup>96</sup> Additionally, eosinophils produce
- 144 key factors contributing to coagulation (tissue factor, thrombin) and fibrinolysis
- 145 (plasminogen), which are required for wound healing and epithelial remodeling.<sup>97</sup> Fibrinogen,
- another coagulation and fibrinolysis factor, may be a chemoattractant for eosinophils<sup>98</sup> and is
- a specific trigger for cytolytic eosinophil degranulation.<sup>99</sup> Notably, eosinophils are frequently
- 148 present at sites of high epithelial-mesenchymal turnover, during which new layers of
- 149 differentiated epithelium are created from the mesenchymal unit; eosinophils are engaged by
- 150 chemokines, growth factors, ECM proteoglycans and morphogenetic ligands, secreted by
- 151 mesenchymal cells.9

## 152 **Eosinophils in pathophysiological airway remodeling**

153 Eosinophil recruitment and activation is exaggerated in both lower and upper airway

disease.<sup>100-102</sup> There is evidence directly linking the presence of eosinophils to disease-

related airway remodeling. This is discussed below, specifically in asthma and CRSwNP.

## 156 **Asthma**

- 157 Airway remodeling in asthma is caused by changes in the cellular and extracellular matrix,
- 158 which lead to narrowed airways due to thickened airway walls; this is a key pathologic
- 159 feature of asthma.<sup>26</sup> Eosinophilic inflammation in the airway wall (and in induced sputum)
- 160 has been related to the extent of reticular basement membrane thickening in asthma and
- 161 eosinophilic bronchitis.<sup>103,104</sup> Furthermore, airway eosinophils in patients with asthma display
- 162 hyperadhesiveness towards provisional ECM, interacting with ECM components via
- 163 expression of specific integrins (CD11c, CD11b, beta 5 integrins) and toll-like receptors.<sup>105-</sup>

<sup>107</sup> Eosinophils are one of the major sources of airway TGF-β in asthma.<sup>108</sup> with TGF-β 164 165 expression localized to eosinophils in the bronchi of patients with severe asthma.<sup>70,109</sup> Aside from eosinophils. TGF- $\beta$  is also produced by other immune cells in addition to epithelial cells. 166 endothelial cells, vascular and airway smooth muscle cells, and fibroblasts.<sup>110</sup> As described 167 in the previous section, TGF- $\beta$  promotes myofibroblast transformation, and facilitates the 168 transcription of osteopontin.<sup>111,112</sup> This in turn further potentiates airway remodeling.<sup>43</sup> since 169 myofibroblasts have increased synthetic capability for collagen and ECM proteins.<sup>113,114</sup> 170 171 Osteopontin initiates the migration, adhesion, and proliferation of fibroblasts through cytokine signaling and macrophage activation.<sup>115</sup> TGF-β can also promote epithelial detachment and 172 epithelial-mesenchymal transition,<sup>32</sup> which combined with impaired repair processes could in 173 turn lead to increased ECM deposition. Eosinophil localization to the airway smooth muscle 174 bundle has also been demonstrated in endobronchial biopsies from patients with severe, 175 difficult-to-treat asthma.<sup>104</sup> In contrast, there is no evidence of elevated eosinophil counts in 176 the airway smooth muscle of patients with asthma requiring Global Initiative for Asthma Step 177 1-4 treatment, patients with eosinophilic bronchitis, or healthy controls.<sup>104</sup> 178

179 Co-culture of airway smooth muscle cells and pulmonary fibroblasts with peripheral blood eosinophils from patients with asthma (especially those with severe non-allergic eosinophilic 180 asthma) alters the gene expression of ECM proteins, MMPs, tissue inhibitors of MMPs, and 181 TGF-β, versus healthy controls, indicating relevant interactions between activated 182 eosinophils and the structural airways in the remodeling process.<sup>116</sup> Furthermore, bronchial 183 biopsies from patients with asthma show increased eosinophil accumulation, which is 184 associated with poor epithelial integrity, <sup>117,118</sup> and increased basement membrane 185 thickness.<sup>103,119,120</sup> Notably, in these studies, eosinophil accumulation was associated with a 186 decline in lung function. The presence of intraepithelial eosinophils in asthma is associated 187 with endogenous airway hyperresponsiveness and IL-5 gene expression;<sup>121</sup> high eosinophil 188 numbers in the bronchial submucosa are a marker of an altered mucus-repair phenotype 189 and epithelial damage.<sup>118</sup> Taken together, these results support eosinophil localization in 190 areas of airway remodeling. This notion is strengthened by the findings of Drake et al., who 191 showed that eosinophils co-localized to airway epithelial sensory nerves in endobronchial 192 biopsies from patients with eosinophilic asthma.<sup>122</sup> Eosinophils contributed to substantial 193 194 structural remodeling in these patients (demonstrated by increased epithelial nerve density); 195 they also increased epithelial innervation and neuronally-mediated airway responsiveness in 196 a transgenic mouse model.

Exaggerated eosinophil recruitment and activation has other indirect effects, which include
 epithelial cell damage; this triggers repair pathway activation and epithelial-to-mesenchymal
 transition, which underpins airway remodeling.<sup>123-125</sup> Secondary effects of this response

- 200 include increased exacerbation frequency and severity due to progressive airway
- 201 remodeling, which stems from epithelial cell mechano-stimulation during
- 202 bronchoconstriction.<sup>23,126</sup> Frequent and repeated exacerbations themselves may also result
- 203 in structural airway remodeling.<sup>127-130</sup> In addition, repeated bronchoconstriction induces
- 204 goblet cell proliferation, subepithelial thickening, and mucus secretion, which together can
- lead to further airway obstruction.<sup>23</sup>

### 206 CRSwNP

- 207 Chronic rhinosinusitis (CRS) is characterized by inflammation of the paranasal sinuses;
- 208 common symptoms include nasal congestion, excess mucus, hyposmia or anosmia, and
- facial pain.<sup>131</sup> Data on upper airway remodeling in CRSwNP are limited versus asthma;
- 210 however, there are similarities between the remodeling changes observed in both diseases.
- 211 For example, as with asthma, there is evidence in CRSwNP for extensive epithelial cell
- disruption,<sup>132</sup> basal cell hyperplasia,<sup>133</sup> goblet cell hyperplasia and mucin hypersecretion.<sup>134</sup>
- 213 There is also excess production of ECM components, with increased collagen and
- fibronectin, elevated numbers of ECM-producing myofibroblasts, and inflammation facilitated
- by eosinophil-derived CLCs, as well as an increase in extracellular matrix remodeling
- endopeptidases (MMP-1 and MMP-2, MMP-9, and MMP-7).<sup>135-138</sup> In addition,
- 217 immunohistochemistry has demonstrated the sinonasal epithelium can transition to a
- 218 mesenchymal phenotype, which correlates with airway fibrosis and inflammation.<sup>139</sup>
- 219 Elevated tissue eosinophil counts in CRSwNP, which may be facilitated by delayed
- 220 eosinophil apoptosis,<sup>140</sup> have been associated with enhanced epithelial-mesenchymal
- 221 signaling, with recent evidence suggesting that TGF-β-mediated epithelial-mesenchymal
- transition may promote nasal polypogenesis.<sup>141</sup> Furthermore, there is significant correlation
- between the number of epithelial eosinophils and the extent of epithelial damage, sub-
- basement membrane collagen deposition and the level of epithelial to mesenchymal
- transition in patients with CRSwNP.<sup>142,143</sup> At the site of epithelial barrier defects, extracellular
- eosinophilic traps can form in patients with CRSwNP, likely as a protective response against
- 227 pathogenic bacteria.<sup>76</sup> Furthermore, there is a strong correlation between expression of the
- 228 eosinophil protein galectin-10 and CRSwNP severity.<sup>144</sup> Some studies have demonstrated
- 229 correlations between basement membrane thickening and elevated levels of tissue
- 230 eosinophils in CRSwNP.<sup>139,142</sup> Features of remodeling in CRS have also been associated
- 231 with tissue eosinophilia and eosinophil activation.<sup>145</sup>
- 232 Tissue edema in nasal polyps has been linked to an imbalance between coagulation factor
- 233 expression and fibrinolytic activity, leading to increased fibrin accumulation, with the
- resultant fibrin scaffold trapping plasma proteins to enhance edema.<sup>146</sup> Eosinophils are

involved in this process through the release of tissue factor<sup>147</sup> (which enhances initiation of 235 236 the clotting cascade) and MBP/EPX basic proteins. These inhibit thrombomodulin, a potent anticoagulant, thereby impairing fibrin breakdown.<sup>148</sup> Tissue plasminogen activator (tPA). 237 which usually plays a role in fibrin degradation, is decreased in CRSwNP.<sup>149</sup> While the 238 fibrinolytic urokinase-type plasminogen activator (uPA) is increased in CRSwNP (especially 239 in inflammatory cells) and correlates with ECP, excessive uPA expression might interfere 240 with the normal TGF-β-activated feedback mechanism of uPA in CRSwNP, resulting in 241 nasal polyp edema.<sup>150</sup> 242

243

# 244 The role of IL-5 in pathophysiological airway remodeling

245 Through its well-known effects on eosinophils, IL-5 is likely to contribute to airway 246 remodeling. Via binding to IL-5Ra, IL-5 promotes the maturation, activation, proliferation and migration of eosinophils as well as their survival within the airways.<sup>151</sup> IL-5 also supports 247 eosinophil generation from CD34-positive bone marrow progenitors, enhancing their 248 sensitivity to eotaxin-1, and sustaining their survival.<sup>88-91</sup> However, functional IL-5R $\alpha$  is also 249 250 expressed on basophils, mast cells, plasma cells, and bronchial epithelial cells as well as airway fibroblasts, with effects on the latter two functional cells being of particular relevance 251 to tissue remodeling.<sup>152-155</sup> The enhanced airway collagen synthesis observed in asthma may 252 be driven by the direct activating effect of IL-5 on fibroblasts, with functional IL-5R 253 upregulated in asthmatic lung fibroblasts versus healthy controls.<sup>155</sup> IL-5 is also associated 254 with increased levels of airway collagen in allergen sensitivity (which is increased in 255 asthma).<sup>156</sup> In addition, the downregulation of epithelial tight junction genes by IL-5 may be a 256 factor that increases the susceptibility of epithelium to eosinophilic damage.<sup>152</sup> As further 257 258 evidence of the importance of eosinophils and IL-5 to asthma-related airway remodeling, 259 anti-IL-5 biologic therapy is associated with reduced airway eosinophil counts and decreased 260 airway remodeling and proximal airway wall thickness (assessed by ECM deposition and thoracic computed tomography [CT] scanning, respectively), in patients with eosinophilic 261 asthma.<sup>157</sup> In patients with asthma, nasal polyposis, and a confirmed diagnosis of aspirin-262 exacerbated respiratory disease, IL-5 inhibition with mepolizumab leads to decreased 263 inflammatory eicosanoid production and upregulation of epithelial cell transcripts involved in 264 tight junction pathways and cilium organization,<sup>153</sup> potentially impacting the strength of the 265 epithelial barrier and evidencing the local detrimental effect of IL-5 exposure on epithelial 266 function and integrity (a possible contributor to the susceptibility of epithelial cells to 267 eosinophil-directed damage). Consistent with the importance of eosinophils and IL-5 to the 268 269 abnormal tissue remodeling that underlies nasal polyp formation, levels of IL-5 and ECP (an

- 270 eosinophil activation marker) in resected polyp tissue have both been identified as
- 271 independent predictors of further nasal polyp recurrence.<sup>158</sup> Together, these data support a
- 272 central role for IL-5 in pathological airway remodeling.

Journal Pression

# 273 Physiological consequences of eosinophil-driven airway remodeling

The airway changes described in this review are pathological features of eosinophilic airway 274 disease and contribute to the clinical manifestations seen in patients (Figure 3).<sup>159-164</sup> In 275 severe eosinophilic asthma, the structural effects of chronic eosinophil-driven airway 276 remodeling (goblet cell hyperplasia, decreased epithelial cell and cartilage integrity, 277 subepithelial collagen deposition with increased thickness of the reticular basement 278 membrane in the bronchial mucosa, increased airway smooth muscle cell mass, mucus plug 279 persistence, and angiogenesis of the airways) have been postulated to explain the persistent 280 airflow obstruction seen in some patients.<sup>119,165-172</sup> While it is acknowledged that bronchial 281 282 wall thickness measurements using computed tomography (CT) scanning can be influenced by reversible factors such as edema, airway secretions, and inflammatory cell 283 infiltration,<sup>120,173</sup> quantitative CT imaging studies, in some cases supported by endobronchial 284 biopsies, have demonstrated proximal airway wall thickness/wall area and structural 285 changes to predict airflow limitation and lung function impairment (measured by reduced 286 forced expiratory volume in 1 second [FEV<sub>1</sub>], postbronchodilator percent predicted FEV<sub>1</sub>, 287 FEV<sub>1</sub>/forced vital capacity [FVC], and forced expiratory flow<sub>25-75%</sub>), in patients with 288 asthma.<sup>174-176</sup> Several cross-sectional studies in patients with asthma have demonstrated 289 increased odds of worse lung function<sup>177,178</sup> and worse airflow obstruction over time<sup>179</sup> in 290 patients with eosinophilic inflammation. In addition, epidemiologic data have linked elevated 291 blood eosinophils to worse lung function outcomes, irrespective of the diagnosis of 292 asthma.<sup>180,181</sup> Finally, higher blood eosinophil counts in children with untreated asthma are 293 predictive of lower growth in FEV<sub>1</sub> and FVC during adolescence.<sup>182</sup> Interestingly, lung 294 295 computational models have demonstrated that a) small airway narrowing is associated with 296 clinically relevant deterioration in both asthma control and quality of life, and b) biologics 297 targeting type 2 inflammation could reverse small airway narrowing, suggesting that early 298 intervention could potentially modify the disease course.<sup>183</sup> Altogether these data show that as a result of airway remodeling, patients may experience irreversible airway obstruction 299 leading to worsening of lung function, airway thickening, air trapping and potentially reduced 300 response to bronchodilators. 301

In CRSwNP, excess mucus can be explained by goblet cell hyperplasia and mucin
 hypersecretion,<sup>134</sup> downstream consequences of upper airway remodeling. Furthermore,
 extracellular connective tissue matrix degradation is likely to be an important pathological
 component in CRSwNP, contributing to the loosening of tissue architecture, tissue
 expansion, and pseudocyst formation.<sup>1</sup>

307

# 308 Therapeutic implications of eosinophil-driven airway remodeling

309 Given the substantial contribution of airway remodeling to symptom development and persistence in patients with airway diseases, targeting the remodeling component of the 310 disease is an important therapeutic consideration. Currently, the only available treatment 311 that directly targets airway remodeling is bronchial thermoplasty, a bronchoscopy procedure 312 that reduces airway smooth muscle cell mass through the local delivery of controlled 313 radiofrequency energy. While histopathological effects are distinct in different disease 314 endotypes/phenotypes, bronchial thermoplasty helps control asthma in patients with severe 315 316 disease, thus demonstrating the therapeutic value in targeting several components of bronchial remodeling in this population.<sup>184-188</sup> 317

There is evidence that suppressing eosinophilic inflammation may reduce airway remodeling 318 and disease progression among patients with airway disease. For example, in vitro blocking 319 of eosinophil arginyl-glycyl-aspartic acid (RGD)-binding integrins significantly reduces 320 eosinophil adhesion to airway smooth muscle cells, resulting in reduced eosinophil-mediated 321 TGF- $\beta$ 1, WNT-5a, and ECM protein gene expression and reduced proliferation in airway 322 smooth muscle cells.<sup>189</sup> In animal model studies, eosinophil-deficient mice showed 323 attenuation of airway remodeling.<sup>7,190</sup> with similar results demonstrated in IL-5 knockout 324 mice.<sup>8</sup> In humans with asthma, reduced eosinophil numbers are significantly associated with 325 greater improvements in airway hyperresponsiveness, when tested with methacholine 326 treatment.<sup>191</sup> Of note, in patients with asthma and rhinitis, house dust mite sublingual 327 immunotherapy in addition to pharmacotherapy reduced eosinophilic airway inflammation 328 while improving symptoms and pulmonary function.<sup>192</sup> Finally, in a Phase II study of patients 329 330 with eosinophilic asthma, the eosinophil-depleting drug dexpramipexole improved lung function and reduced airway eosinophil granule proteins cognate with the magnitude of 331 reduction in blood eosinophils.<sup>193</sup> Together, these studies demonstrate that eosinophils are a 332 critical factor driving airway remodeling in asthma and may be an important therapeutic 333

334 target.

### 335 Biologic intervention

Biologics currently used in the treatment of severe asthma and CRSwNP have the potential to reverse or reduce the impact of airway remodeling through their effects on eosinophils. While work to determine whether these agents can reduce or reverse remodeling is still in its infancy, there are some key studies that support their role in reversing airway remodeling (**Table 1**).<sup>153,157,194-211</sup> Several asthma studies show that the humanized monoclonal antibody mepolizumab, which targets IL-5 (the primary cytokine responsible for differentiation, activation and survival of eosinophils; also of relevance to airway remodeling through its

direct non-eosinophilic effects on structural airway cells),<sup>12,212</sup> reduces airway eosinophil 343 344 numbers and ECM/inflammatory mediator expression as well as reducing airway wall thickness and wall area and lowering rates of FEV<sub>1</sub> decline.<sup>153,157,200,202,208</sup> In addition, the 345 anti-IL-5Ra antibody, benralizumab, can reduce eosinophil counts and numbers of tissue 346 347 myofibroblasts, as well as improve hyperinflation, airway dysfunction and peripheral resistance in patients with asthma.<sup>197,206,207</sup> The anti-IL-4/IL-13 antibody. dupilumab. 348 improves epidermal remodeling and inflammation in lesional and healthy skin among 349 patients with severe atopic dermatitis (detected by dynamic optical coherence tomography), 350 suggesting that broader targeting of type-2 inflammatory cytokines may have anti-351 remodeling effects.<sup>205</sup> However, dupilumab did not modify airway tissue eosinophil numbers 352 in a recent randomized, placebo-controlled study in patients with persistent asthma 353 354 (NCT02573233; https://clinicaltrials.gov/ct2/show/results/NCT02573233) and there are no published studies demonstrating an effect in modifying airway remodeling in asthma.<sup>198</sup> 355 Finally, the monoclonal antibody tezepelumab, which blocks thymic stromal lymphopoietin, 356 partially reduces airway tissue eosinophil numbers in asthma, but evidence to date does not 357 358 support a significant impact on airway remodeling changes, although there was evidence of reduced airway hyperresponsiveness and reduced mucus plugging.<sup>199,209,213</sup> Studies in 359 360 patients with CRSwNP have demonstrated reductions in polyp size following treatment with omalizumab, mepolizumab, benralizumab or dupilumab,<sup>194-196,201,203,210,214,215</sup> suggesting an 361 effect of anti-immunoglobulin E (IgE), anti-type 2 cytokine, and eosinophil-targeting biologics 362 on nasal/sinus mucosa remodeling. In contrast, near-complete elimination of eosinophils in 363 nasal polyp tissue was achieved with dexpramipexole in CRSwNP, without any reduction in 364 polyp size.<sup>204</sup> However, dexpramipexole has been shown in asthma to reduce airway 365 eosinophil granule proteins cognate with the magnitude of reduction in blood eosinophils, 366 and to improve lung function,<sup>193</sup> a physiological feature that was also evident in the 367 dexpramipexole EXHALE trial.<sup>216</sup> This suggests that the failure of dexpramipexole to improve 368 symptoms in CRSwNP is not a failure of the drug but that modifying eosinophilic 369 370 inflammation alone in CRSwNPS may be insufficient to deliver clinical benefit. Notably, in the SYNAPSE study, which demonstrated significant reductions in polyp size with mepolizumab 371 treatment overall, 49.5% of patients did not experience a ≥1-point improvement in total 372 endoscopic nasal polyp score.<sup>203</sup> This indicates there is heterogeneity in response to 373 374 targeting IL-5 in patients with severe, recurrent nasal polyps requiring further surgery. A post 375 hoc analysis of SYNAPSE found no clear differences in baseline clinical characteristics 376 between patients considered to be mepolizumab responders versus non-responders, highlighting a need for further investigation of the underlying endophenotypic characteristics 377 that may predict treatment response.<sup>217</sup> With further research, the effects of biologic 378 therapies on airway remodeling may provide specific clues as to the underlying mechanisms 379

- of this process. In addition, CRSwNP pathobiology may change at different stages of the
- disease, with potential differences in the factors that drive nasal polyp formation versus
- those that maintain the edematous polyp state. Accordingly, further work is needed to fully
- 383 explore and understand the impact of eosinophil-targeting therapies on remodeling in airway
- disease and whether alterations in eosinophil activation (rather than eosinophil numbers) or
- the effects of IL-5 inhibition that extend beyond eosinophils themselves, are mechanisms
- 386 contributing to clinical impact.

387

Journal Prevention

### 388 Future directions and unanswered questions

389 While our understanding of the role of eosinophils in airway remodeling in health and 390 disease is improving, there are still many unanswered questions. A key objective will be to further understand the relationship between reductions in tissue eosinophil numbers, 391 eosinophil activation status, and airway remodeling in airway diseases, as well as evaluating 392 393 the relevance of the eosinophil-independent local effects of IL-5 on airway structural biology. Fully characterizing the differences between eosinophils involved in homeostasis and those 394 involved in disease, observed in both mouse and human studies,<sup>218,219</sup> will also be important. 395 396 To this end, data on the phenotype and function of airway-resident eosinophils versus those 397 in other tissues will be useful. Assessing genetic and inflammatory interactions and 398 overcoming technical barriers to performing single cell sequencing of eosinophils (for 399 example, eosinophil RNAses) will be integral to addressing this. In particular, studies using mass cytometry techniques such as cytometry by time of flight and tissue imaging mass 400 cytometry can produce multidimensional data to help characterize subgroups of eosinophils 401 with different expression profiles (and identify their presence in different disease 402 403 phenotypes), in addition to establishing eosinophil-stromal cell interactions in the tissue microenvironment.<sup>102,220,221</sup> There is also a need to understand airway changes during 404 clinical remission, particularly remission induced by eosinophil-targeting biologics. 405 Furthermore, the inclusion of endpoints more relevant to airway remodeling in clinical trials 406 will help determine whether currently available eosinophil-targeting therapies can reduce the 407 clinical effects of remodeling. Indeed, it will be important to determine whether airway 408 409 remodeling becomes irreversible and, if so, what the contributors to and markers of irreversible remodeling are. Further characterization of the molecular signaling pathways 410 411 involved in eosinophil migration and activation that initiate airway remodeling will also be 412 useful in identifying novel molecular targets for therapy. For example, Rac1 has recently 413 been identified as a target that has the potential to simultaneously reduce airway smooth 414 muscle hyperplasia, airway hyperresponsiveness, and inflammation.222

Although data on eosinophil-driven remodeling in CRSwNP are beginning to emerge, they are sparser than in asthma. As such, further information on the etiologic role of eosinophils and downstream signaling pathways in the pathophysiology of tissue remodeling in patients with CRSwNP is needed. It will be important to further determine what effect the reduction of eosinophil levels has on tissue remodeling and whether any of the effects of anti-IL-5 biologic therapy are related to inhibitory effects on structural cells expressing the IL-5 receptor, additional to those resulting from modification of local tissue eosinophilic

422 inflammation.

### 423 Conclusion

There is growing evidence that tissue remodeling contributes to both upper and lower airway 424 disease. While evidence for remodeling in upper airway disease does not yet fully 425 correspond with that seen in the lower airways, there are aspects consistent to both, such as 426 epithelial cell disruption and excess ECM production. Furthermore, there is now evidence 427 that eosinophil localization is important in upper airway remodeling, a notion already 428 established in the lower airways. Our knowledge of eosinophils in tissue homeostasis and 429 430 remodeling in health and eosinophil-mediated diseases is improving and has highlighted 431 further therapeutic possibilities. Nonetheless, there is a need to further characterize the roles 432 of eosinophils in the tissue remodeling that contributes to eosinophil-mediated disease, to 433 help develop therapeutic interventions that attenuate and even reverse the effects of 434 remodeling and thereby improve clinical outcomes and symptoms. Such evidence is needed to understand whether disease modification and prevention of disease progression are 435 realistic outcomes of targeted therapy, especially in asthma, as the ability to fundamentally 436 437 alter the biology underlying exaggerated airway remodeling processes is a key goal of

disease modifying asthma therapy.

#### **Acknowledgements** 439

- Editorial support (in the form of writing assistance, including development of the initial draft 440
- from the author discussions, assembling tables and figures, collating authors comments, 441
- grammatical editing and referencing) was provided by Laura Gardner, PhD, CMPP, at 442
- Fishawack Indicia Ltd, UK, part of Fishawack Health, and was funded by GSK. 443
- 444

#### **Author contributions** 445

- All authors contributed to the conception and design of this review article, in addition 446
- to revising it critically for important intellectual content and providing final approval of 447
- the version to be published. 448

#### References 449 450 1. Samitas K, Carter A, Kariyawasam HH, Xanthou G. Upper and lower airway remodelling mechanisms in 451 asthma, allergic rhinitis and chronic rhinosinusitis: The one airway concept revisited. Allergy 2018; 452 73:993-1002. DOI:10.1111/all.13373. 453 2. Chung KF, Godard P, Adelroth E, Ayres J, Barnes N, Barnes P, et al. Difficult/therapy-resistant asthma: 454 the need for an integrated approach to define clinical phenotypes, evaluate risk factors, understand 455 pathophysiology and find novel therapies. ERS Task Force on Difficult/Therapy-Resistant Asthma. 456 European Respiratory Society. Eur Respir J 1999; 13:1198-208. DOI:10.1034/j.1399-457 3003.1999.13e43.x. 458 Long H, Liao W, Wang L, Lu Q. A Player and Coordinator: The Versatile Roles of Eosinophils in the 3. 459 Immune System. Transfus Med Hemother 2016; 43:96-108. DOI:10.1159/000445215. 460 4. Lee JJ, Jacobsen EA, McGarry MP, Schleimer RP, Lee NA. Eosinophils in health and disease: the LIAR 461 hypothesis. Clin Exp Allergy 2010; 40:563-75. DOI:10.1111/j.1365-2222.2010.03484.x. 462 5. Chusid MJ. Eosinophils: Friends or Foes? J Allergy Clin Immunol Pract 2018; 6:1439-44. 463 DOI:10.1016/j.jaip.2018.04.031. 464 6. Lee JJ, Jacobsen EA, Ochkur SI, McGarry MP, Condjella RM, Doyle AD, et al. Human versus mouse 465 eosinophils: "that which we call an eosinophil, by any other name would stain as red". J Allergy Clin 466 Immunol 2012; 130:572-84. DOI:10.1016/j.jaci.2012.07.025. 467 7. Lee JJ, Dimina D, Macias MP, Ochkur SI, McGarry MP, O'Neill KR, et al. Defining a link with asthma in 468 mice congenitally deficient in eosinophils. Science 2004; 305:1773-6. DOI:10.1126/science.1099472. 469 8. Tanaka H, Komai M, Nagao K, Ishizaki M, Kajiwara D, Takatsu K, et al. Role of interleukin-5 and 470 eosinophils in allergen-induced airway remodeling in mice. Am J Respir Cell Mol Biol 2004; 31:62-8. 471 DOI:10.1165/rcmb.2003-0305OC. 472 9. Abdala-Valencia H. Coden ME. Chiarella SE. Jacobsen EA. Bochner BS. Lee JJ. et al. Shaping eosinophil 473 identity in the tissue contexts of development, homeostasis, and disease. J Leukoc Biol 2018; 104:95-474 108. DOI:10.1002/JLB.1MR1117-442RR. 475 10. Khan A, Huynh TMT, Vandeplas G, Joish VN, Mannent LP, Tomassen P, et al. The GALEN rhinosinusitis 476 cohort: chronic rhinosinusitis with nasal polyps affects health-related quality of life. Rhinology 2019; 477 57:343-51. DOI:10.4193/Rhin19.158. 478 Busse WW, Kraft M. Current unmet needs and potential solutions to uncontrolled asthma. Eur Respir 11. 479 Rev 2022; 31. DOI:10.1183/16000617.0176-2021. 480 12. Fehrenbach H, Wagner C, Wegmann M. Airway remodeling in asthma: what really matters. Cell Tissue 481 Res 2017; 367:551-69. DOI:10.1007/s00441-016-2566-8. 482 13. Barker TH, Engler AJ. The provisional matrix: setting the stage for tissue repair outcomes. Matrix Biol 483 2017; 60-61:1-4. DOI:10.1016/j.matbio.2017.04.003. 484 14. Vatrella A, Maglio A, Pelaia C, Ciampo L, Pelaia G, Vitale C. Eosinophilic inflammation: An Appealing 485 Target for Pharmacologic Treatments in Severe Asthma. Biomedicines 2022; 10. 486 DOI:10.3390/biomedicines10092181. 487 15. Sacco O, Silvestri M, Sabatini F, Sale R, Defilippi AC, Rossi GA. Epithelial cells and fibroblasts: structural 488 repair and remodelling in the airways. Paediatr Respir Rev 2004; 5 Suppl A:S35-40. 489 DOI:10.1016/s1526-0542(04)90008-5. 490 Legrand C, Gilles C, Zahm JM, Polette M, Buisson AC, Kaplan H, et al. Airway epithelial cell migration 16. 491 dynamics. MMP-9 role in cell-extracellular matrix remodeling. J Cell Biol 1999; 146:517-29. 492 DOI:10.1083/jcb.146.2.517. 493 Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 17. 494 2010; 298:L715-31. DOI:10.1152/ajplung.00361.2009. 495 18. Neurohr C, Nishimura SL, Sheppard D. Activation of transforming growth factor-beta by the integrin 496 alphavbeta8 delays epithelial wound closure. Am J Respir Cell Mol Biol 2006; 35:252-9. 497 DOI:10.1165/rcmb.2006-0013OC. 498 Hachim MY, Elemam NM, Ramakrishnan RK, Bajbouj K, Olivenstein R, Hachim IY, et al. Wnt Signaling Is 19. 499 Deranged in Asthmatic Bronchial Epithelium and Fibroblasts. Front Cell Dev Biol 2021; 9:641404. 500 DOI:10.3389/fcell.2021.641404. 501 20. Kim HT, Yin W, Nakamichi Y, Panza P, Grohmann B, Buettner C, et al. WNT/RYK signaling restricts 502 goblet cell differentiation during lung development and repair. Proc Natl Acad Sci U S A 2019;

503 116:25697-706. DOI:10.1073/pnas.1911071116.

| 504<br>505 | 21. | Song J, Zhu XM, Wei QY. MSCs reduce airway remodeling in the lungs of asthmatic rats through the Wnt/beta-catenin signaling pathway. Eur Rev Med Pharmacol Sci 2020; 24:11199-211.    |  |  |  |
|------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 506        |     | DOI:10.26355/eurrev_202011_23608.                                                                                                                                                     |  |  |  |
| 507        | 22. | Sugimoto MA, Sousa LP, Pinno V, Perretti M, Teixeira MM. Resolution of Inflammation: What Co                                                                                          |  |  |  |
| 508        | 22  | Its Unset: Front Immunol 2016; /:160. DUI:10.3389/fimmu.2016.00160.                                                                                                                   |  |  |  |
| 509        | 23. | Grainge CL, Lau LC, Ward JA, Dulay V, Lanitt G, Wilson S, et al. Effect of bronchoconstriction on<br>remodeling in asthma. N Engl L Med 2011; 264:2006 15, DOI:10.1056 (NEMA-1014255) |  |  |  |
| 510        | 24  | remouening in astrinia. IN Engl J IVIEU 2011; 304:2000-15. DUI:10.1050/NEJIVIO31014350.                                                                                               |  |  |  |
| 512        | 24. | differentially regulate fibroblast expression of extracellular matrix components. I Allergy Clin Immunol                                                                              |  |  |  |
| 512        |     | $2014 \cdot 134 \cdot 663 - 70 = 1$ DOI-10 1016/i jaci 2014 04 007                                                                                                                    |  |  |  |
| 514        | 25  | Fang CL Vin LL Sharma S Kierstein S Wu HE Fid G et al Resistin-like molecule-heta (RELM-heta)                                                                                         |  |  |  |
| 515        | 23. | targets airways fibrohlasts to effect remodelling in asthma: from mouse to man. Clin Exp Allergy 2015:                                                                                |  |  |  |
| 516        |     | 45:940-52. DOI:10.1111/cea.12481.                                                                                                                                                     |  |  |  |
| 517        | 26. | Hough KP. Curtiss ML. Blain TJ. Liu RM. Trevor J. Deshane JS. et al. Airway Remodeling in Asthma.                                                                                     |  |  |  |
| 518        |     | Front Med (Lausanne) 2020: 7:191. DOI:10.3389/fmed.2020.00191.                                                                                                                        |  |  |  |
| 519        | 27. | Roche WR. Beasley R. Williams JH. Holgate ST. Subepithelial fibrosis in the bronchi of asthmatics.                                                                                    |  |  |  |
| 520        |     | Lancet 1989; 1:520-4. DOI:10.1016/s0140-6736(89)90067-6.                                                                                                                              |  |  |  |
| 521        | 28. | Royce SG, Cheng V, Samuel CS, Tang ML. The regulation of fibrosis in airway remodeling in asthma.                                                                                     |  |  |  |
| 522        |     | Mol Cell Endocrinol 2012; 351:167-75. DOI:10.1016/j.mce.2012.01.007.                                                                                                                  |  |  |  |
| 523        | 29. | Ito JT, Lourenco JD, Righetti RF, Tiberio I, Prado CM, Lopes F. Extracellular Matrix Component                                                                                        |  |  |  |
| 524        |     | Remodeling in Respiratory Diseases: What Has Been Found in Clinical and Experimental Studies? Cells                                                                                   |  |  |  |
| 525        |     | 2019; 8. DOI:10.3390/cells8040342.                                                                                                                                                    |  |  |  |
| 526        | 30. | Pain M, Bermudez O, Lacoste P, Royer PJ, Botturi K, Tissot A, et al. Tissue remodelling in chronic                                                                                    |  |  |  |
| 527        |     | bronchial diseases: from the epithelial to mesenchymal phenotype. Eur Respir Rev 2014; 23:118-30.                                                                                     |  |  |  |
| 528        |     | DOI:10.1183/09059180.00004413.                                                                                                                                                        |  |  |  |
| 529        | 31. | Ozdamar B, Bose R, Barrios-Rodiles M, Wang HR, Zhang Y, Wrana JL. Regulation of the polarity protein                                                                                  |  |  |  |
| 530        |     | Par6 by TGFbeta receptors controls epithelial cell plasticity. Science 2005; 307:1603-9.                                                                                              |  |  |  |
| 531        |     | DOI:10.1126/science.1105718.                                                                                                                                                          |  |  |  |
| 532        | 32. | Hackett TL, Warner SM, Stefanowicz D, Shaheen F, Pechkovsky DV, Murray LA, et al. Induction of                                                                                        |  |  |  |
| 533        |     | epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by                                                                                     |  |  |  |
| 534        |     | transforming growth factor-beta1. Am J Respir Crit Care Med 2009; 180:122-33.                                                                                                         |  |  |  |
| 535        | 22  | DUI:10.1164/rccm.200811-1/300C.                                                                                                                                                       |  |  |  |
| 530        | 33. | sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epitheliai-mesenchymal transition in astrima airway                                                                                  |  |  |  |
| 557        | 24  | Chiarolla E. Lombarda N. Lobella N. Alaisia A. Aragona T. Delaia C. et al. Nasal polynesis: Insights in                                                                               |  |  |  |
| 530        | 54. | enithelial mesenchymal transition and differentiation of polyn mesenchymal stem cells. International                                                                                  |  |  |  |
| 540        |     | Journal of Molecular Sciences 2020: 21:6878                                                                                                                                           |  |  |  |
| 541        | 35  | Jarsen K. Tufvesson F. Malmstrom J. Morgelin M. Wildt M. Andersson A. et al. Presence of activated                                                                                    |  |  |  |
| 542        | 55. | mobile fibroblasts in bronchoalveolar lavage from natients with mild asthma. Am I Resnir Crit Care                                                                                    |  |  |  |
| 543        |     | Med 2004: 170:1049-56. DOI:10.1164/rccm.200404-507OC.                                                                                                                                 |  |  |  |
| 544        | 36. | Michalik M. Woicik-Pszczola K. Paw M. Wnuk D. Koczurkiewicz P. Sanak M. et al. Fibroblast-to-                                                                                         |  |  |  |
| 545        |     | myofibroblast transition in bronchial asthma. Cell Mol Life Sci 2018; 75:3943-61. DOI:10.1007/s00018-                                                                                 |  |  |  |
| 546        |     | 018-2899-4.                                                                                                                                                                           |  |  |  |
| 547        | 37. | Burgess JK, Mauad T, Tjin G, Karlsson JC, Westergren-Thorsson G. The extracellular matrix - the under-                                                                                |  |  |  |
| 548        |     | recognized element in lung disease? J Pathol 2016; 240:397-409. DOI:10.1002/path.4808.                                                                                                |  |  |  |
| 549        | 38. | Ojiaku CA, Yoo EJ, Panettieri RA, Jr. Transforming Growth Factor beta1 Function in Airway Remodeling                                                                                  |  |  |  |
| 550        |     | and Hyperresponsiveness. The Missing Link? Am J Respir Cell Mol Biol 2017; 56:432-42.                                                                                                 |  |  |  |
| 551        |     | DOI:10.1165/rcmb.2016-0307TR.                                                                                                                                                         |  |  |  |
| 552        | 39. | Arjomandi M, Frelinger J, Donde A, Wong H, Yellamilli A, Raymond W. Secreted osteopontin is highly                                                                                    |  |  |  |
| 553        |     | polymerized in human airways and fragmented in asthmatic airway secretions. PLoS One 2011;                                                                                            |  |  |  |
| 554        |     | 6:e25678. DOI:10.1371/journal.pone.0025678.                                                                                                                                           |  |  |  |
| 555        | 40. | Delimpoura V, Bakakos P, Tseliou E, Bessa V, Hillas G, Simoes DC, et al. Increased levels of osteopontin                                                                              |  |  |  |
| 556        |     | in sputum supernatant in severe retractory asthma. Thorax 2010; 65:782-6.                                                                                                             |  |  |  |
| 55/        |     | DUI:10.1136/thx.2010.138552.                                                                                                                                                          |  |  |  |
| 558        | 41. | Kaartinen IVII, Pirhonen A, Linnala-Kankkunen A, Maenpaa PH. Cross-linking of osteopontin by tissue                                                                                   |  |  |  |
| 559        |     | transglutaminase increases its collagen binding properties. J Biol Chem 1999; 274:1729-35.                                                                                            |  |  |  |
| 200        |     | DOI:T0:T0:T0/4/]DC:2/4:3:T/23.                                                                                                                                                        |  |  |  |

| 561        | 42.                                                                                       | Kohan M, Bader R, Puxeddu I, Levi-Schaffer F, Breuer R, Berkman N. Enhanced osteopontin expression     |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
| 562<br>563 |                                                                                           | in a murine model of allergen-induced airway remodelling. Clin Exp Allergy 2007; 37:1444-54.           |  |  |  |  |
| 564        | 43                                                                                        | Kohan M. Breuer R. Berkman N. Osteopontin induces airway remodeling and lung fibroblast activat        |  |  |  |  |
| 565        | in a murine model of asthma. Am J Respir Cell Mol Biol 2009; 41:290-6. DOI:10.1165/rcmb.2 |                                                                                                        |  |  |  |  |
| 566        |                                                                                           | 03070C.                                                                                                |  |  |  |  |
| 567        | 44                                                                                        | Trinh HKT Nguyen TVT Kim SH Cao TBT Luu OO Kim SH et al. Osteopontin contributes to late-onset         |  |  |  |  |
| 568        |                                                                                           | asthma phenotypes in adult asthma patients. Exp Mol Med 2020: 52:253-65. DOI:10.1038/s12276-           |  |  |  |  |
| 569        |                                                                                           | 020-0376-2.                                                                                            |  |  |  |  |
| 570        | 45.                                                                                       | Legrand F, Cao Y, Wechsler JB, Zhu X, Zimmermann N, Rampertaap S, et al. Sialic acid-binding           |  |  |  |  |
| 571        |                                                                                           | immunoglobulin-like lectin (Siglec) 8 in patients with eosinophilic disorders: Receptor expression and |  |  |  |  |
| 572        |                                                                                           | targeting using chimeric antibodies. J Allergy Clin Immunol 2019; 143:2227-37 e10.                     |  |  |  |  |
| 573        |                                                                                           | DOI:10.1016/j.jaci.2018.10.066.                                                                        |  |  |  |  |
| 574        | 46.                                                                                       | Rosenberg HF, Dyer KD, Foster PS. Eosinophils: changing perspectives in health and disease. Nat Rev    |  |  |  |  |
| 575        |                                                                                           | Immunol 2013; 13:9-22. DOI:10.1038/nri3341.                                                            |  |  |  |  |
| 576        | 47.                                                                                       | Barthel SR, Johansson MW, McNamee DM, Mosher DF. Roles of integrin activation in eosinophil            |  |  |  |  |
| 577        |                                                                                           | function and the eosinophilic inflammation of asthma. J Leukoc Biol 2008; 83:1-12.                     |  |  |  |  |
| 578        |                                                                                           | DOI:10.1189/jlb.0607344.                                                                               |  |  |  |  |
| 579        | 48.                                                                                       | Acharya KR, Ackerman SJ. Eosinophil granule proteins: form and function. J Biol Chem 2014;             |  |  |  |  |
| 580        |                                                                                           | 289:17406-15. DOI:10.1074/jbc.R113.546218.                                                             |  |  |  |  |
| 581<br>582 | 49.                                                                                       | Weller PF, Spencer LA. Functions of tissue-resident eosinophils. Nat Rev Immunol 2017; 17:746-60.      |  |  |  |  |
| 583        | 50                                                                                        | Spencer I & Bonjour K Melo RC Weller PE Fosinophil secretion of granule-derived cytokines Front        |  |  |  |  |
| 584        | 50.                                                                                       | Immunol 2014: 5:496 DOI:10 3389/fimmu 2014 00496                                                       |  |  |  |  |
| 585        | 51                                                                                        | Melo RC Weller PE Piecemeal degranulation in human eosinophils: a distinct secretion mechanism         |  |  |  |  |
| 586        |                                                                                           | underlying inflammatory responses. Histol Histopathol 2010: 25:1341-54. DOI:10.14670/HH-25.1341.       |  |  |  |  |
| 587        | 52.                                                                                       | McBrien CN. Menzies-Gow A. The Biology of Eosinophils and Their Role in Asthma. Front Med              |  |  |  |  |
| 588        |                                                                                           | (Lausanne) 2017; 4:93. DOI:10.3389/fmed.2017.00093.                                                    |  |  |  |  |
| 589        | 53.                                                                                       | Al-Alwan LA, Chang Y, Baglole CJ, Risse PA, Halayko AJ, Martin JG, et al. Autocrine-regulated airway   |  |  |  |  |
| 590        |                                                                                           | smooth muscle cell migration is dependent on IL-17-induced growth-related oncogenes. J Allergy Clin    |  |  |  |  |
| 591        |                                                                                           | Immunol 2012; 130:977-85 e6. DOI:10.1016/j.jaci.2012.04.042.                                           |  |  |  |  |
| 592        | 54.                                                                                       | Atherton HC, Jones G, Danahay H. IL-13-induced changes in the goblet cell density of human bronchial   |  |  |  |  |
| 593        |                                                                                           | epithelial cell cultures: MAP kinase and phosphatidylinositol 3-kinase regulation. Am J Physiol Lung   |  |  |  |  |
| 594        |                                                                                           | Cell Mol Physiol 2003; 285:L730-9. DOI:10.1152/ajplung.00089.2003.                                     |  |  |  |  |
| 595        | 55.                                                                                       | Chu HW, Balzar S, Seedorf GJ, Westcott JY, Trudeau JB, Silkoff P, et al. Transforming growth factor-   |  |  |  |  |
| 596        |                                                                                           | beta2 induces bronchial epithelial mucin expression in asthma. Am J Pathol 2004; 165:1097-106.         |  |  |  |  |
| 597        |                                                                                           | DOI:10.1016/s0002-9440(10)63371-8.                                                                     |  |  |  |  |
| 598        | 56.                                                                                       | Frossard N, Freund V, Advenier C. Nerve growth factor and its receptors in asthma and inflammation.    |  |  |  |  |
| 599        |                                                                                           | Eur J Pharmacol 2004; 500:453-65. DOI:10.1016/j.ejphar.2004.07.044.                                    |  |  |  |  |
| 600        | 57.                                                                                       | Goldsmith AM, Bentley JK, Zhou L, Jia Y, Bitar KN, Fingar DC, et al. Transforming growth factor-beta   |  |  |  |  |
| 601        |                                                                                           | induces airway smooth muscle hypertrophy. Am J Respir Cell Mol Biol 2006; 34:247-54.                   |  |  |  |  |
| 602        |                                                                                           | DOI:10.1165/rcmb.2005-0166OC.                                                                          |  |  |  |  |
| 603        | 58.                                                                                       | Hayashi H, Kawakita A, Okazaki S, Yasutomi M, Murai H, Ohshima Y. IL-17A/F modulates fibrocyte         |  |  |  |  |
| 604        |                                                                                           | functions in cooperation with CD40-mediated signaling. Inflammation 2013; 36:830-8.                    |  |  |  |  |
| 605        |                                                                                           | DUI:10.100//s10/53-013-9609-z.                                                                         |  |  |  |  |
| 606        | 59.                                                                                       | Hernnas J, Sarnstrand B, Lindroth P, Peterson CG, Venge P, Maimstrom A. Eosinophil cationic protein    |  |  |  |  |
| 607        | <u> </u>                                                                                  | aiters proteogiycan metabolism in numan lung fibroblast cultures. Eur J Cell Biol 1992; 59:352-63.     |  |  |  |  |
| 608        | 60.                                                                                       | Hosnino M, Takanashi M, Aoike N. Expression of Vascular endotnelial growth factor, basic fibroblast    |  |  |  |  |
| 610        |                                                                                           | angiogenesis I Allergy Clip Immunol 2001: 107:205 201 DOI:10.1067/mpi 2001.111028                      |  |  |  |  |
| 611        | 61                                                                                        | Ito L Eixman ED, Asai K, Voshida M, Gounni AS, Martin IG, et al. Platelet-derived growth factor and    |  |  |  |  |
| 612        | J1.                                                                                       | transforming growth factor-beta modulate the expression of matrix metalloproteinases and migratory     |  |  |  |  |
| 613        |                                                                                           | function of human airway smooth muscle cells. Clin Eyn Allergy 2009: 30:1370-80                        |  |  |  |  |
| 614        |                                                                                           | DOI:10 1111/i 1365-2222 2009 03293 x                                                                   |  |  |  |  |
| 615        | 62.                                                                                       | Malavia NK. Mih ID. Raub CB. Dinh BT. George SC. II -13 induces a bronchial enithelial phenotype that  |  |  |  |  |
| 616        |                                                                                           | is profibrotic. Respir Res 2008; 9:27. DOI:10.1186/1465-9921-9-27.                                     |  |  |  |  |

| 617          | 63. | Michalik M, Pierzchalska M, Legutko A, Ura M, Ostaszewska A, Soja J, et al. Asthmatic bronchial            |
|--------------|-----|------------------------------------------------------------------------------------------------------------|
| 618          |     | fibroblasts demonstrate enhanced potential to differentiate into myofibroblasts in culture. Med Sci        |
| 619          |     | Monit 2009; 15:BR194-201.                                                                                  |
| 620          | 64. | Molet S, Hamid Q, Davoine F, Nutku E, Taha R, Page N, et al. IL-17 is increased in asthmatic airways       |
| 621          |     | and induces human bronchial fibroblasts to produce cytokines. J Allergy Clin Immunol 2001; 108:430-        |
| 622          |     | 8. DOI:10.1067/mai.2001.117929.                                                                            |
| 623          | 65. | Nakao A, Sagara H, Setoguchi Y, Okada T, Okumura K, Ogawa H, et al. Expression of Smad7 in                 |
| 624          |     | bronchial epithelial cells is inversely correlated to basement membrane thickness and airway               |
| 625          |     | hyperresponsiveness in patients with asthma. J Allergy Clin Immunol 2002: 110:873-8.                       |
| 626          |     | DOI:10.1067/mai.2002.129236.                                                                               |
| 627          | 66. | Shimizu S. Gabazza EC. Havashi T. Ido M. Adachi Y. Suzuki K. Thrombin stimulates the expression of         |
| 628          |     | PDGE in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000: 279:1503-10.                       |
| 629          |     | DOI:10 1152/ainlung 2000 279 3 1 503                                                                       |
| 630          | 67  | Shimizu S. Gabazza FC. Ogawa T. Tojima I. Hoshi F. Kouzaki H. et al. Role of thrombin in chronic           |
| 631          | 07. | rhinosinusitis-associated tissue remodeling. Am I Rhinol Allergy 2011: 25:7-11                             |
| 632          |     | DOI:10.2500/aira 2011.25.3535                                                                              |
| 633          | 68  | Thompson HG Mih ID Krasieva TB Tromberg BI George SC Enithelial-derived TGE-beta2 modulates                |
| 634          | 00. | basal and wound-bealing subenitbelial matrix homeostasis. Am L Physiol Lung Cell Mol Physiol 2006:         |
| 635          |     | 20111277-85 DOI:10.1152/ainlung 00057.2006                                                                 |
| 626          | 60  | ZSILLIZ/7-65. DOI.10.1152/ajplung.00057.2000.                                                              |
| 627          | 09. | anhanase sirway remodeling in assing this shranis rhingsing it as a correlated with disease                |
| 620          |     | coverity. Int Immunol 2010; 21:22:40. DOI:10.1002/intimm/dw/061                                            |
| 620          | 70  | Vignala AM, Change D, Chianners C, Maranding A, Dago F, Diezo A, et al. Transforming growth factor         |
| 640          | 70. | Vignold Alvi, Chanez P, Chiappara G, Merendino A, Pace E, Rizzo A, et al. Transforming growth factor-      |
| 040<br>C 4 1 |     | 1007, 15C-501, 0, DOI-10, 11CA/aircom 15C, 2,0C000CC                                                       |
| 641<br>642   | 71  | 1997; 150:591-9. DUI:10.1164/ajfCCM.156.2.9609066.                                                         |
| 04Z          | /1. | Vignold AW, Riccobolio L, Milabelia A, Prolita W, Chanez P, Bella V, et al. Sputum metalloproteinase-      |
| 043<br>C44   |     | 9/tissue inhibitor of metalloproteinase-1 ratio correlates with airliow obstruction in astrima and         |
| 044          | 72  | Vittel D. Fand. Greenenen DC. Mielder FA. Genelekrichnen D. Gull, et el. II. 17 induces ture V. collegen   |
| 645          | 72. | Vittal R, Fan L, Greenspan DS, Mickier EA, Gopalakrisnnan B, Gu H, et al. IL-17 induces type V collagen    |
| 646          |     | overexpression and ENT VIA TGF-beta-dependent pathways in obliterative bronchiolitis. Am J Physiol         |
| 647          | 70  |                                                                                                            |
| 648          | /3. | Wang Q, Li H, Yao Y, Lu G, Wang Y, Xia D, et al. HB-EGF-Promoted Airway Smooth Muscle Cells and            |
| 649          |     | Their Progenitor Migration Contribute to Airway Smooth Muscle Remodeling in Asthmatic Mouse. J             |
| 650          |     | Immunol 2016; 196:2361-7. DOI:10.4049/Jimmunol.1402126.                                                    |
| 651          | /4. | Zagai U, Lundahl J, Klominek J, Venge P, Skold CM. Eosinophil cationic protein stimulates migration of     |
| 652          |     | human lung fibroblasts in vitro. Scand J Immunol 2009; 69:381-6. DOI:10.1111/j.1365-                       |
| 653          |     | 3083.2009.02233.x.                                                                                         |
| 654          | 75. | Zhao J, Jiang T, Li P, Dai L, Shi G, Jing X, et al. Tissue factor promotes airway pathological features    |
| 655          |     | through epithelial-mesenchymal transition of bronchial epithelial cells in mice with house dust mite-      |
| 656          |     | induced asthma. Int Immunopharmacol 2021; 97:107690. DOI:10.1016/j.intimp.2021.107690.                     |
| 657          | 76. | Gevaert E, Zhang N, Krysko O, Lan F, Holtappels G, De Ruyck N, et al. Extracellular eosinophilic traps in  |
| 658          |     | association with Staphylococcus aureus at the site of epithelial barrier defects in patients with severe   |
| 659          |     | airway inflammation. J Allergy Clin Immunol 2017; 139:1849-60 e6. DOI:10.1016/j.jaci.2017.01.019.          |
| 660          | 77. | Gevaert E, Delemarre T, De Volder J, Zhang N, Holtappels G, De Ruyck N, et al. Charcot-Leyden crystals     |
| 661          |     | promote neutrophilic inflammation in patients with nasal polyposis. Journal of Allergy and Clinical        |
| 662          |     | Immunology 2020; 145:427-30. e4.                                                                           |
| 663          | 78. | Abdo M, Uddin M, Goldmann T, Marwitz S, Bahmer T, Holz O, et al. Raised sputum extracellular DNA           |
| 664          |     | confers lung function impairment and poor symptom control in an exacerbation-susceptible                   |
| 665          |     | phenotype of neutrophilic asthma. Respir Res 2021; 22:167.                                                 |
| 666          | 79. | Simon D, Simon HU, Yousefi S. Extracellular DNA traps in allergic, infectious, and autoimmune              |
| 667          |     | diseases. Allergy 2013; 68:409-16.                                                                         |
| 668          | 80. | Persson EK, Verstraete K, Heyndrickx I, Gevaert E, Aegerter H, Percier J-M, et al. Protein crystallization |
| 669          |     | promotes type 2 immunity and is reversible by antibody treatment. Science 2019; 364:738.                   |
| 670          | 81. | Gevaert P, Han JK, Smith SG, Sousa AR, Howarth PH, Yancey SW, et al. The roles of eosinophils and          |
| 671          |     | interleukin-5 in the pathophysiology of chronic rhinosinusitis with nasal polyps. Int Forum Allergy        |
| 672          |     | Rhinol, 2022:1413-23.                                                                                      |

| 673        | 82.  | Marichal T. Mesnil C. Bureau F. Homeostatic Fosinophils: Characteristics and Functions. Front Med                            |  |  |  |  |
|------------|------|------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 674        | 01   | (Lausanne) 2017: 4:101. DOI:10.3389/fmed.2017.00101.                                                                         |  |  |  |  |
| 675        | 83.  | Mochizuki M, Bartels J, Mallet AI, Christophers E, Schroder JM. IL-4 induces eotaxin: a possible                             |  |  |  |  |
| 676        |      | mechanism of selective eosinophil recruitment in helminth infection and atopy. J Immunol 1998;                               |  |  |  |  |
| 677        |      | 160:60-8.                                                                                                                    |  |  |  |  |
| 678        | 84.  | Pease JE, Williams TJ. Eotaxin and asthma. Curr Opin Pharmacol 2001; 1:248-53. DOI:10.1016/s1/                               |  |  |  |  |
| 679        |      | 4892(01)00044-3.                                                                                                             |  |  |  |  |
| 680        | 85.  | Rothenberg ME. Eotaxin. An essential mediator of eosinophil trafficking into mucosal tissues. Am J                           |  |  |  |  |
| 681        |      | Respir Cell Mol Biol 1999; 21:291-5. DOI:10.1165/ajrcmb.21.3.f160.                                                           |  |  |  |  |
| 682        | 86.  | Dougan M, Dranoff G, Dougan SK. GM-CSF, IL-3, and IL-5 Family of Cytokines: Regulators of                                    |  |  |  |  |
| 683        |      | Inflammation. Immunity 2019; 50:796-811. DOI:10.1016/j.immuni.2019.03.022.                                                   |  |  |  |  |
| 684        | 87.  | Travers J, Rothenberg ME. Eosinophils in mucosal immune responses. Mucosal Immunol 2015; 8:464-                              |  |  |  |  |
| 685        |      | 75. DOI:10.1038/mi.2015.2.                                                                                                   |  |  |  |  |
| 686        | 88.  | Yamaguchi Y, Hayashi Y, Sugama Y, Miura Y, Kasahara T, Kitamura S, et al. Highly purified murine                             |  |  |  |  |
| 687        |      | interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil                    |  |  |  |  |
| 688        |      | chemotactic factor. J Exp Med 1988; 167:1737-42. DOI:10.1084/jem.167.5.1737.                                                 |  |  |  |  |
| 689        | 89.  | Clutterbuck EJ, Hirst EM, Sanderson CJ. Human interleukin-5 (IL-5) regulates the production of                               |  |  |  |  |
| 690        |      | eosinophils in human bone marrow cultures: comparison and interaction with IL-1, IL-3, IL-6, and                             |  |  |  |  |
| 691        |      | GMCSF. Blood 1989; 73:1504-12.                                                                                               |  |  |  |  |
| 692        | 90.  | Mould AW, Matthaei KI, Young IG, Foster PS. Relationship between interleukin-5 and eotaxin in                                |  |  |  |  |
| 693        |      | regulating blood and tissue eosinophilia in mice. J Clin Invest 1997; 99:1064-71.                                            |  |  |  |  |
| 694        |      | DOI:10.1172/JCI119234.                                                                                                       |  |  |  |  |
| 695        | 91.  | Shalit M, Sekhsaria S, Malech HL. Modulation of growth and differentiation of eosinophils from                               |  |  |  |  |
| 696        |      | human peripheral blood CD34+ cells by IL5 and other growth factors. Cell Immunol 1995; 160:50-7.                             |  |  |  |  |
| 697        |      | DOI:10.1016/0008-8749(95)80008-7.                                                                                            |  |  |  |  |
| 698        | 92.  | Mindt BC, Fritz JH, Duerr CU. Group 2 Innate Lymphoid Cells in Pulmonary Immunity and Tissue                                 |  |  |  |  |
| 699        |      | Homeostasis. Front Immunol 2018; 9:840. DOI:10.3389/fimmu.2018.00840.                                                        |  |  |  |  |
| 700        | 93.  | Molofsky AB, Nussbaum JC, Liang HE, Van Dyken SJ, Cheng LE, Mohapatra A, et al. Innate lymphoid                              |  |  |  |  |
| 701        |      | type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp                      |  |  |  |  |
| 702        |      | Med 2013; 210:535-49. DOI:10.1084/jem.20121964.                                                                              |  |  |  |  |
| 703        | 94.  | Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, et al. Type 2 innate                            |  |  |  |  |
| 704        |      | lymphoid cells control eosinophil homeostasis. Nature 2013; 502:245-8. DOI:10.1038/nature12526.                              |  |  |  |  |
| 705        | 95.  | Maggi E, Veneziani I, Moretta L, Cosmi L, Annunziato F. Group 2 Innate Lymphoid Cells: A Double-                             |  |  |  |  |
| 706        |      | Edged Sword in Cancer? Cancers (Basel) 2020; 12. DOI:10.3390/cancers12113452.                                                |  |  |  |  |
| 707        | 96.  | Hara K, Hasegawa T, Ooi H, Koya T, Tanabe Y, Tsukada H, et al. Inhibitory role of eosinophils on cell                        |  |  |  |  |
| 708        |      | surface plasmin generation by bronchial epithelial cells: inhibitory effects of transforming growth                          |  |  |  |  |
| 709        |      | factor beta. Lung 2001; 179:9-20. DOI:10.1007/s004080000042.                                                                 |  |  |  |  |
| 710        | 97.  | Coden ME, Berdnikovs S. Eosinophils in wound healing and epithelial remodeling: Is coagulation a                             |  |  |  |  |
| 711        |      | missing link? J Leukoc Biol 2020; 108:93-103. DOI:10.1002/JLB.3MR0120-390R.                                                  |  |  |  |  |
| /12        | 98.  | Riddle JM, Barnhart MI. The Eosinophil as a Source for Profibrinolysin in Acute Inflammation. Blood                          |  |  |  |  |
| /13        | ~~   | 1965; 25:776-94.                                                                                                             |  |  |  |  |
| 714        | 99.  | Coden ME, Loffredo LF, Walker MT, Jeong BM, Nam K, Bochner BS, et al. Fibrinogen Is a Specific                               |  |  |  |  |
| 715        |      | Trigger for Cytolytic Eosinophil Degranulation. J Immunol 2020; 204:438-48.                                                  |  |  |  |  |
| /10        | 100  | DUI:10.4049/JIMMUNOI.1900932.                                                                                                |  |  |  |  |
| 710        | 100. | Ramirez GA, Yacoub MR, Ripa M, Mannina D, Cariddi A, Saporiti N, et al. Eosinophils from Physiology                          |  |  |  |  |
| 710        |      | to Disease: A comprehensive Review. Biomed Res Int 2018; 2018:9095275.                                                       |  |  |  |  |
| 719        | 101  | DUI.10.1105/2018/9095275.<br>Matussi A. Nansini F. Maggiera C. Chissoli F. Assinna M. Vivaralli F. et al. High properties of |  |  |  |  |
| 720        | 101. | inflammatory CD621 (low) assignshils in blood and pasal polyne of sovere asthma patients. Clin Eve                           |  |  |  |  |
| 721        |      | Alloren 2022, DOI:10.1111/cop.14152. DOI:10.1111/cop.14152                                                                   |  |  |  |  |
| 722<br>722 | 102  | Aller by 2022, DOI.10.1111/Led.14133. DOI.10.1111/Led.14133.                                                                 |  |  |  |  |
| 723        | 102. | cell multiparameter (VTOF 11 eukoc Biol 2020: 108:1555-64, DOI:10.1002/ILB 5MA0720.770PD                                     |  |  |  |  |
| 725        | 103  | Broekema M. Volheda F. Timens W. Diikstra A. Lee NA. Lee II. et al. Airway eosinophilia in remission                         |  |  |  |  |
| 726        | 105. | and progression of asthma: accumulation with a fast decline of FEV/(1) Resnir Med 2010: 104:1254-                            |  |  |  |  |
| 727        |      | 62. DOI:10.1016/j.rmed.2010.03.030.                                                                                          |  |  |  |  |

| 728<br>729<br>730 | 104. | Siddiqui S, Mistry V, Doe C, Roach K, Morgan A, Wardlaw A, et al. Airway hyperresponsiveness is dissociated from airway wall structural remodeling. J Allergy Clin Immunol 2008; 122:335-41, 41 e1-3. DOI:10.1016/j.jaci.2008.05.020 |  |  |  |
|-------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 731               | 105  | Barthel SP Jariour NN Mosher DE Johansson MW/ Dissection of the hyperadhesive phenotype of                                                                                                                                           |  |  |  |
| 731<br>732<br>733 | 105. | airway eosinophils in asthma. Am J Respir Cell Mol Biol 2006; 35:378-86. DOI:10.1165/rcmb.2006-<br>00270C                                                                                                                            |  |  |  |
| 734               | 106  | Giblin SP_Midwood KS_Tenascin-C: Form versus function_Cell Adh Migr 2015; 9:48-82                                                                                                                                                    |  |  |  |
| 735               | 100. | DOI:10 4161/19336918 2014 987587                                                                                                                                                                                                     |  |  |  |
| 736               | 107. | Wong CK. Cheung PF. In WK. Lam CW. Intracellular signaling mechanisms regulating toll-like receptor-                                                                                                                                 |  |  |  |
| 737               | 1071 | mediated activation of eosinophils Am I Respir Cell Mol Biol 2007: 37:85-96 DOI:10 1165/rcmb 2006-                                                                                                                                   |  |  |  |
| 738               |      | 04570C.                                                                                                                                                                                                                              |  |  |  |
| 739               | 108. | Minshall FM. Leung DY. Martin RI. Song YL. Cameron L. Ernst P. et al. Fosinophil-associated TGE-beta1                                                                                                                                |  |  |  |
| 740               | 100. | mRNA expression and airways fibrosis in bronchial asthma. Am I Respir Cell Mol Biol 1997: 17:326-33.                                                                                                                                 |  |  |  |
| 741               |      | DOI:10 1165/aircmh 17 3 2733                                                                                                                                                                                                         |  |  |  |
| 742               | 109. | Balzar S. Chu HW. Silkoff P. Cundall M. Trudeau JB. Strand M. et al. Increased TGE-beta2 in severe                                                                                                                                   |  |  |  |
| 743               | 105. | asthma with eosinophilia   Allergy Clin Immunol 2005: 115:110-7, DOI:10.1016/i.iaci.2004.09.034                                                                                                                                      |  |  |  |
| 744               | 110  | Halwani R. Al-Muhsen S. Al-Jahdali H. Hamid O. Role of transforming growth factor- $\beta$ in airway                                                                                                                                 |  |  |  |
| 745               | 110. | remodeling in asthma. American journal of respiratory cell and molecular biology 2011: 44:127-33                                                                                                                                     |  |  |  |
| 746               | 111  | Boxall C Holgate ST Davies DF. The contribution of transforming growth factor-beta and enidermal                                                                                                                                     |  |  |  |
| 747               |      | growth factor signalling to airway remodelling in chronic asthma. Fur Respir L 2006: 27:208-29                                                                                                                                       |  |  |  |
| 748               |      | DOI:10 1183/09031936 06 00130004                                                                                                                                                                                                     |  |  |  |
| 749               | 112  | Hullinger TG, Pan O, Viswanathan HL, Somerman ML, TGEbeta and BMP-2 activation of the OPN                                                                                                                                            |  |  |  |
| 750               |      | promoter: roles of smad- and hox-binding elements. Exp Cell Res 2001: 262:69-74                                                                                                                                                      |  |  |  |
| 751               |      | DOI:10.1006/excr.2000.5074.                                                                                                                                                                                                          |  |  |  |
| 752               | 113. | Gibb AA, Lazaropoulos MP, Elrod IW, Myofibroblasts and Fibrosis: Mitochondrial and Metabolic                                                                                                                                         |  |  |  |
| 753               |      | Control of Cellular Differentiation. Circ Res 2020: 127:427-47. DOI:10.1161/CIRCRESAHA.120.316958.                                                                                                                                   |  |  |  |
| 754               | 114. | Torr FE. Ngam CR. Bernau K. Tomasini-Johansson B. Acton B. Sandbo N. Myofibroblasts exhibit                                                                                                                                          |  |  |  |
| 755               |      | enhanced fibronectin assembly that is intrinsic to their contractile phenotype. J Biol Chem 2015:                                                                                                                                    |  |  |  |
| 756               |      | 290:6951-61. DOI:10.1074/ibc.M114.606186.                                                                                                                                                                                            |  |  |  |
| 757               | 115. | Takahashi F. Takahashi K. Okazaki T. Maeda K. Jenaga H. Maeda M. et al. Role of osteopontin in the                                                                                                                                   |  |  |  |
| 758               |      | pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 2001: 24:264-71.                                                                                                                                     |  |  |  |
| 759               |      | DOI:10.1165/aircmb.24.3.4293.                                                                                                                                                                                                        |  |  |  |
| 760               | 116. | Janulaityte I. Januskevicius A. Rimkunas A. Palacionyte J. Vitkauskiene A. Malakauskas K. Asthmatic                                                                                                                                  |  |  |  |
| 761               |      | Eosinophils Alter the Gene Expression of Extracellular Matrix Proteins in Airway Smooth Muscle Cells                                                                                                                                 |  |  |  |
| 762               |      | and Pulmonary Fibroblasts. Int J Mol Sci 2022; 23:4086. DOI:10.3390/ijms23084086.                                                                                                                                                    |  |  |  |
| 763               | 117. | Amin K, Ludviksdottir D, Janson C, Nettelbladt O, Bjornsson E, Roomans GM, et al. Inflammation and                                                                                                                                   |  |  |  |
| 764               |      | structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group. Am J                                                                                                                                      |  |  |  |
| 765               |      | Respir Crit Care Med 2000; 162:2295-301. DOI:10.1164/ajrccm.162.6.9912001.                                                                                                                                                           |  |  |  |
| 766               | 118. | Wilson SJ, Rigden HM, Ward JA, Laviolette M, Jarjour NN, Djukanovic R. The relationship between                                                                                                                                      |  |  |  |
| 767               |      | eosinophilia and airway remodelling in mild asthma. Clin Exp Allergy 2013; 43:1342-50.                                                                                                                                               |  |  |  |
| 768               |      | DOI:10.1111/cea.12156.                                                                                                                                                                                                               |  |  |  |
| 769               | 119. | Wenzel SE, Schwartz LB, Langmack EL, Halliday JL, Trudeau JB, Gibbs RL, et al. Evidence that severe                                                                                                                                  |  |  |  |
| 770               |      | asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and                                                                                                                                    |  |  |  |
| 771               |      | clinical characteristics. Am J Respir Crit Care Med 1999; 160:1001-8.                                                                                                                                                                |  |  |  |
| 772               |      | DOI:10.1164/ajrccm.160.3.9812110.                                                                                                                                                                                                    |  |  |  |
| 773               | 120. | Phillips-Houlbracq M, Debray MP, Guyard A, Khoury R, Dombret MC, Le Brun M, et al. Multifocal                                                                                                                                        |  |  |  |
| 774               |      | bronchial stenosis and extensive lobar atelectasis as a rare radiologic feature of severe eosinophilic                                                                                                                               |  |  |  |
| 775               |      | asthma. J Allergy Clin Immunol Pract 2022; DOI:10.1016/j.jaip.2022.10.004.                                                                                                                                                           |  |  |  |
| 776               |      | DOI:10.1016/j.jaip.2022.10.004.                                                                                                                                                                                                      |  |  |  |
| 777               | 121. | Al-Shaikhly T, Murphy RC, Parker A, Lai Y, Altman MC, Larmore M, et al. Location of eosinophils in the                                                                                                                               |  |  |  |
| 778               |      | airway wall is critical for specific features of airway hyperresponsiveness and T2 inflammation in                                                                                                                                   |  |  |  |
| 779               |      | asthma. Eur Respir J 2022; 60:2101865. DOI:10.1183/13993003.01865-2021.                                                                                                                                                              |  |  |  |
| 780               | 122. | Drake MG, Scott GD, Blum ED, Lebold KM, Nie Z, Lee JJ, et al. Eosinophils increase airway sensory                                                                                                                                    |  |  |  |
| 781               |      | nerve density in mice and in human asthma. Sci Transl Med 2018; 10.                                                                                                                                                                  |  |  |  |
| 782               |      | DOI:10.1126/scitranslmed.aar8477.                                                                                                                                                                                                    |  |  |  |

| 783<br>784<br>785                                                                         | 123. | Liu T, Liu Y, Miller M, Cao L, Zhao J, Wu J, et al. Autophagy plays a role in FSTL1-induced epithelial mesenchymal transition and airway remodeling in asthma. Am J Physiol Lung Cell Mol Physiol 2017; |  |
|-------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 705                                                                                       | 174  | SIS.LZ7-L40. DOI.10.1152/ajpluig.00510.2010.                                                                                                                                                            |  |
| 700                                                                                       | 124. | Sun Z, Ji N, Ma Q, Zhu R, Chen Z, Wang Z, et al. Epithenai-Mesenchymai Transition in Astrina Airway                                                                                                     |  |
| /8/                                                                                       |      | Remodeling is Regulated by the IL-33/CD146 Axis. Front Immunol 2020; 11:1598.                                                                                                                           |  |
| /88                                                                                       |      | DOI:10.3389/fimmu.2020.01598.                                                                                                                                                                           |  |
| 789                                                                                       | 125. | Yang ZC, Qu ZH, Yi MJ, Shan YC, Ran N, Xu L, et al. MiR-448-5p inhibits TGF-beta1-induced epithelial-                                                                                                   |  |
| /90                                                                                       |      | mesenchymal transition and pulmonary fibrosis by targeting Six1 in asthma. J Cell Physiol 2019;                                                                                                         |  |
| /91                                                                                       |      | 234:8804-14. DOI:10.1002/jcp.27540.                                                                                                                                                                     |  |
| 792                                                                                       | 126. | Ressler B, Lee RT, Randell SH, Drazen JM, Kamm RD. Molecular responses of rat tracheal epithelial                                                                                                       |  |
| 793                                                                                       |      | cells to transmembrane pressure. Am J Physiol Lung Cell Mol Physiol 2000; 278:L1264-72.                                                                                                                 |  |
| 794                                                                                       |      | DOI:10.1152/ajplung.2000.278.6.L1264.                                                                                                                                                                   |  |
| 795                                                                                       | 127. | Calhoun WJ, Haselkorn T, Miller DP, Omachi TA. Asthma exacerbations and lung function in patients                                                                                                       |  |
| 796                                                                                       |      | with severe or difficult-to-treat asthma. J Allergy Clin Immunol 2015; 136:1125-7 e4.                                                                                                                   |  |
| 797                                                                                       |      | DOI:10.1016/j.jaci.2015.05.014.                                                                                                                                                                         |  |
| 798                                                                                       | 128. | Denlinger LC, Phillips BR, Ramratnam S, Ross K, Bhakta NR, Cardet JC, et al. Inflammatory and                                                                                                           |  |
| 799                                                                                       |      | Comorbid Features of Patients with Severe Asthma and Frequent Exacerbations. Am J Respir Crit Care                                                                                                      |  |
| 800                                                                                       |      | Med 2017; 195:302-13. DOI:10.1164/rccm.201602-0419OC.                                                                                                                                                   |  |
| 801                                                                                       | 129. | Denlinger LC, Phillips BR, Sorkness RL, Bleecker ER, Castro M, DeBoer MD, et al. Responsiveness to                                                                                                      |  |
| 802                                                                                       |      | Parenteral Corticosteroids and Lung Function Trajectory in Adults with Moderate-to-Severe Asthma.                                                                                                       |  |
| 803                                                                                       |      | Am J Respir Crit Care Med 2021; 203:841-52. DOI:10.1164/rccm.202002-0454OC.                                                                                                                             |  |
| 804                                                                                       | 130. | Levy BD, Noel PJ, Freemer MM, Cloutier MM, Georas SN, Jarjour NN, et al. Future Research Directions                                                                                                     |  |
| 805                                                                                       |      | in Asthma. An NHLBI Working Group Report. Am J Respir Crit Care Med 2015; 192:1366-72.                                                                                                                  |  |
| 806                                                                                       |      | DOI:10.1164/rccm.201505-0963WS.                                                                                                                                                                         |  |
| 807                                                                                       | 131. | Fokkens WI, Lund VI, Hopkins C, Hellings PW, Kern R, Reitsma S, et al. European Position Paper on                                                                                                       |  |
| 808                                                                                       |      | Rhinosinusitis and Nasal Polyns 2020. Rhinology 2020: 58:1-464. DOI:10.4193/Rhin20.600.                                                                                                                 |  |
| 809                                                                                       | 132  | Meng I Zhou P Liu Y Liu F Yi X Liu S et al. The development of nasal polyn disease involves early                                                                                                       |  |
| 810                                                                                       | 192. | nasal mucosal inflammation and remodelling PLoS One 2013: 8:e82373                                                                                                                                      |  |
| 811                                                                                       |      | DOI:10.1371/journal.none.0082373                                                                                                                                                                        |  |
| 812                                                                                       | 122  | Ordovas-Montanes I. Dwwer DE Nyquist SK. Buchheit KM. Vukovic M. Deb C. et al. Allergic                                                                                                                 |  |
| 812<br>813                                                                                | 155. | inflammatory memory in human recritatory enithelial progenitor cells. Nature 2018: 560:649-54                                                                                                           |  |
| 01J<br>01/                                                                                |      |                                                                                                                                                                                                         |  |
| 014                                                                                       | 124  | Martinez Anton A. Dahalas C. Carrido M. Posa Forrer I. Parranso C. Alabid I. et al. Musin ganas have                                                                                                    |  |
| 015                                                                                       | 154. | different expression patterns in healthy and diseased upper airway muses. Clin Exp Allergy 2006                                                                                                         |  |
| 817 36·448-57 DOI:10 1111/i 1365-2222 2006 02451 v                                        |      | 26.448 EZ, DOI:10.1111/j.126E.2222.2006.024E1 v                                                                                                                                                         |  |
| 017                                                                                       | 125  | 30.446-57. DOI.10.1111/J.1505-2222.2000.02451.X.                                                                                                                                                        |  |
| 010                                                                                       | 135. | de Borja Callejas F, Picado C, Martínez-Anton A, Alobid I, Pujois L, Valero A, et al. Differential                                                                                                      |  |
| <b>820 27:060 74 DOI:10 2500/01:00 201</b>                                                |      | expression of remodeling markers by tissue structure in hasal polyposis. Am J Rhinol Allergy 2013;                                                                                                      |  |
| 820                                                                                       | 100  | 27:e69-74. DUI:10.2500/aJra.2013.27.3908.                                                                                                                                                               |  |
| 821                                                                                       | 136. | Erbek SS, Erinanc H, Erbek S, Topal O, Kiyici H. Expression of a disintegrin and metalloproteinase 33                                                                                                   |  |
| 822                                                                                       |      | protein in nasal polyposis: an immunohistochemical study. Am J Rhinol Allergy 2010; 24:79-82.                                                                                                           |  |
| 823                                                                                       |      | DOI:10.2500/ajra.2010.24.3480.                                                                                                                                                                          |  |
| 824                                                                                       | 137. | Wang LF, Chien CY, Chiang FY, Chai CY, Tai CF. Corelationship between matrix metalloproteinase 2 and                                                                                                    |  |
| 825                                                                                       |      | 9 expression and severity of chronic rhinosinusitis with nasal polyposis. Am J Rhinol Allergy 2012;                                                                                                     |  |
| 826                                                                                       |      | 26:e1-4. DOI:10.2500/ajra.2012.26.3724.                                                                                                                                                                 |  |
| 827                                                                                       | 138. | Gevaert E, Delemarre T, De Volder J, Zhang N, Holtappels G, De Ruyck N, et al. Charcot-Leyden crystals                                                                                                  |  |
| 828                                                                                       |      | promote neutrophilic inflammation in patients with nasal polyposis. J Allergy Clin Immunol 2020;                                                                                                        |  |
| 829                                                                                       |      | 145:427-30 e4. DOI:10.1016/j.jaci.2019.08.027.                                                                                                                                                          |  |
| 830                                                                                       | 139. | Hupin C, Gohy S, Bouzin C, Lecocq M, Polette M, Pilette C. Features of mesenchymal transition in the                                                                                                    |  |
| 831                                                                                       |      | airway epithelium from chronic rhinosinusitis. Allergy 2014; 69:1540-9. DOI:10.1111/all.12503.                                                                                                          |  |
| 832                                                                                       | 140. | Simon HU, Yousefi S, Schranz C, Schapowal A, Bachert C, Blaser K. Direct demonstration of delayed                                                                                                       |  |
| 833                                                                                       |      | eosinophil apoptosis as a mechanism causing tissue eosinophilia. J Immunol 1997; 158:3902-8.                                                                                                            |  |
| 834                                                                                       | 141. | Jiang W, Zhou C, Ma C, Cao Y, Hu G, Li H. TGF-beta1 induces epithelial-to-mesenchymal transition in                                                                                                     |  |
| 835                                                                                       |      | chronic rhinosinusitis with nasal polyps through microRNA-182. Asian Pac J Allergy Immunol 2021;                                                                                                        |  |
| 836                                                                                       |      | DOI:10.12932/AP-040921-1224. DOI:10.12932/AP-040921-1224.                                                                                                                                               |  |
| 837                                                                                       | 142. | Saitoh T, Kusunoli T, Yao T, Kawano K, Kojima Y, Miyahara K, et al. Relationship between epithelial                                                                                                     |  |
| 838 damage or basement membrane thickness and eosinophilic infiltration in nasal polyps v |      |                                                                                                                                                                                                         |  |
| 839                                                                                       |      | rhinosinusitis. Rhinology 2009; 47:275-9. DOI:10.4193/Rhin08.109.                                                                                                                                       |  |

| 840<br>841<br>842 | 143. | Wang M, Sun Y, Li C, Qu J, Zhou B. Eosinophils Correlate with Epithelial-Mesenchymal Transition<br>Chronic Rhinosinusitis with Nasal Polyps. ORL J Otorhinolaryngol Relat Spec 2022; 84:70-80.<br>DOI:10.1159/000516847 |  |  |  |  |  |
|-------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 042               | 144  | DUI.10.1159/000510847.                                                                                                                                                                                                  |  |  |  |  |  |
| 845<br>844<br>845 | 144. | nasal polyposis (CRSwNP): the correlation between expression of Galectin-10 and Clinical-Cytologi<br>Grading (CCG) Am L Bhinol Allergy 2022: 36:229-37 DOI:10.1177/19458924211049967                                    |  |  |  |  |  |
| 846<br>847        | 145. | Barham HP, Osborn JL, Snidvongs K, Mrad N, Sacks R, Harvey RJ. Remodeling changes of the upper<br>airway with chronic rhinosinusitis. Int Forum Allergy Rhinol 2015: 5:565-72. DOI:10.1002/air.21546                    |  |  |  |  |  |
| 848<br>849        | 146. | Kim DY, Cho SH, Takabayashi T, Schleimer RP. Chronic Rhinosinusitis and the Coagulation System.                                                                                                                         |  |  |  |  |  |
| 850               | 1/17 | Mooshauer C. Morgenstern F. Cuvelier SI. Manukvan D. Bidzhekov K. Albrecht S. et al. Eosinonhils are                                                                                                                    |  |  |  |  |  |
| 851<br>852        | 147. | a major intravascular location for tissue factor storage and exposure. Blood 2007; 109:995-1002.                                                                                                                        |  |  |  |  |  |
| 853               | 1/10 | Slungaard A. Vercellotti GM. Tran T. Gleich GL. Key NS. Ecsinophil cationic grapule proteins impair                                                                                                                     |  |  |  |  |  |
| 854               | 140. | thrombomodulin function. A notantial mechanism for thromboembolism in hypereosinophilic heart                                                                                                                           |  |  |  |  |  |
| 855               |      | disease   Clin Invest 1993: 91:1721-30 DOI:10.1172/ICI116382                                                                                                                                                            |  |  |  |  |  |
| 856               | 1/0  | Takabayashi T. Kato A. Dotors AT. Hulso KE. Sub I.A. Cartor P. et al. Increased expression of factor XIII.A.                                                                                                            |  |  |  |  |  |
| 850<br>857        | 149. | in patients with chronic chinosinusitic with pacal polyne. I Allergy Clin Immunol 2012: 122:524-02 of                                                                                                                   |  |  |  |  |  |
| 858               |      | DOI:10.1016/j.jaci.2013.02.003.                                                                                                                                                                                         |  |  |  |  |  |
| 859               | 150. | Sejima T, Holtappels G, Bachert C. The expression of fibrinolytic components in chronic paranasal                                                                                                                       |  |  |  |  |  |
| 860               |      | sinus disease. Am J Rhinol Allergy 2011; 25:1-6. DOI:10.2500/aira.2011.25.3537.                                                                                                                                         |  |  |  |  |  |
| 861               | 151. | Pelaia C. Paoletti G. Puggioni F. Racca F. Pelaia G. Canonica GW. et al. Interleukin-5 in the                                                                                                                           |  |  |  |  |  |
| 862               |      | Pathophysiology of Severe Asthma, Front Physiol 2019: 10:1514, DOI:10.3389/fphys.2019.01514.                                                                                                                            |  |  |  |  |  |
| 863               | 152. | Barretto KT, Brockman-Schneider RA, Kuipers I, Basnet S, Bochkov YA, Altman MC, et al. Human                                                                                                                            |  |  |  |  |  |
| 864               |      | airway epithelial cells express a functional IL-5 receptor. Allergy 2020; 75:2127-30.                                                                                                                                   |  |  |  |  |  |
| 865               |      | DOI:10.1111/all.14297.                                                                                                                                                                                                  |  |  |  |  |  |
| 866               | 153. | Buchheit KM, Lewis E, Gakpo D, Hacker J, Sohail A, Taliaferro F, et al. Mepolizumab targets multiple                                                                                                                    |  |  |  |  |  |
| 867               |      | immune cells in aspirin-exacerbated respiratory disease. J Allergy Clin Immunol 2021; 148:574-84.                                                                                                                       |  |  |  |  |  |
| 868               |      | DOI:10.1016/j.jaci.2021.05.043.                                                                                                                                                                                         |  |  |  |  |  |
| 869               | 154. | Ochi H, De Jesus NH, Hsieh FH, Austen KF, Boyce JA. IL-4 and -5 prime human mast cells for different                                                                                                                    |  |  |  |  |  |
| 870               |      | profiles of IgE-dependent cytokine production. Proc Natl Acad Sci U S A 2000; 97:10509-13.                                                                                                                              |  |  |  |  |  |
| 871               |      | DOI:10.1073/pnas.180318697.                                                                                                                                                                                             |  |  |  |  |  |
| 872               | 155. | Bajbouj K, AbuJabal R, Sahnoon L, Olivenstein R, Mahboub B, Hamid Q. IL-5 receptor expression in                                                                                                                        |  |  |  |  |  |
| 873               |      | lung fibroblasts: potential role in airway remodeling in asthma. Allergy 2022.                                                                                                                                          |  |  |  |  |  |
| 874               | 156. | Cho JY, Miller M, Baek KJ, Han JW, Nayar J, Lee SY, et al. Inhibition of airway remodeling in IL-5–                                                                                                                     |  |  |  |  |  |
| 875               |      | deficient mice. The Journal of clinical investigation 2004; 113:551-60.                                                                                                                                                 |  |  |  |  |  |
| 876               | 157. | Haldar P, Brightling CE, Hargadon B, Gupta S, Monteiro W, Sousa A, et al. Mepolizumab and                                                                                                                               |  |  |  |  |  |
| 877               |      | exacerbations of refractory eosinophilic asthma. N Engl J Med 2009; 360:973-84.                                                                                                                                         |  |  |  |  |  |
| 878               |      | DOI:10.1056/NEJMoa0808991.                                                                                                                                                                                              |  |  |  |  |  |
| 879               | 158. | Bai J, Huang JH, Price CP, Schauer JM, Suh LA, Harmon R, et al. Prognostic factors for polyp recurrence                                                                                                                 |  |  |  |  |  |
| 880               |      | in chronic rhinosinusitis with nasal polyps. Journal of Allergy and Clinical Immunology 2022; 150:352-                                                                                                                  |  |  |  |  |  |
| 881               |      | 61. e7.                                                                                                                                                                                                                 |  |  |  |  |  |
| 882               | 159. | Delgado-Dolset MI, Obeso D, Sánchez-Solares J, Mera-Berriatua L, Fernández P, Barbas C, et al.                                                                                                                          |  |  |  |  |  |
| 883               |      | Understanding Systemic and Local Inflammation Induced by Nasal Polyposis: Role of the Allergic                                                                                                                          |  |  |  |  |  |
| 884               |      | Phenotype. Frontiers in molecular biosciences 2021; 8:662792. DOI:10.3389/fmolb.2021.662792.                                                                                                                            |  |  |  |  |  |
| 885               | 160. | Laulajainen-Hongisto A, Toppila-Salmi SK, Luukkainen A, Kern R. Airway Epithelial Dynamics in Allergy                                                                                                                   |  |  |  |  |  |
| 886               |      | and Related Chronic Inflammatory Airway Diseases. Front Cell Dev Biol 2020; 8:204.                                                                                                                                      |  |  |  |  |  |
| 887               |      | DOI:10.3389/fcell.2020.00204.                                                                                                                                                                                           |  |  |  |  |  |
| 888               | 161. | McIntosh MJ, Kooner HK, Eddy RL, Jeimy S, Licskai C, Mackenzie CA, et al. Asthma control, airway                                                                                                                        |  |  |  |  |  |
| 005               |      | DO(10, 1016/i) chost 2022, $DO(10, 1016/i)$ chost 2022, $DO(10, 1016/i)$ chost 2022,                                                                                                                                    |  |  |  |  |  |
| 090<br>901        | 162  | Stovens WW. Schleimer PB. Kern BC. Chronic rhinosinusitis with pasal polynes. I Allergy Clin Immunol                                                                                                                    |  |  |  |  |  |
| 892               | 102. | Pract 2016: 4:565-72 DOI:10.1016/i jain 2016.04.012                                                                                                                                                                     |  |  |  |  |  |
| 893               | 163  | Heijink IH Kuchibhotla VN Roffel MP Maes T Knight DA Savers Let al Enithelial cell dysfunction a                                                                                                                        |  |  |  |  |  |
| 894               | 105. | major driver of asthma development. Allergy 2020: 75:1902-17.                                                                                                                                                           |  |  |  |  |  |
| 895               | 164. | Berair R. Saunders R. Brightling CE. Origins of increased airway smooth muscle mass in asthma BMC                                                                                                                       |  |  |  |  |  |
| 896               |      | medicine 2013; 11:1-6.                                                                                                                                                                                                  |  |  |  |  |  |

| 897        | 165. | Tai A, Tran H, Roberts M, Clarke N, Wilson J, Robertson CF. The association between childhood                         |  |  |  |  |  |  |
|------------|------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 898<br>899 |      | asthma and adult chronic obstructive pulmonary disease. Thorax 2014; 69:805-10.<br>DOI:10.1136/thoraxjnl-2013-204815. |  |  |  |  |  |  |
| 900        | 166. | Liesker JJ, Ten Hacken NH, Zeinstra-Smith M, Rutgers SR, Postma DS. Timens W. Reticular basement                      |  |  |  |  |  |  |
| 901        |      | membrane in asthma and COPD: similar thickness, yet different composition. Int I Chron Obstruct                       |  |  |  |  |  |  |
| 902        |      | Pulmon Dis 2009; 4:127-35. DOI:10.2147/copd.s4639.                                                                    |  |  |  |  |  |  |
| 903        | 167  | Bourdin A Neveu D Vachier I Paganin F Godard P Chanez P Specificity of hasement membrane                              |  |  |  |  |  |  |
| 904        | 107. | thickening in severe asthma. I Allergy Clin Immunol 2007: 119:1367-74                                                 |  |  |  |  |  |  |
| 905        |      | DOI:10.1016/i.jaci.2007.01.055                                                                                        |  |  |  |  |  |  |
| 906        | 168  | Jouhert P. Hamid O. Bole of airway smooth muscle in airway remodeling. J Allergy Clin Immunol 2005:                   |  |  |  |  |  |  |
| 907        | 100. | 116-712-6 DOI:10.1016/i ipri 2005.05.042                                                                              |  |  |  |  |  |  |
| 908        | 160  | McDonald DM Angiogenesis and remodeling of airway vasculature in chronic inflammation. Am L                           |  |  |  |  |  |  |
| 000        | 109. | Pospir Crit Caro Mod 2001: 164:S20 45, DOI:10.1164/aircom 164 supplement -2.2106065                                   |  |  |  |  |  |  |
| 010        | 170  | Respire Cite Cale Med 2001, 104.355-45. DOI:10.1104/ajrccin.104.supplement_2.2100005.                                 |  |  |  |  |  |  |
| 011        | 170. | Benayoun L, Druine A, Dombret MC, Aubier M, Pretolanni M. An way structural alterations selectively                   |  |  |  |  |  |  |
| 911        |      | associated with severe astrina. Am J Respir Crit Care Med 2003; 107:1360-8.                                           |  |  |  |  |  |  |
| 912        | 171  | DUI:10.1164/fccm.200209-10300C.                                                                                       |  |  |  |  |  |  |
| 913        | 1/1. | Chakir J, Shannon J, Molet S, Fukakusa M, Ellas J, Laviolette M, et al. Airway remodeling-associated                  |  |  |  |  |  |  |
| 914        |      | mediators in moderate to severe astrima: effect of steroids on IGF-beta, IL-11, IL-17, and type I and                 |  |  |  |  |  |  |
| 915        | 470  | type III collagen expression. J Allergy Clin Immunol 2003; 111:1293-8. DOI:10.106//mai.2003.1557.                     |  |  |  |  |  |  |
| 916        | 1/2. | Tang M, Elicker BM, Henry T, Gierada DS, Schiebler ML, Huang BK, et al. Mucus Plugs Persist in                        |  |  |  |  |  |  |
| 917        |      | Asthma and Changes in Mucus Plugs Associate with Changes in Airflow Over Time. Am J Respir Crit                       |  |  |  |  |  |  |
| 918        |      | Care Med 2022; DOI:10.1164/rccm.202110-2265OC. DOI:10.1164/rccm.202110-2265OC.                                        |  |  |  |  |  |  |
| 919        | 173. | Little S, Sproule M, Cowan M, Macleod K, Robertson M, Love J, et al. High resolution computed                         |  |  |  |  |  |  |
| 920        |      | tomographic assessment of airway wall thickness in chronic asthma: reproducibility and relationship                   |  |  |  |  |  |  |
| 921        |      | with lung function and severity. Thorax 2002; 57:247-53.                                                              |  |  |  |  |  |  |
| 922        | 174. | Hartley RA, Barker BL, Newby C, Pakkal M, Baldi S, Kajekar R, et al. Relationship between lung function               |  |  |  |  |  |  |
| 923        |      | and quantitative computed tomographic parameters of airway remodeling, air trapping, and                              |  |  |  |  |  |  |
| 924        |      | emphysema in patients with asthma and chronic obstructive pulmonary disease: A single-center                          |  |  |  |  |  |  |
| 925        |      | study. J Allergy Clin Immunol 2016; 137:1413-22 e12. DOI:10.1016/j.jaci.2016.02.001.                                  |  |  |  |  |  |  |
| 926        | 175. | Niimi A, Matsumoto H, Amitani R, Nakano Y, Mishima M, Minakuchi M, et al. Airway wall thickness in                    |  |  |  |  |  |  |
| 927        |      | asthma assessed by computed tomography. Relation to clinical indices. Am J Respir Crit Care Med                       |  |  |  |  |  |  |
| 928        |      | 2000; 162:1518-23. DOI:10.1164/ajrccm.162.4.9909044.                                                                  |  |  |  |  |  |  |
| 929        | 176. | Montaudon M, Lederlin M, Reich S, Begueret H, Tunon-de-Lara JM, Marthan R, et al. Bronchial                           |  |  |  |  |  |  |
| 930        |      | measurements in patients with asthma: comparison of quantitative thin-section CT findings with                        |  |  |  |  |  |  |
| 931        |      | those in healthy subjects and correlation with pathologic findings. Radiology 2009; 253:844-53.                       |  |  |  |  |  |  |
| 932        |      | DOI:10.1148/radiol.2533090303.                                                                                        |  |  |  |  |  |  |
| 933        | 177. | Bumbacea D, Campbell D, Nguyen L, Carr D, Barnes PJ, Robinson D, et al. Parameters associated with                    |  |  |  |  |  |  |
| 934        |      | persistent airflow obstruction in chronic severe asthma. Eur Respir J 2004; 24:122-8.                                 |  |  |  |  |  |  |
| 935        |      | DOI:10.1183/09031936.04.00077803.                                                                                     |  |  |  |  |  |  |
| 936        | 178. | ten Brinke A, Zwinderman AH, Sterk PJ, Rabe KF, Bel EH. Factors associated with persistent airflow                    |  |  |  |  |  |  |
| 937        |      | limitation in severe asthma. Am J Respir Crit Care Med 2001; 164:744-8.                                               |  |  |  |  |  |  |
| 938        |      | DOI:10.1164/ajrccm.164.5.2011026.                                                                                     |  |  |  |  |  |  |
| 939        | 179. | Azim A, Newell C, Barber C, Harvey M, Knight D, Freeman A, et al. Clinical evaluation of type 2 disease               |  |  |  |  |  |  |
| 940        |      | status in a real-world population of difficult to manage asthma using historic electronic healthcare                  |  |  |  |  |  |  |
| 941        |      | records of blood eosinophil counts. Clin Exp Allergy 2021; 51:811-20. DOI:10.1111/cea.13841.                          |  |  |  |  |  |  |
| 942        | 180. | Hancox RJ, Pavord ID, Sears MR. Associations between blood eosinophils and decline in lung function                   |  |  |  |  |  |  |
| 943        |      | among adults with and without asthma. Eur Respir J 2018: 51:1702536.                                                  |  |  |  |  |  |  |
| 944        |      | DOI:10.1183/13993003.02536-2017.                                                                                      |  |  |  |  |  |  |
| 945        | 181. | Park HY. Chang Y. Kang D. Hong YS. Zhao D. Ahn J. et al. Blood eosinophil counts and the development                  |  |  |  |  |  |  |
| 946        |      | of obstructive lung disease: the Kangbuk Samsung Health Study. Eur Respir J 2021: 58:2003823.                         |  |  |  |  |  |  |
| 947        |      | DOI:10.1183/13993003.03823-2020.                                                                                      |  |  |  |  |  |  |
| 948        | 182. | Koefoed HJL, Gehring U, Vonk JM, Koppelman GH. Blood eosinophils associate with reduced lung                          |  |  |  |  |  |  |
| 949        |      | function growth in adolescent asthmatics. Clin Exp Allergy 2021: 51:556-63. DOI:10.1111/cea 13818                     |  |  |  |  |  |  |
| 950        | 183. | Fov BH. Soares M. Bordas R. Richardson M. Bell A. Singapuri A. et al. Lung Computational Models and                   |  |  |  |  |  |  |
| 951        |      | the Role of the Small Airways in Asthma. Am I Respir Crit Care Med 2019, 200,982-91                                   |  |  |  |  |  |  |
| 952        |      | DOI:10.1164/rccm.201812-2322OC.                                                                                       |  |  |  |  |  |  |

| 953<br>954<br>955 | 184. | Castro M, Rubin A, Laviolette M, Hanania NA, Armstrong B, Cox G, et al. Persistence of effectiveness of bronchial thermoplasty in patients with severe asthma. Ann Allergy Asthma Immunol 2011; 107:65- |  |  |  |
|-------------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 933               | 10E  | Castro M. Rubin AS. Laviolette M. Eiterman I. De Andrade Lima M. Shah PL, et al. Effectiveness :                                                                                                        |  |  |  |
| 950               | 105. | casto M, Rubin AS, Laviolette M, Fileman J, De Anuraue Linia M, Shan PL, et al. Effectiveness and                                                                                                       |  |  |  |
| 957               |      | double blind, sham controlled clinical trial. Am L Posnir Crit Caro Mod 2010: 181:116-24                                                                                                                |  |  |  |
| 930               |      | DOU:10.1164/recm 200002.02540C                                                                                                                                                                          |  |  |  |
| 929               | 196  | DUI.1104/TCUII.200905-05540C.<br>Thomson NC Ruhin AS Nivon RM Corris RA Signstod HC Olivonstein R at al Long term (5 year)                                                                              |  |  |  |
| 900               | 100. | cafety of brenchial thermonlacty: Acthma Intervention Recearch (AIR) trial RMC Rulm Med 2011;                                                                                                           |  |  |  |
| 962               |      |                                                                                                                                                                                                         |  |  |  |
| 902               | 107  | 11.8. DOI.10.1180/14/1-2400-11-8.<br>Danakanstantingu E. Kalatsa T. Zhou I. Eang I. Both M. Karakigulaki M. et al. Bronchial thermonlasty                                                               |  |  |  |
| 905               | 107. | rapakonstantinou E, koletsa 1, 2100 E, Falig E, Koti IVI, Kalakioulaki W, et al. Biolichial thermopiasty                                                                                                |  |  |  |
| 904               |      | Pospir Pos 2021, 22:126 DOI:10.1126/s12021.021.01774.0                                                                                                                                                  |  |  |  |
| 905               | 100  | Respir Nes 2021, 22.100. DOI.10.1100/312951-021-01/74-0.                                                                                                                                                |  |  |  |
| 900               | 100. | thermonlacty in patients with sovere refractory acthma: Clinical and histopathologic correlations.                                                                                                      |  |  |  |
| 907               |      | Allergy Clin Impuned 2017; 120:1176 85, DOI:10.1016/j.jcci.2016.08.000                                                                                                                                  |  |  |  |
| 908               | 190  | Allergy Cliff Infindutor 2017, 159.1170-05. DOI:10.1010/J.jdCl.2010.00.009.                                                                                                                             |  |  |  |
| 070               | 109. | Sanuskevicius A, Gosens R, Sakalauskas R, Valkiene S, Janualiyle I, Halayko AJ, et al. Suppression of                                                                                                   |  |  |  |
| 970<br>071        |      |                                                                                                                                                                                                         |  |  |  |
| 971<br>072        | 100  | Humbles AA Lloyd CM McMillan SL Friend DS Yanthou G McKenna FE et al. A critical role for                                                                                                               |  |  |  |
| 072               | 190. | accinonbils in allergic airways remodeling. Science 2004: 205:1776.9. DOI:10.1126/science.1100292                                                                                                       |  |  |  |
| 973               | 101  | Sont IK Willems IN Bel EH van Krieken IH Vandenbroucke IP Sterk PL Clinical control and                                                                                                                 |  |  |  |
| 075               | 191. | bistonathologic outcome of asthma when using airway hyperrosponsiveness as an additional guide to                                                                                                       |  |  |  |
| 975               |      | long-term treatment. The AMPLII Study Group. Am L Bespir Crit Care Med 1999: 159:10/2-51                                                                                                                |  |  |  |
| 970<br>077        |      | DOI:10.1164/aircom 150.4.0806052                                                                                                                                                                        |  |  |  |
| 977               | 102  | Hoshing M. Akitsu K. Kubata K. Effect of Sublingual Immunotherapy on Airway Inflammation and                                                                                                            |  |  |  |
| 978<br>070        | 192. | Airway Wall Thickness in Allergic Asthma, J Allergy Clin Immunol Pract 2010: 7:2804-11                                                                                                                  |  |  |  |
| 979               |      | DOI:10.10.16/i join 2019.06.003                                                                                                                                                                         |  |  |  |
| 981               | 103  | Siddigui S. Bozik MF. Archibald D. Dworetzky SI. Mather I. Killingsworth R. et al. Phase 2 trial                                                                                                        |  |  |  |
| 082               | 195. | evaluating the effects of devoraminevale on blood ecsinophils lung function, and airway biomarkers                                                                                                      |  |  |  |
| 982               |      | in ensinghilic asthma. Fur Respir I 2021: 58                                                                                                                                                            |  |  |  |
| 984               | 10/  | Bachert C Han IK Descosiers M Hellings PW Amin N Lee SE et al. Efficacy and safety of dunilumah                                                                                                         |  |  |  |
| 985               | 194. | in nationals with severe chronic rhinosinusitis with nasal polyns (LIBERTY NP SINUS-24 and LIBERTY NP                                                                                                   |  |  |  |
| 986               |      | SINUS-52): results from two multicentre, randomised, double-blind, placebo-controlled, parallel-                                                                                                        |  |  |  |
| 987               |      | group phase 3 trials Lancet 2019: 394:1638-50, DOI:10.1016/S0140-6736(19)31881-1                                                                                                                        |  |  |  |
| 988               | 195  | Bachert C Han IK Desrosiers MY Gevaert P. Heffler F. Honkins C et al. Efficacy and safety of                                                                                                            |  |  |  |
| 989               | 199. | benralizumab in chronic rhinosinusitis with nasal polyps: A randomized placebo-controlled trial                                                                                                         |  |  |  |
| 990               |      | Allergy Clin Immunol 2022: 149:1309-17 e12 DOI:10.1016/i jaci 2021.08.030                                                                                                                               |  |  |  |
| 991               | 196  | Bachert C Sousa AR Han IK Schlosser RI Sowerby LI Honkins C et al Menolizumah for chronic                                                                                                               |  |  |  |
| 992               | 190. | rhinosinusitis with nasal polyps: Treatment efficacy by comorbidity and blood eosinophil count. I                                                                                                       |  |  |  |
| 993               |      | Allergy Clin Immunol 2022: 149:1711-21 e6. DOI:10.1016/i.jaci.2021.10.040.                                                                                                                              |  |  |  |
| 994               | 197. | Chachi L. Diver S. Kaul H. Rebelatto MC. Boutrin A. Nisa P. et al. Computational modelling prediction                                                                                                   |  |  |  |
| 995               |      | and clinical validation of impact of benralizumab on airway smooth muscle mass in asthma. Eur Respir                                                                                                    |  |  |  |
| 996               |      | J 2019: 54. DOI:10.1183/13993003.00930-2019.                                                                                                                                                            |  |  |  |
| 997               | 198. | Evaluation of dupilumab's effects on airway inflammation in patients with asthma (EXPEDITION).                                                                                                          |  |  |  |
| 998               |      | 2022. Available at: https://clinicaltrials.gov/ct2/show/NCT02573233. Accessed April. 2022.                                                                                                              |  |  |  |
| 999               | 199. | Diver S. Khalfaoui L. Emson C. Wenzel SE. Menzies-Gow A. Wechsler ME. et al. Effect of tezepelumab                                                                                                      |  |  |  |
| 1000              |      | on airway inflammatory cells, remodelling, and hyperresponsiveness in patients with moderate-to-                                                                                                        |  |  |  |
| 1001              |      | severe uncontrolled asthma (CASCADE): a double-blind, randomised, placebo-controlled, phase 2                                                                                                           |  |  |  |
| 1002              |      | trial. Lancet Respir Med 2021; 9:1299-312. DOI:10.1016/S2213-2600(21)00226-5.                                                                                                                           |  |  |  |
| 1003              | 200. | Flood-Page P. Menzies-Gow A. Phipps S. Ying S. Wangoo A. Ludwig MS. et al. Anti-IL-5 treatment                                                                                                          |  |  |  |
| 1004              | -    | reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic                                                                                                      |  |  |  |
| 1005              |      | asthmatics. J Clin Invest 2003; 112:1029-36. DOI:10.1172/JCI17974.                                                                                                                                      |  |  |  |
| 1006              | 201. | Gevaert P, Van Bruaene N, Cattaert T, Van Steen K, Van Zele T, Acke F, et al. Mepolizumab. a                                                                                                            |  |  |  |
| 1007              |      | humanized anti-IL-5 mAb, as a treatment option for severe nasal polyposis. J Allergy Clin Immunol                                                                                                       |  |  |  |
| 1008              |      | 2011; 128:989-95 e1-8. DOI:10.1016/j.jaci.2011.07.056.                                                                                                                                                  |  |  |  |

| 1009 | 202.  | Graff S, Brusselle G, Hanon S, Sohy C, Dupont L, Peche R, et al. Anti-Interleukin-5 Therapy Is             |
|------|-------|------------------------------------------------------------------------------------------------------------|
| 1010 |       | Associated with Attenuated Lung Function Decline in Severe Eosinophilic Asthma Patients From the           |
| 1011 |       | Belgian Severe Asthma Registry. J Allergy Clin Immunol Pract 2022; 10:467-77.                              |
| 1012 |       | DOI:10.1016/j.jaip.2021.09.023.                                                                            |
| 1013 | 203.  | Han JK, Bachert C, Fokkens W, Desrosiers M, Wagenmann M, Lee SE, et al. Mepolizumab for chronic            |
| 1014 |       | rhinosinusitis with nasal polyps (SYNAPSE): a randomised, double-blind, placebo-controlled, phase 3        |
| 1015 |       | trial. Lancet Respir Med 2021; 9:1141-53. DOI:10.1016/S2213-2600(21)00097-7.                               |
| 1016 | 204.  | Laidlaw TM, Prussin C, Panettieri RA, Lee S, Ferguson BJ, Adappa ND, et al. Dexpramipexole depletes        |
| 1017 |       | blood and tissue eosinophils in nasal polyps with no change in polyp size. Laryngoscope 2019;              |
| 1018 |       | 129:E61-E6. DOI:10.1002/lary.27564.                                                                        |
| 1019 | 205.  | Manfredini M, Liberati S, Ciardo S, Bonzano L, Guanti M, Chester J, et al. Microscopic and functional      |
| 1020 |       | changes observed with dynamic optical coherence tomography for severe refractory atopic dermatitis         |
| 1021 |       | treated with dupilumab. Skin Res Technol 2020; 26:779-87. DOI:10.1111/srt.12868.                           |
| 1022 | 206.  | McIntosh MJ, Kooner HK, Eddy RL, Jeimy S, Licskai C, Mackenzie CA, et al. Asthma Control, Airway           |
| 1023 |       | Mucus, and (129)Xe MRI Ventilation After a Single Benralizumab Dose. Chest 2022; 162:520-33.               |
| 1024 |       | DOI:10.1016/j.chest.2022.03.003.                                                                           |
| 1025 | 207.  | Panettieri RA, Jr., Welte T, Shenoy KV, Korn S, Jandl M, Kerwin EM, et al. Onset of Effect, Changes in     |
| 1026 |       | Airflow Obstruction and Lung Volume, and Health-Related Quality of Life Improvements with                  |
| 1027 |       | Benralizumab for Patients with Severe Eosinophilic Asthma: Phase IIIb Randomized, Controlled Trial         |
| 1028 |       | (SOLANA). J Asthma Allergy 2020; 13:115-26. DOI:10.2147/JAA.S240044.                                       |
| 1029 | 208.  | Przybyszowski M, Gross-Sondej I, Zarychta J, Bazan-Socha S, Bochenek G, Soja J, et al. The impact of       |
| 1030 |       | treatment with mepolizumab on airway remodeling in patients with severe eosinophilic asthma. Eur           |
| 1031 |       | Respir J 2021; 58:PA894.                                                                                   |
| 1032 | 209.  | Sverrild A, Hansen S, Hvidtfeldt M, Clausson C, Cozzolino O, Cerps S, et al. The effect of tezepelumab     |
| 1033 |       | on airway hyperresponsiveness to mannitol in asthma (UPSTREAM). European Respiratory Journal               |
| 1034 |       | 2021; DOI: 10.1183/13993003.01296-2021.                                                                    |
| 1035 | 210.  | Tversky J, Lane AP, Azar A. Benralizumab effect on severe chronic rhinosinusitis with nasal polyps         |
| 1036 |       | (CRSwNP): A randomized double-blind placebo-controlled trial. Clin Exp Allergy 2021; 51:836-44.            |
| 1037 |       | DOI:10.1111/cea.13852.                                                                                     |
| 1038 | 211.  | Zheng M, Sima Y, Liu C, Zhao J, Shao S, Wang X, et al. Clinical effectiveness and potential predictability |
| 1039 |       | of omalizumab in patients with difficult-to-treat chronic rhinosinusitis with nasal polyps and asthma      |
| 1040 |       | based on the noninvasive markers–A real-life prospective study. World Allergy Organization Journal         |
| 1041 |       | 2022; 15:100702.                                                                                           |
| 1042 | 212.  | Menzella F, Lusuardi M, Galeone C, Taddei S, Zucchi L. Profile of anti-IL-5 mAb mepolizumab in the         |
| 1043 |       | treatment of severe refractory asthma and hypereosinophilic diseases. J Asthma Allergy 2015; 8:105-        |
| 1044 |       | 14. DOI:10.2147/JAA.S40244.                                                                                |
| 1045 | 213.  | Nordenmark L, Emson C, Hellqvist Å, Johnston J, Greberg H, Griffiths J, et al. S46 Tezepelumab reduces     |
| 1046 |       | mucus plugging in patients with uncontrolled, moderate-to-severe asthma: the phase 2 CASCADE               |
| 1047 |       | study. Thorax 2022; 77:A32-A. DOI:10.1136/thorax-2022-BTSabstracts.52.                                     |
| 1048 | 214.  | Gevaert P, Omachi TA, Corren J, Mullol J, Han J, Lee SE, et al. Efficacy and safety of omalizumab in       |
| 1049 |       | nasal polyposis: 2 randomized phase 3 trials. J Allergy Clin Immunol 2020; 146:595-605.                    |
| 1050 |       | DOI:10.1016/j.jaci.2020.05.032.                                                                            |
| 1051 | 215.  | Zheng M, Sima Y, Liu C, Zhao J, Shao S, Wang X, et al. Clinical effectiveness and potential predictability |
| 1052 |       | of omalizumab in patients with difficult-to-treat chronic rhinosinusitis with nasal polyps and asthma      |
| 1053 |       | based on the noninvasive markers - A real-life prospective study. World Allergy Organ J 2022;              |
| 1054 |       | 15:100702. DOI:10.1016/j.waojou.2022.100702.                                                               |
| 1055 | 216.  | Siddiqui S WS, Bozik ME, Archibald DG, Dworetzky SI, Mather JL, Killingsworth R, Ghearing N, Schwartz      |
| 1056 |       | JT, Ochkur SI, Jacobsen EA, Panettieri RA, Prussin C. Safety and efficacy of dexpramipexole in             |
| 1057 | - · - | eosinophilic asthma (EXHALE): a randomized controlled trial. J Allergy Clin Immunol 2023, In Press.        |
| 1058 | 217.  | HOPKINS C, Han JK, Lund VJ, Bachert C, Fokkens WJ, Diamant Z, et al. Evaluating treatment response to      |
| 1059 |       | mepolizumab in patients with severe CRSWNP. Rhinology 2023; DOI:10.4193/Rhin22.200.                        |
| 1001 | 210   | DUI:10.4193/KNIN22.200.                                                                                    |
| 1061 | 218.  | Januskevicius A, Jurkeviciute E, Januiaityte I, Kalinauskaite-Zukauske V, Miliauskas S, Malakauskas K.     |
| 1062 |       | BIOOU EDSITIOPHILS SUBTYPES and Their Survivability in Asthma Patients. Cells 2020; 9:1248.                |
| 1003 |       | DOI.10.3330/CEIIS3031248.                                                                                  |

| 1064<br>1065 | 219.         | Mesnil C, Raulier S, Paulissen G, Xiao X, Birrell MA, Pirottin D, et al. Lung-resident eosinophils represent a distinct regulatory eosinophil subset. J Clin Invest 2016; 126:3279-95. |  |  |  |
|--------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1067         | 220          | van Maldegem E. Valand K. Cole M. Patel H. Angelova M. Pana S. et al. Characterisation of tumour                                                                                       |  |  |  |
| 1069         | 220.         | microopyironmont romodolling following oncogono inhibition in proclinical studios with imaging mass                                                                                    |  |  |  |
| 1060         |              | nicroenvironment remodelling following oncogene initiation in precinical studies with inaging mass                                                                                     |  |  |  |
| 1009         | 221          | Wilson C. Liu O. Knight I. Visnoss C. Villarroal M. Cill M. et al. Evaluring the effect of anti II. E therapy                                                                          |  |  |  |
| 1070         | 221.         | on southum assignment is children with asthma. Am I Paspir Crit Caro Mod 2022: 205:04922                                                                                               |  |  |  |
| 1071         | <b>ว</b> วว  | Dilassor E. Poso I. Hassoup D. Klein M. Pousselle M. Pressoau C. et al. Essential role of smooth muscle                                                                                |  |  |  |
| 1072         | <i>ZZZ</i> . | Pact in sovere asthma associated airway remedelling. Theray 2021: 76:226-24                                                                                                            |  |  |  |
| 1073         |              | DOI:10.1126/thoravial.2020.216271                                                                                                                                                      |  |  |  |
| 1074         | 222          | DOI.10.1150/tholdxjiii-2020-210271.                                                                                                                                                    |  |  |  |
| 1075         | 225.         | on airway eosinophils in asthmatic natients with soutum eosinophilia. I Allergy Clin Immunol 2013:                                                                                     |  |  |  |
| 1070         |              |                                                                                                                                                                                        |  |  |  |
| 1077         | 224          | Parsson FK Verstraate K Hevndricky I Gevaert F Aggerter H Percier IM et al Protein crystallization                                                                                     |  |  |  |
| 1070         | 227.         | promotes type 2 immunity and is reversible by antibody treatment. Science 2019: 364                                                                                                    |  |  |  |
| 1075         |              | DOI:10.1126/science.aaw/295                                                                                                                                                            |  |  |  |
| 1081         | 225          | Kohavashi K. Nagase H. Sugimoto N. Yamamoto S. Tanaka A. Fukunaga K. et al. Menolizumah                                                                                                |  |  |  |
| 1082         | 225.         | decreased the levels of serum galectin-10 and eosinonhil cationic protein in asthma. Asia Pacific                                                                                      |  |  |  |
| 1083         |              | allergy 2021: 11:e31 DOI:10 5415/anallergy 2021 11 e31                                                                                                                                 |  |  |  |
| 1084         | 226          | Chua IC Douglass IA Gillman A O'Hehir RE Meeusen EN Galectin-10 a notential biomarker of                                                                                               |  |  |  |
| 1085         | 220.         | eosinophilic airway inflammation. PLoS One 2012: 7:e42549. DOI:10.1371/journal.pone.0042549                                                                                            |  |  |  |
| 1086         | 227          | Ge XN Bahaje NS Kang BN Hosseinkhani MR Ha SG Frenzel FM et al. Allergen-induced airway                                                                                                |  |  |  |
| 1087         | /.           | remodeling is impaired in galectin-3-deficient mice. Limmunol 2010: 185:1205-14.                                                                                                       |  |  |  |
| 1088         |              | DOI:10.4049/iimmunol.1000039.                                                                                                                                                          |  |  |  |
| 1089         | 228.         | López E. del Pozo V. Miguel T. Sastre B. Seoane C. Civantos E. et al. Inhibition of chronic airway                                                                                     |  |  |  |
| 1090         |              | inflammation and remodeling by galectin-3 gene therapy in a murine model. I Immunol 2006:                                                                                              |  |  |  |
| 1091         |              | 176:1943-50. DOI:10.4049/iimmunol.176.3.1943.                                                                                                                                          |  |  |  |
| 1092         | 229.         | Mauri P. Riccio AM. Rossi R. Di Silvestre D. Benazzi L. De Ferrari L. et al. Proteomics of bronchial                                                                                   |  |  |  |
| 1093         |              | biopsies: galectin-3 as a predictive biomarker of airway remodelling modulation in omalizumab-                                                                                         |  |  |  |
| 1094         |              | treated severe asthma patients. Immunology letters 2014: 162:2-10.                                                                                                                     |  |  |  |
| 1095         |              | DOI:10.1016/i.imlet.2014.08.010.                                                                                                                                                       |  |  |  |
| 1096         | 230.         | Pang X. Qiao J. Galectin-1 inhibits PDGF-BB-induced proliferation and migration of airway smooth                                                                                       |  |  |  |
| 1097         |              | muscle cells through the inactivation of PI3K/Akt signaling pathway. Bioscience reports 2020: 40.                                                                                      |  |  |  |
| 1098         |              | DOI:10.1042/bsr20193899.                                                                                                                                                               |  |  |  |
| 1099         | 231.         | Riccio AM, Mauri P, De Ferrari L, Rossi R, Di Silvestre D, Benazzi L, et al. Galectin-3: an early predictive                                                                           |  |  |  |
| 1100         |              | biomarker of modulation of airway remodeling in patients with severe asthma treated with                                                                                               |  |  |  |
| 1101         |              | omalizumab for 36 months. Clinical and translational allergy 2017; 7:6. DOI:10.1186/s13601-017-                                                                                        |  |  |  |
| 1102         |              | 0143-1.                                                                                                                                                                                |  |  |  |
| 1103         | 232.         | Ventura I, Vega A, Chacón P, Chamorro C, Aroca R, Gómez E, et al. Neutrophils from allergic asthmatic                                                                                  |  |  |  |
| 1104         |              | patients produce and release metalloproteinase-9 upon direct exposure to allergens. Allergy 2014;                                                                                      |  |  |  |
| 1105         |              | 69:898-905. DOI:10.1111/all.12414.                                                                                                                                                     |  |  |  |
| 1106         | 233.         | Draijer C, Robbe P, Boorsma CE, Hylkema MN, Melgert BN. Dual role of YM1+ M2 macrophages in                                                                                            |  |  |  |
| 1107         |              | allergic lung inflammation. Scientific reports 2018; 8:5105. DOI:10.1038/s41598-018-23269-7.                                                                                           |  |  |  |

# 1108 Figures and Tables

### **Table 1** Effects of eosinophil-targeting therapies on tissue remodeling

| Treatment   | Study                                                                                    | Number of patients | Patient<br>characteristics                                                                                                | Treatment arms/<br>schedule                                                 | Method of<br>measuring<br>remodeling/<br>endpoints of<br>interest                                                                                             | Results summary<br>(study drug vs placebo/<br>no study drug)                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Asthma      |                                                                                          |                    |                                                                                                                           | <u> </u>                                                                    |                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Mepolizumab | Biopsy study <sup>200</sup>                                                              | 24                 | <ul> <li>Mild atopic<br/>asthma</li> <li>Treated only<br/>with β<sub>2</sub> agonists</li> </ul>                          | Mepolizumab     750 mg IV or     placebo                                    | Thickness and<br>density of<br>markers of<br>airway<br>remodeling:<br>tenascin,<br>lumican and<br>procollagen III<br>in the reticular<br>basement<br>membrane | <ul> <li>Significantly<br/>decreased<br/>expression of<br/>tenascin, lumican<br/>and procollagen III in<br/>bronchial reticular<br/>basement membrane</li> <li>Reduced percentage<br/>and number of<br/>eosinophils<br/>expressing TGF-β</li> </ul>                                                                                                                                                                                                                      |
|             | Randomized, double-<br>blind, placebo-controlled,<br>parallel-group study <sup>157</sup> | 61                 | <ul> <li>Refractory<br/>eosinophilic<br/>asthma</li> <li>History of<br/>recurrent<br/>severe<br/>exacerbations</li> </ul> | Mepolizumab<br>750 mg IV or<br>placebo every<br>4 weeks for 12<br>infusions | CT<br>assessment of<br>airway wall<br>geometry                                                                                                                | <ul> <li>Reduced eosinophil<br/>counts in bronchial<br/>biopsy specimens<br/>(2.1-fold),<br/>bronchoalveolar-<br/>lavage specimens<br/>(8.2-fold) and<br/>bronchial-wash<br/>specimens (16.0-<br/>fold)</li> <li>Significantly reduced<br/>airway wall area<br/>(between-group<br/>difference in change<br/>from baseline: 1.1<br/>mm<sup>2</sup>) and total wall<br/>area (between-group<br/>difference in change<br/>from baseline: 1.5<br/>mm<sup>2</sup>)</li> </ul> |
|             | <ul> <li>Real-world, longitudinal<br/>analysis<sup>202</sup></li> </ul>                  | 318                | Severe asthma                                                                                                             | Mepolizumab     100 mg SC vs                                                | Lung function     decline                                                                                                                                     | • Significant reduction in FEV <sub>1</sub> decline (0.6                                                                                                                                                                                                                                                                                                                                                                                                                 |

|              |                                     |    |                                                                                         | no<br>mepolizumab                                                                                                                                                      |                                                                                                                                                                                                                                    | vs –11.1%<br>predicted/year)                                                                                                                                                                                                                                                                                                   |
|--------------|-------------------------------------|----|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | • Single-visit study <sup>153</sup> | 36 | Aspirin-<br>exacerbated<br>respiratory<br>disease with<br>asthma and<br>nasal polyposis | <ul> <li>Mepolizumab<br/>100 mg SC for<br/>≥3 months vs<br/>matched<br/>controls not<br/>receiving<br/>mepolizumab</li> </ul>                                          | <ul> <li>Circulating<br/>granulocytes,<br/>nasal scraping<br/>transcripts,<br/>eosinophilic<br/>cationic<br/>protein,<br/>tryptase and<br/>antibody<br/>levels, and<br/>urinary and<br/>nasal<br/>eicosanoid<br/>levels</li> </ul> | <ul> <li>Decreased<br/>production of<br/>inflammatory<br/>eicosanoids</li> <li>Upregulated tight<br/>junction proteins<br/>(likely due to<br/>decreased IL-5<br/>signaling on tissue<br/>mast cells,<br/>eosinophils and<br/>epithelial cells)</li> </ul>                                                                      |
|              | Longitudinal study <sup>208</sup>   | 15 | Severe<br>eosinophilic<br>asthma                                                        | 1 year of<br>mepolizumab<br>treatment, pre-<br>vs post-<br>treatment                                                                                                   | Chest high-<br>resolution CT<br>and<br>endobronchial<br>ultrasound                                                                                                                                                                 | <ul> <li>Significant reduction<br/>in bronchial wall<br/>thickness (1.30 vs<br/>1.26 mm) and its<br/>layers (0.186–0.2 vs<br/>0.015–0.88 mm)<br/>Reduction in<br/>bronchial wall area,<br/>significant in patients<br/>with longer asthma<br/>duration and lower<br/>baseline FEV<sub>1</sub> (70.08<br/>vs 62.27%)</li> </ul> |
| Benralizumab | Biopsy study <sup>197</sup>         | 25 | Eosinophilic<br>asthma                                                                  | Single<br>benralizumab<br>1 mg/kg IV<br>infusion or<br>placebo,<br>benralizumab<br>100 mg or<br>20 mg SC<br>every 4 weeks<br>for 3 months or<br>placebo <sup>223</sup> | <ul> <li>Airway smooth<br/>muscle mass<br/>in bronchial<br/>biopsies<br/>(using α-<br/>smooth<br/>muscle actin<br/>immuno-<br/>staining)</li> </ul>                                                                                | <ul> <li>Significant reduction<br/>in eosinophil count in<br/>airway lamina<br/>propria (between-<br/>group difference in<br/>% reduction: 88%)</li> <li>Non-significant<br/>reduction in airway<br/>smooth muscle mass<br/>(between-group<br/>difference in change<br/>from baseline:<br/>-2.6%)</li> </ul>                   |

|             | • Multicenter, randomized,<br>double-blind, parallel-<br>group, placebo-controlled,<br>Phase IIIb study <sup>207</sup>     | 233 (40 in the<br>plethysmo-<br>graphy<br>substudy) | Severe<br>eosinophilic<br>asthma                         | • Benralizumab<br>30 mg SC or<br>placebo on<br>Days 0, 28 and<br>56                                      | <ul> <li>Whole-body<br/>plethysmo-<br/>graphy<br/>assessment of<br/>lung capacity<br/>parameters</li> </ul> | <ul> <li>Non-significant<br/>reduction in number<br/>of tissue<br/>myofibroblasts<br/>(between-group<br/>difference in change<br/>from baseline: -21.7)</li> <li>Early non-statistically<br/>significant<br/>improvements in<br/>whole-body<br/>plethysmography<br/>assessment of<br/>hyperinflation<br/>(change from<br/>baseline at Day 84 in<br/>residual volume: -<br/>415 vs -208 mL;<br/>inspiratory capacity:<br/>119 mL vs<br/>-268 mL)</li> </ul> |
|-------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | Single-dose study <sup>206</sup>                                                                                           | 29                                                  | Poorly<br>controlled<br>asthma (as<br>defined by<br>GINA | <ul> <li>Benralizumab<br/>30 mg on Day<br/>0 and Day 28,<br/>pre- vs post-<br/>treatment</li> </ul>      | Airway<br>dysfunction<br>(VDP) and<br>peripheral<br>resistance<br>(R <sub>5-19Hz</sub> )                    | <ul> <li>Significantly<br/>improved mean VDP<br/>on Day 28</li> <li>Significantly<br/>improved R<sub>5-19Hz</sub> on<br/>Day 28</li> </ul>                                                                                                                                                                                                                                                                                                                 |
|             | <ul> <li>Randomized, Phase II<br/>study<sup>198</sup></li> </ul>                                                           | 42                                                  | Persistent     asthma                                    | Dupilumab<br>300 mg SC<br>(with a 600 mg<br>loading dose)<br>or placebo<br>every 2 weeks<br>for 12 weeks | <ul> <li>Eosinophil,<br/>mast cell and<br/>lymphocyte<br/>levels in the<br/>bronchial<br/>mucosa</li> </ul> | <ul> <li>Non-significant<br/>change from<br/>baseline in<br/>eosinophil count in<br/>the bronchial<br/>mucosa<br/>(-6.04 vs 5.80<br/>cells/mm<sup>2</sup> at Week<br/>12)</li> </ul>                                                                                                                                                                                                                                                                       |
| Tezepelumab | <ul> <li>Double-blind, randomized,<br/>placebo-controlled,<br/>parallel-group, Phase II<br/>study<sup>199</sup></li> </ul> | 99                                                  | Uncontrolled,<br>moderate-to-<br>severe asthma           | Tezepelumab<br>210 mg or<br>placebo every<br>4 weeks for 28<br>weeks<br>(extended up to                  | <ul> <li>Reticular<br/>basement<br/>membrane<br/>thickness and<br/>epithelial<br/>integrity</li> </ul>      | <ul> <li>Reduced airway<br/>submucosal<br/>eosinophils (89% vs<br/>25% at end of<br/>treatment)</li> </ul>                                                                                                                                                                                                                                                                                                                                                 |

|            |                                                                                                        |             | 2. Pre-P                                                               | 52 weeks if<br>necessary due<br>to COVID-19-<br>related<br>disruption)                | (proportions of<br>denuded,<br>damaged, and<br>intact<br>epithelium) | <ul> <li>No significant impact<br/>on reticular<br/>basement membrane<br/>thickness (between-<br/>group difference in<br/>change from<br/>baseline: -0.16 µm at<br/>end of treatment) or<br/>epithelial integrity<br/>(between-group<br/>difference in change<br/>from baseline: -<br/>2.20% at end of<br/>treatment)</li> <li>Significantly reduced<br/>airway<br/>hyperresponsiveness<br/>in an exploratory<br/>analysis (between-<br/>group difference in<br/>PD<sub>15</sub> of mannitol:<br/>138.8 mg at end of<br/>treatment)</li> </ul> |
|------------|--------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | <ul> <li>Double-blind, randomized,<br/>placebo-controlled, Phase<br/>II study<sup>209</sup></li> </ul> | 40          | <ul> <li>Asthma and<br/>airway<br/>hyperresponsiv<br/>eness</li> </ul> | Tezepelumab<br>700 mg or<br>placebo<br>intravenously<br>every 4 weeks<br>for 12 weeks | Change in<br>airway<br>hyperresponsi<br>veness and<br>inflammation   | <ul> <li>Non-significant<br/>increase in change<br/>in PD15 from<br/>baseline to Week 12<br/>(1.9 vs 1.0)</li> <li>Significantly reduced<br/>airway tissue (74%<br/>reduction vs 28%<br/>increase from<br/>baseline) and<br/>bronchoalveolar<br/>lavage eosinophils<br/>(75% vs 7%<br/>reduction from<br/>baseline)</li> </ul>                                                                                                                                                                                                                 |
| CRSwNP     |                                                                                                        |             |                                                                        |                                                                                       |                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Omalizumab | Two double-blind,<br>randomized, placebo-<br>controlled studies <sup>138</sup>                         | 138 and 127 | <ul> <li>CRSwNP<br/>inadequately<br/>controlled with</li> </ul>        | Omalizumab     75–600 mg     subcutaneously     or placebo                            | <ul> <li>Total<br/>endoscopic<br/>NP score</li> </ul>                | Significantly<br>improved total<br>endoscopic NP score                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

|             |   |                                                                                        |     |   | intranasal<br>corticosteroids                                                             |     | every 2 or 4<br>weeks, for 24<br>weeks                                                               |   |                                                                                                                       |   | (-1.08 vs +0.06 and<br>-0.90 vs -0.31)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|---|----------------------------------------------------------------------------------------|-----|---|-------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Omalizumab  | • | Prospective, real-world<br>study in tertiary care<br>centre <sup>211</sup>             | 22  | • | Difficult-to-treat<br>CRSwNP                                                              | •   | Omalizumab<br>subcutaneous<br>injections every<br>4 weeks for 24<br>weeks, pre- vs<br>post-treatment | • | Total<br>endoscopic<br>NP score                                                                                       | • | Significantly<br>improved total<br>endoscopic NP score<br>(1.00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Mepolizumab | • | Double-blind, randomized,<br>placebo-controlled<br>study <sup>201</sup>                | 30  | • | CRS with<br>primary or<br>recurrent NP<br>who had failed<br>standard of<br>care treatment | • 0 | Two single IV<br>injections (28<br>days apart) of<br>mepolizumab<br>750 mg or<br>placebo             | • | Total<br>endoscopic<br>NP score<br>Blood<br>eosinophil<br>counts                                                      | • | Significantly<br>improved total<br>endoscopic NP score<br>(between-group<br>difference: -1.30 at<br>Week 8)<br>Significant reduction<br>in blood eosinophil<br>count                                                                                                                                                                                                                                                                                                                                                               |
|             | • | Double-blind, randomized,<br>placebo-controlled, Phase<br>III study <sup>196,203</sup> | 407 |   | Recurrent,<br>refractory,<br>severe,<br>bilateral<br>CRSwNP                               | •   | Mepolizumab<br>100 mg SC or<br>placebo plus<br>standard of<br>care every<br>4 weeks for<br>52 weeks  | • | Total<br>endoscopic<br>NP score<br>based on<br>centrally read<br>endoscopies<br>Baseline blood<br>eosinophil<br>count | • | Significantly<br>improved total<br>endoscopic NP score<br>(between-group<br>difference: -0.73)<br>Significant<br>reductions in blood<br>eosinophil counts<br>(between-group<br>ratio: 0.19)<br>More patients with<br>baseline blood<br>eosinophil counts<br>$\geq$ 150 or $\geq$ 300<br>cells/µL had $\geq$ 1-point<br>improvement from<br>baseline in total<br>endoscopic NP score<br>(49.5% vs 28.1%<br>and 50.4% vs<br>28.1%) and $\geq$ 3-point<br>improvement from<br>baseline in nasal<br>obstruction VAS<br>score (59.1% vs |

| Benralizumab | • Randomized, placebo-<br>controlled, Phase III<br>study <sup>195</sup>                                            | 413 | Severe<br>CRSwNP                   | Benralizumab<br>30 mg or<br>placebo every<br>4 weeks for the<br>first 3 doses<br>and every<br>8 weeks<br>thereafter | <ul> <li>Total<br/>endoscopic<br/>NP score</li> <li>Blood<br/>eosinophil<br/>counts</li> </ul>                | <ul> <li>34.1% and 59.0% vs<br/>32.4%) with<br/>mepolizumab vs<br/>placebo at Week 52</li> <li>Significant<br/>improvement in total<br/>endoscopic NP score<br/>(between-group<br/>difference: -0.570 at<br/>Week 20)</li> <li>Some evidence<br/>(non-significant) of<br/>differential effects of<br/>blood eosinophil<br/>counts on total<br/>endoscopic scores<br/>(data not shown)</li> </ul>                                                  |
|--------------|--------------------------------------------------------------------------------------------------------------------|-----|------------------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | <ul> <li>Double-blind, randomized,<br/>placebo-controlled, Phase<br/>II study<sup>210</sup></li> </ul>             |     | Severe NP                          | Benralizumab<br>30 mg or<br>placebo                                                                                 | <ul> <li>Total<br/>endoscopic<br/>NP score and<br/>CT scan</li> <li>Blood<br/>eosinophil<br/>count</li> </ul> | <ul> <li>Significantly<br/>improved total<br/>endoscopic NP score<br/>(-0.9 at Week 20)<br/>and CT polyp score<br/>(-4.2 at Week 20) vs<br/>baseline</li> <li>Significant reduction<br/>(97%) in blood<br/>eosinophil count vs<br/>baseline</li> <li>Blood eosinophil<br/>count/positive<br/>allergen skin prick<br/>test ratio significantly<br/>predicts reductions in<br/>total endoscopic NP<br/>score and CT scan<br/>polyp score</li> </ul> |
| Dupilumab    | <ul> <li>Two double-blind,<br/>randomized, placebo-<br/>controlled, Phase III<br/>studies<sup>194</sup></li> </ul> | 276 | Severe     uncontrolled     CRSwNP | Dupilumab<br>300 mg every<br>2 weeks or<br>placebo for<br>24 weeks<br>(SINUS-24)                                    | <ul> <li>Total<br/>endoscopic<br/>NP score</li> <li>Blood<br/>eosinophil<br/>count</li> </ul>                 | Significantly<br>improved total<br>endoscopic NP score<br>(treatment<br>difference: -1.89 at<br>Week 24, -1.80 at<br>Week 52)                                                                                                                                                                                                                                                                                                                     |

|                |                                                 |    |        | · | Dupilumab<br>300 mg every<br>2 weeks for<br>52 weeks,<br>placebo for<br>52 weeks, or<br>dupilumab<br>every 2 weeks<br>for 24 weeks<br>followed by<br>every 4 weeks<br>for the<br>remaining<br>28 weeks |   |                                                                                                                    | • | Transient, non-<br>significant increase<br>in blood eosinophil<br>count with dupilumab<br>(change from<br>baseline: 0.02 to<br>0.15 giga/L at Week<br>24)                                                     |
|----------------|-------------------------------------------------|----|--------|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dexpramipexole | Prospective, open-label<br>study <sup>204</sup> | 16 | CRSwNP | • | Dexprami-<br>pexole 150 mg<br>twice daily, pre-<br>vs post-<br>treatment                                                                                                                               | • | Total<br>endoscopic<br>NP score<br>Blood<br>eosinophil<br>count<br>Eosinophil<br>levels in nasal<br>polyp biopsies | • | No significant<br>change in total<br>endoscopic NP score<br>(0.07 at Month 6)<br>Significant reduction<br>(94%) in blood<br>eosinophil count<br>Significant reduction<br>(97%) in nasal polyp<br>eosinophilia |

CRSwNP, chronic rhinosinusitis with nasal polyps; CT, computed tomography; FEV<sub>1</sub>, forced expiratory volume in 1 second; GINA, Global Initiative for Asthma; IL-5, interleukin 5; IV, intravenous; PD15, 15<sup>th</sup> percentile lung density; SC, subcutaneous; TGF-β, transforming growth factor-β; VAS, visual analogue scale; VDP, ventilation defect percentage.

|      | Journal Pre-proof                                                                                          |
|------|------------------------------------------------------------------------------------------------------------|
| 1112 | Figure 1 Airway remodeling in health and disease <sup>12-14,24,25,48</sup>                                 |
| 1113 |                                                                                                            |
| 1114 | In airway disease, the transient tissue injury and subsequent tissue repair/regeneration seen              |
| 1115 | in the healthy airway (left hand side) are exaggerated, leading to persistent inflammation and             |
| 1116 | repair (right-hand side).                                                                                  |
| 1117 | Callout panel adapted from Vatrella et al. 2022 <sup>14</sup> (CC BY), and depicts the role of eosinophils |
| 1118 | in mediating airway damage, airway remodeling, airway hyperresponsiveness, and mucus                       |
| 1119 | production in type 2 asthma.                                                                               |
| 1120 | EPX, eosinophil peroxidase; IL-13, interleukin-13; MBP, major basic protein.                               |
| 1121 |                                                                                                            |
| 1122 | Figure 2 Eosinophil proteins and their roles in airway remodeling <sup>32-34,39-44,53-75,224-233</sup>     |
| 1123 |                                                                                                            |
| 1124 | bFGF, basic fibroblast growth factor; ECP, eosinophil cationic protein; EDN, eosinophil-                   |
| 1125 | derived neurotoxin; FEV1, forced expiratory volume in 1 second; Gal-3, galectin 3 gene; HB-                |
| 1126 | EGF, heparin-binding epithelial growth factor-like growth factor; Ig, immunoglobulin; IL,                  |
| 1127 | interleukin; MMP, matrix metalloproteinase; mRNA, messenger ribonucleic acid; NGF, nerve                   |
| 1128 | growth factor; PDGF, platelet-derived growth factor; TGF, transforming growth factor; TIMP,                |
| 1129 | tissue inhibitor of metalloproteinases; VEGF, vascular endothelial growth factor.                          |
| 1130 |                                                                                                            |
| 1131 | Figure 3 Physiological consequences of eosinophil-driven remodeling <sup>33,34,159,160,162-164,206</sup>   |
| 1132 |                                                                                                            |
| 1133 | The left-hand side of the figure shows schematic cross sections of the airways in patients                 |
| 1134 | with asthma and the right-hand side of the figure shows schematic cross sections of the                    |
| 1135 | nasal mucosa in patients with CRSwNP. These schematic cross sections illustrate the                        |
| 1136 | impact of eosinophilic tissue inflammation in the lower and upper airways and the                          |
| 1137 | consequences of this in asthma and CRSwNP.                                                                 |
| 1138 | CRSwNP, chronic rhinosinusitis with nasal polyps.                                                          |
| 1139 |                                                                                                            |
| 1140 |                                                                                                            |



|                              |            | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TGF-β                        | Q          | <ul> <li>Increased levels associated with<br/>increased levels of osteopontin, an<br/>extracellular matrix protein released<br/>by eosinophils that is implicated in<br/>the modulation of inflammation<br/>and fibrosis in diseased airways</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <ul> <li>Induces epithelial-mesenchymal transition in primary airway epithelial cells</li> <li>Promotes differentiation of fibroblasts to myofibroblasts and triggers their proliferation</li> <li>Induces the expression of MMPs and TIMPs</li> <li>Regulates subepithelial fibrosis by signaling through the Smad7 pathway</li> <li>Induces the transcription and translation of mucin in bronchial epithelial cells</li> <li>Epithelial/submucosal expression correlates with basement membrane thickness and fibroblast numbers</li> <li>Induces hypertrophy and increased contractility of airway smooth muscle in vitro</li> <li>Increased levels associated with increased levels of osteopontin</li> </ul>                                                                                                                                        |
| MMP-9 and<br>TIMP-1          | *          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Sputum MMP-9 and TIMP-1 concentrations are higher in patients with asthma<br/>compared with controls; the MMP-9/TIMP-1 ratio is lower in patients with asthma<br/>and chronic bronchitis, and positively correlates with FEV,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| VEGF, bFGF<br>and angiogenin |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Bronchial biopsies from patients with asthma exhibit greater immunoreactivity to VEGF, bFGF and angiogenin; immunoreactivity to these factors positively correlates with vascular area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Specific granule<br>proteins | ° 🔘        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Damaged airway epithelium produces TGF-β</li> <li>ECP induces fibroblast migration and inhibits fibroblast-mediated proteoglycan degradation</li> <li>EDN stimulates MMP-9 in nasal epithelial cells</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IL-17                        | *          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Fibroblasts isolated from bronchial biopsies produce more IL-6 and IL-11<br>(profibrotic cytokines) when stimulated by IL-17     Promotion of airway smooth muscle cell migration     Cross-talk with TGF-8 resulting in epithelial-to-mesenchymal transition     Stimulation of inactive fibrocyte maturation to fibroblasts, which deposit collagen     within extracellular matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| IL-13                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - In vitro, IL-13 induces human bronchial epithelial cells to release TGF- $\!\beta$ - Changes in goblet cell density                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| HB-EGF                       |            | Recombinant HB-EGF promotes<br>migration of airway smooth muscle<br>cells in vitro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Recombinant HB-EGF promotes migration of airway smooth muscle cells in vitro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| NGF                          |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>NGF causes migration of vascular smooth muscle cells and fibroblasts, and<br/>proliferation of epithelial cells and airway smooth muscle cells</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tissue factor                |            | <ul> <li>Reduces airway hyperresponsiveness,<br/>airway inflammation and airway<br/>remodeling in asthmatic mice</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Thrombin                     | $\bigcirc$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Induces secretion of PDGF in nasal and bronchial epithelial cells, sufficient for stimulating proliferation of fibroblast and bronchial smooth muscle cells     Stimulates VEGF production from airway epithelial cells                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Galectin                     |            | <ul> <li>Galectin 3 inhibition significantly<br/>lowered collagen deposition in an<br/>allergic lung inflammation mouse model</li> <li>In a chronic astimatic mouse model,<br/>Gal-3 gene treatment reduced<br/>lung collagen</li> <li>Galectin 3 deficiency associated with<br/>decreased airway remodeling<br/>following allergen sensitization in mice</li> <li>Recombinant galectin 10 crystals<br/>promote type 2 immunity and mimic<br/>features of asthma in naive mice</li> <li>Anti-galectin 10 antibodies reversed<br/>the effects of CLCs and house dust<br/>mite challenge in a humanized mouse<br/>model, reducing airway inflammation,<br/>goblet cell metaplasia, bronchial<br/>hyperreactivity and ICF synthesis</li> </ul> | <ul> <li>Galectin 1 mRNA concentrations are lower in sputum from children with versus without asthma; in vitro knockdown of Galectin 1 promotes proliferation, migration and phenotypic switching in human airway smooth muscle cells</li> <li>Galectin 3 predicts remodeling-associated anti-IgE treatment responses in bronchial biopsy samples from patients with severe asthma</li> <li>Galectin 3 stimulation associated with in vitro MMP-9 release from peripheral blood neutrophils from patients with asthma</li> <li>Sputum galectin 10 concentrations are higher in patients with asthma compared with healthy individuals; levels significantly correlate with sputum eosinophil counts</li> <li>High versus low baseline galectin 10 levels do not predict greater improvements in FEV, following 32 weeks of anti-IL-5 treatment</li> </ul> |

