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ABSTRACT Many software and hardware applications generate an increasing volume of data and logs in
real-time. Visual analytics is essential to support system monitoring and analysis of such data. For example,
the world’s largest radio telescope, the Square Kilometer Array (SKA), is expected to generate an estimated
160 TB a second of raw data captured from different sources. Transporting large amounts of data from
distributed sources to a web browser for visualization is time-consuming due to data transport latencies.
In addition, visualizing real-time data in the browser is challenging and limited by the data rates which a
web browser can handle.We propose a novel low latency data streaming architecture, which uses amessaging
system for real-time data transport to the web browser. Based on this architecture, we propose techniques and
provide a tool for analyzing the performance of serialization protocols and the web-visualization rendering
pipeline. We empirically evaluate the performance of our architecture using three visualizations use cases
relevant to the SKA.Our system proved extremely useful in streaming high-volume data in real-timewith low
latency and greatly enhanced the web-visualization performance by enabling streaming an optimal number
of data points to different visualizations.

INDEX TERMS Visualization system, real-time systems, streaming and messaging system, web services,
performance evaluation, and applications.

I. INTRODUCTION
Real-time data visualization is widely utilized to monitor
the status and operation of hardware and software systems.
Areas which benefit from visualizing large amounts of data
in near real-time include, large scientific experiments [1],
[2], network monitoring [3], mass spectroscopy [4], [5], [6],
[7], fraud detection [8], [9], game analytics [10], [11], radio
communications, energy research, atmospheric science [2]
and others. As the scale of the monitored system increases
the amount of data to be visualized also increases. Large data
rates give rise to architectural and visualization bottlenecks
which are not present for smaller visualization systems [12].

The Square Kilometer Array (SKA) telescope, will be a
large hardware and software system in need of real-time
monitoring. The SKA will be the largest radio telescope
constructed to date and is expected to capture data at a rate of
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160 TB/s [13], and will consist of roughly 100,000 antennas
in Australia and South Africa [14]. Owing to its scale and
complexity the SKA requires a robust system to monitor its
status and operation. To allow operators to monitor the health,
and current status of the different parts of the telescope the
SKA requires a real-time quality assessment visualization
system. Visual monitoring systems are a feature of all current
large radio telescopes, such as the Atacama Large Millimeter
Array (ALMA) [15], and the MeerKAT [16] radio telescope.
More generally real-time monitoring visualizations are used
by large and data intensive scientific experiments [17], such
as CERN [1], [18], and LIGO [19]. The SKA real-time visual
monitoring system serves as an early concrete example of a
system which must be able to handle the data rates future
large-scale visual monitoring solutions, in a variety of fields,
will experience.

Despite the ubiquity of real-time data visualization, little
work has been done to address (a) the scalability of such
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systems and (b) how increased data rates impact the
performance when displaying real-time visualizations in a
web browser. The architectures used by existing real-time
data visualization systems are pull-based, where the browser
periodically polls (also called pulls) data from an intermedi-
ate source, e.g., a database and updates the display with new
data. While this approach is used widely, we observe two
key limitations with this approach. Firstly, it does not scale
favorably when compared to the SKA’s latency requirements
for high volume and high frequency data. Secondly, the
performance of web browsers limits how much data can be
processed, displayed, and updated within a given time frame.
The browser may crash or the visualization lag if the rate at
which is supplied to a web-based visualization exceeds what
the browser is capable of.

To address these limitations, we start by conducting an
empirical study to determine the latencies due to the different
stages of an architecture which relies on polling. Based on
this investigation, we propose an alternative, push-based, data
streaming architecture. Motivated by the success of message
brokers [20] for message pushing applications, we find
that they are able to support our latency requirements [21]
and stream the various types of data required for different
visualizations in parallel. We thus adopt a message broker,
designed for streaming data, to implement the push-based
architecture for real-time data visualization applications

Since the proposed push-based streaming architecture
was able to supply data for real-time visualizations at
rates greater than a browser may be able to cope with,
the introduction of the push-based architecture necessitated
measuring the browser performance when displaying various
visualizations. These performance measurements allow us to
optimize the streaming data rates for a browser, to minimize
rendering lag when displaying real-time visualizations. The
browser visualization performance measurement technique,
necessitated by the increased throughput of the push-based
architecture, is another novel contribution of this work. Three
real world use cases are implemented to evaluate their web
visualization performance as well as to evaluate the streaming
data architecture. The outcome of our work is as follows:

• We reviewed technologies used for radio astronomy data
visualization and real-time data visualization in general.
We discussed their limitations in high-frequency and
high-volume real-time data visualization contexts, such
as for the SKA.

• We proposed a scalable architecture for high-frequency
and high-volume data streaming and visualization in
the web browser. This architecture is transferable to
different data intensive domains.

• We identified key performance indicators that con-
tribute to latency in real-time web data visualization.
We implemented three visualizations as use cases and
analyzed their performances in terms of the identified
key performance indicators.

• We developed a tool for supporting rapid development
and evaluation of web visualizations and open-sourced

the tool. Finally, we discuss the limitations of our study
and propose recommendations for high-volume real-
time data visualization in the web browser.

In Sec. II of this paper we discuss the current standard
practices of real-time and dynamic data visualization system
development. In Sec. III, we discuss the limitations of a
traditional, pull-based, architecture in terms of the SKA’s
requirements. To address these limitations, we propose a
scalable data streaming architecture in Sec. IV. In Sec. V,
we present the methodologies for analyzing the performance
of key performance indicators (V-A), three visualization use
cases and their data models (V-B), and brief implementation
details (V-C). Followed by Sec. VI, where we present
serialization, deserialization, data streaming or transmission,
and rendering performance of the three use cases. In Sec. VII,
we discuss the general application of our work, limitations
of the study and recommendations for overcoming these
limitations.

II. RELATED WORK
A. RADIO ASTRONOMY AND SCIENCE DATA
VISUALIZATION
In radio astronomy projects, such as the SKA, data visu-
alization is commonly used to monitor instruments and
visualize the data captured by the telescope. In the case
of the Atacama Large Millimeter Array (ALMA) radio
telescope [15], [22] data is saved in a database. The database
facilitates on-demand retrieval as well as near real-time
polling of the data for visualizations. ALMA’s dashboards are
implemented using a combination of technologies, including
d3.js for the interactive data driven visualizations and SVG
for rendering. MeerKAT [23], another radio telescope, uses
a bespoke system for monitoring the antennas. MeerKAT’s
system uses a Redis Pub/Sub messaging system to transport
data to the user interfaces. MeerKAT also uses Graphana,
an off-the-shelf solution, for creating dashboards. A large
science project outside radio astronomy, CERN [1], [24]
uses the messaging system, e.g., Kafka, for transporting
data from different sources to central databases, e.g., search
engine (Elasticsearch), time series database (InfluxDB),
Apache Hadoop and so on. They developed user interfaces
and visualizations using off-the-shelf tools, e.g., Grapha,
InfluxDB, Prometheus, Kibana, etc., for monitoring different
systems [18]. The LIGO Scientific Collaboration developed
web-based real-time science data visualization [19] but did
not provide sufficient technical details of their visualization
software and its architecture.

All the aforementioned works are motivated by the need
for large-scale data visualization for real-time monitoring.
However, these works lack technical contributions and offer
limited insight into more general streaming data visualization
system design and development. Our work addresses this gap
with a more technical contribution to high-volume and low-
latency streaming data visualization system architecture and
development.
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B. REAL-TIME DATA VISUALIZATION
Real-time and dynamic data visualization systems are of
course also developed for a broader range of applications,
including uses both within the wider sciences and industry.
Examples include: network monitoring [3], analysis of
vibrations during drilling operations [25], monitoring of
sensors, manufacturing processes, control and hardware [26],
urban air quality monitoring [27], etc. All these systems use
databases to store the data received from the source and use
the database polling technique for near real-time access and
data visualization.

Visualization of real-time three-dimensional (3D) data,
e.g., road environment data from light detection and ranging
(LiDAR) is presented in [28], and 3D GIS data is presented
in [29]. We anticipate that the amount of data to be visualized
in this project is large. However, there are limited technical
details on how the data is streamed or transferred to the user
interface in real-time.

Protopsaltis et al. [30] presented a survey of visualization
methods, tools, and techniques for the IoT. They discuss
different visualization tools, techniques, and challenges in
developing visualizations for various IoT domains. However,
there are no technical details on streaming data visualization
systems.

Mass spectroscopy is another field where large amounts
of data is commonly visualized using the browser. Examples
include the seaMass [7] software. This work involves
streaming and then visualizing large amounts of scientific
data, by sending a data set iteratively, based on the cognitive
importance of the different features, thus quickly presenting
the most important information to a user. However, this
application differs from a monitoring application in that
a selected data set is streamed to the browser in steps,
as opposed to using streaming to visualize data which
changes in real-time. In this work polling is used to stream
the data to the client.

In the field of game analytics, visualization is used to
investigate the player behavior in online games [10], [11],
for example in the CMX educational MMORPG [31]. This
can involve visualizing real-time player data, as is done by
the yoGURT framework [32], a framework which relies on
polling to stream data.

The popular off-the-shelf visualization tools, e.g.,
Graphana, Tableau, and PowerBI do not implement real-time
data streaming functionality. Recent work on a large-scale
and dynamic data visualization system is presented
in [33]. However, this work does not require real-time
functionality.

Messaging systems (e.g., Kafka, RabitMQ, Redis Pub/Sub,
etc.) have been widely used for real-time data streaming
and transport in a variety of application domains, e.g., IoT,
messaging apps, radio astronomy data, and science data.
Especially Kafka delivers high volume data streaming with
low latency [21]. However, the use of messaging systems for
real-time streaming data visualization systems is rare in the
literature.

C. WEB VISUALIZATION PERFORMANCE EVALUATION
Hoetzlein [34] analyzed graphics performance in rich internet
applications using transparent 2D sprites. Their results
show that the application performs better in the Google
Chrome browser than in Internet Explorer and Firefox.
They also implemented the application using WebGL-based
GPU accelerated visualization, which outperformed the Flash
and HTML5 Canvas [35] implementations. Kee et al. [36]
suggested that interactive visualizations that require high per-
formance should be implemented inWebGL and Canvas. The
performance gain of visualizations implemented in WebGL
is marginally higher than HTML5 Canvas implementation,
whereas the development cost of a WebGL application is
significantly greater.

Babovic et al. [37] performed web performance analysis
for IoT applications and reported improved performance of
HTML5 Canvas. Schwab et al. [38] proposed SSVG to trans-
late SVG code to Canvas automatically. The development
cost of SVG is the lowest compared to other methods, and it is
popular and widely used for 2D data visualization. However,
in SVG, rendering and animation are slow when the scale of
data to be visualized is large. For that reason, HTML5 Canvas
is preferred for large-scale data visualization and animation.
Therefore, we use Canvas to implement our visualizations.

Lee et al. [39] surveyed and tested web-based data
visualization tools and libraries, e.g., Google Charts, Flex,
OFC, d3.js and, JfreeChart. They used 100,000 static data
points for performance analysis.

None of these works address high volume, real-time and
dynamic data visualization and its performance. In our work,
we analyze the web visualization performance of large-scale
and real-time streaming data.

III. REAL-TIME DATA AT SKA
This section will provide a broad overview of the SKA, which
motivated this work and informed the real world visualization
use cases. The SKAwill consist of a large number of antennas
which capture radio astronomical data, such captured data
is called visibilities or visibility data. The first step of the
data processing is that on-site ‘‘correlators’’ correlate the
captured data. The correlated data is then sent to a distributed
Science Data Processor (SDP) via a high-speed network.
As shown in Fig. 1, the SDPs temporarily save the data in
a very large Shared Memory. Different Applications access
the data in real-time for, e.g., reconstruction of the sky
image, astronomical discoveries, studying the astronomical
signals, detecting anomalies, and so on. Metric Generators
are distributed streaming data processing [40] applications
that generate different metrics in real-time from the streamed
visibility data, e.g., power spectrum, the phase information
of baselines, polarization, etc. The metric generators also
generate metrics from data received from other applications,
e.g., real-time radio frequency interference detectors, differ-
ent sensors on the antennas, other instruments, and so on.

The data processing pipeline of the SKA is designed to
implement expensive operations, e.g., extraction, cleaning,
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FIGURE 1. The high-level data flow at the SKA. The radio astronomical
visibility data captured by the antennas are saved in the very large and
distributed Shared Memory of Science Data Processor. Distributed
instances of Applications, e.g., Metric Generators compute different
metrics from the visibility data. Finally, the metrics are visualized in a web
browser in real-time for the users, e.g., telescope operators and radio
astronomers.

transformation, aggregation, etc., using low-level functions,
e.g., metric generators, deployed in high-performance com-
puting infrastructure. The metric generators also do addi-
tional pre-processing of data required to reduce consumers’
or web browsers’ need for further processing. While we
will discuss the data structure of three metrics used for
visualization use cases in this paper, the details about how the
metric generators derive these metrics from the raw visibility
data and the performance of the metric generators are not
within the scope of this work. The essential functional role
of our system is to transfer data generated by the metric
generators to the browser and visualize different metrics
using different plots and dashboards as in Fig. 1. This is to
convey the current state of the telescope to operators and radio
astronomers.

A. REAL-TIME DATA VISUALIZATION TECHNOLOGY
OVERVIEW & CHALLENGES

FIGURE 2. Off-the-shelf solutions use a database to store real-time data
(e.g., timeseries), and visualization functions periodically polls the
database and updates the plots and dashboards with new data in near
real-time.

There are numerous off-the-shelf data visualization sys-
tems available for visualizing data in web browsers. In our
first prototype, we adopted the polling data principle common
in the literature. We used InfluxDB, a timeseries database
to store the metrics generated by our metric generators and
Grafana dashboard to continuously poll the data from the
database and visualize. The high-level architecture of this
prototype can be found in Fig. 2. The metric generators write
new metrics to the timeseries database tables every second,
hence the Grafana connector is configured to poll (illustrated
in Fig. 3(a)) and retrieve the metrics from the database tables
at every second. We used Grafana’s built-in visualizations

FIGURE 3. In (a) short-polling, a browser requests the server over a
predefined interval for any new data. In (b) long-polling, the server
receives a request but does not respond until new data is available from
another request. In (c) Web push, e.g., WebSockets, a browser opens a
two-way connection with the server, and the server keeps track of each
client and pushes messages to the clients whenever available.

TABLE 1. Our test results show that using asynchronous driver and
in-memory databases, e.g., Redis, we can reduce database I/O latency
from millisecond (ms) to microsecond (µs) range.

(e.g., line chart, bar chart, and waterfall plot) to visualize the
polled metrics.

While testing and evaluating the prototype we observed
two major problems (a) a significant latency in transporting
the data to web browser, and (b) the browser rendering
performance.

For example, for a data of dimension [50000, 10,
4] × 67 ([channels, baselines, polarizations] × timesteps)
(∼1022.34 MB) it takes more than ∼27 minutes to transport
and render in Graphana chart, i.e., average ∼24 seconds for
each data points. However, for a small data set the latency was
low, e.g., data of dimension [1], [4], [10] × 133 (∼41.56 KB)
takes only ∼24 seconds, i.e., on average ∼180 ms for
each data point. The source code of our prototype can be
found in [41] and additional test results can be found in
the supplementary material provided with this paper. Please
note that this test measures total latency: writing data to the
database, polling the data from the database, and rendering
the data into plots, e.g., line charts. When using an off-
the-shelf tool, e.g., Grafana, one cannot easily measure
the latency due to the individual steps of the visualization
pipeline (e.g., transmission, deserialization, and rendering);
doing so would require extensive customization of the tool.

In order to identify which steps of the process contribute
the most to the total latency we performed end-to-end
profiling of the prototype.

(1) Network latency – The prototype is designed as a
service-oriented architecture [42] where the metric gener-
ators, databases, and web applications are developed and
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composed [43], [44] as separate services running in different
containers. It requires some time to transfer the data from one
service to another, e.g., the metric generators to the database
and the database to the web browser. Although network
latency cannot be completely eliminated, it is known to
depend on: payload serialization technique, size, proximity,
the network connection speed between the services, etc.
In Sec. VI, we will investigate serialization techniques which
can potentially improve payload size, i.e., reducing network
latency, without introducing significant deserialization cost at
the browser.

(2) Database read and write operation latency –
We noticed a significant latency in database operations.
The database takes a significant amount of time to write
the incoming metrics to an index and perform additional
housekeeping operations, e.g., transaction, consistency or
distributed transaction, linking records using primary and for-
eign keys, persistence, disk and in-memory data operations.
We found that, on average, a synchronous InfluxDB read
and/or write operation takes 100–150 milliseconds. Different
databases perform different housekeeping operations based
on their characteristics. For example, a non-transactional
database can save a significant amount of transactional
(e.g., atomicity, consistency, isolation, and durability (ACID)
properties of database) processing time and an in-memory
database can achieve very low latency and high throughput
as data stays in primary memory. The selection of a database
depends on the requirements and use case. To achieve the best
performance, it is also essential to find the optimal ingestion
workload parameters, e.g., the number of concurrent clients,
batch size, the structure of ingestion data, the interval between
two neighboring data points, and the data model to support
queries and so on.

We refactored the prototype to find the latencies caused by
database operations and reduce these further. We noticed that
an asynchronous InfluxDB operation takes 3–5 milliseconds,
which is a ∼30 times performance improvement compared
to a synchronous operation. We further reduced the read
and write operation latency to less than a microsecond
by replacing the InfluxDB with an in-memory database,
RedisTimeseries. The results are presented in Table 1.

(3) Polling latency – Polling is a technique in which
the browser regularly asks the database for new data, as in
Fig. 3(a). The web visualization functions make repeated
requests to the database server for newmetrics at a predefined
interval (in our case, it is ∼250 milliseconds), as in Fig. 2.
These repeated requests waste resources. For example, each
new incoming connection must be established, the HTTP
headers must be passed, a query for new data must be
performed, and a response (usually with no new data to offer)
must be generated and delivered. Finally, each connection
must be closed, and any resources cleaned up. As discussed
earlier, where we can improve the database I/O operation
latency by the choice of database and varying the settings,
there is no quick solution or workaround to improve the
polling latency.

(4) Web visualization latency – In the web browser,
ideally, each received data point should be processed and
rendered into a visualization before the next data point
arrives. If the metric generator generates and sends a metric to
the browser at every Tfreq second interval, the payloadmust be
visualized in less than Tfreq seconds. For the SKA, the value
of Tfreq is 1 second.

(i) Data processing latency – Web browsers receive data
as serialized payloads. The serialized payloads need to be
deserialized, transformed and mapped to a data structure
compatible with visualization functions which renders the
data into plots. We can minimize the transformation and map-
ping cost by prepossessing the data at the metric generator.
However, the deserialization cost can only be reduced using
an appropriate serialization and deserialization protocol. The
traditional and commonly used protocol, JSON messages,
are exchanged in text format. In contrast, the more advanced
protocol ProtoBuf provides a set of rules, APIs, and data types
to serialize and exchange messages more efficiently and cost-
effectively. We investigate performance, e.g., serialization
and deserialization cost of both the protocols in Sec. VI.

(ii) Rendering time – Rendering time depends on multiple
factors, such as the amount of data to be processed,
the processing functions, the visualization designs (plots)
and their complexity, as well as the low-level rendering
technologies used (e.g., SVG, Canvas). As discussed in the
literature in Sec. II, Canvas graphics generally provides
better performance than SVG. We therefore implemented
a visualization use case, the spectrograms, using Canvas.
However, different visualizations have different complexity
and each needs to be evaluated separately. In Sec. VI,
we investigate rendering performance for three different
visualization use cases as examples.

IV. A SCALABLE ARCHITECTURE FOR STREAMING DATA
VISUALIZATION
To address the inherent polling latency of the pull-based
architecture, we adopted amessaging system and proposed an
improved push-based architecture, seen in Fig. 4. The main
objective of our proposed architecture is to stream data to
a web browser using push-based communication protocols
eliminating data transmission latency incurred due to periodic
polling. There are four main components of the proposed
architecture:

(1) Messaging System – The main component of our
data streaming system is a messaging system. The messaging
system sends messages between applications, processes, and
servers, as in Fig. 5(a). The broker or message broker, e.g.,
Apache Kafka [47] is a publish-subscribe based messaging
system. The broker handles all requests (e.g., produce,
consume) andmetadata from clients and keeps data replicated
within the cluster, as in Fig. 5(b). There can be one or more
brokers in a cluster.

Brokers use topics, which are categories or feed names
to which records are stored and published. Our metric
generators publish metrics on different topics. Applications,
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FIGURE 4. A generic architecture for high-volume data streaming and visualization. In general, the source and the data processor (here, Metric
Generators) components will vary from application to application. Following this architecture, we developed a tool which is available in GitHub [45].

FIGURE 5. A detailed description of the Messaging System illustrated in
Fig. 4. (a) The broker is implemented using the Apache Kafka messaging
system which sends messages between applications. (b) The messaging
system may consist of a cluster of brokers. (c) Data are organized into
Kafka topics. This figure is adapted from [46] and [47].

e.g., web visualizations subscribe to the messaging sys-
tem and consume the metrics published into the relevant
topics. The metrics are pushed to the browser via Web-
Socket. Any application can connect to the system and
process or reprocess metrics from a topic, as shown in
Fig. 5(a) and (c).

Topics are divided into partitions, which contain records
or metrics in an unchangeable sequence. Each record in
a partition is assigned and identified by its unique offset.
A topic can also have multiple partition logs. This allows
multiple consumers (for instance, multiple visualizations
opened in a browser window, or different user’s machines)
to read from a topic in parallel, as in Fig. 5(c). In addition,
a database (e.g., Zookeeper) keeps the state of the cluster,
e.g., brokers, topics, users, etc. The database also manages
the brokers in the cluster.

Kafka achieves low latency message transport through
sequential I/O and Zero Copy principles. A detailed

description of Apache Kafka message broker can be found
in [47] and a comprehensive benchmark of it in [21].

(2) Producer – Our metric generators publish different
metrics to the message broker using the producer APIs. The
producers are processes that push records into Kafka topics
within the broker. The producers publish or write a stream
of events to one or more Kafka topics. The metrics or data
are stored for a specified retention period, which can be
configured using the producer APIs.

(3) Consumer – While producer applications write data
to topics the consumer applications read from topics. The
Consumer subscribes to one or more topics and reads
records on these topics. A consumer reads messages from
partitions, in an ordered fashion. For example, if messages
m1,m2,m3,m4 are inserted into a topic in this order, the
consumer will read them in the same order. Since every
message has an offset, every time a consumer reads amessage
it stores the offset value in Kafka, denoting that it is the last
message that the consumer read. Additionally, if at any point
in time a consumer needs to go back in time and read older
messages, it can do so by resetting the offset position.

Web applications establish connections with consumers
using WebSocket. The data read by the consumers are
immediately transported to the web browser.

(4) Common APIs – These are a set of REST APIs imple-
mented to perform various operations, e.g., configure differ-
ent parameters of the message broker, sending commands to
themetric generators (e.g., setting different averaging factors,
selecting serialization protocols, configuring the streaming
data processing engine, etc). We also implemented a set
of APIs to pull data or metrics from the metric generators
on-demand. The Kafka Confluent Control Center provides
off-the-shelf APIs and a user interface for managing Kafka
clusters.

V. EMPIRICAL STUDY DESIGN
A. METHODOLOGY
Following the development of the architecture described in
the previous section, we used two high-level approaches to
evaluate the key performance indicators of our proposed
streaming data visualization system. In the first evaluation,
we generate serialized payloads using different protocols
on the server side and deserialize the payloads in the
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FIGURE 6. An end-to-end sequence diagram of dataflow with key performance indicators, e.g., payload size (Sser), transmission time (Ttrans),
deserialization time (Tdser), and rendering time (Trend) for measuring performance and latencies.

browser. This evaluation aims tomeasure the serialization and
deserialization cost of the JSON and ProtoBuf protocols. That
is, which serialization protocol generates smaller payloads
and which is faster to deserialize.

For the second evaluation, we visualize the deserialized
payloads in the web browser using appropriate plots imple-
mented using JavaScript functions. This test aims to measure
visualization latency, e.g., to determine how much time it
takes to process and render payloads of different sizes into
relevant plots.

We considered three visualizations as use cases, these were
proposed by the domain scientists working on the SKA and
radio astronomers. We deployed the system components (in
Fig. 4) in separate containers on a host machine, emulating a
distributed system. We used around 16 TB of visibility data
captured by the MeerKat telescope to generate the metrics
required by the three visualization use cases. The data is
stored in a large network storage. Every second (Tfreq),
the metric generators compute metrics from the part of the
visibility data captured on a particular timestamp and stream
them through the message broker to the web browser.

Our application has several components and we measure
latencies of key performance indicators, as shown in sequence
diagram Fig. 6:

(1) Serialized payload size (Sser) – Metric generators
serialize data to create payloads. There are two key perfor-
mance indicators, e.g., serialization time and payload size
involved at this stage. Analysis of serialization time is not
within the scope of this paper, as serialization will happen
in a high-performance computing environment as a part of
the data pre-processing. However, we want the size of the
serialized payload to be small, so it can be reliably handled
by the message broker and quickly transferred through the
network. The payload size of serialized data depends on the
data format and serialization protocol used.

(2) Transmission time (Ttrans) – This measures the time
spent sending metrics from metric generators to the browser.
The components are deployed as distributed services, and the
value of this parameter will depend on the proximity of the
services, the network connection between the services, etc.
In our test application, we deploy the services in multiple
containers connected via the bridge network of a host
machine.

(3) Deserialization time (Tdser) – The main latencies
in the web browser are due to deserialization of payloads,
data processing, and rendering cost. When the payloads are

FIGURE 7. The spectrum plot data model in Protobuf (left) and Python
(right).

received in the web browser, they are deserialized using
Javascript functions. The deserialized payload is a JavaScript
object. The deserialization time can contribute significantly
to the latency.

(4) Rendering time (Trend) – The deserialized JavaScript
objects are visualized using corresponding visualization
functions. Each visualization function executes a drawing
function, which includes instructions on how the data will be
plotted and rendered to the browser display. Internally, the
browser executes Critical Rendering Path (CRP) [48] which
involves JavaScript execution, rendering, and rasterization
to create and display the visualization. With this metric we
report the CRP time.

The metric generators generate and send metrics to the
browser every second (Tfreq), and each payload needs to
be processed and rendered before the next payload arrives.
We need to ensure that total latency in the browser, Trend +

Tdser ≤ Tfreq. As if this combined latency is greater than
Tfreq, one second in our case, the payload will accumulate, the
browser heap size will increase, and the browser will become
unresponsive.

B. USE CASES
To study the streaming architecture performance and the web
visualization performance on the streamed data, we imple-
ment a simple use case, e.g., line plot, and two data-intensive
use cases, e.g., spectrograms. These use cases were selected
through discussions with SKA’s domain scientists and radio
astronomers.

1) POWER SPECTRUM PLOT
Multi-antenna radio telescopes rely on radio-interferometry.
The mathematical details of interferometry are beyond
the scope of this paper; however, the general idea is to
combine the interference patterns generated by pairs of
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FIGURE 8. Example power spectrum plots computed from data from the
Meerkat telescope. In this example, (a) plot all 4096 channels and their
power values, and (b) averaged the number of channels to 64 ( 4096

64 ),
where the confidence intervals are shown with a translucent color band.
Channels are averaged together to reduce the number of data points.

antennas (called baselines), based on their physical location,
to obtain an image of the observation field after a series
of mathematical operations. More specifically, the complex
voltage signal received by each antenna in each frequency
channel is provided to a hardware component named a
correlator. The correlator multiplies and averages over the
voltages measured by all pairs of antennas. The value corre-
lators produce are complex numbers called visibilities, these
include cross-correlations (between two distinct antennas)
as well as autocorrelations (between an antenna and itself).
These values then go through various layers of processing
to produce an image of the sky as it appears in the radio
part of the electromagnetic spectrum. Autocorrelation values
are proportional to the amount of power received by each
antenna.

Fig. 7 shows the Spectrum data structure or data model
used to encode the power spectrum data. The main
attributes are the channel which is an array representing
the channel values in MHz, and the power array containing
the corresponding power values. Each channel and its
corresponding power value are mapped to the x-axis and
y-axis of a line plot. x_min and x_max are minimum and
maximum channel values, which determine the range of
the x-axis. Similarly, y_min and y_max are minimum and
maximum power values, which determine the range of the
y-axis.

Fig. 8 shows the distribution of the average autocorrelation
values of all antennas across the frequency channels, i.e.
the power spectral density (power spectrum) plot. Note
that only the amplitude of the visibilities are used in this
plot. Such a plot not only contains useful astronomical
information but also helps with monitoring the functioning of
the antennas. The SKA project, as the largest radio-telescope
ever built, will operate on a maximum of 65,000 frequency
channels.

The ci_l and ci_h are optional fields corresponding to
confidence intervals, these fields are computed when we

FIGURE 9. Spectrogram data model in Protobuf (left) and Python (right).

FIGURE 10. An example waterfall plot of a spectrogram representing a
baseline and a polarization. The horizontal axis plots each frequency
channel, and the color shows each channel’s phase value (0◦ – 360◦). The
vertical axis is the time axis. The phase values are mapped to an HSL
colormap.

average multiple channels together, as in Fig. 8(b). The SKA
can capture around 65,000 frequency channels. Averaging the
number of channels together reduces the overall size of the
payload to be transferred.

2) WATERFALL PLOT OF SPECTROGRAM
As discussed before, the correlator is constantly producing
cross and autocorrelation values for all the baselines.
Therefore, it is of interest to the operator to see these values
for different frequency channels over time for each baseline
as a moving signal.

Fig. 9 shows the Spectrogram data model. The key
attributes are the phase which is an array representing the
phase values between 0◦ – 360◦, and the corresponding
baseline and polarisation. Each phase value is mapped to the
x-axis.

Fig. 10 shows an example snapshot of such a spectro-
gram [49] visualizing the phase values of the visibilities as
a function of time and frequency (a similar plot can also be
generated for the amplitudes). This plot is for a given baseline
and polarization (the received signal by each antenna and the
visibilities contain four different polarizations).

A spectrogram has x and y dimensions of frequency
channels or phase and time. Data flows down, in a waterfall
plot manner, as in Fig. 10. This effect is achieved by shifting
the block of previously stacked spectra down the screen by
one pixel or one line, then a new line of data is added at
the top, with the oldest line of spectral data disappearing
off the bottom of the display. Fig. 10 shows the 4096 phase
data points plotted as a function of time. The current time
and newest data are always at the top of the plot. The data
rate is set at 1 line/sec, and the waterfall plot is set to hold
600 lines (height of the display). Therefore, the oldest line,
written 600 sec ago, is at the bottom.
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FIGURE 11. Spectrograms data model in Protobuf (left) and Python
(right).

Building the waterfall display is a two-step process. The
plot is built off-screen by directly writing each pixel color
into the memory buffer of an off-screen canvas. Each data
point is represented as a rectangle of the height of one pixel,
and the width equals to width of the display divided by the
total number of data points. In Fig. 10, the width of each
data point is ∼ 0.5 pixel ( 20004096 ). Successive lines are written
as adjacent rows of pixels. This method fixes the waterfall
dimension to the length of the data vectors to be plotted
and the number of data lines in the display. The second
step is to use this off-screen canvas as a source for drawing
an image of the Waterfall in the on-screen canvas using
the canvas.putImageData method, thus allowing on-the-fly
scaling of the data for presentation in any required size.

The phase values are between 0◦ – 360◦, and the color of
each phase is computed by mapping to the hue, saturation,
lightness (HSL) color map. Spectrograms are implemented
in Canvas.

3) SPECTROGRAMS OF BASELINES AND POLARIZATIONS
Both from the astronomical and observation management
perspectives (e.g. monitoring the operation of the telescope),
it is important to display the spectrogram plots for a collection
of baselines. However, it should be noted that for an array
of antennas such as the SKA, the number of baselines (all
possible pairs of antennas) will be gigantic (e.g., 65,000
channels and 130,000 baselines). In fact, even for smaller
radio telescopes the number of baselines (which grows
quadratically with the number of antennas) might be too large
to be meaningfully visualized. Therefore, the display should
allow the user to select subgroups of baselines depending on
the requirements of the operator. For instance, the operator
might be only interested in autocorrelations to monitor the
status of individual antennas, or from the imaging perspective
a certain group of baselines (e.g. longer baselines or shorter
ones) might be of interest.

Fig. 11 shows the Spectrograms data model, which is a
list containing multiple Spectrogram data. Fig. 12 shows an
example snapshot of a series of spectrograms for different
baselines and polarizations in a single display.

C. IMPLEMENTATION AND EXPERIMENTAL SETUP
We used the JavaScript library React [50] to implement a
web user interface and HTML SVG and Canvas graphics to
implement the visualizations. As described earlier, we used
push-based protocol, WebSocket, as an underlying protocol
for communication between the web browser and consumer.
The server side components, e.g., consumer, producer and
metric generators are implemented in Python. The production

FIGURE 12. A table of 77 small spectrograms, each spectrogram
representing a baseline and a polarization. Fig. 10 shows the
high-resolution view of one of the spectrograms.

FIGURE 13. Serialization, transmission, and deserialization performance
of Protobuf and JSON encoded Spectrum data. (a) Presents the serialized
payload size (in megabyte), (b) presents the transmission time (in
second) of the payloads, and (c) presents the deserialization time in the
browser (in millisecond). The translucent color band shows confidence
intervals in 95%.

version of the metric generators, data APIs, and the user
interface are under development and are open sourced via
GitLab [51], [52], [53]. The tool developed for rapidly proto-
typing and testing different data models and visualizations is
also open source and available via GitHub [45].

We considered two widely used serialization protocols,
JSON and ProtoBuf. In order to compare their efficiency,
we generate different serialized payloads using both JSON
and ProtoBuf protocols and we record the payload sizes.
We then deserialize the payloads in web browser using
JavaScript functions and we record the deserialization times.
In order to compare the rendering performance of a visualiza-
tion function, we feed data to the visualization function every
second. For each received data point the drawing function
is executed and the changes are animated. We used the
Chrome browser runtime performance analyzer to collect

VOLUME 11, 2023 15631



S. Khan et al.: Web Performance Evaluation of High Volume Streaming Data Visualization

FIGURE 14. Rendering performance (Trend) of the spectrum plots shown in Fig. 8. When there are 180,000 channels it takes ∼950 ms to render a
Spectrum data into a line chart and for 200,000 channels it takes a ∼1420 ms (a). For (b) which includes drawing of an additional band along with the
line chart to show the confidence intervals, the rendering pipeline takes an additional time- it takes ∼750 ms to render power values and confidence
interval of 80,000 channels and ∼1006 ms to render 100,000 channels. The rendering latency increases with increase in number of channels, therefore
the payloads queue in the browser waiting to be visualized which increases browser heap memory.

visualization critical rendering pipeline [48] performance
data.

The performance evaluation was conducted on Ubuntu
22.04 LTS powered by an Intel i9-9900K (8-Core/16-Thread,
16MB Cache, 4.7GHz across all cores), 32GB DDR4 XMP
(2933MHz) memory, M.2 PCIe SSD storage, and Gigabit
Ethernet network. A Chrome browser and our front-end
and back-end services are deployed on this machine. For
a production deployment, the back-end services should be
deployed on a cluster of virtual machines with auto scaling
capability.

VI. RESULTS
In this section, we present the key performance indicators:
(a) serialized payload size, (b) transmission latency, (c) dese-
rialization time, and (d) web rendering time (as in Sec. V-A)
for the three use cases (as in Sec. V-B).

A. POWER SPECTRUM PLOT
Fig. 13(a) shows the difference in serialization cost between
ProtoBuf or JSON encoding of the Spectrum data model.
It can be seen that ProtoBuf generated payloads are
significantly smaller than their JSON counterparts. As the
number of channels increases, ProtoBuf’s space efficiency
improves further compared to JSON. For instance, when
serializing 600,000 channels, the size of the JSON payload is
approximately twice that of the equivalent ProtoBuf payload.
This indicates that ProtoBuf is more efficient than JSON at
encoding large amounts of data.

Fig. 13(b) illustrates the time required for the push-based
architecture to transmit payloads from the metric generators
to the browser. Two principal observations can be made
from this data: (i) As expected, the transport time for
smaller payloads is smaller than that for larger payloads,
and the latency due to transmitting the data increases with
the size of the payload. (ii) Additionally, JSON encoded
payloads take longer to transport than ProtoBuf encoded
payloads. This suggests that ProtoBuf is more efficient at
transmitting data compared to JSON, particularly for larger
payloads.

FIGURE 15. Serialization, transmission, and deserialization performance
of Protobuf and JSON encoded Spectrogram data. (a) Presents the
serialized payload size (in kilobytes), (b) presents transmission time (in
second) of the payloads, and (c) presents the deserialization time in the
browser (in millisecond). The translucent color band shows confidence
intervals in 95%.

Fig. 13(c) demonstrates the deserialization time for Pro-
toBuf and JSON encoded payloads in the browser. It can be
seen that the deserialization time for JSON payloads is higher
than that for ProtoBuf payloads. This may be because the
JSON payloads are larger than the corresponding ProtoBuf
payloads, which may lead to longer deserialization times.
This suggests that ProtoBuf is more efficient at deserializing
data in the browser compared to JSON, particularly for larger
payloads.

Fig. 14 presents the web visualization performance of
a power spectrum plot with a size of 1200 × 600 pixels.
The experiment begins by starting with 20,000 channels
and increasing the number of channels by 20,000 every
second. The results show that it is possible to render 180,000
data points in less than 1 second for a spectrum plot
without confidence interval bands, and 80,000 data points
in 750 milliseconds for a spectrum plot with confidence
interval bands. This result demonstrates that the visualization
is highly scalable and able to handle the approximately
65,000 frequency channels captured by SKA antennas. It is
worth noting that the line chart in Fig. 8 is implemented
using SVG, but a Canvas implementation of the line
chart is expected to be able to handle even more data
points.
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FIGURE 16. Rendering performance (Trend) of a waterfall plot of spectrogram rendering 300000–480000 channels. When there are 440,000 channels it
takes ∼990 ms to render a Spectrogram data into a waterfall plot and for 460,000 channels it takes a ∼1050 ms.

B. WATERFALL PLOT OF SPECTROGRAM
Fig. 15(a) illustrates the serialization cost when using
ProtoBuf or JSON encoded payloads of the Spectrogram data
model. The results show that the size of ProtoBuf payloads is
marginally smaller than that of JSON payloads, only differing
by 1∼2 MB at 600,000 channels, as opposed to around 8 MB
in the Spectrum data model. This suggests that ProtoBuf and
JSON are relatively similar in terms of their serialization
efficiency for the Spectrogram data model. It is worth noting
that the size difference between the two encoding methods
may vary depending on the specific characteristics of the data
being serialized.

Fig. 15(b) demonstrates that the streaming cost for
JSON encoded payloads is significantly higher than for
ProtoBuf encoded payloads. The data shows that it takes
nearly 2 seconds to transmit a JSON payload consisting of
600,000 channels, while it takes only 250 milliseconds to
transmit a ProtoBuf payload containing the same data. This
indicates that ProtoBuf is much more efficient at streaming
Spectrogram data than JSON, particularly for large payloads.
This could be due to ProtoBuf’s use of a binary encoding
format, which is generally more efficient for transmission
over a network compared to the text-based encoding of
JSON.

Fig. 15(c) shows that the deserialization cost of the
ProtoBuf and JSON encodings are almost the same. This
suggests that there is little difference in the efficiency of
the two encoding methods when it comes to deserialization.
However, when compared to the results for the spectrum
data model in Fig. 13(c), it is worth noting that the
specific characteristics of the data being deserialized could
affect the relative performance of ProtoBuf and JSON.
Additionally, the performance of the deserialization process
may be influenced by factors such as the hardware and
software configurations of the system on which it is being
performed.

Fig. 16 presents the web visualization performance of a
spectrogramwith a size of 1200× 600 pixels. The experiment
begins with 300,000 channels and increases the number of
channels by 20,000 every second. The results show that the
spectrogram plot is highly scalable, as it is able to render
440,000 data points with less than 1 second of latency. This
demonstrates that the spectrogram visualization is able to
handle large amounts of data efficiently. The spectrogram
in Fig. 10 is implemented using Canvas graphics which
is known for its high performance and is often used for
rendering complex graphics like spectrogram.

FIGURE 17. Serialization, transmission, and deserialization performance
of Protobuf and JSON encoded Spectrograms data. (a) Presents the
serialized payload size (in kilobytes), (b) presents the transmission time
(in seconds) of the payloads, and (c) presents the deserialization time in
the browser (in milliseconds). In these heatmaps, the size and time
values are encoded to colormaps, the x-axis represents the number of
spectrograms, and the y-axis represents the number of channels.

C. SPECTROGRAMS OF BASELINES AND POLARIZATIONS
Fig. 17(a) presents the serialization cost of ProtoBuf and
JSON encoding of the Spectrograms data model. The results
show that, as expected, the size of the ProtoBuf serialized
data is marginally smaller than the size of the JSON serialized
data. This indicates that ProtoBuf is slightly more efficient at
serializing the Spectrograms data model compared to JSON.
However, the difference in size between the two encoding
methods may be relatively small, depending on the specific
characteristics of the data being serialized.

Fig. 17(b) illustrates that the streaming cost for JSON
encoded payloads is significantly higher than for ProtoBuf
encoded payloads. The data shows that it takes nearly
21 seconds to transmit a JSON payload consisting of
100 spectrograms, each containing 70,000 channels, while
it takes only 1.6 seconds to transmit a ProtoBuf payload
containing the same data. This demonstrates that ProtoBuf
is much more efficient at streaming data than JSON, particu-
larly for large payloads. This could be due to ProtoBuf’s use
of a binary encoding format, which is generally more efficient
for transmission over a network compared to the text-based
encoding of JSON.

Fig. 17(c) shows that the deserialization performance of
the ProtoBuf and JSON encodings are similar. As expected,
similar performance was also observed for the Spectrogram
data model.

Fig. 18 shows the web visualization performance for
multiple waterfall plots containing spectrograms visualized
in a web browser. Each spectrogram has dimension 200 ×

120 pixels, and a total of 77 spectrograms are displayed
in a tabular view on a single display. The data used to
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FIGURE 18. Rendering performance (Trend) of a table of 77 spectrograms each rendering 1000 – 10000 channels. When there are 6,000 channels for each
spectrogram to draw it takes ∼960 ms to render and for 7,000 channels it takes a ∼1140 ms.

generate these spectrograms consists of 1,000 channels, with
the number of channels increasing by 1,000 every second.
The rendering of 6,000 points into each spectrogram takes
approximately 960 ms. The SKA antennas are expected to
generate a total of 65,000 channels, 130,000 baselines, and
4 polarizations, which may require data averaging or subset
selection in order to be visualized effectively in the web
browser using a table of spectrograms. The spectrograms
in Fig. 12 are implemented using the Canvas graphics
system. Yup

VII. DISCUSSION
This work is motivated by the need for visual analytic systems
capable of visualizing high volume streaming data in a
browser in near real-time. A concrete system in need of this
capability is the world’s largest radio astronomy project, the
SKA. As a large volume of data is continuously generated
from different antennas and sensors, providing real-time
monitoring support for the operators and radio astronomers at
the SKA is essential. As discussed in Sec. III, we considered
a number of solutions, such as using an off-the-shelf system
of the sort used by current radio telescopes. We profiled
such a system to identify the degree to which the different
components contribute to the overall latency. Based on our
profiling, we replaced the transactional database responsible
for the latency with a low latency in-memory database.
Although the in-memory database improved the I/O latency
significantly, retrieval of data in real-time from a database
requires continuous polling which contributes significantly to
latency.

The need to transport high-volume data in real-time to
a web browser led us to propose a push-based streaming
data solution. The proposed streaming data system can
transport a large volume of data every second to a web
browser. We encounter limitations in processing, visualizing
and animating the changes for the data rates our push-based
streaming solution can supply. That led us to investigate
high-performing serialization and deserialization protocols,
rendering techniques, and a methodology for measuring
rendering performance to find the optimal data rate at which
our visualizations can render the supplied data.

A. WHAT DID WE ACHIEVE?
There are a number of benefits of our solution. We can
(i) stream data of various types and sizes to the browser
with a one-second latency, which conforms to the strict

latency requirements of the SKA, (ii) streamline the system
development process, for example, isolating metric genera-
tors, messaging system, RESTful APIs, visualizations, and
user interface components, (iii) identify the key performance
indicators and provide a methodology for measuring the
run-time performances of these indicators, and (iv) developed
an open-sourced tool, available through GitHub [45], that
can help rapidly prototype streaming of new data types, and
evaluate and optimize their web visualization performance.

B. GENERALIZING OUR APPROACH
While our approach has been motivated by the requirements
of the SKA radio astronomy project, the proposed system
and approaches are transferable to many other data-intensive
settings where real-time visualization performance is crucial.
Distributed microservices, IoT systems and sensors, data
centers, machine learning models, etc., generate high volume
data. Monitoring those systems and sensor logs in real-time
is essential for continual operation, debugging, profiling, per-
formance optimization, etc. The streaming data architecture
can be adapted to streamline any low latency data processing
and transporting pipeline. The methodologies discussed for
web performance analysis can help develop and optimize
general high-performing web-based visual analytics systems
in a variety of domains, including, network monitoring,
mass spectroscopy, game analytics, fraud detection, radio
communications, energy research, and atmospheric science.

C. LIMITATIONS AND FUTURE DIRECTIONS
One may argue that the measured performance data does not
correspond to ground truth. It is hard to generalize because
(a) different browsers perform differently in different hard-
ware, and (b) different visualization functions use different
data structures, and the runtime performance depends on
both. At SKA, the web visualizations will only be accessed
from known hardware with a known browser. Measuring
performance on the relevant hardware followed by streaming
rate optimization a priori is therefore feasible for our system.
To generalize the impact of the streaming visualization
architecture implemented in this work, an approach where
browsers automatically provide performance metrics from
which the streaming data rates are adjusted would be
suitable. This would allow visualizations using large amounts
of real-time streaming data to be accessed from general
hardware with optimal performance. A different line of
work to pursue further would be to take human visual
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perception into account when processing and aggregating
metrics, to optimize performance not only with respect to
throughput but to the maximal throughput which can be
perceived by a user.

We are extending this system to improve the metric
generators, which are expected to receive data from different
distributed sources. Therefore, distributed data processing
capability is essential to handle data from various sources,
transform and aggregate such data, and scale the data pro-
cessing operations. Because the producer and the messaging
system, in Fig. 4, are designed to work in a distributed
environment, both data processing and streaming system will
integrate seamlessly.

VIII. CONCLUSION
In this work, we presented an architecture for streaming
high-volume data in the web browser in real-time and
proposed methodologies for web visualization performance
analysis. Because of the need to visualize various matrices to
ensure day-to-day SKA telescope operations, support quality
assurance of the telescope instruments, and rapid observation
of large volumes of radio astronomy data captured by the
telescope, we adopted data streaming architecture. Because
of the limitations of the web browser in how much and how
frequently it can process and render data, we introduced
methods to measure this quantitatively. The streaming and
visualization architecture can be generalized to stream
various data types from different application domains. The
web visualization performance, e.g., deserialization time and
rendering time, may vary for data type and visualization
functions or charts. Therefore, the performance of each data
type and its visualization should be measured separately.

ACKNOWLEDGMENT
The authors would like to acknowledge and thank Adam
Campbell, Seth Hall, and Andrew Ensor from the Auckland
University of Technology, and Rodrigo Tobar from the Inter-
national Centre for Radio Astronomy Research, Australia,
for developing the first version of the prototype involving
Grafana and InfluxDB, measuring its latencies provided
as supplementary material, and helping them familiarizing
the prototype. They would also like to thank their SKAO
colleagues Fred Dulwich, Benjamin Mort, Danielle Fenech,
Mark Ashdown, and others for their domain inputs.

REFERENCES
[1] A. Aimar, A. A. Corman, P. Andrade, J. D. Fernandez, B. G. Bear,

E. Karavakis, D. M. Kulikowski, and L. Magnoni, ‘‘MONIT: Monitoring
the CERN data centres and the WLCG infrastructure,’’ in Proc. EPJ Web
Conf., vol. 214, 2019, p. 08031.

[2] B. Matthews, ‘‘Metadata for information management in large-scale
science,’’ Presentation at MPG EScience Seminar Metadata Infrastruct.,
Berlin, Germany, 2010.

[3] T. Zhang, X. Wang, Z. Li, F. Guo, Y. Ma, and W. Chen, ‘‘A survey
of network anomaly visualization,’’ Sci. China Inf. Sci., vol. 60, no. 12,
pp. 1–17, Dec. 2017.

[4] J. Henning and R. Smith, ‘‘A web-based system for creating, viewing,
and editing precursor mass spectrometry ground truth data,’’ BMC Bioinf.,
vol. 21, no. 1, pp. 1–10, Dec. 2020.

[5] L. Kolbowski, C. Combe, and J. Rappsilber, ‘‘XiSPEC: Web-based
visualization, analysis and sharing of proteomics data,’’Nucleic Acids Res.,
vol. 46, no. 1, pp. 473–478, Jul. 2018.

[6] I. K. Choi, T. Jiang, S. R. Kankara, S. Wu, and X. Liu, ‘‘TopMSV: A web-
based tool for top-down mass spectrometry data visualization,’’ J. Amer.
Soc. Mass Spectrometry, vol. 32, no. 6, pp. 1312–1318, Jun. 2021.

[7] Y. Zhang, R. Bhamber, I. Riba-Garcia, H. Liao, R. D. Unwin, and
A. W. Dowsey, ‘‘Streaming visualisation of quantitative mass spectrome-
try data based on a novel raw signal decomposition method,’’ Proteomics,
vol. 15, no. 8, pp. 1419–1427, Apr. 2015.

[8] C. Maçãs, E. Polisciuc, and P. Machado, ‘‘ATOVis—A visualisation tool
for the detection of financial fraud,’’ Inf. Visualizat., vol. 21, no. 4,
pp. 371–392, Oct. 2022.

[9] M. Aschi, S. Bonura, N. Masi, D. Messina, and D. Profeta, ‘‘Cyberse-
curity and fraud detection in financial transactions,’’ in Big Data and
Artificial Intelligence in Digital Finance. Berlin, Germany: Springer, 2022,
pp. 269–278.

[10] B. Medler and B. Magerko, ‘‘Analytics of play: Using information
visualization and gameplay practices for visualizing video game data,’’
Parsons J. Inf. Mapping, vol. 3, no. 1, pp. 1–12, 2011.

[11] Y. Su, P. Backlund, and H. Engström, ‘‘Comprehensive review and
classification of game analytics,’’ Service Oriented Comput. Appl., vol. 15,
no. 2, pp. 141–156, Jun. 2021.

[12] A. A. Goodman, ‘‘Principles of high-dimensional data visualization in
astronomy,’’ Astronomische Nachrichten, vol. 333, nos. 5–6, pp. 505–514,
Jun. 2012.

[13] J. S. Farnes, B. Mort, F. Dulwich, K. Adamek, A. Brown, J. Novotny,
S. Salvini, and W. Armour, ‘‘Building the world’s largest radio telescope:
The square Kilometre array science data processor,’’ in Proc. IEEE 14th
Int. Conf. e-Sci., Oct. 2018, pp. 366–367.

[14] G. H. Tan, T. J. Cornwell, P. E. Dewdney, and M. Waterson, ‘‘The square
Kilometre array baseline design V2.0,’’ in Proc. 1st URSI Atlantic Radio
Sci. Conf. (URSI AT-RASC), May 2015, p. 1.

[15] E. Pietriga, G. Filippi, L. Véliz, F. D. Campo, and J. Ibsen, ‘‘A web-
based dashboard for the high-level monitoring of ALMA,’’ in Proc. SPIE,
vol. 9152, pp. 461–472, Jul. 2014.

[16] C. Schollar, ‘‘RFI monitoring for the MeerKAT radio telescope,’’ Univ.
Cape Town, Cape Town, South Africa, Tech. Rep., 2015. [Online].
Available: http://pubs.cs.uct.ac.za/id/eprint/1042

[17] M. Lassnig, ‘‘Rucio beyond ATLAS: Experiences from Belle II, CMS,
DUNE, EISCAT3D, LIGO/VIRGO, SKA, XENON,’’ in Proc. EPJ Web
Conf., vol. 245, 2020, p. 11006.

[18] F. Locci, ‘‘CERN controls open source monitoring system,’’ Prometheus,
vol. 1, pp. 404–408, Jan. 2019.

[19] L. Blackburn, L. Cadonati, S. Caride, S. Caudill, S. Chatterji,
N. Christensen, J. Dalrymple, S. Desai, A. D. Credico, G. Ely, and
J. Garofoli, ‘‘The LSC glitch group: Monitoring noise transients during
the fifth LIGO science run,’’ Classical Quantum Gravity, vol. 25, no. 18,
Sep. 2008, Art. no. 184004.

[20] P. Dobbelaere and K. S. Esmaili, ‘‘Kafka versus RabbitMQ: A comparative
study of two industry reference publish/subscribe implementations:
Industry paper,’’ in Proc. 11th ACM Int. Conf. Distrib. Event-Based Syst.,
2017, pp. 227–238.

[21] G. Hesse, C. Matthies, and M. Uflacker, ‘‘How fast can we insert?
An empirical performance evaluation of apache kafka,’’ in Proc. IEEE 26th
Int. Conf. Parallel Distrib. Syst. (ICPADS), Dec. 2020, pp. 641–648.

[22] E. Rosolowsky, A. R. Taylor, and A. Goodman, ‘‘A visualization portal for
ALMA data,’’ Univ. British Columbia, Okanagan Campus, Kelowna, BC,
Canada; Univ. Calgary, Calgary, AB, Canada, Harvard Univ., Cambridge,
MA, USA, Tech. Rep., 2017. [Online]. Available: https://science.nrao.edu/
facilities/alma/alma-develop-old-022217/VisualizationPortal.pdf

[23] M. Alberts and F. Joubert, ‘‘The MeerKAT graphical user interface
technology stack,’’ in Proc. ICALEPCS, 2015, pp. 1134–1137.

[24] A. Ledeul, A. Savulescu, G. S. Millan, and B. Styczen, ‘‘Data streaming
with apache kafka for CERN supervision, control and data acquisition
system for radiation and environmental protection,’’ inProc. 17th Int. Conf.
Accel. Large Exp. Phys. Contr. Syst. (ICALEPCS), 2019, pp. 1–5.

[25] F. S. Boukredera, A. Hadjadj, and M. R. Youcefi, ‘‘Drilling vibrations
diagnostic through drilling data analyses and visualization in real
time application,’’ Earth Sci. Informat., vol. 14, no. 4, pp. 1919–1936,
Dec. 2021.

[26] N. Iftikhar, B. Lachowicz, A. Madarasz, F. Nordbjerg,
T. Baattrup-Andersen, and K. Jeppesen, ‘‘Real-time visualization of
sensor data in smart manufacturing using lambda architecture,’’ in Proc.
9th Int. Conf. Data Sci., Technol. Appl., 2020, pp. 215–222.

VOLUME 11, 2023 15635



S. Khan et al.: Web Performance Evaluation of High Volume Streaming Data Visualization

[27] P. Chen, ‘‘Visualization of real-time monitoring datagraphic of urban
environmental quality,’’ EURASIP J. Image Video Process., vol. 2019,
no. 1, pp. 1–9, Dec. 2019.

[28] Y. Ma, Y. Zheng, J. Cheng, and S. Easa, ‘‘Real-time visualization method
for estimating 3D highway sight distance using LiDAR data,’’ J. Transp.
Eng., A, Syst., vol. 145, no. 4, Apr. 2019, Art. no. 04019006.

[29] Z. Lv, X. Li, B. Zhang, W. Wang, Y. Zhu, J. Hu, and S. Feng,
‘‘Managing big city information based on WebVRGIS,’’ IEEE Access,
vol. 4, pp. 407–415, 2016.

[30] A. Protopsaltis, P. Sarigiannidis, D. Margounakis, and A. Lytos, ‘‘Data
visualization in Internet of Things: Tools, methodologies, and challenges,’’
in Proc. 15th Int. Conf. Availability, Rel. Secur., 2020, pp. 1–11.

[31] C. Malliarakis, M. Satratzemi, and S. Xinogalos, ‘‘Integrating learning
analytics in an educational MMORPG for computer programming,’’ in
Proc. IEEE 14th Int. Conf. Adv. Learn. Technol., Jul. 2014, pp. 233–237.

[32] T. Galati, ‘‘Exploring game analytics solutions for data-driven user
research in indie studios,’’ Ph.D. dissertation, Dept. Sci., Univ. Ontario Inst.
Technol., Canada, 2017.

[33] S. Khan, P. H. Nguyen, A. Abdul-Rahman, B. Bach, M. Chen,
E. Freeman, and C. Turkay, ‘‘Propagating visual designs to numerous
plots and dashboards,’’ IEEE Trans. Vis. Comput. Graphics, vol. 28, no. 1,
pp. 86–95, Jan. 2022.

[34] R. C. Hoetzlein, ‘‘Graphics performance in rich internet applications,’’
IEEE Comput. Graph. Appl., vol. 32, no. 5, pp. 98–104, Sep./Oct. 2012.

[35] HTML Canvas Graphics. Accessed: Feb. 15, 2022. [Online]. Available:
https://www.w3schools.com/html/html5_canvas.asp

[36] D. E. Kee, L. Salowitz, and R. Chang, ‘‘Comparing interactive web-
based visualization rendering techniques,’’ in Proc. IEEE Conf. Infovis,
Jan. 2012, pp. 1–2.

[37] Z. B. Babovic, J. Protic, and V. Milutinovic, ‘‘Web performance evaluation
for Internet of Things applications,’’ IEEE Access, vol. 4, pp. 6974–6992,
2016.

[38] M. Schwab, D. Saffo, N. Bond, S. Sinha, C. Dunne, J. Huang, J. Tompkin,
and M. A. Borkin, ‘‘Scalable scalable vector graphics: Automatic
translation of interactive SVGs to amultithread VDOM for fast rendering,’’
IEEE Trans. Vis. Comput. Graphics, vol. 28, no. 9, pp. 3219–3234,
Sep. 2022.

[39] S. Lee, J.-Y. Jo, and Y. Kim, ‘‘Performance testing of web-based data
visualization,’’ in Proc. IEEE Int. Conf. Syst., Man, Cybern. (SMC),
Oct. 2014, pp. 1648–1653.

[40] G. V. Dongen and D. V. D. Poel, ‘‘Evaluation of stream processing
frameworks,’’ IEEE Trans. Parallel Distrib. Syst., vol. 31, no. 8,
pp. 1845–1858, Dec. 2020.

[41] CBF SDP Emulator Metrics Generator. Accessed: Feb. 15, 2022.
[Online]. Available: https://gitlab.com/ska-telescope/cbf-sdp-emulator-
metrics-generator

[42] J. A. Miller, H. Zhu, and J. Zhang, ‘‘Guest editorial: Advances in web
services research,’’ IEEE Trans. Services Comput., vol. 10, no. 1, pp. 5–8,
Jan. 2017.

[43] S. Khan, P. H. Nguyen, A. Abdul-Rahman, E. Freeman, C. Turkay,
and M. Chen, ‘‘Rapid development of a data visualization service in an
emergency response,’’ IEEE Trans. Services Comput., vol. 15, no. 3,
pp. 1251–1264, May 2022.

[44] S. Khan and D. Wallom, ‘‘A system for organizing, collecting, and
presenting open-source intelligence,’’ J. Data, Inf. Manag., vol. 4, no. 2,
pp. 107–117, Jun. 2022.

[45] Streaming Data Visualization and Benchmarks. Accessed: Feb. 15, 2022.
[Online]. Available: https://github.com/saifulkhan/streaming-vis-perf

[46] Managed Apache Kafka Clusters. Accessed: Feb. 15, 2022. [Online].
Available: https://www.cloudkarafka.com

[47] J. Kreps, N. Narkhede, and J. Rao, ‘‘Kafka: A distributed messaging
system for log processing,’’ in Proc. USENIX Int. Workshop Netw. Meets
Databases, vol. 11, 2011, pp. 1–7.

[48] Rendering Performance. Accessed: Feb. 15, 2022. [Online]. Available:
https://web.dev/rendering-performance/

[49] JavaScript Spectrogram Library. Accessed: Feb. 15, 2022. [Online].
Available: http://arc.id.au/Spectrogram.html

[50] React—A JavaScript Library for Building User Interfaces. [Online].
Available: https://reactjs.org

[51] SKA SDP QAMetric Generator. Accessed: Feb. 15, 2022. [Online]. Avail-
able: https://gitlab.com/ska-telescope/sdp/ska-sdp-qa-metric-generator

[52] SKA SDP QA Data API. Accessed: Feb. 15, 2022. [Online]. Available:
https://gitlab.com/ska-telescope/sdp/ska-sdp-qa-data-api

[53] SKA SDP QA Display. Accessed: Feb. 15, 2022. [Online]. Available:
https://gitlab.com/ska-telescope/sdp/ska-sdp-qa-display

SAIFUL KHAN (Member, IEEE) received the
D.Phil. degree in engineering science from the
University of Oxford. He worked as a Soft-
ware Engineer at ABB, Oracle, and International
Seismological Centre; and a Data Scientist at
Horus Security Consultancy. He is currently
a Postdoctoral Researcher with the University
of Oxford. His research interests include data
processing, modeling, search, and visualization
techniques for data from various domains, such

as, radio astronomy, seismology, building information management, and
security-intelligence.

ERIK RYDOW received the M.Sc. degree in
mathematical and theoretical physics from the
University of Oxford. He is currently a Researcher
with the Oxford e-Research Centre. Since 2022,
he has been working on the science data processor
for the Square Kilometre Array (SKA) Project.
He is a member of the High-Performance Com-
puting and Code Optimisation Team. Previously,
he worked on using visualization to support
sensitivity analysis of epidemiological models.

SHAHRIAR ETEMADITAJBAKHSH received the
Ph.D. degree in engineering (communication sys-
tems) from The Australian National University.
He joined the Square Kilometre Array (SKA)
Project as a Postdoctoral Research Software Engi-
neer with the Oxford e-Research Centre. He is
currently working on radio frequency interference
mitigation for SKA Project. Previously, he worked
as a Postdoctoral Researcher with the University of
New South Wales and the University of Oxford.

Also, he has been a Knowledge Transfer Partnership Associate between
Moogsoft and the University of Sussex.

KAREL ADAMEK received the Ph.D. degree
in theoretical astrophysics from Silesian Uni-
versity in Opava, Czech Republic, in 2016.
From 2015 to 2019, he was a Postdoctoral
Research Associate with the Oxford e-Research
Centre, working on accelerating algorithms on
GPUs for the Square Kilometre Array radio
telescope. He is currently a Senior Researcher and
the Departmental Lecturer with the Department of
Engineering Sciences and a Product Owner of the
SKA Software Development Team.

WES ARMOUR received the M.Phys. degree in
fundamental particle physics and cosmology and
the Ph.D. degree in lattice gauge theory. He is
currently the Director of the Oxford e-Research
Centre and a Professor of scientific computing
with the Department of Engineering Science,
University of Oxford. He began his career in
theoretical particle physics and then spent several
years advancing algorithms andmethods in protein
crystallography. Then, he moved to the University

of Oxford, where he leads the Scientific Computing Group, Oxford
e-Research Centre.

15636 VOLUME 11, 2023


