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The study of brain-to-brain synchrony has a burgeoning application in the brain-computer

interface (BCI) research, offering valuable insights into the neural underpinnings of

interacting human brains using numerous neural recording technologies. The area allows

exploring the commonality of brain dynamics by evaluating the neural synchronization

among a group of people performing a specified task. The growing number of

publications on brain-to-brain synchrony inspired the authors to conduct a systematic

review using the PRISMA protocol so that future researchers can get a comprehensive

understanding of the paradigms, methodologies, translational algorithms, and challenges

in the area of brain-to-brain synchrony research. This review has gone through a

systematic search with a specified search string and selected some articles based on

pre-specified eligibility criteria. The findings from the review revealed that most of the

articles have followed the social psychology paradigm, while 36% of the selected studies

have an application in cognitive neuroscience. The most applied approach to determine

neural connectivity is a coherence measure utilizing phase-locking value (PLV) in the EEG

studies, followed by wavelet transform coherence (WTC) in all of the fNIRS studies.

While most of the experiments have control experiments as a part of their setup, a

small number implemented algorithmic control, and only one study had interventional

or a stimulus-induced control experiment to limit spurious synchronization. Hence, to

the best of the authors’ knowledge, this systematic review solely contributes to critically

evaluating the scopes and technological advances of brain-to-brain synchrony to allow

this discipline to produce more effective research outcomes in the remote future.

Keywords: behavioral cognition, brain dynamics, brain-to-brain synchrony, interbrain synchrony, neuroscience,
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1. INTRODUCTION

In an attempt to explicate the presence of unusually large
brain size in primates, the social brain hypothesis was first
proposed by Dunbar (1998), postulating that primate brains
developed certain brain regions to accommodate higher-order
conspecific interactions. Additionally, the correlation between
human interactions and the perceived identical patterns of the
human body’s oscillatory physiological activities (e.g., heart rate
or breathing or footsteps) were acknowledged by social and
cognitive neuroscience researchers alike (Zhang and Zhang,
2018). However, due to the advancement and development
of neural signal recording technologies, these behavioral and
psychological synchronies were also been observed through
a multitude of experiments in domains of neuroscience and
psychology by measuring and analyzing electrical, magnetic, and
hemodynamic activities of the brain. The increased availability
of both research and industry-grade non-invasive neural signal
recording devices further led to the acquisition and analysis
of the neural signal from multiple brains simultaneously. This
approach, commonly known as hyperscanning (Astolfi et al.,
2011), allowed researchers to comprehensively examine the
synchronization of two or more brains participating in the
same activity and infer the effect of these synchronizations
on behavioral performance in the field of brain computer
interface (BCI). Thus, the study of brain-to-brain synchrony
constructed an interdisciplinary bridge between neuroscientists
and psychologists to reveal the ubiquity of synchronized
human brains and their underlying neurobiological elements
and functionalities in great detail in BCI (Dikker et al., 2017;
Bevilacqua et al., 2019; Davidesco et al., 2019).

After the first experiment conducted to study interpersonal
neural synchronization using fMRI in 2002 (Montague, 2002),
the field of brain-to-brain synchrony has only seen progress
with the introduction of both novel and adapted paradigms,

methods, and modalities in each study. Multibrain neural activity

is now being recorded through non-invasive neuroimaging
methods with unprecedented details helping the researchers to

analyze the data in BCI research in a sophisticated manner.
The neuroimaging methods that have been used to analyze
more than one brain simultaneously are electroencephalogram

(EEG), functional near-infrared spectroscopy (fNIRS), functional
magnetic resonance imaging (fMRI), etc. These non-invasive
neural recording techniques have been preferable to researchers
due to their risk-free application and easy to use on healthy
participants to study the cognitive function in a sterile laboratory
environment or naturalistic settings.

Over the last decades, researchers experimenting on the social
human brain recorded and measured the neural connectivities
by adopting hyper-scanning techniques in designing and
monitoring several host of tasks, such as prisoners dilemma
game (Jahng et al., 2017; Hu et al., 2018), guitar playing (Sänger
et al., 2012), interaction in a virtual environment (Gumilar et al.,
2021), debate (van Vugt et al., 2020), video watching (Ding
et al., 2018; Gao et al., 2020), parent-child dyad (Reindl et al.,
2018; Santamaria et al., 2019), playing video games (Liu et al.,
2016), etc. These studies essentially upgraded and replaced the

traditional study of the individual brain in isolation with the
study interactive nature of human cognition as an alternative.
Dikker et al. predicted students’ engagement in the classroom
and Dana Bevilacqua et al. predicted retention memory, learning
outcome, and the relation between student and teacher in the
classroom as naturalistic settings using the method of total
interdependence (Dikker et al., 2017). Another most prominent
social interaction is verbal interaction between individuals.
The study of Alejandro Perez et al. has described the verbal
exchange of two persons by turn-taking using brain-to-brain
phase synchrony without visual contact from scalp topography
(Pérez et al., 2019). To keep pace with the increasing number of
paradigms and field of studies in BCI explored for each signal
acquisition modality for studying brain-to-brain synchrony,
various intra-brain synchrony measures were continuously being
updated and utilized to correlate between behavioral and neural
activities in groups. These progress in the domains, modalities,
methodologies, and experimental controls in the ever-growing
number of studies call for an explicit and structured record
of the issues that prevail in current studies following their
analysis and critical appraisal. However, the 25 reviews (as of
the search conducted on 22 December 2020) on brain-to-brain
synchrony have been narrative in nature, assessing only certain
aspects of the field, displaying notable limitations in methods,
contents, and approaches. The only systematic review published
in this field (Nam et al., 2020) covers the neuroimaging method,
a relatively small application domain, and the experimental
paradigm, leaving out the various synchrony measures and the
analysis of the epiphenomenon hypothesis of brain-to-brain
synchrony. Hence, we feel an urge to drive another systematic
review covering the methodological part of analyzing brain-to-
brain synchrony. For this reason, we have highlighted the relation
of modalities with paradigms of study, measuring techniques and
translational algorithm, influential internal and external factors
while measuring neural synchrony and give brief reasoning
about better modalities in respective perspectives. Owing to the
development of inter-brain synchrony measures and portable
devices, larger group sizes and a wider range of behavioral studies
have been observed in the past decade. This necessitated a more
comprehensive review following the Preferred Reporting Items
for Systematic Review and Meta-Analysis Protocol (PRISMA-P)
to address four specific research questions. The questions (RQs)
with the respective scopes and rationale used to evaluate them are
listed in Table 1.

In this systematic review, neural synchrony among people has
been analyzed using various linear and non-linear methods in a
large number of recent publications where the authors have used
the term brain-to-brain synchrony with similar kinds of affinities
like interbrain synchrony (Hu et al., 2018), interpersonal neural
synchronization (Novembre et al., 2017), or phase synchrony
(Poikonen et al., 2018), etc. to determine neural synchronization
among a group of participants.

The organization of this systematic review has followed the
following procedure. First, it has been organized with a brief
introduction of conceptual description and documentation about
brain-to-brain synchrony and the research questions are also
developed to give a comprehensive idea to future researchers.
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TABLE 1 | Research questions (RQs) addressed in the systematic review.

RQ# Research questions Scopes Rationale

RQ1 What domains are

explored in the analysis

of brain-to-brain

synchrony in the

selected studies?

The domain of

neuroscience and

psychological paradigm

has been explored to

define the field of study

and experimental

design for measuring

brain-to-brain

synchrony, along with

assigned tasks and

significant outcomes of

the studies.

This is an exhaustive

question seeking to

explore the entire

scope of brain-to-brain

synchrony research. An

overarching study of its

domains will help future

researchers group their

studies and design

newer paradigms.

RQ2 What modalities are

used to collect neural

signals from the brain

and why?

The types of neural

signals (EEG/MEG,

fMRI, fNIRS, etc.) and

the respected devices

to collect this neural

signal are tabulated.

The reason for

choosing the respected

neural signal has also

been described.

This is the most

important aspect when

analyzing and

correlating studies with

the environmental

setting and neural

synchrony measure.

RQ3 What neural synchrony

measures are used?

The preprocessing

method, connectivity

measure, behavioral

and neural correlation,

and directional

measures are extracted

and analyzed.

The methods or indices

that are used for

measuring

brain-to-brain

synchrony can give the

researchers an insight

into the evolution and

current limitation of the

algorithms.

RQ4 What internal and

external factors have

influenced the

inter-bain synchrony?

This brings into light the

study of spurious

synchronization and

current limitations in

measurement

techniques

The details and

methods to differentiate

spurious synchrony

from true synchrony

can guide future

researchers in

designing more robust

control and

interventional

experiments.

Second, a searching strategy and criterion have been developed
to select the studies that were synthesized and analyzed. Next, the
research questions are critically analyzed with the collected data
from the screened table, and the analysis from the selected studies
is provided in the result section. Later, the systematic review
delivers a brief discussion on the perspective of the analysis and
finally, concludes the review.

2. METHODOLOGY

A systematic review is a process to summarize the relevant
articles and studies for evaluating one or more research questions
maintaining specific eligibility criteria and protocol for screening,
selection, and synthesizing data (PRISMA-P Group et al., 2015).
In this systematic review, journals, conference papers, and
electronic pre-print published in the English language between

2011 and 2020 from the popular databases have been selected.
The reason behind selecting the articles of the last decades
was to observe cutting-edge trends that are used for evaluating
neural synchrony using BCI technology. The trend of witnessing
traits of the human brain for cognitive behavior and social
interaction while doing similar activity has been aggregating over
the last decade. Hence, the authors have decided to conduct
a systematic review focusing to evaluate current techniques
for various synchrony measures and the analysis of modern
development while analyzing brain-to-brain synchrony from the
scanning of the human brain for participating in the same task.
The databases used here are Google Scholar, Pubmed, bioRxiv,
and Science Direct. BioRxiv is a preprint server where non-
peer-reviewed articles have been published. The studies from the
electronic preprints database are important because of its prompt
release cycle. Additionally, searching through these preprints
minimize the possibility of biased work and allow us to enhance
the diversity of the searching area for a rigid review (Paez, 2017).

A search string has been generated for queries in the databases.
Relevant studies have been selected by screening the abstracts and
titles thoroughly from these databases. This systematic review
includes some additional relevant studies from screening the
bibliography of the selected articles. The search string and the
number of articles collected from the corresponding databases
are given below inTable 2. The authors carried out the final query
of the strings on selected databases on 22 November, 2020.

The first screening has identified 991 articles that included
the keywords in the search string either in their title, abstract,
full-text, or metadata. The authors have organized a meeting to
decide the inclusion and exclusion criteria according to PRISMA-
P (Preferred Reporting Items for Systematic Review and Meta-
Analysis Protocol) protocol (Welch et al., 2012; Shamseer et al.,
2015). The decided inclusion and exclusion criteria (showed in
Table 3) pave us to identify the most relevant articles from the
selected databases focusing to evaluate the research questions
more strongly. Two reviewers have gone through the full-text
articles of these selected studies to narrow down the selection
based on inclusion and exclusion criteria. Finally, the whole
process leads us to 64 significant articles that contain all
the necessary information to evaluate the research questions
maintaining the eligibility criteria at our best possible attempt.
The whole process has been shown by a flowchart maintaining
the PRISMA-P protocol in the Figure 1. For evaluating the
research questions, each author has built a table, two authors
have blindly screened the final 64 articles to synthesize the data.
Then, they merged their tables to scrutinize the right set of
information during synthes of the data from the selected studies.
This inspection helped to create a final table containing the
imperative set of synthesized data. This table has been provided
to the other authors to recheck the information. The table has
been reformed and refined according to their valuable advice.
This organized table has been created by following the PRISMA-P
checklist recommended for systematic review (PRISMA-P Group
et al., 2015). This organized table has been created by following
the PRISMA-P checklist recommended for the systematic review.
The table has been shown in Table 4 containing 20 data items.
These data items are categorized into seven types: the origin
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TABLE 2 | Searching Strategy from the databases with a multidisciplinary

perspective.

Database Search string Records

identified

Perspective

Google

scholar

“brain-to-brain” OR

neural OR interbrain

AND synchron* OR

coupling OR

hyperscan*

300 Cross-disciplinary

perspective

Pubmed (“brain-to-brain” OR

neural OR interbrain

OR hyperscan*) AND

(synchron* OR

coupling)

136 Medical perspective

Science direct “brain-to-brain” OR

neural OR interbrain

AND synchron* OR

coupling

261 Cross-disciplinary

perspective

IEEE Xplore “brain-to-brain” OR

neural OR interbrain

AND synchron* OR

coupling

9 Electrical/electronic

engineering

Perspective

Web of

science

“brain-to-brain” OR

neural OR interbrain

AND synchron* OR

coupling

199 Cross-disciplinary

perspective

bioRxiv “brain-to-brain” OR

neural OR interbrain

AND synchron* OR

coupling

86 Neuroscience and

physiology perspective

Total = 991

TABLE 3 | Inclusion and exclusion criteria of the systematic review.

Inclusion critera Exclusion critera

Literatures that have been

published from 2011 to 2020.

Studies having an experimental

paradigm in naturalistic or

laboratory settings.

Studies published only in the

English language are included.

Accepted manuscripts and

pre-print versions of studies are

also eligible for inclusion criteria.

Therapeutic studies, review articles, book

chapters are excluded from this study.

Studies using animals for experimental

paradigms have been excluded.

Clinical patients (participants with any

health issue or mental disorder) and

clinical research are also excluded from

this article.

of articles, domains, data acquisition, neural signal processing,
control condition, outcomes, and reproducibility. Each category
contains a set of data items to evaluate the research questions.
The entire table can be found aimsl.uiu.ac.bd.

3. RESULTS

The database queries returned 991 results that matched the
search items. Upon intensively screening through individual
studies’ title, abstract, keywords, and scope of the search results,
and following the removal of duplicates from the results,
52 papers proceeded to the eligibility screening stage. The

researchers then identified 12 additional papers through a
bibliographic search of the selected articles. Sixty four studies
met the eligibility criteria and were selected for critical review
and analysis.

3.1. Origin of the Selected Studies
The search methodology returned 56 journal articles, 3
conference papers, and 5 preprints. A surprising 13 articles
(20.31%) were published in NeuroImage, followed by Scientific
Reports and Social Cognitive and Affective Neuroscience
publishing 6 (9.37%) articles each. Additionally, the researchers
looked at the country of affiliation of the first author to identify
the geographical distribution of research in the field of interbrain
synchrony research, represented in Figure 2. Twenty two or
34.37% of the selected studies were conducted in laboratories
and universities situated in the United States with the rest of
them mostly being clustered in countries such as China (9 or
14.06%), Germany (8 or 12.50%), Japan (5 or 7.81%), and United
Kingdom (3 or 4.68%), and so on.

3.2. Year of Publications
The trend in the publication shows that there has been a surge in
the number of papers published per year since 2017. In a nascent
field such as this, this trendmerely serves to justify the hypothesis
that an increasing number of domains in psychology will be
explored in terms of social dynamics and interbrain synchrony
in the upcoming years. Among 64 papers, 18 or more than one-
fourth of the papers were published in 2020 while four of the
selected preprints were submitted in the same year. Figure 3
contains the chart showing the trends in publication grouped by
their respective experimental paradigm.

3.3. Participants
In this systematic review, 64 articles have been screened. In
the screening criteria, we include the studies with healthy
participants. We excluded studies with clinical patients so that
we can have a general understanding of human behavioral
interaction. For instance, Dikker et al. used 10 high school
students at the age of 17 for evaluating the factors that
affect neural synchrony in the classroom among the students.
Following Dikker et al.’s experimental paradigm, Bevilacqua et al.
have demonstrated the student-teacher relationship among the
13 high school students in a biology class. The mean age of the
student is 17.5 years. Besides, we have found studies showing
the interaction between mother and child, the cognitive behavior
while playing piano or any music, infant’s interactive behavior,
etc. We have mentioned the number of participants, their age,
and the category of the participants in each of these 64 studies on
our website aimsl.uiu.ac.bd.

3.4. Domain
3.4.1. Experimental Paradigm
Based on the conventional and pedagogical understanding of the
experimental paradigm, the authors have divided the selected
studies into four main domains: social psychology, educational
psychology, psycholinguistics, and music psychology. The
rationale for this categorization can be pinned down to
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FIGURE 1 | Flow chart for selection of studies maintaining Preferred Reporting Items for Systematic Review and Meta-Analysis Protocol (PRISMA-P) protocol.
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TABLE 4 | Extracted data items for the selected articles.

Category Data item Description

Origin of articles Type of paper The publication of studies as an article

of journal or conference paper or in

the repository of electronic preprint.

Country of

Affiliation of the

first author

The location of the affiliated institute,

university, or research lab of the first

author

Year The year of publication of the article

Domain Experimental

Paradigm

Experimental design followed by the

study in terms of participants’ role.

Environment Whether or not the study was

conducted in a naturalistic or

laboratory environment

Tasks The list of tasks were given to the

participants whose associated neural

synchrony was measured

Field of study Primary area of study of the selected

experiment or study

Data acquisition Modality Whether the signal derivation was

based on electrical, hemodynamic, or

blood flow activity of the brain

Hardware If the type of hardware used in the

study was research-grade or

commercial-grade

Neural signal

processing

Preprocessing Set of manipulation steps applied to

the raw data to remove artifact and

noise

Synchrony

measure

Synchrony measures that were used

to measure the synchrony index

Control condition Induced

Synchrony

Whether or not there was a

procedure in place to eliminate the

possibility of synchrony due to shared

stimuli perception, if so, which

Coincidence

synchrony

Whether or not there was a procedure

in place to rule out the possibility of

coincidental synchrony, if so, which

Outcomes Behavior and

synchrony

Dynamic effect of the mutual task on

human brain signal

Activated brain

region

The brain regions that were activated

in the selected studies

Synchronized

frequency

The frequency level at which the

interbrain synchronization signified

true information flow among brains

Reproducibility Dataset Whether the data used for the

experiment has a publicly available

dataset or not, and if so, where

Code Whether the code used for the

experiment is available online or not,

and if so, where

these domains themselves comprising experimental setups
pre-designed by certain fine-tuned standards with theoretical
backgrounds. The primary categorization of the studies was
based on the experimental paradigm the studies fell under.
According to Goodhew and Edwards (2019), the experimental
design and setup fell under psychological paradigms. We,
therefore, divided 64 studies into 4 major paradigms: educational

psychology, social psychology, psycholinguistic, and music
psychology. Studies were conducted in classroom settings
(Dikker et al., 2017; Bevilacqua et al., 2019; Davidesco et al.,
2019), while educational video watching (Poulsen et al., 2017;
Cohen et al., 2018) and during teacher-student interactions were
classified as educational psychology paradigm. Theoretically,
this paradigm encompasses the study of how people learn,
including topics such as student outcomes, the instructional
process, individual differences in learning, gifted learners, and
learning disabilities in laboratory settings following a set of
predetermined research approaches in the field of BCI. This
consisted of 14.06% or 9/64 of the studies. Theoretically, this
paradigm encompasses the study of the method of learning.
This includes topics such as student outcomes, the instructional
process, and individual differences in learning in laboratory
settings following a set of predetermined research approaches.
Most studies in this paradigm had a teacher and student(s),
who were set in a classroom or a classroom-like setting in a
laboratory. The students were given various narrative and non-
narrative technical videos (Cohen et al., 2018), audio (Dikker
et al., 2017; Ding et al., 2018; Bevilacqua et al., 2019), and
discussion-based stimuli. Teacher-to-student and/or student-to-
student neural synchrony was measured in these studies to
correlate the neural synchrony with the learning outcomes,
performance, and attention measures through quizzes based
on the lesson contents. Music psychology paradigm studies
music performance, composition, and education under empirical
experimentations. The 15.63% or 10/64 studies conducted in
this domain all consisted of participants performing different
instruments in duets or quartets such as guitar (Viktor et al.,
2018; Fasano et al., 2020), and saxophone (Greco et al., 2018),
performing choreographed dance (Poikonen et al., 2018) and
enjoying music (Madsen et al., 2019; Kaneshiro et al., 2020). The
performers were given different music notes to learn or perform
concerning their expertise level. The melodies performed varied
in terms of complexity and novelty to meet the objectives of
the study. Some (Madsen et al., 2019) studies focused on the
frequencies in the composed notes to study the sensory-motor
association with the brain while others focused on emotion
(Viktor et al., 2018) and learning methods (Fasano et al., 2020) of
the performers, i.e., participants. The psycholinguistic paradigm
from the BCI research follows the data collection, processing,
and analysis techniques as laid out in theoretical literature by
linguists and psychologists to study the psychological aspects
relating to linguistic factors. The 14.06% or 9/64 of the studies
selected here studied the interbrain synchrony that occurs while
acquiring, using, comprehending, and producing one or more
language between interlocutors. These studies consist of a speaker
and listener communicating in a unidirectional (Liu et al.,
2017) or bidirectional (Pérez et al., 2019) manner. Most studies
are conducted in a single language, i.e., the mother language
while only three explore the inter-personal synchronization in
language acquisition (Reiterer et al., 2011) and comprehension
(Pérez et al., 2019). The most diverse paradigm is the social
psychology paradigm in which the authors grouped the rest
of the studies. Social psychology studies the thoughts, feelings,
and behaviors of individuals when they are influenced by
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the actual, imagined, and implied presence of others. This
paradigm has experimented with participants who mostly have
face-to-face or side-by-side interaction with each other and
their conjoined behavioral analysis is measured in terms of
the tasks assigned. Decision making tasks (Jahng et al., 2017),
certain verbal and visual cue tasks (Reindl et al., 2019), and
emotion monitoring (Nummenmaa et al., 2014; Balconi and
Vanutelli, 2017; Vanutelli et al., 2017; Santamaria et al., 2019),
fall under this paradigm. These studies are done under similar
yet divergent experimental setups each catering to its objectives.
The following studies explore machine mediated neural and
behavioral synchronization in real and virtual environments
(Hachmeister et al., 2014; Gumilar et al., 2021). Similarly, the
effect of cooperation on neural synchrony (Abe et al., 2019),
meditation and monastic debates (Fenwick et al., 2019; van Vugt
et al., 2020), emotional association in groups (Nummenmaa
et al., 2014; Goldstein et al., 2018; Santamaria et al., 2019)
are included in this paradigm. These studies do not have a
single set of specified roles for the participants similar to the
previous paradigm apart from the participants all being part of
social groups.

3.4.2. Field of Study
To classify overlapping study contents into less ambiguous
sections, the nested secondary domain classification has been
done based on the focus and objectives of the selected studies.
A total of 12.5% or 8/64 studies analyzing the interconnected
brain dynamics of social emotions such as social connectedness
(Zheng et al., 2020), empathy and emotional response to
various social interactions (Ding et al., 2018) are categorized
into the affective neuroscience domain. Studies that analyzed
interbrain neurobiology of engagement levels (Cohen et al., 2018;
Bevilacqua et al., 2019), memory retention (Piazza et al., 2020)
and learning performance (Davidesco et al., 2019), and other
higher-order functions of the brain are categorized into the
cognitive neuroscience domain. This consisted of 36% or 23/64
of the selected studies. Behavioral neuroscience is composed of
the 20 or 31.25% studies that quantified the neural underpinnings
of social interactions where the participants are instructed to
take part in naturalistic and semi-naturalistic exchanges as team
members or opponents (Liu et al., 2016; van Vugt et al., 2020),
leader or follower (Jiang et al., 2015), etc. Systems neuroscience
includes the studies where the authors focus primarily on
justifying the use of a new modality or development of a
synchrony measure algorithm alongside exploring new signal
processing and analysis pipelines (Liu et al., 2017; Viktor et al.,
2018; Zamm et al., 2018) and has 20.31% or 13/64 papers in this
category that has been represented in Figure 4.

3.4.3. Environment
The environment of the study refers to the ecological settings in
which the studies were conducted. The amount of interaction
the experimenter had with the participants, the restrictions
on natural movement, the laboratory’s electromagnetic and
sound shielding conditions, and lighting concerning the assigned
tasks were the factors taken into consideration while dividing
the studies into naturalistic, semi-naturalistic, and laboratory

environment categories. Studies that put no restrictions on
the participants regarding movement and used wireless or
comparatively lighter data acquisition device was considered
naturalistic and comprised 59.3% or 38/64 of the papers (Reiterer
et al., 2011; Ding et al., 2018; Greco et al., 2018). Some
studies restricted the movement of the participants (Dikker
et al., 2017; Bevilacqua et al., 2019) through instructions,
monitored ambient lighting (Fenwick et al., 2019), used noise-
canceling earphones (Balconi, 2016) to limit perceived noise.
These were considered semi-naturalistic as they do not replicate
real-life social interactions on a full scale. The majority of
the laboratory settings corresponded to fMRI settings, where
the head movements were restricted to < 2–< 3 mm, and
most stimuli were provided through angled mirrors or MRI-
compatible headphones while the participants lay still (Fasano
et al., 2020). The laboratories are electro-magnetically shielded,
soundproof, and have dim lighting.

3.4.4. Tasks
Most tasks in the studies were designed to carry out participatory
actions for two or more participants to simultaneously evaluate
the neural oscillatory dynamics associated with them. Most
common tasks include cooperation-competition games or tasks
(15.63% or 10/64), verbal or motor interaction (15.63%), playing
musical instruments in duet or quartet (10%), prisoner’s dilemma
game (4%), visual cue/target task (7%), etc. A small number
(9.3% or 6/64) of the studies required the participants to interact
online (5/64) and/or with a computer (3/64). The tasks in these
settings included watching online videos, participating in online
courses, competing in online games as groups, and against each
other. Some of the tasks from the educational psychology and
psycholinguistics paradigms were similar due to the participants’
roles as speakers or teachers and listeners or students. Each of
these tasks was administered and recorded using custom-built
interfaces or software, such as PsychoPy and OpenFramework
-based software for research in BCI.

3.5. Data Acquisition
3.5.1. Modality
Three modalities for data acquisition in BCI were found
dominant while screening the studies. Among them, EEG was
the most popular non-invasive method with 60.9% or 39/64 of
studies using it for their experiments. fNIRS followed the lead
with 20.3% or 13/64 studies and fMRI with 10.9% or 7/64 studies.
MEG or EEG-MEG was the least exclusively used device or
method for data extraction from the brain with only 3 studies.
An fNIRS-fMRI-based study was also included where the authors
focused on comparing the two methods before settling on fNIRS.
A total of 4 studies utilized T1-weighted MRI to localize the
region of interest before proceeding to apply less spatially robust
modalities such as fNIRS and EEG. In studies where the analysis
of the rest/active cycle of the participants was required, the
researchers used Actigraphy in company with neurophysiological
monitoring methods. These multi-modal studies comprised 4.7
or 3/64 of the study. Figure 5 shows different modalities used for
neural signal acquisition distributed across domains.
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FIGURE 2 | A number of studies conducted in different countries according to first author affiliation.

3.5.2. Hardware
Among the studies that explicitly mentioned the hardware used
in BCI, BrainAmp from Brain Products took the lead (33% or
13/39) in EEG data acquisition followed by MAGNETOM Skyra
3T from Siemens for fMRI (62.5% or 5/8). Among fNIRS devices,
ETG-4000 and ETG-7100 from Hitachi comprised 53.8% or 7/13
of the studies. Notably, all of these are research-grade devices that
cost well above $1,000 per unit. The only consumer-grade devices
included in the studies were EMOTIV EPOC and SMARITNG
mBRAIN Train.

3.6. Analysis
The different methods and procedures followed in brain-to-brain
synchrony analysis in the selected papers are as follows.

3.6.1. Preprocessing
Brain signal, being contaminated with motion artifact, muscle
artifact (EMG), eye artifact (EOG), and cardiac artifact (ECG),
requires extensive preprocessing before being proceeded to the
next step of the analysis pipeline. The preprocessing steps are
applied to individual participants’ data and vary widely from
modality to modality. In the case of EEG, the studies used
bandpass filters to filter the data within the frequency of interest
ranging between 0.05 and 90Hz. Themost preferred filter was the
Butterworth filter (64% or 25/39). Thresholding (67% or 26/39)

and zero value replacement for signals that fell 2 to 3 SD above
or below the average have also been observed to be a popular
practice. Most notably, the Independent Component Analysis
(ICA) was the most predominant algorithm (90% or 35/39) with
regression analysis being used in the rest of the studies for EOG
removal. fNIRS signals, being comparatively robust to noise,
required relatively fewer preprocessing steps. The modified Beer-
Lambert law was used in all the studies to convert the light
intensity changes to changes in oxygenated and deoxygenated
hemoglobin. Most studies preferred the study of the changes
in oxygenated hemoglobin based on the evidence of correlation
found in Liu et al. (2016) across multiple cognitive tasks. The

signals are usually bandpass filtered in the range 0.01–0.5 Hz to
focus on the frequency of interest (FOI) and eliminate cardiac

oscillations. fMRI studies eliminated participants with excessive

headmovement<2–3mm. Being the constituent of two different
data acquisition methods is practically a 4D dataset consisting

of a 3D image and temporal data. Most of the studies motion-
corrected the data for head movement, performed slice-time
correction, spatially transformed into standard stereotaxic spaces
following the Montreal Neurologic Institute (MNI) coordinate
system, and smoothed with Gaussian Kernel. The FMRIB
Software Library abbreviated FSL, and Statistical Parametric
Mapping Software abbreviated SPM8 or SPM12 were used in the
preprocessing of the fMRI datasets.
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FIGURE 3 | A number of studies published per year per domain.

3.6.2. Neural Synchrony Measures
The studies primarily performed coupling or connectivity
measures like the phase-locked value (PLV) and wavelet
transform coherence (WTC) or the correlation and dependence
analysis measures like the Correlated Component Analysis
(CorrCA), Circular Correlation, etc. The most common
measures taken by the selected studies to analyze interbrain
synchronization were PLV in 16 studies, WTC in 11 studies,
Intersubject Synchrony (ISC) in 6 studies, and others in the rest
of the studies. To determine the directionality of information
flow, the Granger Causality measure was used in 5 studies. A
total of 6 other studies used Graph Theory to determine the
hyper-brain network.

Here, PLV, PLI, and WTC are mostly used for connectivity
analysis of neural signals among subjects for measuring
brain-to-brain synchrony. While the authors need to analyze
the correlation among the subjects, they have used circular
correlation, correlation component analysis, General Linear
Model, and find out the interbrain synchrony. Graph theory
and hyper-brain networks are discussed in the articles that
are focused on explaining or analyzing the directionality
of information flow. Further details of these techniques for

brain-to-brain analysis will be discussed in the discussion section
of this paper.

3.7. Control Condition
Spurious synchronization between brain signals appears when
the oscillations are driven by external influence, i.e., lower-
level shared response to similar stimuli or in the presence
of coincidental phase relationship between measured signals.
Some studies acknowledged this (52 or 82%) while others
did not have mention of any such phenomena. Among those
mentioning induced synchrony, only 36 had implemented
different experimental conditions, the majority of them
implementing random or shuffled pair analysis (46 or 72%) to
acknowledge fallacious synchronization due to the exposure to a
shared environment.

4. DISCUSSION

In this section, we review and analyze the highlights of findings of
the results section and discuss the rationale with the impact of the
various trends discussed above. We focus on the objectives of this
review article while providing recommendations and presenting
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FIGURE 4 | Number of fields of study under each paradigm.

a checklist for future researchers willing to work in the field of
brain-to-brain synchrony.

4.1. Fields of Study and Outcome in the
Study of Interbrain Synchrony
As the study of brain-to-brain synchrony is a focus of
neuroscientists, data scientists, and psychologists alike, the task
of categorizing selected studies into domains remains one of the
most complicated and perplexing tasks due to the overlapping
nature of the study contents. To solve this dilemma, the authors
took a pedagogical approach toward categorization so that the
result can be justified using academic texts and definitions.
The primary categorization of the studies was based on the
experimental paradigm the studies fell under. According to
Goodhew and Edwards (2019), the experimental design and
setup fell under psychological paradigms. We, therefore, divided
60 studies into 4 major paradigms: educational psychology,
social psychology, psycholinguistic, and music psychology.
In the educational psychology paradigm, we included the
studies conducted in classroom settings while students and
teachers are interacting with each other (Dikker et al., 2017;
Poulsen et al., 2017; Cohen et al., 2018; Bevilacqua et al.,
2019; Davidesco et al., 2019). Theoretically, this paradigm
encompasses the study of how people learn, including topics
such as student outcomes, the instructional process, individual
differences in learning, gifted learners, and learning disabilities
in laboratory settings following a set of predetermined research

approaches. Social psychology studies the thoughts, feelings,
and behaviors of individuals when they are influenced by
the actual, imagined, and implied presence of others. This
paradigm has experimented with participants who mostly have
face-to-face or side-by-side interaction with each other and
their conjoined behavioral analysis is measured in terms of
the tasks assigned. Decision making tasks (Jahng et al., 2017),
certain verbal and visual cue task (Reindl et al., 2019), and
emotion monitoring (Nummenmaa et al., 2014; Balconi and
Vanutelli, 2017; Vanutelli et al., 2017; Santamaria et al., 2019) fall
under this paradigm.

The secondary classification was done based on the focus of
the study of the selected BCI papers. This converged on the
neuroscience field since most of the measured functionalities of
the brains of the participants and the analyses that followed were
parts of different neuroscience domains. Papers that measured
engagement levels, memory retention, and learning performance
are categorized into the cognitive neuroscience domain. Studies
analyzing the brain dynamics of different social emotions such
as social connectedness, empathy, and emotional response to
different social interactions are part of the affective neuroscience
domain. Behavioral neuroscience comprises the studies that
quantified the neural underpinnings of social interactions where
the participants are instructed to take part in naturalistic and
semi-naturalistic exchanges. Systems neuroscience includes the
studies where the authors focus primarily on justifying the use
of a new modality, extracting a specific frequency band or a
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FIGURE 5 | Different modalities used for the acquisition of brain signals distributed across domains.

cortical or deep brain region concerning a task, or develop a new
synchrony analysis measure.

4.2. Data Acquisition Modalities Used in
Brain-to-Brain Synchrony Studies
We are indebted to the large variety of methods developed
to measure brain activity in the late-twentieth and twenty-first
centuries. Based on the neural signals’ spatial and temporal
resolution and the portability of the device using BCI technology,
the most popular ways to measure the interbrain synchrony
are EEG, fMRI, and fNIRS. By analyzing the modalities used
in a group of studies, we can further understand different
behavioral functions and their neural underpinnings. As we
found in the results, most of the studies here were conducted
using EEG devices. The reason behind this was due to EEG’s
ability to provide a naturalistic setting for the experiments
(Jahng et al., 2017; Cohen et al., 2018; Kaneshiro et al., 2020).
Unlike fMRI and fNIRS, EEG measures neural activity directly
from the electrical currents through electrodes placed on the
scalp. This enables EEG to record brain signal changes on
a millisecond scale, making it a very strong candidate for
research involving temporally synchronized social interactions
(Kaneshiro et al., 2020). The relatively low price has made it
very convenient for researchers to measure a large number of
scalp activities at once as demonstrated by Dikker et al. (2020).
However, EEG is susceptible to muscle movement artifacts as
well as a considerable amount of ocular artifacts. Moreover, EEG

suffers from volume conduction effect, making it difficult to
correlate to the specific brain areas of the participants. Table 5
shows a list of studies that utilized EEG as their neural signal
acquisition modality in different psychological experimental
paradigms. As opposed to EEG, MEG provides high-resolution
spatiotemporal dynamics of neuromagnetic fields during various
cognitive and behavioral activities, making it a great candidate
for brain-to-brain synchrony analysis. Despite being impractical
in terms of mobility, fMRI has been the first device used in
a hyperscanning study (Montague, 2002). It is a method that
indirectly measures brain activity by detecting changes associated
with blood flow, which is the blood-oxygen-level-dependent
(BOLD) contrast. BOLD contrast enables researchers to study
deep brain structures noninvasively while also compromising
temporal resolution. However, fMRI is capable of capturing
data from the default mode network (DMN) which is an
impossible feat for EEG. Due to the immobility and high
cost of the experiment setups, very few studies have been
conducted with the fMRI method (Nummenmaa et al., 2014;
Gao et al., 2020). Apart from this, the complexity of the
fMRI data requires the development of new analysis models
which further hinders the designing of experimental setups.
However, this can be of great value if combined with EEG
to compensate for its temporal resolution as demonstrated by
Koike et al. (2016). One of the most recent inventions in the
field of neuroimaging is fNIRS. It is also a passive method
that uses the contrast between oxygenated and deoxygenated
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TABLE 5 | Selected studies on the dimensions of this review.

Paradigm Field of study Experimental

setting

Modality Synchrony measure References

Educational

psychology

Affective

neuroscience

Naturalistic fNIRS, Actigraph Wavelet transform coherence Pan et al. (2020b)

Laboratory fNIRS Wavelet transform coherence Zheng et al. (2020)

Granger causality Zheng et al. (2020)

Cognitive

neuroscience

Naturalistic EEG Correlated component analysis Poulsen et al. (2017), Cohen et al.

(2018)

Semi-naturalistic EEG Total interdependence Dikker et al. (2017), Bevilacqua et al.

(2019)

Circular Correlation Davidesco et al. (2019)

Laboratory fMRI Inter-subject Correlation Nguyen et al. (2020a)

Systems

neuroscience

Naturalistic fNIRS Wavelet transform coherence Pan et al. (2020a)

Music

psychology

Cognitive

neuroscience

Naturalistic EEG Correlated component analysis Madsen et al. (2019)

Inter-subject correlation Kaneshiro et al. (2020)

Phase synchronization index Poikonen et al. (2018)

Laboratory fMRI Pearson correlation Abrams et al. (2013)

Inter-subject correlation Fasano et al. (2020)

Systems

neuroscience

Naturalistic EEG Graph theory Müller et al. (2013), Greco et al. (2018)

Interbrain Phase Coherence Sänger et al. (2012)

Phase locking index Sänger et al. (2012)

Phase synchrony index Sänger et al. (2012), Müller et al.

(2013), Greco et al. (2018)

Semi-naturalistic EEG Graph theory Viktor et al. (2018)

Laboratory EEG Amplitude envelope correlation Zamm et al. (2018)

Psycholinguistics Behavioral

neuroscience

Naturalistic EEG Partial directed coherence Leong et al. (2017)

Phase-locking value Leong et al. (2017)

Granger causality Leong et al. (2017)

fNIRS Wavelet transform coherence Nguyen et al. (2020c)

Laboratory EEG-MEG Phase lag index Ahn et al. (2018)

Cognitive

neuroscience

Naturalistic EEG Circular correlation Pérez et al. (2019)

Semi-naturalistic EEG Cross correlation analysis Kawasaki et al. (2013)

fNIRS Inter-subject correlation Piazza et al. (2020)

Laboratory EEG Coarse-graining markov-chain Reiterer et al. (2011)

Phase-lag index Reiterer et al. (2011)

Systems

neuroscience

Laboratory fNIRS-fMRI General linear model Liu et al. (2017)

fMRI Inter-subject correlation Dikker et al. (2014)

Social

psychology

Affective

neuroscience

Naturalistic EEG Circular correlation Goldstein et al. (2018)

Inter-subject correlation Ding et al. (2018)

Pearson correlation Dikker et al. (2019)

Phase-locking value Ding et al. (2018), Zhu et al. (2018)

Spearman correlation Kinreich et al. (2017)

Laboratory fMRI Instantaneous intersubject phase

synchronization

Nummenmaa et al. (2014)

Behavioral

neuroscience

Naturalistic EEG Partial correlation Szymanski et al. (2017), Balconi et al.

(2018)

Partial directed coherence Santamaria et al. (2019), Shehata

et al. (2020)

(Continued)
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TABLE 5 | Continued

Paradigm Field of study Experimental

setting

Modality Synchrony measure References

Phase-locking value Jahng et al. (2017), Mu et al. (2017),

Santamaria et al. (2019)

Yun et al. (2012), Shehata et al. (2020)

Phase lag index Szymanski et al. (2017)

Granger-gewek causality Shehata et al. (2020)

Graph theory Santamaria et al. (2019)

fNIRS Wavelet transform coherence Jiang et al. (2015), Hu et al. (2017),

Zhang et al. (2018)

Granger causality Jiang et al. (2015)

Semi-naturalistic EEG Phase-locking value Hu et al. (2018)

Laboratory EEG Phase synchronization index Kawasaki et al. (2018)

MEG Phase-locking value Hirata et al. (2014), Zhou et al. (2016)

Granger causality Hirata et al. (2014)

Partial directed coherence Hirata et al. (2014)

fNIRS Wavelet transform coherence Reindl et al. (2018)

fMRI Correlation component analysis Koike et al. (2016), Abe et al. (2019)

Cognitive

neuroscience

Naturalistic EEG Phase-locking value Antonenko et al. (2019), van Vugt

et al. (2020)

Phase Slope Index Fenwick et al. (2019)

Total Interdependence Reinero et al. (2020)

fNIRS Wavelet transform coherence Liu et al. (2016)

Semi-naturalistic fNIRS Wavelet transform coherence Nozawa et al. (2016), Nguyen et al.

(2020b)

Laboratory fNIRS Wavelet transform coherence Xue et al. (2018)

Systems

neuroscience

Naturalistic EEG Phase-locking value Hachmeister et al. (2014), Barraza

et al. (2020), Gumilar et al. (2021)

Laboratory EEG Circular correlation Novembre et al. (2017)

fMRI Inter-subject correlation Gao et al. (2020)

hemoglobin in the brain to measure the changes in the
superficial brain regions with a low spatial resolution and a
comparatively low temporal resolution. But due to its resistance
to motion artifacts and its mobility, it is widely used in the
field of hyperscanning. Nozawa et al. (2016) utilized fNIRS
to study group communications in a naturalistic setting with
four participants. The portability of fNIRS also makes it a
suitable choice for investigating the brain functions of toddlers.
Reindl et al. (2018) showed in their study the relationship
between emotion regulation in different circumstances and
the brain-to-brain synchrony in parent-child dyads. Liu et al.
(2016) investigates brain-to-brain coupling between speakers and
listeners to analyze the neural correlates of verbal communication
across the group using both fNIRS and fMRI (Liu and Pelowski,
2014). By comparing optodes and voxels from the same brain
regions, they concluded that listeners’ brain activity significantly
correlates with speakers with a delay and disappears when verbal
communication fails. A similar study was carried out with EEG-
MEG where the delay in speaker -listener synchrony was also
accounted for using the high spatiotemporal resolution of the two
devices combined.

4.3. Brain-to-Brain Synchrony Analysis
Measures
The synchrony measures are estimators of synchrony between
more than one neural signal in continuous time series where
lower values indicate independent time series and higher values
stand for various degrees of correlation. The methods previously
used to study single brain, i.e., intra-brain connectivity are now
adapted and thus the most common methods to estimate the
strength of neural connectivity between multiple brains. In the
selected studies, various connectivity, correlation, and direction
measures were taken to determine the synchrony between two or
more brains.

4.3.1. Connectivity Measures
The majority of the connectivity methods are based on second-
order measures in the frequency domain. This is dependent
on the principle that two electrodes from two different brains
being in coherence denote functional synchronization. Methods
like the phase-locking value (PLV), phase coherence, and phase
lag index (PLI) were previously used to measure intra-brain
synchronization. PLV, as the name suggests, is a measure to
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determine the phase-locked state of two signals within a given
time-window following the Fourier Transform of the said signal.
PLV being 1 denotes the observed phases being in perfect
synchrony in a particular frequency and 0 denotes complete
asynchrony. Thismeasure was used inmost of the EEG interbrain
synchrony studies. They investigated cortical synchronization
while two participants tried to imitate their hand (Dumas
et al., 2011) or finger movements (Yun et al., 2012) during a
coordinated time estimation and speaking and listening (Pérez
et al., 2019) and during a cooperative decision-making task (Hu
et al., 2017). Another similar measure, PLI, was used in studies
investigating coordinated behavior in guitar players playing in
duets (Sänger et al., 2012). Despite their similarities, PLI is not
susceptible to common source problem as PLV (Aydore et al.,
2013). However, for multiple brain research, having sources in
different brains, results from these measures are similar. Phase
coherence, a similar method of investigating synchronization
within or between brains, is also dependent on neural oscillations’
phase. This method was used in multiple variations across the
selected studies. Notable among them are the studies mentioned
above that investigated guitar players (Sänger et al., 2012; Viktor
et al., 2018). The major benefits of phase synchronization over
other coherence measures are its better time resolution and
sensitivity to phase, rather than amplitude. The property of being
restricted to a frequency band has led to its use in specific
EEG bands reflecting cognitive process and attention states.
Wavelet transform coherence (WTC) is a pertinent method to
measure the coherence of two signals. As a modified version of
Fourier Transform coherence, WTC was developed to analyze
the geophysical time series at the beginning of this century.
However, it found its application in neuroscience, especially in
analyzing fNIRS studies. Being the only method used to analyze
interbrain connectivity with fNIRS, it is also one of the most
common analysis methods within all selected studies. WTC
was used to estimate interbrain synchrony in all paradigms to
study action monitoring, cooperative and competitive behaviors
(Liu et al., 2016; Cheng et al., 2019), communication (Jiang
et al., 2015; Nozawa et al., 2016) and teaching/learning behaviors
(Pan et al., 2020b). All connectivity measures mentioned in
this section are interpreted as synchrony between brains in
the studies and are almost always referred to as interbrain
synchrony, while in reality, it infers the interbrain or inter-
electrode functional connectivity.

4.3.2. Correlation Analysis
The estimation of correlation coming from different brains
or the correlation between behavioral synchrony and neural
connectivity is yet another synchrony measure. Within the
selected studies, data collected from all modalities, i.e., EEG,
fNIRS, and fMRI were subjected to correlation measures. The
low temporal resolution of fMRI prevented the researchers from
analyzing the higher frequency ranges which are responsible for
higher cognitive function of the mammalian brain. Therefore,
linear dependence was used to measure the similarities in
oscillation between two brains. Additionally, the BOLD signal
itself was used for correlation analysis, but regression model

TABLE 6 | Characteristics of different synchrony measures.

Case Coherence Wavelet Phase- Granger Partial

Transform locking causality directed

coherence value coherence

Linear X X

Non-linear X

Info-based X X

Data-driven X X X X X

Causality assessing X X

Multivariate X

Stationary independent X X

Functional connectivity X X X X X

Effective connectivity X X

coefficients derived mostly from General Linear Model were
represented as activations in different tasks. These types of
analyses were applied in research investigating mutual gaze,
shared attention, and cooperation in the joint force production
task (Koike et al., 2016; Abe et al., 2019). Neural synchronization
between two or more brains was estimated from the correlation
found in these studies. Correlation measures were also applied to
EEG neural synchrony data. Moreover, different aspects of EEG
signals were used for correlation analysis. Correlation between
different frequencies (theta and alpha) was used to investigate the
coordination and comprehension of speech rhythm (Kawasaki
et al., 2013) and differences between interactions between
strangers and couples in alpha, beta, and gamma (Kinreich
et al., 2017). Furthermore, the total interdependence analysis
was used in a study that investigated brain synchronization in
a naturalistic classroom environment on a group of students
(Dikker et al., 2017; Bevilacqua et al., 2019). This analysis was
used to predict classroom dynamics and engagement between
students and teachers under different teaching conditions. Lastly,
two fNIRS experiments applied correlation analysis to estimate
synchrony between brains in tasks that required cooperation
or competition between participants (Liu et al., 2016; Fasano
et al., 2020). In Table 6, the characteristics of synchrony have
been presented relating the cases with different methods for
synchrony measurement.

4.3.3. Graph Theory and Hyperbrain Networks
In brain-computer interface, brain networks are represented as
complex systems using graph theory methods on connectivity
matrices from neural signals. The structure of an adjacency
matrix of a graph is similar to the nodes and edges of the brain
network. Graph theory measures focus on different parameters of
intra- and inter-brain networks. The use of graph theory allowed
the researchers to explore the hyperbrain network, a complex
intra- and inter-brain network model at different granularity
levels. From the selected studies, the only studies utilizing this
were the studies in the music psychology paradigm. Different
graph theory measures were used to study the relationship
between small-worldness andmodularity in hyperbrain networks
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in guitar players. Small-worldness of interbrain networks was
enhanced during musical coordination (Sänger et al., 2012), and
the topology of the networks was more prominent in higher
frequencies than in lower (Viktor et al., 2018). The strength and
importance of the links in the network can determine the level
of effect an interactive action has on the interconnected brains
and to which extent these connections can enhance collective
performance.

4.3.4. Information Flow
To study the driver-response relationship between interlocutors,
analysis of the flow of information is a crucial factor.
Additionally, definite proof of causality also strengthens the
mechanistic hypothesis of interbrain synchrony. This method
requires the establishment of a causal link between the measured
brains. Granger Causality and Partial Directed Coherence (PDC)
are such methods that meet this criterion. In the selected studies,
the flow of information was utilized to measure the direction
of information flow in teacher-student relationship (Nguyen
et al., 2020a), leader-follower relationship (Jiang et al., 2015),
and meditation trainer, and follower interbrain synchrony. As
hypothesized, the flow of information was controlled by the
leading personnel in the dyads.

In most cases, the advantage and disadvantages of these
empirical measures are not highlighted due to the novelty of
the approaches. The current standard is based on intra-brain
synchrony measures and is yet to be fully analyzed and exploited
in interbrain synchrony analysis. Furthermore, as a growing
number of measures are being used as exploratory techniques,
it is yet to be simulated whether they relate to the same set of
neurophysiological processes.

4.4. Control Conditions Discussed in the
Selected Papers
Most studies in this field are based on the conjecture
that the perceived brain-to-brain synchrony is the direct
consequence of information flow between two interacting brains.
In reality, two different perspectives are taken into account
while interpreting synchronized oscillations. The mechanistic
approach corroborates the generalized and widely accepted
principle that interbrain synchrony facilitates inter-personal
information flow. Hence, this allows the associated individuals to
enhance their social performance. However, the epiphenomenal
stance takes into account two cases: induced synchrony, or
the result of a shared perception of a low-level stimulus and
coincidental phase relationship between individual rhythms, or
simply, coincidental synchrony. The latter perspective states that
induced or coincidental synchrony has no role in determining
causality in social behavior. Although credit is still due
when providing correlational evidence, most hyperscanning
experimental setups do not differentiate between correlational
and causal evidence. Primarily, as a control for coincidental
synchrony, experimental conditions remain identical in every
way possible, except for one where participants are socially
engaged and another when they are not (Burgess, 2013). This
is implemented through random pair analysis followed by 1,000

or more iterated permutation analysis which is then Bonferroni
corrected. As a result, only the emergent neural synchronization
due to real interaction survives the analysis. While many
other control experiments remain prevalent, including scrambled
stimuli (Nguyen et al., 2020c) and multivariate regression of
gyroscopic head and eye movement (Dikker et al., 2017),
the most effective is a methodological approach, namely,
Granger Causality (Leong et al., 2017; Zheng et al., 2020). In
more recent years, an additional interventional approach has
been proposed (Hoehl et al., 2020) to render the analytical
approach even more robust and well-grounded. A non-invasive
multibrain stimulation has been proposed to reverse-engineer the
conventional interaction vs. synchrony relationship in the field
of BCI. Under the influence of the directed stimulus, interbrain
synchrony can be manipulated and act as the independent
variable while the resultant social interactions are being studied.
The only single study among the selected others to employ this
has been (Novembre et al., 2017), which demonstrated the effect
of the beta band (20 Hz) in-phase currents (hyper-tACS) in
the motor cortex in determining the performance enhancement
of participants’ finger-tapping task. This multibrain stimulation
(MBS) approach may allow a paradigm shift in the coming years.

5. BRAIN-TO-BRAIN SYNCHRONY IN THE
DEVELOPMENT OF THE BCI

Brain-computer interface is an emerging field of research
with various applications. The contribution of BCI has been
reached from mind-reading to remote communication and
control in numerous research and real-life applications such
as human behavioral interaction acknowledgment, cognitive
behavior analysis, education, self-regulation, neuromarketing,
and understanding of the dynamics of social interaction that
creates mutual interaction. Measuring neural synchrony among
two or more subjects gives us the opportunity to quantify
neural engagement and collaboration for improving attention,
focus, and productivity that can be achieved through the
Neurofeedback loop. Perez et al. measured the brain-to-brain
synchrony of subjects while speaking and listening to native
and foreign languages (Pérez et al., 2019). This study shows the
cognitive-behavioral perspective of human beings while speaking
or listening to their mother tongue or other languages. They
used circular correlation to determine interbrain synchrony
between the subjects. There is a great number of research
ongoing in the education domain where authors are using
different brain-to-brain synchrony techniques to understand
the factors that affect students’ focus or attention in the class
or neural synchrony between teacher and students (Dikker
et al., 2017, 2019; Davidesco et al., 2019). These help us to
build an efficient educational system. Our systematic review
has focused on 64 significant studies that are using different
neural synchrony measure techniques for understanding
educational neuroscience, social psychology, cognitive behavior,
and behavioral neuroscience. The authors conducted a multi-
step categorization of the selected studies for their coinciding
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presence in multidisciplinary domains of neuroscience and
psychology where neural synchrony has been measured.
This systematic review provides a comprehensive analysis of
techniques, methodology, and translational algorithms for
evaluating brain-to-brain in BCI research.

6. LIMITATION AND RECOMMENDATION

The authors are optimistic regarding the contribution of this
transparent and reproducible systematic review’s capability
to assist future researchers working on the connectivity of
the human brain as it has explored almost every discipline
of neuroscience and psychology that contains the functional
connectivity study of brain-to-brain synchrony in BCI research.
Therefore, the authors found it within their responsibility to note
down the challenges and suggestions from this systematic review
of brain-to-brain synchrony studies as follows:

• To complement a large number of correlational studies
on brain-to-brain synchrony, more experimental and quasi-
experimental studies should be conducted with dependent
and independent variables in a controlled environment to test
causation.

• A wide range of social activities is yet to be experimented on,
such as family affiliations, popular entertainment perception,
military drills, mob mentality, etc. These provide extensive
scope for future researchers.

• To successfully utilize low-cost consumer-grade EEG in
naturalistic settings, the EEG inverse problem can be used
to localize the source more precisely than the original spatial
resolution EEG offers. This will allow a full transition into the
naturalistic environment.

• While developing or adapting new synchrony measures
emphasis should be given to preserving temporal information
while computing functional connectivity to increase time
resolution. This is necessary when the activities have very
short-lasting stimuli and the underlying neural dynamics are
fast-changing.

• Various neural recording and stimulus methods such as hyper-
tACS are still required to reverse engineer and manipulate
inter-brain synchrony to study the prolonged effects on
adapted social interactions.

• Studies can be conducted on modulating inter-brain
synchrony with various interventional methods to
increase inter-personal empathy or as a therapeutic
measure for psychological disorders such as antisocial
personality disorder and social anxiety in the BCI and
neurofeedback settings.

7. CONCLUSION

To date, brain-to-brain synchrony analysis is a relatively
untapped opportunity to study and unveil the brain dynamics
of human interaction as a social being in the field of BCI.
Measuring brain-to-brain synchrony is an endeavor to discover
human individualities vs. team behaviors and the reason

behind these behaviors is by exploring neural activity during
shared actions and experiences. The leading purpose of this
systematic review was to analyze the state of sharing features
and attributes among a group of participants and examine
their neural synchronization. Authors have established that over
the progression of the last 10 years, most of the studies of
brain-to-brain synchrony were associated with cooperation tasks
practiced through games, social interactivity, and studied the
notable evolution of the educational paradigm. The evolutionary
breakthrough of this review was the successful categorization
of the complex overlap of the scopes of the studies that have
been separated into forms of neuroscience and psychological
domains for each study. A total of 86% of the studies focused
on quantifying the correlation between shared tasks and their
associated synchrony index while the rest of the experimental
and quasi-experimental studies focused on the development
of new processing pipelines and empirical evidence of multi-
modal approaches in measuring brain-to-brain synchrony. EEG,
being the most used neural recording technique, paved a
way for more naturalistic studies while also being responsible
for the development of many time-resolved and frequency-
specific measures and algorithms. A large number of intra-
brain synchrony measures were adapted to perform in the
interbrain studies, along with a smaller number of directional
and network models. Apart from mimicking a truly ecological
set up, the largest challenge to date is the lack of exploitation
of tools and methods in obtaining causal evidence and the
distinction between mechanistic and epiphenomenal events.
Reviewing the studies on brain-to-brain synchrony has paved the
way to understanding the future scopes and optimal practices
in this area.
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