
Fully Dynamic Evaluation for Conjunctive
Queries with Free Access Patterns

Haozhe Zhang
St Cross College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2022

Acknowledgements

Firstly and foremost, I want to express my deep gratitude to Prof. Dan
Olteanu, my supervisor, for his guidance, invaluable advice, and the many
hours we spent on the project. His vast knowledge and abundant experience
have encouraged me throughout my academic research and daily life. Also,
I wish to thank my friend, Dr. Ahmet Kara, for his technical assistance and
endless discussions regarding the project. Without his support, the thesis
would not have been possible. Furthermore, I want to thank my colleague,
Dr. Milos Nikolic, for his enormous help during my study.

I am deeply grateful for the support and companionship of my colleagues from
the Oxford FDB group and UZH Dast group. It has been a pleasure to have
their presence over the past few years.

Lastly, I would especially like to thank my family. My wife, Yaqi, was ex-
tremely supportive throughout this entire process. She made numerous sac-
rifices to help me get to this point. My son, Siran, constantly took me out
of the work to take the necessary breaks. My parents, Jun and Xiaopeng,
have always been my biggest supporters. They have always encouraged me
to pursue my dreams and never gave up on me. My parents-in-law, Hui and
Wenxiang, deserve special thanks for their tremendous understanding and
support. Without such a team, it would have been impossible for me to
complete my studies.

Abstract

We study the problem of answering conjunctive queries with free access pat-
terns under updates. A free access pattern is a partition of the free variables
of the query into input and output. The query returns tuples over the output
variables given a tuple of values over the input variables.

We introduce a fully dynamic evaluation approach for such queries. It is fully
dynamic in the sense that it supports both inserts and deletes of tuples to the
input relations. Our approach computes a data structure that supports the
enumeration of the output tuples and maintains it under single-tuple updates
to the input data. We also give a syntactic characterization of those queries
that admit constant time per single-tuple update and whose output tuples can
be enumerated with constant delay given an input tuple. Finally, for triangle
and hierarchical queries with free access patterns, we chart the complexity
trade-offs between the preprocessing time, update time and enumeration delay
for such queries. The trade-offs are strongly or weakly Pareto optimal for
triangle and a class of hierarchical queries. Their optimality is predicated on
the Online Boolean Matrix-Vector Multiplication conjecture.

Contents

1 Introduction 1
1.1 Problem Setting . 2
1.2 Contributions . 3
1.3 Organization . 5

2 Preliminaries 6
2.1 Data Model and Query Language . 6
2.2 Conjunctive Queries with Free Access Patterns 9
2.3 Query Classes . 9
2.4 Variable Orders . 10

2.4.1 Variable Orders and Tree Decompositions 10
2.4.2 Classes of Variable Orders . 12

2.5 Width Measures . 13
2.6 View Trees . 15
2.7 Computational Model . 16
2.8 Lower Bounds . 17

3 Overview of the Main Results 18
3.1 Fully Dynamic Evaluation for CQAP Queries 18

3.1.1 Query Fractures . 18
3.1.2 Complexities . 20

3.2 Preprocessing-Update-Enumeration Trade-offs 21
3.2.1 Queries with Hierarchical Fractures 21
3.2.2 Triangle Queries . 23

3.3 A Dichotomy Result . 24
3.4 Current Landscape of Conjunctive Query Evaluation 25

i

4 The Case of General Queries 26
4.1 Preprocessing . 26

4.1.1 Extended Variable Orders . 26
4.1.2 View Tree Construction . 27
4.1.3 Indicator Projections . 29

4.2 Enumeration . 33
4.2.1 View Iterators . 33
4.2.2 Enumeration Procedures . 34
4.2.3 Multiple View Trees . 36

4.3 Update . 37
4.3.1 Dynamic Width . 38

4.4 Complexity Analysis . 41

5 Trade-Offs in Dynamic Evaluation for CQAP Queries with Hierarchical
Fractures 45
5.1 Data Partitioning . 46
5.2 Preprocessing . 46

5.2.1 From Canonical to Access-Top Variable Orders 47
5.2.2 Variable Orders Describing Evaluation Strategies 49
5.2.3 View Trees Encoding the Query Result 54
5.2.4 Proofs . 56

5.3 Enumeration . 65
5.3.1 Union View Iterators . 66
5.3.2 Enumeration Procedure . 69
5.3.3 Enumeration from View Trees . 72
5.3.4 Enumeration Delay . 72

5.4 Update . 73
5.4.1 Determining the Relation Part for a Single-Tuple Update 74
5.4.2 Processing a Single-Tuple Update 76
5.4.3 Processing a Sequence of Single-Tuple Updates 79

5.5 Complexity Analysis . 87
5.6 Optimality Result . 92

6 Trade-Offs in Dynamic Evaluation for Triangle CQAP Queries 95
6.1 The C3 Query . 95

6.1.1 Preprocessing . 95
6.1.2 Enumeration . 98
6.1.3 Update . 99

ii

6.2 Queries in C2 . 101
6.2.1 Preprocessing . 101
6.2.2 Enumeration . 102

6.2.2.1 Hop View Iterators . 104
6.2.3 Update . 108

6.3 Queries in C1 . 108
6.3.1 Preprocessing . 108
6.3.2 Enumeration . 110
6.3.3 Update . 111

6.4 The Ccount Query . 111
6.5 The Clookup Query . 113
6.6 Complexity Analysis . 113
6.7 Optimality Result . 114

7 Dichotomy Result 120

8 Related Work 126

9 Extensions 131

10 Conclusion and Future Work 134

Bibliography 134

iii

Chapter 1

Introduction

Conjunctive queries play a significant role in relational databases. Many data manage-
ment tasks can be expressed as the evaluation of conjunctive queries, i.e., computing the
results of the queries. This has received a fair amount of attention [74, 65, 58]. For many
other tasks, it is also required to support repeated access to the results of conjunctive
queries for particular access patterns [56, 57, 52]. For instance, flight booking companies
may need to build interfaces allowing users to retrieve flights from their database by
entering values for specific input fields, such as the departure and arrival cities.

Example 1.1. Consider the database of a flight booking company with the two rela-
tions: airports(AirportId, Name, City), which stores each airport’s ID, name and
the city where it is located, and flights(DEPAirportId, ARRAirportId, FlightNo),
which stores each flight’s number and the IDs of its departure and destination airports.

The company allows users to check the flights for specific departure and arrival cities.
This task is captured by the following SQL query with parameters %A1 and %A2:

SELECT FlightNo, A1.City, A2.City

FROM airports AS A1, airports AS A2, flights

WHERE A1.AirportId = flights.DEPAirportId AND

A2.AirportId = flights.ARRAirportId AND

A1.City = "%A1" AND A2.City = "%A2"

The parameters %A1 and %A2 are replaced by the departure and arrival cities entered by
the users. For instance, suppose a user wants to check the flights from London to Zurich,
the company needs to answer this query with %A1 and %A2 replaced by London and Zurich.
This query may be asked by many other users with different values for %A1 and %A2.

We formalize such restricted access by conjunctive queries with output access patterns
(CQAP for short) [26]: the free variables of a CQAP query are partitioned into input and
output. Given a tuple of values over the input variables, the query yields the tuples of

1

values over the output variables such that the conjunction expressed in the query holds.
We call such querying an access request. In Example 1.1, the variable FlightNo is the
output variable and the variables A1.City and A2.City are the input variables.

Another problem that can be cast as a CQAP query is the triangle detection anal-
ysis in social networks. Consider a social network database with the binary relation
Friend(user1, user2) such that (X,Y) is in Friend if users X and Y are friends. Sup-
pose the analysis requires that given any two users X and Y, listing the users that form
triangles with X and Y in the dataset. This can be captured by the following SQL query
with the parameters %X and %Y:

SELECT R1.user1, R2.user1, R3.user1

FROM Friend AS R1, Friend AS R2, Friend AS R3

WHERE R1.user2 = R2.user1 AND R2.user2 = R3.user1 AND R3.user2 = R1.user1

AND R1.user1 = %X AND R2.user1 = %Y

The variables R1.user1 and R2.user1 are the input variables, while R3.user1 is the
output variable.

So far, we have focused on the query evaluation on static databases. In real world,
however, databases are subject to frequent changes, e.g., flights can be canceled, and
new users can be added. Many applications depend on real-time analytics over the
evolving data. This requires dynamic evaluation for queries, i.e., maintaining the results
of queries under data updates. Previous works have focused on the dynamic evaluation
for conjunctive queries [49, 23, 50, 14, 38, 41]. There is, however, no prior work considered
the dynamic evaluation for queries with access patterns.

1.1 Problem Setting

In this thesis, we consider the problem of fully dynamic evaluation for CQAP queries.
That is, answering access requests for the CQAP queries under single-tuple updates. It
is fully dynamic in the sense that it supports both inserts and deletes of tuples to the
input relations. We tackle the problem using the typical incremental view maintenance
(IVM) framework: we precompute a data structure that supports answering any access
requests and maintain it under updates.

We refine the overall computation time of dynamic evaluation for CQAP queries into
three components. The preprocessing time is the time to compute the data structure
before receiving any updates. Given a tuple over the input variables, the enumeration
delay is the time between the start of the enumeration process and the output of the first
tuple, the time between outputting any two consecutive tuples, and the time between

2

outputting the last tuple and the end of the enumeration process [30]. The update time
is the time used to update the data structure for one single-tuple update. Such update
time can be amortized over a sequence of single-tuple updates; the amortized update time
is the average time taken by the sequence of updates.

Following this framework, prior work can be used as part of two simple approaches,
namely the eager approach and the lazy approach. The eager approach precomputes the
result of the CQAP query over both the input and output variables and creates index on
them for the access pattern. Upon each update, we update the result and the index using
existing IVM approaches, such as the classical first order IVM [23]. With this approach,
access requests can be answered efficiently, but the data structure needs to be updated
for each update.

The lazy approach, on the other hand, has no precomputation and only updates the
base relations. Upon each access request, it uses existing enumeration algorithm, such
as the work by Bagan et al. [9], for the residual query obtained by setting the input
variables to constants in the original query. This approach does not need to update any
data structure, but needs time-consuming preparation for each access request, e.g., to
remove dangling tuples and possibly create a data structure to support enumeration.

1.2 Contributions

We have two insights on improving the eager and lazy approaches. The first is to avoid
fully materialized query results. For a CQAP query, the eager approach materializes
and maintains the query result over both input and output variables. Such materialized
result can easily support any access patterns over these free variables (not just the access
pattern of the query), but this is not necessary. We can maintain a data structure that is
specialized for the access pattern of the query. Such data structure can be more succinct
than the fully materialized query results and require less preprocessing and update time.

Following this idea, we developed a fully dynamic evaluation approach for CQAP
queries. It is fully dynamic in the sense that it supports both inserts and deletes of tuples
to the input relations. Our approach computes and maintains a data structure that is
specialized for the access pattern of the query to support the enumeration of the output
tuples. The construction of such data structure is based on the two new notions access-
top variable orders and query fractures. They capture the nature of free access patterns
of CQAP queries.

An access-top variable order is a decomposition of the query into a rooted forest of
variables, where: the input variables are above all other variables; and the free (input

3

and output) variables are above the bound variables. This variable order is compiled into
a tree of views, which is a data structure that compactly represents the query output.

Since access to the query output requires fixing values for the input variables, the
query can be fractured by breaking its joins on the input variables and replacing each
of their occurrences with fresh variables within each connected component of the query
hypergraph. This does not violate the access pattern, since each fresh input variable can
be set to the corresponding given input value. Yet this may lead to structurally simpler
queries whose dynamic evaluation admits lower complexity.

The second insight is to exploit the trade-off between the update time and enumera-
tion delay. The lazy and the eager approaches are on the two extremes: the lazy approach
admits constant update time but high enumeration delay, while the eager approach ad-
mits the opposite. Consider a sequence of interleaved updates and access requests to
a database. In terms of the overall computation time, i.e., the overall time spent on
processing the updates and answering the access requests, the lazy approach works well
when updates occur much more frequently than access requests, and the eager approach
works well in the opposite scenario. Assume we have an approach that shows a full con-
tinuum between the two extremes, we can tune the update time and enumeration delay
depending on the frequencies of updates and access requests to achieve a better overall
computation time.

Following this idea, we developed such an approach which charts the preprocessing
time - update time - enumeration delay trade-off for the dynamic evaluation of two class of
CQAP queries: (1) the triangle queries and (2) queries whose fractures are hierarchical.
It shows that as the preprocessing and update times increase, the enumeration delay
decreases. The core idea of the approach is to partition the data into the heavy and
lights parts based on the degrees of the values and apply adaptive strategies to them.
By tuning the threshold of the heavy-light partitioning, our approach can reduce the
enumeration delay by increasing the update time, or the other way around. Our approach
is strongly and weakly Pareto optimal for all triangle CQAP queries and a particular class
hierarchical query, called CQAP1.

A further contribution of the thesis is a syntactic characterization of those CQAP
queries that admit linear-time preprocessing and constant-time update and enumeration
delay. We called this class CQAP0. All queries outside CQAP0 do not admit constant-
time update and delay regardless of the preprocessing time, unless a widely held (namely,
the Online Matrix-Vector) conjecture fails. This dichotomy generalizes the similar di-
chotomy for q-hierarchical queries without access patterns [14], which are in CQAP0 and
have all free variables as output. The class CQAP0 further contains queries with in-
put variables that may be not only non-q-hierarchical but also cyclic. For instance, the

4

edge triangles detection problem is in CQAP0: given an edge (u, v), check whether it
participates in a triangle. The smallest query patterns not in CQAP0 subsume the non-
q-hierarchical ones as the former are sensitive to the interplay of the output and input
variables. Showing they do not admit constant-time update and delay requires different
and more hardness reductions from the Online Matrix-Vector Multiplication problem.

This thesis is based on our published works [41], [42], [43], and [44]. The first two
works [41] and [42] tackle the dynamic evaluation of the triangle queries with arbitrary
free variables. The work [43] focuses on both the static and dynamic evaluation of the
hierarchical queries with arbitrary free variables. We developed algorithms that reveal
the trade-offs between the preprocessing time, update time and enumeration delay by
applying adaptive strategies to the data with different degrees. In the work [44], we
extend our results to queries with access patterns.

In summary, these are contributions of this thesis:

• a fully dynamic evaluation approach for arbitrary CQAP queries,

• a fully dynamic evaluation approach which uncovers the trade-offs between the
preprocessing time, update time and enumeration delay for triangle CQAP queries
and CQAP queries whose fractures are hierarchical, and

• the dichotomy for CQAP queries that admits linear-time preprocessing and constant-
time update and enumeration delay.

1.3 Organization

This thesis is structured as follows. Chapter 2 introduces the notations, definitions and
properties that are necessary to understand the thesis. Chapter 3 gives a brief overview of
the three main results of the thesis. These results are presented in detail in the following
four chapters: Chapter 4 introduces our dynamic evaluation approach for arbitrary CQAP
queries. Chapters 5 and 6 introduce our dynamic evaluation approach that uncovers
the trade-offs between the preprocessing time, update time and enumeration delay for
CQAP queries whose fractures are hierarchical and triangle CQAP queries, respectively.
Chapter 7 proves the dichotomy result. Finally, Chapter 8 overviews the related work and
the current landscape for the evaluation of CQAP queries. Chapter 9 lists the possible
extensions of the thesis. At the end, Chapter 10 concludes the thesis and discusses
additional challenges for further work.

5

Chapter 2

Preliminaries

In this chapter, we introduce the notations, definitions and properties that are used in
this thesis.

2.1 Data Model and Query Language

We first define the data model and query language.

Data Model. A schema X = (X1, . . . , Xn) is a tuple of distinct variables. Each variable
Xi has a discrete domain Dom(Xi). We treat schemas and sets of variables interchange-
ably, assuming a fixed ordering of variables. A tuple x of values has schema X = Sch(x)

and is an element from Dom(X) = Dom(X1)× · · · ×Dom(Xn). We use uppercase letters
for variables and lowercase letters for data values. Likewise, we use bold uppercase letters
for schemas and bold lowercase letters for tuples of data values.

We express relations as factors over the sum-product semiring (Z,+,×, 0, 1) of inte-
gers [1]. A relation R over schema X is a function R : Dom(X)→ Z mapping tuples over
X to integers, such that R(x) 6= 0 for finitely many tuples x. A tuple x is in R, denoted
by x ∈ R, if R(x) 6= 0. The value R(x) represents the multiplicity of x in R. The size |R|
of R is the size of the set {x | x ∈ R}. A database is a set of relations and has size given
by the sum of the sizes of its relations. This data model generalizes the bag semantics.

Given a tuple x over schema X and S ⊆ X , x[S] is the restriction of x onto S. Given
two tuples x and x′ over schemas X and respectively X ′ such that X ∩X ′ = ∅, x ◦x′ is a
tuple over the schema X ∪X ′ that concatenates the values in x and x′. For a relation R
over schema X , schema S ⊆ X , and tuple t ∈ Dom(S): σS=tR = {x | x ∈ R∧x[S] = t }
is the set of tuples in R that agree with t on the variables in S; πSR = {x[S] | x ∈ R }
stands for the set of tuples in R projected onto S, i.e., the set of distinct S-values from
the tuples in R with non-zero multiplicities.

6

Query Language. A conjunctive query (CQ) has the form

Q(F) = R1(X1), . . . , Rn(Xn).

For each i ∈ [n], Ri is a relation symbol, and Ri(Xi) is an atom. Moreover, we denote by
vars(Q) =

⋃
i∈[n]Xi the set of variables; free(Q) = F the set of free variables; atoms(Q) =

{Ri(Xi) | i ∈ [n]} the set of the atoms; and atoms(X) the set of the atoms containing
variable X. Let B = vars(Q) \ free(Q) be the set of bound variables of Q. The CQ Q is
evaluated over the semiring (Z,+,×, 0, 1). Given a tuple x over F , the multiplicity of x
in the result of Q is computed by:

Q(x) =
∑

x′∈Dom(B)

R1((x ◦ x′)[X1])× . . . ×Rn((x ◦ x′)[Xn]).

Example 2.1. Consider the relations R(A,B) and S(B,C) over semiring (Z,+,×, 0, 1):

A B → R(A,B)

a1 b1 → 1
a1 b2 → 2

B C → S(B,C)

b1 c1 → 2
b2 c1 → 2

The two tables show the tuples in R and S with non-zero multiplicities. They represent
that (a1, b1) appears once and (a1, b2) appears twice in R, and (b1, c1) and (b2, c1) appear
twice in S.

Consider the query Q(A,C) = R(A,B), S(B,C). The multiplicity of a tuple (a, c)

over the free variables A and C in the query result is computed by:

Q(a, c) =
∑

b∈Dom(B)

R(a, b)× S(b, c).

The query result is shown in the table below:

A C → Q(A,C)

a1 c1 → R(a1, b1)× S(b1, c1) +R(a1, b2)× S(b2, c1) = 6

It represents that (a1, c1) appears six times in the query result. �

Updates and Delta Queries. An update δR to a relation R is a relation over the
schema of R. A single-tuple update, written as δR = {x → m}, maps the tuple x to
a non-zero multiplicity m ∈ Z and other tuple to 0; that is, |δR| = 1. The data model
and query language make no distinction between inserts and deletes – these are both
updates represented as relations in which tuples have positive and negative multiplicities,

7

respectively. This allows us to preocess inserts and deletes uniformly, which is unkonwn
how to do this in bag semantic.

Allowing negative multiplicities can be useful in some applications, such as modelling
a matrix multiplication as a join of relations, as discussed in Section 6.7. Though, if we
want to simulate bag semantics, we can force the multiplicity of each tuple in the update
to be non-negative: when there is a delete request to delete a tuple that is not in the
database, we can ignore the request.

Given a relation R over the schema X and an update δR, applying δR to R means
summing the update with the relation, which results in a new relation R′ = R+ δR over
the schema X such that:

R′(x) = R(x) + δR(x), where x ∈ Dom(X).

Given a query Q and an update δR to a relation R in Q, the delta query δQ defines
the change in the query result after applying δR to the database. For a CQ Q(F) =

R1(X1), . . . , Rn(Xn), the delta query δQ for an update δR1 to R1 is computed by replacing
R1 with δR1 in Q:

δQ(F) = δR1(X1), . . . , Rn(Xn).

The query result Q′ after applying δR1 to the database is computed by summing the
query result Q with the delta query δQ. That is, Q′ = Q+ δQ.

Example 2.2. Consider the relations and the query Q(A,C) = R(A,B), S(B,C) in
Example 2.1. Given an update δR = {(a1, b2) → 3}, which represents inserting three
(a1, b2) to R, the delta query δQ is computed as follows:

A C → δQ(A,C)

a1 c1 → δR(a1, b2)× S(b2, c1) = 6

The database after applying the update δR is as follows:

A B → R′(A,B)

a1 b1 → 1
a1 b2 → R(a1, b2) + δR(a1, b2) = 5

B C → S(B,C)

b1 c1 → 2
b2 c1 → 2

A C → Q′(A,C)

a1 c1 → Q(a1, c1) + δQ(a1, c1) = 12

8

2.2 Conjunctive Queries with Free Access Patterns

A conjunctive query with free access patterns (CQAP for short) has the form

Q(O|I) = R1(X1), . . . , Rn(Xn).

The free variables are partitioned into input variables I and output variablesO. An empty
set of input or output variables is denoted by a dot (·). The CQs are CQAP queries with
I = ∅. Given a database D and a tuple i over I, the output of Q for the input tuple i

is denoted by Q(O|i) and is defined by πOσI=iQ(D): This is the set of tuples o over O
such that the assignment i ◦ o to the free variables satisfies the body of Q.

2.3 Query Classes

We next introduce the classes of queries that we consider in this thesis.

Definition 2.3 (Triangle CQAP Queries). The triangle CQAP queries have the form:

Q(O | I) = R(A,B), S(B,C), T (C,A), where O ∪ I ⊆ {A,B,C}.

Example 2.4. Consider a triangle query Q(O | I) = R(A,B), S(B,C), T (C,A).

• When O = ∅ and I = ∅, i.e., Q(· | ·), the query result is computed by:

Q(· | ·) =
∑

a∈Dom(A)

∑
b∈Dom(B)

∑
c∈Dom(C)

R(a, b)× S(b, c)× T (c, a),

which is the number of triangles in the database.

• When O = {A,B,C} and I = ∅, i.e., Q(A,B,C | ·), the query is to list the
triangles and their multiplicities in the database.

• When O = ∅ and I = {A,B,C}, i.e., Q(· | A,B,C), the query is to check the
multiplicity of a given triangle in the database.

Definition 2.5 (Hierarchical Queries). A query Q is hierarchical if for any two variables
A,B ∈ vars(Q), either atoms(A) ⊆ atoms(B), atoms(B) ⊆ atoms(A), or atoms(B) ∩
atoms(A) = ∅.

Example 2.6. The query Q() = R(A,B), S(B,C) is hierarchical, since atoms(A) ⊆
atoms(B), atoms(C) ⊆ atoms(B) and atoms(A) ∩ atoms(C) = ∅. The query Q() =

R(A,B), S(B,C), T (C,D) is not hierarchical, since atoms(B) * atoms(C), atoms(C) *
atoms(B) and atoms(B) ∩ atoms(C) 6= ∅.

9

C

A

B

dep(C) = ∅
dep(A) = {C}

dep(B) = {A,C}

C

A,C

A,B,C

A

B

C D

E

dep(A) = ∅
dep(B) = {A}

dep(C) = {A,B}
dep(D) = {A,B}
dep(E) = {A}

A

A,B

A,B,C A,B,D

A,E

Figure 2.1: First and third from left: variable orders ω1 and ω2 for
the two queries Q1(A,B|·) = R(A,B), S(B,C), T (A,C) and Q2(B|A) =
R(A,B,C), S(A,B,D), T (A,E); second and fourth from left: tree decompositions T1

and T2 for the hypergraphs of Q1 and Q2. The two tree decompositions can be reduced
by removing the dashed vertices and connecting the remaining vertices with edges.

2.4 Variable Orders

A variable order defines a partial ordering of the variables in a query. They are used as
logical plans for the evaluation of conjunctive queries [65].

Definition 2.7 (Variable Order [65]). A variable order ω for a CQAP query Q is a
(rooted) forest with one node per variable in Q such that the variables of each atom in Q
lie along the same root-to-leaf path in T .

We introduce notation for a variable order ω for a CQAP query Q. Given a CQAP
query, two variables depend on each other if they occur in the same atom of the query.
The dependency depω of ω is a function that maps each variable X in ω to its dependent
set, i.e., the subset of X’s ancestor variables in ω on which the variables in the subtree
rooted at X depend. We denote by vars(ω) the set of variables in ω. For each variable
X in vars(ω), we call the set {X} ∪ depω(X) the bag of X using the language of tree
decomposition [67]; we denote by ancω(X) the set of ancestor variables of X in ω.

Example 2.8. Figure 2.1 (left) a variable order ω1 for the query Q1(A,B|·) = R(A,B),

S(B,C), T (A,C). The dependency sets are dep(C) = ∅, dep(A) = {B} and dep(B) =

{A,C}.
Figure 2.1 (third from left) also shows a variable order ω2 of the query Q2(B|A) =

R(A,B,C), S(A,B,D), T (A,E). The dependency sets of the variables are dep(A) = ∅,
dep(B) = {A}, dep(C) = {A,B}, dep(D) = {A,B} and dep(E) = {A}. �

2.4.1 Variable Orders and Tree Decompositions

Variable orders have a close connection with the widely used notion of tree decompositions.
Let us first recall the definition of the hypergraph of a query and the tree decomposition
of a hypergraph.

10

Definition 2.9 (Hypergraph). The hypergraph of a query Q is a pair H = (V , E), where
the vertices V are the set of variables in Q and the hyperedges E are the schemas of the
atoms in Q.

Definition 2.10 (Tree decomposition [67]). A tree decomposition of a hypergraph H =

(V , E) is a pair (T, (Bt)t∈V (T)), where T is a tree, V (T) denotes the (multi-)set of vertices
of T , and every Bt is a subset of V, called the bag of t, such that the following properties
hold:

• coverage: for each hyperedge e ∈ E, there exists a bag Bt such that e ⊆ Bt, and

• connectivity: for each vertex v ∈ V, the set of vertices {t ∈ T | v ∈ Bt} induces a
connected subtree of T .

A tree decomposition is called reduced if there is not a bag which is the subset of
another bag.

Example 2.11. Consider the queries Q1 and Q2 in Example 2.8. Figure 2.1(second
and fourth from left) shows tree decompositions T1 and T2 of the hypergraphs of the two
queries. In T1, all three variables have to be in the same bag to satisfy the connectivity
property. The tree decomposition T1 can be reduced by removing the dashed vertex. The
tree decomposition T2 can be reduced by removing the dashed vertices and connecting the
remaining three vertices with edges as {A,B,C} − {A,B,D} − {A,E}. �

For a query Q and its hypergraph H, there exists algorithms for bidirectional trans-
lations between the variable orders of Q and the tree decompositions of H [65], which
proves they are related concepts. Intuitively, for a variable order ω and its corresponding
tree decomposition T , each variable A of ω corresponds to a vertex t of T , and the bag
dep(A) ∪ {A} of A is exactly the bag Bt of t, i.e., dep(A) ∪ {A} = Bt.

Example 2.12. Consider the queries Q1 and Q2 in Example 2.8. Figure 2.1 shows the
variable orders ω1 and ω2 of the two queries, and the tree decompositions T1 and T2 of
the hypergraphs of the two queries. The variable orders ω1 and ω2 can be translated to
the corresponding tree decompositions T1 and T2, or in the opposite direction. Between
ω1 and T1, the translation is as follows: the bag {C} at the root variable C in ω1 equals
the bag {C} at the root vertex in T1, the bag {A,C} at variable A in ω1 equals the bag
{A,C} in T1, and the bag {A,B,C} at variable B in ω1 equals the bag {A,B,C} in T1.
The bijection between the bags in ω2 and T2 is similar. �

11

In this thesis, we present our approaches and results using variable orders. They can
also be presented using tree decompositions. Nevertheless, we use variable orders, since
they are more natural for our approaches: In the preprocessing step, our approaches
use variable orders to guide the construction of the data structures that represent the
results of the queries; during the construction, the bound variables are eliminated one
by one (projected away by computing the marginalization over them), and the variable
orders define the partial orders of eliminating the bound variables in the queries. In the
enumeration step, our approaches traverse the data structures in the order of the variable
orders to compute the query results. Our approaches, as well as worst-case optimal join
algorithms such as LeapFrog TrieJoin [73], proceed one variable at a time and not one
bag at a time. Variable order based approaches express more naturally computation by
variable elimination.

2.4.2 Classes of Variable Orders

We next introduce the classes of variable orders for CQAP queries used in the thesis.

Definition 2.13 (Canonical variable order). A variable order ω for a query Q is canonical
if for each relation R in Q, the schema of R is exactly the variables in the path from the
root to the lowest variable of R in ω.

Hierarchical queries are precisely those conjunctive queries that admit canonical vari-
able orders.

Example 2.14. Consider the queries Q1 and Q2 in Example 2.8 and their variable orders
ω1 and ω2 in Figure 2.1. The variable order ω1 is not canonical, since the schema of
the relation R is {A,B}, but variables in the path from the root to the lowest variable
of R are {A,B,C}. The variable order ω2 is canonical, since the schema of the three
relations R, S, and T are exactly the three root-to-leaf paths in the variable order, i.e.,
{A,B,C}, {A,B,D} and {A,E}. �

Definition 2.15 (C-top variable order). Given a variable order ω for a query Q and a
set of variables C ⊆ vars(Q), a variable order ω is C-top if a variable not in C is never
an ancestor of a variable in C.

A variable order is free-top or input-top if it is C-top where C is the set of free variables
or the set of input variables, respectively. A variable order is access-top if it is free-top
and input-top.

12

Example 2.16. Consider the queries Q1 and Q2 in Example 2.8 and their corresponding
variable orders ω1 and ω2 in Figure 2.1. The variable order ω1 is input-top, since the
query has no input variable; ω1 is not free-top, since the bound variable C is on top of
the free variables A and B.

The variable order ω2 is input-top, since the input variable A is on top of other
variables, and ω2 is free-top, since the free variables A and B are on top of other variables;
ω2 is thus access-top, since it is both input-top and free-top. �

The C-top variable orders are related to the concept of C-connex tree decomposi-
tions [9], which is a variant of tree decompositions defined for a set of variables C.

Definition 2.17 (C-connex tree decomposition [9]). Given a hypergraph H = (V , E) and
C ⊆ V, a C-connex tree decomposition of H is a triple (T, (Bt)t∈V (T),A), where:

• (T, (Bt)t∈V (T)) is a tree decomposition of H, and

• A is a connected subset of V (T) such that
⋃
t∈ABt = C.

In other words, a tree decomposition is C-connex if its vertices that cover the variables
in C are connected.

Similar to tree decompositions and variable orders, C-connex tree decompositions and
C-top variable orders are closely related. Intuitively, for a C-top variable order ω and
its corresponding C-connex tree decomposition T , the variables C in ω correspond to the
vertices covering C in T . In ω, these variables C are on top of the other variables, so they
are connected via the root of the variable order. Their corresponding vertices in T are
also connected due to the definition of C-connex tree decompositions.

Example 2.18. Consider the query Q2 in Example 2.8 and its corresponding variable
order ω2 and tree decomposition T2 in Figure 2.1. As discussed in Example 2.16, ω2 is
access-top, i.e., it is both {A}-top and {A,B}−top. The corresponding tree decomposition
T2 is {A}-connex and {A,B}-connex: T2 is {A}-connex, since the root vertex covers the
variable A; T2 is {A,B}-connex, since its two bags {A} and {A,B} cover the variables
A and B, and are connected. �

2.5 Width Measures

We next introduce a width measure, namely the static width, for a variable order ω of a
CQAP query Q. It captures the complexity to evaluate Q. The definition of the static
width relies on the notion of fractional edge cover number.

13

Definition 2.19 (Fractional edge cover number[6]). Given a conjunctive query Q and
F ⊆ vars(Q), a fractional edge cover of F is a solution λ = (λR(X))R(X)∈atoms(Q) to the
following linear program:

minimize
∑

R(X)∈ atoms(Q)

λR(X)

subject to
∑

R(X)∈atoms(Q) s.t. X∈X

λR(X) ≥ 1 for all X ∈ F and

where λR(X) ∈ [0, 1] for all R(X) ∈ atoms(Q)

The optimal objective value of the above program is called the fractional edge cover number
of F and is denoted as ρ∗Q(F).

An integral edge cover of F is a feasible solution to the variant of the above program
with λR(X) ∈ {0, 1} for each R(X) ∈ atoms(Q). The optimal objective value of this
program is called the integral edge cover number of F and is denoted as ρQ(F). If Q is
clear from the context, we omit the index Q in the expressions ρ∗Q(F) and ρQ(F).

We next give the definition of the static width of a variable order ω.

Definition 2.20 (Static width). Given a variable order ω for a query Q, the static width
w(ω) of ω is:

w(ω) = max
X∈vars(ω)

ρ∗Q({X} ∪ depω(X)).

At each variable X in vars(ω), the fractional edge cover number ρ∗Q({X} ∪ depω(X))

characterizes the time to compute a query that joins the atoms of Q covering the variables
{X}∪ depω(X) using a worst-case optimal algorithm [58]. The static width w of ω is the
maximum fractional edge cover number over all variables in vars(ω).

Example 2.21. Consider the queries Q1 and Q2 in Example 2.8 and their variable orders
ω1 and ω2 in Figure 2.1. We first show the computation of the static width of ω1: to cover
the bag {B}∪dep(B) = {A,B,C} of B, we assign λR(X) = 0.5 to each of the three atoms
R(A,B), S(B,C) and T (A,C) in Q1, and this gives us ρ∗({A,B,C}) = 0.5 + 0.5 + 0.5 =

1.5. Since this is the largest fractional edge cover number over the bags of all variables in
ω1, the static width of ω1 is w(ω1) = 1.5. The static of ω2 is w(ω2) = 1, since every bag
can be covered by one single atom in Q2. �

The static width of a variable order is closely related to the fractional hypertree width
of a tree decomposition.

14

Definition 2.22 (Fractional hypertree width [35]). Given a query Q, its hypergraph H
and a tree decomposition T = (T, (Bt)t∈V (T)) of H, the fractional hypertree width of T is
defined as maxt∈V (T) ρ

∗
Q(Bt), denoted by fhtw(T).

Fractional hypertree width was originally defined for Boolean queries. The work [65]
then introduced the width measure s↑, which was shown to generalize fhtw to CQs. In
this thesis, we use fhtw to refer to this generalization.

The static widths of variable orders and the fractional hypertree widths of tree decom-
positions are closely related. For a variable order ω and its corresponding tree decompo-
sition T = (T, (Bt)t∈V (T)), the static width w(ω) is the same as the fractional hypertree
width fhtw(T): as discussed in Section 2.4.1, each variable A in the variable order ω
corresponds to a vertex t of the tree decomposition, and dep(A)∪ {A} = Bt, so we have:

w(ω) = max
X∈vars(ω)

ρ∗({X} ∪ depω(X)) = max
t∈V (T)

ρ∗(Bt) = fhtw(T).

2.6 View Trees

In the preprocessing and update steps, our approaches construct and maintain data struc-
tures that represent the output of CQAP queries. Such data structures are called view
trees. Intuitively, a view tree is a logical project-join plan in the classical database systems
literature, but where each intermediate result is materialized.

Definition 2.23 (View tree [62]). A view tree is a (rooted) tree with one view per node.
The view at a node is either defined as the join of the views at its children, or the result
of marginalizing out one or more variables away from its child view.

Our algorithms construct view trees following access-top variable orders. We discuss
in detail the procedure for constructing a view tree following an access-top variable order
ω for a query Q in Section 4.1. The procedure has two steps:

1. it extends ω with atoms atoms(Q) by adding these atoms as leaves of the variable
order such that each atom is the child of its lowest variable, and then

2. it traverses ω bottom-up and at each variable X, it constructs the views of X by
joining the views of the children of X and projecting the result to depω(X).

Example 2.24. Consider the query Q(B|A) = R(A,B,C), S(A,B,D), T (A,E). Fig-
ure 2.2 shows the variable order ω for Q and the view tree constructed following ω. To
construct the view tree, we first add the atoms of Q to ω under their lowest variables:
R(A,B,C) below C, S(A,B,D) below D, and T (A,E) below E. We then traverse the

15

A

B

C D

Edep(A) = ∅
dep(B) = {A}

dep(C) = {A,B}
dep(D) = {A,B}
dep(E) = {A}

VA(A)

V ′B(A)

VB(A,B)

V ′C(A,B)

VC(A,B,C)

V ′D(A,B)

VD(A,B,D)

V ′E(A)

VE(A,E)

R(A,B,C) S(A,B,D)

T (A,E)

Figure 2.2: Left: variable order ω for the query Q(B|A) = R(A,B,C), S(A,B,D),
T (A,E) in Example 2.8; right: view tree constructed following ω.

variable bottom-up to construct views at each node: at variable C, since R(A,B,C) is
its only child atom, we create the view VC(A,B,C) = R(A,B,C) and then create the
view V ′C(A,B) = VC(A,B,C), which projects away C. We build the views VD, V ′D, VE,
and V ′E similarly at variables D and E. At variable B, we build the view VB(A,B) =

V ′C(A,B), V ′D(A,B) by joining its two children views, and the view V ′B(A) = VB(A,B) by
projecting away B. Finally, we create the view VA(A) = V ′B(A), V ′E(A) by joining its two
children views.

2.7 Computational Model

We consider the RAM model of computation. Each relation (or materialized view) R
over schema X is implemented by a data structure that stores key-value entries (x, R(x))

for each tuple x with R(x) 6= 0 and needs O(|R|) space. This data structure can: (1)
look up, insert, and delete entries in constant time, (2) enumerate all stored entries in R
with constant delay, and (3) report |R| in constant time. For a schema S ⊂ X , we use
an index data structure that for any t ∈ Dom(S) can: (4) enumerate all tuples in σS=tR

with constant delay, (5) check t ∈ πSR in constant time; (6) return |σS=tR| in constant
time; and (7) insert and delete index entries in constant time.

We next exemplify a data structure that conforms to the above computational model.
Consider a relation (materialized view) R over schema X . A hash table with chaining
stores key-value entries (x, R(x)) for each tuple x over X with R(x) 6= 0. The entries are
doubly linked to support enumeration with constant delay. The hash table can report
the number of its entries in constant time and supports lookups, inserts, and deletes in
constant time on average, under the assumption of simple uniform hashing.

To support index operations on a schema F ⊂ X , we create another hash table with
chaining where each table entry stores a tuple t of F -values as key and a doubly-linked
list of pointers to the entries in R having the F -values t as value. Looking up an index

16

entry given t takes constant time on average under simple uniform hashing, and its
doubly-linked list enables enumeration of the matching entries in R with constant delay.
Inserting an index entry into the hash table additionally prepends a new pointer to the
doubly-linked list for a given t; overall, this operation takes constant time on average. For
efficient deletion of index entries, each entry in R also stores back-pointers to its index
entries (one back-pointer per index for R). When an entry is deleted from R, locating
and deleting its index entries in doubly-linked lists takes constant time per index.

2.8 Lower Bounds

The optimality results introduced in this thesis are based on the hardness of the following
Online Boolean Matrix-Vector Multiplication (OMv) problem.

Definition 2.25 (Online Boolean Matrix-Vector Multiplication [36]). We are given an
n × n matrix M and receive n column vectors of size n, denoted by v1, . . . ,vn, one by
one; after seeing each vector vi, we output the product Mvi before we see the next vector.

It is strongly believed that the OMv problem cannot be solved in subcubic time.

Conjecture 26 (OMv Conjecture, Theorem 2.4 in [36]). For any γ > 0, there is no
algorithm that solves the OMv problem in time O(n3−γ).

The OMv conjecture has been used to exhibit conditional lower bounds for many
dynamic problems, including those previously based on other popular problems and con-
jectures, such as 3SUM and combinatorial Boolean matrix multiplication [10].

17

Chapter 3

Overview of the Main Results

In this chapter, we give a brief overview of the three main results of the thesis. We give
the necessary definitions and theorems in this chapter to make the statements precise.
The algorithms, discussions and the proofs are given in the later chapters.

3.1 Fully Dynamic Evaluation for CQAP Queries

The first contribution of the thesis is a fully dynamic evaluation approach for arbitrary
CQAP queries.

3.1.1 Query Fractures

The first step of the approach is to decompose the given CQAP query into a set of sub-
queries. The intuition is that we break the hypergraph of the CQAP query at its input
variables, so that it becomes a set of smaller hypergraphs, each of which is a sub-query.
The results of these sub-queries are conditionally independently on the input variables.
That is, given fixed values over the input variables, the result of the CQAP query is the
Cartesian product of the results of these sub-queries. We call such a decomposition the
fracture of the query.

Definition 3.1 (Query fracture). The fracture of a CQAP query Q is a CQAP query
Q† constructed from Q in three steps:

• For each input variable I and each relation R containing I, replace I by a new
variable IR.

• Compute the connected components of the hypergraph of the modified query.

• If several new variables I1, . . . , In originating from the same input variable I end in
the same connected component Q′, replace them by one input variable I1.

18

A

B D

C

R(A,B)

S(B,C)

U(A,D)

T (C,D)

A1 A2

B D

C1 C2

R(A1, B)

S(B,C1)

U(A2, D)

T (C2, D)

Figure 3.1: (Left) Hypergraph of the 4-cycle query Q1 in Example 3.2. (Right) Fracture
of Q1. It has two connected components R(A1, B), S(B,C1) and U(A2, D), T (C2, D).

The first two steps break the hypergraph of the CQAP query into a set of smaller
hypergraphs by replacing the input variables by new variables. Multiple new variables
originating from the same input variable might end in the same connected component.
This might increase the static width of the query, since if multiple new variables are in
the same bag, we need to cover all new variables in different relations instead of only one
original input variable (see Example 3.3). Hence, we have the third step to merge the
new variables that are in the same connected component.

Example 3.2. Consider the 4-cycle query

Q1(B,D|A,C) = R(A,B), S(B,C), T (C,D), U(A,D).

Figure 3.1(left) shows the hypergraph of Q1. To compute the fracture of Q1, we replace
the two input variables B and D by the new variables B1 and B2 in relations R and S,
and by D1 and D2 in relations T and U , respectively. This results in the fracture Q1

† in
Figure 3.1 (right):

Q1
†(B,D|A1, A2, C1, C2) = R(A1, B), S(B,C1), T (C2, D), U(A2, D).

It has two connected components R(A1, B), S(B,C1) and U(A2, D), T (C2, D). The two
sub-queries defined by the two connected components are

Q1
1(B,D|A1, A2) = R(A1, B), S(B,C2) and Q1

2(B,D|A1, A2) = U(A2, D), T (C2, D).

The 4-cycle query Q1 is not hierarchical, but its fracture Q1
† is. �

We demonstrate in the next example that the third step of the fracture computation
is important as it can reduce the static width of the fracture.

Example 3.3. Consider now the triangle query Q(B,C|A) = R(A,B), S(B,C), T (C,A).
To compute the fracture of Q, we replace the input variable A by the new variables A1

and A2 in relations R and T , respectively, which results in:

Q′(B,C|A1, A2) = R(A1, B), S(B,C), T (C,A2).

19

It has only one connected component, so we replace the two new variables A1 and A2,
which originate from the same input variable A, by a single new variable A1, which results
in the fracture Q†:

Q†(B,C|A1) = R(A1, B), S(B,C), T (C,A1).

The fracture Q† is the same as the original query Q.
The two new variables A1 and A2 in Q′ breaks the cycle formed by the three relations

R, S and T , and this increases the static width. Hence, it is important that we replace
the new variables A1 and A2 by a single variable A1 in the fracture Q†, which reduces
the static width from 2 to 1.5: the static width of Q′(B,C|A1, A2) is 2, since the two new
variables A1 and A2 are in the same bag in any variable order, and we need at least two
edges to cover them. The static width of Q†(B,C|A1) is 1.5, since the new variable A1 is
in the same bag with the two input variables B and C, and we can assign the weight 0.5

to each edge R, S and T to cover them. �

Once the fracture of the given CQAP query is computed, we can evaluate each sub-
query in the fracture independently. For each sub-query, we compute a view tree that
supports the enumeration of the tuples over the output variables for a tuple over the input
variables and maintain the view tree under single-tuple updates. The result of the CQAP
query is the Cartesian product of the results of the sub-queries. The overall complexity
is the sum of the complexities of the sub-queries, or asymptotically the max complexity
of the sub-queries.

3.1.2 Complexities

The static width w introduced in Chapter 2 measures the complexity for building the
view trees for the query. We define another width measure, the dynamic width δ, to
measure the complexity for maintaining these view trees. We give the formal definition
of the dynamic width in Definition 4.9. Intuitively, the dynamic width δ is the maximal
static width over the delta queries for updates to all base relations.

We state the complexities of our approach using the static width and dynamic width
in the following theorem:

Theorem 3.4. Given a CQAP with static width w and dynamic width δ and a database
of size N , the query can be evaluated with O(Nw) preprocessing time, O(N δ) update time
under single-tuple updates, and O(1) enumeration delay.

We discuss in detail the procedures of this approach and give the proof of the com-
plexity result in Chapter 4.

20

0 1

1

w − 1

w

ε

logN time

preprocessing time 1 + (w − 1)ε
update time δε
delay 1− ε

Figure 3.2: Preprocessing time, enumeration delay and amortized update time for a
CQAP query with a hierarchical fracture, static width w and dynamic width δ (δ can be
w or w − 1, hence the two red lines for the update time).

3.2 Preprocessing-Update-Enumeration Trade-offs

The second contribution of the thesis is a dynamic evaluation approach which uncovers
the trade-offs between the preprocessing time, update time and enumeration delay for
CQAP queries whose fractures are hierarchical and triangle CQAP queries.

Our approach has two core ideas. First, we partition the base relations into heavy
and light parts based on the degrees of the values. This transforms a query over the base
relations into a union of queries over heavy and light relation parts. Second, we employ
different evaluation strategies for different heavy-light combinations of parts of the base
relations. This allows us to confine the worst-case behavior caused by high-degree values
in the database during query evaluation. By tuning the threshold for the heavy-light
partitioning, our approach can reduce update time with the cost of more enumeration
delay, or the other way around.

3.2.1 Queries with Hierarchical Fractures

For CQAP queries with hierarchical fractures, the complexities in Theorem 3.4 can be
parameterized to uncover trade-offs between preprocessing, update and enumeration.

Theorem 3.5. Consider any CQAP query Q with static width w and dynamic width
δ, a database of size N , and ε ∈ [0, 1]. If Q’s fracture is hierarchical, then Q admits
O(N1+(w−1)ε) preprocessing time, O(N1−ε) enumeration delay, and O(N δε) amortized
update time for single-tuple updates.

These trade-offs are illustrated in Figure 3.2. For hierarchical queries, the dynamic
width δ can be w or w−1 (Proposition 5.27), hence the two red lines for the update time.

21

Optimality. Our trade-offs defined in Theorem 3.5 are optimal for two classes of CQAP
queries with hierarchical fractures, namely the CQAP0 and CQAP1 queries, unless the
OMv conjecture is false. These two classes of queries are queries whose results can be
efficiently maintained: the CQAP0 queries are those admitting constant update time, i.e.
δ = 0, while the CQAP1 queries are those admitting slighter higher update time, i.e.
δ = 1. We next give the characterization of the two classes of queries.

Definition 3.6 (Variable dominance). Given a query Q, for any two variables A and B
in vars(Q), B dominates A if atoms(A) ⊂ atoms(B).

Definition 3.7 (CQAP0 queries). Given a query Q, Q is free-dominant (input-dominant)
if for any two variables A and B in vars(Q), it holds: if A is free (input) and B dominates
A, then B is free (input). A query is in CQAP0 if its fracture is hierarchical, free-
dominant, and input-dominant.

Definition 3.8 (CQAP1 queries). Given a query Q, Q is almost free-dominant (almost
input-dominant) if: (1) For any atom R(X) ∈ atoms(B), there is another atom S(Y) ∈
atoms(B) such that each free (input) variable dominated by B is contained in X ∪Y; (2)
B is not already free-dominant (input-dominant). A query is in CQAP1 if its fracture is
hierarchical and is almost free-dominant, or almost input-dominant, or both.

Example 3.9. The query Q1(A,C|B,D) = R(A,B), S(B,C), T (C,D), U(A,D) is input-
dominant, free-dominant, but not hierarchical. Its fracture Q†(A,C|B1, B2, D1, D2) =

R(A,B1), S(B2, C), T (C,D1), U(A,D2) is hierarchical but not input-dominant: C dom-
inates both B2 and D1 and A dominates both B1 and D2, yet A and C are not input.
It is however almost input-dominant: A is not input and for any of its atoms R(A,B1)

and U(A,D2), there is another atom U(A,D2) and respectively R(A,B1) such that both
R(A,B1) and U(A,D2) cover the variables B1 and D2 dominated by A; a similar reason-
ing applies to C. This means that Q1 is in CQAP1.

The query Q2(A | B) = S(A,B), T (B) is in CQAP0, since its fracture Q†(A |
B1, B2) = S(A,B1), T (B2) is hierarchical, free-dominant, and input-dominant.

The query Q3(B | A) = S(A,B), T (B) is in CQAP1. Its fracture is the query itself. It
is hierarchical, yet not input-dominant, since B dominates A and is not an input variable.
It is, however, almost input-dominant: for each atom of B, there is one other atom such
that together they cover A. Indeed, atom S(A,B) already covers A, and it also does so
together with T (B); atom T (B) does not cover A, but it does so together with S(A,B).
This means that Q3 is almost input-dominant, and thus in CQAP1.

The following are the smallest hierarchical queries that are not in CQAP0 but in
CQAP1: Q(A | ·) = R(A,B), S(B); Q(B|A) = R(A,B), S(B); Q(· | A) = R(A,B), S(B).

22

We discussed in detail the procedures of our approach on CQAP queries with hierar-
chical fractures and give the proofs on its complexity and optimality results in Section 5.

3.2.2 Triangle Queries

Recall the triangle CQAP queries are of the form:

Q(O | I) = R(A,B), S(B,C), T (C,A), where O ∪ I ⊆ {A,B,C}.

Based on their access patterns, we characterize triangle CQAP queries into the categories:
the Clookup, Ccount, C1, C2, and C3 queries. The Clookup query has the access pattern (· |
A,B,C), that is, all three variables are input variables. The Ccount query has the access
pattern (· | ·), i.e., no output and input variables. The other queries, that is, the Ck
queries, where k ∈ {1, 2, 3}, have the access patterns with

• k input variables, or

• k output variables and no input variable.

The following table summarizes the triangle CQAP queries in each category. The other
C1 and C2 queries, e.g., Q(B | ·) or Q(B,C | ·), are skipped, since the join of the relations
is symmetric in the variables A, B, and C.

Clookup Ccount C1 C2 C3

Q(· | A,B,C) Q(· | ·) Q(A | ·) Q(A,B | ·) Q(A,B,C | ·)
Q(· | A) Q(· | A,B)
Q(B | A) Q(C | A,B)
Q(B,C | A)

The Ccount query Q(· | ·) = R(A,B), S(B,C), T (C,A) is named the count query since
it computes the number of triangles in the database. The Clookup query Q(· | A,B,C) =

R(A,B), S(B,C), T (C,A) is named the triangle lookup query since it serves to look up
the multiplicity of a given triangle in the database, i.e., the multiplicity of a given tuple
over A, B and C in the join of the relations R, S and T . The Clookup query is in CQAP0

and others are outside CQAP0.
For the triangle CQAP queries, we have the trade-offs as defined in Theorem 3.10:

Theorem 3.10. Given a triangle CQAP query Q, a database of size N , and ε ∈ [0, 1].
If Q is the Clookup query, it admits constant preprocessing time, update time, and enu-
meration time; otherwise, the query Q admits O(N

3
2) preprocessing time, O(Nmax{ε,1−ε})

amortized update time, and the enumeration delay given in the table below.

23

0 1
2

1

1
2

1

3
2

ε

logN time

Clookup, Ccount, C3
Clookup

C2

C1

Ccount, C1, C2, C3

Amortized update time

y =

{
0, for Clookup
max{ε, 1− ε}, for Ccount, C1, C2, C3

Enumeration delay

y =


0, for Clookup, Ccount, C3
2min{ε, 1− ε}, for C1
min{ε, 1− ε}, for C2

Figure 3.3: Trade-offs between the amortized update time and enumeration delay for the
dynamic evaluation of triangle CQAP queries. N is the database size. The complexities
are parameterized by ε.

Ccount C1 C2 C3

Enumeration Delay O(1) O(Nmin{ε,1−ε}) O(Nmin{2ε,2−2ε}) O(1)

The trade-offs are summarized in Figure 3.3. It shows the trade-offs between the
amortized update time and the enumeration delay based on the parameter ε, which
ranges from 0 to 1.

Optimality. Our trade-offs for all triangle CQAPs are optimal, conditioned on the
OMv conjecture.

We discussed in detail the procedures of our approach for triangle CQAP queries and
give the proofs on its complexity and optimality results in Section 6.

3.3 A Dichotomy Result

The third contribution of the thesis is a dichotomy result for the queries in CQAP0: the
queries in CQAP0 are exactly those CQAP queries admitting linear-time preprocessing
and constant-time update and enumeration delay. All queries outside CQAP0 do not
admit constant-time update and delay regardless of the preprocessing time, unless the
OMv conjecture [36] fails.

The dichotomy result is stated in the following theorem.

Theorem 3.11. Consider an arbitrary CQAP query Q and a database of size N .

• If Q is in CQAP0, then it admits O(N) preprocessing time, O(1) enumeration
delay, and O(1) update time for single-tuple updates.

24

Static Query Evaluation
preprocessing time / enumeration delay

conjunctive
O(Nw) /O(1)

[65]
α-acyclic

O(N) /O(N)
[9]

hierarchical
O(N1+(w−1)ε) /O(N1−ε)

ε ∈ [0, 1] [43]

free-connex
O(N) /O(1)

[9]

Dynamic Query Evaluation
preprocessing time / enumeration delay / update time

conjunctive
O(Nw) /O(1) /O(Nδ) [62]

triangle O(N
3
2) /O(1) /O(N

1
2)∗ [42]

α-acyclic

hiera
rchica

l

O(N
1+(w−1

)ε) /O(N
1−ε) /O(N

δε)∗

ε ∈ [0, 1] [43]

free-connexO(N) /O(1) /O(N)

[38]

q-hierarchical
=

δ0-hierarchical
w = 1, δ = 0

[14]

δ1-hierarchical
w ∈ {1, 2}, δ = 1

Figure 3.4: Landscapes of static and dynamic query evaluation. w: static width; δ:
dynamic width; *: amortized time.

• If Q is not in CQAP0 and has no repeating relation symbols, then there is no al-
gorithm that computes Q with arbitrary preprocessing time, O(N

1
2
−γ) enumeration

delay, and O(N
1
2
−γ) amortized update time, for any γ > 0, unless the OMv conjec-

ture fails.

This dichotomy implies that our approach for general CQAP queries (Theorem 3.4)
is optimal for the queries in CQAP0. The proof of the theorem is given in Chapter 7.

3.4 Current Landscape of Conjunctive Query Evalua-
tion

Our approaches, Theorems 3.4, 3.5 and 3.10, can also be applied to both the static and
dynamic evaluation of CQs (without access patterns): for CQs without access patterns,
we consider them as CQAP queries that have no input variable, and for the static setting,
we compute the view trees in the same way as in the dynamic setting, and enumerate
the results from the view trees.

Figure 3.4 summarizes the landscape of static and dynamic evaluations of CQs and
where our results stand. The blue results in the figure are the new results of this the-
sis. The other results except the α-acyclic in the static setting can be recovered by
Theorem 3.4. The δ0- and δ1-hierarchical queries are the hierarchical queries that are in
CQAP0 and respectively CQAP1. They have dynamic widths 0 and 1. The δ0-hierarchical
queries are precisely the q-hierarchical queries from prior work [14]. All free-connex hi-
erarchical queries are either δ0- or δ1-hierarchical.

25

Chapter 4

The Case of General Queries

In this chapter, we introduce a fully dynamic evaluation approach for arbitrary CQAP
queries whose complexity matches Theorem 3.4. Our dynamic evaluation technique com-
prises three distinct, yet independent stages: preprocessing, enumeration and updates. In
the preprocessing stage, we construct a set of view trees that represents the result of the
query over both the input and output variables. These view trees allow the enumeration
of tuples over the output variables for any access request over the input variables, and
can be updated efficiently upon single-tuple updates to the base relations. We present
the preprocessing, enumeration and update stages in detail in Sections 4.1, 4.2 and 4.3,
respectively. We then prove Theorem 3.4 in Section 4.4.

We consider in the following a fixed CQAP query Q(O|I), its fracture Q†(O|I†), and
a database of size N .

4.1 Preprocessing

In the preprocessing stage, we construct a set of view trees, one for each connected
component in the fracture Q† of Q, which together represent the result of Q† over both
its input and output variables These view trees are constructed following an access-top
variable order ω of Q†. In the following, we discuss the case Q = Q†, which means ω
consists of a single tree; otherwise, we apply the preprocessing stage to each tree in ω.

4.1.1 Extended Variable Orders

The first step of the preprocessing stage is to extend the access-top variable order ω with
the base relations of Q. An extended variable order is obtained by adding the atoms
atoms(Q) of Q to ω as leaves such that each atom is the child of its lowest variable.

In the following sections, when we refer to a variable order, we mean the variable
order extended with the atoms. Consider an extended variable order ω of Q. For each

26

A

B E

C D
T (A,E)

R(A,B,C)S(A,B,D)

A1

B

C D

R(A1, B,C)S(A1, B,D)

A2

E

T (A2, E)

dep(A1) = ∅
dep(B) = {A1}

dep(C) = {A1, B}
dep(D) = {A1, B}

A1

B

C D

R(A1, B,C)S(A1, B,D)

dep(A2) = ∅
dep(E) = {A2}

A2

E

T (A2, E)

Figure 4.1: Left: hypergraph of the query Q in Examples 4.1. Second and third from
left: hypergraph of the fracture Q† of Q. Fourth and fifth from left: variable orders of
the two sub-queries in Q†; they have been extended with the atoms of the queries.

variable X in ω, we denote by ωX the subtree of ω rooted at X; we denote by atoms(ωX)

the set of atoms of Q that are leaves of ωX .

Example 4.1. Figure 4.1 shows the hypergraph (left) of the CQAP query Q(B,C,D,E |
A) = R(A,B,C), S(A,B,D), T (A,E) and its fracture (second and third from left)
Q†(B,C,D,E|A1, A2) = R(A1, B, C), S(A1, B,D), T (A2, E). The fracture has two sub-
queries: Q1(B,C,D|A1) = R(A1, B, C), S(A1, B,D) and Q2(E|A2) = T (A2, E).

Figure 4.1 (two from right) shows two access-top variable orders ω1 and ω2 of the sub-
queries Q1 and Q2, respectively. The two variable orders have been extended by adding
the atoms of Q as leaves: R(A1, B, C) and S(A1, B,D) are leaves of ω1 under their lowest
variable C and D,respectively; T (A2, E) is a leaf of ω2 under its lowest variable E.

�

4.1.2 View Tree Construction

Given an extended access-top variable order ω, the function τ(ω) in Figure 4.2 returns a
view tree constructed from ω. The function traverses ω bottom-up and creates at each
variable X, a view VX defined over the join of the child views of X. The schema of VX
consists of X and the dependency set of X (Line 3). This view allows us to efficiently
enumerate the X-values given a tuple of values for the variables in the dependency set.
If X has siblings, the function creates an additional view V ′X on top of VX whose purpose
is to aggregate away (or marginalize out) X from VX (Line 5). This view allows us to
efficiently maintain the ancestor views of VX under updates to the views created for the
siblings of the variable X.

The time to construct the view tree τ(ω) is dominated by the time to materialize the
view VX for each variable X. The auxiliary view V ′X above VX can be materialized by
marginalizing out X in one scan over VX . Each view VX can be materialized in O(Nw)

time, where w = ρ∗Q({X ∪depω(X)}). The definition of the static width of ω implies that

27

τ(variable order ω) : view tree

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . .ωk

2 Ti := τ(ωi) ∀i ∈ [k]

3 S := {X} ∪ depω(X); VX(S) := join of roots of T1, ..., Tk

4 if X has no sibling return

 VX(S)

T1
. . .Tk

5 V ′X(S \ {X}) := VX(S) return


V ′X(S \ {X})

VX(S)

T1
. . .Tk

Figure 4.2: Construction of a view tree following a variable order ω. At each variable X
in ω, the function creates a view VX whose schema consists of X and the dependency set
of X. If X has siblings, it adds a view on top of VX that marginalizes out X.

the view tree τ(ω) can be constructed in O(Nw(ω)) time. By choosing a variable order
whose static width is w(Q), the preprocessing time of our approach becomes O(Nw(Q)),
as stated in Theorem 3.4.

The next example demonstrates our view tree construction for a query in CQAP0.

Example 4.2. Consider again the query Q(B,C,D,E | A) = R(A,B,C), S(A,B,D),

T (A,E) in Example 4.1 and the two sub-queries Q1(B,C,D|A1) = R(A1, B, C), S(A1,

B,D) and Q2(E|A2) = T (A2, E) in its fracture. Figure 4.3 depicts an access-top variable
order (left) for Q1 and its corresponding view tree (middle). The variable order has static
width 1. Each variable in the variable order is mapped to a view in the view tree, e.g., B is
mapped to VB(A1, B), where {B,A1} = {B}∪dep(B). The views V ′C and V ′D are auxiliary
views. The views V ′C, V ′D, and VA1 marginalize out the variables C, D and respectively B
from their child views. The view VB is the intersection of V ′C and V ′D. Hence, all views
can be computed in O(N) time. Since the query fracture is acyclic, the view tree does not
contain indicator projections.

The only access-top variable order for the connected component Q2 of Q† is the top-
down path A2 − E − T (A2, E), as shown in the right of Figure 4.1. The views mapped
to A2 and E are VA2(A2) and respectively VE(A2, E). They can obviously be computed in
O(N) time. �

The next example considers a CQAP1 whose preprocessing time is quadratic.

28

dep(A1) = ∅
dep(B) = {A1}

dep(C) = {A1, B}
dep(D) = {A1, B}

A1

B

C D

R(A1, B,C)S(A1, B,D)

VA1(A1)

VB(A1, B)

V ′C(A1, B)

VC(A1, B,C)

R(A1, B,C)

V ′D(A1, B)

VD(A1, B,D)

S(A1, B,D)

δVA1(a)

δVB(a, b)

δV ′C(a, b)

δVC(a, b, c)

δR(a, b, c)

V ′D(a, b)

VD(A1, B,D)

S(A1, B,D)

Figure 4.3: (Left) Access-top variable order for Q1(B,C,D|A1) = R(A1, B, C), S(A1,
B,D); (middle) the view tree constructed from the variable order; (right) the delta view
tree under a single-tuple update to R.

dep(A1) = ∅
dep(C) = {A1}

dep(D) = {A1, C}
dep(B) = {A1, C,D}

A1

C

D

B

R(A1, B,C)S(A1, B,D)

VA1(A1)

VC(A1, C)

VD(A1, C,D)

VB(A1, B,C,D)

R(A1, B,C)S(A1, B,D)

δVA1(a)

δVC(a, c)

δVD(a, c,D)

δVB(a, b, c,D)

δR(a, b, c) S(a, b,D)

Figure 4.4: (Left) Access-top variable order for Q1(B,D|A1, C) = R(A1, B, C), S(A1,
B,D); (middle) the view tree corresponding to the variable order; (right) the delta view
tree under a single-tuple update to R.

Example 4.3. Consider the CQAP1 Q(E,D|A,C) = R(A,B,C), S(A,B,D), T (A,E)

and its fracture Q†(E,D|A1, A2, C) = R(A1, B, C), S(A1, B,D), T (A2, E). The fracture
has the two connected components Q1(B,D | A1, C) = R(A1, B, C), S(A1, B,D) and
Q2(E | A2) = T (A2, E). The hypergraphs of Q and its fracture are the same as for the
query in Example 4.2, as shown in Figure 4.1. Figure 4.4 depicts an access-top variable
order (left) for Q1 and its corresponding view tree (middle). The variable order has static
width 2. The view VB joins the relations R and S, which takes O(N2) time. The views
VD, VC, and VA are constructed from VB by marginalizing out one variable at a time.
Hence, the view tree construction takes O(N2) time. The view tree for Q2 is the same as
in Example 4.2 and can be constructed in linear time.

4.1.3 Indicator Projections

In the previous section, we discussed the procedure to construct a view tree for a CQAP
query. This procedure can be sub-optimal when the query is cyclic.

29

dep(A) = ∅
dep(B) = {A}

dep(C) = {A,B}

A

B

C

S(B,C) T (C,A)

R(A,B)

VA(A)

VB(A,B)

V ′C(A,B)

VC(A,B,C)

S(B,C) T (C,A)

R(A,B)

VA(A)

VB(A,B)

V ′C(A,B)

VC(A,B,C)

S(B,C) T (C,A)R(A,B)

Figure 4.5: (Left) Access-top variable order for the cyclic CQAP query Q(B,C|A) =
R(A,B), S(B,C), T (C,A); (middle) the view tree constructed following the variable or-
der; (right) the view tree obtained from the left view tree by placing R under VC .

Example 4.4. Consider the triangle query Q(B,C|A) = R(A,B), S(B,C), T (C,A). The
fracture Q† of Q is the query itself. Figure 4.5 shows an access-top variable order for Q
(left) and the view tree constructed following the variable order (middle).

The view VC(A,B,C) can be computed in O(N2) time, since there are O(N) B-values
in S and O(N) C-values in A. This is larger than the time characterized by the static
width, i.e., O(N1.5).

To avoid this large view VC, we can change the view tree by placing R under VC, as
shown in the right view tree in Figure 4.5. The relation R forms a cycle with S and
T , which constraints the size of VC to be O(N1.5), and thus the time to compute VC is
O(N1.5) using a worst-case optimal join algorithm.

�

The above example shows that placing a relation under a different view may create
a cycle of relations and reduce the size and the computation time of the view. This
strategy, however, does not work when the relation is in multiple cycles of relations in
different parts of a view tree. For example, consider the 4-loop query with a diagonal
relation:

Qn(A,B,C,D|·) = R(A,B), S(B,C), T (C,D), U(D,A),W (A,D).

The diagonal relationW is in two triangle sub-queries. We need to placeW under the two
different views that compute the two triangle sub-queries, to reduce the time to compute
these views. If we duplicate W and place it under the two views, the multiplicities of the
tuples in W will be multiplied twice instead of once, which results in a wrong answer. To
resolve this issue, we introduce the concept of indicator projection.

30

indicators(CQAP Q, variable order ω) : extended variable order

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . .ωk

2 ω̂i := indicators(ωi) ∀i ∈ [k]

3 S := {X} ∪ depω(X); R := atoms(ω)

4 I := { IZR(Z) | R(Y) ∈ (atoms(Q) \ R) and Z = Y ∩ S 6= ∅ }
5 {I1, ..., I`} := GYO∗(I ∪ R)

6 return

 X

ω̂1
. . . ω̂k I1

. . . I`

Figure 4.6: Adding indicator projections to a variable order ω of a CQAP Q. Each
variable X in ω gets as new children the indicator projections of relations that do not
occur in the subtree rooted at X but form a cycle with those that occur. GYO∗(I ∪ R)
uses the GYO reduction [31] to determine the originated indicators in I that form a cycle
with the atoms in R.

Definition 4.5 (Indicator Projection). For a relation R over schema X and Y ⊆ X , the
indicator projection IYR is a relation over Y such that [1]:

for all y ∈ Dom(Y) : IYR(y) =

{
1 if there is t ∈ R such that y = t[Y]

0 otherwise.

Intuitively, the indicator projection IYR is a simulation of the bag semantics of R(Y)

using our data model. Instead of moving relations in a view tree, we put the indicator
projections of relations under views. These indicator projections do not affect the results
of the query, but can reduce the time to compute the views.

Extend a Variable Order with Indicator Projections. In the preprocessing step
for a cyclic query, after extending the given variable order with atoms, we further extend
the variable order with indicator projections. The view tree constructed following the
extended variable order will then have these indicator projections participating in the
construction of its views.

Given a CQAP query Q and a variable order ω for Q, the function indicators in
Figure 4.6 extends ω with indicator projections. At each variable X in ω, we compute the
set I of all possible indicator projections (Line 4). Such indicators IZR are for relations R
whose atoms are not included in the subtree rooted at X but share a non-empty set Z of
variables with {X}∪depω(X). We choose from this set those indicators that form a cycle
with the atoms in the subtree of ω rooted at X (Line 5). We achieve this using a variant

31

dep(A) = ∅
dep(B) = {A}

dep(C) = {A,B}

A

B

C

S(B,C)T (C,A)

R(A,B)

IA,BR(A,B)

VA(A)

VB(A,B)

V ′C(A,B)

VC(A,B,C)

S(B,C)T (C,A)

R(A,B)

IA,BR(A,B)

δVA(a)

δVB(a, b)

V ′C(a, b)

VC(A,B,C)

S(B,C)T (C,A)

δR(a, b)

IA,BR(A,B)

δVA(a)

δVB(a, b)

δV ′C(a, b)

δVC(a, b, C)

S(b, C) T (C, a)

R(a, b)

δIA,BR(a, b)

Figure 4.7: (Left) Access-top variable order for the cyclic CQAP query Q(B,C|A) =
R(A,B), S(B,C), T (C,A); (second from left) the view tree constructed from the variable
order; (two from right) the two delta view trees under a single-tuple update to R.

of the GYO reduction [11]. Given the hypergraph formed by the hyperedges representing
these indicators I and the atoms R, GYO repeatedly applies two rules until it reaches a
fixpoint: (1) Remove a node that only appears in one hyperedge; (2) Remove a hyperedge
that is included in another hyperedge. If the result of GYO is a hypergraph with no
nodes and one empty hyperedge, then the input hypergraph is (α-)acyclic. Otherwise,
the input hypergraph is cyclic and the GYO’s output is a hypergraph with cycles. Our
GYO variant, dubbed GYO∗ in Figure 4.6, returns those indicator projections from I
that contribute to this non-empty output hypergraph. The chosen indicator projections
become children of X (Line 6). The following example demonstrates the extension of a
variable order with indicator projections.

Example 4.6. Consider again the triangle query Q(B,C|A) = R(A,B), S(B,C), T (C,A).

The fracture Q† of Q is the query itself.
Figure 4.7 shows the access-top variable order ω for Q. The input variable A is on top

of the output variables B and C. At variable C, the function indicators from Figure 4.6
creates an indicator projection IA,BR since the relation R is not under C but forms a cycle
with the relations S and T . By adding IA,BR below C, the time to compute VC reduces
from O(N2) to O(N

3
2), and the time to construct the view tree reduces from O(N2) to

O(N
3
2).

In the preprocessing stage, we construct the view tree following the variable order as
shown in Figure 4.7 (second from left). The view VC joins the relations R and S and
the indicator projection IA,BR, which can be computed in O(N

3
2) time using a worst-case

optimal join algorithm. The view VB can be computed in linear time by looking up each
tuple from V ′C in R. The views V ′C and VA are constructed by marginalizing out one
variable at a time in time O(N

3
2) and O(N) time, respectively. Hence, the view tree

construction takes O(N
3
2) time.

32

We show an example in Section 4.3 that indicator projections can reduce the update
time for cyclic queries.

4.2 Enumeration

The view trees constructed by the function τ for any access-top VO for Q† allow for
constant-delay enumeration of the tuples in Q(O|i) given any tuple i over the input
variables I. The enumeration relies on iterators with access patterns constructed over
the materialized views.

4.2.1 View Iterators

We first introduce iterators for views. A view iterator can enumerate the tuples in a
materialized view using the standard iterator interface. We define itV (O|I) as a view
iterator it over a view V with schema O∪I, where O is the output schema and I is the
context schema; the output schema O and the context schema I of a view iterator are
not necessarily disjoint. We write itV (O) when I is empty.

The view iterator implements an interface with three methods: open(ctx), next() and
contains(o).

• The open(ctx) method initializes the iterator using the tuple ctx over I as context.
This method sets the range of the iterator to those O-tuples that are consistent
with ctx in V , that is, either paired with or part of ctx in V .

• The next() method returns an O-tuple consistent with ctx in V . It returns EOF
when theO-tuples in the range of the iterator are exhausted. The returnedO-tuples
are distinct.

• The contains(o) method checks whether the O-tuple o is consistent with ctx in V ;
in other words, whether o will be enumerated by the iterator.

All three methods operate in constant time, as per our computational model (cf. Chap-
ter 2).

Example 4.7. Consider a materialized view V (A,B). The iterator itV (A,B) enumer-
ates the (A,B)-tuples in the view. The iterator itV (B|A) enumerates the distinct B-
values paired with a given A-value in V . The iterator itV (B|A,B) takes as input a given
(A,B)-tuple (a, b) and returns b if the tuple (a, b) exists in V ; otherwise, it returns EOF.
The iterator itV (A) is invalid as the union of its output variable A and context schema
∅ do not match the schema of V , i.e., {A} ∪ ∅ 6= {A,B}.

33

itVA1
(A1|A1)

itVB
(B|A1)

itVC
(C|A1, B) itVD

(D|A1, B)

1 ctx 0 := input A-value
2 itVA(A|A).open(ctx 0)

3 while (a := itVA(A|A).next()) 6= EOF do
4 itVB (B|A).open(a)
5 while (b := itVB (B|A).next()) 6= EOF do
6 itVC (C|A,B).open(a, b)

7 while (c := itVC (C|A,B).next()) 6= EOF do
8 itVD(D|A,B).open(a, b)

9 while (d := itVD(D|A,B).next()) 6= EOF do
10 m := VC [a, b, c] · VD[a, b, d]
11 output (b, c, d)→ m

12 output EOF

Figure 4.8: Left: View iterators created over the view tree for Q1(B,C,D|A1) =
R(A1, B, C), S(A1, B,D) from Example 4.2; Right: Enumeration procedure for Q1 us-
ing the created view iterators.

4.2.2 Enumeration Procedures

When the result of a query is in a single view, such as the query Q2(E|A2) = T (A2, E)

from Example 4.2, we create a single view iterator over the view to enumerate the query
result. When the result is distributed in multiple views in a view tree, we need to create
a list of view iterators over these views. The result of the query is the concatenations of
the output values enumerated by the created iterators.

We use the access-top variable order of the view tree to guide the construction of
the iterators: we create iterators over the views that correspond to the free variables
in the variable order and then generate an enumeration procedure for the query using
the created iterators. We first give the intuition in the following example and then the
algorithm.

Example 4.8. Consider the query Q(B,C,D,E|A) from Example 4.2 and the two con-
nected components Q1(B,C,D|A1) and Q2(E|A2) of its fracture. For the query Q2, we
create the view iterator itVT (E|A2) to enumerate the values over E for a given A2-value.

For the query Q1, we create a list of view iterators. Figure 4.3 (middle) depicts the
view tree for Q1. The view iterators are created following a top-down manner. At the
root view VA1, we create itVA1

(A1|A1) to check if a given input A-value exists in VA1.
If it exists, the iterator returns the same A-value, which then serves as the context for
the iterators created below. The iterator itVB(B|A1) at view VB enumerates the B-values
that are paired with a in VB. Such (A1, B)-values serve as the context for itVC (C|A1, B)

and itVD(D|A1, B), which enumerate C- and respectively D-values. We skip creating

34

iterators over auxiliary views V ′C(A1, B) and V ′D(A1, B) because we already have iterators
for A and B (these auxiliary views are created only for efficient update; they do not play
a role in the enumeration). These iterators are then organized into nested loops as shown
in the right of Figure 4.8. The enumeration procedure returns EOF when all the iterators
are exhausted, i.e., all tuples have been enumerated. The multiplicity of an output tuple
is the product of the multiplicities of its values in the views VC and VD.

The time needed to fetch the next value from each iterator is O(1); this is also the
enumeration delay of the procedure.

We have now constant-delay enumeration procedures for the tuples in Q1(B,C,D|a)

and the tuples in Q2(E|a) for any A-value a. We can enumerate with constant delay the
tuples in Q(B,C,D,E|a) as follows. We ask for the first tuple (b, c, d) in Q1(B,C,D|a)

and then iterate over the distinct E-values in Q2(E|a). For each such E-value e, we
report the tuple (b, c, d, e). Then, we ask for the next tuple in Q1(B,C,D|a) and restart
the enumeration over the tuples in Q2(E|a), and so on.

Nesting view iterators, as in Example 4.8, is valid, since the context schema of each
iterator is subsumed by the input variables of the query and the output variables of
preceding iterators. In other words, the iterators for the free variables are above those
for the bound variables and the iterators for the input variables are above those for the
output variables. This is guaranteed, since the view tree is built over the access-top
variable order. The nesting order of the view iterators is not always unique; e.g., we can
swap the two innermost loops in the procedure from Figure 4.8.

We next give the algorithm. Figure 4.9 shows the function BuildIterators for
building the list of view iterators for a given view tree of a CQAP query Q with access
pattern (O|I). It recursively constructs the view iterators by traversing the view tree T
in a top-down fashion. Consider the root view VX(X) of T constructed at variable X in
the corresponding variable order. If X /∈ X , then VX is an auxiliary view that allows
for efficient maintenance under updates (c.f. Figure 4.2) but has no role in enumeration,
thus we recur on its child (Lines 2-3). The function creates a view iterator with output
variable X over VX if X is a free variable; if X is an output variable, X is removed from
the context schema, and the iterator enumerates the X-values that are consistent with
the given tuple over X in VX ; otherwise, X is an input variable, X is kept in the context
schema of the iterator, so the iterator serves to check whether the given value over X
is consistent with the other given values in X in VX (Line 4). The function recursively
creates iterators in each subtree and concatenates them into a list of iterators (Lines 5-6).

We then generate the enumeration procedure by organizing the view iterators into
nested loops based on a pre-order traversal of the view tree. We open the iterators with

35

BuildIterators(view tree T , access pattern (O|I)) : list of iterators

switch T :

R(Y) 1 return [] // empty list

VX(X)

T1 . . .Tk

2 if X /∈ X or // skip auxiliary views and
VX is an indicator projection indicator projections

3 return BuildIterators(T1, (O|I))

4 itX =


[(new itVX (X|X))] , if X ∈ I
[(new itVX (X|X \ {X}))] , if X ∈ O
[] , otherwise // empty list

5 itchildi = BuildIterators(Ti, (O|I)), ∀i ∈ [k]

6 return itX ++ itchild1 ++ . . . ++ itchildk // concatenation of the lists

Figure 4.9: Create a list of view iterators with support for the access pattern (O|I) in a
view tree T . We use brackets to denote a list. The operator ++ concatenates two lists.

values from their ancestor views as context, thus ensuring they enumerate only those
values guaranteed to be in the query output. Each concatenation of the outputs of the
iterators forms the values of an output tuple. Since the open and next calls of the view
iterators take constant time, the enumeration delay is constant.

Multiplicity Computation. Once we get an output tuple from the enumeration pro-
cedure as shown above, we need to compute the multiplicity of the tuple in the view tree.
Figure 4.10 shows the ComputeM function for computing the multiplicity of a tuple t

in a view tree T . The tuple t is over both the output and input variables of the query,
i.e., the concatenation of the given tuple over the input variables and the enumerated
values over the output variables.

The function traverses the view tree T based on a pre-order. If t is in the root view
V (Line 1), the function returns the multiplicity of t in V (Line 2). Otherwise, i.e., the
tuple t is stored below V , possibly distributed in different branches (Line 3), the function
recurs to each subtree and returns the product of their multiplicities (Lines 4-5). The
computation time is determined by the number of views in the view tree, which is O(1).

4.2.3 Multiple View Trees

We discussed how to enumerate tuples from one view tree. In case of queries with several
connected components Q1(O1 | I1), . . . , Qn(On | In), we form a nesting chain for the
enumeration from their view trees, as shown below:

36

ComputeM(view tree T , tuple t): multiplicity

switch T :

R(Y) 1 return R[t] // assert Sch(t) = Y

VX(X)

T1 . . .Tk

2 if X = Sch(t)

3 return V [t]

4 else // X (Sch(t)

5 Vi := variables in Ti
6 return

∏
i∈[k] ComputeM(Ti, πVit)

Figure 4.10: For a tuple t over the free variables of a CQAP query, compute the multi-
plicity of t in the view tree T .

1 foreach o1 → m1 ∈ Q1(O1|i1)

2 ···
3 foreach on → mn ∈ Qn(On|in)

4 report o1···on → m1 × · · · ×mn

Consider a tuple i over the input variables I of Q. It holds Q(O|i) = ×i∈[n]Qi(Oi|ii)
where ii[X ′] = i[X] if X = X ′ or X is replaced by X ′ when constructing the fracture of Q.
The multiplicity of an output tuple is the product of the multiplicities of the output tuples
from Q1, . . . , Qn. Since we can enumerate with constant delay the tuples in Qi(Oi | ii)
for any tuple ii over Ii with constant delay, we can enumerate the tuples in Q(O | i) with
constant delay by nesting the enumeration procedures for Q1(O1 | i1), . . . , Qn(On | in).

4.3 Update

We now explain how to update the view trees constructed by the function τ in Figure 4.2.
Consider a single-tuple update δR = {x → m} to an input relation R; m is positive in
case of insertion and negative in case of deletion.

We update each view tree that has an atom R(X) at a leaf using the function
Apply(T, δR) in Figure 4.11: it propagates the update δR in the view tree T from
the leaf R to the root view. For each view on this path, it updates the view result with
the change computed using the standard delta rules [23]. If T does not refer to R, the
procedure has no effect.

The update δR may affect indicator projections IZR. A new single-tuple update
δIZR = {x[Z]→ k} to IZR is triggered in the following two cases. If δR is an insertion

37

Apply(view tree T , update δR) : delta view

switch T :

Ksig′(X) 1 if Ksig′ = R

2 R(X) := R(X) + δR(X)

3 return δR

4 return ∅

V (X)

T1
. . .Tk

5 Vi(Xi) := root of Ti, for i ∈ [k]

6 if ∃ j ∈ [k] s.t. R ∈ Tj
7 δVj := Apply(Tj, δR)

8 δV (X) := join of V1(X1), ..., δVj(Xj), ..., Vk(Xk)
9 V (X) := V (X) + δV (X)

10 return δV

11 return ∅

Figure 4.11: Updating views in a view tree T for a single-tuple update δR to relation
part R. If R is a leaf of T , the function updates R and its ancestor views in a bottom-up
fashion and returns the change of the root view. Otherwise, the empty set is returned.

and x[Z] is a value not already in πZR, then the new update is triggered with k = 1. If
δR is a deletion and πZR does not contain x[Z] after applying the update to R, then the
new update is triggered with k = −1. This update is propagated up to the root of each
view tree, like for δR.

The function Apply(T, δR) in Figure 4.11 propagates the update δR in the view tree
T from the leaf R to the root view. For each view on this path, it updates the view result
with the change computed using the standard delta rules [23]. If T does not refer to R,
the procedure has no effect.

4.3.1 Dynamic Width

Recall that the time to compute a view VX is O(Nw), where w = ρ∗Q({X} ∪ depω(X)).
In case of an update to a relation or indicator R(Y) under VX in the view tree, the
variables in Y are set to constants. The time to update VX is then O(N δ), where δ =

ρ∗Q(({X} ∪ depω(X)) \ Y).
We next give the formal definition of the dynamic width in Definition 4.9. The

definition of static width is copied here for convenience: the blue texts are the differences
between the two definitions.

Definition 4.9. The static width w(ω) and dynamic width δ(ω) of an extended variable

38

order ω are:

w(ω) = max
X∈vars(ω)

ρ∗Q({X} ∪ depω(X))

δ(ω) = max
X∈vars(ω)

max
R(Y)∈atoms(ωX)

ρ∗Q(({X} ∪ depω(X))\Y)

where atoms(ωX) is the set of atoms (base relations and indicators) in the subtree of ω
rooted at X.

The dynamic width is defined similar to the static width, with one simplification:
we consider every case of an atom R(Y) being replaced by a single-tuple update, so
its variables Y are all set to constants and can be discarded in the computation of the
fractional edge cover number.

Example 4.10. Figure 4.3 (right) shows the delta view tree for the view tree to the left
under a single-tuple update δR(a, b, c) to R. We update the relation R(A,B,C) with
δR(a, b, c) in constant time. The ancestor views of δR (in blue) are the deltas of the
corresponding views, computed by propagating δR from the leaf to the root. They can
also be effected in constant time. Overall, maintaining the view tree under a single-tuple
update to any relation takes O(1) time.

Consider now the delta view tree in Figure 4.4 (right) obtained from the view tree
to its left under the single-tuple update δR(a, b, c). We update VB(A1, B, C,D) with
δVB(a, b, c,D) = δR(a, b, c), S(a, b,D) in O(N) time, since there are at most N D-values
paired with (a, b) in S. We then update the views VD, VC, and VA1 in O(1) time. Updates
to S are handled analogously. Overall, maintaining the view tree under a single-tuple
update to any input relation takes O(N) time.

Consider now a single-tuple update δR to R for the query in Example 4.6, the base
relation R and the indicator projection IA,BR are affected by the update. We compute two
delta view trees shown on the right in Figure 4.7 for changes in R and respectively IA,BR.
In the delta view tree for changes to R (the left one), computing the delta δVB(a, b) =

V ′C(a, b), δR(a, b) requires a constant lookup in V ′C; computing δVA(a) = δVB(a, b) takes
constant time. In the delta view tree for changes to IA,BR (the right one), computing the
delta δVC(a, b, C) = S(b, C), T (C, a), δIA,BR(a, b) requires intersecting the C-values that
are paired with b in S and with a in T , which takes O(N) time; computing δV ′C(a, b) =

δVC(a, b, C) requires aggregating away O(N) C-values; computing δVB and δVA takes
constant time. Overall, a single-tuple update to R takes O(N) time. The delta view trees
for changes to S and T are analogous. Hence, the update time of the query Q is O(N).

39

A

B C

D

E

F

G

H

J

R1 R2

R3

R4

R5

R6

R7

R8

R9

dep(A) = ∅
dep(B) = {A}

dep(C) = {A,B}
dep(D) = {A}
dep(E) = {D}
dep(F) = {B}
dep(G) = {F}
dep(H) = {C}
dep(J) = {H}

A

B

C

D

E

F

GH

J

R1(A,B)

R2(B,C)R3(C,A)

IA,BR1(A,B)

R4(A,D)

R5(D,E)

R6(B,F)

R7(F,G)

R8(C,H)

R9(H,J)

D

A

B

C

E

F

GH

J

R1(A,B)

R2(B,C)R3(C,A)

IA,BR1(A,B)

R4(A,D) R5(D,E)

R6(B,F)

R7(F,G)R8(C,H)

R9(H,J)

E

D

A

B

C F

GH

J

R1(A,B)

R2(B,C)R3(C,A)

IA,BR1(A,B)

R4(A,D)

R5(D,E)

R6(B,F)

R7(F,G)R8(C,H)

R9(H,J)

Figure 4.12: Top left: The hypergraph of the query Q in Example 4.11. Remaining
three: the optimal access-top variable orders of the query Q with the roots A, D and E,
respectively. All other access-top variable orders are analogous to these three variable
orders. The dependent sets of the two variable orders in the second row are omitted.

In the following example, we show that the indicator projections can reduce the update
time for a query no matter which variable order is chosen as the strategy for the dynamic
evaluation.

Example 4.11. Consider the following query:

Q(A,B,C,D,E, F,G,H, J | ·) =R1(A,B), R2(B,C), R3(C,A), R4(A,D), R5(D,E),

R6(B,F), R7(F,G), R8(C,H), R9(H, J)

It is a triangle query with three tails. Its fracture is same as the query itself. Figure 4.12
shows the hypergraph (top-left) of the query and three access-top variable orders of the
query. They are the optimal variable orders that are rooted at variables A, D and E.
That is, other variable orders rooted at the corresponding variable do not admit smaller
static and dynamic widths. Since the query is symmetric, the optimal variable orders
rooted at other variables are analogous to these three variable orders.

40

Consider the variable order in the top right of Figure 4.12. The indicator projection
IA,BR1 is created under variable C to form a cycle with R2 and R3 and thus to reduce the
time to compute and update the view VC(A,B,C) = IA,BR1(A,B), R2(B,C), R3(C,A)

at C. The time to update VC is O(N δ), where δ is the fractional edge cover number of
{A,B,C} minus the schema of an atom below C. If we choose the atom to be R9(H, J),
the remaining variables are still {A,B,C}. With the indicator projection IA,BR1, the
fractional edge cover number is ρ∗(A,B,C) = 3

2
(by assigning a weight of 1

2
to each atom

IA,BR1, R3 and R2). Without IA,BR1, the fractional edge cover number is ρ∗(A,B,C) = 2.
Hence, the indicator projection IA,BR1 reduces the time to update VC from O(N2) to
O(N

3
2).

The two variable orders in the second row of Figure 4.12 are similar to the aforemen-
tioned variable order: they all have the variables A, B, and C in one root-to-leaf path,
followed by the atom R9, which has no intersection with A, B, and C. The indicator
projection IA,BR1 created under variable C forms cycles with R2 and R3 and thus reduces
the time to update the view VC(A,B,C) at C from O(N2) to O(N

3
2) in the same way.

Hence, the indicator projections can reduce the update time of the query Q for all variable
orders.

4.4 Complexity Analysis

We next discuss the complexities of the preprocessing, enumeration and update stages of
our dynamic evaluation approach for arbitrary CQAP queries. Recall the theorem that
states the complexities of our approach:

Theorem 3.4. Given a CQAP with static width w and dynamic width δ and a database
of size N , the query can be evaluated with O(Nw) preprocessing time, O(N δ) update time
under single-tuple updates, and O(1) enumeration delay.

Before proving it, we discuss how we select the static and dynamic widths of CQAP
queries. We are interested in the dynamic evaluation of queries, so we consider the
update time of the queries more important than the preprocessing time. We consider
the standard lexicographic ordering ≤ on pairs of dynamic and static widths: (δ1,w1) ≤
(δ2,w2) if δ1 ≤ δ2 or δ1 = δ2 and w1 ≤ w2. Given a set S of variable orders, we define
minω∈S(δ(ω),w(ω)) = (δ,w) such that ∀ω ∈ S : (δ,w) ≤ (δ(ω),w(ω)). The dynamic and
static width of a CQAP query Q is the minimum pair over all access-top variable orders
of the fracture Q†:

41

Definition 4.12. The dynamic width δ(Q) and static width w(Q) of a CQAP query Q
are:

(δ(Q),w(Q)) = min
ω∈acc-top(Q†)

(δ(ω),w(ω))

Intuitively, Definition 4.12 first minimizes for the dynamic width and then for the
static width. It remains an open question whether the variable order of a query Q that
gives the minimum dynamic width is the same variable order that gives the minimum
static width.

We are now ready to prove Theorem 3.4.

Proof. Given a CQAP Q with static width w(Q) = w and dynamic width δ(Q) = δ and
a database of size N , we show that our approach presented in Section 4 evaluates Q with
O(Nw) preprocessing time, O(N δ) update time, and O(1) enumeration delay. Consider
an access-top variable order ω for the fracture Q† with w(ω) = w and δ(ω) = δ. In the
following, we analyze each of the three stages preprocessing, update, and enumeration.

Preprocessing. Without loss of generality, assume that ω consists of a single tree.
Otherwise, we do the analysis below for each of the constantly many trees in ω. The
preprocessing stage consists of materializing the view tree T = τ(ω) where τ is the
function given in Figure 4.2. We show by induction on the structure of T that every node
in T can be materialized in O(Nw) time.

Base Case: Each leaf atom or indicator projection in T can be materialized in linear
time.

Induction Step: Consider an auxiliary view V ′X in T forX ∈ vars(ω). By construction,
this view results from its single child view VX by marginalizing out variable X. By
induction hypothesis, the view VX can be computed in O(Nw) time, hence its size has
the same complexity bound. We can compute V ′X by scanning over the tuples in VX and
maintaining during the scan the count |σS=sVX | for each tuple s in πSVX . This can be
done in O(Nw) overall time.

Consider now a view VX(S) in T with X ∈ vars(ω) and S = {X} ∪ depω(X). Let
V1(S1), . . . , Vk(Sk) be the child nodes of VX . Each child node can be a view, an atom, or an
indicator projection. By induction hypothesis, the child nodes of VX can be materialized
in O(Nw) time. Consider any variable Y that occurs in the schemas of at least two child
nodes of VX . This means that Y ∈ S = {X} ∪ depω(X). Hence, any variable that does
not occur in S cannot be a join variable for the child views of VX . We first marginalize
out the variables in the child views that do not occur in S. This can be done in O(Nw)

time. Let V ′1(S ′1), . . . , V ′k(S ′k) be the resulting views. The view VX can now be rewritten
as VX(S) = V ′1(S ′1), . . . , V ′k(S ′k). Since the views V ′1 , . . . , V ′k result from joining the atoms

42

(and indicator projections) in ω, we can upper-bound the computation time for VX by
O(Np) where p = ρ∗Q(S) [59]. It follows from the definition of w that p is upper-bounded
by w. We conclude that the view VX can be computed in O(Nw) time.

Enumeration. Assume that I and O are the input and respectively output variables
of Q and let I† be the input variables of Q†. We show that for any input tuple i over
I, the tuples in Q(O|i) can be enumerated with constant delay using the view trees
constructed in the preprocessing stage. Let ω1, . . . , ωn be the trees in ω (ω is a forest)
and τ(ω1) = T1, . . . , τ(ωn) = Tn the view trees constructed from ω1, . . . , ωn. For j ∈ [n],
let Qj(Oj|Ij) with Oj = O ∩ vars(ωj) and Ij = I† ∩ vars(ωj) be the CQAP query that
joins the atoms appearing at the leaves of Tj. We first explain how for any j ∈ [n] and
ij over Ij, the tuples in Qj(Oj|ij) can be enumerated with constant delay using the view
tree Tj. Since the view tree is constructed following an access-top variable order, it holds
that all views VX where X is free (input) are above the views VY where Y is bound
(output). Hence, we can construct a list of the view iterators over the view tree by the
function BuildIterators (Figure 4.9), and organize them into nested loops, where the
iterators are opened with values from their ancestor views as context, thus ensuring they
enumerate only those values guaranteed to be in the query output. Since the open and
next calls of the view iterators take constant time, the enumeration delay is constant.

Assume that we can enumerate the tuples in Qj(Oj|ij) with constant delay for any
j ∈ [n] and tuple ij over Ij. Consider a tuple i over I. It holds Q(O|i) = ×j∈[n]Qj(Oj|ij)
where ij[X

′] = i[X] if X = X ′ or X is replaced by X ′ when constructing the fracture
of Q. We enumerate the tuples in Q(O|i) by interleaving the enumeration procedures
for Q1(O1|i1), . . . , Qn(On|in). That is, we first retrieve the first complete tuple oj from
Qj(Oj|ij) for each j ∈ [n] and report o1 · · ·on. Then, we iterate over the remaining tuples
in Qn(On|in). For each such tuple o′n, we report o1 · · ·o′n. After all tuples in Qn(On|in)

are exhausted, we move to the next tuple in Qn−1(On−1|in−1) and restart the enumeration
for Qn(On|in), and so on.

We conclude that the time to report the first tuple in Q(O|i), the time to report a
next tuple after the previous one is reported, and the time to signalize the end of the
enumeration after the last tuple is reported is constant.

Updates. We show that the view trees constructed in the preprocessing stage can be
updated in O(N δ) time under single-tuple updates to the base relations. Consider a
single-tuple update to a base relation R. We first update each view tree referring to
an atom of the form R(X). Updating a view tree amounts to computing the deltas of
the views on the path from R(X) to the root of the view tree. We have shown above

43

that for each variable X, the views VX and V ′X can be materialized in O(Np) time where
p = ρ∗Q({X}∪depω(X)). Since the update fixes the values in X , the time to compute the
delta of these views under the update becomesO(Nd) where d = ρ∗Q(({X}∪depω(X))\X).
A single-tuple update to R can trigger a single-tuple update to each indicator view of
the form IZ(R(Z)). Analogously to the reasoning above, we conclude that the time to
compute the deltas of the views under such updates is O(Nd) where d = ρ∗Q(({X} ∪
depω(X)) \ Z). It follows from the definition of the dynamic width δ of ω, that in both
cases the exponent d is upper-bounded by δ. This implies that the overall update time
is O(N δ).

44

Chapter 5

Trade-Offs in Dynamic Evaluation for
CQAP Queries with Hierarchical
Fractures

For triangle CQAP queries and CQAP queries with hierarchical fractures, we introduce
a dynamic approach that uncovers the trade-offs between the preprocessing time, update
time, and enumeration delay. We focus on the queries with hierarchical fractures in this
chapter, and the triangle CQAP queries in the next chapter.

The approach partitions the data into heavy and light parts and employ adaptive
evaluation strategies to them. The trade-offs are achieved by tuning the threshold for
the heavy-light partitioning. The complexities of our dynamic evaluation technique for
CQAP queries with hierarchical fractures is stated in Theorem 3.5.

In this chapter, we first give the formal definition of the data partitioning (Section 5.1),
and then the preprocessing (Section 5.2), enumeration (Section 5.3), and update (Sec-
tion 5.4) stages of our approach. We then prove Theorem 3.5 and discuss the complexities
in Section 5.5. At the end of the chapter, we show the optimality of our approach in Sec-
tion 5.6.

We consider in the following a fixed CQAP query Q(O|I), its fracture Q†(O|I†) which
is hierarchical, and a database of size N . To simplify the presentation, we assume that
the fracture has one connected component, which implies that the fracture is the query
itself and the variable order of the query is a single tree. Otherwise, we can evaluate
each connected component separately. Whenever we refer to a (canonical or access-top)
variable order of a query Q, we mean the (canonical or access-top) variable order extended
with the atoms of Q.

45

5.1 Data Partitioning

We partition relations based on the frequencies of their values. For a database D, relation
R ∈ D over schema X , schema S ⊂ X , and threshold θ, a partition of R on S with
threshold θ is a pair (RS)H , RS)L) of relations such that

(union) R(x) = RS)H(x) +RS)L(x) for each x ∈ Dom(X)

(domain partition) πSR
S)H ∩ πSRS)L = ∅

(heavy part) ∀t ∈ πSRS)H , ∃K ∈ D: |σS=tK| ≥ 1
2
θ

(light part) ∀t ∈ πSRS)L and ∀K ∈ D: |σS=tK| < 3
2
θ

We call (RS)H , RS)L) a strict partition of R on S with threshold θ if it satisfies the union
and domain partition conditions and the following strict versions of the heavy and light
part conditions:

(strict heavy part) ∀t ∈ πSRS)H , ∃K ∈ D: |σS=tK| ≥ θ

(strict light part) ∀t ∈ πSRS)L and ∀K ∈ D: |σS=tK| < θ

The relation RS)H is called heavy and the relation RS)L is called light on the partition key
S. Due to the domain partition, the relations RS)H and RS)L are disjoint. For |D| = N

and a strict partition (RS)H , RS)L) of R on S with threshold θ = N ε for ε ∈ [0, 1], we
have: (1) ∀t ∈ πSR

S)L : |σS=tR
S)L| < θ = N ε; and (2) |πSRS)H | ≤ N

θ
= N1−ε. The

first bound follows from the strict light part condition. In the second bound, πSRS)H

refers to the S-tuples that have high degrees (more or equal to θ) in some relation in the
database. The database can contain at most N

θ
such tuples; otherwise, the database size

would exceed N .
A relation R can be partitioned on multiple partition keys S1, . . . ,Sn, which are not

necessarily disjoint. We write RS1)s1,...,Sn)sn to denote the relation part obtained after
partitioning RS1)s1,...,Sn−1)sn−1 on Sn, where si ∈ {H,L} for i ∈ [n]. The domain of
RS1)s1,...,Sn)sn is the intersection of the domains of RSi)si , for i ∈ [n]. We call S1)

s1, . . . ,Sn) sn the HL-signature for R.

Example 5.1. Consider a relation R with the schema (A,B,C) and the partition keys
{A} and {A,B}. The relation part RA)H,AB)L is obtained by first partitioning R on {A}
and then on {A,B}, and it contains the tuples with A-values that have high degrees in
R and (A,B)-values that have low degrees in R. The HL-signature for RA)H,AB)L is
A) H,AB) L. �

5.2 Preprocessing

For preprocessing, we first partition the base relations into heavy and light parts based
on the degrees of the values. This decomposes the query over the input relations into

46

a union of queries over the heavy and light parts; we call them the skew-aware queries.
We then construct a set of variable orders extended with the relation parts such that
each variable order corresponds to an evaluation strategy for a skew-aware query. For
variable orders over light relation parts, we follow the general approach from Section 4.1
and construct view trees from access-top variable orders. For variable orders involving
heavy relation parts, we construct view trees from variable orders that are not access-top,
thus yielding non-constant enumeration delay but better preprocessing and update times.
This trade-off is controlled by the parameter ε.

In the following of this section, we first give a function that turns canonical vari-
able orders into optimal access-top ones (Section 5.2.1), and then explain how to obtain
different variable orders from the canonical variable order of the hierarchical query by
using the above function (Section 5.2.2). In Section 5.2.3 we describe the construction
of view trees from variable orders. Proofs of the propositions in this section are given in
Section 5.2.4.

5.2.1 From Canonical to Access-Top Variable Orders

Given a canonical variable order ω of Q(O|I), the function Acc-Top(ω, (O|I)) in Fig-
ure 5.1 returns an access-top variable order for Q with optimal static and dynamic width.
The function proceeds recursively on the structure of ω. At a variable X, the function
selects a set D of variables from the subtree ωX rooted at X based on the type of X:
1) if X is an input variable, the function sets D = ∅; 2) if X is an output variable, the
function defines D to be the input variables in ωX , and 3) if X is bound, the function
sets D to be the free variables in ωX (Line 3). The function then takes out D from ωX

and puts them on top of X (Lines 4-6). Line 5 makes sure the input variables are put on
top of the output variables.

The deletion of a set D of variables from a variable order ω is implemented by the
function ∆(ω,∆) in Figure 5.2. The function traverses recursively over all variables in
ω. If a variable X is not included in D, the function does not change the structure of ω
(Lines 3-4). In case X ∈ D and X has a parent Y , it appends the child trees of X to
the variable Y (Lines 5-6). If X ∈ D and X has no parent, the child trees of X become
independent (Line 7).

Example 5.2. Figure 5.3 (left and middle) shows the hypergraphs of the query

Q(B,C,D,E | A) = R(A,B,C), S(A,B,D), T (A,E)

and of its fracture

Q†(B,C,D,E | A1, A2) = R(A1, B, C), S(A1, B,D), T (A2, E).

47

Acc-Top(variable order ω, access pattern (O|I)) : variable order

switch ω:

R(Y) 1 return R(Y)

X

ω1 . . .ωk

2 ω′i := Acc-Top(ωi, (O|I)),∀i ∈ [k]

3 D :=


∅ if X ∈ I
vars(ω) ∩ I, else if X ∈ O
vars(ω) ∩ (I ∪ O) otherwise

4 {ω̂i1, . . . , ω̂imi} := ∆(ω′i,D), ∀i ∈ [k]

5 let (X1, ..., X`) := D ∩ I ++D ∩O be an ordering
that is compatible with the partial order of ω

6 return

X1···
X`

X

ω̂1
1
. . . ω̂1

m1
. . . ω̂k1 . . . ω̂

k
mk

Figure 5.1: Construction of an access-top variable order from a canonical variable order
ω of a CQAP query Q(O|I) with a hierarchical fracture. The operator ++ concatenates
the tuples D ∩ I and D ∩ O. The function ∆(ω′,D), defined in Figure 5.2, deletes the
variables in D from the variable order ω′.

The fracture is hierarchical, free-dominant and input-dominant. Hence, Q and Q† are in
CQAP0. The fracture can be decomposed into two queries Q1(B,C,D|A1) = R(A1, B, C),

S(A1, B,D) and Q2(E|A2) = T (A2, E), whose bodies are the two connected components in
the fracture; Figure 5.3 (right) depicts the access-top variable orders for the two queries.
They are same as the canonical variable orders of the two queries.

Example 5.3. Consider the query

Q(C,D | E) = R(A,B,C), S(A,B,D), T (A,E).

Figure 5.4 (left) shows the hypergraphs of the query. Its fracture is same as itself, which
is hierarchical but not free-dominant. Figure 5.4 (middle) depicts the canonical variable
order of the query. Figure 5.4 (right) depicts the access-top variable order for the query.
The free variables C, D and E sit on top of the bound variables A and B. The input
variable E sits on top of the output variables C and D.

48

∆(variable order ω, variables D) : set of variable orders

switch ω:

R(Y) 1 return {R(Y)}

X

ω1 . . .ωk

2 {ωi1, ..., ωimi} := ∆(ωi,D), ∀i ∈ [k]

3 if X /∈ D

4 return

 X

ω1
1
. . . ω1

m1
. . . ωk1 . . . ω

k
mk


5 else if X has parent Y

6 return

 Y

ω1
1
. . . ω1

m1
. . . ωk1 . . . ω

k
mk


7 else return

{
ω1

1, ..., ω
1
m1
, ..., ωk1 , ..., ω

k
mk

}
Figure 5.2: Deletion of a set D of variables from a variable order ω. If X ∈ D and X has
a parent Y , the child trees of X are appended to Y . If X ∈ D and X has no parent, the
child trees of X become independent.

A

B E

C D
T (A,E)

R(A,B,C) S(A,B,D)

A1 A2

B E

C D
T (A2, E)

R(A1, B,C)S(A1, B,D)

A1 A2

B E

C D
T (A2, E)

R(A1, B, C)S(A1, B,D)

Figure 5.3: Left and middle: Hypergraphs of the query (left) and its fracture on input
variable A (middle two) used in Example 5.2. Right two: The access-top variable orders
returned by Acc-Top in Figure 5.1, which are the same as the canonical variable orders.

The following proposition states that the access-top variable order constructed by
Acc-Top for a CQAP query Q has the optimal static and dynamic widths.

Proposition 5.4. Given a CQAP query Q(O|I)with a hierarchical fracture and a canon-
ical variable order ω for Q, Acc-Top(ω, (I|O)) constructs an access-top variable order
for Q with static width w(Q) and dynamic width δ(Q).

5.2.2 Variable Orders Describing Evaluation Strategies

Each variable order of a CQAP query stands for an evaluation strategy for the query.
We next show how to derive a set of variable orders from the canonical variable order of
a query such that each variable order depicts an evaluation strategy of one skew-aware

49

A

B E

C D
T (A,E)

R(A,B,C)S(A,B,D)

A

B

C D

R(A,B,C) S(A,B,D)

E

T (A,E)

E

C

D

A

B

R(A,B,C) S(A,B,D)

T (A,E)

Figure 5.4: Left: Hypergraph of the query and its fracture used in Example 5.3. Middle:
The canonical variable order of the query. Right: The access-top variable order returned
by Acc-Top in Figure 5.1.

query.
We start with a high-level explanation of the construction. Consider the canonical

variable order ω of Q(O|I) and a subtree ω′ of ω rooted at a variable X. The induced
query QX(OX |IX) is defined over the join of the atoms at the leaves of ω′. The IX
consists of the input variables in ω′ and the root path of X. The set IO contains the
output variables in ω′. Let ω′at be an access-top variable order of QX(OX |IX). We discuss
the cases when QX is CQAP0 or not CQAP0.

If QX is CQAP0, we use ω′at for the evaluation of QX . The view tree following ω′at can
be constructed in linear time, can be updated in constant time and allows for constant-
delay enumeration of the result of QX .

If QX is not CQAP0, in this case, ω′ contains a bound or output variable Y such that
QY is not CQAP0. If X is not this variable Y , we recursively process the subtrees of ω′

until we reach Y ; otherwise, i.e., if X is this variable Y , we distinguish two cases based
on the degree of values over ancw(X)∪{X}. In the light case, we construct the view tree
following the variable order ω′at. This view tree can be constructed and maintained under
updates efficiently, since the values over ancw(X) ∪ {X} have bounded degree. In the
heavy case, we use the variable order ω′. The view tree following ω′ allows for constant
update time and an enumeration delay that depends on the number of distinct values
over ancw(X) ∪ {X}. Since these values have high degree, the number of distinct such
values is bounded, which ensure efficient enumeration delay.

Given a canonical variable order ω of Q(O|I), the function Ω(ω, (O|I)) in Figure
5.5 returns the set of all variable orders for Q obtained from ω. The atoms at the
leaves of these variable orders are labelled by HL-signatures. When constructing view
trees following these variable orders, these atoms will be materialized with corresponding

50

Ω(variable order ω, access pattern (O|I)) : set of variable orders

switch ω:

Rsig(Y) 1 return {Rsig(Y)}

X

ω1. . .ωk

2 key := ancω(X) ∪ {X}
3 IX := ancω(X) ∪ (I ∩ vars(ω))

4 OX := O ∩ vars(ω)

5 QX(OX |IX) := join of atoms(ω)

6 if QX(OX |IX) is CQAP0

7 return {Acc-Top(ω, (O|I)) }
8 else if X ∈ I or (X ∈ O and vars(ω) ∩ I = ∅)

9 return

 X

ω′1. . .ω
′
k

∣∣∣∣∣ ω′i ∈ Ω(ωi, (O|I)), ∀i ∈ [k]


10 else

11 htrees :=

{
X

ω′1. . .ω
′
k

∣∣∣∣∣ ω′i ∈ Ω(ωkey)Hi , (O|I)), ∀i ∈ [k]

}
12 ltree := Acc-Top(ωkey)L, (O|I))

13 return htrees ∪ { ltree }

Figure 5.5: Construction of a set of variable orders from a canonical variable order ω of a
CQAP Q(O|I) with a hierarchical fracture. Each constructed variable order corresponds
to an evaluation strategy of some part of the query result. The variable order ωkey)s
for s ∈ {H,L} has the structure of ω but the HL-signature of each atom is extended by
key → s.

relation parts. That is, an atom Rsig(Y) with S → s ∈ sig will be materialized by a part
of relation R that is heavy on S if s = H and light on S if s = L. We assume that
the atoms in the initial canonical variable order ω passed as input to the function Ω are
labelled by the empty HL-signature ∅.

We now describe the function Ω(ω, (O|I)) in more detail. The function proceeds
recursively on the structure of ω and considers at each variable X, the induced query
QX(OX |IX) (Line 4). If QX is CQAP0, the function returns an access-top variable order
constructed by the function Acc-Top(ω, (O|I)) in Figure 5.1 (Lines 5-6). IfX is an input
variable, or it is an output variable and ω does not contain any input variable, the query
QX can be evaluated efficiently given that the induced queries defined at the children of
X are evaluated efficiently. Hence, the function recursively computes a set of variable
orders for each child tree of X. For each combination of these variable orders, it builds a
new variable order where X is on top of the child variable orders (Lines 7-8). Otherwise,

51

A1

B

C D

R(A1, B,C) S(A1, B,D)

VA1(A1)

VB(A1, B)

V ′C(A1, B)

VC(A1, B,C)

R(A1, B,C)

V ′D(A1, B)

VD(A1, B,D)

S(A1, B,D)

A2

E

T (A2, E)

VA2(A2)

VE(A2, E)

T (A2, E)

Figure 5.6: Variable orders constructed for Q1(B,C,D|A1) = R(A1, B, C), S(A1, B,D)
and Q2(E|A2) = T (A2, E) in Example 5.2 and their corresponding view trees.

if X is bound or an output variable and ω contains input variables, the function creates
two evaluation strategies for QX based on the degree of values over X ∪ anc(X). For the
values over X ∪ anc(X) that are heavy, i.e., the degrees of the values are above a given
threshold, the function treats X as an input variable and proceeds recursively to resolve
further variables located below X in the variable order and to potentially fork into more
strategies (Line 10). For the values over X∪anc(X) that are light, the function constructs
an access-top variable order for ω (Line 10).

Example 5.5. Consider the CQAP0 query

Q(B,C,D,E | A) = R(A,B,C), S(A,B,D), T (A,E)

and the two sub-queries in its fracture:

Q1(B,C,D|A1) = R(A1, B, C), S(A1, B,D) and Q2(E|A2) = T (A2, E)

from Example 5.2. Figure 5.6 (left and middle right) shows the variable orders, i.e., the
evaluation strategies, for the variable orders of the two queries returned by Ω. Since Q is
in CQAP0, the variable orders for evaluation are exactly the access-top variable orders of
the two queries.

Example 5.6. Consider the query

Q(C,D | E) = R(A,B,C), S(A,B,D), T (A,E)

from Example 5.3. The canonical variable order of the query is the same as in Figure 5.4
(middle). Figure 5.7 shows on the left column the three variable orders returned by the
function Ω in Figure 5.5.

We explain the construction of the variable orders returned by Ω. We start from the
root A in the canonical variable order. The residual query QA(OA|IA) is equal to Q(O|I).

52

E

C

D

A

B

RA)L(A,B,C) SA)L(A,B,D)

TA)L(A,E)

VE(E)

VC(C,E)

VD(C,D,E)

VA(A,C,D,E)

V ′B(A,C,D)

VB(A,B,C,D)

RA)L(A,B,C) SA)L(A,B,D)

TA)L(A,E)

A

C

D

B

RA)H,AB)L(A,B,C)
SA)H,AB)L(A,B,D)

E

T (A,E)

VA(A)

V ′C(A)

VC(A,C)

VD(A,C,D)

VB(A,B,C,D)

RA)H,AB)L(A,B,C)
SA)H,AB)L(A,B,D)

V ′E(A)

VE(A,E)

TA)H(A,E)

A

B

C D

RA)H,AB)H(A,B,C)
SA)H,AB)H(A,B,D)

E

T (A,E)

V (A)

V ′B(A)

VB(A,B)

V ′C(A,B)

VC(A,B,C)

V ′D(A,B)

VD(A,B,D)

RA)H,AB)H(A,B,C)
SA)H,AB)H(A,B,D)

V ′E(A)

VE(A,E)

T (A,E)

Figure 5.7: Left column: The variable orders constructed for the query Q(C,D | E) =
R(A,B,C), S(A,B,D), T (A,E) in Example 5.3. Right column: The view trees con-
structed following the variable orders on the left.

Since QA is not CQAP0and A is bound, we distinguish two cases based on the degree of
A-values: In the light case for A, we create an access-top variable order for QA whose
leaves are the light parts of the input relations partitioned on A (top left in Figure 5.7).

In the heavy case for A, we recursively process the subtrees of A in the canonical
variable order and treat A as an input variable. The residual query QE(·|A,E) = T (A,E)

is CQAP0, thus we create an access-top variable order for QE whose leaf is TA)H(A,E),
i.e., the heavy part of T partitioned on A (middle left and bottom left variable orders
in Figure 5.7). The residual query QB(C,D|A) = R(A,B,C), S(A,B,D), however, is
not CQAP0. Since B is bound, we further distinguish two new cases based on the degree
of the values over (A,B). In the light case for (A,B), we construct a variable order

53

ViewTrees(canonical variable order ω, access pattern (O|I)) : view trees

1 return {τ(ω′) | ω′ ∈ Ω(ω, (O|I))}

Figure 5.8: Construction of all view trees for a canonical variable order ω of a CQAP
query Q(O|I) with a hierarchical fracture.

whose leaves are RA)H,AB)L and SA)H,AB)L, i.e., the parts of R and S that are heavy
on A and light on (A,B) (middle left variable order in Figure 5.7). In the heavy case
for (A,B), we process the subtrees of B considering B as an input variable (bottom
left variable order in Figure 5.7). The residual queries QC(C|A,B) = R(A,B,C) and
QD(D|A,B) = S(A,B,D), are CQAP0. Overall, we create three variable orders.

5.2.3 View Trees Encoding the Query Result

The translation from variable orders for CQAP queries with hierarchical fractures into
view trees is the same as in our approach for arbitrary CQAP queries (Section 4.1).
Given a variable order ω, the function τ(ω) in Figure 4.2 returns a view tree following
ω. The function ViewTrees(ω, (O|I)) in Figure 5.8 returns the set of all view trees for
a query Q(O|I) with canonical variable order ω. For each variable order ω′ returned by
Ω(ω, (O|I)) from Figure 5.5, the function creates the corresponding view tree by calling
τ(ω′) from Figure 4.2.

Materializing a view tree consists of computing the relation parts at the leaves and
computing the joins defined by the views in the view tree. The preprocessing phase for a
query Q(O|I) with canonical variable order ω consists of materializing all view trees in
ViewTrees(ω, (O|I)).

Example 5.7. Figure 5.6 (middle left and right) shows the view trees constructed from
the corresponding variable orders. Each variable in the variable order is mapped to a
view in the view tree, e.g., B is mapped to VB(A1, B), where {B,A1} = {B} ∪ dep(B).
The views V ′C, V ′D and VA1 are auxiliary views that allow for efficient maintenance under
updates to R and S: they marginalize out one variable from their child views. The view
VB is the intersection of V ′C and V ′D. Hence all views can be computed in linear time.

Example 5.8. Consider again the query

Q(B,C,D,E | A) = R(A,B,C), S(A,B,D), T (A,E)

from Example 5.3. Figure 5.7 shows next to each variable order for the query, the corre-
sponding view tree. The query Q has static width 3. Computing the relation parts at the

54

leaves of the view trees takes time linear in N , where N is the database size. We explain
how the views in the view trees can be computed in O(N1+2ε) time.

Consider the variable order and view tree in the top row of Figure 5.7. At variable B,
we create the view VB(A,B,C,D) = RA)L(A,B,C), SA)L(A,B,D), which joins the light
parts of R and S partitioned on A. Computing VB(A,B,C,D) takes O(N1+ε) time: For
each value (a, b, c) in RA)L, we iterate over at most N ε (a, b, d) values in SA)LL . Since
B has siblings in the variable order, we also create the auxiliary view V ′B(A,C,D) that
aggregates away B in time linear in the size of V ′B. At A, we compute VA(A,C,D,E) in
O(N1+2ε) time: We iterate over O(N1+ε) values (a, c, d) in V ′B(A,C,D) and for each such
value, iterate over at most N ε values (a, e) in TA)L. We do not need to create an auxiliary
view that aggregates away A, since A does not have siblings in the variable order. At each
variable above A, we create a view that aggregates away the variable below. Aggregating
a variable away takes time linear in the size of the view. Hence, computing VD(C,D,E)

takes O(N1+2ε) time, computing VC(C,E) takes O(N1+ε) time, and computing VE(E)

takes O(N) time. Overall, materializing this view tree takes O(N1+2ε) time.
We now consider the variable order and view tree in the second row. At B, we

create the view VB(A,B,C,D) = RA)H,AB)L(A,B,C), SA)H,AB)L(A,B,D) in O(N1+ε)

time: For each value (a, b, c) in RA)H,AB)L, we iterate over at most N ε values (a, b, d) in
SA)H,AB)L. At E, we build VE(A,D,E) that aggregates away B in O(N1+ε) time. At D,
we build VD(A,D) and the auxiliary view V ′D(A) in linear time. The other views can be
computed in linear time by aggregating away variables and applying semi-join reduction.
Hence, materializing the view tree in the second row takes O(N1+ε) time.

Materializing the view tree in the bottom row takes linear time: All views are computed
by aggregating away variables and applying semi-join reduction, which takes linear time.

Overall, we materialize the three view trees for Q in O(N1+2ε) time.

The set of view trees constructed for a CQAP query with a hierarchical fracture in
the preprocessing phase encode exactly the query.

Proposition 5.9. Let {T1, . . . , Tk} be the set of view trees in ViewTrees(ω, (O|I)) for
a CQAP query Q(O|I) with a hierarchical fracture and the canonical variable order ω for
Q. Let QTi(O|I) be the query defined by the conjunction of the leaf atoms in Ti. Then,
Q(O|I) ≡

⋃
i∈[k] QTi(O|I).

Given a CQAP Q(O|I) with a hierarchical fracture, static width w, the prepro-
cessing time of our approach is given by the time to materialize the view trees in
ViewTrees(ω,O, I). The time to materialize these view tree is O(N1+(w−1)ε).

55

Proposition 5.10. Given a CQAP query with a hierarchical fracture, static width w, a
database of size N , and ε ∈ [0, 1], the view trees in the preprocessing stage can be computed
in O(N1+(w−1)ε) time.

5.2.4 Proofs

In this section we give the missing proofs of the formal statements in Section 5.2.

Proof of Proposition 5.4

Proposition 5.4. Given a CQAP query Q(O|I)with a hierarchical fracture and a canon-
ical variable order ω for Q, Acc-Top(ω, (I|O)) constructs an access-top variable order
for Q with static width w(Q) and dynamic width δ(Q).

Before proving Proposition 5.4, we introduce some useful notation. Let ω be a canon-
ical variable order of a hierarchical CQAP query. Let F , I, and O be the free, input,
and respectively output variables of the query, and X a variable in ω. We denote by ωX
the subtree of ω rooted at X and by QX a query that joins the atoms at the leaves of
ωX . (and whose set of free variables is arbitrary).

We first give the intuition behind the proof. Recall the static and dynamic widths of a
query Q are defined over access-top variable orders of Q. We next provide an alternative
definition of the static and dynamic widths of variable orders: instead of the access-top
variable orders, they are defined over canonical variable orders of Q, by simulating the
Acc-Top function. We then show these alternative definitions are equivalent to the
original definitions.

We start by the alternative definitions of the static and dynamic widths. The following
measures ξ and κ express the static and the dynamic width of ωX without referring to
access-top variable orders.

ξ(ωX , I,O) = max
Y ∈bound(ωX)
Z∈out(ωX)

{ρ∗QX (vars(ωY) ∩ F), ρ∗QX (vars(ωZ) ∩ I)}

κ(ωX , I,O) = max
Y ∈bound(ωX)
Z∈out(ωX)

max
R(Y)∈atoms(ωY)

{ρ∗QX ((vars(ωY) ∩ F)− Y), ρ∗QX ((vars(ωZ) ∩ I)− Y)}

If ωX does not contain any bound or output variable, we have

ξ(ωX , I,O) = κ(ωX , I,O) = 0.

The next lemma expresses the static and dynamic width of the variable orders returned
by the function Acc-Top in terms of the measures ξ and κ.

56

Lemma 5.11. Given a canonical variable order ω of a CQAP query Q(O|I) with a
hierarchical fracture, a variable X in ω, and the induced query QX at variable X, the
function Acc-Top(ωX , (I|O)) constructs a variable order ω′ such that ωt = (ancω(X) ◦
ω′)1 is an access-top variable order for QX with w(ωt) = max{1, ξ(ωX , I,O)} and δ(ωt) =

κ(ωX , I,O).

Proof. The function Acc-Top traverses the given canonical variable order and pulls up
free variables such that the resulting variable order becomes access-top. More precisely,
if a variable X is bound and contains free variables in its subtree, the function puts all
free variables below X on top of X such that the input variables are above the output
variables. If the variable X is an output variable and contains input variables in its
subtree, it puts all input variables that are under X on top of X.

If ω neither contains a bound variable above a free one nor an output variable above
a bound one, the variable order remains unchanged. Since a canonical variable order has
static width 1 and dynamic width 0, the statement in the lemma holds in this case.

Assume now that ω contains at least one bound variable above a free variable or at
least one output variable above an input variable. Consider an arbitrary bound variable
X in ω that has free variables in its subtree. Let F be the set of free variables under X.
Due to the structure of canonical variable orders, all variables in F depend on X. By
moving the variables in F on top of X, the set F is added to the dependency set of X in
the resulting variable order ωt. Hence, the fractional edge cover number of {X}∪depωt(X)

is ρ∗({X} ∪F). The dependency set of a variable Y in F can only decrease since the set
of the variables from Y to the root decreases. The dependency set of a variable Y below
X changes if it contained a variable from F in its subtree that is now positioned on top
of Y . However, the fractional edge cover number of {Y }∪ depωt(Y) is upper-bounded by
the fractional edge cover number of {X} ∪ depωt(X).

In case X is an output variable that has a set V of input variables in its subtree, the
reasoning is similar. The fractional edge cover number of {X}∪ depωt(X) is ρ∗({X}∪V)

and upper-bounds the fractional edge cover numbers at the other variables in the resulting
variable order ωt.

Hence, the static width of ωt is determined by the largest set of variables that is
moved on top of a single variable by the function Acc-Top.

For the dynamic width of ωt, the reasoning is completely analogous. The dynamic
width of ωt is given by the largest set of variables that is moved on top of a single variable
X after removing the variables of any atom containing X.

We are ready to prove Proposition 5.4.
1In ωt, variables ancω(X) are organized as a linked list on top of ω′, as shown in Figure 5.1 (Line 6).

57

Proof of Proposition 5.4. Consider a CQAP query Q whose fracture Q†(O|I) is hierar-
chical. Let F = I ∪ O and w and δ be the static and respectively dynamic width of
Q. By the definition of static and dynamic width, Q† has static width w and dynamic
width δ. Let ω be the canonical variable order of Q†. Without loss of generality, assume
that Q† contains at least one atom with non-empty schema. Otherwise, Acc-Top re-
turns the set of atoms in Q†, which is already an optimal access-top variable order for
Q†. Assume also that ω consists of a single connected component. Otherwise, we apply
the same reasoning for each connected component. By Lemma 5.11, Acc-Top(ω, (I|O))

constructs an access-top variable order ωt for Q† with static width max{1, ξ(ωX , I,O)}
and dynamic width κ(ωX , I,O). We first show:

max{1, ξ(ω, I,O)} ≤ w (5.1)

First, assume that ξ(ω, I,O) = 0. This means max{1, ξ(ω, I,O)} = 1. Since Q† contains
at least one atom with non-empty schema, we have w ≥ 1. Thus, Inequality (5.1) holds.
Now, let ξ(ω, I,O) = ` ≥ 1. We show that w ≥ `. It follows from ξ(ω, I,O) = ` that at
least one of the following two cases holds:

• Case (1.1): ω contains a bound variable Y such that ρ∗Q(F ′) = `, where F ′ =

vars(ωY) ∩ F

• Case (1.2): ω contains an output variable Y such that ρ∗Q(I ′) = `, where I ′ =

vars(ωY) ∩ I.

We first consider Case (1.1). By construction, the inner nodes of each root-to-leaf
path of a canonical variable order are the variables of an atom. Hence, for each variable
Z ∈ F ′, there is an atom in Q† that contains both Y and Z. This means that Y and
Z depend on each other, i.e., all variables in F ′ depend on Y . Let ω′ be an arbitrary
access-top variable order for Q†. Since all variables in F ′ depend on Y , each of them is
on a root-to-leaf path with Y . Since Y is bound and the variables in F ′ are free, the set
F ′ is included in ancω′(Y). Thus, F ′ ⊆ depω′(Y). This means ρ∗({Y } ∪ depω′(Y)) ≥ `,
which implies w(ω′) ≥ `. It follows w ≥ `.

The reasoning for Case (1.2) is analogous. In any access-top variable order ω′ =

(T, depω′) for Q†, all variables in I ′ is included in ancω′(Y). Hence, I ′ ⊆ depω′(Y), which
means ρ∗({Y } ∪ depω′(Y)) ≥ `. This implies w(ω′) ≥ `, thus, w ≥ `.

It follows that the static width of the access-top variable order Acc-Top(ω, (I|O))

is w(Q).
Following similar steps, we can show:

κ(ω, I,O) ≤ δ (5.2)

58

Let κ(ω, I,O) = k. We show that δ ≥ k. The definition of κ(ω, I,O) implies that
one of the following two cases hold:

• Case (2.1): ω contains a bound variable Y and an atom R(Y) containing Y such
that ρ∗Q(F ′ − Y) = k, where F ′ = vars(ωY) ∩ F

• Case (2.2): ω contains an output variable Y and an atom R(Y) containing Y such
that ρ∗Q(I ′ − Y) = k, where I ′ = vars(ωY) ∩ I.

We consider Case (2.1). Let ω′ = (T, depω′) be an arbitrary access-top variable order
for Q†. The atom R(Y) is included in atoms(ω′Y), since it contains Y . All variables in F ′

depend on Y . Since Y is bound and the variables in F ′ are free, the set F ′−Y is included
in ancω′(Y). Hence, F ′−Y ⊆ depω′(Y). This implies that ρ∗(({Y }∪ depω′(Y))−Y) ≥ k,
i.e., δ(ω′) ≥ k. It follows δ ≥ k.

To show Case (2.2), we reason analogously. We just treat the output variables like
the bound variables and input variables like the free variables in Case (2.1).

Overall, we conclude that given a CQAP query Q and its fracture Q†(O|I), the
function Acc-Top(ω, (I|O)) constructs an access-top variable order with static width
w(Q†) = w(Q) and dynamic width δ(Q†) = δ(Q).

Proof of Proposition 5.9

Proposition 5.9. Let {T1, . . . , Tk} be the set of view trees in ViewTrees(ω, (O|I)) for
a CQAP query Q(O|I) with a hierarchical fracture and the canonical variable order ω for
Q. Let QTi(O|I) be the query defined by the conjunction of the leaf atoms in Ti. Then,
Q(O|I) ≡

⋃
i∈[k] QTi(O|I).

Proof. The procedure ViewTrees calls Ω to construct from the input canonical variable
order ω a set of variable orders ω1, . . . , ωk and constructs the set of view trees T1, . . . , Tk

following the variable orders. The variable order ωi and the corresponding view tree Ti
for i ∈ [k] have the same leaf atoms. Let ω′ be a subtree of ω rooted at a variable
X ∈ vars(ω). We define Qω′(OX |IX) = onR(X)∈atoms(ω′)R(X) to be the query defined by
the conjunction of the leaf atoms in ω′.

The proof is by induction over the structure of the variable order ω. We show that
for any subtree ω′ rooted at X of ω, it holds:

Qω′(OX |IX) ≡
⋃

ω′′∈Ω(ω′,(OX |IX))

Qω′′(OX |IX), (5.3)

where OX = O ∩ vars(ω′) and IX = anc(X) ∪ (I ∩ vars(ω′)). This completes the proof.

59

Base case: If ω′ is an atom, the procedure Ω returns that atom and the base case holds
trivially.

Inductive step: Assume that ω′ has subtrees ω′1, . . . , ω′k. Let key = anc(X) ∪ {X},
IX = anc(X) ∪ (I ∩ vars(ω′)), and OX = O ∩ vars(ω′). The procedure Ω distinguishes
the following cases:

Case 1: QX(OX |IX) is CQAP0 (Figure 5.5 Line 6). The procedure Ω(ω′, (OX |IX))

constructs an access-top variable order with leaves exactly the atoms of ω′. This implies
Equivalence 5.3.

Case 1 does not hold and (X ∈ I or (X ∈ O and vars(ω′) ∩ I = ∅)) (Figure 5.5 Line
8). The procedure Ω(ω′, (OX |IX)) constructs recursively a set of variable orders for each
subtree in ω′1, . . . , ω′k. Using the induction hypothesis, we rewrite as follows:

Qω′(OX |IX) =oni∈[k]Qω′i
(OX′|IX′)

IH≡oni∈[k]

(⋃
ω′′∈Ω(ω′i,(OX′ |IX′))

Qω′′(OX′ |IX′)
)

≡
⋃

∀i∈[k]:ω′′i ∈Ω(ω′i,(OX′ |IX′))

oni∈[k]Qω′′i
(OX′|IX′)

=
⋃

T∈Ω(ω′,(OX |IX))

QT (OX |IX),

where X ′ is the root of ω′, OX′ = O ∩ vars(ω′) and IX′ = anc(X ′) ∪ (I ∩ vars(ω′)).

Cases 1 and 2 do not hold. (Figure 5.5 Line 10). The procedure Ω creates the variable
orders htrees ∪ {ltree} defined as follows:

– ltree = Acc-Top(ωkey)L, (OX |IX)), where ωkey)L has the same structure as ω′ but
each atom is replaced by its part that is light on key;

– htrees are same as the variable orders built in the previous case except each atom
is replace by a part that is heavy on key.

If a relation is partitioned on a set key of variables, then the parts of relation that are light
and heavy on key are disjoint and together form the relation. This drive the following
equivalence. For simplicity, we skip the schemas of queries:⋃

∀i∈[k]:Ti∈Ω(ω′i,(O|I))

oni∈[k] QTi ≡ Qltree ∪
⋃

∀i∈[k]:Ti∈Ω(ωkey)Hi ,(O|I))

QTi (5.4)

Using the induction hypothesis, we obtain:

60

Qω′ = oni∈[k]Qω′i

IH≡oni∈[k]

(⋃
ω′′∈Ω(ω′i,(O|I))

Qω′′

)
≡

⋃
∀i∈[k]:ω′′i ∈Ω(ω′i,(O|I))

oni∈[k]Qω′′i

(5.4)
≡ Qltree ∪

⋃
∀i∈[k]:ω′′i ∈Ω(ωkey)Hi ,(O|I))

Qω′′i

= Qltree ∪
⋃

T∈htrees

QT =
⋃

T∈Ω(ω′,(O|I))

QT

Proof of Proposition 5.10

Proposition 5.10. Given a CQAP query with a hierarchical fracture, static width w, a
database of size N , and ε ∈ [0, 1], the view trees in the preprocessing stage can be computed
in O(N1+(w−1)ε) time.

The proof uses the auxiliary Lemma 5.12 given below. We first explain how Proposi-
tion 5.10 is implied by Lemma 5.12. Consider a CQAP query Q with static width w and
hierarchical fracture Q† and an ε ∈ [0, 1]. In the preprocessing stage, we apply for each
connected component Q′†(O|I) of Q† the following steps. Let ω be the canonical variable
order of Q′†. First, we call the function Ω(ω, (O|I)) in Figure 5.5, which creates a set of
variable orders from ω. For each variable order ω′ in this set, we call the function τ(ω′)

in Figure 4.2, which creates a view tree T following ω′. By Lemma 5.12, the view tree
T can be materialized in O(N (w(Q′†)−1)ε) time. Since w(Q′†) is upper-bounded by w, this
implies O(N (w−1)ε) overall preprocessing time.

It remains to prove Lemma 5.12.

Lemma 5.12. Let ω be a variable order of a CQAP query Q(O|I), X a variable in ω,
QX the induced query at X in ω, ω′ ∈ Ω(ωX , (O, I)), ωt = (ancω(X) ◦ ω′), N the size
of the leaf relations in ω′, and ε ∈ [0, 1]. The view tree τ(ωt) can be materialized in
O(N1+(w(QX)−1)ε) time.

Proof. The proof is by induction on the structure of ωX . We show that for each variable
Y in ωt, the view VY in τ(ωt) as defined in Line 4 of the procedure τ can be materialized
in O(N1+(w(QX)−1)ε) time. Each auxiliary view defined in Line 8 of the procedure τ results
from its child view by marginalizing a single variable. Materialising these auxiliary views
does not increase the overall asymptotic computation time.

61

Base case: Assume that ωX is a single atom. In this case, the procedure Ω returns
this atom. The atom can obviously be materialized in O(N) time. Hence, the statement
in the lemma holds.

Inductive step: Assume that the root variable X in ωX has the child nodes X1, . . . , Xk.
Let key = ancω(X) ∪ {X}, IX = ancω(X) ∪ (I ∩ vars(ωX)), OX = O ∩ vars(ω). The
induced query at X is defined as QX(O | I) = join of atoms(ω). Following the control
flow in Ω, we distinguish between the following cases.

Case (1): QX(O|I) is a CQAP0 query (Figure 5.5, Line 6).
In this case, the procedure Ω returns the variable order ω′ = Acc-Top(ωX , (O|I)). By
Proposition 5.4, ωt = (ancω(X) ◦ ω′) is an access-top variable order for QX with static
width w(QX). Since QX is in CQAP0, its static width can be at most 1 (Propositions
5.30 and 5.27). This means that for every variable Y ∈ vars(ωt), the set {Y } ∪ depωt(Y)

can be covered by a single atom in QX . Hence, each view VY ({Y } ∪ depωt(Y)) can be
computed in O(N) time. This completes the inductive step for Case (1).

Case (2): QX is not in CQAP0 and
(
X ∈ I or (X ∈ O and vars(ω) ∩ I = ∅)

)
(Figure 5.5, Line 8).
The set of variable orders returned by Ω is defined as follows: for each set {ωi}i∈[k]

with ωi ∈ Ω(ωXi , (O|I)), the set contains a variable order ω′, which has the root node
X and child trees ω1, . . . , ωk. Consider for each such variable order ω′, the variable
order ωt = (ancω(X) ◦ ω′). By induction hypothesis, each view tree over ωi can be
materialized in O(N1+(w(QXi)−1)ε) time. Since w(QXi) ≤ w(QX) for any i ∈ [k], it follows
that each view tree over ωi can be materialized in O(N1+(w(QX)−1)ε) time. Consider now
the view tree τ(ωt). The view at X is defined by VX(S) = VX1(S1), . . . , VXk(Sk), where
S = {X} ∪ depω(X) and VX1 , . . . , VXk are the child views of VX . By the construction of
view trees, VX is a free-connex query. Hence, it can be computed by first marginalizing
the variables in VXi that are not included in S for each i ∈ [k] and then computing the
join of the remaining relations. This gives overall O(N1+(w(QX)−1)ε) computation time.
This completes the inductive step in this case.

Case (3): QX is not in CQAP0 and X is an output variable dominating an input
variable, or it is a bound variable dominating a free variable. (Figure 5.5, Line 10).

In this case, the procedure Ω constructs a set htrees of variable orders and a sin-
gle variable order ltree. The construction of the variable orders in htrees differs from
the variable orders constructed under Case (2) only in that they refer to base relations
that are heavy on the variable set key. This does not affect the asymptotic compu-
tation time of the view trees. Hence, the view trees over the variable orders htrees
can be computed in O(N1+(w(QX)−1)ε) time. The variable order ltree is defined as

62

ltree = Acc-Top(ωkey→LX , (O|I)), where ωkey→LX indicates that the base relations are
light on key. Observe that key is included in the schemas of the leaf atoms of ltree. By
Proposition 5.4, ltree is an access-top variable order for QX with optimal static width.
Then, it follows from Lemma 5.14 that the view tree τ(ltree) can be materialized in
O(N1+(w(QX)−1)ε) time. This completes the inductive step for Case 3.

We need to prove Lemma 5.14, which is used in the above proof. The proof of
Lemma 5.14 uses the following auxiliary lemma.

Lemma 5.13 ([43]). For any hierarchical query Q and F ⊆ vars(Q), it holds ρ∗(F) =

ρ(F).

Proof. We define an integral edge cover λ = (λR)R∈atoms(Q) for Q and then show that∑
R∈atoms(R) λR ≤ ρ∗(Q). Let ω be an arbitrary canonical variable order for Q. Recall

that each root-to-leaf path in ω corresponds to an atom R in Q, such that the leaf is R
and the set of inner nodes is the schema of R. A maximal variable path p in ω is a path
that starts at a root and ends at a variable X such that all children of X are atoms. We
call X the end variable of p. We assume that ω has k maximal variable paths. For each
maximal variable path p in ω with end variable X, we fix an arbitrary child atom Rp of
X. For each atom R in Q, we define:

λR =

{
1 , if R = Rp for some maximal variable path p
0 , otherwise

It follows from the definition of λ that
∑

R∈atoms(R) λR = k.
Let λ′ = (λR)R∈atoms(Q) be an arbitrary fractional edge cover for Q. Given any

maximal variable path p where the end variable has the child atoms R1, . . . , Rm, we
define sp =

∑
i∈[m] λ

′
Ri
. We complete the proof by showing the following two statements:

1. λ = (λR)R∈atoms(Q) is an integral edge cover for Q.

2. k ≤
∑

R∈atoms(R) λ
′
R.

λ = (λR)R∈atoms(Q) is an integral edge cover for Q: Let X be an arbitrary variable
in Q. The variable X must be included in at least one maximal variable path p. Since
λRp = 1, the variable X is covered by the edge cover λ. Since X was chosen arbitrary, it
follows that λ is an integral edge cover for Q.

63

k ≤
∑

R∈atoms(Q) λ
′
R: Let p be an arbitrary maximal variable path in ω with end variable

X. Let R1, . . . , Rm be the child atoms of X. Besides R1, . . . , Rm, no other atom has X
in its schema. Hence, it must hold sp ≥ 1. Since there are k maximal variable paths, this
implies k ≤ k · sp ≤

∑
R∈atoms(Q) λ

′
R.

We are now ready to prove Lemma 5.14.

Lemma 5.14. Let ω be a variable order, X a variable in ω such that ancω(X) is included
in the schemas of all leaf atoms in ωX and ωt = (ancω ◦ ωX). If the leaf relations in
ωX are the light parts of a partition on {X} ∪ ancω(X) with threshold O(N ε) for some
ε ∈ [0, 1], the view tree τ(ωt) can be materialized in O(N1+(w(ωt)−1)ε) time.

Proof. Let T = τ(ωt) and w = w(ωt). We show: every view in T can be computed in
O(N1+(w−1)ε}) time.

The leaf atoms can obviously be materialized in O(N) time. Consider any view VY (S)

in T with atoms(ωtY) = {Ri(Xi)}i∈[k]. The view VY is defined over the join of its child
views and it holds S = {Y } ∪ depω(Y). By the construction of our view trees, VY can be
computed by joining the atoms R1(X1), . . . , Rk(Xk). Hence, we can write the view as

VY (S) = R1(X1), . . . , Rk(Xk).

Let ρ∗(S) = m. By Lemma 5.13, ρ(S) = m. We can find an optimal edge cover for S
by using only atoms from the set {Ri(Xi)}i∈[k]. Let λ = (λRi(Xi))i∈[k] be an edge cover of
S with

∑
i∈[k] λRi(Xi) = m. Let R0,R1 ⊆ atoms(ωX) consist of the atoms in ωX that λ

assigns to 0 and 1, respectively. We first compute a view V (S) over the join of the atoms
in R1 as follows. We choose an arbitrary atom from R1 and iterate over its tuples. For
each such tuple t, we iterate over the matching tuples in the other atoms in R1. Since
each atom in R1 includes ancω(X) in its schema and is the light part of a partition on
ancω(X) with threshold O(N ε), it contains O(N ε) tuples matching t. This means that
the time to materialise V is O(N · N (m−1)ε) = O(N1+(m−1)ε). Now, we can rewrite VY
using the new view V :

VY (S) = V (S), R′1(X ′1), . . . , R′`(X ′`), (5.5)

where R′1(X ′1), . . . , R′`(X ′`) are the atoms in R0. The query (5.5) is free-connex α-acyclic,
which means that it can be computed in time linear in the input plus the output size
of VY , using Yannakakis’s algorithm [11]. The input size is upper-bounded by |V | =

O(N1+(m−1)ε). The size of the output is also O(N1+(m−1)ε). Hence, the overall time to
compute VY is O(N1+(m−1)ε). Since m = ρ∗(S) is upper-bounded by w, we derive that
the computation time for VY is O(N1+(w−1)ε). Each of the additional auxiliary views
constructed in Line 8 of the procedure τ is obtained by marginalizing away a variable
from its child view. This does not blow up the overall asymptotic computation time.

64

A

B C

R(A,B) S(A,C)

VA(A)

V ′B(A)

VB(A,B)

R(A,B)

V ′D(A)

VD(A,C)

S(A,C)

itVA(A)

itVB (B|A) itVC (C|A)

R(A,B) S(A,C)

Figure 5.9: Variable orders constructed for Q(A,B,C|·) = R(A,B), S(A,C)

5.3 Enumeration

In the enumeration algorithm for arbitrary CQAP queries (Section 4.2), we have intro-
duced how to enumerate tuples from the view trees constructed in the preprocessing stage:
for each view tree, we create iterators over the views that correspond to the free variables
in the variable order of that view tree. We organize the iterators into nested loops based
on a pre-order traversal of the view tree. We open the iterators with values from their
ancestor views as context, thus ensuring they enumerate only those values guaranteed to
be in the query output.

This approach, i.e., nesting the iterators, is valid for the view trees constructed follow-
ing access-top variable orders, as in Section 4.1, where free variables are above the bound
variables and input variables are above the output variables. The view trees constructed
for the queries with hierarchical fractures, however, might not be access-top, and nesting
view iterators may be invalid.

Example 5.15. Consider the query Q(A,B,C|·) = R(A,B), S(A,C). Figure 5.9 shows
the access-top variable, the view tree constructed following the variable order, and the
view iterators created over the view tree: These iterators can be nested in the enumeration
procedure.

Assume now A is bound; the query becomes Q(B,C|·) = R(A,B), S(A,C). The
variable order is not access-top anymore, and enumerating the query results, i.e., distinct
(B,C)-tuples, is not possible by nesting the view iterators for B and C: the view iterators
that enumerate B- and C-values have A in their context schemas, yet we do not create
the iterator for A-values since A is bound. �

We say a view iterator is unsupported if there are no other iterators enumerating values
that fix every context variable in its context schema. In the above example, the view
iterators for B and C are unsupported. View iterators might be unsupported when they
are created following a non-access-top variable order. To resolve this issue, we define the
union view iterators, which is a generalization of the view iterators.

65

uitV (O|I).open(relation ctx)

1 uitV (O|I).iterators := empty map // context tuple 7→ view iterator
2 foreach ctxi ∈ ctx do
3 uitV (O|I).iterators[ctxi] := new itV (O|I)

4 uitV (O|I).iterators[ctxi].open(ctxi)

Figure 5.10: The method opens the union view iterator uitV (O|I) for the input relation
ctx over schema I as context. The method creates for each tuple in ctx a view iterator
and opens the view iterator for the corresponding tuple.

uitV (O|I).next() : (tuple, relation)

1 ctx1 7→ it1(O|I), . . . , ctxn 7→ itn(O|I) := uitV (O|I).iterators // pattern matching
2 o := Union(it1(O|I), . . . , itn(O|I))

3 ctxo := {ctxi | i ∈ [n], iti(O|I).contains(o)}
4 return (o, ctxo)

Figure 5.11: Fetch the next output tuple in the union view iterator, computed by the
Union algorithm, and the context tuples that are consistent with the output tuple.

5.3.1 Union View Iterators

We write uitV (O|I) to denote a union view iterator over view V with output schema O
and context schema I. It generalizes the view iterators in that the context of uitV (O|I) is
a relation (instead of a tuple) over schema I. The empty context is the singleton relation
with the empty tuple (the identity for the join operation). The uitV (O|I).open(ctx)

method takes a relation ctx over schema I as input, and then creates for each tuple
ctxi ∈ ctx a view iterator and opens the view iterator for ctxi. The uitV (O|I).next()

method returns a pair (o, ctxo), where o is a tuple over o that is consistent with at least
one tuple in ctx in V and ctxo ⊆ ctx represents the context tuples that are consistent
with o.

Figures 5.10 shows the uitV (O|I).open(ctx) method. It takes as input a relation ctx
over I and initializes an attribute uitV .iterators of mapping type (Line 1), which maps
each tuple ctxi ∈ ctx to a new view iterator (Line 3). Each view iterator is opened for
the corresponding tuple (Line 4). The time needed by the uitV (O|I).open(ctx) method
is given by the time to create and open |ctx| iterators.

The uitV (O|I).next() method first uses the Union algorithm, as described in Fig-
ure 5.12, to get the next distinct output tuple from the uitV (O|I).iterators. The Union

66

Union(iterators it1, . . . , itn): tuple

1 if (n = 1)

2 return itn.next()
3 if (t[n−1] := Union(it1, . . . , itn−1)) 6= EOF
4 if (itn.contains(t[n−1]))
5 return itn.next()
6 return t[n−1]

7 if (tn := itn.next()) 6= EOF
8 return tn

9 return EOF

Figure 5.12: Return the next distinct tuple from a set of iterators.

algorithm is an adaptation of prior work [30]. It takes as input n iterators with the same
output schema, which enumerate tuples from possibly overlapping sets, and returns a tu-
ple in the union of these sets, where the tuple is distinct from all tuples returned before.
Upon each call, the function returns one tuple. If all iterators are exhausted, the function
returns EOF.

We first explain the algorithm on two iterators it1 and it2. For the next tuple t1 of
it1, the function checks whether t1 will be enumerated by it2 using it2.contains(t1). If
so, it returns the next tuple in it2; otherwise, it returns t1. In case it1 is exhausted, the
function returns the next tuple in it2, or EOF in case it2 is also exhausted.

In case of n > 2 iterators, the function considers the Union of the first n−1 iterators
as the next tuple of one iterator and itn as the second iterator, and then reduces the
general case to the previous case of two iterators.

The delay of the Union algorithm is upper-bounded by the product of the number
of iterators and the delay of the slowest iterator.

Figure 5.11 shows the uitV (O|I).next() method. Once the method gets the next
output tuple o from the Union function (Line 2), it looks up o in all view iterators to
compute the context ctxo ⊆ ctx of o, which is defined as the relation of the context tuples
of the iterators that return true (Line 3). The method returns o together with its context
ctxo (Line 4).

The delay of the uitV (O|I).next() method is given by the delay of finding the next
output tuple using the Union algorithm and the cost of getting the context of the output
tuple. Assume uitV (O|I) is opened for a relation ctx. Fetching the output tuple o takes
O(|ctx|) time using the Union algorithm, since we create an iterator for each context

67

1 ctx 0(A,C) := {(a0, c0)}, where a0, c0 are input values
2 uitVA(A|A).open(πA(ctx 0))

3 while ((a, ctxa) := uitVA(A|A).next()) 6= (EOF, ∅) do
4 uitVC (C|A,B,C).open(VB(A,B) ./ ctx 0)

5 while ((c, ctx c) := uitVC (C|A,B,C).next()) 6= (EOF, ∅) do
6 uitVD(D|A,B).open(πAB(ctx c))

7 while ((d, ctx d) := uitVD(D|A,B).next()) 6= (EOF, ∅) do
8 output (d)

9 output EOF

Figure 5.13: Enumeration for Q(D|A,C) = R(A,B,C), S(A,B, D) using the view tree
from Figure 4.8.

tuple in ctx and thus O(ctx) iterators, and the delay of all iterators is O(1). Computing
the set ctxo ⊆ ctx for o also takes O(|ctx|) time. Hence, the uitV (O|I).next() method
runs in O(|ctx|) time.

Similar as the contains method for view iterators, the uitV (O|I).contains(o) checks
whether a tuple o over the output variables O is in the output of uitV (O|I). It can be
performed by checking it.contains(o) for each iterator it in uitV (O|I).iterators. Hence,
assume uitV (O|I) is opened for a relation ctx, the uitV (O|I).contains(o) method runs
in O(|ctx|) time.

Example 5.16. Consider again the view tree in Figure 4.8 (middle) but now for:

Q(D|A,C) = R(A,B,C), S(A,B,D),

which has a different access pattern. Figure 5.13 shows the enumeration procedure for
query.

We construct three union view iterators, one for each free variable. The iterator
uitVA(A|A) serves to check if the given A-value exists in VA (Lines 2-3). The iterator
uitVC (C|A,B,C) is unsupported as there is no binding for variable B. For this iterator,
we provide a relation over schema (A,B,C) as context. To avoid enumerating dangling
tuples, the context should include only those B-values guaranteed to have matching D-
values in the final output. The ancestor view VB(A,B) provides such (A,B)-values, which
we further restrict to those matching the given input values (Line 4). The next() call on
uitVC returns the input C-value together with a relation ctx c containing the matching
(A,B,C)-tuples in VC if they exist; otherwise, it returns (EOF, ∅). The relation ctx c

serves as context for the iterator over D-values (Line 6).

68

BuildUnionIterators(view tree T , access pattern (O|I), relation supp)

switch T :

R(Y) 1 return []

VX(X)

T1 . . .Tk

2 if X /∈ X // skip auxiliary maintenance views
3 return BuildUnionIterators(T1, (O|I), supp)

4 itX =


[(new uitVX (X|X), supp)] , if X ∈ I
[(new uitVX (X|X \ {X}), supp)] , if X ∈ O
[] , otherwise // empty list

5 suppchild :=

{
supp , if X ∈ (I ∪ O)
VX(X) , otherwise

6 itchildi := BuildUnionIterators(Ti, (O|I), suppchild), ∀i ∈ [k]

7 return itX ++ itchild1 ++ . . . ++ itchildk // concatenation of the lists

Figure 5.14: Create a list of union view iterators with support for the access pattern
(O|I) in a view tree T . The operator ++ concatenates two lists. The first call to Buil-
dUnionIterators uses the support {()}.

The open and next calls take time linear in the size of the context ctx used when
opening the iterator. The size of the context for uitVA is constant, while for uitVC and
uitVD is at most the size of VB. Thus, the enumeration delay is O(|VB|).

5.3.2 Enumeration Procedure

We use the variable orders of the view trees to guide the construction of the iterators. For
each view tree, we create iterators over the views that correspond to the free variables in
the variable order of that view tree. The variable orders constructed for the hierarchical
CQAP queries might not be access-top variable orders, so we need to create union view
iterators over the view trees.

We extend the function BuildIterators for the case of general queries from Fig-
ure 4.9 to the function BuildUnionIterators as shown in Figure 5.14. It builds a list
of union view iterators for a given view tree of a CQAP query Q with access pattern
(O|I). Each union view iterator comes paired with a support relation that provides the
context for any variable with no binding. The support provided in the initial call to
BuildIterators is the singleton relation with the empty tuple (the identity for the join
operation).

The function recursively constructs union view iterators, traversing the view tree T in
a top-down fashion. Consider the root view VX(X) of T constructed at variable X in the

69

uitVC
(C|A)

uitVD
(D|A,C)

uitVE
(E|A)

1 ctx 0 := {e0} // where e0 is the input E-value
2 uitVE (E|A,E).open(VA(A) on ctx0)

3 while ((e, ctxe) := uitVE (E|A,E).next()) 6= EOF do
4 uitVC (C|A).open(ctxe)
5 while ((c, ctxc) := uitVC (C|A).next()) 6= EOF do
6 uitVD(D|A,C).open(ctxc on {c})
7 while ((d, ctxd) := uitVD(D|A,C).next()) 6= EOF do
8 m :=

∑
a∈πActxd VD(a, c, d) · VC(a, c) · VE(a, e)

9 output (c, d) 7→ m

10 output EOF

Figure 5.15: Enumeration procedure for the connected component Q(C,D|E) =
RA)H,AB)L(A,B,C), SB)H,AB)L(A,B,D), TA)H(A,E).

corresponding variable order. The function creates a union view iterator over VX if X is
a free variable. Otherwise, if X is a bound variable, it uses VX as the support relation
for any union view iterator created for a free variable below X. The function recursively
creates iterators in each subtree and concatenates them into a list of iterators with their
support relation.

Once we construct the iterators over the view tree, we generate the enumeration
procedure by organizing the iterators into nested loops based on a pre-order traversal
of the view tree. We open the iterators with the output values and context relations
from their ancestor views as context, thus ensuring they enumerate only those values
guaranteed to be in the query output. Each concatenation of the outputs of the iterators
forms the values of an output tuple.

The time for an iterator to report an output tuple, i.e., the nextmethod of the iterator,
is determined by the size of its input context relation. That is, the size of the support
relations. Hence, the enumeration delay of the procedure is upper-bounded by the size
of the support relations.

Example 5.17. Consider the view tree from Figure 5.7 (left in the second row), created
for Q(C,D|E) = RA)H,AB)L(A,B,C), SB)H,AB)L(A,B,D), TA)H(A,E). BuildUnion-

Iterators returns the following iterators for this view tree:

• uitVE(E|A,E) with the support VA(A),

• uitVC (C|A) with the support VA(A), and

• uitVD(D|A,C) with the support VA(A).

70

ComputeM(view tree T , tuple t, context relations contextst): multiplicity

switch T :

VX(X)

T1 . . .Tk

1 if Sch(t) (X
2 {A1, . . . , Ak} := X \ Sch(t)
3 A1 := πA1(onctx∈contextst ctx) // A1-values that satisfy all context relations
4 return

∑
a∈A1

ComputeM(T, t ◦ a, contextst ∪ {{a}})
5 else if X (Sch(t)

6 Vi := variables in Ti
7 contextsi := {πViR | R ∈ contextst}
8 return

∏
i∈[k] ComputeM(Ti, πVit, contextsi)

9 else // X = Sch(t)

10 return V [t]

Figure 5.16: Compute the multiplicity of the given tuple t in the view tree T . The input
contextst contains all the context sets returned during the enumeration of t.

Figure 5.15 shows the enumeration procedure for these iterators. The returned support
relations define the context to be used when opening each union view iterator. As discussed
in the next section, to compute the multiplicity of the output tuple (c, d) for the input E-
value e0, we sum over the multiplicities of the tuple concatenated with the A-values in the
context relation ctxd (Line 9).

Multiplicity. We extend the function ComputeM in Figure 4.10 for view trees that
are not constructed over access-top variable orders. Figure 5.16 shows the extended
ComputeM function for computing the multiplicity of a tuple t in a view tree T . The
parameter contextt contains the set of context relations returned by the next method
of the union view iterators for the tuple t, such as the relations ctxe, ctxc and ctxd in
Example 5.17.

The function traverses the view tree T based on a pre-order. At the root view V (X)

of T , there are three cases: (1) the view V has a variable A1 that is not in the schema
of the tuple t (Line 1). This corresponds to the case when A1 is bound and has been
aggregated away from the views below V in the view tree. In this case, we treat A1 as
if it is free, and sum over the multiplicities of the concatenations of t and the A1-values
paired with t in the view tree, i.e., the A1-values in the context: For each such A1-value
from the context set (Lines 2-3), the function concatenates the value to t, and applies
ComputeM to compute the multiplicity of the new tuple. The multiplicity of t is the

71

sum of the multiplicities of these new tuples (Line 4). (2) The second case is the opposite
of the first case: the schema of t has additional variables that are not in the schema of
V (Line 5). This means the tuple t is stored below V , possibly distributed in different
branches. The function applies ComputeM recursively to each subtree and takes the
product of the returned multiplicities (Lines 6-8). (3) When t is in V , the function returns
the multiplicity of t in V (Lines 9-10).

The computation time of the multiplicity of a tuple t is upper-bounded by the time for
enumerating t using the iterators. The time of the function ComputeM is determined
by the number of multiplicities to be summed in the first case. That is, the size of the
context relations. Since these context relations are all subsets of the support relations (as
per the next method of union view iterators), their sizes are upper-bounded by the sizes
of the support relations. Hence, ComputeM does not take time more than the time for
the enumerating the tuple t using the iterators.

5.3.3 Enumeration from View Trees

In the preprocessing stage, we might have constructed multiple view trees for different
skew-aware queries. The result of the query is the union of the results of the skew-aware
queries, i.e., the union of the results represented the view trees. Enumerating the result
of the query, however, is not as straightforward as enumerating the results of the skew-
aware queries separately: the results of the skew-aware queries might be overlapping; we
need to avoid enumerating the same tuple multiple times, and the multiplicity of a tuple
is the product of the multiplicities of the tuple in all view trees.

To enumerate from multiple view trees, we use the Union algorithm again: we con-
sider the enumeration in each view tree as an iterator, and use the Union algorithm
to enumerate the union of the results of the iterators. Checking wether a tuple will be
enumerated from a view tree can be implemented by calling the contain method of the
union view iterators created in this view tree. Recall the time for the Union algorithm
to report a tuple is determined by the product of the number of iterators and the delay
of the slowest iterator. Since the number of iterators, i.e., the number of skew-aware
queries, is constant, the enumeration delay is the time for enumerating one tuple from
each view tree, which is upper-bounded by the size of the support in the view tree.

5.3.4 Enumeration Delay

We next discuss the complexities in the enumeration stage.

Proposition 5.18. For any CQAP0 query, its distinct output tuples given an input tuple
can be enumerated with O(1) delay.

72

Proof. We want to show that for any CQAP0 query, its distinct output tuples given an
input tuple can be enumerated with O(1) delay.

The fracture of any CQAP0 query with access pattern (O|I) is hierarchical, (O ∪ I)-
dominant, and I-dominant, per Definition 3.7. For each connected component of the
fracture, we can construct a variable order where the free variables are above the bound
variables and the input variables are above the output variables, see the Ω function from
Figure 5.5. For the view tree constructed following that variable order, we can create a
list of view iterators by doing a pre-order traversal of the view tree such that the iterators
for input variables precede those for output variables in the list. By forming a nesting
chain of these iterators, we can enumerate the distinct output tuples for the given input
tuple with constant delay.

If the fracture consists of several connected components, we concatenate the list of
iterators constructed for each connected component and form a nesting chain for the
enumeration from their view trees.

Proposition 5.19. For any hierarchical CQAP query Q, database of size N , and ε ∈
[0, 1], the distinct output tuples given an input tuple can be enumerated with O(N1−ε)

delay.

Proof. We now sketch the proof that for any hierarchical CQAP query Q, database of
size N , and ε ∈ [0, 1], the distinct output tuples given an input tuple can be enumerated
with O(N1−ε) delay.

Consider a CQAP query Q with hierarchical fractures. If Q is in CQAP0, the distinct
output tuples can be enumerated with O(1) delay, per Proposition 5.18. Otherwise, there
exists a variable X such that either X is a bound variable and above a free variable or
X is an output variable and above an input variable in the canonical variable order of
Q. For each such case, we partition the relations in the subtree rooted at X and create
different evaluation strategies over the heavy and light relation parts, see Figure 5.5.

In the light case, the created view trees follow access-top variable orders, thus ad-
mitting constant delay enumeration of the output tuples for a given input tuple. In the
heavy case, the view defined X consists of at most N1−ε heavy values, which define the
support for the enumeration from child views. This size of the support determines the
enumeration delay.

5.4 Update

In this section, we discuss the maintenance of the view trees computed in the preprocess-
ing step under a single-tuple update δR to any base relation R. Our approach to effect

73

VB(B)

VC(B,C)

VA(A,B,C)

RA)L(A,B)SA)L(A,C)

δVB(b)

δVC(b, C)

δVA(a, b, C)

δRA)L(a, b) SA)L(a,C)

VA(A)

V ′B(A)

VB(A,B)

RA)H(A,B)

V ′C(A)

VC(A,C)

SA)H(A,C)

δVA(a)

δV ′B(a)

δVB(A,B)

δRA)H(A,B)

V ′C(a)

VC(a, c)

SA)H(a, c)

Figure 5.17: First and third from left: The view trees constructed for Q(B,C) =
R(A,B), S(A,C); The base relations are partitioned on the key A. Second and fourth
from left: The delta view trees under a single-tuple update to R.

TransientHLs(tuple x) : HL-signature

1 {k1, ..., kn} := {k | k ∈ PartitionKeys, k ⊆ Sch(x)}
2 K := parts of base relations

3 si :=

{
sig[ki], if ∃Ksig ∈ K s.t. x[ki] ∈ πkiKsig

L, otherwise
for i ∈ [n]

4 return RemoveHeavyTail({k1 → s1, . . . , kn → sn})

Figure 5.18: Computing an HL-signature for tuple x by checking in which relation parts
the values in x are contained. PartitionKeys consists of the set of all keys the base
relations are partitioned on. sig[k] returns the symbol the key k is mapped to in the
HL-signature sig.

this update is as follows. We first identify which part of a relation R is affected by the
update: We check the degrees of x among the keys on which R is partitioned and find
the relation part Rsig that has the matched degrees. Several view trees can refer to the
same relation part. To simplify the reasoning about the maintenance task, we assume
that each view tree has a copy of its relation parts. Then, for each view tree that contains
Rsig, we update the view tree by calling the Apply function in Figure 4.11.

As the database evolves under updates, the degress of values over a partition key may
change: for example, a new tuple can change the degree of a partition key from light to
heavy, or when a lot of new tuples are inserted, the size of the database may increase,
and thus the threshold also increases. This may cause a partition key that was previously
heavy to become light. For such cases, we periodically rebalance the relation partitions
and views to account for new database sizes and updated degrees of values.

5.4.1 Determining the Relation Part for a Single-Tuple Update

Given an update δR = {x→ m}, we have to find out which part of relation R is affected
by the update. That is, we need to compute the HL-signature of the part of R on which

74

RemoveHeavyTail(HL-signature sig) : HL-signature

1 {k1 → s1, ..., kn → sn} := sig
2 heavyTail := ∅
3 foreach i ∈ [n]

4 if ∃j ∈ [n] s.t. sj = L and kj ⊂ ki

5 heavyTail := heavyTail ∪ {ki → si}
6 return sig \ heavyTail

Figure 5.19: Deletion of the heavy tail from an HL-signature sig. If k → L and k′ → H
are included in sig and k is a proper subset of k′, then k′ → H is deleted from sig.

the update is to be applied.

Example 5.20. Consider the query Q(B,C) = R(A,B), S(A,C). Figure 5.17 (first and
third from left) shows the view trees constructed for the query in the preprocessing stage;
the base relations are partitioned on the key A. Let δR = {(a, b)→ m} an update to the
base relation R. We need to compute the HL-signature of the A-value a to find out which
part of relation R is affected. If a exists in RA)L or does not exist in the database, a is
light on the partition key A and thus affects the part RA)L; otherwise, i.e., a is in RA)H ,
a is heavy and thus affects RA)H .

The function TransientHLs(x) in Figure 5.18 constructs an HL-signature by check-
ing in which relation parts the values in x are contained. The set PartitionKeys (in
Line 1) consists of all keys on which the input relations are partitioned. The func-
tion first creates an HL-signature {k1 → s1, . . . , kn → sn} where each ki is included in
PartitionKeys and is a subset of the schema of x (Line 1). If there exists a relation
part Ksig such that x[ki] is included in the projection of Ksig onto ki, si is defined as the
symbol the key ki is mapped to in sig (first case in Line 3). Otherwise, x[ki] does not
exist in the database yet, so it is light. Thus, in this case si is defined as L (first case in
Line 3).

For hierarchical queries, recall that our preprocessing stage does not further partition
a relation on a key k if the relation is already light on a subset of k. Hence, we apply the
function RemoveHeavyTail in the last line of TransientHLs (defined in Figure 5.19)
to remove from sig all pairs k → s such that there is k′ → L in sig with k′ ⊂ k. We call
the HL-signature constructed by TransientHLs(x) the transient HL-signature of x.

When constructing relation parts from scratch, we determine the part a tuple needs
to be included based on the degrees of the values in the tuple. Given a tuple x and a
threshold θ, the function ActualHLs(x, θ) in Figure 5.20 computes an HL-signature sig
based on θ. If the degree of the projection of x onto a partition key is below θ in all

75

ActualHLs(tuple x, threshold θ) : HL-signature

1 {k1, ..., kn} := {k | k ∈ PartitionKeys, k ⊆ Sch(x)}

2 si :=

{
L, if ∀K ∈ D: |σki=x[ki]K| < θ

H, otherwise
for i ∈ [n]

3 return RemoveHeavyTail({k1 → s1, . . . , kn → sn})

Figure 5.20: Computing an HL-signature for tuple x by checking the degrees of the values
in x based on the threshold θ.

UpdateTrees(view trees T , update δR)

1 δR := {x→ m}
2 sig := TransientHLs(x)

3 foreach T ∈ T do Apply(T, δRsig = {x→ m})

Figure 5.21: Updating a set T of view trees for a single-tuple update δR = {x→ m} to
relation R. If x is already included in a part of R, all view trees referring to that part are
updated. Otherwise, the HL-signature sig of x is computed and all view trees referring
to Rsig are updated.

input relations, sig maps the partition key to L (first case in Line 2). Otherwise, the
partition key is mapped to H (second case in Line 2). The HL-signature constructed by
ActualHLs(x, θ) is called the transient HL-signature of x based on θ.

5.4.2 Processing a Single-Tuple Update

Given a set T of view trees and an update δR = {x → m}, the procedure Update-

Trees(T , δR) in Figure 5.21 maintains the view trees under the update. It first com-
putes the transient HL-signature sig of x (Line 2). Then, it applies δRsig = {x → m}
to the view trees in T (Line 2). There might be several view trees constructed in our
preprocessing stage that refer to Rsig. Next, the function updates each view tree using
the function Apply(T, δRsig) from Figure 4.11 (Line 3). If T does not refer to Rsig, the
procedure has no effect.

Example 5.21. Figure 5.17(second and fourth from left) shows the delta view trees for
the corresponding view trees under the single-tuple update δR = {(a, b) 7→ m} to R. The
delta view trees for an update to S are analogous. The blue views in the view trees are
the deltas to the corresponding views, computed while propagating δR from the affected
relation part to the root view. The update δR affects the light part RA)L(A,B) of R
if the tuple a, b is light on the partition key A. In this case, we update the relation
part RA)L(A,B) with δRA)A(a, b) = δR(a, b), and propagate the change up the tree.

76

δVA(a)

δV ′C(a)

δVC(a, c)

δVD(a, c,D)

δVB(a, b, c,D)

δRA)H,AB)L(a, b, c)
SA)H,AB)L(a, b,D)

V ′E(a)

VE(A,E)

TA)H(A,E)

δVA(a)

δV ′C(a)

δVC(a,C)

δVD(a,C, d)

δVB(a, b, C, d)

RA)H,AB)L(a, b, C)
δSA)H,AB)L(a, b, d)

V ′E(A)

VE(A,E)

TA)H(A,E)

δVA(a)

V ′C(a)

VC(A,C)

VD(A,C,D)

VB(A,B,C,D)

RA)H,AB)L(A,B,C)
SA)H,AB)L(A,B,D)

δV ′E(a)

δVE(a, e)

δTA)H(a, e)

Figure 5.22: The delta view trees for the middle right view tree in Figure 5.7 under a
single-tuple update to R, S, and T , respectively.

We update VA(A,B,C) with δVA(a, b, C) = δRA)L(a, b), SA)L(a, C) in O(N ε) time, since
there are at most N ε C-values paired with value a in SA)L. We then update VC(B,C)

with δVC(b, C) = δVA(a, b, C) in O(N ε) time, and similarly for the view VB(B) with
δVB(b) = δVC(b, C) in O(1) time.

In case δR affects the heavy part RA)H(A,B), i.e., (a, b) is heavy on A, we update
VB(A,B) with δVB(a, b) = δRA)H(a, b) in O(1) time and then update the other views
V ′B(A) and VA similarly in O(1) time.

Overall, maintaining the two view trees under a single-tuple update to any relation
takes O(N ε) time.

Example 5.22. Figure 5.22 shows the delta view trees for the middle right view tree in
Figure 5.7 under the single-tuple update δR = {(a, b, c)→ m} to R, δS = {(a, b, d)→ m}
to S, and δT = {(a, e)→ m} to T .

For the delta view tree for the update δR, we update the view VB(A,B,C,D) with
δVB(a, b, c,D) = δRA)H,AB)L(a, b, c), SA)H,AB)L(a, b,D) in O(N ε) time. We then up-
date VD(A,C,D) with δVD(a, c,D) = δVB(a, b, c,D) with constant time and similarly
for the views VC(A,C), V ′C(A) and VA(A). The computation of the delta view tree
for the update δS is similar. For the update δT , we update the view VE(A,E) with
δVE(a, e) = δTA)H(a, e) with constant time and similarly for the views V ′E(A) and VA(A).

Overall, maintaining the view trees under a single-tuple update to any relation takes
O(N ε) time.

We next state the complexity of processing a single-tuple update for a CQAP query
with a hierarchical fracture in the following proposition.

Proposition 5.23. Given a CQAP query Q(O|I) with a hierarchical fracture, a dynamic
width δ, a database of size N , and ε ∈ [0, 1], the view trees constructed in the preprocessing
stage can be maintained under a single-tuple update to any input relation in O(N δε) time.

77

Proof. In the preprocessing stage, for a CQAP query Q with input variables I, output
variables O, canonical variable order ω and delta width δ, we construct variable orders
Ω(ω, (O|I)) and then construct view trees following these variable orders using the proce-
dure τ . The procedure Ω traverses the variable order ω in a top-down manner. Consider
any subtree ω′ of ω rooted at X and the residual query QX at X in ω. The procedure Ω

distinguishes different cases.
In case the residual query QX is in CQAP0, Ω creates an access-top variable order ω′at

for ω′. At each node X of ω′at, τ creates a view VX with schema {X} ∪ depω′at(X) that
joins the child views below. By construction, if X has only one child Y in ω′at, the child
view VY created at Y below VX has the schema {X, Y } ∪ depω′at(X) and VX is computed
by variable marginalisation, otherwise, i.e., VX has multiple child views, these child views
have the same schema {X} ∪ depω′at(X) as VX . Consider an update δR to a relation R.
The update δR fixes the values of all variables on the path from the leaf R to the root to
constants. While propagating an update through the view tree, the delta for each view
VX requires joining the update with the sibling child views of X. Each of these sibling
child views (if it exists) has the same schema as view at X, as discussed above. Thus,
computing the delta at each node makes only constant-time lookups in the sibling views.
Overall, propagating the update through the view tree constructed for a CQAP0 residual
query takes constant time.

We now discuss the case Q is not in CQAP0. If X is an input variable, or X is an
output variable and its ancestors have no input variable, the Ω procedure traverses to
the subtrees of ω′ and attaches the constructed variable orders to X. The τ procedure
creates a view VX at X with the schema {X} ∪ depω′(X) that joins the child views. By
construction, the schema {X} ∪ depω′(X) is covered by any atom of ω′, and the same as
discussed above, if X has only one child Y in ω′at, the child view VY created at Y below
VX has the schema {X, Y } ∪ depω′at(X) and VX is computed by variable marginalisation,
otherwise, i.e., VX has multiple child views, these child views have the same schema
{X} ∪ depω′at(X) as VX . Since an update to any base relation in ω′ fixes all variable in
VX , the delta for VX can be computed in constant time by constant-time lookups.

If X is a bound variable and ω′ has free variables, or X is an output variable and ω′

has input variables, the Ω procedure partitions the base relations of ω′ on anc(X)∪{X}.
In the heavy case, Ω traverses to the subtrees of ω′ as in the previous case except the
base relations are replaced by the heavy parts of the relations. The delta for the view
constructed at X can be computed in constant time.

In the light case, Ω builds an access-top variable order ω′at of ω′ with the light parts
of the base relations as its leaves, and then τ constructs a view tree ltree following ω′at.
At variable X in ω′at, τ creates a view VX with schema SX = {X} ∪ depω′at(X). Consider

78

an update δR that affects the light part of relation R. While propagating the update
up, at VX , the update δR does not fix all variables in SX and the unfixed variables are
distributed in δ′ views below VX (δ′ ≤ δ since the unfixed variables are covered by at
most δ atoms, according to the definition of dynamic width). Computing the delta for VX
requires finding the values of these unfixed variables in the δ′ views below VX Since the
leaves of ω′at are the light parts of the base relations, we can fetch the values of unfixed
variables in each view in O(N ε) time and O(N δ′ε) time in δ′ views. In the worst case, δ′

can be as large as δ, and therefore the update time is O(N δε).
Overall, the update time for a single-tuple update to any input relation takes O(N δε)

time.

5.4.3 Processing a Sequence of Single-Tuple Updates

An update may change the degree of values over a partition key from light to heavy or vice
versa. In such cases, we need to rebalance the partitioning and possibly recompute some
views to account for a new database size and updated degrees of data values. Although
such rebalancing steps may take time more than processing a single-tuple update, they
happen periodically and their amortized cost remains the same as for a single-tuple
update.

Major Rebalancing. We loosen the partition threshold to amortize the cost of re-
balancing over multiple updates. Instead of the actual database size N , the threshold
now depends on a number M for which the invariant

⌊
1
4
M
⌋
≤ N < M always holds. If

the database size falls below b1
4
Mc or reaches M , we perform major rebalancing, where

we halve or respectively double M , followed by strictly repartitioning the relation parts
with the new threshold M ε and recomputing the views. Figure 5.23 shows the major
rebalancing procedure. For any base relation K and tuple x contained in K, the proce-
dure computes the HL-signature sig of x based on the threshold θ and inserts x into Ksig

(Line 3). It then recomputes all views in the views trees (Line 4).

Proposition 5.24. Consider a CQAP query Q(O|I) whose fracture is hierarchical, a
database of size N , and ε ∈ [0, 1]. Given that the view trees constructed for Q in the
preprocessing stage can be constructed in O(Np) time, major rebalancing of the views in
the view trees takes O(Np) time.

Proof. Consider the major rebalancing procedure from Figure 5.23. The relation parts
can be computed in O(N) time. The affected views can be recomputed in the time of
the preprocessing stage of the query.

79

MajorRebalancing(view trees T , threshold θ)

1 K := parts of base relations
2 foreach Ksig ∈ K do
3 Ksig := {x→ K(x)

| x in base relation K,ActualHLs(x, θ) = sig}
4 foreach T ∈ T do recompute views in T

Figure 5.23: Recomputing all relation parts and affected views in the view trees T based
on the threshold θ.

MinorRebalancing(trees T , value v, threshold θ)

1 K := parts of base relations
2 foreach Ksig ∈ K do
3 foreach x ∈ σSch(v)=vK

sig do
4 sig′ := ActualHLs(x, θ)

5 foreach T ∈ T do Apply(T, δKsig′ = {x→ Ksig(x)})
6 foreach T ∈ T do Apply(T, δKsig = {x→ −Ksig(x)})

Figure 5.24: Moving tuples x containing v to relation parts whose HL-signature matches
the degree of v in base relations.

The cost of major rebalancing is amortized over Ω(M) updates. After a major rebal-
ancing step, it holds that N = 1

2
M (after doubling), or N = 1

2
M − 1

2
or N = 1

2
M − 1

(after halving). To violate the size invariant
⌊

1
4
M
⌋
≤ N < M and trigger another major

rebalancing, the number of required updates is at least 1
4
M . Hence, the amortized major

rebalancing time is O(Np−1). For hierarchical queries, by Proposition 5.27, we have δ = w

or δ = w − 1; hence, the amortized major rebalancing time is O(M δε).

Minor Rebalancing. After an update δR = {x → m} to relation R, we check the
degrees of the values in x. Consider a partition key k that is included in the schema of x
and the projection v of x onto k. If v is included in a relation part that is light on k but
the degree of v is not below 3

2
M ε in at least one base relations, all tuples including v are

moved to relation parts that are heavy on v. Likewise, if v is in a relation part that is
heavy on k but the degree of v is below 1

2
M ε in all base relations, all tuples including v

are moved to relation parts that are light on v. Figure 5.24 shows the minor rebalancing
procedure that moves tuples including v to relation parts whose HL-signature matches
the degree of v in the base relations. For each tuple x in a relation part Ksig, it first
computes the actual HL-signature sig′ of x based on the threshold θ (Line 4). It then
inserts x into Ksig′ (Line 5) and deletes it from Ksig (Line 6).

80

OnUpdate(view trees T , update δR)

1 UpdateTrees(T , δR)

2 if (|D| = M)

3 M := 2M

4 MajorRebalancing(T ,M ε)

5 else if (|D| <
⌊

1
4
M
⌋
)

6 M :=
⌊

1
2
M
⌋
− 1

7 MajorRebalancing(T ,M ε)

8 else
9 δR := {x→ m}

10 {k1 → s1, ..., kn → sn} := TransientHLs(x)

11 foreach i ∈ [n] do
12 if (si = L and ∃K ∈ D: |σki=x[ki]K| ≥ 3

2
M ε) or

13 (si = H and ∀K ∈ D: |σki=x[ki]K| < 1
2
M ε)

14 MinorRebalancing(T ,x[ki],M
ε)

Figure 5.25: Updating a set of view trees T under a sequence of single-tuple updates
to base relations. D is the database. The global variable M is set to 2|D| + 1 in the
preprocessing stage.

Proposition 5.25. Consider a CQAP query Q(O|I) with a hierarchical fracture, a dy-
namic width δ, a database of size N , and ε ∈ [0, 1]. Given that the view trees constructed
for Q in the preprocessing stage can be maintained under a single-tuple update in O(Nu)

time, minor rebalancing of the views in the view trees takes O(Nu+ε) time.

Proof. Figure 5.24 shows the procedure for minor rebalancing of tuples containing the
given value v to relation parts whose signature matches the degree of v in base relations.
Minor rebalancing either moves O(3

2
M ε) tuples that have v to relation parts that are

heavy on v (light to heavy) or O(1
2
M ε) tuples that have v to relation parts that are light

on v (heavy to light). Each move is by an insert followed by a delete, which takes O(Nu)

time. Since there are O(M ε) such moves and the size invariant
⌊

1
4
M
⌋
≤ N < M holds,

the total time is O(Nu ·N ε) = O(Nu+ε).

The cost of minor rebalancing is amortized over Ω(M ε) updates. This lower bound
on the number of updates is due to the gap between the two thresholds in the heavy and
light part conditions. The amortized time of minor rebalancing is thus O(Nu).

Figure 5.25 gives the trigger procedure OnUpdate that maintains a set T of view
trees under a sequence of single-tuple updates to input relations. It first applies an
update δR = {x→ m} to the view trees from T using UpdateTrees from Figure 5.21
(Line 1). If this update leads to a violation of the size invariant

⌊
1
4
M
⌋
≤ N < M ,

it invokes MajorRebalancing to recompute the relation parts and views (Lines 2-7).

81

Otherwise, it computes the transient HL-signature {k1 → s1, . . . , kn → sn} of x (Line 10).
If for any si, we have si = L, but there exists a relation such that the degree of x[ki] is
at least 3

2
M ε, or it holds si = H but the degree of x[ki] is below 1

2
M ε in all relations,

it invokes MinorRebalancing to move all tuples containing x[ki] to the relation parts
whose HL-signature matches the degree of x[ki] in base relations (Lines 11-14).

We state the amortized maintenance time of our approach under a sequence of single-
tuple updates.

Proposition 5.26. Consider a CQAP query Q(O|I) whose fracture is hierarchical, a
database of size N , and ε ∈ [0, 1]. Given that the view trees constructed for Q in the
preprocessing stage can be constructed in O(Np) time and maintained in O(Nu) for a
single-tuple update, maintaining the views in the view trees under a sequence of single-
tuple updates takes O(Nu) amortized time per single-tuple update.

Proof. We first give the intuition of the proof. By Proposition 5.24, a major rebalancing
step requires O(Np) time. This time is amortized over Ω(N) updates executed before the
rebalancing step, thus the amortized time of major rebalancing is O(Np−1).

For hierarchical CQAP queries, since δ = w or δ = w − 1 as per Proposition 5.27,
we conclude that the amortized time for major rebalancing is O(N δε). This is exactly
the time for processing a single-tuple update, i.e., O(Nu). Hence, for hierarchical CQAP
queries, the amortized major rebalancing time is O(Nu).

For the minor rebalancing, by Proposition 5.25, a minor rebalancing step requires
O(Nu+ε) time. This is amortized over Ω(N ε) previous updates, which results in O(Nu)

amortized minor rebalancing time.
Overall, both minor and major rebalancing steps take amortized O(Nu) time, which

is the same as the time to process a single-tuple update. Hence, we conclude that the
amortized update time under a sequence of single-tuple updates takes O(Nu) amortized
time per single-tuple update.

We next give the formal proof. Let Z = (ε,M, T) be a state of a database D, where T
is the set of view trees constructed in the preprocessing stage andM is the threshold base
of Z, which is linear to the size of the database. Let Z0 = (ε,M0, T0) be the initial state
of a database D0 and u0, u1, . . . , un−1 a sequence of arbitrary single-tuple updates. The
application of this update sequence to Z0 yields a sequence Z0

u0−→ Z1
u1−→ . . .

un−1−→ Zn of
states, where Zi+1 contains the result of executing the procedure OnUpdate(Ti, ui) from
Figure 5.25, for 0 ≤ i < n. Let ci denote the actual execution cost of OnUpdate(Ti, ui).
For some Γ > 0, we can decompose each ci as:

ci = capplyi + cmajor
i + cminor

i + Γ, for 0 ≤ i < n,

82

where capplyi , cmajor
i , and cminor

i are the actual costs of the subprocedures UpdateTrees,
MajorRebalance, and MinorRebalance, respectively, in OnUpdate. If update ui
causes no major rebalancing, then cmajor

i = 0; similarly, if ui causes no minor rebalancing,
then cminor

i = 0. These actual costs admit the following worst-case upper bounds:

capplyi ≤ γMu
i ,

cmajor
i ≤ γMp

i (by Proposition 5.24), and
cminor
i ≤ γMu+ε

i (by Proposition 5.25),

where γ is a constant derived from their asymptotic bounds, andMi is the threshold base
of Zi. The costs of major and minor rebalancing can be superlinear in the database size.

The crux of this proof is to show that assigning a sublinear amortized cost ĉi to each
update ui accumulates enough budget to pay for expensive but less frequent rebalancing
procedures. For any sequence of n updates, our goal is to show that the accumulated
amortized cost is no smaller than the accumulated actual cost:

n−1∑
i=0

ĉi ≥
n−1∑
i=0

ci. (5.6)

The amortized cost assigned to an update ui is ĉi = ĉapplyi + ĉmajor
i + ĉminor

i + Γ, where

ĉapplyi = γNu
i , ĉmajor

i = 4γNp−1
i , ĉminor

i = γNu
i , and

Γ and γ are the constants used to upper bound the actual cost of OnUpdate. In
contrast to the actual costs cmajor

i and cminor
i , the amortized costs ĉmajor

i and ĉminor
i are

always nonzero.
We prove that such amortized costs satisfy Inequality (5.6). Since ĉapplyi ≥ capplyi for

0 ≤ i < n, it suffices to show that the following inequalities hold:

(amortizing major rebalancing)
n−1∑
i=0

ĉmajor
i ≥

n−1∑
i=0

cmajor
i and (5.7)

(amortizing minor rebalancing)
n−1∑
i=0

ĉminor
i ≥

n−1∑
i=0

cminor
i . (5.8)

We prove Inequalities (5.7) and (5.8) by induction on the length n of the update sequence.

Major rebalancing.

• Base case: We show that Inequality (5.7) holds for n = 1. The preprocessing
stage sets M0 = 2 · N + 1. If the initial database D0 is empty, then M0 = 1

and u0 triggers major rebalancing (and no minor rebalancing). The amortized cost

83

ĉmajor
0 = 4γMp−1

0 = 4γ suffices to cover the actual cost cmajor
0 ≤ γM1+p−1

0 = γ. If
the initial database is nonempty, u0 cannot trigger major rebalancing (i.e., violate
the size invariant) because

⌊
1
4
M0

⌋
=
⌊

1
2
N
⌋
≤ N − 1 (lower threshold) and N + 1 <

M0 = 2 ·N + 1 (upper threshold); then, ĉmajor
0 ≥ cmajor

0 = 0. Thus, Inequality (5.7)
holds for n = 1.

• Inductive step: Assumed that Inequality (5.7) holds for all update sequences of
length up to n − 1, we show it holds for update sequences of length n. If update
un−1 causes no major rebalancing, then ĉmajor

n−1 = 4γMp−1
n−1 ≥ 0 and cmajor

n−1 = 0, thus
Inequality (5.7) holds for n. Otherwise, if applying un−1 violates the size invariant,
the database sizeNn is either

⌊
1
4
Mn−1

⌋
−1 orMn−1. Let Zj be the state created after

the previous major rebalancing or, if there is no such step, the initial state. For the
former (j > 0), the major rebalancing step ensures Nj = 1

2
Mj after doubling and

Nj = 1
2
Mj − 1

2
or Nj = 1

2
Mj − 1 after halving the threshold base Mj; for the latter

(j = 0), the preprocessing stage ensures Nj = 1
2
Mj − 1

2
. The threshold base Mj

changes only with major rebalancing, thus Mj = Mj+1 = . . . = Mn−1. The number
of updates needed to change the database size from Nj to Nn (i.e., between two
major rebalancing) is at least 1

4
Mn−1 since min{1

2
Mj − 1− (

⌊
1
4
Mn−1

⌋
− 1),Mn−1 −

1
2
Mj} ≥ 1

4
Mn−1. Then,

n−1∑
i=0

ĉmajor
i ≥

j−1∑
i=0

cmajor
i +

n−1∑
i=j

ĉmajor
i (induction hypothesis)

=

j−1∑
i=0

cmajor
i +

n−1∑
i=j

4γMp−1
n−1 (Mj = . . . = Mn−1)

≥
j−1∑
i=0

cmajor
i +

1

4
Mn−1 4γMp−1

n−1 (at least
1

4
Mn−1 updates)

=

j−1∑
i=0

cmajor
i + γM1+p−1

n−1

≥
j−1∑
i=0

cmajor
i + cmajor

n−1 =
n−1∑
i=0

cmajor
i (cmajor

j = . . . = cmajor
n−2 = 0).

Thus, Inequality (5.7) holds for update sequences of length n.

Minor rebalancing. When the degree of a tuple of values in a partition changes such
that the heavy or light part condition no longer holds, minor rebalancing moves the af-
fected tuples between the heavy and light parts of the partition. To prove Inequality (5.8),

84

we decompose the cost of minor rebalancing per relation part, partition key, and data
values of the partition key.

cminor
i =

∑
Rsig∈R

∑
k∈keys(sig)

∑
key∈Dom(k)

cR
sig,k,key

i and

ĉminor
i =

∑
Rsig∈R

∑
k∈keys(sig)

∑
key∈Dom(k)

ĉR
sig,k,key

i

We write cR
sig,k,key

i and ĉR
sig,k,key

i to denote the actual and respectively amortized
costs of minor rebalancing caused by update ui, for a relation part Rsig and a tu-
ple key with the schema key whose value comes from ui. Consider the update ui of
the form δR = {t → m}. If update ui triggers minor rebalancing, then the cost is∑

Rsig∈R
∑

k∈keys(sig) c
Rsig,k,πkt
i = cminor

i ; otherwise,
∑

Rsig∈R
∑

k∈keys(sig) c
Rsig,k,πkt
i = 0.

The amortized cost is
∑

Rsig∈R
∑

k∈keys(sig) ĉ
Rsig,k,πkt
i = ĉminor

i regardless of whether ui

causes minor rebalancing or not.
We prove that for a relation part Rsig a relation R, any partition key k ∈ keys(sig)

on which R is partitioned, and any key ∈ Dom(k) the following inequality holds:

n−1∑
i=0

ĉR
sig,k,πkt

i ≥
n−1∑
i=0

cR
sig,k,πkt

i . (5.9)

Since the number of relation partitions of a relation is constant, Inequality (5.8) follows
directly from Inequality (5.9). We prove Inequality (5.9) by induction on the length n of
the update sequence.

• Base case: We show that Inequality (5.9) holds for n = 1. Assume that update u0 is
of the form δR = {t → m}; otherwise, ĉR

sig,k,πkt
0 = cR

sig,k,πkt
0 = 0, and Inequality (5.9)

follows trivially for n = 1. If the initial database is empty, u0 triggers major rebalancing
but no minor rebalancing, thus ĉR

sig,k,πkt
0 = γMu

0 ≥ cR
sig,k,πkt

0 = 0. If the initial database
is nonempty, each relation is partitioned using the threshold M ε

0. For update u0 to
trigger the minor rebalancing of Rsig, the degree of the tuple key over the partition key
k in Rsig has to either decrease from dM ε

0e to
⌈

1
2
M ε

0

⌉
−1 (heavy to light) or increase from

dM ε
0e−1 to

⌈
3
2
M ε

0

⌉
(light to heavy). The former happens only if dM ε

0e = 1 and update
u0 removes the last tuple with the tuple key from Rsig, thus no minor rebalancing
is needed; the latter cannot happen since update u0 can increase |σk=keyR

sig| to at
most dM ε

0e, and dM ε
0e <

⌈
3
2
M ε

0

⌉
. In any case, ĉR

sig,k,πkt
0 ≥ cR

sig,k,πkt
0 , implying that

Inequality (5.9) holds for n = 1.

• Inductive step: Assuming that Inequality (5.9) holds for all update sequences of length
up to n− 1, we show it holds for update sequences of length n. Consider that update

85

un−1 is of the form δR = {t→ m} and causes minor rebalancing for the relation part
Rsig; otherwise, ĉR

sig,k,πkt
n−1 ≥ 0 and cR

sig,k,πkt
n−1 = 0, and Inequality (5.9) follows trivially

for n. Let Zj be the state created after the previous major rebalancing or, if there is no
such step, the initial state. The threshold changes only with major rebalancing, thus
Mj = Mj+1 = . . . = Mn−1. Depending on the existence of minor rebalancing steps
since state Zj, we have two cases:

– Case 1: There is no minor rebalancing for Rsig caused by an update of the form
since state Zj; thus, cR

sig,k,πkt
j = . . . = cR

sig,k,πkt
n−2 = 0. From state Zj to state Zn,

the number of tuples with key either decreases from at least
⌈
M ε

j

⌉
to
⌈

1
2
M ε

n−1

⌉
− 1

(heavy to light) or increases from at most
⌈
M ε

j

⌉
− 1 to

⌈
3
2
M ε

n−1

⌉
(light to heavy).

For this change to happen, the number of updates needs to be greater than 1
2
M ε

n−1

sinceMj = Mn−1 and min{
⌈
M ε

j

⌉
−(
⌈

1
2
M ε

n−1

⌉
−1),

⌈
3
2
M ε

n−1

⌉
−(
⌈
M ε

j

⌉
−1)} > 1

2
M ε

n−1.
Then,

n−1∑
i=0

ĉR
sig,k,πkt

i ≥
j−1∑
i=0

cR
sig,k,πkt

i +
n−1∑
i=j

ĉR
sig,k,πkt

i (induction hypothesis)

=

j−1∑
i=0

cR
sig,k,πkt

i +
n−1∑
i=j

γMu
n−1 (Mj = . . . = Mn−1)

>

j−1∑
i=0

cR
sig,k,πkt

i +M ε
n−1γM

u
n−1 (more than M ε

n−1 updates)

≥
j−1∑
i=0

cR
sig,k,πkt

i + cR
sig,k,πkt

n−1

=
n−1∑
i=0

cR
sig,k,πkt

i (cR
sig,k,πkt

j = ... = cR
sig,k,πkt

n−2 = 0).

– Case 2: There is at least one minor rebalancing step for Rsig caused by an update
of the form δR = {t′ → m′} where πk t′ = key since state Zj. Let Z` denote the
state created after the previous minor rebalancing caused by an update of this form;
thus, cR

sig,k,πkt
` = . . . = cR

sig,k,πkt
n−2 = 0. The minor rebalancing steps creating Z`

and Zn inserts or deletes tuples with the S tuples key. From state Z` to state Zn,
the number of such tuples either decreases from

⌈
3
2
M ε

l

⌉
to
⌈

1
2
M ε

n−1

⌉
− 1 (heavy to

light) or increases from
⌈

1
2
M ε

l

⌉
− 1 to

⌈
3
2
M ε

n−1

⌉
(light to heavy). For this change to

happen, the number of updates needs to be greater thanM ε
n−1 sinceMl = Mn−1 and

min{
⌈

3
2
M ε

l

⌉
− (
⌈

1
2
M ε

n−1

⌉
− 1),

⌈
3
2
M ε

n−1

⌉
− (
⌈

1
2
M ε

l

⌉
− 1)} > M ε

n−1. Then,

86

n−1∑
i=0

ĉR
sig,k,πkt

i ≥
`−1∑
i=0

cR
sig,k,πkt

i +
n−1∑
i=`

ĉR
sig,k,πkt

i (induction hypothesis)

=
`−1∑
i=0

cR
sig,k,πkt

i +
n−1∑
i=`

γMu
n−1 (Mj = . . . = Mn−1)

>
`−1∑
i=0

cR
sig,k,πkt

i +M ε
n−1γM

u
n−1 (more than M ε

n−1 updates)

>
`−1∑
i=0

cR
sig,k,πkt

i + cR
sig,k,πkt

n−1

=
n−1∑
i=0

cR
sig,k,πkt

i (cR
sig,k,πkt

` = ... = cR
sig,k,πkt

n−2 = 0).

Cases 1 and 2 imply that Inequality (5.9) holds for update sequences of length n.

This shows that Inequality (5.6) holds when the amortized cost of OnUpdate(Ti, ui) is

ĉi = γMu
i + 4γMp−1

i + γMu
i + Γ, for 0 ≤ i < n,

where Γ and γ are constants. The amortized cost ĉmajor
i of major rebalancing is 4γMp−1

i ,
and the amortized cost ĉminor

i of minor rebalancing is γM δε
i . From the size invariant⌊

1
4
Mi

⌋
≤ Ni < Mi follows that Ni < Mi < 4(Ni + 1) for 0 ≤ i < n, where Ni is

the database size before update ui. This implies that for any database of size N , the
amortized major rebalancing time is O(Np−1) and the amortized minor rebalancing time
is O(Nu). From w − 1 ≤ δ in Proposition 5.27, it follows that the overall amortized
update time is O(N δε).

5.5 Complexity Analysis

We can now prove Theorem 3.5 by combining the results of the previous sections. The
theorem is copied here for convenience.

Theorem 3.5. Consider any CQAP query Q with static width w and dynamic width
δ, a database of size N , and ε ∈ [0, 1]. If Q’s fracture is hierarchical, then Q admits
O(N1+(w−1)ε) preprocessing time, O(N1−ε) enumeration delay, and O(N δε) amortized
update time for single-tuple updates.

87

Proof. Consider a CQAP query Q with static width w and dynamic width δ. Assume that
the fracture Q† of Q is hierarchical. In the preprocessing stage, we construct a set of view
trees representing the result of Q†. These view trees can be materialized in O(N1+(w−1)ε)

time (Propositions 5.10) and can be maintained with O(N δε) amortised time under single-
tuple updates (Proposition 5.23). Given any input tuple, the view trees allow for the
enumeration of the result of Q with O(N1−ε) enumeration delay (Proposition 5.19).

The static width of a query is greater or equal to the dynamic width. For hierarchical
queries, the difference can be 0 or 1.

Proposition 5.27. For any CQAP query with a hierarchical fracture, static width w and
dynamic width δ, it holds that either δ = w or δ = w − 1.

Proof. Let Q be a CQAP query with a hierarchical fracture, static width w and dynamic
width δ. The fracture Q† of Q is hierarchical and has static width w and dynamic width
δ. Lemma 5.13 and the definition of static and dynamic width imply that w, δ ∈ N0

and δ ≤ w. It remains to show that w − 1 ≤ δ. For the sake of contradiction, assume
that w − 1 > δ. Let ω be an access-top variable order that gives the static width w and
dynamic width δ for Q†. Our assumption w − 1 > δ implies:

∀X ∈ vars(Q†),∀R(Y) ∈ atoms(ωX) :

ρ∗(({X} ∪ depω(X))− Y) ≤ δ < w − 1. (5.10)

Since the static width of Q† is w, it holds:

∃Y ∈ vars(Q†) : ρ∗({Y } ∪ depω(Y)) = w. (5.11)

We show that Statements (5.10) and (5.11) are contradicting, which completes the
proof. Let X be an arbitrary variable in vars(Q†) and R(Y) any atom in atoms(ωX). Let
λ = (λK(X))K(X)∈atoms(Q) be a fractional edge cover of ({X} ∪ depω(X))− Y such that∑

K(X)∈atoms(Q)

λK(X) = ρ∗(({X} ∪ depω(X))− Y).

Due to Statement (5.10), it holds ∑
K(X)∈atoms(Q)

λK(X) < w − 1. (5.12)

Let λ′ = (λ′K(X))K(X)∈atoms(Q) be defined as

λ′K(X) =

{
1, if K(X) = R(Y)

λK(X), otherwise

88

O I w δ

{A,B,C,D,E} { } 1 0
{ } {A,B,C,D,E} 1 0
{B,C,D,E} {A} 1 0
{C,D,E} {A,B} 1 0
{A,C,D,E} {B} 1 1
{A,C,D} {B,E} 2 1
{A,E} {B,C,D} 2 2
{A,B} {C,D,E} 3 2

logNdelay

logNpreprocessing time

logNupdate time

0

(1, 0, 1)
1 1

2

(2, 2, 0)
(3, 2, 0)

3(2, 0, 1)

1

2

w = 1, δ = 0
w = 1, δ = 1
w = 2, δ = 1
w = 2, δ = 2
w = 3, δ = 2

Figure 5.26: Left: The static width w and dynamic width δ of the query in Example 5.28
for different access patterns (O | I). Right: The trade-offs between the preprocessing
time, update time, and enumeration delay of the corresponding queries on the left.

Clearly, λ′ is a fractional edge cover of {X}∪depω(X). Moreover, due to Inequality (5.12),
it holds that

∑
K(X)∈atoms(Q) λ

′
K(X) < w. Since X was chosen arbitrarily from vars(Q†),

this means that for any X ∈ vars(Q), we have ρ∗({X} ∪ depω(X)) < w. However, this
contradicts Statement (5.11).

The following example shows how the widths of a query can change dependent on the
input and output variable sets of the query.

Example 5.28. Consider the query

Q(O | I) = R(A,B,C), S(A,B,D), T (A,E).

Figure 5.26 (left) gives static widths w and dynamic widths δ of the query for different
access patterns (O | I). Figure 5.26 (right) shows the complexities for preprocessing
time, update time, and enumeration delay for the query with different access patterns as
a function of ε ∈ [0, 1]. �

Recall the eager and lazy approaches introduced in Chapter 1. Our trade-off may
achieve a lower computation time when compared against the eager approach in case we
only need to enumerate a part P of the result instead of the entire result. To achieve the
overall minimum computation time, we may decide on how much to offload to update
and what should be the enumeration delay as functions of the size of P . We demonstrate
this in the following example.

Example 5.29. Consider the 4-cycle query:

Q(A,C | B,D) = R(A,B), S(B,C), T (C,D), U(A,D).

Assume that all four relations have size N .

89

The eager approach first precomputes the results of 4-cycle Q(A,B,C,D) in O(N2)

time using a worst-case optimal join algorithm [58]. On a single-tuple update δR to
relation R, it computes the delta

δQ(a, b, C,D) = δR(a, b), S(b, C), T (C,D), U(a,D).

This takes O(N) time: for each pair of C- and D-values that are paired with b in S and
a in U , we look it up in T . For a given tuple (b, d) over B and D, the (A,C)-tuples in
Q(A,C | b, d) can be enumerated with constant delay. Overall, the eager approach takes
O(N2) preprocessing time, O(N) update time and O(1) enumeration delay.

The lazy approach has no precomputation and only updates the base relations for each
update. To answer an access request for a given tuple (b, d) over B and D, it first calibrates
the relations in the residual queries Q(A,C) = R(A, b), S(b, C), T (C, d), U(A, d). This
takes linear time. After that, it can enumerate the paris of values over {A,C} with
constant delay. Overall, the lazy approach takes O(1) preprocessing time, O(1) update
time and O(N) enumeration delay.

Our approach admits O(N1+ε) preprocessing time, O(N ε) update time and O(N1−ε)

delay for any ε ∈ [0, 1]. The complexities for the eager and lazy approaches can be recov-
ered using our approach by setting ε = 1 and respectively ε = 0 (except for preprocessing
in the lazy approach):

Approach Preprocessing Update Delay
Eager O(N2) O(N) O(1)
Lazy O(1) O(1) O(N)
Ours O(N1+ε) O(N ε) O(N1−ε)

Consider now a sequence of updates, each followed by one access request to enumerate
k out of the maximum possible O(N2) pairs of values. The time to process an update
and answer an access request is (update + k * delay), which means O(N + k) time
for the eager approach, O(1 + (N + k)) for the lazy approach and O(N ε + kN1−ε) for our
approach. The table blow shows the complexity of processing an update and answering
k access requests for a various of k. The five columns show the complexities for the
approaches for various value of k. The last row states the value of ε, for which the
complexities of our approach in the same columns are obtained. Depending on the value
of k, we can tune our approach to minimize its complexity. For 1 ≤ k < N , our approach
has consistently lower complexity than the lazy/eager approaches (the green cells), while
for k ≥ N it matches the complexity of the lazy/eager approaches (the yellow cells).

90

logN k
0 0.5 1 1.5 2

Eager/Lazy O(N) O(N) O(N) O(N1.5) O(N2)

Ours O(N0.5) O(N0.75) O(N) O(N1.5) O(N2)

ε 0.5 0.75 1 1 1

Recovery of Prior Results. Our result, Theorem 3.5, can recover prior results on
CQs without access patterns, i.e., CQAP queries with no input variable, in both the
static and dynamic settings.

We first discuss the static evaluation, i.e., compute the query results and then enu-
merate them: we find the access-top variable order that has the optimal static width w,
and then precompute the data structure that represents the query results in O(Nw) time
and enumerate the results with O(N1−ε) delay. By appropriately setting ε, this trade-
off recovers prior results on CQs restricted to hierarchical queries (Figure 5.27 left): by
setting ε = 0, both the preprocessing time O(N1+(w−1)ε) and the delay O(N1−ε) become
O(N), as for α-acyclic queries [9]; by setting ε = 1, we obtain O(Nw) preprocessing time
and O(1) delay as for conjunctive queries [65]. For free-connex queries, w = 1 and the
preprocessing time remains O(N) regardless of ε; we then choose ε = 1 to obtain O(1)

delay [9]. For bounded-degree databases, i.e., where each value appears at most c times
for some constant c = Nβ, first-order queries admit O(N) preprocessing time and O(1)

delay [28, 46]. We recover the O(1) delay using ε = 1. The preprocessing time becomes
O(N · (Nβ)w−1) = O(N) if our approach uses the constant upper bound c instead of the
upper bound N ε on the degrees.

In the dynamic case, our approach recovers prior work on conjunctive [62], free-connex
[38], and q-hierarchical [14] queries by setting ε = 1 (Figure 5.27 right). For general
hierarchical queries, our approach then achieves the same complexities as prior work on
conjunctive queries. For free-connex queries, we obtain linear-time preprocessing and
update and constant-time delay since w = 1 and δ ∈ {0, 1}. For q-hierarchical queries,
we obtain linear-time preprocessing and constant-time update and delay since w = 1 and
δ = 0. Existing maintenance approaches, e.g, classical first-order IVM [23] and higher-
order recursive IVM [50], DynYannakakis [38], and F-IVM [62], can achieve constant
delay for general hierarchical queries yet after at least linear-time updates.

91

Trade-offs in
Static Query Evaluation

Trade-offs in
Dynamic Query Evaluation

0 1 w

1

logN delay

logN preprocessing time

conjunctive

α-acyclic

free-connex

hierarchical

logNdelay

logNpreprocessing time

logNupdate time

0

(1, 0, 1)

1

1

w

δ

free-connex1

conjunctive

q-hierarchical
hie

rar
chi

cal

Figure 5.27: Trade-offs in static and dynamic evaluation for hierarchical queries. Our
approach achieves each blue point and each point on the blue lines. Prior approaches are
represented by one point in the trade-off space.

5.6 Optimality Result

Our trade-offs for CQAP queries with hierarchical fractures (Theorem 3.5) are optimal
for CQAP0 and CQAP1 queries, unless the OMv conjecture is false. Before showing this,
we first show that the CQAP0 and CQAP1 queries are exactly those queries with dynamic
width 0 and 1, respectively.

Proposition 5.30. A query is CQAP0 if and only if it has dynamic width 0. A query is
CQAP1 if and only if it has dynamic width 1.

The proposition directly follows from the following Lemmas 5.31 and 5.32.

Lemma 5.31. Any CQAPi query with i ∈ {0, 1} has dynamic width at least i.

Lemma 5.32. Any CQAPi query with i ∈ {0, 1} has dynamic width at most i.

It remains to prove Lemmas 5.31 and 5.32.

Proof of Lemma 5.31. Let Q be a CQAPi query for some i ∈ {0, 1}. Since the dynamic
width of a CQAP query is greater or equal to 0, the case i = 0 is trivial. Assume now
that Q is a CQAP1 query and consider its fracture Q†. By definition of CQAP1 queries,
Q† is hierarchical and almost free-dominant or almost input-dominant. Assume first that
Q† is almost free-dominant. This means that Q† contains a bound variable X and an
atom R(Y) ∈ atoms(X) such that:

free(atoms(X)) 6⊆ Y (5.13)

92

Let ω be an arbitrary access-top variable order for Q†. Since the schema of each
atom in atoms(X) contains X, all variables in free(atoms(X)) depend on X. Hence,
each variable in free(atoms(X)) is on a root-to-leaf path with X. Since X is bound, the
variables in free(atoms(X)) cannot be contained in ωX . Hence, they are contained in
ancω(X). This implies that free(atoms(X)) ⊆ ({X} ∪ depω(X)). By Assumption (5.13),
ρ(({X} ∪ depω(X)) − Y) is at least 1. This implies that ρ∗(({X} ∪ depω(X)) − Y) is
at least 1 (Lemma 5.13). It follows that δ(ω) ≥ 1. Since ω is an arbitrary access-top
variable order for Q†, we derive that the dynamic width of Q is at least 1.

The case that the fracture Q† is almost input-dominant is handled analogously. The
query Q† contains an output variable X and an atom R(Y) ∈ atoms(X) such that:

in(atoms(X)) 6⊆ Y (5.14)

Consider any access-top variable order ω for Q†. Since X is output, the variables
in in(atoms(X)) are contained in ancω(X). This means that in(atoms(X)) ⊆ ({X} ∪
depω(X)). By Assumption (5.14), ρ∗(({X} ∪ depω(X))−Y) is at least 1. It follows that
δ(ω) ≥ 1. Therefore, the dynamic width of Q is at least 1.

Proof of Lemma 5.32. Consider a CQAP0 query Q and its fracture Q†. The query Q†
admits a canonical variable order ω where all free variables are above the bound ones and
all input variables are above the output variables. Hence, ω is access-efficient. Consider a
variable X in ω and an atom R(Y) ∈ atoms(X). Since ω is canonical, it holds depω(X) =

ancω(X) and R(Y) has {X} ∪ ancω(X) in its schema. Hence, ({X} ∪ depω(X)) − Y =

({X} ∪ ancω(X)) − Y = ∅. This means that ρ∗(({X} ∪ depω(X)) − Y) is 0. Since we
chose X and R(Y) ∈ atoms(X) arbitrarily, this implies that the dynamic width of ω is
0. Hence, the dynamic width of Q† and, therefore, of Q is 0.

Now, assume that Q is a CQAP1 with fracture Q†(O|I). Let ω be the canonical
variable order of Q†. By Lemma 5.11, the function Acc-Top(ω,O, I) in Figure 5.1
(Section 5.2.1) constructs an access-top variable order ωt for Q† with dynamic width
κ(ω, I,O), where

κ(ω, I,O) = max
Y ∈bound(ω)
Z∈out(ω)

max
R(Y)∈atoms(ωY)

{ρ∗((vars(ωY) ∩ F)− Y), ρ∗((vars(ωZ) ∩ I)− Y)}

with F = I ∪ O. Recall that Q† is almost free- or almost input-dominant. Consider
an arbitrary variable X in ω and an atom R(Y) containing X. If X is bound, then
ρ∗((vars(ωX)∩F)−Y) can be at most 1. Similarly, if X is output, then ρ∗((vars(ωX)∩
I)−Y) can be at most 1. It follows that κ(ω, I,O) is at most 1. This implies that ωt is
an access-top variable order for Q† with dynamic width at most 1. We conclude that the
dynamic width of Q is at most 1.

93

Optimality Results for CQAP0 Queries. Queries in CQAP0 are those queries that
have a dynamic width of 0 (Proposition 5.30). Both our approaches for arbitrary CQAP
queries (Theorem 3.4) and for CQAP queries with hierarchical fractures (Theorem 3.5
with ε = 1) admit constant update time and delay. This is matched by the lower bound
conditioned on the OMv conjecture (first statement in Theorem 3.11). Thus, our result
on CQAP0 queries is optimal.

Optimality Results for CQAP1 Queries. Theorem 3.5 can be refined for CQAP1,
since δ = 1 and w ≤ 2 for queries in this class. By setting ε = 0.5, our approach admits
the complexities as shown in Corollary 5.33.

Corollary 5.33. (Theorem 3.5) Any CQAP1 query Q admits O(N1+
(w−1)

2) preprocess-
ing time, O(N

1
2) enumeration delay, and O(N

1
2) amortized update time for single-tuple

updates, where N is the database size and w is the static width of Q.

This is matched by the lower bound conditioned on the OMv conjecture (second
statement in Theorem 3.11). Thus, our result on CQAP1 queries achieves weakly Pareto
worst-case optimal: there can be no tighter upper bounds for both the update time and
delay. This is summarized in the following corollary.

Corollary 5.34 (Theorem 3.11). Given a CQAP1 query Q without repeating relation
symbols, γ > 0, and a database of size N , there is no algorithm that computes Q with
arbitrary preprocessing time, O(N

1
2
−γ) amortized update time, and O(N

1
2
−γ) enumeration

delay, unless the OMv conjecture fails.

The class CQAP1 contains both acyclic and cyclic queries, e.g., the 4-cycle query
Q(A,C | B,D) = R(A,B), S(B,C), T (C,D), U(A,D) with input variables B,D and
output variables A,C. In contrast to CQAP0, CQAP1 is not maximal for the given
complexities, e.g., counting triangles needs the same update time and delay [41, 42].

94

Chapter 6

Trade-Offs in Dynamic Evaluation for
Triangle CQAP Queries

In this chapter, we introduce our approach for the dynamic evaluation of triangle CQAP
queries. It uncovers the trade-offs between the update and enumeration complexities
for triangle CQAP queries. The approach is similar to the one for CQAP queries with
hierarchical fractures in Chapter 5, except that we use a different view tree structure for
the triangle queries.

Recall we categorize the triangle CQAP queries into five categories, i.e., Clookup, Ccount,
C1, C2, and C3 queries. Theorem 3.10 summarizes the trade-offs between the update and
enumeration complexities for the triangle CQAP queries in different categories. In the
following sections, we discuss the preprocessing, enumeration and update stages for each
category. We discuss in detail the C3 and C2 queries, as they are the most representative
ones, and discuss only the differences for the other categories. At the end of the chapter,
in Section 6.7, we prove the optimality of our approach.

We consider in the following a constant ε ∈ [0, 1] and a database of size N .

6.1 The C3 Query

We focus on the queries in the C3 class. This class contains only one query, which is to
enumerate all triangles in the database:

Q(A,B,C | ·) = R(A,B), S(B,C), T (C,A).

6.1.1 Preprocessing

We partition the relations R, S, and T on the variables A, B, and C, with the threshold
N ε, into the following relation parts:

RA)sA,B)sB(A,B), SB)sB ,C)sC (B,C), and TC)sC ,A)sA(C,A), where sA, sB, sC ∈ {H,L}.

95

View tree for QHHH(A,B,C | ·)

V HHH(A,B,C)

RA)H,B)H(A,B)SB)H,C)H(B,C)TC)H,A)H(C,A)

View tree for QLLL(A,B,C | ·)

V LLL(A,B,C)

RA)L,B)L(A,B) SB)L,C)L(B,C) TC)L,A)L(C,A)

View tree for QHL∗(A,B,C | ·)

V HL∗(A,C)

V ′RS(A,C)

VRS(A,B,C)

RA)H,B)L(A,B)SB)L,C)∗(B,C)

TC)∗,A)H(C,A)

View tree for Q∗HL(A,B,C | ·)

V ∗HL(A,B)

V ′ST (A,B)

VST (A,B,C)

SB)H,C)L(B,C)TC)L,A)∗(C,A)

RA)∗,B)H(A,B)

View tree for QL∗H(A,B,C | ·)

V L∗H(B,C)

V ′RT (B,C)

VRT (A,B,C)

TC)H,A)L(C,A)RA)L,B)∗(A,B)

SB)∗,C)H(B,C)

Figure 6.1: The view trees for maintaining the results of the skew-aware queries for the
C3 query Q(A,B,C | ·). The wildcard ∗ can be either H or L in a view tree.

The C3 query can then be decomposed into eight skew-aware queries expressed over these
relation parts:

QsAsBsC (A,B,C | ·) = RA)sA,B)sB(A,B), SB)sB ,C)sC (B,C), TC)sC ,A)sA(C,A),

where sA, sB, sC ∈ {H,L}. Each skew-aware query lists the triangles in the corresponding
relation parts. For example, the skew-aware query QLLL(A,B,C | ·) lists the triangles
in the join of the relation parts RA)L,B)L(A,B), SB)L,C)L(B,C), and TC)L,A)L(C,A),
which are the parts of R, S, and T with light A-, B-, and respectively C-values. The
result of the C3 query Q is the union of the results of the skew-aware queries:

Q(A,B,C | ·) =
∑

sAsBsC∈{H,L}

QsAsBsC (A,B,C | ·).

Since these results are disjoint, enumerating the result of Q is equivalent to enumerating
the result of each of these queries one after the other.

To maintain the result of Q, we need to maintain the result of each skew-aware query.
We adapt a maintenance strategy to each skew-aware query to allow for amortized update
time that is sublinear in the database size.

Figures 6.1 and 6.2 present the view trees for the maintenance of the C3 query
Q(A,B,C | ·) under updates to the base relations. The results of the skew-aware queries
QHHH and QLLL are materialized in listing form in the views VHHH and respectively

96

Materialized View Definition Computation Time

View tree for QHHH(A,B,C | ·)
V HHH(A,B,C) = RA)H,B)H(A,B), SB)H,C)H(B,C), TC)H,A)H(C,A) O(N

3
2)

View tree for QLLL(A,B,C | ·)
V LLL(A,B,C) = RA)L,B)L(A,B), SB)L,C)L(B,C), TC)L,A)L(C,A) O(N

3
2)

View tree for QHL∗(A,B,C | ·)
VRS(A,B,C) = RA)H,B)L(A,B), SB)L,C)∗(B,C) O(N1+min{ε,1−ε})

V ′RS(A,C) = VRS(A,B,C) O(N1+min{ε,1−ε})

V HL∗(A,C) = V ′RS(A,C), TC)∗,A)H(C,A) O(N)

View tree for Q∗HL(A,B,C | ·)
VST (A,B,C) = SB)H,C)L(B,C), TC)L,A)∗(C,A) O(N1+min{ε,1−ε})

V ′ST (A,B) = VST (A,B,C) O(N1+min{ε,1−ε})

V ∗HL(A,B) = V ′ST (A,B), RA)∗,B)H(A,B) O(N)

View tree for QL∗H(A,B,C | ·)
VRT (A,B,C) = TC)H,A)L(C,A), RA)L,B)∗(A,B) O(N1+min{ε,1−ε})

V ′RT (B,C) = VRT (A,B,C) O(N1+min{ε,1−ε})

V L∗H(B,C) = V ′RT (B,C), SB)∗,C)H(B,C) O(N)

Figure 6.2: The definition and time complexity for computing the materialized views for
the C3 query Q(A,B,C | ·). The wildcard ∗ can be either H or L in a view tree.

VLLL, the root views of the view trees in the first row of Figure 6.1. The results of the
remaining six skew-aware queries are distributed in the corresponding view trees, which
allow for constant-delay enumeration. For example, consider the view tree for QHL∗ (left
bottom in Figure 6.1). The result of QHL∗ is distributed among two auxiliary material-
ized views, V HL∗ and VRS. The former stores all (a, c) pairs that would appear in the
result of QHL∗, while the latter provides the matching B-values for each (a, c) pair. The
two views together provide constant-delay enumeration of the result of QHL∗. In addition
to them, the view V ′RS serves to support constant-time updates to TC)∗,A)H(C,A). The
view trees for Q∗HL and QL∗H are analogous.

In these two figures, the wildcard ∗ is either H or L in a view tree. We use such
wildcard to avoid repeating the view trees with the same structure for different skew-
aware queries. The wildcard is used in the remaining figures in this chapter.

We analyze the time to construct the views for the Ccount query. Figure 6.2 summarizes
the time to compute these views. Strictly partitioning the input relations using the
threshold N ε takes O(N) time. Computing the skew-aware queries QHHH and QLLL

using the worst-case optimal join algorithms takes O(N
3
2) time [58].

97

Consider the view tree for the skew-aware query QHL∗ (top-left in Figure 6.1). To
compute the view VRS(A,C) = RA)H,B)L(A,B), SB)L,C)∗(B,C), one can iterate over all
(B,C)-pairs (b, c) in SB)L,C)∗ and then find the A-values in RA)H,B)L for each b. Since B
is light, the relation part RA)H,B)L contains at most N ε distinct A-values for any B-value,
which gives an upper bound of |SB)L,C)∗| ·N ε on the size of VRS. Meanwhile, since A is
heavy, the relation part RA)H,B)L contains at most N1−ε distinct A-values, which gives
an upper bound of |SB)L,C)∗| · N1−ε on the size of VRS. We can use either RA)H,B)L or
SB)L,C)∗ as the outer relation. Hence, the number of steps needed to compute VRS is
upper-bounded by min{ |SB)L,C)∗|·N ε, |SB)L,C)∗|·N1−ε } = O(min{N ·N ε, N ·N1−ε }) =

O(N1+min{ε,1−ε}).
Computing V ′RS(A,C) = VRS(A,B,C) requires aggregating the variable B away. This

takes time linear to the size of the view VRS, which is O(N1+min{ε,1−ε}) as explained in
the paragraph above.

Computing the view V HL∗(A,C) = VRS(A,C), TC)∗,A)H(C,A) requires iterating over
all (A,C)-pairs in VRS and looking up the pair in TC)∗,A)H(C,A). Each lookup takes
constant time. Since VRS has size O(N1+min{ε,1−ε}), the time to compute QHL∗ is upper-
bounded by |VRS| · 1 = O(N1+min{ε,1−ε}).

The analysis for the view trees for Q∗HL and QL∗H is analogous.
Overall, since maxε∈[0,1]{1 + min{ε, 1− ε}} = 3

2
, the materialized views for the Ccount

query can be constructed in O(N
3
2) time.

6.1.2 Enumeration

We discuss the enumeration for the query. We create view iterators over the view trees
in Figure 6.1. For the skew-aware queries QHHH(A,B,C | ·) and QLLL(A,B,C | ·),
since their results are materialized in the root views V HHH(A,B,C) and V LLL(A,B,C)

of the view trees, we create the two view iterators itV HHH (A,B,C) and respectively
itV LLL(A,B,C). They enumerate the results of QHHH and QLLL from the two root
views with constant delay.

Figure 6.3 shows the enumeration procedure for the left-bottom view tree from Fig-
ure 6.1 for the skew-aware query QHL∗(A,B,C | ·). We create the view iterators for this
view tree top-down. We create the iterator itV HL∗(A,B) at the root view V HL∗ to enu-
merate its (A,C)-tuples (Lines 1-2) and the iterator itVRS(B|A,C) at VRS, which takes
each (A,C)-tuple from V HL∗ as input and enumerates the paired B-values in VRS (Lines 3-
4). Each concatenation of the outputs from the two iterators forms a tuple in the result of
QHL∗ (Line 6). The multiplicity of the output tuple is the product of the multiplicities of
the values of the output tuple in the relation parts (Line 5). Both iterators take constant
time to report the next tuple, so the enumeration delay for QHL∗(A,B,C | ·) is constant.

98

itV HL∗(A,C)

itVRS
(B|A,C)

1 itV HL∗(A,C).open()

2 while ((a, c) := itV HL∗(A,C).next()) 6= (EOF, ∅) do
3 itVRS (B|A,C).open(a, c)
4 while ((b) := itVRS (B|A,C).next()) 6= (EOF, ∅) do
5 m := RA)H,B)L(a, b) · SB)L,C)∗(b, c) · TC)∗,A)H(c, a) let
6 output (a, b, c)→ m

7 output EOF

Figure 6.3: Enumeration for the skew-aware query QHL∗(A,B,C | ·) using the bottom-
right view tree from Figure 6.1.

The enumeration for the skew-aware queries Q∗HL(A,B,C | ·) and QL∗H(A,B,C | ·) is
analogous.

The result of the query Q(A,B,C | ·) is the union of the disjoint results of the skew-
aware queries. To enumerate the result of the query Q, we enumerate each tuple in the
results of the skew-aware query one after the other. Since the enumeration delay for each
skew-aware query is constant, the overall enumeration delay is also constant.

6.1.3 Update

We consider the update for the C3 query. Figure 6.4 shows the delta view trees for the
view trees for the C3 query (Figure 6.1) under the single-tuple update δR = {(a, b)→ m}
to R. The delta view trees for an update to S and T are analogous.

In case the tuple (a, b) is heavy on both A and B, the update δR affects the part
RA)H,B)H(A,B) of R. In this case, we update the relation part RA)H,B)H(A,B) with
δRA)H,B)H(a, b) = δR(a, b) in the view trees for QHHH and QHHL, and propagate the
delta from the affected relation parts to the root views. For the view tree for QHHH (top
left), we update V HHH(A,B,C) with δV HHH(a, b, C) = δRA)H,B)H(a, b), SB)H,C)H(b, C),

TC)H,A)H(C, a) in O(N1−ε) time, since SB)H,C)H(b, C) and TC)H,A)H(C, a) are heavy on
C. For the view tree for QHHL (bottom middle), we update the root view V HHL(A,B)

with δV HHL(a, b) = δRA)H,B)H(a, b), V ′ST (a, b) in constant time.
In case the tuple (a, b) is light on both A and B, the update δR affects the rela-

tion part RA)L,B)L(A,B), and we need to update the view trees for QLLL and QLLH .
In the view tree for QLLL, we update the view V LLL(A,B,C) with δV LLL(a, b, C) =

δRA)L,B)L(a, b), SB)L,C)L(b, C), TC)L,A)L(C, a) in O(N ε) time, since there are O(N ε) C-
values in the views SB)L,C)L(b, C) and TC)L,A)L(C, a). In the view tree for QLLH , we up-
date VRT (A,B,C) with δVRT (a, b, C) = δRA)L,B)L(a, b), TC)H,A)L(C, a) in O(Nmin{ε,1−ε})

time, since TC)H,A)L(C,A) is light on A and heavy on C. Similarly, we update V ′RT (B,C)

99

View tree for QHHH(A,B,C | ·)

δV HHH(a, b, C)

δRA)H,B)H(a, b) SB)H,C)H(b, C) TC)H,A)H(C, a)

View tree for QLLL(A,B,C | ·)

δV LLL(a, b, C)

δRA)L,B)L(a, b) SB)L,C)L(b, C) TC)L,A)L(C, a)

View trees for QHL∗(A,B,C | ·)

δV HL∗(a,C)

δV ′RS(a,C)

δVRS(a, b, C)

δRA)H,B)L(a, b) SB)L,C)∗(b, C)

TC)∗,A)H(C, a)

View trees for Q∗HL(A,B,C | ·)

δV ∗HL(a, b)

V ′ST (a, b)

VST (A,B,C)

SB)H,C)L(B,C)TC)L,A)∗(C,A)

δRA)∗,B)H(a, b)

View trees for QL∗H(A,B,C | ·)

δV L∗H(b, C)

δV ′RT (b, C)

δVRT (a, b, C)

TC)H,A)L(C, a) δRA)L,B)∗(a, b)

SB)∗,C)H(b, C)

Figure 6.4: Delta view trees for the view trees in Figure 6.1 under the single-tuple up-
date δR = {(a, b) → m} to R. The blue views in the view trees are the deltas to the
corresponding views.

with δV ′RT (b, C) = δVRT (a, b, C) in constant time and V LLH(B,C) with δV LLH(b, C) =

δV ′RT (b, C), SB)L,C)H(b, C) in O(Nmin{ε,1−ε}) time.
In case the tuple (a, b) is heavy on A and light on B, the update δR affects the

relation part RA)H,B)L(A,B), and we need to update the view trees for QHLH and QHLL.
We update VRS(A,B,C) with δVRS(a, b, C) = δRA)H,B)L(a, b), SB)L,C)∗(b, C) in O(N ε)

time. We then update V ′RS(A,C) with δV ′RS(a, C) = δVRS(a, b, C) in constant time and
V HL∗(A,C) with δV HL∗(a, C) = δV ′RS(a, C), TC)∗,A)H(C, a) in O(N ε) time.

In case the tuple (a, b) is light on A and heavy on B, the update δR affects the relation
part RA)L,B)H(A,B), and we need to update the view trees for QLHH and QLHL. The
updates are similar as those for QLLH and QHHL, which take O(Nmin{ε,1−ε}) and O(1)

time, respectively.
Overall, the update of the view trees for the C3 query takes O(Nmax{ε,1−ε}) time.
Following the discussion in the previous sections, we conclude the following proposition

for the trade-offs of the C3 query:

Proposition 6.1. Given a C3 query Q, a database of size N , and ε ∈ [0, 1], the query Q
can be evaluated with O(N

3
2) time preprocessing time, O(Nmax{ε,1−ε}) update time under

single-tuple updates, and O(1) enumeration delay.

100

View tree for QHHH(A,B | ·)

V ′HHH(A,B)

V HHH(A,B,C)

RA)H,B)H(A,B)SB)H,C)H(B,C)TC)H,A)H(C,A)

View tree for QLLL(A,B | ·)

V ′LLL(A,B)

V LLL(A,B,C)

RA)L,B)L(A,B) SB)L,C)L(B,C) TC)L,A)L(C,A)

View tree for QHLL(A,B | ·)

V HLL(A,B)

V ′ST (A,B)

VST (A,B,C)

SB)L,C)L(B,C)TC)L,A)H(C,A)

RA)H,B)L(A,B)

View tree for Q∗HL(A,B | ·)

V ∗HL(A,B)

V ′ST (A,B)

VST (A,B,C)

SB)H,C)L(B,C)TC)L,A)∗(C,A)

RA)∗,B)H(A,B)

View tree for QHLH(A,B | ·)

V ′HLH(A)

V HLH(A,C)

V ′RS(A,C)

VRS(A,B,C)

RA)H,B)L(A,B)SB)L,C)H(B,C)

TC)H,A)H(C,A)

View trees for QL∗H(A,B | ·)

V ′L∗H(B)

V L∗H(B,C)

V ′RT (B,C)

VRT (A,B,C)

TC)H,A)L(C,A)RA)L,B)∗(A,B)

SB)∗,C)H(B,C)

Figure 6.5: The view trees supporting the maintenance of the results of the skew-aware
queries for the C2 query Q(A,B | ·). These view trees are adapted from those for the C3

query. The adaptions are highlighted in blue. The wildcard ∗ can be either H or L.

6.2 Queries in C2

We now discuss the queries in C2. These queries have two input variables, or two output
variables and no input variable, which includes Q(A,B | ·), Q(· | A,B), Q(C | A,B) and
their symmetries.

6.2.1 Preprocessing

We present the preprocessing stage of the first query

Q(A,B | ·) = R(A,B), S(B,C), T (C,A).

The preprocessing stage for the other queries is same, that is, we build the same view
trees; only the enumeration of their results are different.

101

We apply a similar strategy as for the C3 query. We partition the relations R, S and
T on variables A, B and C, with the threshold N ε, and then decompose Q(A,B | ·) into
skew-aware queries defined over the relation parts:

QsAsBsC (A,B | ·) = RA)sA,B)sB(A,B), SB)sB ,C)sC (B,C), TC)sC ,A)sA(C,A),

where sA, sB, sC ∈ {H,L}. The result of the query Q(A,B | ·) is the union of the results
of these skew-aware queries.

Compared to the C3 query, this C2 query faces two new challenges. First, the results of
the skew-aware queries are not disjoint anymore, which causes difficulties in the enumera-
tion of distinct (A,B)-tuples among the results of the skew-aware queries. We can resolve
this difficulty using the Union algorithm, as we did for CQAP queries with hierarchical
fractures, in Section 5.3.3. Second, among the view trees created for the C3 query from
Figure 6.1, only the view tree for Q∗HL (middle) allows constant-delay enumeration of
(A,B)-tuples, while the view trees for QHL∗ (left) and QL∗H (right) allow constant-delay
enumeration of (A,C)- and respectively (B,C)-tuples but not (A,B)-tuples. We need to
adapt the view trees and use union view iterators to tackle this difficulty. We discuss in
detail how to tackle these difficulties in the next section.

Figure 6.5 shows the view trees for the C2 query Q(A,B | ·). These view trees are
adapted from those for the C3 query; the adaptions are highlighted in blue. For the
skew-aware queries QHHH(A,B|·), QLLL(A,B|·), QHLL(A,B|·) and Q∗HL(A,B|·) (first
two rows), their results are materialized in the root views of the view trees; they allow
constant-delay enumeration of the results.

For the skew-aware query QHLH(A,B|·) (bottom left), we construct a new root view
V ′HLH(A) on top of the original root view V HLH(A,C), which aggregates away the bound
variable C. This is to allow the constant-delay enumeration of distinct A-values in the
result of the query QHLH . Similarly, for the skew-aware query QL∗H(A,B|·) (bottom
right), we construct additionally a root view V ′L∗H(B) that aggregates the bound variable
C away from the original root view V L∗H(B,C) to allow the constant-delay enumera-
tion of the distinct B-values. These two view trees do not support the constant-delay
enumeration of the distinct (A,B)-tuples; They can be enumerated with sublinear delay.

The time to compute these additional views is upper-bounded O(N
3
2), which is the

same as the time to compute the views for the C3 CQAP queries. Hence, the overall time
complexity of the preprocessing stage is O(N

3
2).

6.2.2 Enumeration

We next discuss how to enumerate the results of C2 queries using the view trees in Fig-
ure 6.5. We show the enumeration for Q(A,B | ·), Q(· | A,B) and Q(C | A,B). The

102

uitV ′HLH
(A)

uitVRS
(B|A,C)

1 ctx 0() := {()}, empty input
2 uitV ′HLH (A).open()

3 while ((a, ctxa) := uitV ′HLH (A).next()) 6= (EOF, ∅) do
4 ctxVRS := V HLH(A,C) on {(a)}
5 uitVRS (B|A,C).open(ctxVRS)
6 while ((b, ctx b) := uitVRS (B|A,C).next()) 6= (EOF, ∅) do
7 m :=

∑
(_,c)∈ctxb R

A)H,B)L(a, b) · SB)L,C)H(b, c) · TC)H,A)H(c, a) let
8 output (a, b)→ m

9 output EOF

Figure 6.6: Enumeration for the skew-aware query QHLH(A,B) using the bottom-left
view tree from Figure 6.5.

enumeration for other symmetric C2 queries is analogous.
Query Q(A,B | ·). Consider first the query

Q(A,B | ·) = R(A,B), S(B,C), T (C,A).

For the skew-aware queries QHHH(A,B | ·), QLLL(A,B | ·), QHHL(A,B | ·), and
Q∗HL(A,B | ·), their results are materialized in the root views of the corresponding
view trees, so we create view iterators over the root views to enumerate the results with
constant delay. For the other skew-aware queries, we need to use the union view iterators.

Consider the skew-aware query QHLH(A,B | ·). Figure 6.6 shows the enumeration
procedure for the view tree for the query. We construct two iterators uitV ′HLH (A) and
uitVRS(B|A,C) for the two free variables A and B. The iterator uitV ′HLH (A) enumerates
the A-values in the root view V HLH (Lines 2-3). The iterator uitVRS(B|A,C) is unsup-
ported as there is no binding for variable C. For this iterator, we provide a relation over
schema (A,C) as context. To avoid enumerating dangling tuples, the context should in-
clude only those C-values guaranteed to have matching (A,C)-tuples in the final output.
The ancestor view V HLH(A,C) provides such (A,C)-tuples, which we further restrict to
those matching the output A-value from uitVRS(B|A,C) (Line 4). The next() call on
uitVRS returns the input B-value together with a relation ctx b containing the matching
(A,C)-tuples in VRS if they exist; otherwise, it returns (EOF, ∅). The tuples in the
relation ctx b are used to compute the multiplicity of the output tuple (Line 7).

The open and next calls take time linear in the size of the context ctx used when
opening the iterator. The size of the context for uitV ′HLH is constant, while for uitVRS is
at most the size of the C-values paired with a fixed A-value in V HLH . Given that V HLH

is over the relation parts that are heavy on A, the number of distinct C-values in V HLH

is at most N1−ε. Thus, the enumeration delay is O(N1−ε).

103

hitV (O|I).open(relation ctx)

1 hitV (O|I).iterators := empty map // context tuple 7→ view iterator
2 foreach ctxi ∈ ctx do
3 hitV (O|I).iterators[ctxi] := new itV (O|I) // lazily
4 hitV (O|I).iterators[ctxi].open(ctxi) // lazily

Figure 6.7: The method opens the hop view iterator hitV (O|I) for the input relation
ctx over schema I as context. The method lazily creates for each tuple in ctx a view
iterator and opens the view iterator for the corresponding tuple. That is, these iterators
are created and opened only on their first next call.

This enumeration delay can be improved by using another type of iterators, called
hop view iterators, which we discuss next.

6.2.2.1 Hop View Iterators

The union view iterator relies on the Union algorithm to enumerate the distinct tuples
from possibility overlapping sets. An alternative method is to use the skip pointers [16],
which allows “jumping” over already reported tuples when iterating over these sets. The
skip pointer approach outperforms the union view iterators for some triangle CQAP
queries, though it requires additional space to store the skip pointers and is more complex
to implement. In this section, we define the hop view iterators, which uses the skip pointer
approach to implement the interface of the union view iterators.

Extension of View Iterators. To support the skip pointer approach, we extend the
view iterator introduced in Section 4.2.1 with two new methods: isExhausted and exclude.
The isExhausted() method checks whether the next tuple of the iterator is EOF. The
exclude(t) method excludes an arbitrary tuple t over O in the enumeration of the iterator:
excluded tuples are omitted by the next method during the enumeration.

The exclude(t) method can be implemented similarly to the delete function of a linked
list: to exclude a tuple t, the iterator looks up the tuple t and records a pointer pointing
from the predecessor of t to the successor of t. During the enumeration, when the next
function is called, if such a pointer exists, the iterator returns the tuple pointed by the
pointer; otherwise, it returns the next tuple. Looking up the input tuple t and recording
the pointer both take constant time. Hence, the time complexity of exclude(t) is O(1).

Hop View Iterators. We now discuss the hop view iterators. They are similar to the
union view iterators. Figure 6.7 shows the hitV (O|I).open() method. It differs from the

104

hitV (O|I).next() : (tuple, relation)

1 o := HopUnion(hitV (O|I))

2 ctxo := πIσO=oV

3 return (o, ctxo)

Figure 6.8: Fetch the next output tuple in the union view iterator, computed by the
HopUnion function, and the context tuples that are consistent with the output tuple.

HopUnion(hop view iterator hitV (O|I)): tuple

1 ctx1 7→ it1(O|I), . . . , ctxn 7→ itn(O|I) := hitV (O|I).iterators

2 if n = 0

3 return EOF
4 t := it1(O|I).next()

5 foreach ctx ∈ πIσO=tV :
6 itctx := hitV (O|I).iterators[ctx]

7 itctx.exclude(t)
8 if (itctx.isExhausted())
9 hitV (O|I).iterators.remove(ctx 7→ itctx(O|I))

10 return t

Figure 6.9: Return the next distinct tuple from a set of iterators in hitV (O|I).iterators.

open method of the union view iterators in that the iterators in hitV (O|I).iterators are
created lazily (Lines 3-4); that is, these iterators are created and opened only on their
first next call. The lazy initialization allows the open method to run in constant time.

Figure 6.8 shows the hitV (O|I).next() method. Instead of using the Union algo-
rithm, the method uses the HopUnion function (Figure 6.9) to enumerate the distinct
tuples from the set of n iterators it1, . . . , itn stored in hitV .iterators. Let Si be the
set of tuples that iti enumerates. The HopUnion function first enumerates the tuples
from S1 using it1, then those from S2 \ S1 using it2, then those from S3 \ S2 \ S1 using
it3, and so on. When a tuple is reported by an iterator, the function skips the tuple
from other iterators, and when an iterator is exhausted, the function skips the iterator.
The enumeration delay in this case would depend on the time needed to exclude a just
reported tuple from the iterators and the time to exclude exhausted iterators.

Figure 6.9 shows the HopUnion function. When there are no iterators stored in
hitV .iterators, the function returns EOF (Lines 2-3); otherwise, it gets the next tuple t

105

from the first iterator (Line 4). The tuples πIσO=tV are those context tuples paired with
t in V ; The iterators opened for these context tuples will enumerate t. By exploiting
the skew information, the number of such iterators might be asymptotically than n, such
as the C2 query we will discuss next. The function excludes t from all these iterators to
avoid reporting t again (Lines 5-7). Excluding t may leave an iterator exhausted. In this
case, the HopUnion function excludes the exhausted iterator from the hitV .iterators

(Lines 8-9). Checking whether hitV .iterators has at least one iterator takes constant
time (Lines 1-3). Getting the next tuple t takes constant time (Line 4). Assume for any
tuple t, there are at most k context tuples paired with t in V , i.e., |πIσO=tV | = O(k).
The loop (Lines 5-9) runs O(k) times, and each loop iteration takes constant time to
exclude t from an iterator (Lines 6-7), constant time to check if the iterator is empty
(Line 8), and constant time to exclude an exhausted iterator (Line 9). Hence, the delay
of the function HopUnion is linear to O(k).

Back to the next method. Once the function gets the tuple o from the HopUnion

function, it computes the context relation for o by selecting the context tuples that are
paired with o in V (Line 3), which also takes O(k) time. Overall, the next method takes
O(k) time.

Improve the Enumeration Delay using Hop View Iterators. We now back to the
enumeration of the skew-aware query QHLH(A,B | ·). We improve the enumeration delay
by using the hop view iterators instead of union view iterators. We create the hop view
iterator hitV ′HLH (A) to enumerate the A-values a in the root view V HLH with constant
delay, and the iterator hitVRS(B|A,C) and open it for the context relation ctxVRS =

V HLH(A,C) on {(a)}. Since the hop view iterator is opened for the context relation lazily,
the context relation does not need to be materialized; it is enough as long as it supports
constant-delay enumeration, which is the case per our computational model. Hence,
opening hitVRS(B|A,C) for ctxVRS takes constant time. The iterator hitVRS(B|A,C)

can enumerate the distinct B-values with the delay determined by the number of context
(A,C)-tuples in ctxVRS that are paired with any B-value in VRS. For a fixed B-value
b, the number of such (A,C)-tuples is O(N ε): ctxVRS contains only one fixed A-value a
from hitV ′HLH (A) and O(N ε) C-values paired with b since the relation parts in this view
tree are light on B. The number of such (A,C)-tuples is also bounded by O(N1−ε), since
the relation parts in the view tree are heavy on C. Hence, the enumeration delay for the
B-values is the min of the two bounds: O(Nmin{ε,1−ε}). Overall, the enumeration delay
for skew-aware query QHLH is O(Nmin{ε,1−ε}). The enumeration for the skew-aware query
QL∗H(A,B) is analogous.

106

We have discussed the enumeration for each skew-aware query of the queryQ(A,B | ·).
Since the results of the skew-aware queries are not disjoint, to enumerate the distinct
tuples, we use again the Union algorithm presented in Section 5.3.3. The enumeration
delay is the sum of the delays of all these skew-aware queries. Since the number of
skew-aware queries is independent of the data size, the overall enumeration delay is the
maximum delay of the individual skew-aware queries, which is O(Nmin{ε,1−ε}). Hence, the
enumeration delay for Q(A,B | ·) is O(Nmin{ε,1−ε}).

Query Q(· | A,B). Consider now the other C2 query Q(· | A,B). The enumeration
procedure is similar. We create the same iterators over the view trees, except now we
set the input variables A and B as the context variables of the iterators. These iterators
serve to check whether a given input tuple over (A,B) is in each view tree. The time for
checking whether the given tuple exists in the view tree using the iterators is the same
as that for enumerating a tuple from the iterators. Hence, the enumeration delay for
Q(A,B | ·) is O(Nmin{ε,1−ε}).

Query Q(C | A,B). We now discuss the enumeration for the query Q(C | A,B).
Consider the skew-aware query QHHH(C | A,B). We create the two view iterators
itV ′HHH (A,B|A,B) and itV HHH (C|A,B) at V ′HHH and V HHH . For a given tuple (a, b)

over (A,B), the iterator itV ′HHH (A,B|A,B) checks whether (a, b) exists in V ′HHH . If yes,
the iterator itV HHH (C|A,B) enumerates the C-values that are paired with (a, b) from
V HHH with constant delay. The enumeration for the skew-aware query QLLL(Q | A,B)

is analogous.
Similarly, for the skew-aware query QHLL(C | A,B), we create the view iterator

itV HLL(A,B|A,B) to check whether an input (A,B)-tuple exists in V HLL and the view
iterator itVST (C|A,B) to enumerate the paired C-values from VST with constant delay.
The enumeration for the skew-aware query QL∗H(C | A,B) is analogous.

Consider the skew-aware query QHLH(C|A,B) and a given input tuple (a, b) over
(A,B). We create the hop view iterator hitV ′HLH (A|A) to check whether a is in V ′HLH(A).
We then create the hop view iterator hitVRS(C|A,B,C) and open it for the context
relation ctxRS(A,B,C) = V HLH(A,C)on{(a, b)}. The enumeration delay of the iterator
hitVRS(C|A,B,C) is determined by the size of ctxRS. Since the relation parts in this
view tree are heavy on C and light on B, the size of ctxRS is O(Nmin{ε,1−ε}), and thus the
enumeration delay is O(Nmin{ε,1−ε}). Overall, the enumeration delay for QHLH(C|A,B) is
O(Nmin{ε,1−ε}). The enumeration for the skew-aware query QL∗H(C | A,B) is analogous.

Overall, we apply the Union algorithm to enumerate the distinct tuples of Q(C |
A,B) from the skew-aware queries with O(Nmin{ε,1−ε}) delay.

107

6.2.3 Update

The update of the view trees is similar to that of the view trees for the C3 query in
Section 6.1.3. The view trees for the C2 query contain views that are not in the view trees
for the C3 query, i.e., the views in blue in Figure 6.5. Though, these extra views are all
views that aggregate away a variable from the views below, such as the view V ′HHH(A,B).
Maintaining these views under a single-tuple update take O(1) time. Hence, the update
time for C2 queries is again O(Nmax{ε,1−ε}).

Following the discussion in the previous sections, we conclude the following proposition
for the trade-offs of the C2 query:

Proposition 6.2. Given a C2 query Q, a database of size N , and ε ∈ [0, 1], the query Q
can be evaluated with O(N

3
2) time preprocessing time, O(Nmax{ε,1−ε}) update time under

single-tuple updates, and O(Nmin{ε,1−ε}) enumeration delay.

6.3 Queries in C1

We next consider the C1 queries. These queries have one input variable, or one output
variable and no input variable, including Q(A | ·), Q(· | A), Q(B | A) and Q(B,C | A),
and their symmetries.

6.3.1 Preprocessing

We present the preprocessing stage for the query

Q(A | ·) = R(A,B), S(B,C), T (C,A).

The preprocessing stage for the other three queries are same, that is, we build the same
view trees; only the enumeration of their results are different.

We partition the relations R, S and T on variables A, B and C, with the threshold
N ε, and then decompose Q(A | ·) into skew-aware queries defined over the relation parts:

QsAsBsC (A | ·) = RA)sA,B)sB(A,B), SB)sB ,C)sC (B,C), TC)sC ,A)sA(C,A),

where sA, sB, sC ∈ {H,L}. The result of the query Q(A | ·) is the union of the results of
these skew-aware queries.

Figure 6.1 shows the view trees for C1 queries. These view trees are adapted from those
for the C2 queries according to the access patterns of the C1 queries. The adaptions are
highlighted in blue. In each of the view trees for QHHH(A | ·), QLLL(A | ·), QHHL(A | ·),
QLHL(A | ·), and QHLL(A | ·), we create on top of the view tree a new root view,

108

View tree for QHHH(A | ·)

V ′′HHH(A)

V ′HHH(A,B)

V HHH(A,B,C)

RA)H,B)H(A,B)SB)H,C)H(B,C)TC)H,A)H(C,A)

View tree for QLLL(A | ·)

V ′′LLL(A)

V ′LLL(A,B)

V LLL(A,B,C)

RA)L,B)L(A,B) SB)L,C)L(B,C) TC)L,A)L(C,A)

View tree for QHLH(A | ·)

V ′HLH(A)

V HLH(A,C)

V ′RS(A,C)

VRS(A,B,C)

RA)H,B)L(A,B)SB)L,C)H(B,C)

TC)H,A)H(C,A)

View tree for Q∗HL(A | ·)

V ′∗HL(A)

V ∗HL(A,B)

V ′ST (A,B)

VST (A,B,C)

SB)H,C)L(B,C)TC)L,A)∗(C,A)

RA)∗,B)H(A,B)

View tree for QHLL(A | ·)

V ′HLL(A)

V HLL(A,B)

V ′ST (A,B)

VST (A,B,C)

SB)L,C)L(B,C)TC)L,A)H(C,A)

RA)H,B)L(A,B)

View tree for QLHH(A | ·)

V ′LHH(B)

V LHH(B,C)

V ′RT (B,C)

VRT (A,B,C)

TC)H,A)L(C,A)RA)L,B)H(A,B)

SB)H,C)H(B,C)

View tree for QLLH(A | ·)

V ′LLH(A)

V LLH(A,C)

V ′RS(A,C)

VRS(A,B,C)

RA)L,B)L(A,B)SB)L,C)H(B,C)

TC)H,A)L(C,A)

Figure 6.10: View trees supporting the maintenance and enumeration of the results of the
skew-aware queries for the unary triangle CQAP queries. These view trees are adapted
from the those for the C2 queries. The differences are highlighted in blue. The wildcard
∗ can be either H or L.

which aggregates away the variable B in the original root view. This allows the constant-
delay enumeration of the distinct A-values in the view tree. For the skew-aware query
QLLH(A | ·), we create a new view tree, which is similar as the view tree for QHLH(A | ·).

The additional views in the view trees for C1 queries are computed by aggregating
away one variable from their child views. The time to compute these additional views is
upper-bounded O(N

3
2), which is the same as the time to compute the views for the C2

CQAP queries. Hence, the overall time complexity of the preprocessing stage is O(N
3
2).

109

6.3.2 Enumeration

We discuss the enumeration for C1 queries using the view trees created in Figure 6.10. We
show the enumeration for Q(A | ·), Q(· | A), Q(B | A) and Q(B,C | A). The enumeration
for other symmetric C1 queries is analogous.

Query Q(A | ·). We first consider the C1 query Q(A | ·). For all skew-aware queries
except QLHH(A | ·), the results of the queries are materialized in the root views of the
corresponding view trees. We create view iterators at these root views to enumerate the
corresponding query results with constant delay.

For the skew-aware queries QLHH(A | ·), we create a hop view iterator hitVRT (A|B,C)

and open it with the context relation V LHH(B,C). The enumeration delay is determined
by the number of (B,C)-tuples in V LHH for any A-value. Since the relation parts in the
view tree are light on A, an A-value pairs with O(N ε) B-values in RA)L,B)∗(A,B) and
O(N ε) C-values in TC)H,A)L(C,A), and thus overall O(N2ε) (B,C)-tuples. Meanwhile,
since relation parts are heavy on B and C, there are O(N1−ε) B-values and O(N1−ε) C-
values, and thus O(N2−2ε) (B,C)-tuples. Overall, the enumeration delay of the iterator
is O(Nmin{2ε,2−2ε}).

To enumerate the distinct tuples of Q(A | ·) from the all skew-aware queries, we apply
the Union algorithm. The enumeration delay is O(Nmin{2ε,2−2ε}).

Query Q(· | A). The enumeration for Q(· | A) is similar to that for Q(A | ·). We
create the same iterators except we now put A in the context schema of the iterators.
The enumeration delay stays same: O(Nmin{2ε,2−2ε}).

Query Q(B|A). We next consider the query Q(B|A). For each of the skew-aware
queries QHHH(B|A), QLLL(B|A), Q∗HL(B|A), and QHLL(B|A), the corresponding view
tree contains a view that materializes the (A,B)-tuples in the join result of the rela-
tion parts, such as the view V ′HHH(A,B) in the view tree for QHHH(B|A). We create
view iterators with the output schema B and context schema A at these views, such as
itV ′HHH (B|A), to enumerate the results of the corresponding queries with constant delay.

For the skew-aware query QHLH(B|A), we create an iterator itV ′HLH (A|A) for checking
whether the view V ′HLH contains the given A-value a. We then create a hop view iterator
hitVRS(B|A,C) and open it with the context relation ctxRS = V HLH(A,C) on {a}. The
enumeration delay of hitVRS(B|A,C) is determined by the number of (A,C)-tuples in
ctxRS that are paired with any B-value. Since the relation parts are light on B and heavy
on C, the number of such (A,C)-tuples is O(Nmin{ε,1−ε}), and thus the enumeration delay
is O(Nmin{ε,1−ε}). The enumeration for QLLH(B|A) is analogous.

For the skew-aware query QLHH(B|A), we create a hop view iterator hitVRS(B|A,C)

and open it with the context relation V HLH(A,C). Since the relation parts are light on
B and heavy on A and C, the enumeration delay is O(Nmin{2ε,2−2ε}).

110

Overall, the enumeration delay for Q(·|A) is O(Nmin{2ε,2−2ε}).
Query Q(B,C|A). For the two skew-aware queriesQHHH(B,C|A) andQLLL(B,C|A),

we create the iterators itV HHH (B,C|A) and itV LLL(B,C|A) to enumerate their query
results with constant delay.

For the skew-aware query QHLL(B,C|A), we create the view iterators itV ′HLL(A|A),
itV HLL(B|A) and itVST (C|A,B). The enumeration delay for each iterator is constant,
thus the overall enumeration delay for QHLL(B,C|A) is constant. The enumeration for
QHLH(B,C|A), QHHL(B,C|A), QLHL(B,C|A) and QLLH(B,C|A) is analogous.

For the skew-aware query QLHH(B,C|A), we can materialize the results by intersect-
ing the (B,C)-tuples paired with the input A-value a in VRT (A,B,C), i.e., πB,CσA=aVRT ,
and the (B,C)-tuples in V LHH(B,C): for each (B,C)-tuple in πB,CσA=aVRT , we look
it up in V LHH . The computation time is determined by the number of (B,C)-tuples in
πB,CσA=aVRT . Since the relation parts are heavy onB and C and light onA, the number of
such (B,C)-tuples is O(Nmin{2ε,2−2ε}), and thus the computation time is O(Nmin{2ε,2−2ε}).
Hence, the enumeration delay for QLHH(B,C|A) is O(Nmin{2ε,2−2ε}).

Overall, the enumeration delay over all skew-aware queries is O(Nmin{2ε,2−2ε}).

6.3.3 Update

The update of the view trees is similar to that of the view trees for the C3 query in
Section 6.1.3. The extra views in the view trees for the C1 queries are all views that
aggregate away a variable from the views below, which can be updated with O(1) time.
Hence, the update time for C1 queries is O(Nmax{ε,1−ε}).

Following the discussion in the previous sections, we conclude the following proposition
for the trade-offs of the C1 query:

Proposition 6.3. Given a C1 query Q, a database of size N , and ε ∈ [0, 1], the query Q
can be evaluated with O(N

3
2) time preprocessing time, O(Nmax{ε,1−ε}) update time under

single-tuple updates, and O(Nmin{2ε,2−2ε}) enumeration delay.

6.4 The Ccount Query

We next focus on the Ccount query:

Q(· | ·) = R(A,B), S(B,C), T (C,A).

It computes the number of triangles in the join of the relations R, S and T in the database.
We apply a strategy as for the C3 query. We partition each of R, S and T on the variables

111

View tree for QHHH(· | ·)

V ′HHH()

V HHH(A,B,C)

RA)H,B)H(A,B)SB)H,C)H(B,C)TC)H,A)H(C,A)

View tree for QLLL(· | ·)

V ′LLL()

V LLL(A,B,C)

RA)L,B)L(A,B) SB)L,C)L(B,C) TC)L,A)L(C,A)

View tree for QHL∗(· | ·)
V ′HL∗()

V HL∗(A,C)

V ′RS(A,C)

VRS(A,B,C)

RA)H,B)L(A,B)SB)L,C)∗(B,C)

TC)∗,A)H(C,A)

View tree for Q∗HL(· | ·)
V ′∗HL()

V ∗HL(A,C)

V ′ST (A,B)

VST (A,B,C)

SB)H,C)L(B,C)TC)L,A)∗(C,A)

RA)∗,B)H(A,B)

View tree for QL∗H(· | ·)
V ′L∗H()

V L∗H(A,C)

V ′RT (B,C)

VRT (A,B,C)

TC)H,A)L(C,A)RA)L,B)∗(A,B)

SB)∗,C)H(B,C)

Figure 6.11: The view trees for maintaining the results of the skew-aware queries for the
Ccount query Q(· | ·). The wildcard ∗ can be either H or L in a view tree.

A, B and C into the relation parts and decompose Q(· | ·) into the following skew-aware
queries:

QsAsBsC (· | ·) = RA)sA,B)sB(A,B), SB)sB ,C)sC (B,C), TC)sC ,A)sA(C,A),

where sA, sB, sC ∈ {H,L}. Each skew-aware query counts the number of triangles in
the corresponding relation parts. The result of the Ccount query Q is the sum of these
skew-aware queries:

Q(· | ·) =
∑

sAsBsC∈{H,L}

QsAsBsC (· | ·).

Figure 6.11 shows the view trees for the Ccount query. They are same as those for
the C3 query, except we create for each view tree a new root view that marginalizes the
variables in the old root view, which are highlighted in blue. Such new root views store
the results of the skew-aware queries. The result of the Ccount query is the sum of these
root views.

Proposition 6.4. Given the Ccount query, a database of size N , and ε ∈ [0, 1], the view
trees constructed in the preprocessing stage can be computed in O(N

3
2) time.

Proof. Computing the blue views in Figure 6.11 requires aggregating away the variables
in the views below. This takes time linear to the size of the views below, which is

112

upper-bounded by O(N
3
2). The computation of other views takes time upper-bounded

by O(N
3
2), as explained in Section 6.1. Overall, the preprocessing time is O(N

3
2).

Computing the result of the Ccount query requires summing up the results in the root
views of the view trees. This takes constant time. Hence, the enumeration delay is
constant. The update time is the same as that of the C3 query, which is O(Nmax{ε,1−ε}).
We conclude the following proposition for the trade-offs of the Ccount query:

Proposition 6.5. Given the Ccount query Q, a database of size N , and ε ∈ [0, 1], the
query Q can be evaluated with O(N

3
2) time preprocessing time, O(Nmax{ε,1−ε}) update

time under single-tuple updates, and O(1) enumeration delay.

6.5 The Clookup Query

We finally discuss the Clookup query:

Q(· | A,B,C) = R(A,B), S(B,C), T (C,A).

It serves the check the multiplicity a given triangle in the database.
The fracture of the query is:

Q(· | A1, A2, B1, B2, C1, C2) = R(A1, B1), S(B2, C2), T (C3, A3).

It has three connected components, each of which is a single relation, hence each sub-
query in the fracture is a CQAP0 query. This makes the Clookup query a CQAP0 query.
So, we can apply our algorithm for arbitrary CQAP queries to the Clookup query, and
achieve the following result:

Proposition 6.6. Given the Clookup query Q, a database of size N , and ε ∈ [0, 1], the
query Q can be evaluated with O(N) time preprocessing time, O(1) update time under
single-tuple updates, and O(1) enumeration delay.

6.6 Complexity Analysis

Following the Propositions in the previous sections, we can prove Theorem 3.10.
In the propositions in the previous sections, we showed the preprocessing time, enu-

meration delay and update time for each category of triangle CQAP queries. The update
time is the time for a single-tuple update. We extend this to the amortized update time
for a sequence of updates as we did for the CQAP queries with hierarchical fractures in
Section 5.4.3, and prove the following proposition:

113

Proposition 6.7. Consider a triangle CQAP query Q(O|I), a database of size N , and
ε ∈ [0, 1]. Given that the view trees constructed for Q in the preprocessing stage can be
constructed in O(Np) time and maintained in O(Nu) for a single-tuple update, main-
taining the views in the view trees under a sequence of single-tuple updates takes O(Nu)

amortized time per single-tuple update.

Proof. The proof is similar to the proof of Proposition 5.26, except that we replace the
update time for CQAP queries whose fractures are hierarchical with the update time for
triangle queries. We only give the high level explanation. The minor rebalancing time
and the major rebalancing time for the view trees constructed for the triangle queries
are The minor rebalancing time is amortized over Ω(N ε) updates , thus the amortized
time of minor rebalancing is O(Nmax{ε,1−ε}). The major rebalancing time is amortized
over Ω(N) updates, thus the amortized time of major rebalancing is O(N

1
2). Overall,

both the minor and major rebalancing times are bounded by O(Nmax{ε,1−ε}) (O(N
1
2) is

upper-bounded by O(Nmax{ε,1−ε})), which is the exactly the update time to process a
single-tuple update. Hence, we conclude that the amortized update time for a sequence
of updates is O(Nmax{ε,1−ε}).

We are now ready to prove Theorem 3.10. The theorem is copied here for convenience.

Theorem 3.10. Given a triangle CQAP query Q, a database of size N , and ε ∈ [0, 1].
If Q is the Clookup query, it admits constant preprocessing time, update time, and enu-
meration time; otherwise, the query Q admits O(N

3
2) preprocessing time, O(Nmax{ε,1−ε})

amortized update time, and the enumeration delay given in the table below.

Ccount C1 C2 C3

Enumeration Delay O(1) O(Nmin{ε,1−ε}) O(Nmin{2ε,2−2ε}) O(1)

Proof. This theorem follows from Propositions 6.1, 6.2, 6.3, 6.5 and 6.6,and complemented
by Proposition 6.7, which shows that the amortized rebalancing time is O(Nmax{ε,1−ε}).

6.7 Optimality Result

Our approach is optimal for CQAP0 queries and thus for the Clookup query. For the other
triangle CQAP queries, the following proposition shows that some combinations of update
time and enumeration delay for the dynamic evaluation of triangle CQAP queries are not
possible, conditioned on the OMv Conjecture 26.

114

Proposition 6.8. Consider a triangle CQAP query Q and a database of size N . For
any γ > 0, there is no algorithm for Q admitting arbitrary preprocessing time, O(N

1
2
−γ)

amortized update time, and

• O(1) enumeration delay if Q is a Ccount or C3 query, or

• O(N1−γ) enumeration delay if Q is a C1 query, or

• O(N
1
2
−γ) enumeration delay if Q is a C2 query,

unless the OMv conjecture fails.

In the proof of this proposition, we reduce the OMv problem to the problem of dy-
namic evaluation of triangle CQAP queries: We show that if there is an algorithm that
incrementally maintains a triangle CQAP query under single-tuple updates with arbitrary
preprocessing time, O(N

1
2
−γ) amortized update time, and the enumeration delay for this

query as stated in this proposition, for some γ > 0 and database with size N , then the
OMv problem can be solved in subcubic time, which contradicts the OMv conjecture.

The proof relies on the Online Boolean Vector-Matrix-Vector Multiplication (OuMv)
conjecture, which is implied by the OMv conjecture (Conjecture 1.2). First, we give the
definition of the OuMv problem and state the corresponding conjecture.

Definition 6.9 (Online Boolean Vector-Matrix-Vector Multiplication (OuMv) [36]). We
are given an n × n Boolean matrix M and receive n pairs of Boolean column-vectors
of size n, denoted by (u1,v1), . . . , (un,vn); after seeing each pair (ui,vi), we output the
product uT

i Mvi before we see the next pair.

Conjecture 10 (OuMv Conjecture, Theorem 2.7 in [36]). For any γ > 0, there is no
algorithm that solves OuMv in time O(n3−γ).

Proposition 6.8 shows the lower bounds for the triangle CQAP queries in different
classes. We prove them separately. We start with the lower bound for the Ccount query.

Hardness for the Ccount Query

The following proof reduces the OuMv problem to the problem of incrementally maintain-
ing the Ccount query. This reduction implies that if there is an algorithm that incrementally
maintains a triangle CQAP query under single-tuple updates with arbitrary preprocess-
ing time, O(N

1
2
−γ) amortized update time, and O(1) enumeration delay for some γ > 0

and database with size N , then the OuMv problem can be solved in subcubic time. This
contradicts the OuMv conjecture and, consequently, the OMv conjecture.

115

SolveOuMv(matrix M, vectors u1,v1, . . . ,un,vn)

1 T := view trees constructed on the initial empty database
2 foreach (i, j) ∈M do
3 δS := { (i, j) 7→M(i, j) }
4 OnUpdate(T , δS)
5 foreach r := 1, . . . , n do
6 foreach i := 1, . . . , n do
7 δR := { (a, i) 7→ (ur(i)−R(a, i)) }
8 OnUpdate(T , δR)
9 δT := { (i, a) 7→ (vr(i)− T (i, a)) }

10 OnUpdate(T , δT)
11 output (Q0(· | ·) 6= 0)

Figure 6.12: The procedure SolveOuMv solves the OuMv problem using an incremental
algorithm that maintains the Ccount triangle query Q0 under single-tuple updates. The T
are the view trees constructed on the initial database with empty relations R, S and T .
The procedure OnUpdate is given in Figure 5.25 and maintains the result of the query
under single-tuple updates.

Proof. The proof is inspired by the lower bound proof for maintaining non-hierarchical
Boolean conjunctive queries [14]. LetQ0 be the Ccount query. For the sake of contradiction,
assume that there is an incremental maintenance algorithm A that maintains Q0 under
single-tuple updates with arbitrary preprocessing time, O(N

1
2
−γ) amortized update time,

and O(1) enumeration delay, for some γ > 0. We show that this algorithm can be used to
design an algorithm B that solves the OuMv problem in subcubic time, which contradicts
the OuMv conjecture.

The reduction. Figure 6.12 gives the pseudocode of the algorithm B processing an
OuMv input (M, (u1,v1), . . . , (un,vn)). We denote the entry of M in row i and column j
by M(i, j) and the i-th component of v by v(i). The algorithm first constructs the view
trees on the initial database D = {R, S, T} with empty relations R, S, and T . Then, it
executes at most n2 updates to the relation S such that S = { (i, j) 7→ M(i, j) | i, j ∈
[n] }. In each round r ∈ [n], the algorithm executes at most 2n updates to the relations
R and T such that R = { (a, i) 7→ ur(i) | i ∈ [n] } and T = { (i, a) 7→ vr(i) | i ∈ [n] },
where a is some dummy constant. By construction, uT

rMvr = 1 if and only if there
exist i, j ∈ [n] such that ur(i) = 1, M(i, j) = 1, and vr(j) = 1, which is equivalent
to R(a, i) ∧ S(i, j) ∧ T (j, a) = 1 at the end of round r. Thus, the algorithm outputs 1

at the end of round r if and only if there is at least one triangle in the database, i.e.,
Q0(· | ·) 6= 0.

116

Time analysis. Constructing the view trees on the initial database with empty rela-
tions takes constant time. The construction of relation S from M requires at most n2

updates. Given that the amortized time for each update isO(N
1
2
−γ) and the database size

N stays O(n2), the overall time for constructing relation S is O(n2 ·n2·(1
2
−γ)) = O(n3−2γ).

In each round, the algorithm performs at most 2n updates and needs O(1) time to re-
port the output tuple. Hence, the time to execute the updates in a single round is
O(2n · n2·(1

2
−γ)) = O(n2−2γ). The time to report the output tuple is O(1). Thus, the

overall execution time is O(n2−2γ) per round and O(n3−2γ) for n rounds. Hence, algo-
rithm B needs O(n3−2γ) time to solve the OuMv problem, which contradicts the OuMv
conjecture and, consequently, the OMv conjecture.

Hardness for the C3 Query

We next focus on the lower bound for the C3 query. We apply a similar strategy as for
the Ccount query.

Proof. For the sake of contradiction, assume that there is an incremental maintenance
algorithm A that maintains a C3 query under single-tuple updates with arbitrary prepro-
cessing time, O(N

1
2
−γ) amortized update time, and O(1) enumeration delay, for some

γ > 0. We show that this algorithm can be used to design an algorithm B that solves the
OuMv problem in subcubic time, which contradicts the OuMv conjecture.

We design the algorithm B as in the Ccount case, except now at the end of each
round, instead of checking whether Q0 6= 0, we check whether the result of the C3 query
is nonempty. The time needed to signalize nonemptiness is O(1) per round, and thus
O(n) for n rounds. Since the time to execute the updates in a single round is O(n2−2γ),
the overall execution time is O(n2−2γ) per round and O(n3−2γ) for n rounds. Hence,
algorithm B needs O(n3−2γ) time to solve the OuMv problem, which contradicts the
OuMv conjecture and, consequently, the OMv conjecture.

Hardness for the C1 Queries

We next prove the lower bound for the C1 queries.

Proof. For the sake of contradiction, assume that there is an incremental maintenance
algorithm A that maintains a C1 query under single-tuple updates with arbitrary pre-
processing time, O(N

1
2
−γ) amortized update time, and O(N

1
2
−γ) enumeration delay, for

some γ > 0. We show that this algorithm can be used to design an algorithm B that
solves the OuMv problem in subcubic time, which contradicts the OuMv conjecture.

117

SolveOuMv2(matrix M, vectors u1,v1, . . . ,un,vn)

1 T := view trees constructed on the initial empty database
2 foreach (i, j) ∈M do
3 δS := { (i, j) 7→M(i, j) }
4 OnUpdate(T , δS)
5 foreach r := 1, . . . , n do
6 foreach i := 1, . . . , n do
7 δR := { (a, i) 7→ (ur(i)−R(a, i)) }
8 OnUpdate(T , δR)
9 δT := { (i, a) 7→ (vr(i)− T (i, a)) }

10 OnUpdate(T , δT)
11 foreach i := 1, . . . , n do
12 if Q2(· | a, i) 6= 0
13 output true
14 output false

Figure 6.13: The procedure SolveOuMv2 solves the OuMv problem using an incremental
algorithm that maintains the C2 query Q2(·|A,B) under single-tuple updates.

We design the algorithm B as for the Ccount query, except now at the end of each
round: in the case of the C1 query is Q(A|·), we check whether the query result is empty
by triggering enumeration and checking whether at least one output tuple is reported; in
case of other C1 queries, i.e., Q(·|A), Q(B|A) or Q(B,C|A), we check whether Q(·|a) 6= 0,
Q(B|a) or Q(B,C|a) is nonempty, for the dummy constant value a.

The time analysis is similar as that for the Ccount query, except that the algorithm
now needs O(N

1
2
−γ) = O(n2·(1

2
−γ)) = O(n1−2γ) in each round to report the first output

tuple or to signalize that the result is empty. Since the time to execute the updates in a
single round is O(n2−2γ), the overall execution time is O(n2−2γ) per round and O(n3−2γ)

for n rounds. Hence, algorithm B needs O(n3−2γ) time to solve the OuMv problem, which
contradicts the OuMv conjecture and, consequently, the OMv conjecture.

Hardness for the C2 Queries

Finally, we discuss the lower bound for the C2 queries.

Proof. For the sake of contradiction, assume that there is an incremental maintenance
algorithm A that maintains a C3 query under single-tuple updates with arbitrary pre-
processing time, O(N

1
2
−γ) amortized update time, and O(N

1
2
−γ) enumeration delay, for

118

some γ > 0. We show that this algorithm can be used to design an algorithm B that
solves the OuMv problem in subcubic time, which contradicts the OuMv conjecture.

In case of the C2 query Q(A,B | ·), we design the algorithm B as in the Ccount case.
The time needed to signalize nonemptiness is O(N

1
2
−γ) = O(n1−2γ) per round, and thus

O(n2−2γ) for n rounds. This leads to O(n3−2γ) overall execution time for n rounds, which
contradicts the OuMv conjecture and, consequently, the OMv conjecture.

In case of the other C2 queries, i.e., Q(·|A,B) or Q(C|A,B), we design the algorithm
B as shown in Figure 6.13. It differences from the algorithm B in the Ccount case in that
at the end of each round, for each tuple (a, i) inserted to R, we check whether it creates
triangles in the database via Q2(· | a, i) 6= 0 (Lines 11-14). In each round, we need to
check the query result for n tuples, which takes O(n · n1−2γ) = O(n2−2γ) time. For n
rounds, we need O(n3 − 2γ) times. This leads to O(n3−2γ) overall execution time for n
rounds, which contradicts the OuMv conjecture and, consequently, the OMv conjecture.

Optimality of Our Approach. For ε = 1
2
, our approach needs O(N

1
2) amortized

update time and, depending on the query, an enumeration delay such that the trade-off
between these two measures is Pareto optimal. For the Ccount and C3 queries, the delay is
O(1). Our approach is strongly Pareto worst-case optimal for these queries: There can be
no tighter upper bound for any of the update time or delay measures without loosening
the upper bound for the other measure. For the C1 and C2 queries, the delay is O(N)

and respectively O(N
1
2). Our approach is only weakly Pareto worst-case optimal for the

C1 and C2 queries: there are no tighter upper bounds for both the update time and delay
measures. Nevertheless, either the update time or the delay may still be lowered for the
C1 and C2 queries without contradicting the OMv conjecture.

Corollary 6.11 summarizes the above discussion on the worst-case optimality of our
approach for the triangle CQAP queries.

Corollary 6.11 (Theorem 3.10 and Proposition 6.8). Under a single-tuple update to the
database D, our approach with ε = 1

2
is strongly Pareto worst-case optimal for the Ccount

and C3 queries and weakly Pareto worst-case optimal for the C1 and C2 queries in the
update-delay space, unless the OMv conjecture fails.

119

Chapter 7

Dichotomy Result

The third contribution of this thesis is a dichotomy result for CQAPs, as stated in The-
orem 3.11. The dichotomy states that the queries in CQAP0 are precisely those CQAP
queries that can be evaluated with constant update time and enumeration delay. We focus
on the proof of this theorem in this chapter. The theorem is copied here for convenience.

Theorem 3.11. Consider an arbitrary CQAP query Q and a database of size N .

• If Q is in CQAP0, then it admits O(N) preprocessing time, O(1) enumeration
delay, and O(1) update time for single-tuple updates.

• If Q is not in CQAP0 and has no repeating relation symbols, then there is no al-
gorithm that computes Q with arbitrary preprocessing time, O(N

1
2
−γ) enumeration

delay, and O(N
1
2
−γ) amortized update time, for any γ > 0, unless the OMv conjec-

ture fails.

We start the intuition behind the proof. The class CQAP0 trivially contains all
queries, whose variables are free and whose join variables are input. The smallest queries
not included in CQAP0 are:

• Q1(O|·) = R(A), S(A,B), T (B) with O ⊆ {A,B};

• Q2(A|·) = R(A,B), S(B);

• Q3(·|A) = R(A,B), S(B); and

• Q4(B|A) = R(A,B), S(B).

Each query is equal to its fracture. Query Q1 is not hierarchical; Q2 is not free-dominant;
and Q3 and Q4 are not input-dominant. Prior work showed that there is no algorithm
that achieves constant update time and enumeration delay for Q1 and Q2, unless the
OMv conjecture fails [14]. To prove the hardness statement in Theorem 3.11, we show

120

that this negative result also holds for Q3 and Q4. Then, given an arbitrary CQAP query
Q that is not in CQAP0, we reduce the evaluation of one of the four queries above to the
evaluation of Q.

Proof. We start with an auxiliary lemma and a proposition.

Lemma 7.1. If a CQAP query Q can be evaluated with O(fp(N)) preprocessing time,
O(fe(N)) enumeration delay, and O(fu(N)) amortised update time, then its fracture Q†
can be evaluated with the same asymptotic complexities, where N is the database size.

Proof. Consider a CQAP query Q(O|I), its fracture Q†(O|I†), and a database D for Q†
of size N . We call a fresh variable A in Q† that replaces a variable A′ in Q a representative
of A. Let C1, . . . , Cn be the sets of database relations that correspond to the connected
components of Q†. We construct from D the databases D1, . . . ,Dn, where each Di is
constructed as follows. The database Di contains each relation in D such that: (1) If
R ∈ Ci and R has a variable A in its schema that is a representative of a variable A′,
the variable A is replaced by A′; (2) the values in all relations not contained in Ci are
replaced by a single dummy value di. The overall size of the databases is O(N). Given
an input tuple t over I, we denote by (Q(O|t),Di) the result of Q for input t evaluated
on Di. The result consists of the tuples over the output variables in Ci for the given input
tuple t, paired with the dummy value di over the output variables not in Ci. Intuitively,
the result of Q† on D can be obtained from the Cartesian product of the results of Q on
D1, . . . ,Dn. To be more precise, consider a tuple t† over I†. We define for each i ∈ [n],
a tuple ti over I such that ti[A] = t†[A

′] if A′ is a representative of A. The result of
Q†(O|t†) on D is equal to the Cartesian product ×i∈[n]πOi(Q(O|i),Di), where Oi is the
set of output variables of Q contained in Ci. Now, assume that we want to enumerate
the result of (Q†(O|t†),D). We start the enumeration procedure for each Q(O|i),Di)
with i ∈ [n]. For each t′1 ∈ Q(O|t1),D1), . . . , t′n ∈ Q(O|tn),Dn), we return the tuple
πO1t

′
1 ◦ . . . ◦ πOnt′n. This implies that the result of (Q†(O|t†),D) can be enumerated with

O(fe(N)) delay if Q admits O(fe(N)) enumeration delay.
We execute the preprocessing procedure for Q on each of the databases D1, . . . ,Dn

which takes O(fp(N)) overall time. Consider an update {t 7→ m} to a relation R that
is contained in the connected component Ci for some i ∈ [n]. We apply the update
{tI 7→ m} to relation R in Di, where tI is the tuple over I defined as:

tI [A] =

{
t[A′] if A′ is a representative of A
t[A] otherwise

The update takes O(fu(N)) amortised update time.
Overall, we obtain an evaluation procedure for Q† with O(fp(N)) preprocessing time,

O(fe(N)) enumeration delay, and O(fu(N)) amortised update time.

121

Proposition 7.2. Every CQAP0 query has dynamic width 0 and static width 1.

Proof. Consider a CQAP0 query Q and its fracture Q†. We first show that the dynamic
width of Q is 0. By definition, Q† is hierarchical, free-dominant, and input-dominant.
Hierarchical queries admit canonical VOs. In canonical VOs, it holds: if a variable A
dominates a variable B, then, A is on top of B. Hence, Q† admits a canonical VO that
is access-top. Consider a variable X in ω and an atom R(Y) in the subtree ωX rooted at
X. By the definition of canonical VOs, it holds: the dependency set of X consists of the
ancestor variables of X; Y contains X and all ancestor variables of X. Hence, we have
ρ∗QX (({X} ∪ depω(X)) \ Y) = ρ∗QX (({X} ∪ ancω(X)) \ Y) = ρ∗QX (∅) = 0. This implies
that the dynamic width of ω is 0. This means that the dynamic width of Q†, hence, the
dynamic width of Q is 0.

It follows from Proposition 5.27 that the static width of Q is 11.

We are ready to prove Theorem 3.11.

Complexity Upper Bound

We prove the first statement in Theorem 3.11. Assume that Q is in CQAP0. By Propo-
sition 7.2, Q has dynamic width 0. By definition of CQAP0, the fracture Q† of Q is
hierarchical. It follows from Proposition 5.27 that the static width of Q†, hence the static
width of Q, is at most 1. Using Theorem 3.4, we conclude that Q can be evaluated with
O(N) preprocessing time, O(1) update time, and O(1) enumeration delay.

Complexity Lower Bound

We prove the second statement in Theorem 3.11. The proof is based on a reduction of the
Online Matrix-Vector Multiplication (OMv) problem (Definition 2.25) to the evaluation
of non-CQAP0 queries.

We start with the high-level idea of the proof. Consider the following simple CQAP
queries, which are not in CQAP0.

Q1(O|·) =R(A), S(A,B), T (B) O ⊆ {A,B}

Q2(A|·) =R(A,B), S(B)

Q3(·|A) =R(A,B), S(B)

Q4(B|A) =R(A,B), S(B)

1To simplify the presentation, we assume that Q contains at least one variable, so it has static width
at least 1. Otherwise, it can trivially be evaluated with constant preprocessing time, update time, and
enumeration delay.

122

Each query is equal to its fracture. Query Q1 is not hierarchical; Q2 is not free-
dominant; Q3 and Q4 are not input-dominant. It is known that queries that are not
hierarchical or free-dominant do not admit constant update time and enumeration delay,
unless the OMv conjecture fails [14]. We show that the OMv problem can also be reduced
to the evaluation of each of the queries Q3 and Q4. Our reduction implies that any
algorithm that evaluates the queriesQ3 orQ4 with arbitrary preprocessing time, O(N

1
2
−γ)

update time, and O(N
1
2
−γ) enumeration delay for any γ > 0 can be used to solve the

OMv problem in subcubic time, which rejects the OMv conjecture. We then show that
the evaluation of one of the queries Q1 to Q4 can be reduced to the evaluation of any
CQAP query that is not in CQAP0 and does not have repeating relation symbols.

In each of the following two reductions, our starting assumption is that there is an
algorithm A that evaluates the given query with arbitrary preprocessing time, O(N

1
2
−γ)

amortized update time, and O(N
1
2
−γ) enumeration delay for some γ > 0. We then show

that A can be used to design an algorithm B that solves the OMv problem in subcubic
time.

Hardness for Q3 Given n ≥ 1, let M, v1, . . . , vn be an input to the OMv problem,
where M is an n×n Boolean Matrix and v1, . . . ,vn are Boolean column vectors of size n.
Algorithm B uses relation R to encode matrix M and relation S to encode the incoming
vectors v1, . . . ,vn. The database domain is [n]. First, algorithm B executes the pre-
processing stage on the empty database. Since the database is empty, the preprocessing
stage ends after constant time. Then, it executes at most n2 updates to relation R such
that R(i, j) = 1 if and only if M(i, j) = 1. Afterwards, it performs a round of operations
for each incoming vector vr with r ∈ [n]. In the first part of each round, it executes at
most n updates to relation S such that S(j) = 1 if and only if vr(j) = 1. Observe that
Q3(·|i) is true for some i ∈ [n] if and only if (Mvr)(i) = 1. Algorithm B constructs the
result vector ur = Mvr as follows. It asks for each i ∈ [n], whether Q3(·|i) is true, i.e., i
is in the result of Q3. If yes, the i-th entry of the result of ur is set to 1, otherwise, it is
set to 0.

Time Analysis. The size of the database remains O(n2) during the whole procedure.
Algorithm B needs at most n2 updates to encode M by relation R. Hence, the time
to execute these updates is O(n2(n2)

1
2
−γ) = O(n3−2γ). In each round r with r ∈ [n],

algorithm B executes n updates to encode vector vr into relation S and asks for the result
of Q3(·|i) for every i ∈ [n]. The n updates and requests need O(n(n2)

1
2
−γ) = O(n2−2γ)

time. Hence, the overall time for a single round is O(n2−2γ). Consequently, the time for
n rounds is O(nn2−2γ) = O(n3−2γ). This means that the overall time of the reduction is
O(n3−2γ) in worst-case, which is subcubic.

123

Hardness for Q4 The reduction differs slightly from the case for Q3 in the way algo-
rithm B constructs the result vector ur = Mvr in each round r. For each i ∈ [n], it starts
the enumeration process for Q4(B|i). If one tuple is returned, it stops the enumeration
process and sets the i-th entry of ur to be 1. If no tuple is returned, the i-th entry is set
to 0. Thus, the time to decide the i-th entry of the result of ur is the same as in case of
Q3. Hence, the overall time of the reduction stays subcubic.

Hardness in the General Case Consider now an arbitrary CQAP query Q that is
not in CQAP0 and does not have repeating relation symbols. Since Q is not in CQAP0,
this means that its fracture Q† is either not hierarchical, not free-dominant, or not input-
dominant. If Q† is not hierarchical or it is not free-dominant and all free variables are
output, it follows from prior work that there is no algorithm that evaluates Q† with
O(N

1
2
−γ) enumeration delay, and O(N

1
2
−γ) amortised update time for any γ > 0, unless

the OMv conjecture fails [14]. By Lemma 7.1, no such algorithm can exist for Q. Hence,
we assume that Q† is hierarchical and consider two cases:

(1) Q† is not free-dominant and all free variables are input

(2) Q† is free-dominant but not input-dominant

Case (1). The query contains an input variable A and a bound variable B such
that atoms(A) ⊂ atoms(B). This meas that there are two atoms R(X) and S(Y) with
Y∩{A,B} = {B} and A,B ∈ X . Assume that there is an algorithm A that evaluates Q†
with arbitrary preprocessing time, O(N

1
2
−γ) enumeration delay, and O(N

1
2
−γ) amortised

update time for some γ > 0. We will design an algorithm B that evaluates Q3 with the
same complexities. This rejects the OMv conjecture. Hence, by Lemma 7.1, Q cannot be
evaluated with these complexities, unless the OMv conjecture fails.

We define R(A,B) to be the set of atoms that contain both A and B in their schemas
and S(¬A,B) to be the set of atoms that contain B but not A. Note that there cannot
be any atom containing A but not B, since this would imply that the query is not
hierarchical, contradicting our assumption. We use each atom R′(X ′) ∈ R(A,B) to encode
atom R(A,B) and each atom S ′(Y ′) ∈ S(¬A,B) to encode atom S(B) in Q3. Consider a
database D of size N for Q3 and a dummy value d that is not included in the domain
of D. We write (S, A = a,B = b, d) to denote a tuple over schema S that assigns
the values a and b to the variables A and respectively B and all other variables in S
to d. Likewise, (S, B = b, d) denotes a tuple that assigns value b to B and all other
variables in S to d. Algorithm B first constructs from D a database D′ for Q† as follows.
For each tuple (a, b) in relation R and each atom R′(X ′) in RA,B, it assigns the tuple
(X ′, A = a,B = b, d) to relation R′. Likewise, for each value b in relation S and each atom

124

S ′(Y ′) in S(¬A,B), it assigns the tuple (Y ′, B = b, d) to relation S ′. The size of D′ is linear
in N . Then, algorithm B executes the preprocessing for Q† on D′. Each single-tuple
update {(a, b) 7→ m} to relation R is translated to a sequence of single-tuple updates
{(X ′, A = a,B = b, d) 7→ m} to all relations referred to by atoms in R(A,B). Analogously,
updates {b 7→ m} to S are translated to updates {(S ′, B = b, d) 7→ m} to all relations
S ′ with S ′(Y ′) ∈ S(¬A,B). Hence, the amortised update time is O(N0.5−γ). Each input
tuple (a) for Q3 is translated into an input tuple (I†, A = a, d) for Q† where I† is the set
of input variables for Q†. Recall that all free variables of Q† are input. The answer of
Q3(·|a) is true if and only if the answer of Q†(·|(I†, A = a, d)) is true. The answer time
is O(N0.5−γ). We conclude that Q3 can be evaluated with O(N0.5−γ) enumeration delay
and O(N0.5−γ) amortised update time, a contradiction due to the OMv conjecture.

Case (2). We now consider the case that the query Q† is free-dominant but not
input-dominant. In this case, the we reduce the evaluation of Q4 to the evaluation of
Q†. The reduction is analogous to Case (1). The way we encode the atoms R(A,B) and
S(B), do preprocessing, and translate the updates is exactly the same as in Case (1).
The only difference is the way we retrieve the B-values in Q4(B|a) for an input value a.
We translate a into an input tuple to Q† where all input variables besides A are assigned
to d. Recall that Q† might have several output variables besides B. By construction,
they can be assigned only to d. Hence, all output tuples returned by Q† have distinct
B-values. These B-values constitute the result of Q4(B|a). We conclude that Q4 can
be evaluated with O(N0.5−γ) enumeration delay and O(N0.5−γ) amortised update time,
which contradicts the OMv conjecture.

125

Chapter 8

Related Work

Our work lies at the intersection of two lines of research: querying under access patterns
and dynamic evaluation. Our work is the first to investigate the dynamic evaluation
for CQAP queries. These CQAP queries are typically called parameterized queries or
prepared statements in database management systems.

Access Patterns. The term CQAP queries in this thesis is different from the term
“queries with access patterns” overwhelmingly used in the literature [33, 75, 27, 12, 13].
In these works, input relations have input and output variables and there is no restriction
on whether they are bound or free. Also, a variable may be input in a relation and output
in another and this leads to technically interesting but generally hard reasoning about
the answerability of the query [56, 57, 52]. In our setting, only the free variables are split
into input and output; an input (output) variable is then input (output) for all relations
that have that variable in the body of the query. To differentiate the two settings, we call
our setting free access patterns. For given values over the input variables, CQAP queries
become residual queries. As shown in Example 5.29, our CQAP approach can be however
more efficient than the evaluation of residual queries. To support efficient answering, we
precompute (subject to a trade-off) some mappings between possible values for input
variables and the query output, whereas a residual query is to be computed from scratch
for the given input values.

Prior work closest in spirit to ours investigated the space-delay trade-off for the static
evaluation of full conjunctive queries with output access patterns [26]. This work con-
structs a succinct representation of the query result that allows for the enumeration of
those tuples that conform with value bindings of the input variables. The representation
relies on a tree decomposition of the query where the input variables form a connected
subtree. This work does not support queries with projection nor dynamic evaluation.
Follow-up work considers the problem of answering Boolean conjunctive queries with ac-

126

Class of Queries Preprocessing Delay Extra Space Source

f.c. α-acyclic CQ 6= O(N) O(1) O(N) [9]
f.c. β-acyclic negative CQ O(N) O(1) – [20, 19]
f.c. signed-acyclic CQ O(N (logN)|Q|) O(1) – [20]
Acyclic CQ 6= O(N) O(N) O(N) [9]
CQ6= of f.c. treewidth k O(|Dom|k+1 +N) O(1) – [9]
CQ O(Nw(Q)) O(1) O(Nw(Q)) [65, 1]
Full CQ with access patterns O(Nρ∗(Q)) O(τ) O(N +Nρ∗(Q)/τ) [26]

CQ on X-structures (trees, grids) O(N) O(N) – [8]
FO on Bounded degree O(N) O(1) – [28, 46]
FO on Bounded expansion O(N) O(1) – [47]
FO on Local bounded expansion O(N1+γ) O(1) – [71]
FO on Low degree O(N1+γ) O(1) O(N2+γ) [29]
FO on Nowhere dense O(N1+γ) O(1) O(N1+γ) [68]
MSO on Bounded treewidth O(N) O(1) – [7, 48]

Figure 8.1: Prior work on the trade-off between preprocessing time, enumeration delay,
and extra space for different classes of queries (Conjunctive Queries, First-Order, Monadic
Second-Order) and static databases under data complexity; f.c. stands for free-connex.
Parameters: Query Q with factorization width w [65] and fractional edge cover number
ρ∗ [6]; database of size N ; slack τ is a function of N and ρ∗; γ > 0. Most works do not
discuss the extra space utilization (marked by –).

cess patterns, where every free variable is fixed to a constant at query time, again in the
static setting [25].

Hierarchical Queries. The Boolean conjunctive queries without repeating relation
symbols that can be computed in polynomial time on tuple-independent probabilistic
databases are hierarchical; non-hierarchical queries are hard for #P [72]. This was ex-
tended to non-Boolean queries with negation [32].

Hierarchical queries are the conjunctive queries whose provenance admits a factorized
representation where each input tuple occurs a constant number of times; any factoriza-
tion of the provenance of a non-hierarchical query would require a number of occurrences
of the provenance of some input tuple dependent on the input database size [64].

In the MPC model, the hierarchical queries admit parallel evaluation with one commu-
nication step [51]. The r-hierarchical queries, which are conjunctive queries that become
hierarchical by repeatedly removing the atoms whose complete set of variables occurs in
another atom, can be evaluated in the MPC model using a constant number of steps and
optimal load on every single database instance [37].

Hierarchical queries also admit one-step streaming evaluation in the finite cursor

127

Class of Queries Preprocessing Update Delay Extra Space Source

q-hierarchical CQ O(N) O(1) O(1) – [14, 38]
Triangle count O(N

3
2) O(Nmax{ε,1−ε})� O(1) O(N1+min{ε,1−ε}) [41]

Full triangle query O(N
3
2) O(N

1
2)� O(1) O(N

3
2) [42]

q-hierarchical UCQ O(N) O(1) O(1) – [17]

FO+MOD on Bounded degree O(N) O(1) O(1) – [15]
MSO on Strings O(N) O(logN) O(1) – [61]

Figure 8.2: Prior work on the trade-off between preprocessing time, update time, enumer-
ation delay, and extra space for different classes of queries (Conjunctive Queries, Count
Queries, First-Order Queries with modulo-counting quantifiers, Monadic Second Order
Logic) and databases under updates in data complexity. Parameters: Query Q; database
of size N ; ε ∈ [0, 1]. Most works do not discuss the extra space utilization (marked by
–). �: amortized update time.

model [34]. Under updates, the q-hierarchical queries are the conjunctive queries that
admit constant-time update and delay [14]. The q-hierarchical queries are a proper sub-
class of both the free-connex α-acyclic and hierarchical queries. In addition to being
hierarchical, a second condition holds for a q-hierarchical query: if the set of atoms of
a free variable is strictly contained in the set of another variable, then the latter is also
free.

Figures 8.1 gives taxonomies of works on static query evaluation for hierarchical
queries. Prior work exhibits a dependency between the space and enumeration delay
for conjunctive queries with access patterns [26]. It constructs a succinct representation
of the query result that allows for enumeration of tuples over some variables under value
bindings for all other variables. It does not support enumeration for queries with free
variables, as addressed in our work.

The result of any α-acyclic conjunctive query can be enumerated with constant delay
after linear-time preprocessing if and only if it is free-connex. This is under the conjecture
that Boolean multiplication of n × n matrices cannot be done in O(n2) time [9]. More
recently, this was shown to hold also under the hypothesis that the existence of a triangle
in a hypergraph of n vertices cannot be tested in timeO(n2) and that for any k, testing the
presence of a k-dimensional tetrahedron cannot be decided in linear time [20]. The free-
connex characterization generalizes in the presence of functional dependencies [22]. An
in-depth pre-2015 overview on constant-delay enumeration is provided by Segoufin [70].

There are also enumeration algorithms for document spanners [5] and satisfying val-
uations of circuits [3].

Figure 8.2 shows the works on dynamic query evaluation for hierarchical queries. The
q-hierarchical queries are the conjunctive queries that admit linear-time preprocessing

128

and constant-time update and delay [14, 38]. If a conjunctive query without repeating
relation symbols is not q-hierarchical, there is no γ > 0 such that the query result can
be enumerated with O(N

1
2
−γ) delay and update time, unless the Online Matrix Vector

Multiplication conjecture fails. The constant delay and update time carry over to first-
order queries with modulo-counting quantifiers on bounded degree databases, unions of
q-hierarchical queries [17], and q-hierarchical queries with small domain constraints [15].

MSO queries on strings admit linear-time preprocessing, constant delay, and logarith-
mic update time. Here, updates can relabel, insert, or remove positions in the string.
Further work considers MSO queries on trees under updates [60, 54, 4].

DBToaster [50], F-IVM [62], and DynYannakakis [38, 39] are recent systems imple-
menting incremental view maintenance approaches.

Triangle Queries. The problem of incrementally maintaining the triangle count has
received a fair amount of attention. Existing exact approaches require at least linear
time in worst case. After each update to a database D, the naïve approach joins the
relations R, S, and T in time O(N

3
2) using a worst-case optimal algorithm [2, 59] and

counts the result tuples. The number of distinct tuples in the result is at most N
3
2 ,

which is a well-known result by Loomis and Whitney from 1949 (see recent notes on the
history of this result [58]). The classical first-order IVM [23] computes on the fly a delta
query δQ per single-tuple update in O(N) time. The recursive IVM [50] speeds up the
delta computation by precomputing auxiliary views representing the update-independent
parts. These views allow us to compute the delta query for single-tuple updates to the
input relations in O(1) time, but maintaining these views still requires O(N) time.

Further away from our line of work is the development of dynamic descriptive com-
plexity, starting with the DynFO complexity class and the much-acclaimed result on FO
expressibility of the maintenance for graph reachability under edge inserts and deletes,
cf. a recent survey [69]. The k-clique query can be maintained under edge inserts by a
quantifier-free update program of arity k − 1 but not of arity k − 2 [76].

A distinct line of work investigates randomized approximation schemes with an arbi-
trary relative error for counting triangles in a graph given as a stream of edges, e.g., [10,
40, 21, 55, 24]. Each edge in the data stream corresponds to a tuple insert, and tuple
deletes are not considered. The emphasis of these approaches is on space efficiency, and
they express the space utilization as a function of the number of nodes and edges in the
input graph and of the number of triangles. The space utilization is generally sublin-
ear but may become superlinear if, for instance, the number of edges is greater than the
square root of the number of triangles. The update time is polylogarithmic in the number
of nodes in the graph.

129

Cutset optimisations. Cutset conditioning [66] and cutset sampling [18] are used for
efficient exact and approximate inference in Bayesian networks. The idea is to choose a
cutset, which is a subset of variables, such that conditioning on the variables in the cutset,
i.e., instantiating them with possible values, yields a network with a small treewidth that
allows exact inference. The set of input variables of a CQAP can be seen as a given
cutset, while fixing the input variables to given values is conditioning. Query fracturing,
as introduced in our work, is a query rewriting technique that does not have a counterpart
in cutset optimisations in AI.

130

Chapter 9

Extensions

In this chapter, we present several extensions of the main results of this thesis.

Relations Over Task-Specific Semirings. In this thesis, we model the relations
as factors over the sum-product semiring of integers. We can use it to simulate the
bag semantics of relational databases. For other applications, other (semi)rings can be
used. Different rings can be used as the domain of tuple multiplicities (or payloads).
Previous work shows how the data-intensive computation of many applications can be
captured by application-specific rings, which define sum and product operations over
data values [62]. For example, the relational data ring supports payloads with listing and
factorized representations of relations, and the degree-m matrix ring supports payloads
that can be used for maintaining the mutual information of two discrete random variables
and the gradients of square loss functions for linear regression models [62, 63].

Loomis Whitney queries The maintenance strategies for the triangle queries (with-
out access patterns) naturally extend to Loomis Whitney (LW) queries. LW queries gen-
eralize triangle queries from cliques of degree three to cliques of degree n ≥ 3; they encode
the Loomis Whitney inequality [53]. Let A1, . . . , An be the query variables and R1, . . . , Rn

relations over schemasX1, . . . ,Xn, where ∀i ∈ [n] : Xi = (A((i+j) mod n)+1)−1≤j≤n−3. That
is, the schema of R1 is (A1, . . . , An−1), whereas the schema of Rn is (An, A1, . . . , An−2).
The n-ary LW query of degree n has the form

♦n(x) = R1(x1) · · ·Rn(xn),

where x = (aj)j∈[n] and for all i ∈ [n], xi = (a((i+j) mod n)+1)−1≤j≤n−3 is a value from the
domain of the tuple Xi of variables. As for triangle queries, a LW query of degree n and
arity 0 ≤ k ≤ n− 1 has the same body as for arity n but only keeps the first k values in
the result. For instance, for n = 4 the binary LW query is

♦2(A1, A2) = R1(A1, A2, A3), R2(A2, A3, A4), R3(A3, A4, A1), R4(A4, A1, A2).

131

In case n = 3, each LW query ♦k becomes the triangle query with k free variables, for
0 ≤ k ≤ 3.

The extended approach achieves the following complexities for LW queries of degree
n (stated without proof):

• The preprocessing and amortized update time are the same as for triangle queries:
O(N

3
2) preprocessing time and O(Nmax{ε,1−ε}) amortized update time.

• For the LW queries with k = 0 or n, the enumeration delay is constant; for k-ary
LW queries where 0 < k < n, the enumeration delay is O(Nmin{1,(n−k)·(1−ε)}). The
delay hence improves with increasing arity. For n = 3, we get exactly the same
enumeration delay as for the triangle queries.

• The lower bound on the update-delay trade-off for triangle queries stated in Propo-
sition 6.8 can be extended to LW queries. This means that at ε = 1

2
, kekeis strongly

Pareto worst-case optimal for the LW queries with k = 0 or n and weakly Pareto
worst-case optimal for all other LW queries.

The result of the n-ary LW query ♦n of degree n has size O(N
n
n−1) [53]. It can also

be computed in the static setting in the same time, which is thus worst-case optimal [58].
We cannot recover the optimality in the static case, since it takes O(N

1
2) amortized time

per each single-tuple update and there are N tuples to insert. Since the combination of
O(N

1
2) amortized time and O(1) delay is strongly Pareto worst-case optimal, it means

that no dynamic algorithm can achieve a lower amortized single-tuple update time for the
n-ary LW query. This shows the limitation of single-tuple updates. To achieve the overall
O(N

n
n−1) time for N tuple inserts, one would need to process several inserts at the same

time, that is, in bulk, such that the amortized time per insert should be O(N
1

n−1). A
characterization of the difference between bulk updates and single-tuple updates remains
an interesting open problem.

Evaluation Trade-Offs for Any Acyclic CQs. Recall we present in Chapters 5
and 6 an approach that exposes trade-offs in the dynamic evaluation of triangle CQAP
queries and CQAP queries with hierarchical fractures. This approach is based on the idea
of partitioning the data into heavy and light parts and employing adaptive evaluation
strategies to data with different degrees.

We extend this idea and develop a new approach [45] that exposes trade-offs between
the preprocessing time and the enumeration delay in the static evaluation of any acyclic
CQs. For the static evaluation of any acyclic CQs, there are two prior results that are
the two extremes in the trade-off space: in one extreme, the seminal work [9] showed

132

that such queries can be evaluated with linear preprocessing time and linear enumeration
delay. If the query is free-connex, the enumeration delay becomes constant. In the other
extreme, prior work [65] showed that constant enumeration delay can be achieved for
arbitrary acyclic queries at the expense of a preprocessing time that is characterized by
the fractional hypertree width. We can recover the two extremes in the trade-off space,
and for some queries, we reveal new trade-offs between the two extremes.

133

Chapter 10

Conclusion and Future Work

This thesis investigates the dynamic evaluation of conjunctive queries with output access
patterns. We developed a dynamic evaluation approach for conjunctive queries with free
access patterns. The approach relies on the two new notions access-top variable order and
query fracture. We introduced the static and dynamic widths to capture the complexities
of the preprocessing and respectively update steps.

We also establish a dichotomy: CQAP0 queries are precisely those queries with
constant-time update and delay unless the Online Matrix-Vector conjecture fails. This
dichotomy is sensitive to the access pattern.

We further develop an algorithm that reveals the trade-offs between preprocessing,
update, and enumeration for the triangle CQAP queries and CQAP queries with hierar-
chical fractures. Our algorithm has two core ideas. First, we partition the input relations
into heavy and light parts based on the degrees of the values. This transforms a query
over the input relations into a union of queries over heavy and light relation parts. Sec-
ond, we employ different evaluation strategies for different heavy-light combinations of
parts of the input relations. By tuning the threshold for the heavy-light partitioning, our
algorithm can reduce update time with the cost of more enumeration delay, or the other
way around. We show the strongly and weakly Pareto of our algorithm for the triangle
CQAP queries and the CQAP1 queries.

There are several lines of further work. The first is to generalize our trade-off for
all CQAP queries and even to functional aggregate queries. The second is to extend the
result to CQAP queries with group-by aggregates and order-by clauses. An open problem
is to find lower bounds for queries beyond the triangle CQAP queries and the CQAP0

and CQAP1 queries, in particular, the lower bounds for CQAPi queries for i > 1.

134

References

[1] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: Questions Asked
Frequently. In PODS, pages 13–28, 2016.

[2] N. Alon, R. Yuster, and U. Zwick. Finding and Counting Given Length Cycles.
Algorithmica, 17(3):209–223, 1997.

[3] Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based
approach to efficient enumeration. In ICALP, pages 111:1–111:15, 2017.

[4] Antoine Amarilli, Pierre Bourhis, and Stefan Mengel. Enumeration on trees under
relabelings. In ICDT, pages 5:1–5:18, 2018.

[5] Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Constant-
delay enumeration for nondeterministic document spanners. In ICDT, pages 22:1–
22:19, 2019.

[6] Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for
relational joins. SIAM J. Comput., 42(4):1737–1767, 2013.

[7] Guillaume Bagan. MSO Queries on Tree Decomposable Structures Are Computable
with Linear Delay. In CSL, pages 167–181, 2006.

[8] Guillaume Bagan, Arnaud Durand, Emmanuel Filiot, and Olivier Gauwin. Efficient
Enumeration for Conjunctive Queries over X-underbar Structures. In CSL, pages
80–94, 2010.

[9] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On Acyclic Conjunctive
Queries and Constant Delay Enumeration. In CSL, pages 208–222, 2007.

[10] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in Streaming Algo-
rithms, with an Application to Counting Triangles in Graphs. In SODA, pages
623–632, 2002.

135

[11] Catriel Beeri, Ronald Fagin, David Maier, and Mihalis Yannakakis. On the Desir-
ability of Acyclic Database Schemes. J. ACM, 30(3):479–513, 1983.

[12] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. Querying with Access
Patterns and Integrity Constraints. VLDB, 8(6):690–701, 2015.

[13] Michael Benedikt, Balder Ten Cate, and Efthymia Tsamoura. Generating Low-cost
Plans from Proofs. In PODS, pages 200–211, 2014.

[14] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering Conjunctive
Queries Under Updates. In PODS, pages 303–318, 2017.

[15] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering FO+MOD
queries under updates on bounded degree databases. In ICDT, pages 8:1–8:18, 2017.

[16] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering UCQs Under
Updates and in the Presence of Integrity Constraints. In ICDT, pages 8:1–8:19, 2018.

[17] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. Answering ucqs under
updates and in the presence of integrity constraints. In ICDT, pages 8:1–8:19, 2018.

[18] Bozhena Bidyuk and Rina Dechter. Cutset sampling for bayesian networks. J. Artif.
Intell. Res., 28:1–48, 2007.

[19] Johann Brault-Baron. A Negative Conjunctive Query is Easy if and only if it is
Beta-Acyclic. In CSL, pages 137–151, 2012.

[20] Johann Brault-Baron. De la pertinence de l’énumération: complexité en logiques
propositionnelle et du premier ordre. PhD thesis, Université de Caen, 2013.

[21] Luciana S Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-
Spaccamela, and Christian Sohler. Counting Triangles in Data Streams. In PODS,
pages 253–262, 2006.

[22] Nofar Carmeli and Markus Kröll. Enumeration complexity of conjunctive queries
with functional dependencies. In ICDT, pages 11:1–11:17, 2018.

[23] Rada Chirkova and Jun Yang. Materialized Views. Found. & Trends DB, 4(4):295–
405, 2012.

[24] Graham Cormode and Hossein Jowhari. A Second Look at Counting Triangles in
Graph Streams (Corrected). Theor. Comput. Sci., 683:22–30, 2017.

136

[25] Shaleen Deep, Xiao Hu, and Paraschos Koutris. Space-Time Tradeoffs for Answering
Boolean Conjunctive Queries. arXiv, abs/2109.10889, 2021.

[26] Shaleen Deep and Paraschos Koutris. Compressed Representations of Conjunctive
Query Results. In PODS, pages 307–322, 2018.

[27] Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting Queries using Views
with Access Patterns under Integrity Constraints. Theor. Comput. Sci., 371(3):200–
226, 2007.

[28] Arnaud Durand and Etienne Grandjean. First-order Queries on Structures of
Bounded Degree are Computable with Constant Delay. ACM Trans. Comput. Logic,
8(4):21, 2007.

[29] Arnaud Durand, Nicole Schweikardt, and Luc Segoufin. Enumerating Answers to
First-order Queries over Databases of Low Degree. In PODS, pages 121–131, 2014.

[30] Arnaud Durand and Yann Strozecki. Enumeration complexity of logical query prob-
lems with second-order variables. In CSL, pages 189–202, 2011.

[31] Ronald Fagin, Alberto O. Mendelzon, and Jeffrey D. Ullman. A simplified universal
relation assumption and its properties. ACM Trans. Database Syst., 7(3):343–360,
1982.

[32] Robert Fink and Dan Olteanu. Dichotomies for queries with negation in probabilistic
databases. ACM Trans. Datab. Syst., 41(1):4:1–4:47, 2016.

[33] Daniela Florescu, Alon Levy, Ioana Manolescu, and Dan Suciu. Query Optimization
in the Presence of Limited Access Patterns. SIGMOD Rec., 28(2):311–322, 1999.

[34] Martin Grohe, Yuri Gurevich, Dirk Leinders, Nicole Schweikardt, Jerzy Tyszkiewicz,
and Jan Van den Bussche. Database Query Processing Using Finite Cursor Machines.
Theory Comput. Syst., 44(4):533–560, 2009.

[35] Martin Grohe and Dániel Marx. Constraint Solving via Fractional Edge Covers.
ACM Trans. Alg., 11(1):4:1–4:20, 2014.

[36] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol
Saranurak. Unifying and Strengthening Hardness for Dynamic Problems via the
Online Matrix-Vector Multiplication Conjecture. In STOC, pages 21–30, 2015.

[37] Xiao Hu and Ke Yi. Instance and output optimal parallel algorithms for acyclic
joins. In PODS, pages 450–463, 2019.

137

[38] Muhammad Idris, Martín Ugarte, and Stijn Vansummeren. The Dynamic Yan-
nakakis Algorithm: Compact and Efficient Query Processing Under Updates. In
SIGMOD, pages 1259–1274, 2017.

[39] Muhammad Idris, Martín Ugarte, Stijn Vansummeren, Hannes Voigt, and Wolfgang
Lehner. Conjunctive queries with inequalities under updates. PVLDB, pages 733–
745, 2018.

[40] Hossein Jowhari and Mohammad Ghodsi. New Streaming Algorithms for Counting
Triangles in Graphs. In COCOON, pages 710–716, 2005.

[41] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Count-
ing triangles under updates in worst-case optimal time. In ICDT, pages 4:1–4:18,
2019.

[42] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Main-
taining triangle queries under updates. ACM Trans. Database Syst., 45(3):11:1–
11:46, 2020.

[43] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Trade-offs in Static
and Dynamic Evaluation of Hierarchical Queries. In PODS, pages 375–392, 2020.

[44] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Conjunctive queries
with output access patterns under updates. CoRR, abs/2206.09032, 2022.

[45] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. Evaluation trade-offs
for acyclic conjunctive queries. In CSL, October 2022.

[46] Wojciech Kazana and Luc Segoufin. First-order Query Evaluation on Structures of
Bounded Degree. LMCS, 7(2), 2011.

[47] Wojciech Kazana and Luc Segoufin. Enumeration of First-order Queries on Classes
of Structures with Bounded Expansion. In PODS, pages 297–308, 2013.

[48] Wojciech Kazana and Luc Segoufin. Enumeration of Monadic Second-order Queries
on Trees. ACM Trans. Comput. Logic, 14(4):25:1–25:12, 2013.

[49] Christoph Koch. Incremental Query Evaluation in a Ring of Databases. In PODS,
pages 87–98, 2010.

[50] Christoph Koch et al. DBToaster: Higher-order Delta Processing for Dynamic,
Frequently Fresh Views. VLDB J., 23(2):253–278, 2014.

138

[51] Paraschos Koutris and Dan Suciu. Parallel Evaluation of Conjunctive Queries. In
PODS, pages 223–234, 2011.

[52] Chen Li and Edward Chang. On Answering Queries in the Presence of Limited
Access Patterns. In ICDT, pages 219–233, 2001.

[53] L. H. Loomis and H. Whitney. An inequality related to the isoperimetric inequality.
Journal: Bull. Amer. Math. Soc., 55(55):961–962, 1949. DOI: 10.1090/S0002-9904-
1949-09320-5.

[54] Katja Losemann and Wim Martens. MSO queries on trees: enumerating answers
under updates. In CSL-LICS, pages 67:1–67:10, 2014.

[55] Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better Algorithms for Count-
ing Triangles in Data Streams. In PODS, pages 401–411, 2016.

[56] Alan Nash and Bertram Ludäscher. Processing First-Order Queries under Limited
Access Patterns. In PODS, pages 307–318, 2004.

[57] Alan Nash and Bertram Ludäscher. Processing Unions of Conjunctive Queries with
Negation under Limited Access Patterns. In EDBT, pages 422–440, 2004.

[58] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join
algorithms. J. ACM, 65(3):16:1–16:40, 2018.

[59] Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew Strikes Back: New Develop-
ments in the Theory of Join Algorithms. SIGMOD Rec., 42(4):5–16, 2013.

[60] Matthias Niewerth. MSO queries on trees: Enumerating answers under updates
using forest algebras. In LICS, pages 769–778, 2018.

[61] Matthias Niewerth and Luc Segoufin. Enumeration of MSO queries on strings with
constant delay and logarithmic updates. In PODS, pages 179–191, 2018.

[62] Milos Nikolic and Dan Olteanu. Incremental View Maintenance with Triple Lock
Factorization Benefits. In SIGMOD, pages 365–380, 2018.

[63] Milos Nikolic, Haozhe Zhang, Ahmet Kara, and Dan Olteanu. F-IVM: learning
over fast-evolving relational data. In David Maier, Rachel Pottinger, AnHai Doan,
Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo, editors, Proceedings of
the 2020 International Conference on Management of Data, SIGMOD Conference
2020, online conference [Portland, OR, USA], June 14-19, 2020, pages 2773–2776.
ACM, 2020.

139

https://doi.org/10.1090/S0002-9904-1949-09320-5
https://doi.org/10.1090/S0002-9904-1949-09320-5

[64] Dan Olteanu and Závodný. Factorised representations of query results: size bounds
and readability. In ICDT, pages 285–298, 2012.

[65] Dan Olteanu and Jakub Závodný. Size Bounds for Factorised Representations of
Query Results. ACM TODS, 40(1):2:1–2:44, 2015.

[66] Judea Pearl. Probabilistic reasoning in intelligent systems - networks of plausible
inference. Morgan Kaufmann series in representation and reasoning. Morgan Kauf-
mann, 1989.

[67] Neil Robertson and Paul D. Seymour. Graph minors. II. algorithmic aspects of
tree-width. J. Algorithms, 7(3):309–322, 1986.

[68] Nicole Schweikardt, Luc Segoufin, and Alexandre Vigny. Enumeration for FO Queries
over Nowhere Dense Graphs. In PODS, pages 151–163, 2018.

[69] Thomas Schwentick and Thomas Zeume. Dynamic Complexity: Recent Updates.
SIGLOG News, 3(2):30–52, 2016.

[70] Luc Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD Rec.,
44(1):10–17, 2015.

[71] Luc Segoufin and Alexandre Vigny. Constant Delay Enumeration for FO Queries
over Databases with Local Bounded Expansion. In ICDT, pages 20:1–20:16, 2017.

[72] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Probabilistic
Databases. Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2011.

[73] Todd L. Veldhuizen. Triejoin: A simple, worst-case optimal join algorithm. In ICDT,
pages 96–106, 2014.

[74] Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages
82–94, 1981.

[75] Ramana Yerneni, Chen Li, Jeffrey Ullman, and Hector Garcia-Molina. Optimizing
Large Join Queries in Mediation Systems. In ICDT, pages 348–364, 1999.

[76] Thomas Zeume. The Dynamic Descriptive Complexity of k-Clique. Inf. Comput.,
256:9–22, 2017.

140

	Introduction
	Problem Setting
	Contributions
	Organization

	Preliminaries
	Data Model and Query Language
	Conjunctive Queries with Free Access Patterns
	Query Classes
	Variable Orders
	Variable Orders and Tree Decompositions
	Classes of Variable Orders

	Width Measures
	View Trees
	Computational Model
	Lower Bounds

	Overview of the Main Results
	Fully Dynamic Evaluation for CQAP Queries
	Query Fractures
	Complexities

	Preprocessing-Update-Enumeration Trade-offs
	Queries with Hierarchical Fractures
	Triangle Queries

	A Dichotomy Result
	Current Landscape of Conjunctive Query Evaluation

	The Case of General Queries
	Preprocessing
	Extended Variable Orders
	View Tree Construction
	Indicator Projections

	Enumeration
	View Iterators
	Enumeration Procedures
	Multiple View Trees

	Update
	Dynamic Width

	Complexity Analysis

	Trade-Offs in Dynamic Evaluation for CQAP Queries with Hierarchical Fractures
	Data Partitioning
	Preprocessing
	From Canonical to Access-Top Variable Orders
	Variable Orders Describing Evaluation Strategies
	View Trees Encoding the Query Result
	Proofs

	Enumeration
	Union View Iterators
	Enumeration Procedure
	Enumeration from View Trees
	Enumeration Delay

	Update
	Determining the Relation Part for a Single-Tuple Update
	Processing a Single-Tuple Update
	Processing a Sequence of Single-Tuple Updates

	Complexity Analysis
	Optimality Result

	Trade-Offs in Dynamic Evaluation for Triangle CQAP Queries
	The C3 Query
	Preprocessing
	Enumeration
	Update

	Queries in C2
	Preprocessing
	Enumeration
	Hop View Iterators

	Update

	Queries in C1
	Preprocessing
	Enumeration
	Update

	The Ccount Query
	The Clookup Query
	Complexity Analysis
	Optimality Result

	Dichotomy Result
	Related Work
	Extensions
	Conclusion and Future Work
	Bibliography

