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Abstract
Metabolomics, the global profiling of small molecules in the
body, has emerged as a promising analytical approach for
assessing molecular changes associated with ageing at the
population level. Understanding root metabolic ageing path-
ways may have important implications for managing age-
related disease risk. In this short review, relevant studies
published in the last few years that have made valuable
contributions to this field will be discussed. These include
large-scale studies investigating metabolic changes with age,
metabolomic clocks, and metabolic pathways associated with
ageing phenotypes. Recent significant advances include the
use of longitudinal study designs, populations spanning the
whole life course, standardised analytical platforms of
enhanced metabolome coverage and development of multi-
variate analyses. While many challenges remain, recent
studies have demonstrated the considerable promise of this
field.
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Introduction
Research interest in the ageing process has grown in
recent years, partly due to the pressure on health sys-
tems due to a rapidly ageing global population [1], but
also due to breakthroughs in the field of geroscience that
suggest both health and lifespan can be extended
through targeting of the ageing process itself as an un-
derlying cause of disease [2]. Ageing can be considered
www.sciencedirect.com
hierarchical in nature incorporating functional ageing,
phenotypic ageing and at its root, biological ageing [3].
The cellular and molecular changes that characterise
biological ageing have been further delineated into nine
“hallmarks of ageing” [4]. As biological ageing is
believed to precede phenotypic and functional decline
[3], identifying these molecular changes may have great
implications for biomedical research.

Metabolomics, the global profiling of small molecules
(typically <1500 Da) in the body, has emerged as a
promising analytical approach for assessing molecular
changes at the population level. Overall, the rate of
metabolism declines with old age [5] and more specif-
ically all ageing hallmarks are expected to have detect-
able effects on the metabolome, including hallmarks of
ageing such as “nutrient sensing”, “mitochondrial
dysfunction”, and “altered intracellular communication”
which directly relate to metabolic alterations [6]. As the

final product of metabolism, circulating metabolites,
measured through liquid-chromatography mass spec-
trometry (LC-MS) or nuclear magnetic resonance
spectroscopy (NMR) analysis of accessible biofluids
such as blood, can provide a summary picture of bio-
logical processes associated with age in organs and tis-
sues throughout the body.

Many recent reviews have summarised metabolomic
studies of ageing published to date [7e11]. The most
comprehensive review by Panyard et al. [12] identified

35 studies published since 2006, with sample sizes
ranging from 60 to over 23,000 participants. They
summarized their findings into major pathways of
metabolomic aging and, despite the acknowledged dif-
ficulties in comparing results across metabolomic
studies, some consistent findings emerged within these
pathways. These include among amino acids measured
in blood, a decrease in tryptophan and an increase in
tyrosine with age; among lipids and lipoproteins there is
a decrease in HDL, and increases in LDL, triglycerides,
and cholesterol; and steroid hormones including DHEA-

S, androgens, progestins and pregnenolones generally
decrease. Among markers of renal excretion, urea and
creatine in blood increased, while conversely urinary
creatine decreased with age. Metabolites identified as
indicative of oxidative stress included acylcarnitines,
glutathione, ophthalmic acid and sphingomyelins; while
metabolite changes grouped within the inflammation
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pathway included increases in ornithine and kynurenic
acid. In the following sections, we highlight the most
interesting and relevant studies published in the last
few years, that have made important contributions to
this field.

Metabolic changes with age
Several recent studies have made important advances in
characterising metabolic changes associated with age in
large-scale population studies. Darst et al. [13] studied a
large sample (N = 1212) of middle-aged participants
(mean: 61 years) of the Wisconsin Registry for
Alzheimer’s Prevention (WRAP). The study is powerful
due to the use of up to three longitudinal fasting plasma
samples thereby reducing some of the uncertainties
inherent in analysing age associations in cross-sectional
data only and the wide metabolite assessment (1097

metabolites tested), covering most major metabolic
pathways, provided through use of the Metabolon plat-
form. Over half the metabolites tested were associated
with age and these could be found across all major
compound classes. One of the great advantages of studies
using commercial platforms is facilitating comparison
across studies, which is particularly important as
metabolomic studies of age may be confounded by
environmental cohort effects. An earlier analysis of the
TwinsUK cohort (N = 6055, age range 17e85 years) also
used an earlier version of the Metabolon platform

covering 280 metabolites, of which 165 were associated
with age [14], and the majority of these associations
could be replicated in the WRAP study. Table 1 shows
the top metabolites hits consistent across these studies,
and among the most strongly associated metabolites are
carbohydrate erythronate, amino acid related compounds
including urea and C-glycosyltryptophan, steroid hor-
mones, acylcarnitines, the fatty acid 3-carboxy-4-methyl-
5-propyl-2-furanpropanoate and energy hub metabolite
citrate, demonstrating the diversity of pathways associ-
ated with ageing. While this comparison is only between

two studies that use the same metabolomic platform, it
allows us to highlight a general consistency across studies
and therefore the likelihood of these metabolites repre-
senting endogenous processes. However, a handful of
metabolites showed inconsistent directions across
studies, including several amino acids, indicating the
need for these cross-cohort comparison to improve
inference regarding causal relationships with age.

Bunning et al. [15] analysed age associations of 770 me-
tabolites among 125 twin pairs measured using LC-MS.

The study is important as it covered age range spanning
almost the entire life course (6 monthse82 years)
enabling changes to age-metabolite relationships at
different life periods to be detected. They were able to
cluster metabolites into six different ageing trajectories
and used pathway analysis to characterise the metabolites
most representative of these clusters. For example, me-
tabolites in cluster 1, enriched for xanthine and histidine
Current Opinion in Chemical Biology 2023, 76:102360
metabolism, increased throughout the life course while
cluster 6, enriched in monoacylglycerols and progestin
sterols, increased during childhood and then decreased in
late adult life. The study of Ahadi et al. [16] is unique as
they took a longitudinal deep phenotyping approach in a
cohort of 106 individuals, who were assessed quarterly
over a period of four years. They applied integrative per-
sonal omics profiling including the same metabolomics

platform as the study of Bunning et al. Pathway-
enrichment analyses identified four major overlapping
pathways - immunity, metabolic, liver and kidney dysre-
gulation, to be associated with aging. Although general
trends of individual changes in aging markers followed
those of the cross-sectional markers, the authors identi-
fied distinct “ageotypes”, with individuals falling in
distinct patterns of ageing trajectories across these path-
ways highlighting the variation in ageing, which in some
cases could be attributed to lifestyle changes such as
weight loss. Insulin resistant individuals showed greater

magnitude of ageing within inflammation pathways.

Verri Hernandes et al. [17] presented the largest single
site study to date of 6872 study participants in an
Italian Alpine region. They applied Biocrates’ kit to
quantify 175 metabolites with low technical variation.
148 metabolites were found associated with age and
interestingly, all but 16 metabolites concentrations
increased with age. 59 age associations replicated those
reported in previous studies. They further analysed
metabolite ratios in participants to find important

nodes within metabolic pathways, identifying citrate/
arginine and ornithine/arginine as amongst the most
significant ratios. Metabolites citrate, symmetric
dimethylarginine and ornithine were among the most
significant single metabolite measures and along with
the aforementioned ratios are all common to the urea
cycle, highlighting the central importance of this
pathway in ageing. The study of Chak et al. [18] also
applied the same Biocrates’ kit to examine metabolite
changes over seven years using two longitudinal sam-
pling points among participants aged 55e75 years at
baseline in the German KORA study. Out of the 122

analysed metabolites, 72 and 81 metabolites were
significantly associated with age in women and men,
respectively, with 68 metabolites (about 80%) associ-
ated with age in both sexes. 60 metabolites were
available in the similarly designed smaller CARLA
study for replication, and arginine and ornithine were
the only associations that could be replicated in
both sexes.

Acylcarnitines are among the metabolite classes most
consistently associated with age. They are required for

import of long-chain fatty acids into mitochondria for b-
oxidation and are viewed as markers of mitochondrial
function, an aging hallmark, and are associated with
activation of inflammation. Jarell et al. [19] examined
the associations of 132 plasma acylcarnitines with age
www.sciencedirect.com
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Table 1

Top age-metabolites associations that were consistent across both the WRAP [13] and TwinUK studies [14], ordered by strength of as-
sociation in the WRAP study. Only the top 28 metabolite associations are shown. P-values has not been adjusted for multiple-testing.

Metabolite SUPER PATHWAY SUB PATHWAY HMDB ID WRAP study TWINS UK

Direction p value Direction p value

erythronate Carbohydrate Aminosugar Metabolism HMDB00613 + 6.25E-23 + 4.36E-73
Urea Amino Acid Urea cycle; Arginine and

Proline Metabolism
HMDB00294 + 2.29E-19 + 4.78E-102

androsterone sulfate Lipid Steroid HMDB02759 – 9.80E-16 – 2.63E-94
C-glycosyltryptophan Amino Acid Tryptophan Metabolism + 2.44E-15 + 1.53E-150
CMPFa Lipid Fatty Acid, Dicarboxylate HMDB61112 + 2.71E-15 + 3.21E-137
Citrate Energy TCA Cycle HMDB00094 + 8.18E-15 + 9.97E-93
epiandrosterone sulfate Lipid Steroid HMDB00365 – 2.51E-14 – 6.67E-85
4-acetamidobutanoate Amino Acid Polyamine Metabolism HMDB03681 + 1.01E-12 + 1.11E-43
N-acetylalanine Amino Acid Alanine and Aspartate

Metabolism
HMDB00766 + 7.05E-12 + 5.80E-68

myo-inositol Lipid Inositol Metabolism HMDB00211 + 9.02E-12 + 3.87E-114
pseudouridine Nucleotide Pyrimidine Metabolism,

Uracil containing
HMDB00767 + 1.54E-11 + 1.04E-27

phenylacetylglutamine Peptide Acetylated Peptides HMDB06344 + 2.57E-11 + 8.13E-89
oleoylcarnitine Lipid Fatty Acid Metabolism

(Acyl Carnitine)
HMDB05065 + 1.43E-10 + 7.22E-15

N-acetylthreonine Amino Acid Glycine, Serine and
Threonine Metabolism

+ 3.84E-10 + 1.00E-27

docosahexaenoate
(DHA; 22:6n3)

Lipid Polyunsaturated Fatty Acid
(n3 and n6)

HMDB02183 + 4.47E-10 + 2.23E-55

gamma-
glutamylphenylalanine

Peptide Gamma-glutamyl Amino
Acid

HMDB00594 + 7.67E-10 + 3.02E-73

erythritol Xenobiotics Food Component/Plant HMDB02994 + 9.63E-09 + 2.35E-123
N1-methyladenosine Nucleotide Purine Metabolism, Adenine

containing
HMDB03331 + 2.40E-08 + 1.05E-14

acetylcarnitine Lipid Fatty Acid Metabolism
(Acyl Carnitine)

HMDB00201 + 4.62E-08 + 2.83E-63

gamma-glutamylvaline Peptide Gamma-glutamyl Amino
Acid

HMDB11172 + 5.11E-08 + 3.13E-48

hexanoylcarnitine Lipid Fatty Acid Metabolism
(Acyl Carnitine)

HMDB00705 + 5.50E-08 + 1.12E-78

succinylcarnitine Energy TCA Cycle + 2.95E-07 + 9.04E-84
stearoylcarnitine Lipid Fatty Acid Metabolism

(Acyl Carnitine)
HMDB00848 + 1.43E-06 + 9.96E-25

cis-4-decenoyl carnitine Lipid Fatty Acid Metabolism
(Acyl Carnitine)

+ 1.51E-06 + 5.34E-24

margarate (17:0) Lipid Long Chain Fatty Acid HMDB02259 + 1.56E-06 + 2.85E-41
Malate Energy TCA Cycle HMDB00156 + 1.70E-06 + 4.56E-45
glycerate Carbohydrate Glycolysis,

Gluconeogenesis,
Pyruvate Metabolism

HMDB00139 + 2.03E-06 + 6.42E-30

docosapentaenoate
(n3 DPA; 22:5n3)

Lipid Polyunsaturated Fatty Acid
(n3 and n6)

HMDB01976 + 2.20E-06 + 3.02E-61

a 3-carboxy-4-methyl-5-propyl-2-furanpropanoate.
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(range: 20e90 years) in 163 healthy, non-diseased
Americans. Their work confirmed that increases in
long-chain and very long-chain acylcarnitines are a part

of normal ageing, while they observed many odd-chain
acylcarnitines decreased with age possibly related to
decreased dairy consumption. Beyene et al. [20] con-
ducted a lipidomics study in over 10,000 people iden-
tifying 706 lipids across 36 classes/subclasses.
Associations with age were found for 66.9% of lipid
www.sciencedirect.com
species, with remarkable positive associations with
acylcarnitine and ceramide species, while ether-
phospholipids, particularly alkylphosphatidylcholine,

alkylphosphatidylethanolamine, and alkenylphosphati-
dylethanolamine species, were inversely associated with
age. A specific set of triacylglycerol species, containing
eicosapentaenoic acid (EPA) (20:5) fatty acids, were
positively associated with age, even after adjusting for
clinical measures of triglycerides.
Current Opinion in Chemical Biology 2023, 76:102360
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Mäkinen et al. [21] analysed blood measures from the
NMR based Nightingale metabolomic platform in up to
three repeat samples from ages 24e49 years in 4000
participants in two Finnish Cohorts. While this platform
provides only limited metabolite coverage, including
some lipids, fatty acids, glycolysis precursors, ketone
bodies and amino acids, it provides the advantage of
allowing profiling of lipoproteins and their constituents

e structures that are destroyed during the the sample
preparation process for LC-MS based platforms. This
longitudinal analysis is notable as it avoids some of the
biases inherent in cross sectional analysis, and the au-
thors proposed a novel algorithm to normalise data across
time-points to correct for batch effects and reduce pre-
analytical and analytical technical variations. In addi-
tion to replicating many previously reported changes in
this younger population such as decreases in creatinine
and increases in LDL cholesterol, they isolated the in-
fluence of weight gain on some associations, with diver-

gent patterns by weight gain observed for metabolites
such as very-low-density-lipoprotein triglycerides,
cholesterol, and branched-chain amino acids.

Metabolomic clocks
In recent years, various types of omic data have been
combined to create “biological clocks”, multi-variate
models that are used to assess biological age. Most
widely applied are the DNA methylation-based clocks,

which can predict chronological age with extraordinary
accuracy, but more recently transcriptomic, proteomic
andmetabolomicdata have also beenused, as described in
a recent review [22]. Most are trained on chronological
age itself and can be thought of as providing an average
omic profile expected at a given age. The difference be-
tween predicted omic age and chronological age is then
used to assess “accelerated biological age”, and the asso-
ciations shownwithmortality and ageing phenotypeswith
age acceleration demonstrate the utility of the clock
approach for the assessment of biological age. The use of

metabolomics to develop biological clocks is supported by
studies in model organisms under controlled conditions.
These studies demonstrate that metabolic profiles
change in a predictable manner with age [23e25], relate
to age-related function [24] and metabolic aging may be
slowed following experimentalmanipulation [25,26].Two
recent studies developedmetabolomic clocks using quite
different approaches. Van den Akker et al. [27] used
Nightingale NMR based metabolomics, including 56
quantified metabolic variables in blood, to model age in a
large Dutch Biobank sample of 25,000 people from 26

cohorts (age range 18e85), while our group [28] applied
broad untargeted metabolomic profiling, covering nine
LC-MS andNMRplatforms in blood and urine, in theUK
nationwide AIRWAVE study of over 2000 people (age
range 20e65). Both studies applied internal subsampling
to provide unbiased assessments of predictive ability
within their respective study populations and assessed
associations between age acceleration and ageing risk
Current Opinion in Chemical Biology 2023, 76:102360
factors and phenotypes. Van den Akker et al. showed their
metabolomic age acceleration measure was associated
with BMI, T2D and C-reactive protein and predictive of
cardiovascular events and mortality [27]. We found our
measure of age acceleration to be associated with obesity,
T2D, depression and heavy drinking [28]. The main
advantage of the Van den Akker study is that their clock
may be applied easily in other studies that use Nightin-

galedata,while theuntargetedmetabolomics-based clock
of theAIRWAVE study is generally not applicable to other
studies. However, the limited sensitivity of the Nightin-
gale platform does not capture many of the most impor-
tant age-related metabolites, while pathway analysis of
features included in the AIRWAVE study suggested
enrichment for multiple aging pathways, including tyro-
sine and tryptophan metabolism, Vitamin D and E
metabolism, urea cycle, carnitine shuffle and other
pathways occurring in the mitochondria. Future de-
velopments in this area will need to combine the advan-

tages of both: Broad, highly sensitive metabolomics to
identify the most important clock predictors, combined
with annotation and quantification to allow replication
and validation across studies.

Interestingly, we found in AIRWAVE that metabolomic
age acceleration was uncorrelated to DNA methylation
age acceleration and the measures were sensitive to
different ageing risk factors, suggesting that biological
ageing is a multi-faceted process. This aspect has been
explored further in recent studies which have system-

atically assessed and compared multiple biological
clocks using different omics including metabolomics
[29,30]. Jansen et al. [29] examined telomere length
and four biological clocks in association with co-
morbidities, risk factors and functional aging measures
in around 3000 Dutch subjects. All clocks, including a
Nightingale metabolomics-based clock, were trained
within the same population. Metabolomic age acceler-
ation was associated with male sex, BMI (as observed for
all clocks), smoking and cardiometabolic disease and
showed moderate correlation with proteomic age ac-
celeration. A composite clock, combining all molecular

data types showed stronger associations generally,
including with depression, childhood trauma and phys-
ical disability. Macdonald-Dunlop et al. [30] compared
published and newly trained clocks from a variety of
omic platforms in a Scottish cohort of around 1000
subjects. They found the metabolomic clock developed
by Van den Akker et al. was only weakly correlated with
chronological age in their data (r = 0.2), although newly
trained clocks based on NMR, lipidomic and LC-MS
based data, performed better in test portions of the
data (r > 0.7), demonstrating the difficulty is devel-

oping metabolomic clocks that predict age well across
separate populations. They found their NMR clock to
associate after FDR correction with BMI, blood pressure
and lung function, and their lipidomic clock to associate
with cortisol. Overall, they found that clocks derived
www.sciencedirect.com
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from DNA methylation data or N-glycans attached to
immunoglobulin G molecules to be more generalisable,
tracking a broader range of age-associated disease risk
than the metabolomic clocks they tested.

Biological aging may also be measured through extent of
physiological dysregulation, which often underlie the
increase in disease risk with age. Flores-Guerrero et al.

[31] applied Mahalanobis distance (MD), a statistical
technique for measuring multivariate distance to pop-
ulation norms, on 32 circulating biomarkers including
metabolites, to quantify the degree of loss of homeo-
stasis in 6000 Dutch participants. Interestingly, they
found MD scores to be associated with T2D incidence,
even after adjustment for multiple T2D risk factors.
Metabolic changes with ageing phenotypes
A key question for the field is how metabolic changes
associated with age relate to phenotypic measures of
ageing and age-related disease risk. The study of
Pietzner et al. [32] examined over 1000 metabolites,
using the Metabolon platform, in over 11,000 people in
relation to 27 incident diseases. Many metabolites were
found to have pleiotropic effects across multiple dis-
eases, and notably both the modified nucleotide pseu-
douridine and C-glycosyltryptophan were associated

with nine different diseases. These metabolites were
among those most strongly associated with age [13,14]
(Table 1), suggesting some age-related metabolic
changes may underlie risk of multiple diseases. Simi-
larly, two studies constructed multivariate models of 24
incident diseases [33] and all-cause mortality [34] in
very large populations of over 100,000 and 44,000 people
respectively, facilitated by the use of the relatively cost-
effective Nightingale NMR platform. The metabolic
state models added predictive information over
comprehensive clinical variables for eight common dis-

eases [33], while the mortality model had greater pre-
dictive accuracy than a model containing conventional
risk factors [34]. Other studies have examined meta-
bolic profiles of frailty, a key indicator of functional
decline [35e38]. The largest of these studies, in over
1000 older individuals, identified enrichment of carni-
tine shuffle, mono-saccharide pathway and vitamin E
pathways and increases in citrate associated with fraility.
The authors suggested these pathways may be linked
through cyclic AMP as a hub metabolite [38]. Again,
these pathways have been consistently reported in as-

sociation with age itself [12,28].

Another approach is profiling metabolomic changes asso-
ciated with established markers of biological age. Telo-
mere length, which shortens with age and is often used as
a proxy of biological age, was associated with alterations to
lipid metabolism by two studies [39,40], including a
replicated positive association in the proportion of omega-
6 fatty acids to total fatty acids with telomere length [40].
www.sciencedirect.com
The study of Johnson et al. is of note [41] as they exam-
ined a biological age score constructed from clinical
measurements, reporting alterations to metabolites
including carnitines and citrate, although the study
sample is too small to draw firm conclusions. Similarly,
Polonis et al. [42] reported decreases in four lysophos-
phaditylcholines among hypertensives with early vascular
ageing defined by arterial stiffness.
Future perspectives
Since the first large-scale metabolomic studies on ageing
in humans around 15 years ago, many important ad-
vances have been made, including the use of longitu-

dinal study designs, populations covering the whole life
course, and large-scale population-based studies with
increasing coverage of the metabolome. Greater com-
parison between studies is being facilitated by the
availability of commercial metabolomic service providers
such as Metabolon, Biocrates and Nightingale and also
through publication of analytical protocols by academic
metabolomic research centres [43]. The metabolomic
clock approach appears promising for assessing the
contribution of overall metabolic ageing for disease risk,
although greater validation across studies is required,

particularly as many metabolites are impacted by short-
term environmental effects such as diet. The causal
relationship of age-related metabolic changes to func-
tional ageing measures and disease risk is also an
important consideration for the utility of metabolomics
clocks: although some consistently reported age related
changes may directly influence disease risk [32], others
such as increases in plasma docosahexaenoic acid levels
may potentially be beneficial to health [44]. Indeed, the
epigenetic clock has recently been partitioned to assess
both damaging and adaptive age-related changes,
through incorporation of causal inference under a

Mendelian Randomisation framework [45]. The avail-
ability of databases of genetic instruments for metabo-
lites [46] is an important development in this regard.
Other important recent advances include: the increased
use of cerebrospinal fluid for metabolomic analysis
[47e49], with may be more directly relevant for
neurodegenerative disease [50]; analytical methods
development to provide greater precision in assessment
of age related pathways [51,52]; and continued devel-
opment of statistical and bioinformatic tools [53,54],
including a novel approach investigating how correla-

tions and ratios between metabolites change with age
[54]. While many challenges remain, including incom-
plete metabolome coverage, relatively poor cross-study
comparability, and lack of longitudinal studies, recent
studies have demonstrated the great promise of this
important research field.
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