
Statistical inference in generative

models using scoring rules

Lorenzo Pacchiardi

St. Peter’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2022

Statement of Originality

I hereby declare that except where specific reference is made to the work

of others, the contents of this dissertation are original and have not been

submitted in whole or in part for consideration for any other degree or

qualification in this, or any other university. My personal contributions

are as outlined in the authorship forms at the end of each chapter. This

dissertation is my own work except as specified in the text, acknowledge-

ments, forms and papers.

Lorenzo Pacchiardi
Trinity 2022

This thesis is dedicated to Valeria

and to my family: Elena, Andrea, Marta, Giovanni and Rita.

Acknowledgements

First of all, I owe much to my supervisors, who supported me throughout

my PhD journey and were an endless source of inspiration. Specifically,

I am grateful to Ritabrata Dutta for his constant availability, for sharing

with me his enthusiasm for new ideas, and for his friendship; I thank Geoff

Nicholls for his all-round mentorship during my time at Oxford and for

transmitting part of his vast knowledge of statistics to me.

Next, I would like to thank Pierre Jacob and Christian Robert for hosting

me in Paris and Antonietta Mira for inviting me twice to spend time in

Lugano. Discussing research ideas with them gave me stimulating new

perspectives. I am also grateful to Chris Holmes, Judith Rousseau and

Arnaud Doucet for acting as examiners for the intermediate milestones

of my PhD and offering constructive feedback on my work. Thanks also

to Patrick Rebeschini and Massimiliano Pontil, with whom I carried out

a short project during my first year: working with them helped me de-

velop a good research practice from the very beginning. Looking back, I

am indebted to my MSc mentor Florent Krzakala for encouraging me to

embark on this journey.

If I learnt a lot during my PhD, it is also because of the many group

meetings, reading groups and seminar series I attended. I thank all the

participants and organisers (too many to be listed here) for providing me

with food for thought.

I am aware that, if I have been able to fully concentrate on my studies,

it is also due to the great work done by the administrative staff in the

Department of Statistics, whom I thank.

I gratefully acknowledge the Engineering and Physical Sciences Research

Council and the Medical Research Council for funding my doctoral studies.

My time at Oxford has been a wonderful experience thanks to the incred-

ible people I have met: first of all, the friends who made the countless

hours spent in the Department of Statistics interesting and enjoyable and

that shared with me the ups and downs of PhD life (special mentions to

Déborah Sulem, Anna Menacher, Romain Fournier, Shahine Bouabid, Yi-

orgos Kalantzis, Alan Chau, Sahra Ghalebikesabi, Kamélia Daudel, Nat-

alia Garćıa Mart́ın, Luis Torada Aguilella, Bobby He). I also thank my

housemates Anri Asagumo, Eugenio Clerico and Adrien Sprumont for

sharing many meals, pizza nights and Star Wars nights (but no double-

blitz!). I thank all the members of St. Peter’s College Boat Club for

providing a great way to unwind from the stress of research. Finally, I am

grateful to all those not listed here who have offered me their friendship,

mentorship or collaboration at any point of my journey.

Thanks to my good friends (or ’mbari) Stefano Falletta, Andrea Pizzi and

Enrica Racca, for our friendship that has lasted since our time at PoliTo

across space and time; their advice and support are always most valuable

to me, as coming from people sharing similar experiences and ambitions.

My parents, Elena and Andrea, believed in me longer than anyone else. I

owe them a large part of what I achieved and who I am today. I thank

my brother Giovanni for the stimulating discussions and for keeping my

ambitions high, my sister Marta for her affection and simplicity, and my

grandmother Rita for her kindness, care and hospitality. I also owe a

lot to my second family (Paola, Roberto and Maura), who have always

supported me with their welcomeness and availability.

Above all, I want to thank Valeria for always being by my side, even if

often separated by thousands of kilometres, and for being my companion

of adventures. Your love kept me afloat in the darkest moments, and I

am privileged to share my life with you.

5

Abstract

Statistical models which allow generating simulations without providing

access to the density of the distribution are called simulator models. They

are commonly developed by scientists to represent natural phenomena and

depend on physically meaningful parameters. Analogously, generative net-

works produce samples from a probability distribution by transforming

draws from a noise (or latent) distribution via a neural network; as for

simulator models, the density is unavailable. These two frameworks, de-

veloped independently from different communities, can be grouped into

the class of generative models ; compared to statistical models that expli-

citly specify the density, they are more powerful and flexible.

For generative networks, typically, a single point estimate for the paramet-

ers (or weights) is obtained by minimizing an objective function through

gradient descent enabled by automatic differentiation. In contrast, for

simulator models, samples from a probability distribution for the para-

meters are usually obtained via some statistical algorithm. Nevertheless,

in both cases, the inference methods rely on common principles that ex-

ploit simulations. In this thesis, I follow the principle of assessing how a

probabilistic model matches an observation by Scoring Rules. This gen-

eralises common statistical practices based on the density function and,

with specific Scoring Rules, allows tackling generative models.

After a detailed introduction and literature review in Chapter 1, the first

part of this thesis (Chapters 2 and 3) is concerned with methods to in-

fer probability distributions for the parameters of simulator models. Spe-

cifically, Chapter 2 contributes to the traditional Bayesian Likelihood-Free

Inference literature with a new way to learn summary statistics, defined

as the sufficient statistics of the best exponential family approximation

to the simulator model. In contrast, Chapter 3 departs from tradition by

defining a new posterior distribution based on the generalised Bayesian

inference framework, rather than motivated as an approximation to the

standard posterior. The posterior is defined through Scoring Rules com-

putable for simulator models and is robust to outliers.

In the second part of the thesis (Chapters 4 and 5), I study Scoring Rule

Minimization to determine the weights of generative networks; for specific

choices of Scoring Rules, this approach better captures the variability of

the data than popular alternatives. I apply generative networks trained in

this way to uncertainty-sensitive tasks: in Chapter 4 I use them to provide

a probability distribution over the parameters of simulator models, thus

falling back to the theme of Chapters 2 and 3; instead, in Chapter 5,

I consider probabilistic forecasting, also establishing consistency of the

training objective with dependent training data.

Finally, I conclude in Chapter 6 with some final thoughts and directions

for future work.

Contents

1 Introduction and Literature review 1

1.1 Inference for generative models . 3

1.1.1 Bayesian Likelihood-Free Inference 4

1.1.1.1 Approximate Bayesian Computation methods 4

1.1.1.2 Surrogate Likelihood methods 8

1.1.1.3 Neural network approximations 8

1.1.2 Inference for generative networks 11

1.1.2.1 Generative Adversarial Networks 12

1.2 Background . 15

1.2.1 Generalised Bayesian inference 15

1.2.1.1 Properties and issues of standard Bayesian inference 15

1.2.1.2 Loss-based generalised Bayesian inference 17

1.2.2 Scoring Rules . 18

1.2.2.1 Scoring Rules and probabilistic forecasting 19

1.2.2.2 Examples of Scoring Rules for continuous distributions 21

1.3 Contributions and thesis outline . 24

1.3.1 Score Matched Neural Exponential Families for

Likelihood-Free Inference . 24

1.3.2 Generalised Bayesian Likelihood-Free Inference Using Scoring

Rules Estimators . 25

1.3.3 Training generative networks via Scoring Rule minimization . 26

2 Score Matched Neural Exponential Families for Likelihood-Free In-

ference 28

3 Generalized Bayesian Likelihood-Free Inference Using Scoring Rules

Estimators 97

i

4 Likelihood-Free Inference with Generative Neural Networks via Scor-

ing Rule Minimization 156

5 Probabilistic Forecasting with Generative Networks via Scoring Rule

Minimization 188

6 Conclusions and discussion 247

6.1 Summary . 247

6.2 Extensions . 248

Bibliography 251

ii

Chapter 1

Introduction and Literature review

Increasing scientific knowledge and computational power allow scientists to develop

more complex computer simulations of natural phenomena. These simulator models

often include stochastic components to account for uncertainty in the simulation;

therefore, running the simulation twice under the same conditions produces different

outputs. Moreover, achieving a good representation of reality typically requires tuning

some parameters from real-world observations.

This setup presents all the ingredients necessary for the practice of statistics: a

stochastic description of some process, real-world observations, and parameters to

determine. For complex simulator models, however, the exact form of the density of

the probability distribution from which simulations are generated when running the

simulator (and hence the likelihood) is unavailable, which makes most traditional stat-

istical methods inapplicable. Thus, statistical inference for simulator models requires

dedicated likelihood-free techniques. Despite the research effort on these methods,

they still present some drawbacks: for instance, Approximate Bayesian Computation

(ABC, Sec. 1.1.1.1) and Surrogate Likelihood methods (Sec. 1.1.1.2) target approxim-

ate posterior distributions by employing a large number of model simulations and typ-

ically summarise the data to low-dimensional summary statistics, whose specification

is difficult. Recent neural-network-based approaches (Sec. 1.1.1.3) are more efficient

in terms of model simulations (Lueckmann et al., 2021) but are limited to specific

neural network architectures. Most instances of the above methods, moreover, are

highly sensitive to outliers in the observed data (Schmitt et al., 2022; Cannon et al.,

2022).

In parallel, deep learning has produced extraordinary results (Silver et al., 2016;

Brown et al., 2020; Jumper et al., 2021) by using neural networks stacking a growing

number of matrix multiplications and non-linear functions. Specifically, generative

1

(neural) networks underpin the successes of deep learning in generating realistic im-

ages (Gui et al., 2021), text (Brown et al., 2020) and video (Clark et al., 2019). In a

nutshell, generative networks transform random noise into a meaningful sample via a

neural network; in this way, they parametrize a probability distribution on the space

of samples without providing access to its density. Generative networks are trained

by iteratively comparing generated samples to training data and adjusting the neural

network weights accordingly. In the popular adversarial framework (Sec. 1.1.2), the

comparison is carried out by another discriminator neural network, which is trained

alongside the first. Unfortunately, while this leads to realistic samples, the learnt gen-

erative distribution is often overconfident, thus not representing the full variability of

the data (Isola et al., 2017; Goodfellow, 2016; Bellemare et al., 2017; Arora et al., 2018;

Richardson and Weiss, 2018), which makes adversarial methods unsuitable to reliably

quantify the uncertainty in a process. Furthermore, adversarial training is notoriously

unstable (Salimans et al., 2016) and theoretically unmotivated for dependent training

data.

Although they were independently developed and present different features, both

generative networks and simulator models allow sample generation without density

evaluation. Indeed, Mohamed and Lakshminarayanan (2017) discusses how common

principles underlie inference methods for both approaches, which they group into the

class of (implicit) generative models.

In this thesis, I develop new inference approaches for generative networks and

simulator models. To do so, I build on Scoring Rules (Sec. 1.2.2), which provide gen-

eral ways of evaluating probabilistic statements for observations. Importantly, some

Scoring Rules only require the ability to generate samples and are thus naturally

applicable to generative models. Nevertheless, this common framework must be ar-

ticulated in different methods taking into account the specific properties of generative

networks and simulator models.

My proposed approaches address some of the issues mentioned above: in Chapter 2,

I build new summary statistics for ABC by exploiting the sufficient statistics of an ex-

ponential family trained to minimize a Scoring Rule; in Chapter 3, I define an outlier-

robust distribution on parameters of simulator models using a generalised Bayesian

formulation (Sec. 1.2.1) based on Scoring Rules. Finally, in Chapters 4 and 5, I

train generative networks to minimize Scoring Rules, which yields distributions bet-

ter representing the data variability, and use this approach for uncertainty-sensitive

tasks: Bayesian Likelihood-Free Inference in Chapter 4 and probabilistic forecasting

2

in Chapter 5 (for which I derive a theoretically sound objective for dependent training

data).

In the rest of this chapter, I review state-of-the-art inference methods for simu-

lator models and generative networks in Section 1.1. Then, in Section 1.2, I introduce

the tools on which my proposed methods in Chapters 2 to 5 build, namely generalised

Bayesian inference in Section 1.2.1 and Scoring Rules in Section 1.2.2. Finally, Sec-

tion 1.3 presents in more detail the contribution of each of the subsequent Chapters.

1.1 Inference for generative models

In this thesis, by “generative model” I mean a statistical model P on some space

Y ⊆ Rd from which it is possible to simulate x ∼ P but of which, in general, it is not

possible to evaluate the density1 p(y) for a given observation y ∈ Y . Works employing

generative models rely on model simulations to compare distributions following a

few principles (Mohamed and Lakshminarayanan, 2017). They can be grouped into

two different categories according to the task they address and the features of the

generative model they employ:

• parameter estimation for simulator models: a simulator model is a gen-

erative model assumed to depend on relatively few (at most a few hundred)

physically meaningful parameters θ ∈ Θ ⊆ Rp; I will write P (·|θ) for the model

and p(·|θ) for its (inaccessible) density function; also, the likelihood of θ at y is

the function θ → p(y|θ). Given the data y1:n = (y1, y2, . . . , yn), the interest is

in estimating θ as its value conveys scientific information. Many works develop

algorithms to approximate the Bayesian posterior distribution π(θ|y1:n) by rely-

ing on model simulations (as direct sampling with Markov-Chain Monte Carlo is

impossible due to missing likelihood). This class of strategies is called Bayesian

Likelihood-Free Inference (LFI) (fewer works attempt to provide a point estim-

ate θ̂, see for instance Cranmer et al., 2015; Kajihara et al., 2018). Typically,

a simulator model consists of a computer code implementing a sequence of op-

erations involving θ and a possibly varying number of random variables.

• Generative modelling with generative networks: this line of works, in-

stead, consider a class of generative models Pφ, φ ∈ Φ ⊆ Rq, and aims to obtain

a point estimate φ̂ such that Pφ̂ is as close as possible to observed (or training)

1Unless otherwise stated, I will consider densities to be with respect to the Lebesgue measure.

3

data; the value φ̂ is not interesting in itself as φ does not have physical mean-

ing. Typically, Pφ is induced by transforming a latent random variable (or noise)

Z ∼ PZ , Z ∈ Z ⊆ RdZ with a function hφ parametrised by a neural network with

weights φ. Given a draw z ∼ PZ , hφ(z) is a sample from the generative model

Pφ. This construction is called generative (neural) networks. Here, a typical in-

ference strategy uses draws from the generative network and gradients obtained

by automatic differentiation to obtain φ̂ by optimising an objective function.

Instead, works inferring a distribution on φ are rare (with an exception being

Saatci and Wilson, 2017). By considering hφ to additionally depend on a condi-

tioning variable θ, a conditional generative distribution Pφ(·|θ) can be obtained.

The two categories identified above constitute an imperfect classification of recent

research efforts: for instance, some works exploit gradient information in the first

setup (Moreno et al., 2016), while others use generative neural networks to solve

problems of interest to the first community (see, among others, Papamakarios and

Murray, 2016; Papamakarios et al., 2019; Ramesh et al., 2022).

This thesis contributes with methods for both tasks above. Specifically, in Chapters

2 and 3, I give new Bayesian Likelihood-Free Inference methods for parameter estim-

ation of simulator models. Instead, in Chapters 4 and 5, I contribute to generative

modelling with a method to fit generative networks; in Chapter 4, interestingly, this

is applied to solve a Bayesian Likelihood-Free Inference task. To better frame these

contributions, Sections 1.1.1 and 1.1.2 below respectively review the literature on

Bayesian Likelihood-Free Inference and generative networks, focusing on foundational

works and recent developments relevant to the subsequent chapters.

1.1.1 Bayesian Likelihood-Free Inference

The quantity of interest in Bayesian inference is the Bayesian posterior:

π(θ|y) =
π(θ)p(y|θ)

p(y)
; (1.1)

typically, samples from the above can be obtained by Markov-Chain Monte Carlo

(MCMC) methods (Robert and Casella, 2005); alternatively, an approximation can

be obtained with Variational Inference (Blei et al., 2017). However, both approaches

cannot be applied to directly target Eq. (1.1.1) when the likelihood p(y|θ) is in-

accessible, as it is the case for a simulator model P (·|θ). As mentioned above,

Bayesian Likelihood-Free Inference (LFI) methods replace likelihood evaluation with

simulations from the generative model and target approximations of the posterior in

4

Eq. (1.1.1). The largest research effort has gone towards the Approximate Bayesian

Computation (ABC) family of algorithms (Beaumont, 2019; Lintusaari et al., 2017),

which are based on exploring the parameter space by evaluating the similarity between

observation and simulations; I discuss them in Section 1.1.1.1. Other algorithms re-

place the intractable likelihood with a surrogate estimated from model simulations

(Drovandi et al., 2018; Thomas et al., 2020); those are discussed in Section 1.1.1.2.

Finally, a recent class of algorithms has focused on exploiting neural networks to rep-

resent the likelihood or posterior and trained neural network weights from simulations

from the model (Alsing et al., 2019; Papamakarios and Murray, 2016; Lueckmann

et al., 2017; Papamakarios et al., 2019; Greenberg et al., 2019; Lueckmann et al.,

2019; Radev et al., 2020; Durkan et al., 2020); I review some methods in this family

in Section 1.1.1.3.

1.1.1.1 Approximate Bayesian Computation methods

Approximate Bayesian Computation (ABC) compares the observation y with simu-

lations from the generative model; intuitively, the closer a simulation x is to y, the

more likely the parameter value used to simulate x was to generate y. Specifically,

the comparison is done by computing some summary statistics s(y) and s(x) for both

observation and simulation, and checking d(s(y), s(x)) < ε, for some distance d and

a threshold ε. The simplest ABC algorithm is based on rejection sampling; a version

generating a fixed number of draws with a prespecified ε can be found in Algorithm 1.

Often, however, a computational budget is fixed and ε is determined as a quantile of

the obtained distances between observation and simulations.

The rejection-ABC algorithm generates draws from the ABC posterior :

πε (θ|s (y)) ∝ π(θ)

∫
1 [d (s (y) , s (x)) ≤ ε] p (x|θ) dx, (1.2)

where 1[·] denotes the indicator function2. Intuitively, smaller values of ε lead to closer

match to the observation and therefore to a better posterior approximation. Indeed,

if ε → 0 and if s is a set of sufficient statistics3 for P (·|θ), then the ABC posterior

converges to the exact posterior Beaumont (2019). However, the rejection-ABC al-

gorithm is inefficient for small ε as most simulations are rejected. More efficient ABC

algorithms have therefore been developed, based for instance on MCMC (Marjoram

2In general, 1 [d (s (y) , s (x)) ≤ ε] can be replaced with Kε (d (s (y) , s (x))), where Kε is a kernel
which goes to 0 for argument going to ±∞ and whose width decreases when ε decreases; see for
instance Beaumont (2019).

3See Appendix A in Chapter 2 for the definition of sufficient statistics.

5

Algorithm 1 Rejection ABC (generating N draws from the ABC posterior).

Require: Prior distribution π, simulator model P (·|θ), threshold ε, distance function
d, statistics function s, observed data y.

1: while j = 1 ≤ N do
2: Draw θ′ ∼ π
3: Simulate a dataset x from P (·|θ′)
4: Compute some statistics s of the simulated and observed datasets
5: if d(s(x), s(y)) < ε then
6: Set θj ← θ′

7: j ← j + 1
8: else
9: Discard θ′

10: end if
11: end while
12: return {θj}Nj=1.

et al., 2003), Population Monte Carlo (Beaumont, 2010) or Sequential Monte Carlo

(Del Moral et al., 2012). See also the review paper Beaumont (2019) and the Hand-

book of Approximate Bayesian Computation Sisson et al. (2018) for more background

information.

Choosing s to be the identity function gives a well-grounded ABC algorithm.

However, finding a simulation x that matches y for a fixed threshold ε becomes harder

as the dimension of the data increases. For high-dimensional data, therefore, using a

low-dimensional summary allows reducing ε at a lower computational cost. Even if

sufficient statistics are unavailable (as is most often the case), this gain in algorithmic

efficiency may outweigh the approximation induced by conditioning on non-sufficient

statistics. The best trade-off between computational gain and loss of information

depends on the considered model and the computational budget (in particular, it does

not make sense to add more summaries if the approximation due to non-sufficiency

is already as small as the Monte Carlo error). Possible ways of selecting a subset of

existing summaries according to some principle are reviewed in Prangle (2018), which

also discusses this issue in more detail. Other works instead focused on automatically

extracting statistics from raw data; I review the prominent approaches in this second

strand of the literature below. Other methods are surveyed in Prangle (2018).

Learning summary statistics for ABC In the seminal work Fearnhead and

Prangle (2012), the authors argue for using the summary statistic s(x) = E[θ|x] as

that leads to an ABC posterior whose mean best matches the true posterior mean

6

under the `2 loss. E[θ|x] is unknown; however, note that:

E[θ|x] = min
s

Eθ∼πEX∼P (·|θ) ‖s (X)− θ‖2
2 . (1.3)

Therefore, the authors of Fearnhead and Prangle (2012) propose to generate parameter-

simulation pairs (θj, xj)
N
j=1 , θj ∼ π(θ), xj ∼ P (·|θj), and to find

β̂ = arg min
β

1

N

N∑

j=1

‖sβ (xj)− θj‖2
2 , (1.4)

where sβ is a function in a set indexed by β. Eq. (1.1.1.1) is the empirical equivalent

of Eq. (1.1.1.1). In Fearnhead and Prangle (2012), the authors considered sβ a linear

function of β, so that solving Eq. (1.1.1.1) amounts to linear regression. In Jiang

et al. (2017); Wiqvist et al. (2019); Akesson et al. (2021), sβ is instead parametrised

by neural networks trained to minimize Eq. (1.1.1.1) by Stochastic Gradient Descent

(SGD).

Other works have revisited the idea of defining the statistics function as the solu-

tion of an optimisation problem over a set of parameter-simulations pairs; different

objective functions lead to summary statistics with different properties and theor-

etical motivations. For example, Chen et al. (2021) aims to maximize the mutual

information between learnt statistics and parameters; Pacchiardi et al. (2020) aims

to learn statistics s so that ‖s (xi)− s (xj)‖ ≈ ‖θi − θj‖ for all pairs of simulations

and corresponding parameter values, by using distance learning techniques. My con-

tribution in Chapter 2 can be placed in this line of research; there, I define summary

statistics as the sufficient statistics of the best exponential family approximation to

the unavailable likelihood.

An extension of the approach in Fearnhead and Prangle (2012) is presented in

Forbes et al. (2021), where a mixture-of-Gaussian regression model is fit to the

parameter-samples pair as a first approximation to the posterior. From this, the

posterior expectation can be analytically obtained for each x, returning the approach

in Fearnhead and Prangle (2012); additionally, the variance and other quantiles can

be obtained and added to the set of summaries. Alternatively, it is possible to replace

the distance between the summary statistics by a discrepancy between the Gaussian

mixture approximation for the observation and the simulation, which amounts to

using functional summary statistics.

Finally, Chen et al. (2021) proposes to depart from the two-step approach in-

troduced by Fearnhead and Prangle (2012) by alternating steps of sequential ABC

methods with improvements to the learnt statistics. Instead, Bharti et al. (2022)

7

consider a Bayesian experimental design framework in which an expert knowledge is

sequentially used to select amongst a set of pre-specified summary statistics (which

could be obtained with automatic methods). If the expert can exclude misspecified

summaries, the resulting inference performs better in the presence of model misspe-

cification.

ABC with statistical divergences To overcome the issue of non-sufficient stat-

istics, the distance d (s (y) , s (x)) in the ABC posterior (Eq. (1.1.1.1)) can be replaced

by an empirical estimate of a discrepancy measure D between the true distribution P0

and the model at the considered value of θ: D(P0||P (·|θ)). In practice, an estimate of

the above quantity requires multiple observations y1, y2, . . . , yn from P0 and multiple

simulations x1, x2, . . . , xm from P (·|θ) for each considered θ, and consists of a function

D̂({yi}ni=1, {xj}mj=1) that converges to D(P0||P (·|θ)) when n,m→∞.

Several choices of D and the associated empirical estimate have been considered:

Park et al. (2016) considered the kernel Maximum Mean Discrepancy and Nguyen

et al. (2020) the Energy Distance; however, their methods rely on assumptions on

the moments of P0 and may not produce reliable results if there are outliers in the

data (Drovandi and Frazier, 2022). Outlier-robust methods are the γ-divergence of

Fujisawa et al. (2021) and the Hellinger and Cramer von-Mises distances of Frazier

(2020). Bernton et al. (2019) used the Wasserstein distance and Nadjahi et al. (2020)

its sliced version; the Wasserstein distance and the Energy distance of Nguyen et al.

(2020) are the only methods for which theoretical guarantees with fixed n and m

have been given. Finally, Wang et al. (2021) uses a probabilistic classifier trained

to distinguish between observations and simulations from the model at a given θ

to provide alternative estimates of some divergences mentioned above; this extends

the method in Gutmann et al. (2018), where the ABC distance was replaced by the

accuracy of a classifier trained as in Wang et al. (2021). See Drovandi and Frazier

(2022) for a comparison of some of these approaches in the case of univariate data.

1.1.1.2 Surrogate Likelihood methods

ABC uses an implicit estimate of the likelihood based on rejection sampling. Altern-

atively, an explicit likelihood approximation can be built by considering a parametric

surrogate density and estimating its parameters using simulations from P (·|θ).
Bayesian Synthetic Likelihood (BSL, Price et al., 2018) is the most popular in-

stance of this idea: here, the unknown likelihood is replaced by a surrogate mul-

tivariate normal distribution for the statistics, whose mean vector µθ and covariance

8

matrix Σθ depend on θ. For each considered value of θ, estimates µ̂θ and Σ̂θ are

obtained from m simulations from P (·|θ) and the density of the observations is eval-

uated. Then, this can be inserted into a Metropolis-Hastings MCMC scheme (Price

et al., 2018), leading to a biased pseudomarginal MCMC (Andrieu et al., 2009) whose

target depends on the number of simulations m and recovers the exact BSL posterior

as m→∞.

Several variations of the surrogate likelihood have been proposed: Fasiolo et al.

(2018) proposed a different likelihood estimator to be inserted in the MCMC scheme;

An et al. (2019) employs a covariance matrix estimator with lasso regularisation

which requires fewer simulations than the one employed in Price et al. (2018) to

achieve similar performance; An et al. (2020) considers a semiparametric surrogate

likelihood with a Gaussian copula. Other approaches are reviewed in Drovandi et al.

(2018).

Some works instead focused on improving computational performance: for in-

stance, Ong et al. (2018a) and Ong et al. (2018b) employ mean-field variational

inference rather than pseudomarginal MCMC, and Picchini et al. (2022) advocates

for the use of correlated pseudomarginal MCMC schemes in order to improve the

mixing of the chains. The theoretical performances of BSL have also been explored:

Frazier et al. (2022) establishes asymptotic properties, while Frazier and Drovandi

(2021) and Frazier et al. (2021) studies they behaviour with misspecified models.

Another surrogate likelihood method is Ratio Estimation (Thomas et al., 2020),

where the ratio between the marginal density of the data and the likelihood at a given

θ is estimated using logistic regression; the estimate is then inserted into MCMC; more

details are given in Section 2.2 in Chapter 2.

1.1.1.3 Neural network approximations

I review now some works employing normalising flows (Papamakarios et al., 2021)

and other neural networks to perform Bayesian LFI; this section focusses on the case

of continuous variables, as research into applying these methods to discrete ones is

ongoing (see, for instance, Papamakarios et al., 2021).

Normalising flows Normalising flows (Papamakarios et al., 2021) are generative

neural networks Pφ where the transformation hφ is invertible and differentiable (a

diffeomorphism). Therefore, the density of the distribution Pφ is given by the change-

of-variable formula:

pφ(y) = pZ(z)
∣∣∣det Jh−1

φ
(y)
∣∣∣ , z = h−1

φ (y), (1.5)

9

where pZ is the probability density of the latent variable (or noise) Z ∼ PZ and

Jh−1
φ

(y) is the Jacobian matrix of the inverse transformation evaluated in y. Evalu-

ating the density requires explicitly computing the inverse h−1
φ ; in contrast, drawing

samples from the normalising flow employs hφ (as for generative networks). The abil-

ity to cheaply compute the inverse is a stronger constraint than invertibility. As such,

if sampling is not required, it is more convenient to directly represent the invertible

function h−1
φ by a neural network for which the inverse may be inaccessible or ex-

pensive. If both sampling and density evaluations are required, then the architecture

is restricted to those providing efficient inverse computation (and the neural network

can represent either hφ or its inverse).

Further, cheaply evaluating the density in Eq. (1.1.1.3) requires the determinant

of the Jacobian (which is a d × d matrix, where d is the number of components in

y) to be computable at a small cost; for example, this can be done at a O(d) cost

for transformations with a triangular Jacobian matrix, some of which are reviewed in

Papamakarios et al. (2021).

Due to the availability of the density, normalising flows are versatile and can be

applied to tasks such as density estimation and variational inference (see Section 6

in Papamakarios et al., 2021). In the case of density estimation, if samples {yi}Ni=1

from a distribution P0 are available, a normalising flow can be trained by Maximum

Likelihood Estimation (MLE):

max
φ

N∑

i=1

pφ (yi) ,

which is the empirical problem corresponding to minimizing the forward KL diver-

gence DKL (P0‖Pφ); note that this does not require drawing samples from Pφ.

To parametrise conditional probabilities, a conditioning variable θ can be intro-

duced in the transformation hφ: given θ and noise z, a sample from the conditional

distribution can be obtained by hφ(z; θ) (Papamakarios et al., 2021). The conditional

density can now be obtained by adapting Eq. (1.1.1.3) to:

pφ(y|θ) = pZ(z)
∣∣∣det Jh−1

φ (·;θ)(y)
∣∣∣ , z = h−1

φ (y; θ),

where the Jacobian and the inverse are referred to the first argument of the function.

Normalising flows for LFI Several works employed conditional normalising flows

for Bayesian LFI. For instance, in Radev et al. (2020), the authors considered a

normalising flow parametrising an approximate posterior density πφ(·|y) for all values

10

of y; given parameter-simulation samples (θj, xj)
N
j=1, θj ∼ π(θ), xj ∼ P (·|θj), the

approximation is obtained by:

arg max
φ

N∑

j=1

πφ(θj|xj), (1.6)

which is the empirical equivalent of (Radev et al., 2020):

argmax
φ

∫∫
p(x, θ) log πφ(θ|x)dxdθ = argmin

φ
EX∼P [DKL (Π(·|X)‖Πφ(·|X))] ,

where Π(·|X) and Πφ(·|X) denote the true and approximate posterior distributions,

p(x, θ) is the true joint density over observations and parameters, and P is the true

marginal distribution over observations.

Therefore, the approach in Radev et al. (2020) amounts to generating a dataset

of parameter-simulation pairs and training a normalising flow that provides an ap-

proximate posterior for any observation y with positive marginal probability density.

As such, this method is said to be amortised over observations. Samples from the

approximate posterior can be obtained by drawing from the normalising flow directly

if the used architecture supports it.

However, the amortised approach is wasteful (in terms of the number of model sim-

ulations) if inference is required for a single value of y. In fact, most θj’s drawn from

the prior may be in regions of low posterior density for that y and would provide little

information to approximate the posterior. Sequential approaches (Papamakarios and

Murray, 2016; Lueckmann et al., 2017; Greenberg et al., 2019) iteratively fit multiple

posterior approximations, using the current one as proposal to sample new values

of θ’s (and associated simulations x’s), from which the approximation for the next

round is fit. Therefore, the ability to sample from the normalising flow is required.

This strategy ensures that simulation resources are concentrated onto regions of high

posterior density. However, naively minimizing the equivalent of Eq. (1.1.1.3) on

draws from a proposal different from the prior leads to πφ approximating the wrong

target. To correct for this, Lueckmann et al. (2017) introduces importance weights

in the minimization objective, while Papamakarios and Murray (2016) and Green-

berg et al. (2019) rely on correction factors that are tractable when πφ is a mixture

of Gaussians; alternatively, Greenberg et al. (2019) uses a proposal supported on a

finite set of discrete atoms, in which case the correction factor can be computed for

any normalising flow. If, at each round, the atoms of the proposal are sampled from

a distribution whose support covers the posterior, then the approximate posterior πφ

still converges to the exact one.

11

A complementary approach is to use normalising flows to approximate the like-

lihood function (Papamakarios et al., 2019; Lueckmann et al., 2019; Alsing et al.,

2019). Denoting as Pφ(·|θ) the approximation to the statistical model and pφ(·|θ)
its corresponding density, φ is chosen to minimize Eθ∼Π̃ [DKL (P (·|θ)‖Pφ(·|θ))] for a

proposal distribution Π̃. As long as Π̃ has the same support as the prior and the

model is well-specified, the above will be minimized when p(x|θ) = pφ(x|θ) for all θ

such that π(θ) > 0. Therefore, no corrections are needed when a sequential approach

is used and sample generation from the normalising flow is not required. On the other

hand, sampling from the posterior requires now MCMC.

Wiqvist et al. (2021) and Glöckler et al. (2022) propose to exploit separate norm-

alising flows to learn a likelihood and a posterior approximation at the same time; the

likelihood is learnt sequentially as in Papamakarios et al. (2019) and Lueckmann et al.

(2019) (so without correction approaches) and the explicit posterior approximation

enables inference without MCMC.

Approaches based on other neural networks The architectures of normalising

flows are strongly constrained. As such, it is difficult to design architectures suitable

for high-dimensional and structured data (such as images); Chen et al. (2021) shows

how, indeed, some of the methods discussed above perform poorly on such data.

Therefore, one can abandon normalising flows and employ generative networks, which

impose no constraints on hφ. As explicit density evaluation is now impossible, training

the neural network requires different strategies, as those discussed in Section 1.1.2.

For instance, Ramesh et al. (2022) uses generative networks to represent the posterior,

but this often leads to overconfident posterior approximations; in Chapter 4, I build

on this work and employ a different training mechanism from the traditional one,

yielding better calibrated posterior approximations.

Other works instead use classifier networks to approximate the ratio between the

data marginal and the likelihood at all values of θ, which can then be inserted in

MCMC or similar likelihood-based sampling methods (Hermans et al., 2020; Rozet

and Louppe, 2021). This idea extends Thomas et al. (2020) and is analogue to the

frequentist approach in Cranmer et al. (2015).

1.1.2 Inference for generative networks

In this Section, I review some fundamental methods to train generative networks. In

contrast to Bayesian Likelihood-Free Inference (Section 1.1.1), methods for generative

networks usually aim to obtain a point estimate φ̂ of the network weights. This is

12

done by minimizing an objective function by Stochastic Gradient Descent enabled by

the automatic differentiation capabilities of neural networks.

Similarly to normalising flows, applying this method to a discrete setting is difficult

due to the use of gradients to obtain φ̂. Few works have attempted to circumvent this

issue (see, for instance, Montahaei et al., 2021; Zhang et al., 2022); across this work,

I will thus focus on generative networks for continuous data.

1.1.2.1 Generative Adversarial Networks

The original Generative Adversarial Networks Consider a generative network

hφ with associated probability distribution Pφ. Having observed (yi)
n
i=1 from a dis-

tribution P0, the task is to adjust φ so that Pφ ≈ P0 in some sense. The key idea

in Goodfellow et al. (2014) is to introduce a discriminator (or critic) c : Y → [0, 1]

whose output expresses confidence in the input coming from the true distribution

rather than being generated from Pφ. For fixed Pφ, the discriminator aims therefore

to maximize

V (c, hφ) = EY∼P0 [log c(Y)] + EX∼Pφ [log(1− c(X))] ,

which attributes a large penalty if c(Y) is close to 0 for observed Y , and similarly

if c(X) is close to 1 for simulated X. For fixed φ, the optimal discriminator (see

Proposition 1 in Goodfellow et al., 2014 and also Gutmann and Hyvärinen, 2012) is:

c?(φ)(x) =
p0(x)

p0(x) + pφ(x)
,

which, by Theorem 1 in Goodfellow et al. (2014), makes

V (c?(φ), hφ) = − log(4) + 2 ·DJS(P0||Pφ),

where DJS is the Jensen-Shannon divergence. Therefore, by defining

φ? = arg min
φ

V (c?(φ), hφ) = arg min
φ

sup
c
V (c, hφ), (1.7)

Pφ? is the closest model to P0 in Jensen-Shannon divergence (and Pφ? = P0 if the

model is well specified).

In practice, c is parametrised by a discriminator neural network cψ (ψ being the

weights of the neural network), so that the problem in Eq. (1.1.2.1) is replaced by the

surrogate:

min
φ

max
ψ

EY∼P0 [log cψ(Y)] + EX∼Pφ [log(1− cψ(X))] . (1.8)

13

The above problem is typically tackled using stochastic gradient optimisation, altern-

ating one (or a few) steps over ψ with one (or a few) steps for φ. At each gradient

step, the expectations over P0 and Pφ are estimated by, respectively, using a batch of

observations and by generating samples from the generative network. This method

is termed Generative Adversarial Network (GAN) as the generative network Pφ aims

to trick the discriminator to believe that the generated samples come from the true

distribution. Algorithm 2 shows a possible training algorithm, where a single ele-

ment of the observed dataset and a single draw from Pφ are used in each gradient

optimisation step.

Algorithm 2 GAN training.

Require: Generative network hφ, critic network cψ, learning rates ε, γ.
for each observation yi do

Sample z ∼ Q
Obtain x̂φi = hφ(z)

Set ψ ← ψ + γ · ∇ψ

[
log cψ(yi) + log(1− cψ(x̂φi))

]

Set φ← φ− ε · ∇φ

[
log(1− cψ(x̂φi))

]

end for

Other adversarial training approaches Inspired by the original GAN approach

introduced in Goodfellow et al. (2014), many works develop related approaches main-

taining the adversarial framework but modifying the training objective and relaxing

the assumption of the discriminator output being in [0, 1] (Nowozin et al., 2016;

Arjovsky et al., 2017; Bellemare et al., 2017; Li et al., 2017). Some works introduce

additional regularization terms in the objective to help with training (Gulrajani et al.,

2017; Li et al., 2017; Arjovsky and Bottou, 2017; Grover et al., 2018), while others

focus on designing generator and discriminator architectures suitable for specific tasks

(Isola et al., 2017; Yoon et al., 2019; Koochali et al., 2021; Ravuri et al., 2021; Xing,

2021). See Gui et al. (2021) for a recent review.

In Appendix B.1 in Chapter 5, I overview two popular extensions of the original

GAN: f -GAN Nowozin et al. (2016) replaces the Jensen-Shannon divergence with

a generic f -divergence; by exploiting a variational formulation of the f -divergence

relying on the Fenchel conjugate of convex functions, they obtain an adversarial for-

mulation similar to Eq. (1.1.2.1). In Arjovsky et al. (2017), instead, a variational

formulation of the 1-Wasserstein distance is used to derive an adversarial training ob-

jective, called Wasserstein GAN (or WGAN); here, the discriminator has real (scalar)

14

output but is constrained to have a bounded Lipschitz constant, which is achieved by

clipping the weights to a given range.

Li et al. (2015) and Dziugaite et al. (2015) instead train generative networks to

minimize an unbiased estimate of the Maximum Mean Discrepancy (MMD) between

P0 and Pφ. The unbiased estimate is obtained by applying a kernel to observations and

draws from Pφ without introducing a discriminator network. To improve performance,

some works (Li et al., 2017; Sutherland et al., 2017) compute the kernel on the

embedding induced by an additional NN trained to maximize the MMD; this again

amounts to an adversarial setting. I discuss this in more detail in Appendix B.1.3 in

Chapter 5.

Conditional setting All the methods mentioned above can be extended to set-

tings where the observed data consist of pairs of variables, say (yi, θi)
n
i=1, where θi

is a conditioning variable. As mentioned at the beginning of Sec. 1.1, a conditional

generative distribution Pφ(·|θ) is obtained using a neural network hφ : Z × Θ → Y ,

where the first input is the noise variable and the second is the conditioning variable.

A sample from Pφ(·|θ) is obtained by computing hφ(z, θ) for z ∼ Pz. Similarly, the

discriminator network will, in general, take as input the (generated or real) y and the

value θ associated to it.

The GAN training objective in Eq. (1.1.2.1), for instance, generalizes to:

min
φ

max
ψ

EΘ∼Π

[
EY∼P0(·|Θ) [log cψ(Y,Θ)] + EX∼Pφ(·|Θ) [log(1− cψ(X,Θ))]

]
,

where Π is the true marginal distribution over the conditioning variable Θ. As before,

this problem can be related to the minimization of the Jensen-Shannon divergence

between the joint true and generative distributions over Θ and Y . A similar procedure

can be adopted for f -GAN and WGAN; see Appendix B.1 in Chapter 5 for more

details.

Alternating optimization and mode collapse Solving the min-max problem of

Eq. (1.1.2.1) by alternating optimisation over ψ and φ is difficult: for instance, the

two neural networks may fail to converge to an equilibrium. Thus, it is necessary

to carefully tune the number of optimisation steps to apply to the generator be-

fore switching to the discriminator (and back); additionally, learning rates and other

hyperparameters for two neural networks must be chosen. Therefore, a substantial

research effort has been dedicated to improving adversarial training; see Salimans

et al. (2016) for a review.

15

Furthermore, samples from generative adversarial networks are often realistic but

have been observed (Goodfellow, 2016; Isola et al., 2017; Bellemare et al., 2017; Arora

et al., 2018; Richardson and Weiss, 2018) not to represent the full variability of the

data (in the conditional case, generative networks sometimes ignore the noise variable

altogether, degenerating into a deterministic distribution, see Isola et al., 2017); this

phenomenon is termed mode collapse.

Some works attempted explaining mode collapse by theoretically studying ad-

versarial training. As observed in Arora et al. (2017), theoretical guarantees on

adversarial training assume infinitely many training data and an optimal discrimin-

ator; clearly, that is not the case in practice. For instance, Arora et al. (2017) shows

how, with a discriminator with finite capacity (even with infinitely many data), the

objectives of GAN and WGAN cannot distinguish between the data distribution and

a distribution with small support. Additionally, the stochastic gradients used to train

the generator are biased as they are obtained with a suboptimal discriminator trained

on finite data (Bellemare et al., 2017; Bińkowski et al., 2018); Bellemare et al. (2017)

shows an instance where this can lead to mode collapse.

In some applications, generating realistic samples is more important than captur-

ing the full (conditional) data distribution. However, the possibility of mode collapse

makes generative adversarial networks ill-suited in settings where reliable uncertainty

quantification is paramount. In Chapters 4 and 5, I discuss an adversarial-free training

method for generative networks that yields better calibrated generative distributions

and apply it to Bayesian Likelihood-Free Inference and probabilistic forecasting.

1.2 Background

In this Section, I give background information on the Generalized Bayesian inference

framework in Section 1.2.1 and on Scoring Rules in Section 1.2.2, on which I will rely

to introduce new methods in Chapters 2 to 5.

1.2.1 Generalised Bayesian inference

In recent years, ways to update probability distributions generalising Bayesian infer-

ence have been proposed. These approaches retain some features of Bayesian infer-

ence, while discarding others which can be inconvenient in specific settings (for both

computational and fundamental reasons). In this Section, I overview a generalisation

which Chapter 3 builds upon.

16

1.2.1.1 Properties and issues of standard Bayesian inference

Recall the Bayesian posterior introduced in Eq. (1.1.1):

π(θ|y1:n) =
π(θ)p(y1:n|θ)

p(y1:n)
=
π(θ)

∏n
i=1 p(yi|θ)

p(y1:n)
,

where π reflects the prior belief in θ, p(y|θ) is the likelihood of θ at y and y1:n =

(y1, y2, . . . , yn). Due to its multiplicative structure, the posterior is invariant to re-

ordering of y1:n. Furthermore, the same distribution is recovered when inference is

performed in a two-step procedure, with a subset of y1:n, say y1:m = (y1, . . . , ym),m <

n, used to update the prior π(θ) to π(θ|y1:m) and the remaining data ym+1:n =

(ym+1, . . . yn) then used to update π(θ|y1:m) to π(θ|y1:n). This property is called

(order-)coherence (Bissiri et al., 2016).

Assume now that the data y1:n are generated by a distribution P0 with density

p0 and that there exists a parameter value θ0 such that p0(·) = p(·|θ0) (that is, the

model is well specified). As n increases, under some assumptions (see for instance

Section 4.1.2 in Ghosh et al., 2006), the posterior converges almost surely to a mul-

tivariate normal distribution centred in θ0, with covariance matrix decreasing as 1/n

and asymptotically equivalent to the sampling covariance of the Maximum Likelihood

Estimator (MLE) of θ. This result is known as a Bernstein-von Mises theorem.

Therefore, for a well-specified model, the Bayesian posterior provides a coherent

strategy to accumulate information about the true parameter value θ0 (to which it

converges in the limit of infinite data); further, credible regions obtained from the

posterior have correct asymptotic coverage.

When the model is misspecified, there is no true parameter value; still, asymp-

totic normality of the Bayesian posterior holds: under some assumptions (Kleijn and

van der Vaart, 2012), the posterior concentrates around

θ? = arg min
θ
DKL(P0||P (·|θ)), (1.9)

where DKL is the Kullback-Leibler (KL) divergence. θ? is also called “pseudo-truth”

and is the parameter value to which the MLE converges as n → ∞; however, the

sampling covariance of the MLE is now asymptotically different from the covariance

matrix of the posterior, so that posterior credible regions do not have correct asymp-

totic coverage of the pseudo-truth.

Therefore, in a misspecified setting, the Bayesian posterior accumulates inform-

ation about θ? defined by the KL divergence. As there is no true parameter value,

this choice of divergence is arbitrary and the pseudo-truth could as well be defined

17

via a different one. Furthermore, the KL divergence leads to undesirable behaviour

in some cases: for instance, consider the outlier contamination model

p0(x) = 0.1 h(x) + 0.9 p(x|θ0),

where h(x) is a density with heavier tails than p(x|θ0). As the KL gives large im-

portance to the tail behaviour of distributions, θ? can be far away from θ0 (Jewson

et al., 2018). Other divergences may, instead, be more robust to outliers in the data

and therefore produce parameter estimates closer to θ0.

In Section 1.2.1.2 below, I discuss a generalised Bayesian posterior which learns

about parameter values minimizing different quantities from the KL divergence.

1.2.1.2 Loss-based generalised Bayesian inference

In place of θ? defined in Eq. (1.2.1.1), consider:

θ?` = arg min

∫
`(θ, y)p0(y)dy,

where the “parameter” and observation values θ and y are related by a loss function

`(θ, y). The aim is to update an original belief π` for θ?` using observations y1:n =

(y1, . . . , yn). The only coherent (in the sense discussed in Sec. 1.2.1.1) way to do

so requires the prior π` to be specified independently of the data and defines the

posterior belief as (Bissiri et al., 2016):

π`,w(θ|y1:n) ∝ π`(θ) · exp

(
−w

n∑

i=1

`(θ, yi)

)
, (1.10)

where w > 0 is a free scalar that balances the influence of loss and prior terms4. This

is in general different from using p(y|θ) = e−w·`(θ,y) in the standard posterior, as the

latter can be unnormalized with respect to y.

A Bernstein-von Mises result can be obtained for the generalised posterior, under

some assumptions on ` (see Miller, 2021): with an increasing number of observations,

the general posterior is asymptotically normal centred in θ?` and has an asymptotic

covariance matrix generalising the Fisher information. Therefore, the generalised

posterior provides a coherent strategy to learn about θ?` in the same way as the

original posterior learnt about θ? in Eq. (1.2.1.1).

4In some works (Jewson et al., 2018; Matsubara et al., 2022b), the authors define a generalised
posterior πD(θ) ·exp (−wDn(θ,y1:n)) for a loss Dn(θ,y1:n) depending on θ and the full dataset y1:n,
which recovers Eq. (1.2.1.2) when Dn(θ,y1:n) is additive in y1:n. If this is not the case, this posterior
is not coherent in the sense of Sec. 1.2.1.1 and cannot be motivated in the same way as Eq. (1.2.1.2).

18

The appropriate ` depends on the problem at hand: for instance, some choices

may provide robustness to outliers (Matsubara et al., 2022b), thus avoiding the prob-

lem mentioned in Section 1.2.1.1. Computational benefits can also be obtained: in

Chapter 3 I introduce a generalised Bayesian formulation for generative models (Sec-

tion 1.1.1), while Matsubara et al. (2022b) and Matsubara et al. (2022a) do the same

for continuous and discrete likelihoods with an intractable normalising constant. In all

of these cases, the standard Bayesian posterior is inaccessible to traditional MCMC,

while the generalised one is amenable to computation.

In general, the belief update in Eq. (1.2.1.2) does not even require to specify a

probabilistic model, as θ is defined via its relation to the data through the loss `.

Choosing `(θ, y) = ‖θ − y‖1, for example, allows learning about the median of p0.

Setting w = 1 and `(θ, y) = − log p(y|θ) in Eq. (1.2.1.2) recovers the standard

Bayesian posterior. Some works advocate for using w < 1 and `(θ, y) = − log p(y|θ)
for some forms of misspecification (Grünwald and Van Ommen, 2017; Holmes and

Walker, 2017); the specific value of w must be chosen according to some criteria

(some are reviewed in Wu and Martin, 2020).

For generic `, w loses the reference value w = 1 that, with `(θ, y) = − log p(y|θ),
is optimal for well-specified models (Zellner, 1988). Several principled approaches to

tune w have been developed in this case (Bissiri et al., 2016; Lyddon et al., 2019;

Syring and Martin, 2019; Matsubara et al., 2022a). A brief review can be found in

Section 2.4 in Chapter 3.

If we set w by using (part of) the observed data, this breaks coherence of the

overall procedure for updating beliefs. If coherence is required, a possible way to

restore it is by fixing w using, for instance, simulated data if θ is associated to a

statistical model.

1.2.2 Scoring Rules

In this Section, I give background information on Scoring Rules, upon which my

proposed methods in Chapters 2 to 5 rely.

In statistics, the suitability of a distribution P in modelling an observation y ∈
Y ⊆ Rd is commonly evaluated through its density function p(y). For parameter

inference with a model P (·|θ), for instance, the Bayesian paradigm employs the like-

lihood p(y|θ) to define the posterior as in Eq. (1.1.1), while the frequentist paradigm

maximizes p(y|θ) with respect to θ to obtain the Maximum Likelihood Estimator.

Scoring Rules are more general ways to assess how well a probability distribution P

describes an observation y. Specifically, for a Scoring Rule (SR) S, S(P, y) represents

19

a “penalty” received when P is used to model y. Of course, not all such functions are

useful. I thus recall here some properties: a SR S is said to be proper for the class of

distributions P(Y) on the space Y if its expected value5 S(P,Q) := EY∼QS(P, Y) is

minimized when P = Q:

S(Q,Q) ≤ S(P,Q) ∀ P,Q ∈ P(Y).

If additionally P = Q is the only minimum, then S is said to be strictly proper :

S(Q,Q) < S(P,Q) ∀ P,Q ∈ P(Y) s.t. P 6= Q.

A detailed survey of the properties of SRs is available in Gneiting and Raftery (2007).

For a proper S, the quantity

D(P,Q) := S(P,Q)− S(Q,Q) ≥ 0 (1.11)

is called the divergence function associated with S. P = Q implies D(P,Q) = 0

but the converse only holds when S is strictly proper. In this case, D is a statistical

divergence, following the common nomenclature in the statistics literature 6.

Let us now consider a class of distributions Pφ, φ ∈ Φ, and define:

φ? := arg min
φ∈Φ

S(Pφ, Q); (1.12)

if Q belongs to the model class (i.e. the model is well specified), any strictly proper

SR S yields Pφ? = Q. However, when the model is misspecified, the solution to

Eq. (1.2.2) depends on the specific SR used.

In practice, however, we may only have access to observations (y1, y2, . . . , yn),

yi ∼ Q. We can then consider:

φ̂ := arg min
φ∈Φ

1

n

n∑

i=1

S(Pφ, yi), (1.13)

which is the empirical equivalent of Eq. (1.2.2). Under some assumptions, it can be

shown (Dawid and Musio, 2014; Dawid et al., 2016) that φ̂ converges to φ? as n→∞
and is asymptotically normally distributed. These results generalise the standard

asymptotics of the Maximum Likelihood Estimator (MLE), which is recovered from

Eq. (1.2.2) by using S(Pφ, y) = − log pφ(y) (the log-score, see Section 1.2.2.2).

5Following previous literature, I overload notation by using S to denote both the SR and its
expected value according to whether its second argument is an observation or a distribution.

6Differently from the common notation in statistics, the second argument to D, rather than the
first, is here the true distribution. Additionally, some statistical divergences (such as the Wasserstein
distance) cannot be decomposed as in Eq. (1.2.2); see Section 2.2 in Gneiting et al. (2007).

20

In Chapters 4 and 5, I use an objective related to Eq. (1.2.2) to train generative

networks. Analogously to how Eq. (1.2.2) generalises the MLE, in Chapter 3 I gen-

eralise standard Bayesian inference based on the log-score to other Scoring Rules, by

exploiting the construction presented in Section 1.2.1.2.

1.2.2.1 Scoring Rules and probabilistic forecasting

Above, I discussed the use of scoring rules to address parameter estimation problems;

however, Scoring Rules originated in the context of probabilistic forecasting (Gneiting

and Katzfuss, 2014), which is the task of producing probabilistic statements for future

events. Forecasts can, for example, assume the form of credible intervals or full

probability distributions.

In probabilistic forecasting, Scoring Rules are used to evaluate (or verify) forecasts

once the actual value of the predicted quantity becomes available.

Using strictly proper Scoring Rules ensures that forecasters issue honest forecasts

(Winkler, 1977; Dawid, 2006; Gneiting et al., 2007): in fact, if a forecaster has a

subjective probabilistic belief Q for a future observation but provides a forecast P ,

the expected penalty she believes to receive is S(P,Q) = EY∼QS(P, Y), which is

minimized if and only if she chooses P = Q (by Eq. 1.2.2).

Additionally, the average score obtained by evaluating a set of probabilistic fore-

casts with a proper SR can be decomposed into separate contributions related to

calibration and resolution of the forecasts. Calibration measures the degree to which

probabilistic statements obtained from the forecasts match the long-run frequency of

the realised values. Several definitions are available (Gneiting et al., 2007; Bröcker,

2009); for instance, 50% credible regions obtained from probabilistically calibrated

forecasts would contain the realisation 50% of the times7. Resolution instead relates

to how much the distribution of the observations differs when conditioned on different

forecast values (Stephenson, 2012); it can be intended as the ability of the forecasts

to sort events into groups that differ from each other (Wilks, 2019). Other attributes

of forecast performance exist (Wilks, 2019; Stephenson, 2012); notably, sharpness

measures the concentration of forecasts and is independent of the realisations (Gneit-

ing et al., 2007); for continuous variables, it can be measured by, for example, the

width of 90% credible intervals of the forecast distribution. For perfectly calibrated

forecasts, sharpness and resolution are identical concepts.

7The notions of calibration of probabilistic forecasts are related but different from those for
inference procedures returning a distribution on the parameters of a statistical model; see Cockayne
et al. (2022) for a detailed discussion.

21

In Chapter 5, I train the weights of generative networks by minimizing an aver-

age SR over a set of forecasts; therefore, this bridges the two perspectives of fore-

cast verification and parameter estimation. In the following, I give an example of

calibration-resolution decomposition. Dawid (2006) and Bröcker (2009) give a gen-

eric decomposition for proper SRs for binary and categorical forecasts respectively; I

am unaware of a similar result concerning SRs for continuous forecasts.

Calibration-resolution decomposition of Brier score for binary forecasts

Consider the task of forecasting binary observations yi ∈ {0, 1}, i = 1, 2, . . . , N ; for

each i, the probabilistic forecast amounts to a subjective probability pi for yi = 1

stated before yi is observed. The Brier Score (Dawid, 2006; Gneiting and Raftery,

2007) is a strictly proper SR for binary probabilistic forecasting and is defined by:

S(p, y) = (y − p)2 .

Assume now, for simplicity, that the forecasts pi take on a finite set of values p̃j, j =

1, 2, . . . ,M ; forecasting therefore consists of sorting the events in different groups and

labelling them with probabilities p̃j (Dawid, 2006). In this case, the average Brier

Score can be written as:

S̄ :=
1

N

N∑

i=1

(yi − pi)2 =
1

N

M∑

j=1

∑

i:pi=p̃j

(yi − p̃j)2 =
1

N

M∑

j=1

nj
[
ρj (1− p̃j)2 + (1− ρj) p̃2

j

]
,

where nj = #{i : pi = p̃j} is the size of the j-th group and ρj = #{i : pi = p̃j, yi =

1}/nj. Thus:

S̄ = S1 + S2, where S1 :=
1

N

M∑

j=1

nj(ρj − p̃j)2, S2 :=
1

N

M∑

j=1

njρj(1− ρj).

S1 ≥ 0 with equality if and only if, for all j’s, p̃j = ρj: in plain terms, this requires

that, in the j-th group, exactly a fraction p̃j has realisation yi = 1. Therefore, it is a

measure of the calibration of the forecasts.

S2, instead, depends on how the frequency of yi = 1 varies among the different

groups, but not on the specific probability p̃j assigned to each of them; it decreases

with increasing group homogeneity and is minimized whenever each group contains

only yi = 1 or yi = 08. Thus, S2 penalises poor resolution (Dawid, 2006).

8As ρ(1−ρ) is concave and symmetric around ρ = 0.5 and is minimized by ρ = 1 or ρ = 0, which
are achieved by perfectly homogeneous groups.

22

The average score S̄, thus, trades off calibration with resolution. For calibrated

forecasts, additionally, resolution corresponds to sharpness. In fact, if ρj = p̃j:

NS2 =
M∑

j=1

nj p̃j(1− p̃j),

which is independent of the realised values and only depends on the forecast via nj.

As
∑M

j=1 nj = N , S2 is minimized by forecasts that allocate all events to groups with

p̃j’s closer to 0 or 1; this amounts therefore to producing sharp forecasts.

1.2.2.2 Examples of Scoring Rules for continuous distributions

I report here some examples of strictly proper Scoring Rules, focussing on the case of

continuous variables. Examples for different sample spaces can be found in Gneiting

and Raftery (2007). Notice how some SRs are defined through the density p of P (the

log-score and the Hyvarinen score), others through its Cumulative Density Function

(the Continuous Ranked Probability Score), and others through expectations (the

Energy and Kernel Scores).

Log-score The log-score is the negative log-density p of the distribution P:

Slog(P, y) = − log p(y);

it is a strictly proper SR and its corresponding divergence is the Kullback-Leibler

divergence. The log-score is the only proper SR that only evaluates the density at

the observation value y (it is thus said to be local, Parry et al., 2012).

Hyvarinen score The Hyvarinen score involves the first and second derivatives of

the density p of P :

SH(P, y) = ∆ log p(y) +
1

2
‖∇ log p(y)‖2, (1.14)

where ∇ represents the gradient vector and ∆ the Laplace operator. Under some

integrability assumptions (see Section 3.2 in Chapter 2), integration by parts yields

the following form for the associated divergence:

DF (P,Q) =
1

2

∫
q(y)‖∇ log q(y)−∇ log p(y)‖2dy,

which is usually termed “Fisher divergence”.

As it depends only on the first and second derivatives of the log-density, the

Hyvarinen score in Eq. (1.2.2.2) is invariant to multiplying p by a scalar value c > 0;

23

as such, it can be computed without knowing the normalising constant of p. In

Chapter 2, I rely on this property and exploit the Hyvarinen score to fit a parametric

density with unknown normalising constant to some data; this procedure is called

score matching (Hyvärinen, 2005).

Continuous Ranked Probability Score (CRPS) For a continuous scalar vari-

able, the CRPS (Gneiting and Raftery, 2007) is defined by considering the cumulative

distribution function FP of P and by computing:

SCRPS(P, y) =

∫ ∞

−∞
(FP (x)− 1{x ≥ y})2dx. (1.15)

In general, analytically computing the integral in Eq. (1.2.2.2) is impractical, except

in simple cases such as Gaussian distributions. However, the following alternative

formulation (Eq. 17 in Székely and Rizzo, 2005) can be estimated using samples from

P :

SCRPS(P, y) = 2 · E [|X − y|]− E [|X −X ′|] , X ⊥⊥ X ′ ∼ P. (1.16)

From Eq. (1.2.2.2), it is clear how the CRPS is a specific case of the Energy Score

(introduced below and used in Chapters 3 to 5) for scalar variables. The CRPS is

proper for all probability distributions and is strictly proper for Borel probability

distributions with finite first moment (Gneiting and Raftery, 2007). Additionally,

the CRPS is the integral of the Brier score (Eq. 1.2.2.1) for binary forecasts of the

event {x ≥ y} at all threshold values x. Calibration-resolution decompositions for

the CRPS analogue to that given in Section 1.2.2.1 for the Brier score are given in

Hersbach (2000) and Candille and Talagrand (2005).

Energy and Kernel Scores In Chapters 3 to 5, I extensively employ two Scoring

Rules known as Energy and Kernel Scores. The Energy Score is given by:

S
(β)
E (P, y) = 2 · E

[
‖X − y‖β2

]
− E

[
‖X −X ′‖β2

]
, X ⊥⊥ X ′ ∼ P,

where β ∈ (0, 2). This is a strictly proper Scoring Rule for the class of probability

measures P for which EX∼P‖X‖β < ∞ (Gneiting and Raftery, 2007) and is a gen-

eralisation of the CRPS to multivariate random variables. The related divergence is

the square of the energy distance, which is a metric between probability distributions

(Rizzo and Székely, 2016; see Appendix C.1 in Chapter 3)9.

9The probabilistic forecasting literature (Gneiting and Raftery, 2007) uses a different convention
for the Energy Kernel Scores, which amounts to multiplying my definitions by 1/2. I follow here the
convention used in the statistical inference literature (Rizzo and Székely, 2016; Chérief-Abdellatif
and Alquier, 2020; Nguyen et al., 2020).

24

The kernel Score (Gneiting and Raftery, 2007) is instead defined as:

Sk(P, y) = E[k(X,X ′)]− 2 · E[k(X, y)], X ⊥⊥ X ′ ∼ P,

where k(·, ·) is a positive definite kernel. The corresponding divergence is the squared

Maximum Mean Discrepancy (MMD, Gretton et al., 2012) relative to k (see Ap-

pendix C.2 in Chapter 3). The Kernel Score is proper for the class of probability

distributions for which E[k(X,X ′)] is finite (by Theorem 4 in Gneiting and Raftery,

2007). Additionally, it is strictly proper under conditions that ensure that the MMD

is a metric (see Appendix C.2 in Chapter 3). These conditions are satisfied, among

others, by the Gaussian kernel:

k(x, y) = exp

(
−‖x− y‖

2
2

2γ2

)
,

in which γ is a scalar bandwidth. Notice that the Energy Score is recovered from the

Kernel Score by setting k(x, y) = −‖x− y‖β2 (Gneiting and Raftery, 2007).

Assume we have draws xj ∼ P, j = 1, . . . ,m. In this case, for the Energy Score,

unbiased estimates can be obtained by unbiasedly estimating the expectations in

S
(β)
E (P, x):

Ŝ
(β)
E ({xj}mj=1, y) =

2

m

m∑

j=1

‖xj − y‖β2 −
1

m(m− 1)

m∑

j,k=1
k 6=j

‖xj − xk‖β2 .

Similarly , we obtain an unbiased estimate of Sk(P, x) by:

Ŝk({xj}mj=1, y) =
1

m(m− 1)

m∑

j,k=1
k 6=j

k(xj, xk)−
2

m

m∑

j=1

k(xj, y).

1.3 Contributions and thesis outline

This integrated thesis contains four independent works in their complete form, each

addressing open problems with inference methods for generative models. Specific-

ally, Chapter 2 designs a new method for learning summary statistics for Approxim-

ate Bayesian Computation. Chapter 3 develops a novel outlier-robust posterior for

Likelihood-Free Inference based on Scoring Rules and generalised Bayesian inference.

Chapters 4 and 5 train generative neural networks to minimize Scoring Rules, yield-

ing better calibrated generative distributions than the adversarial approach. This

enables using generative networks for Bayesian Likelihood-Free Inference (Chapter 4)

25

and probabilistic forecasting (Chapter 5). In the rest of this Section, I briefly overview

the objective, the methodology and the significance of each chapter. In Chapter 6, I

provide a summary of the work and outline directions for future exploration.

1.3.1 Score Matched Neural Exponential Families for
Likelihood-Free Inference

In Chapter 2, I consider the task of learning summary statistics for Approximate

Bayesian Computation (ABC, see Sec. 1.1.1.1). To this aim, recall that the most

general family of distributions with sufficient statistics of fixed size10 is the exponential

family p(y|θ) ∝ exp(η(θ)Tf(y))h(y), where η and f are the natural parameters and

sufficient statistics of the exponential family and h is its base measure. Therefore, I

propose to approximate the intractable likelihood with an exponential family and use

f as summary statistics in ABC.

In practice, I represent f and η with two neural networks, which respectively

receive as input data and parameters (h is represented by an additional output of the

same neural network used for f). I then fit neural network weights using parameter-

simulation pairs (θj, xj)
N
j=1 θj ∼ π(θ), xj ∼ P (·|θj), as in the regression approach to

learn summary statistics in Fearnhead and Prangle (2012); Jiang et al. (2017); Wiqvist

et al. (2019) (Sec. 1.1.1.1). As the normalising constant of the exponential family is

intractable, I resort to score matching (Hyvärinen, 2005) and its sliced version (Song

et al., 2020), which allow fitting unnormalized models. As mentioned in Sec. 1.2.2.2,

Score Matching corresponds to minimizing the empirical Hyvarinen score.

While the regression approach gives a single summary per dimension of θ, my

framework allows a flexible number of summaries; further, thanks to the parameter

transformation η, summaries learnt with my method are independent of the specific

model parametrisation.

In ABC, I find the exponential family statistics to perform competitively with the

ones learnt by regression. Additionally, the full exponential family approximation to

the likelihood can be used to draw samples from an approximate posterior without

generating additional simulations from the model. This is conceptually similar to

Radev et al. (2020) and Hermans et al. (2020). As the normalising constant of the

exponential family is intractable, I resort to MCMC for doubly intractable targets

(Murray et al., 2012). This requires running a nested MCMC over the data space at

each MCMC step over θ and is therefore inefficient for high-dimensional data space. A

10Provided that the domain of the probability distribution does not vary with the parameter.

26

recent work (Glaser et al., 2022) builds on my approach and develops a more efficient

custom MCMC sampler. However, it is a promising approach for expensive simulator

models with low-dimensional output.

1.3.2 Generalised Bayesian Likelihood-Free Inference Using
Scoring Rules Estimators

In Chapter 3, I derive a novel posterior for the parameters θ of a simulator model

P (·|θ) from the loss-based generalised posterior in Eq. (1.2.1.2), by choosing the

loss to be a Scoring Rule (Sec. 1.2.2). Notice how the standard Bayesian posterior

can be written in this form by using the log-score (Sec. 1.2.2.2), which is however

unavailable for simulator models as it requires the likelihood function. Therefore,

in the generalised posterior, I employ Scoring Rules admitting empirical estimators

based on samples from P (·|θ). The proposed sampling strategy proceeds by running

an MCMC on θ where, at each step, simulations from the model are used to estimate

the target (it is an instance of the pseudomarginal MCMC of Andrieu et al., 2009).

My approach subsumes previous Bayesian Likelihood-Free Inference methods such

as Bayesian synthetic likelihood (BSL; see Sec. 1.1.1.2). However, BSL and other

popular methods (such as Approximate Bayesian Computation, see Sec. 1.1.1.1) are

motivated as approximations to the true posterior, while my posterior is derived from

the generalised formulation. I study theoretically and via computational experiments

the features of this new posterior: with strictly proper S and a well-specified model,

the posterior concentrates on the true parameter value as the number of observation

increases; this highlights some issues with BSL, which relies on a non-strictly proper

Scoring Rule. Further, importantly, with some of the Scoring Rules I employ, the

resulting posterior is robust to outliers in the data, while the standard posterior and

its approximations are not; my method is therefore well suited to parameter inference

for simulator models using outlier-contaminated data.

1.3.3 Training generative networks via Scoring Rule minim-
ization

As discussed in Section 1.1.2, generative networks are typically trained adversarially,

which often leads to underestimating the variance of the data distribution. Although

in many applications of generative networks (such as image generation) calibrated un-

certainty estimation is not essential, this is required in key tasks in statistics. There-

fore, in Chapters 4 and 5, I investigate training generative networks via Scoring Rule

27

Minimization. If the chosen Scoring Rule can be unbiasedly estimated using simula-

tions, adversarial-free minimization is possible, leading to better calibrated generative

distributions and easier training and hyperparameter tuning than the adversarial ap-

proach. Scoring Rule Minimization was used sparsely before (Bouchacourt et al.,

2016; Gritsenko et al., 2020; Harakeh and Waslander, 2021), but a rigorous formal-

isation such as the one I give in Chapters 4 and 5 was not present in the literature.

In Chapter 4, I use Scoring Rule Minimization to train a conditional generative

network to approximate the posterior distribution for a Bayesian Likelihood-Free

Inference (LFI) task. The resulting approach belongs to the class of neural network-

based methods to Bayesian LFI discussed in Section 1.1.1.3 and is closely related to

Ramesh et al. (2022), which trained a generative network for the same task using

an adversarial approach. In contrast to the methods based on normalising flows,

employing a generative network more easily scales to high-dimensional and structured

data. In simulation studies, Scoring Rule Minimization yields better results than the

adversarial approach of Ramesh et al. (2022) with easier and cheaper training.

Finally, an original contribution of Chapter 5 is the application of Scoring Rule

Minimization to probabilistic forecasting, namely the task of stating a probability dis-

tribution for the future step of a temporal process based on past information (Gneiting

and Katzfuss, 2014). As in Chapter 4, I exploit conditional generative networks to

this aim: however, here the conditioning variable is a window of past observations,

and the output of the generative network is a (stochastic) prediction. In this setting,

the data are not independent: the realisation at one time step enters the observation

window at the next. Therefore, I extend the Scoring Rule Minimization formulation

to a prequential (predictive-sequential, Dawid, 1984) training objective and prove a

form of consistency of the minimizing distribution, provided that the temporal pro-

cess has some stationarity and memoryless property. In contrast, adversarial training

is formulated for independent data. In simulation studies, Scoring Rule Minimiza-

tion achieves better performances (especially in terms of calibration) than adversarial

methods.

28

Chapter 2

Score Matched Neural Exponential
Families for Likelihood-Free
Inference

Pacchiardi, Lorenzo, and Ritabrata Dutta. “Score Matched Neural Exponential Fam-

ilies for Likelihood-Free Inference.” J. Mach. Learn. Res. 23 (2022): 38-1.

29

Score Matched Neural Exponential Families
for Likelihood-Free Inference

Lorenzo Pacchiardi lorenzo.pacchiardi@stats.ox.ac.uk
Department of Statistics
University of Oxford
Oxford, OX1 3LB
United Kingdom

Ritabrata Dutta ritabrata.dutta@warwick.ac.uk

Department of Statistics

University of Warwick

Coventry, CV4 7AL

United Kingdom

Abstract

Bayesian Likelihood-Free Inference (LFI) approaches allow to obtain posterior distribu-
tions for stochastic models with intractable likelihood, by relying on model simulations. In
Approximate Bayesian Computation (ABC), a popular LFI method, summary statistics
are used to reduce data dimensionality. ABC algorithms adaptively tailor simulations to
the observation in order to sample from an approximate posterior, whose form depends
on the chosen statistics. In this work, we introduce a new way to learn ABC statistics:
we first generate parameter-simulation pairs from the model independently on the ob-
servation; then, we use Score Matching to train a neural conditional exponential family to
approximate the likelihood. The exponential family is the largest class of distributions with
fixed-size sufficient statistics; thus, we use them in ABC, which is intuitively appealing and
has state-of-the-art performance. In parallel, we insert our likelihood approximation in an
MCMC for doubly intractable distributions to draw posterior samples. We can repeat that
for any number of observations with no additional model simulations, with performance
comparable to related approaches. We validate our methods on toy models with known
likelihood and a large-dimensional time-series model.
Code for reproducing the experiments is available at https://github.com/LoryPack/

SM-ExpFam-LFI.

Keywords: Likelihood-Free Inference, Score Matching, Approximate Bayesian Compu-
tation, MCMC for doubly intractable distributions, Exponential Family.

1. Introduction

Stochastic simulator models are used to simulate realizations of physical phenomena; usu-
ally, a set of parameters θ govern the simulation output. As the model is stochastic, repeated
simulations with fixed θ yield different outputs; their distribution is the model’s likelihood.
Simple models provide an analytic expression of the likelihood, which is however unavailable
for more complex ones.

Upon observing a real-world realization of the phenomenon the model is describing,
researchers may want to obtain a posterior distribution over parameters. If the likelihood
is known, standard Bayesian inference tools (such as MCMC or variational inference) allow

©2022 Lorenzo Pacchiardi and Ritabrata Dutta.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/.

Pacchiardi and Dutta

to get posterior samples; if otherwise the likelihood is missing, Likelihood-Free Inference
(LFI) techniques are the only viable solution. LFI has been applied in several domains,
including genomics (Tavaré et al., 1997), biological science (Dutta et al., 2018), meteorology
(Hakkarainen et al., 2012), geological science (Pacchiardi et al., 2020), genomics (Tavaré
et al., 1997; Toni et al., 2009; Marttinen et al., 2015), and epidemiology (McKinley et al.,
2018; Minter and Retkute, 2019; Dutta et al., 2021a).

In some LFI techniques (Wood, 2010; Thomas et al., 2020; Price et al., 2018), the
missing likelihood is replaced with an explicit approximation built from model simulations
at each parameter value. Alternatively, Approximate Bayesian Computation (ABC) (Marin
et al., 2012; Lintusaari et al., 2017) circumvents the unavailability of the likelihood by
comparing model simulations with the observation according to some notion of distance.
To reduce data dimensionality, ABC usually relies on summary statistics, whose choice is
not straightforward. Recently, the expressive capabilities of Neural Networks (NNs) have
been leveraged to learn ABC statistics (Jiang et al., 2017; Wiqvist et al., 2019; Pacchiardi
et al., 2020; Akesson et al., 2021). These techniques train NNs parametrizing the statistics
by minimizing a suitable loss on a training set of parameter-simulation pairs generated from
the model.

In the present work, we propose a new way to learn ABC statistics with NNs. Most pre-
vious works (Jiang et al., 2017; Wiqvist et al., 2019; Akesson et al., 2021) trained a single NN
with the regression loss introduced in Fearnhead and Prangle (2012). Instead, we consider
an exponential family with two NNs parametrizing respectively the sufficient statistics and
natural parameters and fit this to the model. As the exponential family is the most general
class of distributions with sufficient statistics of fixed size (Appendix A), it makes intuitive
sense to use the learned sufficient statistics in ABC. Indeed, this approach empirically yields
superior or equivalent performance with respect to state-of-the-art approaches.

As in previous approaches, we consider a training set of parameter-simulation pairs;
however, we train the NNs with Score Matching (SM) or its Sliced approximation (SSM),
which do not require evaluating the normalizing constant of the exponential family. We
extend the SM and SSM objectives to the setting of conditional densities, thus fitting the
likelihood approximation for all values of data and parameters.

In contrast to related approaches (Jiang et al., 2017; Wiqvist et al., 2019; Pacchiardi
et al., 2020; Akesson et al., 2021), our method provides a full likelihood approximation. We
test therefore direct sampling from the corresponding posterior (in place of ABC) with an
MCMC algorithm for doubly intractable distributions. This approach achieves satisfactory
performance with no additional model simulations and is therefore a valid alternative to
standard LFI schemes for expensive simulator models. The computational gain is even larger
when inference is performed for several observations, as the same likelihood approximation
can be used.

The rest of our paper is organized as follows. In Section 2, we briefly review some LFI
methods. Next, in Section 3 we introduce the neural conditional exponential family and
show how to fit it with SM or SSM. In Section 4 we discuss how to exploit the exponential
family to extract ABC statistics or for direct sampling. We extensively validate our proposed
approaches in Section 5. Finally, we discuss related works in Section 6 and conclude in
Section 7, where we also highlight directions for future research.

2

Score Matched Neural Exponential Families for LFI

1.1 Notation

We set here notation for the rest of our manuscript. We will denote respectively by X ⊆ Rd
and Θ ⊆ Rp the data and parameter space. Upper case letters will denote random variables
while lower case ones will denote observed (fixed) values. Subscripts will denote vector
components and superscript in brackets sample indices, while ‖ · ‖ will denote the `2 norm.

2. Likelihood-Free Inference

Let us consider a model which allows to generate a simulation x ∈ X at any parameter
value θ ∈ Θ, but for which it is not possible to evaluate the likelihood p0(x|θ). Given an
observation x0 and a prior on the parameters π(θ), Bayesian inference obtains the posterior

distribution π0(θ|x0) = π(θ)p0(x0|θ)
p0(x0)

. However, obtaining that explicitly (or even sampling

from it with Markov Chain Monte Carlo, MCMC) is impossible without having access to
the likelihood, at least up to a normalizing constant that is independent on x.

Likelihood-Free Inference techniques yield approximations of the posterior distribution
by replacing likelihood evaluations with model simulations. Broadly, they can be split into
two kinds of approaches: Surrogate Likelihood, which explicitly builds a likelihood function,
and Approximate Bayesian Computation (ABC), which instead uses discrepancy between
simulated and observed data. The latter approach has already been described in detail in
Sec. 1.1.1.1 of the introduction of the present thesis. The next subsection instead discusses
two instances of Surrogate Likelihood.

2.1 Surrogate Likelihood

Surrogate likelihood approaches exploit simulations to build an explicit likelihood approxi-
mation, which is then inserted in standard likelihood-based sampling schemes (say, MCMC;
Wood 2010; Thomas et al. 2020; Fasiolo et al. 2018; An et al. 2019, 2020; Price et al. 2018).
Here, we discuss two methods that fall under this framework.

Synthetic Likelihood. Synthetic Likelihood (SL, Wood 2010) replaces the exact likeli-
hood with a normal distribution for the summary statistics s = s(x); specifically, it assumes
S|θ ∼ N (µθ,Σθ), where the mean vector µθ and covariance matrix Σθ depend on θ. For
each θ, an estimate of µθ and Σθ is built with model simulations, and the likelihood of the
observed statistics s(x0) is evaluated.

Using the statistics likelihood to define a posterior distribution yields a Bayesian SL
(BSL). In Price et al. (2018), MCMC is used to sample from the BSL posterior; as in
ABC, this approach requires generating simulations for each considered θ. However, one
single simulation per parameter value is usually sufficient in ABC, while estimating µθ,Σθ

in BSL requires multiple simulations. Nevertheless, a parametric likelihood approximation
seemingly allows scaling to larger dimensional statistics space (Price et al., 2018).

Ratio Estimation. Thomas et al. (2020) tackle LFI by estimating the ratio between
likelihood and data marginal: r(x, θ) = p(x|θ)/p(x). As r(x, θ) ∝ p(x|θ) with respect to
θ, this can be inserted in a likelihood-based sampling scheme in order to sample from the
posterior, similarly to BSL. This method is termed Ratio Estimation (RE).

3

Pacchiardi and Dutta

In practice, for each value of θ, an estimate r̂(x, θ) is built by generating simulations
from the model p0(x|θ) and from the marginal1 p(x), and then fitting a logistic regression
discriminating between the two sets of samples. In fact, logistic regression attempts to find

a function ĥ(x; θ) for which eĥ(x;θ) ≈ r(x; θ).
In Thomas et al. (2020), ĥ is chosen in the class of functions hβ(x; θ) =

∑k
i=1 βi(θ)ψi(x) =

β(θ)Tψ(x), where ψ is a vector of summary statistics and β(θ) are coefficients determined
independently for each θ; this therefore boils down to a linear logistic regression. Viewed
differently, this approach approximates the likelihood with an exponential family, as in fact
it assumes p(x|θ) ∝ r̂(x, θ) = exp(β̂(θ)Tψ(x)), for some coefficients β̂ determined by data;
it is thus a more general likelihood assumption than SL (as the normal distribution belongs
to the exponential family).

Remark 1 (Reducing the number of simulations.) Several approaches have attempted
to reduce the number of simulations required in SL, RE and ABC. Specifically, Gaussian
Processes can be exploited to replace evaluations of simulation-based quantities with emu-
lated values, while at the same time providing an uncertainty quantification used to guide
the next model simulations; that has been done for both ABC (Meeds and Welling, 2014;
Wilkinson, 2014; Gutmann et al., 2016; Järvenpää et al., 2019; Jarvenpaa et al., 2020)
and SL (Meeds and Welling, 2014; Wilkinson, 2014; Moores et al., 2015; Järvenpää et al.,
2021). These approaches all consider a fixed observation x and emulate over parameter
values.

In Hermans et al. (2020), a classifier more powerful than logistic regression is used to
learn the likelihood ratio estimate for all (x, θ) using parameter-simulation pairs (similarly
to what we propose in Section. 3.3), amortizing therefore RE with respect to the observation.

3. Likelihood approximation with the exponential family

In this Section, we first introduce the parametric family which we use to approximate the
likelihood. Then, we describe Score Matching (SM) and Sliced Score Matching (SSM),
which allow us to fit distributions with unknown normalizing constants to data. Finally,
we discuss how to extend SM and SSM to the setting of conditional densities, to obtain a
likelihood approximation valid for all data and parameter values.

3.1 Conditional exponential family

A probability distribution belongs to the exponential family if it has a density of the fol-
lowing form:2

p(x|θ) =
eη(θ)T f(x)h(x)

Z(θ)
, (1)

where x ∈ X , θ ∈ Θ. Here, f : X → Rds is a function of the data (sufficient statistics),
η : Θ → Rds is a function of the parameters (natural parameters) and h(x) : X → R is a
non-negative scalar function of data (base measure), whose support has non-zero measure.

1. Simulating from the marginal can be done by drawing θj ∼ p(θ), xj ∼ p(x|θj) and discarding θj .
2. As we are concerned with continuous random variables, across the work we use the Lebesgue measure

as a base measure, without explicitly referring to it.

4

Score Matched Neural Exponential Families for LFI

The normalizing constant Z(θ) =
∫
X exp{η(θ)T f(x)}h(x)dx is intractable and assumed to

be finite ∀ θ ∈ Θ; we will discuss later (Sec. 3.3) why this assumption is not an issue.

Across this work, we refer to Eq. (1) as conditional exponential family to stress that we
learn an approximation valid for all x’s and θ’s by selecting functions f , η and h.

In the following, we rewrite Eq. (1) as: p(x|θ) = exp(η̄(θ)T f̄(x))/Z(θ), where η̄(θ) =
(η(θ), 1) ∈ Rds+1 and f̄(x) = (f(x), log h(x)) ∈ Rds+1. For simplicity, we will drop the bar
notation, using as convention that η(θ) contains the natural parameters of the exponential
family plus an additional constant term, and that the last component of f(x) is log h(x).

Neural conditional exponential family. Let now fw and ηw denote two Neural Net-
works (NNs) with collated weights w (in practice the two NNs do not share parameters);
then, the neural conditional exponential family is defined as:

pw(x|θ) =
eηw(θ)T fw(x)

Zw(θ)
. (2)

Remark 2 Ratio Estimation (Sec. 2.1) parametrizes the likelihood as an exponential family
with user-specified statistics and natural parameters β independently learned for each θ ∈ Θ.
In contrast, here we learn both the fw(x) and the ηw(θ) transformations over all X and Θ
at once by selecting the best w.

Remark 3 (Identifiability) For a family of distributions indexed by a parameter φ, iden-
tifiability means that pφ(x|θ) = pφ′(x|θ) ∀ x, θ =⇒ φ = φ′. The weights w in the neural
conditional exponential family are not identifiable for two reasons: first, NNs have many
intrinsic symmetries. Secondly, replacing fw in Eq. (2) with A · fw and ηw with (AT)−1 · ηw
does not change the probability density. In Khemakhem et al. (2020), two suitable con-
cepts of function identifiability up to some linear transformations are defined. fw and ηw in
Eq. (2) are identifiable according to those definitions, under strict conditions on the archi-
tectures of the Neural Networks parametrizing them (Khemakhem et al., 2020). Moreover,
they empirically verify that NNs not satisfying the above assumptions result in approximately
identifiable fw and ηw, according to their definition. More details are given in Appendix B.1.

Remark 4 (Universal approximation) Using larger ds in Eq. (1) increases the expres-
sive power of the approximating family. Khemakhem et al. (2020) proved that, by con-
sidering a freely varying ds and generic f and η, the conditional exponential family has
universal approximation capabilities for the set of conditional probability densities; we give
more details in Appendix B.2. This result does not consider the practicality of fitting the
approximating family to data, which arguably becomes harder when ds increases.

3.2 Score Matching

In order to fit a parametric density pw to data, the standard approach is finding the Maxi-
mum Likelihood Estimator (MLE) for w; in the limit of infinite data, that corresponds to
minimizing the Kullback-Leibler divergence from the data distribution. MLE requires how-
ever the normalizing constant of pw to be known, which is not the case for our approximating
family (Eq. 2).

5

Pacchiardi and Dutta

Score Matching (SM, Hyvärinen 2005) is a possible way to bypass the intractability of
the normalizing constant. In this Subsection, we review SM for unconditional densities,
discuss a faster version and provide an extension for distributions with bounded domain.

The original Score Matching (SM) Let us discard now the conditional dependency
on θ and, following Hyvärinen (2005), consider a random variable X distributed according
to p0(x). We want to use samples from p0 to fit a generic model pw(x) = p̃w(x)/Zw, where
p̃w is unnormalized and Zw is intractable.

Definition 5 Score Matching (SM) corresponds to finding:

arg min
w

DF (p0‖pw),

where the Fisher Divergence DF is defined as:

DF (p0‖pw) =
1

2

∫

X
p0(x)‖∇x log p0(x)−∇x log pw(x)‖2dx. (3)

The Fisher divergence depends only on the the logarithmic derivatives ∇x log p0(x) and
∇x log pw(x), which are termed scores3; computing DF does not require therefore knowing
the normalizing constant, as in fact:

∇x log pw(x) = ∇x(log p̃w(x)− logZw) = ∇x log p̃w(x).

Nevertheless, a Monte Carlo estimate of DF in Eq. (3) using samples from p0 would re-
quire knowing the logarithmic gradient of p0; for this reason, Eq. (3) is usually termed
implicit Fisher divergence. If X = Rd and under mild conditions, Theorem 1 in Hyvärinen
(2005) obtains an equivalent form for DF in which p0 only appears as the distribution over
which expectation needs to be computed. We give here a similar result holding for more
general X =

⊗d
i=1(ai, bi), where ai, bi ∈ R ∪ {±∞}; specifically, we consider the following

assumptions4:

A1 p0(x) ∂
∂xi

log pw(x)→ 0 when xi ↘ ai and xi ↗ bi,∀w, i,

A2 Ep0 [‖∇x log p0(X)‖2] <∞, Ep0 [‖∇x log pw(X)‖2] <∞,∀ w,

A3 Ep0
∣∣∣ ∂2

∂xi∂xj
log pw(X)

∣∣∣ <∞, ∀w,∀i, j = 1, . . . , d.5

With the above, we can state the following:

3. In most of the statistics literature, score usually refer to the derivative of the log-likelihood with respect
to the parameter; here, the nomenclature is slightly different.

4. We stress how we do not explicitly enforce these assumptions for the neural exponential family, as
they require controlling its behavior for diverging x. However, we argue below (end of Sec. 3.3) that

this does not matter in practice when performing score matching on a finite set of observations {x(j)j },
as we can formally replace the neural exponential family with a distribution proportional to it for
x : ‖x‖ < minj ‖x(j)‖ and converging to 0 for diverging x.

5. We remark that this assumption was not present in Hyvärinen (2005), but it is necessary to apply
Fubini-Tonelli theorem in the proof (see Appendix C.1), as already discussed in Yu et al. (2019).

6

Score Matched Neural Exponential Families for LFI

Theorem 6 Let X =
⊗d

i=1(ai, bi), where ai, bi ∈ R ∪ {±∞}. If p0(x) is differentiable and
pw(x) doubly differentiable over X , then, under assumptions A1, A2, A3, the objective in
Eq. (3) can be rewritten as:

DF (p0‖pw) =

∫

X
p0(x)

d∑

i=1

[
1

2

(
∂ log pw(x)

∂xi

)2

+

(
∂2 log pw(x)

∂x2
i

)]
dx+ C. (4)

Here, C is a constant w.r.t. pw and xi is the i-th coordinate of x.

A proof is given in Appendix C.1. We refer to Eq. (4) as the explicit Fisher Divergence, as
it is now immediate to build an unbiased Monte Carlo estimate using samples from p0.

From Eq. (3), it is clear that DF (p0‖pw) ≥ 0 ∀ w, and that choosing pw = p0 implies
DF (p0‖pw) = 0; however, the converse can not be said in general unless p0 is supported
over all X , as stated in the following theorem:

Theorem 7 (Theorem 2 in Hyvärinen, 2005) Assume p0(x) > 0 ∀x ∈ X . Then:

DF (p0‖pw) = 0 ⇐⇒ p0(x) = pw(x) ∀x ∈ X .

We prove Theorem 7 in Appendix C.2. If p0(x) is zero for some x ∈ X , there could be a
distribution pw such that DF (p0‖pw) = 0 even if pw 6= p0 (as discussed in Appendix C.6).

Sliced Score Matching (SSM) In the explicit Fisher Divergence (Eq. 4), the second
derivatives of the log-density with respect to all components of x are required. When using
the neural conditional exponential family (Eq. 2), this amounts to evaluating the second
derivatives of fw with respect to its input (see Appendix C.10). Practically, automatic
differentiation libraries to obtain the derivatives effortlessly; however, the computational
cost of the second derivatives is substantial, as it requires a number of forward and backward
passes proportional to the dimension of the data x (see Appendix D.1)6.

Some approaches to reducing the computational burden have been proposed; we review
some in Section 6. Here, we consider Sliced Score Matching (SSM, Song et al. 2020), which
considers projections of the scores on random directions; matching the projections on all
random directions ensures the two distributions are identical (under the same conditions as
the original SM). More precisely, let v ∈ V ⊆ Rd be a noise vector with a distribution q;
SSM is defined as follows:

Definition 8 Sliced Score Matching (SSM) corresponds to finding:

arg min
w

DFS(p0‖pw),

where the Sliced Fisher Divergence is defined as:

DFS(p0‖pw) =
1

2

∫

V
q(v)

∫

X
p0(x)(vT∇x log p0(x)− vT∇x log pw(x))2dxdv. (5)

6. Computing the derivatives during the forward pass offers some speedup, as automatic differentiation re-
peats some computations several times. However, this approach requires custom NN implementation (see
Appendix D.1.1) and is thus not scalable to complex architectures. More importantly, the computational
gain is limited with respect to what is achieved by the Sliced SM version introduced next.

7

Pacchiardi and Dutta

We will require the noise distribution q(v) to satisfy the following Assumption:

A4 For the random vector V ∼ q, the covariance matrix E[V V T] � 0 is positive definite
and E‖V ‖22 <∞.

As for SM, we can obtain an explicit formulation from the implicit one in Eq. (5). This
is done in the following Theorem, which we prove for convenience in Appendix C.3:

Theorem 9 (Theorem 1 in Song et al. (2020)) Let X =
⊗d

i=1(ai, bi), where ai, bi ∈
R ∪ {±∞}. If p0(x) is differentiable and pw(x) doubly differentiable over X , then, under
assumptions A1, A2, A3, A4, the objective in Eq. (5) can be rewritten as:

DFS(p0‖pw) =

∫

V
q(v)

∫

X
p0(x)

[
vT (Hx log pw(x))v +

1

2

(
vT∇x log pw(x)

)2
]
dxdv + C, (6)

where Hx log pw(x) denotes the Hessian matrix of log pw(x) with respect to components of x
and C is a constant w.r.t. pw.

Assumption A4 is satisfied by, among others, multivariate standard Gaussian and mul-
tivariate Rademacher random variables (Song et al., 2020). Additionally, these two distri-

butions allow to computes explicitly the expectation with respect to v of
(
vT∇x log p0(x)

)2
in Eq. (6), which leads to:

DFS(p0‖pw) =

∫

X
p0(x)

{∫

V
q(v)

[
vT (Hx log pw(x))v

]
dv +

1

2
‖∇x log pw(x)‖22

}
dx+C; (7)

in Song et al. (2020), the Monte Carlo estimate of the latter expression is found to perform
better than the one for Eq. (6); across this work, we will therefore consider Eq. (7) with the
Rademacher noise when using SSM.

Analogously to SM, a non-negative p0 ensures that the sliced Fisher divergence is zero
if and only if pw = p0:

Theorem 10 (Lemma 1 in Song et al. (2020)) Assume Assumption A4 holds and that
p0(x) > 0 ∀x ∈ X . Then:

DFS(p0‖pw) = 0 ⇐⇒ p0(x) = pw(x) ∀x ∈ X .

The above result is proven in Appendix C.4.
SSM has a reduced computational cost with respect to SM when automatic differen-

tiation is used. In fact, computing the second derivatives in Eq. (4) requires d backward
propagations, while the quadratic form involving the Hessian in Eq. (7) only requires two
backward propagations independently on the dimension of x (see Appendix D.1).

SM and SSM over transformed domain. If the domain X is unbounded (ai = −∞,
bi = +∞ ∀i), A1 is usually satisfied. Instead, it is easy for that assumption to be violated
if X is bounded: for instance, if p0(x) converges to a constant at the boundary of X , A1
requires ∇x log pw(x) to go to 0. Further, if p0(x) diverges, ∇x log pw(x) has to converge to
0 faster than some rate, which is in general a strong requirement.

To apply SM to distributions with bounded domain X under looser conditions, we then
transform X to Y = Rd with a suitable bijection mapping t; this creates a new random
variable Y = t(X), with distributions pY0 (y) and pYw(y) induced by p0 and pw on X .

8

Score Matched Neural Exponential Families for LFI

Definition 11 We define respectively as Transformed Score Matching (TranSM) and Trans-
formed Sliced Score Matching (TranSSM) the procedures:

arg min
w

DF (pY0 ‖pYw) and arg min
w

DFS(pY0 ‖pYw).

TranSM and TranSSM enjoy similar properties as SM and SSM, as stated in the following
Theorem, which mirrors Theorem 7 and Theorem 10:

Theorem 12 Let Y = t(X) ∈ Y for a bijection t. Assume Assumption A4 is satisfied,
p0(x) > 0 ∀x ∈ X , and let D denote either DF or DFS; then:

D(pY0 ‖pYw) = 0 ⇐⇒ pw(x) = p0(x) ∀x ∈ X .

We prove this Theorem (in Appendix C.5) by relying on the equivalence between distribu-
tions for the random variables Y and X.

Motivated by Theorem 12, across this work we will apply TranSM and TranSSM when-
ever X is bounded; precisely, we adopt the same bijections as in the Stan package for
statistical modeling (Appendix C.8, Carpenter et al. 2017).

Remark 13 Another way to extend SM to distributions with bounded support involves mul-
tiplying the scores in the implicit Fisher divergence by a correction factor that allows to
obtain an explicit form under looser assumptions. This Corrected SM (CorrSM) approach
was first proposed for non-negative random variables in Hyvärinen (2007), which also re-
marked how CorrSM and TranSM are equivalent (Appendix C.7). TranSM is however more
practically viable, as a single SM implementation is needed, while CorrSM requires separate
implementations for different kinds of domains. Additionally, the transformations can be
straightforwardly applied to SSM, while (to the best of our knowledge) a correction approach
for SSM has not yet been proposed.

Remark 14 Across this work we restrict to domains X defined by independent constraints
across the coordinates, i.e. X =

⊗d
i=1(ai, bi). However, TranSM, TranSSM and CorrSM

can be potentially applied to distributions with more general supports. We briefly review this
and other extensions in Appendix C.9.

3.3 Score Matching for conditional densities

We now go back to conditional densities p0(·|θ) and define an expected Fisher divergence
(Arbel and Gretton, 2018) by considering θ ∼ π(θ):

DE
F (p0‖pw) =

∫

Θ
π(θ)DF (p0(·|θ)‖pw(·|θ))dθ

=
1

2

∫

Θ

∫

X
p0(x|θ)π(θ)‖∇x log p0(x|θ)−∇x log pw(x|θ)‖2dxdθ.

(8)

Analogously, we define an expected sliced Fisher divergence DE
FS(p0‖pw) from DFS .

Note that DE
F (p0‖pw) ≥ 0; moreover, under the assumption that p0(x|θ) is supported

on the whole domain X ∀ θ, the above objective is equal to 0 if and only if p0(·|θ) = pw(·|θ)

9

Pacchiardi and Dutta

π(θ)-almost everywhere (Arbel and Gretton, 2018). In fact, DF (p0(·|θ)‖pw(·|θ)) ≥ 0 ∀ θ,
with equality holding if and only if the two conditional distributions are the same, as long
as they are both supported on the whole X (by Theorem 7). Exploiting Theorem 10, a
similar result can be obtained for DE

FS .

Requiring p0(x|θ) > 0 ∀ x ∈ X , ∀ θ ∈ Θ means that the model is capable of generating
all possible values of x ∈ X with non-zero probability for all θ ∈ Θ; otherwise, there may
be distributions pw 6= p0 minimizing the objective (see Appendix C.6).

Analogously to Eqs. (4) and (6), we can obtain explicit formulations7of DE
F and DE

FS :

DE
F (p0‖pw) =
∫

Θ

∫

X
p0(x|θ)π(θ)

d∑

i=1

[
1

2

(
∂ log pw(x|θ)

∂xi

)2

+

(
∂2 log pw(x|θ)

∂x2
i

)]
dxdθ

︸ ︷︷ ︸
J(w)

+C,

DE
FS(p0‖pw) =
∫

V

∫

Θ

∫

X
q(v)p0(x|θ)π(θ)

[
vT (Hx log pw(x|θ))v +

1

2
‖∇x log pw(x|θ)‖22

]
dxdθdv

︸ ︷︷ ︸
JS(w)

+C,

(9)

where C denotes constants with respect to w. For these two expressions, it is immediate to
obtain Monte Carlo estimates using samples (θ(j), xj)Nj=1, θ

(j) ∼ π and x(j) ∼ p(·|θ(j)), and

draws from the noise model {v(j,k)}1≤j≤N,1≤k≤M :

Ĵ(w) =
1

N

N∑

j=1




d∑

i=1


1

2

(
∂ log pw(x(j)|θ(j))

∂xi

)2

+

(
∂2 log pw(x(j)|θ(j))

∂x2
i

)


 ,

ĴS(w) =

1

NM

N∑

j=1

M∑

k=1

[
v(j,k),T (Hx log pw(x(j)|θ(j)))v(j,k) +

1

2

∥∥∥∇x log pw(x(j)|θ(j))
∥∥∥

2

2

]
.

(10)

As we discussed before, computing the square bracket term in ĴS(w) only requires two
backward propagations, while the square bracket term in Ĵ(w) requires d. However, ĴS(w)
sums over M ·N terms, while Ĵ(w) sums over N . Nevertheless, when using ĴS(w) to train
a neural network, good results can be obtained by using a single different noise realization
for each training sample (θ(j), xj) at each epoch, thus leading to smaller computational cost
with respect to Ĵ(w) (Song et al., 2020).

7. Requiring p0(x|θ) to be differentiable and pw(x|θ) doubly differentiable over X for all θ and:

A1. p0(x|θ) ∂
∂xi

log pw(x|θ)→ 0 for xi ↘ ai and xi ↗ bi,∀w, i, θ,

A2. Ep0 [‖∇x log p0(X|θ)‖2] <∞, Ep0 [‖∇x log pw(X|θ)‖2] <∞, ∀w, θ,

A3. Ep0

∣∣∣ ∂2

∂xi∂xj
log pw(X|θ)

∣∣∣ <∞,∀w, θ, ∀i, j = 1, . . . , d.

.

10

Score Matched Neural Exponential Families for LFI

Score Matching for conditional exponential family. Both the implicit and explicit
versions DE

F (p0‖pw) and DE
FS(p0‖pw) are well defined only if pw is a proper density, which

requires Zw(θ) <∞. In practice, we are interested in:

ŵ = arg min Ĵ(w) or ŵ = arg min ĴS(w). (11)

When we compute Ĵ(w) or ĴS(w), we only need to evaluate fw in a finite set of points
{x(j)}Nj=1 which belong to a bounded subset of X , say A ⊂ X . We can thus redefine the
approximating family as follows:

p′w(x|θ) =
p̃′w(x|θ)
Z ′w(θ)

, p̃′w(x|θ) =

{
exp(ηw(θ)T fw(x)) if x ∈ A,
gw(x, θ) otherwise,

where gw is such that Z ′w(θ) <∞, and can always be chosen such that p̃′w(x|θ) is a smooth
and continuous function of x.

Replacing pw in Eq. (10) with p′w does not change the value of Ĵ(w) and ĴS(w); however,
as p′w is normalized, Eqs. (8) and (9) are now well defined for all w. Additionally, we do
not need to specify A or gw explicitly as we never evaluate the normalizing constant Z ′w(θ)
(which depends on them). In the following we will thus use interchangeably pw and p′w.

Remark 15 (Notation) For notational simplicity, in the rest of the work we drop the hat
in ŵ, denoting by pw the approximation obtained by one of the strategies in Eq. (11), and
by fw and ηw the corresponding sufficient statistics and natural parameters networks.

4. Inference using the likelihood approximation

By fitting the neural conditional exponential family (Eq. 2) with SM or SSM to parameter-
simulation pairs generated from the model, we obtain an approximation of the likelihood up
to the normalization constant Zw(θ): for each fixed θ, the function x 7→ exp(ηw(θ)T fw(x))
is approximately proportional to p0(x|θ). We exploit pw in two ways: first, by using fw
as summaries in ABC; secondly, using the full approximation to draw samples from the
posterior with MCMC for doubly intractable distributions. Both approaches are illustrated
in Figure 1 and discussed next.

4.1 ABC with neural conditional exponential family statistics

The exponential family is the most general set of distributions with sufficient statistics of
a given size (see Appendix A). Using fw as summaries in ABC is therefore intuitively ap-
pealing: fw represents in fact the sufficient statistics of the best exponential family approx-
imation to p0, according to the (sliced) Fisher divergence. If p0 belongs to the exponential
family, DE

F (p0‖pw) = DE
FS(p0‖pw) = 0 if fw and ηw are sufficient statistics and natural

parameters for p0.

To use fw in ABC, some practicalities are needed: first, we discard the last component
of fw, which represents the base measure hw(x). Secondly, as discussed in Section 3.1, fw is
identifiable only up to a scale parameter, so that the magnitude of the different components
of fw can vary significantly. Before using ABC, then, we rescale the different components

11

Pacchiardi and Dutta

Model ABC

ExchangeMCMC(Sliced) Score
Matching

Neural exponential
family

Simulate from the model

Simulate
from the
model

ABC posterior

samples

ExchangeMCMC
posterior samplesTraining samplesTraining samples

Figure 1: Diagram showing the roles of the different components in the inference
routines. SSM or SM are used to train the neural exponential family on model simulations.
Then, the sufficient statistics fw are used in ABC or, alternatively, the neural exponential
family is inserted in ExchangeMCMC. Notice how additional model simulation are needed
for ABC but not for ExchangeMCMC.

by their standard deviation on new samples generated from the model, to prevent the ones
with larger magnitude from dominating the ABC distance.

In the following, we will call the approach described here ABC with Score Matching
statistics, for short ABC-SM, or ABC-SSM in the Sliced Score Matching case.

4.2 ExchangeMCMC with neural conditional exponential family

In contrast to other statistics learning methods (Jiang et al., 2017; Wiqvist et al., 2019;
Pacchiardi et al., 2020; Akesson et al., 2021), our technique provides a full likelihood ap-
proximation; it is therefore tempting to sample from the corresponding posterior directly,
bypassing in this way ABC (and the additional model simulations required) altogether.

Unfortunately, pw is known only up to the normalizing constant Zw(θ); therefore, stan-
dard MCMC cannot be directly exploited , and methods for doubly-intractable distributions
are required (see Park and Haran, 2018 for a review). Here, we use ExchangeMCMC (Mur-
ray et al. (2012), Algorithm 1 in Appendix D.4), an MCMC where, for each proposed θ′,
a simulation from the distribution pw(x|θ′) is used within a Metropolis-Hastings rejection
step.

In our case, we cannot generate samples from pw(·|θ′) directly; to circumvent such issue,
Murray et al. (2012) suggested to run an MCMC targeting pw(·|θ′) for each ExchangeMCMC
step; if the chain is long enough, the last step can be considered as a draw from pw. Empirical
results (Caimo and Friel, 2011; Alquier et al., 2016; Everitt, 2012; Liang, 2010) show that
a relatively small number of inner MCMC steps are enough for good performance and that
initializing the inner chain at the observation improves convergence; we employ therefore
this strategy in our work.

Further, a variant of ExchangeMCMC employs Annealed Importance Sampling to im-
prove the mixing of the chain (Murray et al., 2012). Specifically, a sequence of K auxiliary
variables are drawn from Metropolis-Hastings kernels targeting some intermediate distri-
butions, and the ExchangeMCMC acceptance rate is modified accordingly. This approach,
termed bridging, decreases the number of rejections in ExchangeMCMC due to poor auxil-
iary variables. See Appendix D.4 for more details.

12

Score Matched Neural Exponential Families for LFI

In the following, we will refer to using ExchangeMCMC with our likelihood approxi-
mation as Exc-SM or Exc-SSM, according to whether SM or SSM are used to obtain the
likelihood approximation. Exc-SM and Exc-SSM avoid additional model simulations (be-
yond the ones required to train pw) at the cost of running a nested MCMC. However, the
number of steps in the inner MCMC required to obtain good performance increases with
the dimension of X . Exc-SM and Exc-SSM are therefore ideally applied to models with
moderate dimension x (up to a few hundred), for which simulation is expensive. The same
likelihood approximation can be used to perform inference on several observations, which
makes the computational gain even greater in this case.

4.3 Tuning choices

Our proposals involve some tuning choices: to define the neural exponential family, the
architecture of the two neural networks needs to be chosen. Typically, the parameters
of a simulator model are low-dimensional, so a simple fully-connected network suffices.
The choice of architecture for the statistics network is more delicate; however, modern
architectures can be leveraged to design networks suitable for specific kinds of data (such
as images or temporal data), which can lead powerful summaries. Additionally, this design
choice also pertains to all statistics learning methods employing neural networks (such as
the regression one in Jiang et al., 2017).

Next, the dimension of the sufficient statistics needs to be fixed. We recommend to
initially set this to the number of components of θ; if the performance of the learnt statistics
is unsatisfactory, the number of statistics can be increased. We remark how other popular
statistics learning methods (Jiang et al., 2017) do not allow this, which yields increased
flexibility.

Finally, if ExchangeMCMC is used, it needs to be tuned as well. As this avoids however
further model simulations, tuning ExchangeMCMC can be a modest price to pay in cases
where the simulator model is expensive to run.

Remark 16 (Model misspecification) The neural exponential family approximation is
only valid close to where training data was distributed. Specifically, if x0 is far from that
region, pŵ(x0|θ) may be assigned a large value rather than a (correct) small one. This could
happen when the model p0 is unable to generate data resembling the observation for any
parameter value, such that standard Bayesian inference in presence of the likelihood would
also perform poorly. To get better inference in such scenarios, we could use the generalized
posterior introduced in Matsubara et al. (2022), which is robust to outliers and suitable for
doubly-intractable distributions (as the exponential family).

In Exc-SM and Exc-SSM, we may wonder whether running MCMC over x targeting
pw(x|θ) for a fixed θ can fail due to what we discussed above. We believe this is not the
case: if the MCMC is initialized close to training data and pw(·|θ) is a good representation
of p0(·|θ) in that region, pw(·|θ) is small for values of x close to the boundary of the region
where training data was distributed. Then, the MCMC is “trapped” inside that region and
has no way of reaching regions of X where pw may behave irregularly.

13

Pacchiardi and Dutta

5. Simulation Studies

We perform simulation studies with our proposed approaches (Exc-SM, Exc-SSM, ABC-SM
and ABC-SSM) and we compare with:

• ABC with statistics learned with the rejection approach discussed in Sec. 1.1.1.1
of the introduction of the present thesis (Fearnhead and Prangle, 2012; Jiang et al.,
2017), which we term ABC-FP.

• Population Monte Carlo (PMC, Cappé et al. 2004) with Ratio Estimation (PMC-RE).

• PMC with Synthetic Likelihood, using the robust covariance matrix estimator devel-
oped in Ledoit and Wolf (2004) to estimate Σθ. We will denote this as PMC-SL.

Specifically, we consider three exponential family models and two time-series models
(AR(2) and MA(2)) for which the exact likelihood is available, as well as a large-dimensional
model with unknown likelihood (the Lorenz96 model, Lorenz 1996; Wilks 2005).

Exc-SM and Exc-SSM do not require additional simulations and run an MCMC, in con-
trast to sequential algorithms for the other methods, which we run with parallel computing.
Comparing the computational cost is therefore not easy; in Appendix F.3, we report the
number of simulations needed by the different methods to reach the same performance
achieved by Exc-SM for the models with known likelihood.

Choice of neural network architecture In our exponential family approximation, we
fix ds to the number of parameters in each model. We added a Batch Normalization layer
(see Appendix D.2) on top of the neural network representing ηw to reduce the unidentifiabil-
ity introduced by the dot product between fw(x) and ηw(θ) (as discussed in Appendix C.10).
For all techniques, we use 104 training samples. All NNs use SoftPlus nonlinearity (NNs
using the more common ReLU nonlinearity cannot be used with SM and SSM as they have
null second derivative with respect to the input).

For all models, ηw is represented by fully connected NNs. For the exponential family
models, fully connected NNs are also used for fw and sβ. For the time series and Lorenz96
models, we parametrize fw and sβ with Partially Exchangeable Networks (PENs, Wiqvist
et al. 2019). The output of an r-PEN is invariant to input permutations which do not
change the probability density of data distributed according to a Markovian model of order
r (see Appendix D.3). As AR(2) is a 2-Markovian model, we use a 2-PEN; similarly, a
1-PEN is used for the Lorenz96 model, which is 1-Markovian. Finally, we use a 10-PEN
for the MA(2) model; albeit not being Markovian, Wiqvist et al. (2019) argued that MA(2)
can be considered as “almost” Markovian so that the loss of information in imposing a PEN
structure of high enough order is negligible. Further details are given in Appendix E.

Choice of inferential parameters. For ABC, we employ Simulated annealing ABC
(SABC, Albert et al. 2015), which considers a set of particles and updates their position
in parameter space across several iterations. We use 100 iterations and 1000 particles
(posterior samples), corresponding to 1000 model simulations per iteration.

In Exc-SM and Exc-SSM, we run Exchange MCMC for 20000 steps, of which the first
10000 are burned-in. During burn-in, at intervals of 100 outer steps, we tune the proposal
sizes according to the acceptance rate in the previous 100 steps; this adaptation is not

14

Score Matched Neural Exponential Families for LFI

Model Beta Gamma8 Gaussian AR(2) MA(2) Lorenz96

Parameter α β k θ µ σ θ1 θ2 θ1 θ2 b0 b1 σe φ

Lower bound 1 1 1 1 −10 1 −1 −1 −1 0 1.4 0 1.5 0
Upper bound 3 3 3 3 10 10 1 0 1 1 2.2 1 2.5 1

Table 1: Bounds of uniform priors for the considered models.

done after burn-in, which makes the chain ergodic. Our implementation of the Exchange
algorithm is detailed in Appendix D.4.1. For the exponential family and time-series models,
we test different numbers of inner MCMC steps, and eventually use 30 for the former and
100 for the latter, above which there was no noticeable performance improvement (more
details in Appendix F.1.3 and Appendix F.2).

In PMC-SL and PMC-RE, we run the PMC algorithm with 10 iterations, 1000 posterior
samples and respectively 100 (with SL) and 1000 (with RE) simulations per parameter
value in order to estimate the approximate likelihood; such a large number of simulations
(respectively 105 and 106 for each iteration) is required for the likelihood estimate to be
numerically stable. For the exponential family models, we use the true sufficient statistics;
for AR(2) and MA(2), we instead use autocovariances with lag 1 and 2 (as for instance in
Marin et al. 2012). For PMC-RE, the cross-product of the statistics is also added to the
list of statistics, as PMC-SL implicitly uses it.

5.1 Exponential family models

First, we consider three models for which a sample is defined as a 10-dimensional inde-
pendent and identical distributed (i.i.d.) draw from either a Gaussian, Gamma or Beta
distribution (all belonging to the exponential family). We put uniform priors on the param-
eters, with bounds given in Table 1. These models have different data ranges: unbounded
for Gaussian, and respectively lower bounded by 0 and bounded in [0, 1] for Gamma and
Beta. Therefore, we directly apply SM and SSM to the Gaussian model, while TranSM and
TranSSM are applied to Gamma and Beta.

Inferred sufficient statistics and natural parametrization. With these models, our
exponential family approximation is well specified. Thus, we compare the learned fw and
ηw with the exact sufficient statistics and natural parameters using the Mean Correlation
Coefficient (MCC, Appendix B.1.1), which ranges in [0, 1] and measures how well a multi-
variate function is recovered. We report results obtained with SM in Table 2; the values are
close to 1, indicating that the sufficient statistics and natural parameters are recovered quite
well by our method. In Appendix F.1, we report values corresponding to SSM (Table 9),
as well as comparisons of exact and learned embeddings in Figures 9 and 10.

Inferred posterior distribution. Figure 2 shows posteriors obtained with the proposed
methods, for a possible observation for each model; we see that all approximate posteriors

8. The scale parameter of the Gamma distribution is usually called θ; in contrast, in all the rest of this
work we use θ to denote all parameters. Please beware of the difference.

15

Pacchiardi and Dutta

Model MCC weak in MCC weak out MCC strong in MCC strong out

Beta (statistics) 0.964 0.958 0.723 0.723
Beta (nat. par.) 0.990 0.991 0.807 0.812

Gamma (statistics) 0.911 0.924 0.894 0.883
Gamma (nat. par.) 0.967 0.967 0.872 0.873

Gaussian (statistics) 0.944 0.937 0.808 0.824
Gaussian (nat. par.) 0.974 0.974 0.970 0.972

Table 2: MCC for exponential family models between exact embeddings and
those learned with SM. We show weak and strong MCC values; MCC is between 0 and
1 and measures how well an embedding is recovered up to permutation and rescaling of its
components (strong) or linear transformation (weak); the larger, the better. “in” denotes
MCC on training data used to find the best transformation, while “out” denote MCC on
test data. We used 500 samples in both training and test data sets.

are remarkably close to the exact one; moreover, the results with SM and SSM are indis-
tinguishable. For all methods, we also estimate the Wasserstein distance between true and
approximate posterior and compute the Root Mean Squared Error (RMSE) between mean
of the true and approximate posterior; this is repeated for 100 simulated observations, with
results reported in Figure 3. ABC-FP is here the worst method; additionally, ABC-SM and
ABC-SSM perform similarly to PMC-SL and PMC-RE. Finally, Exc-SM and Exc-SSM are
marginally worse.

5.2 Time series models

The Moving Average model of order 2, or MA(2), and the AutoRegressive model of order
2, or AR(2), are special cases of the ARMA time-series model. The MA(2) model is defined
by:

X1 = ξ1, X2 = ξ2 + θ1ξ1, Xj = ξj + θ1ξj−1 + θ2ξj−2, j = 3, . . . , t,

while the AR(2) is defined as:

X1 = ξ1, X2 = ξ2 + θ1X1, Xj = ξj + θ1Xj−1 + θ2Xj−2, j = 3, . . . , t;

in both, ξj ’s are i.i.d. standard normal error terms (unobserved). We take here t = 100
and we put uniform priors on the parameters of the two models, with bounds given in
Table 1. For these models, the true likelihood can be evaluated, but they do not belong to
the exponential family9.

Inferred posterior distribution. Figure 4 shows the posterior obtained with our pro-
posed methods, for a possible observation for each model; again, our approximations are
close to the exact posterior, with Exc-SM and Exc-SSM leading to slightly broader poste-
riors. Again, we assess performance with the Wasserstein distance from the true posterior

9. More precisely, they cannot be written as an exponential family with embedding dimension fixed with
data size; in fact, MA(2) can be written as a Gaussian distribution with t× t covariance matrix, which
is an exponential family whose embedding dimension increases with data size.

16

Score Matched Neural Exponential Families for LFI

1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0 True posterior
Posterior mean
True value

1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0 ABC-SM
Posterior mean
True value

1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0 ABC-SSM
Posterior mean
True value

1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0 Exc-SM
Posterior mean
True value

1.0 1.5 2.0 2.5 3.01.0

1.5

2.0

2.5

3.0 Exc-SSM
Posterior mean
True value

(a) Beta

1.0 1.5 2.0 2.5 3.0
k

1.0

1.5

2.0

2.5

3.0 True posterior
Posterior mean
True value

1.0 1.5 2.0 2.5 3.0
k

1.0

1.5

2.0

2.5

3.0 ABC-SM
Posterior mean
True value

1.0 1.5 2.0 2.5 3.0
k

1.0

1.5

2.0

2.5

3.0 ABC-SSM
Posterior mean
True value

1.0 1.5 2.0 2.5 3.0
k

1.0

1.5

2.0

2.5

3.0 Exc-SM
Posterior mean
True value

1.0 1.5 2.0 2.5 3.0
k

1.0

1.5

2.0

2.5

3.0 Exc-SSM
Posterior mean
True value

(b) Gamma

10 5 0 5 101

4

7

10 True posterior
Posterior mean
True value

10 5 0 5 101

4

7

10 ABC-SM
Posterior mean
True value

10 5 0 5 101

4

7

10 ABC-SSM
Posterior mean
True value

10 5 0 5 101

4

7

10 Exc-SM
Posterior mean
True value

10 5 0 5 101

4

7

10 Exc-SSM
Posterior mean
True value

(c) Gaussian

Figure 2: True and approximate posteriors for exponential family models, for a
single observation per model. Dashed line represents posterior mean, while green solid line
represents the exact parameter value.

PM
C-SL

PM
C-RE

ABC-FP

ABC-SM

ABC-SS
M
Ex

c-S
M

Ex
c-S

SM
0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
as

se
rs

te
in

 d
ist

an
ce

Beta

0.0

0.2

0.4

0.6

0.8

1.0

RM
SE

 p
os

te
rio

r m
ea

n

PM
C-SL

PM
C-RE

ABC-FP

ABC-SM

ABC-SS
M
Ex

c-S
M

Ex
c-S

SM
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
as

se
rs

te
in

 d
ist

an
ce

Gamma

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

 p
os

te
rio

r m
ea

n

PM
C-SL

PM
C-RE

ABC-FP

ABC-SM

ABC-SS
M
Ex

c-S
M

Ex
c-S

SM
0

2

4

6

8

10

W
as

se
rs

te
in

 d
ist

an
ce

Gaussian

0

2

4

6

8

10

RM
SE

 p
os

te
rio

r m
ea

n

Figure 3: Performance of the different techniques for exponential family models.
Wasserstein distance from the exact posterior and RMSE between exact and approximate
posterior means are reported for 100 observations using boxplots. Boxes span from 1st
to 3rd quartile, whiskers span 95% probability density region and horizontal line denotes
median. The numerical values are not comparable across examples, as they depend on the
range of parameters. Here, SL and RE used the true sufficient statistics.

17

Pacchiardi and Dutta

1.0 0.5 0.0 0.5 1.0

1

1.0

0.8

0.6

0.4

0.2

0.0

2

True posterior
Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

1.0

0.8

0.6

0.4

0.2

0.0

2

ABC-SM
Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

1.0

0.8

0.6

0.4

0.2

0.0

2

ABC-SSM
Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

1.0

0.8

0.6

0.4

0.2

0.0

2

Exc-SM
Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

1.0

0.8

0.6

0.4

0.2

0.0

2

Exc-SSM
Posterior mean
True value

(a) AR(2)

1.0 0.5 0.0 0.5 1.0

1

0.0

0.2

0.4

0.6

0.8

1.0

2

True posterior

Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

0.0

0.2

0.4

0.6

0.8

1.0

2

ABC-SM

Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

0.0

0.2

0.4

0.6

0.8

1.0

2

ABC-SSM

Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

0.0

0.2

0.4

0.6

0.8

1.0

2

Exc-SM

Posterior mean
True value

1.0 0.5 0.0 0.5 1.0

1

0.0

0.2

0.4

0.6

0.8

1.0

2

Exc-SSM

Posterior mean
True value

(b) MA(2)

Figure 4: True and approximate posteriors for AR(2) and MA(2) models, for a
single observation per model. Dashed line represents posterior mean, while green solid line
represents the exact parameter value.

PM
C-SL

PM
C-RE

ABC-FP

ABC-SM

ABC-SS
M
Ex

c-S
M

Ex
c-S

SM
0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

 d
ist

an
ce

AR(2)

0.0

0.2

0.4

0.6

0.8

RM
SE

 p
os

te
rio

r m
ea

n

PM
C-SL

PM
C-RE

ABC-FP

ABC-SM

ABC-SS
M
Ex

c-S
M

Ex
c-S

SM
0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

 d
ist

an
ce

MA(2)

0.0

0.2

0.4

0.6

0.8

RM
SE

 p
os

te
rio

r m
ea

n

Figure 5: Performance of the different techniques for AR(2) and MA(2) models.
Wasserstein distance from the exact posterior and RMSE between exact and approximate
posterior means are reported for 100 observations using boxplots. Boxes span from 1st
to 3rd quartile, whiskers span 95% probability density region and horizontal line denotes
median.

and the RMSE between the means of true and approximate posterior for all methods, over
100 fresh observations. The results are reported in Figure 5; here, ABC-FP is the best
method, with ABC-SM and ABC-SSM marginally worse. Exc-SM and Exc-SSM follow and
perform better or comparably to PMC-RE and PMC-SL.

5.3 Lorenz96 meteorological model

The Lorenz96 model (Lorenz, 1996) is a toy model of chaotic atmospheric behaviour, in-
cluding interacting slow and fast variables. We use here a modified version (Wilks, 2005)

18

Score Matched Neural Exponential Families for LFI

where the effect of the fast variables on the slow ones is replaced by a stochastic effective
term depending on a set of parameters. Specifically, this model is defined by the following
coupled Differential Equations (DEs):

dyk
dt

= −yk−1(yk−2 − yk+1)− yk + 10− g(yk, t; θ); k = 1, . . . ,K,

where yk(t) is the value at time t of the k -th variable and indices are cyclic (index K + 1
corresponds to 1, and so on). The effective term g depends on θ = (b0, b1, σe, φ), and is
defined upon discretizing the DEs with a timestep ∆t:

g(y, t; θ) =

linear deterministic term︷ ︸︸ ︷
b0 + b1y +

zero mean AR(1)︷ ︸︸ ︷
φ · r(t−∆t) + σe(1− φ2)1/2η(t),

where η(t) ∼ N (0, 1). We numerically integrate the model using 4th order Runge-Kutta
method with ∆t = 1/30 in an interval [0, T]; further, we fix the initial condition to a value
y(0) which is independent on parameters. Here, the true likelihood is unaccessible, so that
sampling from the exact posterior is impossible.

We consider the model in a small and large configuration: in the small one, we take
K = 8 and T = 1.5, which lead to 45 timesteps and a data dimension of d = 45 · 8 = 360.
In the large one, we take instead K = 40 and T = 4, corresponding to 120 timesteps and a
data dimension of d = 120 · 40 = 4800.

Inferred posterior distribution. For both configurations, we perform inference with
ABC-SSM and ABC-FP; additionally, we use Exc-SSM for the small configuration (as
running the exchange algorithm in the large one is too costly). In ExchangeMCMC, we
used 500 inner MCMC steps and 200 bridging steps for each outer step. Figure 6 reports
posteriors for a single observation in both setups. The ABC-FP posterior is narrower than
the one for ABC-SSM, but concentrated around similar parameter values. The posterior for
Exc-SSM looks slightly different: it concentrates on similar parameter values as the other
two for θ1 and θ2, but is broader for σe and φ.

Posterior predictive validation. We assess the performance of the posterior predictive
distribution p(x|x0) =

∫
p(x|θ)π(θ|x0)dθ, in which π(θ|y) is the posterior obtained with one

of the considered techniques. Specifically, we use the Kernel and Energy Scoring Rules (SRs)
to evaluate how well the predictive p(x|x0) predicts the observation x0. A SR (Gneiting and
Raftery, 2007) is a function of a distribution and an observation, and assesses the mismatch
between them (the smaller, the better). More details on Scoring Rules are given in Sec. 1.2.2
in the introduction of the present thesis, with details on those used here.

As the Lorenz96 model returns a (multivariate) time-series, we compare predictive dis-
tribution and observation at each timestep independently. We repeat this validation with
100 different observations and corresponding posteriors, for all techniques and both model
configurations. We obtain cumulative scores by summing the scores over timesteps; median
and some quantile values over the 100 observations are shown in Fig. 7. In both model
configurations, the posterior predictive generated by ABC-SSM and Exc-SSM marginally
outperform ABC-FP, according to both SRs. Score values at each timestep, together with
more details on the validation technique, are reported in Appendix F.4.

19

Pacchiardi and Dutta

1
2

e

1 2 e

ABC-FP

1
2

e

1 2 e

ABC-SSM

1
2

e

1 2 e

Exc-SSM

(a) Lorenz96 - Small configuration

1
2

e

1 2 e

ABC-FP
1

2
e

1 2 e

ABC-SSM

(b) Lorenz96 - Large configuration

Figure 6: Example of posterior inference for a single Lorenz96 observation with
different approaches, for both small (first row) and large (second row) configurations.
In each panel, the diagonal plots represent the univariate marginal distributions, while the
off-diagonal ones are bivariate density contour plots. Moreover, the green and red lines
represent respectively exact parameter value and posterior mean. All axes span full prior
range (see Table 1).

6. Related works

ABC statistics with NN. Using NNs for learning statistics for ABC has been previously
suggested, first with the regression approach discussed in Sec. 1.1.1.1 in the introduction
of the present thesis (used in Jiang et al. 2017; Wiqvist et al. 2019; Akesson et al. 2021).
In Pacchiardi et al. (2020), a NN is trained so that the distance between pairs of simulated
statistics best reproduces the distance between the corresponding parameter values. Chen
et al. (2021) instead fit a NN by maximizing an estimate of the mutual information between
statistics and parameters.

ABC statistics from auxiliary models. Some similarities with our work can be found
in Gleim and Pigorsch (2013) and Ruli et al. (2016), which consider respectively an auxiliary

20

Score Matched Neural Exponential Families for LFI

ABC-FP

ABC-SS
M

Ex
c-S

SM

8000

9000

10000

11000

En
er

gy
 S

co
re

Small Lorenz96

100

110

120

130

140

150

160

170

Ke
rn

el
 S

co
re

ABC-FP

ABC-SS
M

160000

180000

200000

220000

En
er

gy
 S

co
re

Large Lorenz96

1000

1500

2000

2500

3000

Ke
rn

el
 S

co
re

Figure 7: Predictive performance of the different methods according to the Ker-
nel and Energy Scoring Rules. Each boxplot represents cumulative (i.e., summed over
the time index) scoring rule value for a given method for the small (left) and large (right)
Lorenz96 configuration. Boxes span from 1st to 3rd quartile, whiskers span 95% probability
density region and horizontal line denotes median.

model and a composite likelihood alongside the simulator model and obtain summary statis-
tics from them; similarly, our approach can be seen as building an auxiliary exponential
family model with easily accessible summary statistics.

Statistics-free ABC. Recent ABC methods (Park et al., 2016; Bernton et al., 2019;
Drovandi and Frazier, 2021; Wang et al., 2021) replace the summary statistics with the
estimate of a statistical divergence. However, to estimate the latter, these methods require
multiple observations and multiple simulations (some tens) from the model for each value
of θ. This makes them inapplicable when a single observation is present and when the cost
of running the simulator model is substantial.

LFI with NNs. The idea of sampling directly from the approximate posterior defined by
pw is related to a suite of LFI methods using NNs. A large part of these works use normaliz-
ing flows (NNs implementing invertible transformations, suitable for efficiently representing
probability densities; see Papamakarios et al., 2021 for a review); specifically, Papamakarios
et al. (2019); Lueckmann et al. (2019) use them to learn an approximation of the likeli-
hood, while Papamakarios and Murray (2016); Lueckmann et al. (2017); Greenberg et al.
(2019); Radev et al. (2020) learn the posterior. Most of the above approaches focus on
inference for a single observation, tailoring the simulations to better approximate the pos-
terior for the relevant parameter values at lower computational cost; instead, Radev et al.
(2020) and Lueckmann et al. (2019) propose to amortize across observations, similarly to
our approach. Besides normalizing flows, Klein et al. (2020) casts the LFI problem as a
distributional regression one. Finally, Tabak et al. (2020) does not employ NNs but rather
solves a Wasserstein barycenter problem to model conditional maps which allow sampling
from the distribution of an observation conditional on some covariates.

21

Pacchiardi and Dutta

Fitting unnormalized models. Several techniques besides Score Matching have been
proposed for fitting unnormalized models: MCMC-MLE (Geyer, 1991) exploits MCMC
to estimate the normalizing constant for different values of the parameter and uses that in
MLE. Contrastive Divergence (CD, Hinton 2002) instead uses MCMC to obtain a stochastic
approximation of the gradient of the log-likelihood; this requires a smaller number of MCMC
steps with respect to MCMC-MLE, but the stochastic gradient estimate is biased. Minimum
Probability Flow (MPF, Sohl-Dickstein et al. 2011) considers a dynamics from data to model
distribution, and minimizes the Kullback Leibler divergence between the data distribution
and the one obtained by running the dynamics for a short time; however, the efficacy
of MPF depends significantly on the considered dynamics. Noise Contrastive Estimation
(NCE, Gutmann and Hyvärinen 2012) converts the parameter estimation problem to ratio
estimation between data distribution and a suitable noise distribution; in practice, NCE uses
logistic regression to discriminate the observed data and data generated from the noise; in
the loss, the normalizing constant appears explicitly and can be estimated independently. To
be effective, NCE requires the noise distribution to overlap well with the data density while
being easy to sample from and to evaluate, which is not easy to get. Finally, some works
(Dai et al., 2019a,b) use the dual formulation of MLE to avoid estimating the normalizing
constant at the price of introducing dual variables to be jointly estimated.

Fitting unnormalized conditional models. The approaches above running dynamics
to estimate quantities (CD, MCMC-MLE, MPF) cannot easily be applied to the conditional
setting. NCE has been instead used in Ton et al. (2021) with a single noise distribution for all
values of the conditioning variable θ; it however requires an independent NN to parametrize
the normalizing constant Z(θ). SM can be instead easily applied to the conditional setting,
as previously done in Arbel and Gretton (2018) and further demonstrated in our work. To
the best of our knowledge, SSM was not applied to a conditional setting before, although
the extension straightforwardly follows what is done for SM.

Fast approximations of SM. Besides SSM, some approximations to SM only requiring
first derivatives have been investigated. For instance, Denoising Score Matching (Vincent,
2011) computes the Fisher divergence between the model and a kernel density estimate of
the data distribution, which is equal to a quantity independent on the second derivative.
Similarly, Kernel Stein Discrepancy (Liu and Wang, 2016) intrinsically depends on first
derivatives only. For both techniques, however, several samples for each θ are required in
the conditional setting; generating them would increase the number of simulations required
to fit the neural exponential family. In contrast, our chosen SSM approximation only relies
on first derivatives and does not need multiple simulations for each θ. Furthermore, SSM
requires less tuning choices than both KSD and Denoising Score Matching.

Finally, Wang et al. (2020) exploits a connection between the Fisher divergence and
gradient flows in the 2-Wasserstein space to develop an approximation that only relies on
first-order derivatives.

Kernel Conditional Exponential Families (KCEFs). In KCEFs (Arbel and Gret-
ton, 2018), the summary statistics and natural parameters are functions in a Reproducing
Kernel Hilbert Space, whose properties allow to evaluate the density although an infinite-
dimensional embedding space is used (using the kernel trick). In Arbel and Gretton (2018),
SM was used to fit KCEFs instead of our neural conditional exponential families. They

22

Score Matched Neural Exponential Families for LFI

build on Sriperumbudur et al. (2017), which first used SM to perform density estimation
with (non-conditional) Kernel Exponential Families (KEFs). In Wenliang et al. (2019) NNs
are used to parametrize the kernel in a KEF and trained with the SM loss. However, as
KCEFs do not have finite-dimensional sufficient statistics, they are unsuitable for learning
ABC statistics. Additionally, KCEFs have a worse complexity in terms of training dataset
size with respect to NN-based methods. KCEFs have also been used with a dual MLE
objective in Dai et al. (2019a).

7. Conclusions and extensions

We proposed a technique to approximate the likelihood using a neural conditional expo-
nential family, trained via (Sliced) Score Matching to handle the intractable normalizing
constant.

We tested this approximation in two setups: first, by using the exponential family
sufficient statistics as ABC statistics, which is intuitively appealing as the exponential
family is the largest class of distributions with fixed-size sufficient statistics. We empirically
showed this to be comparable or outperform ABC with summaries built via the state-of-
the-art regression approach (Fearnhead and Prangle, 2012; Jiang et al., 2017).

Secondly, we used MCMC for doubly-intractable distributions to sample from the pos-
terior corresponding to the likelihood approximation, which we found to have performance
comparable to the other approaches. This can be repeated for any new observation without
additional model simulations, making it advantageous for expensive simulator models.

Our proposed direct sampling approach based on exponential family likelihood approx-
imation and ExchangeMCMC could be improved as follows:

• we used ExchangeMCMC (Murray et al., 2012) to handle double intractability, but
other algorithms could be more efficient, (for instance the one in Liang et al. (2016),
which makes use of parallel computing). Alternatively, we could exploit the general-
ized posterior introduced in Matsubara et al. (2022), which allows standard MCMC
to be used for double intractable distributions and is robust to outliers.

• To infer the posterior for a single observation, approximating the likelihood for all x’s
and θ’s as we do now is suboptimal. Similar performance may in fact be obtained
with fewer simulations tailored to the observation. Sequential schemes implementing
such ideas have been introduced for LFI using normalizing flows (see for instance
Papamakarios et al. 2019) and could be extended to our setup.

• The motivation for the current work was learning ABC statistics, hence the exponen-
tial family formulation. However, the dot-product structure between fw and ηw is not
beneficial for the direct sampling approach. An energy-based model, which employs
a single NN with input (x, θ) in the exponent, may be more expressive and easier to
train.

• An energy-based posterior approximation πw(θ|x) could be trained by minimizing the
expectation over the data marginal p(x) of the (sliced) Fisher divergence with respect
to the true posterior. This is complementary to the strategy employed in this work

23

Pacchiardi and Dutta

to fit pw(x|θ). Interestingly, πw(θ|x) would be known up to a normalizing constant
depending on x only, making use of standard MCMC possible.

Acknowledgments

We acknowledge fruitful discussion with prof. Christian Robert, prof. Antonietta Mira
and prof. Geoff Nicholls. LP is supported by the EPSRC and MRC through the OxWaSP
CDT programme (EP/L016710/1), which also funds the computational resources used to
perform this work. RD is funded by EPSRC (grant nos. EP/V025899/1, EP/T017112/1)
and NERC (grant no. NE/T00973X/1).

All summary statistics learning strategies used in this manuscript (the regression ap-
proach and the exponential family with SM and SSM) have been implemented in the Python
library ABCpy (Dutta et al., 2021b), which exploits Pytorch (Paszke et al., 2019) to train
the NNs. ABCpy was also used to run PMC-SL, PMC-RE and the ABC experiments.

24

Score Matched Neural Exponential Families for LFI

A. Sufficient statistics

Consider a conditional probabilistic model p(x|θ); moreover, abusing notation, we will also
denote as p(x|t) the density pX|T (X = x|T = t), as well as p(x|t; θ) the density pX|T,Θ(X =
x|T = t; Θ = θ), where here Θ denotes the random variable which takes values θ. Finally,
we use π to denote distributions over the parameter values θ; specifically, π(θ|x) denotes the
standard posterior, and π(θ|t) is an abuse of notation for the density πΘ|T (Θ = θ|T = t).

Definition 17 A statistic t = t(x) is sufficient if p(x|t; θ) = p(x|t), where θ is a parameter
of the distribution. Alternatively, we have, in the Bayesian setting:

π(θ|x) = π(θ|t(x)),

for any (non-degenerate) choice of prior distribution π(θ).

The existence of sufficient statistics implies a precise form of the distribution:

Theorem 18 (Fisher-Neyman factorization theorem): A statistic is sufficient ⇐⇒
p(x|θ) = h(x)g(t(x)|θ), where h and g are non-negative functions.

It is clear from the above theorem that f(x) in the exponential family is sufficient.

A stronger result regarding exponential family also exists, which goes under the name
of Pitman–Koopman–Darmois theorem. This theorem says that the exponential family is
the most general family of distributions for which there is a sufficient statistics whose size is
fixed with the number of samples, provided that the domain of the probability distribution
does not vary with the parameter θ (Koopman, 1936).

B. Properties of the conditional exponential family

B.1 Linear identifiability

Let us consider the exponential family model pw(x|θ) = exp(ηw(θ)T fw(x))/Zw(θ), where
here ηw and fw are not restricted to be Neural Networks. Khemakhem et al. (2020) studies
the identifiability properties of the above family; specifically, they consider identifiability
properties of the feature extractors ηw and fw. Identifiability of representations is useful
as it means that two different models from the above family learn similar representations
when trained with different initialization on the same data set. In the framework of our
likelihood-free inference task, it also means that if the true model belongs to the family we
are considering, it is theoretically possible to recover the natural parameters and the true
sufficient statistics.

If we consider now ηw and fw to be Neural Networks, this causes problems as they are
not identifiable in the standard sense. In fact, many different parameter configurations lead
to the same function (as there are many symmetries in how the transformations in a Neural
Network layer are defined). Therefore, Khemakhem et al. (2020) introduces, following
previous works, two more general notions of identifiable representations. Subsequently, let
W denote the space of the possible Neural Network weights w.

25

Pacchiardi and Dutta

Definition 19 Weak identifiability (Section 2.2 in Khemakhem et al., 2020). Let

∼fw and ∼ηw be equivalence relations on W defined as:

w ∼fw w′ ⇐⇒ fw(x) = Afw′(x) + c

w ∼ηw w′ ⇐⇒ ηw(θ) = Bηw′(θ) + e

where A and B are (ds×ds)-matrices of rank at least min(ds, d) and min(ds, p) respectively,
and c and e are vectors.

Definition 20 Strong identifiability (Section 2.2 in Khemakhem et al., 2020).

Let ∼fs and ∼ηs be equivalence relations on W defined as:

w ∼fs w′ ⇐⇒ ∀i, fi,w(x) = aifσ(i),w′(x) + ci

w ∼ηs w′ ⇐⇒ ∀i, ηi,w(θ) = biηγ(i),w′(θ) + ei

where σ and γ are permutations of [[1, n]], ai and bi are non-zero scalars and ci and ei are
scalars.

Weak identifiability means that two parameters are equivalent if the corresponding fea-
ture extractors are the same up to linear transformation. Strong identifiability is a specific
case of the weak one, in which the linear transformation is restricted to be a scaled permu-
tation.

After introducing these concepts, Khemakhem et al. (2020) provides two theorems (The-
orem 1 and 2) in which weak or strong identifiability of the representations are implied if
different parameter values lead to same distributions, i.e. pw(x|θ) = pw′(x|θ)∀ x, θ =⇒
w ∼fw w′ or pw(x|θ) = pw′(x|θ)∀ x, θ =⇒ w ∼fs w′ (and similar for ∼ηw and ∼ηs). These two
results hold under some strict conditions on the functional form of the feature extractors f
and η (concerning differentiability, rank of the Jacobian and other properties).

Then, they verify explicitly these conditions for a simple fully connected Neural Network
architecture, in which they restrict the activation functions ot be LeakyReLUs and the layer
widths to be monotonically increasing or decreasing. Of course, this architecture is quite
restrictive; it is in fact impossible to study theoretically the properties of more complex ar-
chitectures and to show that they satisfy the necessary conditions for identifiability to hold.
However, they show empirically that the conditional structure, even with more complex
architectures, is helpful in increasing identifiability of the representations (as computed by
the MCC, see Appendix B.1.1).

Therefore, even if the architectures which are used throughout this work do not satisfy
the assumptions needed to explicitly show identifiability of the representations, we argue
that the presence of such results is an hint towards the fact that identifiability (according
to the above definitions) is actually achievable.

B.1.1 Mean Correlation Coefficient (MCC)

In order to evaluate empirically whether the above identifiability results are satisfied, we
need a way to measure similarity between two embeddings of the same set of data. By
following Khemakhem et al. (2020), we describe here the Mean Correlation Coefficient

26

Score Matched Neural Exponential Families for LFI

(MCC), which is a simple measure to do that. In the main text, we used this technique to
assess how well our approximating family recovered the exact sufficient statistics and natural
parameters, in the case where the data generating model p0 belongs to the exponential
family.

In the following, we describe two versions of MCC, which are directly linked to the weak
and strong identifiability definitions in Appendix B.1.

Strong MCC. Let us consider two sets of embeddings {yi ∈ Rds}ni=1 and {zi ∈ Rds}ni=1,
which can be thought of as samples from two multivariate random variables Y = t1(X) and
Z = t2(X), for two functions t1, t2 and a random variable X; in general, the order of the
components of these two vectors is arbitrary, so that we cannot say, for instance, that the
1st component of Y corresponds to the 1st of Z. Then, MCC computes all the correlation
coefficients between each pair of components of Y and Z. Next, it solves a linear sum
assignment problem which identifies each component of Y with a component of Z aiming
to maximize the sum of the absolute value of the corresponding correlation coefficient. In
this way, it tries to couple the embeddings which are most linear one to the other. Finally,
the MCC is computed as the mean of the absolute correlation coefficients after the right
permutation of elements of the vector.

MCC is therefore a metric between 0 and 1 which measures how well each component
of the original embedding (say, Y) has been recovered independently by the other one (say,
Z). Moreover, as it relies on the correlation coefficient, it is not sensitive to rescaling or
translation of each of the embeddings (in fact, the correlation coefficient of two univariate
random variables is ±1 when a deterministic linear relationship between the two exists,
unless the relationship is is perfectly horizontal or vertical).

Finally, in order to get a better estimate of the MCC, we can split the set of embeddings
in two: one which will be used to determine the permutation and which will give an in-
sample estimate of the MCC, and the other one to which the previous permutation will be
applied and will give an out-of-sample estimate of MCC.

Weak MCC. The above definition of MCC aims to estimate how well each single element
of the embedding is recovered, independently on the other; we call it, following Khemakhem
et al. (2020), strong MCC. However, there may be cases where the recovered embedding
is equal to the correct one up to a more generic linear transformation A. In that case,
we would like to have a way to measure, up to a linear transformation, how far are two
embeddings. Following Khemakhem et al. (2020), we therefore apply Canonical Correlation
Analysis (CCA) Hotelling (1936) to learn A, and after that compute MCC, which we will
call weak MCC. Specifically, CCA is a way to compute linear transformation A so that the
correlations between corresponding components of A·Y and Z is maximized. The so-defined
weak MCC is therefore a number between 0 and 1 which measures how close is Y to Z after
the best linear transformation is applied to Y. Similarly as before, a part of data is used
to learn the best embedding; we can therefore use fresh samples to get an out-of-sample
estimate along the in-sample one.

27

Pacchiardi and Dutta

B.2 Universal approximation capability

Khemakhem et al. (2020) provide a result (Theorem 3) in which they prove universal ap-
proximation capability of the conditional exponential family. Specifically, they show that,
considering the dimension of the representations ds as an additional parameter, it is possi-
ble to find an arbitrarily good approximation of any conditional probability density p0(x|θ),
provided that X and Θ are compact Hausdorff spaces. In practice, good approximation may
be achieved with a value of ds larger than d or p. Moreover, as remarked in the main text,
this result is not concerned with the way the approximating family is fit; indeed, we expect
that this task becomes (both statistically and computationally) more challenging when ds
increases.

C. Some properties of Score Matching

C.1 Proof of Theorem 6

Our Theorem 6 extends Theorem 1 in Hyvärinen (2005), that considers the case X = Rd,
and which is recovered in the case ai = −∞ and bi = +∞ ∀ i. Our proof follows Hyvärinen
(2005), which however explicitly stated only Assumptions A1 and A2. Following Yu et al.
(2019), we add the additional Assumption A3 which is required for Fubini-Tonelli theorem
to apply.

In order to prove Theorem 6, Assumption A3 can be weakened to Ep0
∣∣∣ ∂2∂x2i log pw(X)

∣∣∣ <
∞, ∀w,∀i = 1, . . . , d. We state the more general one in the main text as that allows
Theorem 9 for SSM to be proved as well.

Proof Let s0(x) = ∇x log p0(x) denote the score of the data distribution, and analogously
s(x;w) = ∇x log pw(x). Then, Eq. (3) can be rewritten as:

DF (p0‖pw) =
1

2

∫

X
p0(x)‖s0(x)− s(x;w)‖2dx

=
1

2

∫

X
p0(x)

[
‖s0(x)‖2 + ‖s(x;w)‖2 − 2s0(x)T s(x;w)

]
dx

=
1

2

∫

X
p0(x)‖s0(x)‖2dx

︸ ︷︷ ︸
C

+
1

2

∫

X
p0(x)‖s(x;w)‖2dx

︸ ︷︷ ︸
A

−
∫

X
p0(x)s0(x)T s(x;w)dx

︸ ︷︷ ︸
B

Note that we can split the integral into the three parts as the first two are assumed to be
finite in A2; as a consequence, B is also finite thanks to |2ab| ≤ a2 + b2.

The first element does not depend on w, so that we can safely ignore that. The second
one appears as it is in the final Eq. (4). Therefore, we will focus on the last term, which we
can write as:

B = −
d∑

i=1

∫

X
p0(x)s0,i(x)si(x;w)dx; (12)

Let’s now consider a single i, which we can rewrite as:

−
∫

X
p0(x)

∂ log p0(x)

∂xi
si(x;w)dx = −

∫

X

p0(x)

p0(x)

∂p0(x)

∂xi
si(x;w)dx = −

∫

X

∂p0(x)

∂xi
si(x;w)dx.

28

Score Matched Neural Exponential Families for LFI

Now, let’s consider the integral over xi first, and apply partial integration to it. Doing this
relies on the Fubini-Tonelli’s theorem, which can be safely applied due to B being finite as
discussed above. We now apply partial integration to the integral over xi:

−
∫ b1

a1

∫ b2

a2

. . .

∫ bd

ad

∂p0(x)

∂xi
si(x;w)dx = −

∫ b1

a1

. . .

∫ bi−1

ai−1

∫ bi+1

ai+1

. . .

∫ bd

ad

[
p0(x)si(x;w)|xi↗bixi↘ai

−
∫ bi

ai

p0(x)
∂si(x;w)

∂xi
dxi

]
dx1 . . . dxi−1dxi+1 . . . dxd

=

∫ b1

a1

. . .

∫ bi−1

ai−1

∫ bi+1

ai+1

. . .

∫ bd

ad

[∫ bi

ai

p0(x)
∂si(x;w)

∂xi
dxi

]
dx1 . . . dxi−1dxi+1 . . . dxd

=

∫

X
p0(x)

∂si(x;w)

∂xi
dx.

where the second equality holds thanks to Assumption A1. For stating the last equality
rigorously, we need to invoke Fubini-Tonelli’s theorem again; this relies on the assumption:

∫

X

∣∣∣∣p0(x)
∂si(x;w)

∂xi

∣∣∣∣ dx = Ep0

∣∣∣∣
∂si(X;w)

∂xi

∣∣∣∣ <∞,

which is equivalent to Assumption A3.

By repeating this argument for all terms in the sum in Eq. (12), we obtain that:

B =

∫

X
p0(x)

d∑

i=1

∂si(x;w)

∂xi
dx =

∫

X
p0(x)

d∑

i=1

∂2 log pw(x)

∂x2
i

dx,

which concludes our proof.

C.2 Proof of Theorem 7

We give here an extended version of Theorem 7, which we then prove following Hyvärinen
(2005).

Theorem 21 Assume ∃w? : p0(·) = pw?(·). Then:

w = w? =⇒ DF (p0‖pw) = 0.

Further, if p0(x) > 0 ∀x ∈ X , you also have:

DF (p0‖pw) = 0 =⇒ pw(·) = p0(·).

Finally, if no other value w 6= w? gives a pdf pw that is equal to pw?:

DF (p0‖pw) = 0 =⇒ w = w?.

29

Pacchiardi and Dutta

Proof The first statement is straightforward. For the second one, if DF (p0‖pw) = 0 and
p0(x) > 0 ∀ x ∈ X , then ∇x log pw(x) = ∇x log p0(x); this in turn implies that log pw(x) =
log p0(x) + c ∀ x ∈ X for a constant c, which however is 0 as both p0 and pw are pdf’s.

The third statement follows from the second as, for the additional assumption, w? is
the only choice of w which gives pw = p0.

C.3 Proof of Theorem 9

Similarly to the SM case, our Theorem 9 extends Theorem 1 in Song et al. (2020), that
considers the case X = Rd, and which is recovered in the case ai = −∞ and bi = +∞ ∀ i.
Our proof follows Song et al. (2020), which however explicitly stated only Assumptions A1,
A2 and A4. Following Yu et al. (2019), we add the additional Assumption A3 which is
required for Fubini-Tonelli theorem to apply. The strategy of the proof is very similar to
Theorem 6.

Proof As before, let s0(x) = ∇x log p0(x) denote the score of the data distribution, and
analogously s(x;w) = ∇x log pw(x). Then, Eq. (5) can be rewritten as:

DFS(p0‖pw) =
1

2

∫

V

∫

X
q(v)p0(x)[vT s0(x)− vT s(x;w)]2dxdv

=
1

2

∫

V

∫

X
q(v)p0(x)

[
(vT s0(x))2 + (vT s(x;w))2 − 2(vT s0(x))(vT s(x;w))

]
dxdv

=

∫

V

∫

X
q(v)p0(x)

[
1

2
(vT s(x;w))2 − (vT s0(x))(vT s(x;w))

]
dxdv + C

Note that we can split the integral into the three parts thanks to Assumptions A2 and A4,
which ensure that the expectation of each term is bounded. Additionally, we have absorbed
in the constant C the term which does not depend on w.

In the last row of the above Equation, the first term in the square brackets appears in
Eq. (6), which is what we want to prove. We focus therefore on the second term:

−
∫

V

∫

X
q(v)p0(x)

[
(vT s0(x))(vT s(x;w))

]
dxdv

= −
∫

V

∫

X
q(v)p0(x)

[
(vT∇x log p0(x))(vT∇x log pw(x))

]
dxdv

= −
∫

V

∫

X
q(v)

[
(vT∇xp0(x))(vT∇x log pw(x))

]
dxdv

= −
d∑

i=1

∫

V

∫

X
q(v)

[
vi
∂p0(x)

∂xi
(vT∇x log pw(x))

]
dxdv

(13)

We will now consider one single element of the sum for a chosen i, and consider the integral
over xi first. Swapping the order of integration relies on Fubini-Tonelli’s theorem, which
can be safely applied due to the above quantity being finite as discussed above. We then

30

Score Matched Neural Exponential Families for LFI

apply partial integration to the integral over xi:

−
∫

V

∫ b1

a1

∫ b2

a2

. . .

∫ bd

ad

q(v)

[
vi
∂p0(x)

∂xi
(vT∇x log pw(x))

]
dxdv

= −
∫

V

∫ b1

a1

. . .

∫ bi−1

ai−1

∫ bi+1

ai+1

. . .

∫ bd

ad

q(v)

[
vip0(x)(vT∇x log pw(x))

∣∣xi↗bi
xi↘ai

−
∫ bi

ai

vip0(x)

(
vT

∂

∂xi
∇x log pw(x)

)
dxi

]
dx−i,

where dx−i = dx1 . . . dxi−1dxi+1 . . . dxd. The first element in the square bracket goes to 0
thanks to Assumption A1. We are left therefore with:

∫

V

∫ b1

a1

. . .

∫ bi−1

ai−1

∫ bi+1

ai+1

. . .

∫ bd

ad

[∫ bi

ai

q(v)p0(x)vi

(
vT

∂

∂xi
∇x log pw(x)

)
dxi

]
dx−i

=

∫

V

∫

X
q(v)p0(x)vi

(
vT

∂

∂xi
∇x log pw(x)

)
dxdv.

The last equality again exploits Fubini-Tonelli theorem, which in this case requires:
∫

V

∫

X
q(v)p0(x)

∣∣∣∣vi
(
vT

∂

∂xi
∇x log pw(x)

)∣∣∣∣ dxdv = EV∼qEX∼p0

∣∣∣∣Vi
(
V T ∂

∂xi
∇x log pw(X)

)∣∣∣∣ <∞.

This is satisfied by combining Assumptions A3 and A4, as in fact:

EV∼qEX∼p0

∣∣∣∣Vi
(
V T ∂

∂xi
∇x log pw(X)

)∣∣∣∣ = EV∼qEX∼p0

∣∣∣∣∣∣
Vi

d∑

j=1

Vj
∂2

∂xi∂xj
log pw(X)

∣∣∣∣∣∣

≤
d∑

j=1

EV∼qEX∼p0

∣∣∣∣ViVj
∂2

∂xi∂xj
log pw(X)

∣∣∣∣ =

d∑

j=1

EV∼q |ViVj | · EX∼p0
∣∣∣∣

∂2

∂xi∂xj
log pw(X)

∣∣∣∣

≤
d∑

j=1

√
EV∼qV 2

i · EV∼qV 2
j · EX∼p0

∣∣∣∣
∂2

∂xi∂xj
log pw(X)

∣∣∣∣ ,

where the last inequality holds thanks to Cauchy-Schwarz inequality; Assumptions A3 and
A4 ensure the last row is <∞.

Back to Eq. (13), we have therefore:

−
d∑

i=1

∫

V

∫

X
q(v)

[
vi
∂p0(x)

∂xi
(vT∇x log pw(x))

]
dxdv

=

∫

V

∫

X

d∑

i=1

q(v)p0(x)vi

(
vT

∂

∂xi
∇x log pw(x)

)
dxdv

=

∫

V

∫

X

d∑

i=1

d∑

j=1

q(v)p0(x)vivj
∂2

∂xi∂xj
log pw(x)dxdv

=

∫

V

∫

X
q(v)p0(x)

[
vT (Hx log pw(x)) v

]
dxdv.

31

Pacchiardi and Dutta

C.4 Proof of Theorem 10

We give here an extended version of Theorem 10. This is a version of Lemma 1 in Song
et al. (2020), whose proof we adapt.

Theorem 22 Assume ∃w? : p0(·) = pw?(·). Then:

w = w? =⇒ DFS(p0‖pw) = 0.

Further, if p0(x) > 0 ∀x ∈ X , you also have:

DFS(p0‖pw) = 0 =⇒ pw(·) = p0(·).

Finally, if no other value w 6= w? gives a pdf pw that is equal to pw?:

DFS(p0‖pw) = 0 =⇒ w = w?.

Proof The first statement is straightforward.
For the second one, if DF (p0‖pw) = 0 and p0(x) > 0 ∀ x ∈ X , then:

∫

V
q(v)(vT (∇x log p0(x)−∇x log pw(x)))2dv = 0

⇐⇒
∫

V
q(v)vT (∇x log p0(x)−∇x log pw(x))(∇x log p0(x)−∇x log pw(x))T vdv = 0

⇐⇒ (∇x log p0(x)−∇x log pw(x))TE[V V T](∇x log p0(x)−∇x log pw(x)) = 0

(?)⇐⇒ ∇x log p0(x)−∇x log pw(x) = 0

⇐⇒ log pw(x) = log p0(x) + c ∀ x ∈ X ,
where in the third line above V is a random variable distributed according to q, for which
therefore E[V V T] is positive definite by Assumption A4, which ensures equivalence (?)
holds. Additionally, as both p0 and pw are pdf’s (and therefore normalized), the constant
c = 0.

The third statement follows from the second as, for the additional assumption, w? is
the only choice of w which gives pw = p0.

C.5 Proof of Theorem 12

We give here an extended version of Theorem 12, which we then prove.

Theorem 23 Let Y = t(X) ∈ Y for a bijection t, and denote by pY0 and pYw the distributions
on Y induced by the distributions p0 and pw on X . Assume ∃w? : p0(·) = pw?(·), and let D
denote either DF or DFS. Then:

w = w? =⇒ D(pY0 ‖pYw) = 0.

32

Score Matched Neural Exponential Families for LFI

Further, if p0(x) > 0 ∀x ∈ X and Assumption A4 holds, you also have:

D(pY0 ‖pYw) = 0 =⇒ pw(·) = p0(·).

Finally, if no other value w 6= w? gives a pdf pw that is equal to pw?:

D(pY0 ‖pYw) = 0 =⇒ w = w?.

Proof The proof relies on the equivalence between distributions for the random variables
Y and X; in fact, by fixing y = t(x) and denoting by |Jt(x)| the determinant of the Jaco-

bian matrix of t evaluated in x, we have that pY0 (y) = p0(x)
|Jt(x)| and pYw(y) = pw(x)

|Jt(x)| , so that

p0(·) = pw(·) ⇐⇒ pY0 (·) = pYw(·). The first and third statements follow directly from this
fact by applying Theorem 21 (if D is chosen to be DF) or Theorem 22 (if D = DFS) to
D(pY0 ‖pYw); for the second, notice also that p0(x) > 0 ∀ x ∈ X =⇒ pY0 (y) ∀ y ∈ Y > 0 as t is
a bijection; then, Theorem 21 or Theorem 22 imply that pY0 (·) = pYw(·) =⇒ p0(·) = pw(·).

C.6 Discussion on the positivity condition for SM

We follow here the discussion in Appendix D of Arbel and Gretton (2018).

Consider again the Fisher divergence in Eq. (3); we want to understand the conditions
under which this is a divergence between probability measures, which essentially means it
is 0 if and only if the probability distributions are the same.

Besides the fact that both p0 and pw need to be continuous (otherwise the gradient
would be a delta function), it turns out that a necessary condition is that p0 is positive
on the whole space to which the random variable belong (let’s say X), if we don’t put any
restrictions on pw. Otherwise, the following scenario may happen (see Appendix D in Arbel
and Gretton, 2018): consider the case in which p0(x) is a mixture of two densities supported
on disjoint sets: p0(x) = αApA(x) + αBpB(x), with non-negative weights αA, αB, such that

pA(x) > 0 ⇐⇒ x ∈ XA, pB(x) > 0 ⇐⇒ x ∈ XB, XA,XB ∈ X ; XA ∩ XB = ∅.

Note that this implies ∃x ∈ X : p0(x) = 0. In this setting, any pw of the form pw(x) =
βApA(x) + βBpB(x) will give DF (p0‖pw) = 0. This can be seen by computing the Fisher
divergence directly:

33

Pacchiardi and Dutta

DF (p0‖pw) =
1

2

∫

X
p0(x)‖∇x log p0(x)−∇x log pw(x)‖2dx

=
1

2

∫

X
p0(x)‖∇x log(αApA(x) + αBpB(x))−∇x log(βApA(x) + βBpB(x))‖2dx

=
1

2

∫

XA

p0(x)‖∇x log(αApA(x))−∇x log(βApA(x))‖2dx+

1

2

∫

XB

p0(x)‖∇x log(αBpB(x))−∇x log(βBpB(x))‖2dx

=
1

2

∫

XA

p0(x) ‖∇x log pA(x)−∇x log pA(x)‖2︸ ︷︷ ︸
=0

dx+

1

2

∫

XB

p0(x) ‖∇x log pB(x)−∇x log pB(x)‖2︸ ︷︷ ︸
=0

dx

= 0,

where the third equality relies on splitting the integration domain over the two subsets on
which pA and pB are supported (and the other is 0) and the fourth equality relies on the
presence of the logarithmic derivatives, that removes the importance of the mixture weights.

Due to the above, in the case of the conditional Fisher divergence in Eq. (8), p0(x|θ)
needs to be supported on the whole X for each θ in order for DE

F (p0|pw) = 0 ⇐⇒ p0(·|θ) =
pw(·|θ) π(θ)-almost everywhere. This can be seen by considering the case of univariate
parameter θ and by choosing p0(x|θ) = pA(x)H(θ) + (1 − H(θ))pB(x), where pA and pB
are as above and H(·) represents the Heaviside function. In this case, choosing pw(x|θ) =
q(x), where q(x) = βApA(x) + βBpB(x) will give DE

F (p0|pw) = 0, as for each fixed θ,
DF (p0(·|θ)|pw(·|θ)) falls in the case considered above.

C.7 Equivalence of Correction Factor and Transformed Score Matching

As discussed in the main text (Section 3.2), the first extension of score matching to non-
negative random variables was given in Hyvärinen (2007):

D+
F (p0‖pw) =

1

2

∫

Rd
+

p0(x)‖∇x log p0(x)� x−∇x log pw(x)� x‖2dx, (14)

where � denotes element wise product between vectors and Rd+ is the positive octant of Rd.
The correction factor x relaxes assumption A1 to p0(x)x2

i
∂
∂xi

log pw(x) → 0, so that it is
possible to get an explicit form of the above with looser assumptions. This is an example
of Corrected Score Matching (CorrSM, 3.2), in which the issue arising due to distribution
having a compact support is fixed by introducing a correction factor in the formulation of
the objective.

Yu et al. (2019) proposed a more general score matching for non-negative random vari-
ables by allowing freedom of choice in the factor that is used in the integrand to correct for
the integration by parts step (Appendix C.1), leading to the following objective:

D+
F (p0‖pw) =

1

2

∫

Rn
+

p0(x)‖(∇x log p0(x))�
√
h(x)− (∇x log pw(x))�

√
h(x)|‖2dx, (15)

34

Score Matched Neural Exponential Families for LFI

where h(x) has the same dimension as x, and has positive elements almost surely.

The explicit formulation associated to Eq. (15) can be obtained under the following
assumptions:

A1b p0(x)hj(xj)∂j log pw(x)→ 0 for xi ↘ 0 and xi ↗∞, ∀ w, i,

A2b Ep0‖∇x log p0(X)� h1/2(X)‖22 <∞, Ep0‖∇x log pw(X)� h1/2(X)‖22 <∞ ∀w,

A3b Ep0‖(∇x log pw(X)�h(X)))′‖1 <∞ ∀w, where the prime symbol denotes element-wise
differentiation.

Under the above assumption, Eq. (15) is equal to:

D+
F (p0‖pw) =

∫

Rn
+

p0(x)
d∑

i=1

[
1

2
hi(x)

(
∂ log pw(x)

∂xi

)2

+

hi(x)

(
∂2 log pw(x)

∂x2
i

)
+ h′i(x)

∂ log pw(x)

∂xi

]
dx+ C,

where C is a constant with respect to pw.

In Proposition 2 in Yu et al. (2019), they give a result similar to our Theorems 7
and 12 guaranteeing that minimization of D+

F (p0‖pw) is a valid procedure for estimating a
probabilistic model. When considering the finite-sample estimate of C.7, different choices
of h(x) may allow to focus more on smaller/larger values of x, which may in practice have
better properties than the original form for non-negative data in Hyvärinen (2007), which
is recovered for h(x) = x2 (where the square is applied element-wise).

This formulation in Eq. (15), albeit originally considered for non-negative random vari-
ables only, can be extended to random variables with any bounded domain, by choosing a
suitable function h and modifying A1b to hold for xi going to the limits of the domain.
In the next Sections, we therefore compare this approach with TranSM without specifying
the domain; we will show that both the implicit and explicit formulation are the same
with both TranSM and CorrSM, implying that the two are equivalent (we will show this in
the specific case in which the transformation and the function h act independently on the
different coordinates, but we believe this to be the case more in general; see Appendix C.9).

C.7.1 Equivalence of the implicit form

As mentioned in the main text (Section 3.2), another approach to apply Fisher divergence to
distributions with bounded domain (on one side or both) is to transform the data space to
the real line and then apply standard Fisher divergence; we called this Transformation Score
Matching (TranSM). Let us denote t such a transformation, which we assume to be bijective.

Then, starting from p0(x) and pw(x) we get p0(y) = p0(x)
|Jt(x)| and pw(y) = pw(x)

|Jt(x)| for y = t(x),

where Jt is the Jacobian matrix of t and | · | denotes here the determinant; here, differently
from the main text, we use a lighter notation where p0(y) and p0(x) are two different
densities associated to the different name of the argument (same for pw). We investigate
what is the Fisher divergence between the densities of the transformed distributions. Recall
that p0(y)dy = p0(x)dx, for y = t(x). Moreover, we also have that:

35

Pacchiardi and Dutta

∇yg(y) = Jt−1(t(x))∇xg(t(x)) = (Jt(x))−1∇xg(t(x)),

where the second equality comes from the fact that Jt−1(t(x)) = (Jt(x))−1 due to the inverse
function theorem. Then, we can compute the Fisher Divergence between p0(y) and pw(y)
(corresponding to the TranSM objective):

DF (p0(y)‖pw(y)) =
1

2

∫
p0(y)‖∇y log p0(y)−∇y log pw(y)‖2dy

=
1

2

∫
p0(x)‖(Jt(x))−1[∇x log p0(x)−∇x log |Jt(x)| − ∇x log pw(x) +∇x log |Jt(x)|]‖2dx

=
1

2

∫
p0(x)‖(Jt(x))−1[∇x log p0(x)−∇x log pw(x)]‖2dx.

In the rather common case in which the transformation t acts on each component inde-
pendently, the Jacobian matrix is diagonal; in this case, the latter is equivalent to Eq. (15)
upon defining h(x) to be a vector containing the squares of the diagonal elements of the
Jacobian, i.e. putting

√
hi(x) = (Jt(x))−1

ii .

C.7.2 Equivalence of the explicit form

For both TranSM and CorrSM it is possible to get an explicit form of the objective (Eqs. 4
and C.7), in which the integrand does not depend on the data distribution p0. In case in
which the transformation t acts on the different components independently, the original
explicit divergence for the transformed variable Y = t(X) is equivalent to the corrected
explicit divergence for the original X, analogously to the implicit Fisher divergence form.
In fact, by applying the definition of explicit Fisher divergence (Eq. 4) to the transformed
Y , you get:

DF (p0(y)‖pw(y)) =

∫
p0(y)

d∑

i=1

[
1

2

(
∂ log pw(y)

∂yi

)2

+

(
∂2 log pw(y)

∂y2
i

)]

︸ ︷︷ ︸
?

dy + C

where C is a constant with respect to pw. Considering only the term in square brackets,
denoting ∂i = ∂

∂xi
and setting

√
hi(x) = (Jt(x))−1

ii , we get:

? =
1

2
hi(x)

[
(∂i log pw(x))2 +

1

4
(∂i log hi(x))2 + ∂i log pw(x) · ∂i log hi(x)

]

+
1

2
h′i(x) · ∂i log pw(x) +

1

4
h′i(x)∂i log hi(x) + hi(x)∂2

i log pw(x) +
1

2
hi(x)∂2

i log hi(x)

=
1

2
hi(x) (∂i log pw(x))2 +

1

8
hi(x) (∂i log hi(x))2

+ h′i(x) · ∂i log pw(x) +
1

4
h′i(x)∂i log hi(x) + hi(x)∂2

i log pw(x) +
1

2
hi(x)∂2

i log hi(x).

The blue terms are the same that appear in the CorrSM explicit formulation (Eq. C.7),
while all other terms are constants with respect to pw.

We have shown therefore that CorrSM and TranSM are equivalent in both the explicit
and implicit formulation if the transformation is applied independently on the elements of

36

Score Matched Neural Exponential Families for LFI

x. Therefore, the two approaches are completely equivalent when it comes to minimizing
them.

C.8 Specific formulation of TranSM

We discuss here the transformations we apply in this work in TranSM; specifically, we only
consider the case in which the support for the multivariate x is defined by an intersection of
element-wise inequalities, i.e. x ∈⊗d

i=1(ai, bi), where ai, bi can take on the values ±∞ as
well. In this case, then, a transformation can be applied independently on each element of
x. We consider here the following transformations (which are also used in the Stan package
Carpenter et al., 2017):

• When X ∈ [0,∞)d, the transformation we use is yi = log(xi) ∈ Rd. This corresponds
to diagonal Jacobian with elements (Jt(x))−1

ii = xi, so that the above expression
becomes the same as the original Fisher divergence for non-negative random variables
discussed in Eq. (14).

• More generally, if xi ∈ [ai,+∞) for |ai| < ∞, we can transform the data as yi =
log(xi − ai) ∈ R, while if xi ∈ (−∞, bi] for |bi| < ∞, we simply reverse the trans-
formation: yi = log(bi − xi) ∈ R. These correspond to (Jt(x))−1

ii = xi − ai and
(Jt(x))−1

ii = bi − xi.

• Finally, if xi ∈ (ai, bi) for |ai|, |bi| < ∞, we can use the transformation defined as:

yi = t(xi) = logit
(
xi−ai
bi−ai

)
with inverse transformation xi = t−1(yi) = a+ (b−a) eyi

eyi+1 .

This corresponds to (Jt(x))−1
ii = (xi−ai)(bi−xi)

bi−ai .

C.9 Score matching for distributions with more general domain

As highlighted in the main text, across this work we are concerned with applying score
matching to distributions whose support is defined by independent constraints on the dif-
ferent coordinates, as for instance X =

⊗d
i=1(ai, bi). That is arguably the most common

case in the literature. However, there have been some recent works which applied SM to
more general cases. For instance, Mardia et al. (2016) devised a way to apply it to a di-
rectional distribution defined on an oriented Riemannian manifold (for instance, a sphere).
It is interesting how their derivation of the explicit form from the implicit one relies on
the classical divergence theorem (also known as Stokes’ theorem), of which the partial in-
tegration trick used in Theorem 6 is a specific case. Liu and Kanamori (2019) introduced
instead a way to apply score matching for a distribution on Euclidean space with complex
truncation boundaries; their approach boils down to introducing a smart correction factor
which goes to 0 at the boundary (thus allowing partial integration) but still being tractable;
again, they need a more general version of Theorem 6 to obtain an objective for which the
integrand does not depend on the data distribution.

In Appendix C.7, we established that CorrSM and TranSM are equivalent if the trans-
formation is applied independently on the elements of x, which requires the domain to be
defined by independent constraints on the coordinates. In the more general case of a ir-
regular subset of Euclidean space (as in the setup of Liu and Kanamori, 2019), it is not

37

Pacchiardi and Dutta

clear whether it is always possible to associate a correction factor to a transformation which
maps the space to Rd. That seems to be plausible if the domain satisfies some regularity
conditions which may be related to convexity (for instance think of a triangle in R2, which
can be easily stretched to cover the full space). We are not aware however of any work
investigating this.

C.10 Score matching with exponential family

We consider here the exponential family:

pw(x|θ) = exp(ηw(θ)T fw(x))/Zw(θ),

and want to find the value of w minimizing either DE
F (p0‖pw) or DE

FS(p0‖pw), which are
defined in Eq. (9).

Under the conditions discussed in Section 3.3, if π(θ) > 0 ∀ θ, then DE
F (p0‖pw) = 0 and

DE
FS(p0‖pw) = 0 ⇐⇒ pw(x|θ) = p0(x|θ) π(θ)-almost everywhere. In this case, if fw and

ηw satisfy the conditions required for the theorems mentioned in Appendix B.1 to hold,
then fw and ηw are respectively sufficient statistics and natural parameters of p0.

In order to find the value of the empirical estimate of the explicit for of both DE
F (p0‖pw)

and DE
FS(p0‖pw), we insert the definition of the exponential family with in Eq. 10, which

leads to:

Ĵ(w) =
1

N

N∑

j=1

[
d∑

i=1

(
1

2

(
ηw(θ(j))T

∂

∂xi
fw(x(j))

)2

+ ηw(θ(j))T
∂2

∂x2
i

fw(x)

)]
,

ĴS(w) =
1

NM

N∑

j=1

M∑

k=1

[
v(j,k),T Hx(ηw(θ(j))T fw(x(j)))v(j,k) +

1

2

d∑

i=1

(
ηw(θ(j))T

∂

∂xi
fw(x(j))

)2
]
.

Note that the objective does not change if you set fw(x) to c + fw(x), for a constant
vector c; in fact, this constant gets absorbed into the normalizing constant in pw(x|θ).

Similarly, ηw(θ)T fw(x) = (1/c · ηw(θ))T (c · fw(x)) for some constant c 6= 0. Therefore,
statistics and corresponding parameters are only defined up to a scale with respect to
one another; if you use two Neural Networks to learn both of them, different network
initializations may lead to different learned statistics and natural parameters, but their
product should be fixed (up to translation of fw(x)).

However, this degeneracy may make training the approximate likelihood pw with the
score matching approach harder. In order to improve training, we usually add a Batch
Normalization layer on top of the ηw network. Basically, Batch Normalization fixes the
scale of the output of ηw over a training batch, therefore removing this additional degree of
freedom and making training easier. We discuss in more detail this in Appendix D.2.

D. Computational practicalities

D.1 Computational cost of SM and SSM

For SM, as discussed in Section 3.2, exploiting automatic differentiation libraries to compute
the second derivatives of the log density requires d times more backward derivative compu-
tations with respect to the first derivatives. In fact, automatic differentiation libraries are

38

Score Matched Neural Exponential Families for LFI

able to compute derivatives of a scalar with respect to several variables at once. One single
call is therefore sufficient to obtain ∇x log pw(x). However, d additional calls are required to

obtain the second derivatives ∂2

∂x2i
log pw(x), i = 1, . . . , d, which are the diagonal elements of

the Hessian matrix of log pw(x); each additional call computes the gradient of ∂
∂xk

log pw(x)
with respect to all components of x, for some k ∈ [1, 2, . . . , d]. Algorithm 2 in Song et al.
(2020) gives a pseudocode implementation of this approach. Computational improvement
can be obtained by implementing custom code which performs the gradient computation
in the forward pass (i.e., along the computation of the neural network output for a given
input x). This avoids repeating some computations multiple times, which is done when
performing the backward step repeatedly; however, the implementation is tricky and needs
custom code for each different neural network type (we discuss how it can be done for a fully
connected neural network in Appendix D.1.1). Additionally, the computational speed-up
achievable in this way is limited with respect to what is offered by, for instance, SSM.

SSM instead requires only two backward propagation steps independently on the input
size of the network. This is possible by exploiting the vector-Hessian product structure and
computing the linear products with v (which is independent on the input x, thus can be
swapped with gradient computation) after the gradient has been computed once, so that
you only ever require the gradient of a scalar quantity. See Algorithm 1 in Song et al. (2020)
for a precise description of how that can be done.

D.1.1 Forward computation of derivatives

In the standard score matching approach, the first and second derivatives of Neural Network
outputs with respect to the inputs are required, namely:

∂fw(x)

∂xi
and

∂2fw(x)

∂x2
i

.

Neural network training is possible thanks to the use of autodifferentiation libraries, which
allow to keep trace of the different operations and to automatically compute the gradients
required for training. These libraries can be used to obtain the above derivatives.

However, as discussed previously, it is more efficient to compute the required derivatives
during the forward pass of training (i.e. when the output of the Neural Network for a
given input is computed). This requires additional coding effort specific to the chosen
Neural Network architecture. For instance, Avrutskiy (2017) provide formulas to compute
derivatives of any order recursively for fully connected Neural Networks. For more complex
NN architectures, this approach is not viable as the coding effort becomes substantial.
Additionally, with large d the improvement obtained by forward derivatives computation is
much smaller than what offered, for instance, by SSM.

In the current work, the forward derivatives approach has been implemented for fully
connected Neural Networks and Partially Exchangeable Networks (Appendix D.3). The
computational advantage is evident for the computation of the second derivatives, as shown
below. This approach allowed us to apply SM to relatively high dimensional data spaces
(up to 100 dimensional for the MA(2) and AR(2) case), but not to the larger Lorenz96
model.

39

Pacchiardi and Dutta

Forward computation of derivatives of fully connected NNs We revisit here the
work in Avrutskiy (2017). Let us consider a fully connected Neural Networks with L layers,
where the weights and biases of the l-th layer are denoted by Wl and bl, l = 1, . . . , L. Let
us denote by x the input of the Neural Network, and by zl the hidden values after the
l-th layer, before the activation function (denoted by σ) is applied. Specifically, the Neural
Network hidden values are determined by:

z1 = W1 · x+ b1, zl = Wl · σ(zl−1) + bl, l = 2, . . . , L,

where the activation function is applied element wise. Similar recursive expressions can be
given for the first derivatives:

∂z1

∂xi
= (W1)i,·,

∂zl
∂xi

= Wl ·
[
σ′(zl−1)� ∂zl−1

∂xi

]
, l = 2, . . . , L,

where (W1)i,· denotes the i-th column of W1, and � denotes element wise multiplication.
Expressions for the second derivatives are instead:

∂2z1

∂x2
i

= 0,
∂2zl
∂x2

i

= Wl ·
[
σ′′(zl−1)�

(
∂zl−1

∂xi

)2

+ σ′(zl−1)� ∂2zl−1

∂x2
i

]
, l = 2, . . . , L,

where here 0 denotes a 0 vector with the same size as z1.

When instead we are interested in cross terms of the form ∂zl
∂xi∂xj

, we can apply the

following:

∂z1

∂xi∂xj
= 0,

∂zl
∂xi∂xj

= Wl ·
[
σ′′(zl−1)� ∂zl−1

∂xi
� ∂zl−1

∂xj
+ σ′(zl−1)� ∂2zl−1

∂xi∂xj

]
, l = 2, . . . , L.

With respect to naively using auto-differentiation libraries, computing the derivatives
in the forward step is much cheaper; specifically, for fully connected NNs, we found empir-
ically the first to scale quadratically with the output size, while the second scales linearly
(Figure 8).

D.2 Batch normalization

The exponential family form used as pw depends on ηw(θ)T fw(x); if you multiply fw(x)
with an invertible matrix A and multiply η with (AT)−1, the product does not change. In
order to remove this additional degeneracy, we use a Batch Normalization (BatchNorm)
layer (Ioffe and Szegedy, 2015) to normalize the outputs of ηw(θ). Essentially, BatchNorm
rescales the different features to have always the same range across different batches. More
specifically, BatchNorm performs the following operation on y:

ỹ =
y − E[Y]√
V[Y] + ε

∗ γ + b,

where ε is a small constant used for numerical stability, and γ and b are two (optionally
learnable) sets of constants with dimension equal to y (set to 1 and 0 respectively by default).
During training, the expectation E and variance V are estimated over the batch of training

40

Score Matched Neural Exponential Families for LFI

5 10 15 20
Output size (ds)

0

100

200

300

400

500

600

Ti
m

e
(s

)

Naive autodif

5 10 15 20
Output size (ds)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

Ti
m

e
(s

)

Forward computation

Figure 8: Computational complexity for second order derivatives of Neural Net-
work outputs versus size of the output; we compare the forward computation of derivatives
with naive autodifferentiation. Here, input size is fixed to 100, and one single batch of 5000
samples is fed to the network. Computations are done on a CPU machine with 8 cores.

samples fed to the Neural Network. In testing mode, BatchNorm rescales the features by
using a fixed estimate of E and V; this estimate is obtained as a running mean over the
batches; let s(Y) represent either the population expectation or variance. When the t-th
batch is fed through the network in training mode, the running mean estimate is updated
as follows:

ŝnew(Y) = (1− p) · ŝold(Y) + p · st(Y),

where st represent the estimate on the current batch, ŝold and ŝnew respectively the old and
updated running mean and p is a momentum constant which determines how quickly the
running mean changes (the smaller it is, the slower the change of the estimate).

For instance, if the training of a Neural Network is quite unstable, the running estimate
may not be a correct estimate of E and V, so that the test loss across training epochs may
be very spiky, until network training stabilized. To solve this issue, you can either increase
p (so that the running estimate “forgets” past information faster) or, alternatively, do a
forward pass of the training data set (without computing gradients) before evaluating the
test loss, so that the running estimate is more precisely estimated.

Across this work, we apply BatchNorm to y = ηw(θ). Moreover, we do not learn the
translation parameters γ, b, and rather we fix them to be a vector of 1s and 0s.

D.3 Partially Exchangeable Networks

Partially Exchangeable Networks (PENs) were introduced in Wiqvist et al. (2019) as a
Neural Network architecture that satisfies the probabilistic invariance of Markovian models.

41

Pacchiardi and Dutta

Specifically, let consider the case in which x = (x1, . . . , xd) comes from a Markovian
model of order r, i.e.:

p(x|θ) = p(x1|θ)p(x2|x1; θ)p(x3|x2, x1; θ)
d∏

i=4

p(xi|x1, . . . , xi−1; θ)

= p(x1|θ)
d∏

i=2

p(xi|xi−r, . . . , xi−1; θ).

This definition is an extension of the standard Markovianity assumption (of order 1),
which corresponds to p(x|θ) = p(x1|θ)

∏d
i=2 p(xi|xi−1; θ), and it means that each element of

x only depends on the last r elements. When r = 0, this corresponds to i.i.d. assumption.
When a model is r-Markovian, the probability density of an observation x is invariant

to r -block-switch transformation, which is defined as follows:

Definition 24 r-block-switch transformation (Wiqvist et al., 2019) Let xi:j and
xk:l be two non-overlapping blocks with xi:(i+r) = xk:(k+r) and x(j−r):j = x(l−r):l. Then,
denoting b = (i, j, k, l), with j − i ≥ r and l − k ≥ r:

x = x1:i−1 xi:j x(j+1):(k−1) xk:l x(l+1):M

T
(r)
b (x) = x1:i−1 xk:l x(j+1):(k−1) xi:j x(l+1):M .

Otherwise, if xi:(i+r) 6= xk:(k+d) or x(j−r):j 6= x(l−r):l, then T
(r)
b (x) = x.

For instance, let us consider the case in which the data space is X = {0, 1 . . . 9}16, and
r = 2. An example of the above transformation is the following:

x = 1 7 2 3 6 4 5 8 1 7 7 2 9 5 8 1

T
(2)
(2,8,11,15)(x) = 1 7 2 9 5 8 1 7 7 2 3 6 4 5 8 1.

The authors of Wiqvist et al. (2019) provide a simple Neural Network structure which
is invariant to the r-block-switch transformation, motivated by the following theorem:

Theorem 25 ((Wiqvist et al., 2019)) Let f : XM → A r-block-switch invariant. If X
is countable, ∃ φ : X r+1 → R and ρ : X r × R→ A such that:

∀x ∈ XM , f(x) = ρ

(
x1:r,

M−r∑

i=1

φ(xi:(i+r))

)
. (16)

In practice, φ and ρ are two independent Neural Networks (which we take to be fully
connected in our case), giving rise to a PEN of order r.

In Wiqvist et al. (2019), the authors show that the posterior mean of a Markovian
variable of order r needs to be invariant to the r-block-switch transformation. Therefore, this
motivates using a PEN for learning a summary statistics as in the approach by Fearnhead
and Prangle (2012). Here, we use PEN for parametrizing the statistics in the approximating
exponential family as well; this choice implies that the approximating family has the same
Markovianity property as the true distribution, as we discuss in the following.

42

Score Matched Neural Exponential Families for LFI

D.3.1 Results for the exponential family

A deeper connection between r -Markovian probability models and r -block-switch transfor-
mation exists. We can in fact state the following result:

Lemma 26 A probability model p(x|θ) is r-Markovian ⇐⇒ the function x 7→ p(x|θ) is

r-block-switch invariant, i.e. p(x|θ) = p(T
(r)
b (x)|θ) ∀ T (r)

b .

Proof The forward direction is straightforward and can be seen by considering the decom-
position of an r -Markovian model.

The converse direction can be shown by contradiction; assume in fact that x 7→ p(x|θ) is
r -block-switch invariant but not Markovian. As it is not Markovian, ∃x = (xi, x2, . . . , xn)
for which xi:(i+r) = xk:(k+r) and x(j−r):j = x(l−r):l such that, defining b = (i, j, k, l),

p(x|θ) 6= p(T
(r)
b (x)|θ). This is however in contradiction with r -block-switch invariance,

which leads to our result.

In the case where the model we consider has a sufficient statistic, we can write p(x|θ) =
h(x)g(t(x)|θ). We get therefore the following corollary, which can be seen by applying the
above result:

Corollary 27 Consider a distribution p(x|θ) = h(x)g(t(x)|θ); if the function h(x) and t(x)
are r-block-switch invariant, then p(x|θ) is r-Markovian.

Without any further assumptions, this result is not enough to say that the sufficient
statistics t(x) for a Markovian model is r -block-switch invariant; in fact, the choice t(x) = x
always constitutes a sufficient statistic; moreover, in the decomponsition p(x|θ) = h(x)g(t(x)|θ),
it may be that the function t(x) is not r -block-switch invariant but g(t(x)|θ) is, or otherwise
that the product h(x)g(t(x)|θ) is r -block-switch invariant even if the individual terms are
not. We can however get the following result:

Lemma 28 Consider a r-Markovian distribution p(x|θ) = h(x)g(t(x)|θ); if x 7→ t(x) is not
an injection mapping, then x 7→ h(x) is r-block-switch invariant.

Proof If x 7→ t(x) is not an injection, ∃x, x′ such that t(x) = t(x′). If the density is not
degenerate, moreover, ∃θ : p(x|θ), p(x′|θ) > 0. Therefore, we consider the following ratio:

p(x|θ)
p(x′|θ) =

h(x)

h(x′)
· g(t(x)|θ)
g(t(x′)|θ) =

h(x)

h(x′)
.

Now, the left hand side is r -block-switch invariant with respect to both x and x′ indepen-
dently, implying that h(x) is as well.

We remark that it does not seem possible in general to say anything about t(x), as in
fact it may be that the function t(x) is not r -block-switch invariant but g(t(x)|θ) is. In the
specific case of an exponential family, however, a more specific result can be obtained:

43

Pacchiardi and Dutta

Lemma 29 Consider an exponential family distribution p(x|θ) = h(x) exp(η(θ)T f(x))/Z(θ)
which is r-Markovian distribution; if x 7→ f(x) is not an injection mapping, then x 7→ f(x)
is r-block-switch invariant.

Proof Without loss of generality, we consider the case in which all elements of η(θ) are not
constant with respect to θ; if this is not the case, in fact, you can redefine the exponential
family by incorporating the elements of f(x) corresponding to the constant ones of η in the
h(x) factor.

Now, h(x) is r -block-switch invariant thanks to Lemma 28. Consider now the following
decomposition:

log p(x|θ) = log h(x)− logZ(θ) +
∑

i

fi(x)ηi(θ);

as that needs to be r -block-switch invariant for any θ, this can happen only if each of the
fi(x) elements are r -block-switch invariant.

Overall, these results imply that an exponential family in which f is parametrized with
a PEN of order r is r -Markovian. Moreover, provided that f is not an injection mapping, all
r -Markovian exponential families have f which satisfy the r -block-switch invariant property,
which is imposed by using a PEN network of order r.

D.3.2 Forward computation of derivatives for PENs

We give here the derivation for the forward computation of derivatives with PENs. If we
pick here φ and ρ to be fully connected Neural Networks, we can moreover apply the forward
computation of derivatives for them and we are able to compute the derivatives for PENs
at a much lower cost with respect to using automatic differentiation libraries.

In Eq. (16), let us denote for brevity z =
∑M−r

i=1 φ(xi:(i+r)). We are interested now in
computing the derivative:

∂f

∂xj
=

∂

∂xj
ρ(x1:r, z),

where note that z depends in general on xi. Therefore, in computing the above, we need to
compute the derivative with respect to both arguments; let us denote by ∂′

∂xj
the derivative

with respect to the first argument. Then, we have:

∂f

∂xj
=

∂′

∂xj
ρ(x1:r, z) · 1[j ≤ r] +

∂

∂z
ρ(x1:r, z) ·

∂z

∂xj
,

where the second term is (note that z and ρ are multivariate, so that ∂′
∂xj

ρ(x1:r, z) is a

Jacobian matrix):

∂z

∂xj
=

∂

∂xj

M−r∑

i=1

φ(xi:(i+r)) =

j∑

i=j−r
i≥1

∂

∂xj
φ(xi:(i+r)),

where all other terms of the sum disappear as they do not contain xj .

44

Score Matched Neural Exponential Families for LFI

Now, we are interested in obtaining the second derivative terms:

∂2f

∂x2
j

=
∂

∂xj

∂f

∂xj
=

∂

∂xj

[
∂′

∂xj
ρ(x1:r, z) · 1[j ≤ r] +

∑

k

∂

∂zk
ρ(x1:r, z)

∂zk
∂xj

]

=
∂′2

∂x2
j

ρ(x1:r, z) · 1[j ≤ r] + 2
∑

k

∂′

∂xj

∂

∂zk
ρ(x1:r, z) ·

∂zk
∂xj
· 1[j ≤ r]

+
∑

k,k′

∂2

∂zk∂zk′
ρ(x1:r, z)

∂zk
∂xj

∂zk′

∂xj
+
∑

k

∂

∂zk
ρ(x1:r, z)

∂2zk
∂x2

j

;

in the above expression,
∑

k runs over the elements of z and ∂′2
∂x2j

denotes second derivative

with respect to the first element. Note that all terms appearing in the above formulas
contain first and second derivatives of the Neural Networks φ and ρ with respect to one
single input, except for the terms highlighted in red. In order to compute that, obtaining
the full hessian matrix of ρ is required. We remark that the latter can be very large in case
the input dimension is large, therefore leading to memory overflow issues.

D.4 Exchange MCMC

For convenience, we describe here the ExchangeMCMC algorithm by Murray et al. (2012).
We consider the task of sampling from a posterior distribution π(θ|x). We can evaluate
an unnormalized version of the likelihood p̃(x|θ), and we denote the normalized version as
p(x|θ) = p̃(x|θ)/Z(θ), Z(θ) being an intractable normalizing constant. We want to build an
MCMC chain by using a proposal distribution q(·|θ;x) (which optionally depends on the
considered x as well). Usually, the standard Metropolis acceptance threshold for a proposal
θ′ is defined as:

α =
π(θ′|x)q(θ|θ′;x)

π(θ|x)q(θ′|θ;x)
=
p̃(x|θ′)q(θ|θ′;x)π(θ′)
p̃(x|θ)q(θ′|θ;x)π(θ)

· Z(θ)

Z(θ′)
,

where the last factor cannot be evaluated, as we do not have access to the normalizing
constant.

The ExchangeMCMC algorithm proposed by Murray et al. (2012) bypasses this issue
by drawing an auxiliary observation x′ ∼ p(·|θ′) and defining the acceptance probability as:

α =
p(x|θ′)q(θ|θ′;x)π(θ′)
p(x|θ)q(θ′|θ;x)π(θ)

· p(x
′|θ)

p(x′|θ′) =
p̃(x|θ′)p̃(x′|θ)q(θ|θ′;x)π(θ′)
p̃(x|θ)p̃(x′|θ′)q(θ′|θ;x)π(θ)

· �
��Z(θ)

���Z(θ′)
· �

��Z(θ′)

���Z(θ)
. (17)

Here, all the normalizing constants cancel out, so that the acceptance threshold can
be evaluated explicitly, at the expense of drawing a simulation from the likelihood for each
MCMC step. Murray et al. (2012) showed that an MCMC chain using the above acceptance
rate targets the correct posterior π(θ|x). The resulting algorithm is given in Algorithm 1:

Bridging. When considering more closely the acceptance rate in Eq. (17), it can be

seen that it depends on two ratios: p(x|θ′)
p(x|θ) represents how well the proposed parameter

value explains the observation with respect to the previous parameter value, while instead
p(x′|θ)
p(x′|θ′) measures how well the auxiliary variable (generated using θ′) can be explained with

45

Pacchiardi and Dutta

Algorithm 1 Original exchangeMCMC algorithm (Murray et al., 2012).

Require: Initial θ, number of iterations T , proposal distribution q, observation x.
1: for i = 1 to T do
2: Propose θ′ ∼ q(θ′|θ;x)
3: Generate auxiliary observation x′ ∼ p(·|θ′)
4: Compute acceptance threshold α as in Eq. (17)
5: With probability α, set θ ← θ′

6: end for

parameter θ. Therefore, even if the former is large and θ would be a suitable parameter
value, α can still be small if the auxiliary random variable is not explained well by the
previous parameter value. This can lead to slow mixing of the chain; to improve on this,
Murray et al. (2012) proposed to sample a set of auxiliary variables (x′0, x

′
1, . . . , x

′
K) from

intermediate distributions in the following way10: consider a set of densities

p̃k(x|θ, θ′) = p̃(x|θ′)βk p̃(x|θ)1−βk , βk =
K − k + 1

K + 1
;

x′0 is generated from p(·|θ′) as before, and then each x′k is generated from R(·|x′k−1; θ, θ′),
which denotes a symmetric Metropolis-Hastings transition kernel starting from x′k−1 with
stationary density p̃k(·|θ, θ′). Then, the acceptance rate is modified as follows:

α =
p̃(x|θ′)q(θ|θ′;x)π(θ′)
p̃(x|θ)q(θ′|θ;x)π(θ)

·
K∏

k=0

p̃k+1(x′k|θ, θ′)
p̃k(x

′
k|θ, θ′)

. (18)

The overall algorithm is given in Algorithm 2. Note that K = 0 recovers the original
ExchangeMCMC. This procedure generally improves the acceptance rate as it basically
introduces a sequence of intermediate updates to the auxiliary data which by smoothening
out the difference between the two distributions.

Algorithm 2 ExchangeMCMC algorithm with bridging (Murray et al., 2012).

Require: Initial θ, number of iterations T , proposal distribution q, number of bridging
steps K, observation x.

1: for i = 1 to T do
2: Propose θ′ ∼ q(θ′|θ;x)
3: Generate auxiliary observation x′0 ∼ p(·|θ′)
4: for k = 1 to K do . Bridging steps
5: Generate x′k ∼ R(·|x′k−1; θ, θ′)
6: end for
7: Compute acceptance threshold α as in Eq. (18)
8: With probability α, set θ ← θ′

9: end for

10. Differently from the rest of the work, here subscripts do not denote vector components, but rather
different auxiliary variables.

46

Score Matched Neural Exponential Families for LFI

ExchangeMCMC without perfect simulations. If, as in the setup considered across
this work, we are not able to sample from p(·|θ′) as it is required in the ExchangeMCMC
algorithm (line 3 in Alg. 1), Murray et al. (2012) suggested to run Tin steps of an MCMC
chain on x targeting p(·|θ′) at each step of ExchangeMCMC; if Tin is large enough, the
last sample can be considered as (approximately) drawn from p(·|θ′) itself and used in
place of the unavailable perfect simulation. In practice, however, this only leads to an
approximate ExchangeMCMC algorithm, as at each iteration of the inner chain a finite
Tin is used, so that the inner chain would not perfectly converge to its target; for this
reason, even an infinitely long outer chain would not target the right posterior for any finite
Tin. Nonetheless, this approach was shown empirically to work satisfactorily in Caimo and
Friel (2011); Everitt (2012); Liang (2010). Some theoretical guarantees (albeit under strong
conditions), are given in in Appendix B by Everitt (2012), which bounds the total variation
distance between target of approximate ExchangeMCMC with finite Tin and the target of
the exact one, and shows that they become equal when Tin →∞.

In Liang (2010), they argue that starting the inner chain from the observation value
improves convergence; we adapt this approach in our implementation (Algorithm 3).

Algorithm 3 ExchangeMCMC algorithm (Murray et al., 2012) with inner MCMC.

Require: Initial θ, number of iterations T and Tin, proposal distributions q and qx, obser-
vation x.

1: for i = 1 to T do . Outer chain
2: Propose θ′ ∼ q(θ′|θ;x)
3: Set x′ = x . Start inner chain from the observation
4: for j = 1 to Tin do . Inner chain
5: Propose x′′ ∼ qx(x′′|x′)
6: With probability pw(x′′|θ′)qx(x′|x′′)

pw(x′|θ′)qx(x′′|x′) , set x′ = x′′

7: end for
8: Compute acceptance threshold α as in Eq. (17) . This uses last point of inner

MCMC
9: With probability α, set θ ← θ′

10: end for

Note that it is still possible to run bridging steps after the inner MCMC to sample from
p(·|θ′); the algorithm combining bridging and inner MCMC, which is used across this work,
is given in Algorithm 4).

Related algorithms. Algorithms for sampling from doubly-intractable targets which are
suitable for parallel computing exist, for instance Caimo and Friel (2011) propose a parallel-
chain MCMC algorithm, while Everitt et al. (2017) build instead an SMC-type algorithm
which is also capable of recycling information from past simulations. However, in this work
we stick to using ExchangeMCMC, which turned out to be relatively cheap to use and easy
to implement.

Finally, we remark that Liang et al. (2016) proposed an algorithm which is inspired
from ExchangeMCMC and, in the case of impossible perfect sampling, still targets the right
invariant distribution. It works by considering a set of parallel chains targeting p(·|θ(i)) for

47

Pacchiardi and Dutta

Algorithm 4 ExchangeMCMC algorithm (Murray et al., 2012) with inner MCMC and
bridging.

Require: Initial θ, number of iterations T and Tin, number of bridging steps K, proposal
distributions q and qx, observation x.

1: for i = 1 to T do . Outer chain
2: Propose θ′ ∼ q(θ′|θ;x)
3: Set x′ = x . Start inner chain from the observation
4: for j = 1 to Tin do . Inner chain
5: Propose x′′ ∼ qx(x′′|x′)
6: With probability pw(x′′|θ′)qx(x′|x′′)

pw(x′|θ′)qx(x′′|x′) , set x′ = x′′

7: end for
8: Set x′0 = x′

9: for k = 1 to K do . Bridging steps
10: Generate x′k ∼ R(·|x′k−1; θ, θ′)
11: end for
12: Compute acceptance threshold α as in Eq. (18)
13: With probability α, set θ ← θ′

14: end for

a fixed set of {θ(i)} and iteratively updating those and the main chain over θ. The algorithm
relies on some assumptions which are probably satisfied in practice (as discussed in Park
and Haran, 2018). It also requires some hand-tuning and needs to keep in memory a large
amount of data, which may hinder its applicability. For this reason, we do not investigate
using that here.

D.4.1 Implementation details

Acceptance rate tuning. In our implementation of ExchangeMCMC, we discarded some
burn-in steps to make sure the chain forgets its initial state. During burn-in, moreover, after
each window of 100 outer steps, we tuned the proposal sizes considering the acceptance rate
in the window, and increasing (respectively decreasing) if that is too large (small) with
respect to a chosen interval (see below). Notice that we applied this strategy independently
to the proposal size for the outer chain, the inner chain and the bridging step, when the
latter is used. When tuning the proposal size for the inner chain or bridging steps, we
considered the overall acceptance rate over each window of 100 outer steps. We remark how
this was only done during burn-in, so that the convergence properties of the chain were not
affected.

For inner and outer steps as well as bridging, we found that a target acceptance rate
in the interval [0.2, 0.5] lead to good performance; this is consistent with the recommended
range for Metropolis-Hastings MCMC (Roberts et al., 1997).

MCMC on bounded space. When the inner (or outer) MCMC chain is run on a
bounded domain, we apply the transformations discussed in Appendix C.8 to map it to
an unbounded domain, and therefore run the MCMC on that space. Notice that the Jaco-

48

Score Matched Neural Exponential Families for LFI

bian factor arising from the transformations has therefore to be taken into account when
computing the acceptance rate.

E. Details on Neural Networks training

For all experiments, we used the Pytorch library (Paszke et al., 2019) to train NNs. In
Tables 3, 4, 5, 6 and 7 we report the Neural Network architectures used in the different
experiments. FC(n,m) denotes a fully connected layer with n inputs and m outputs. For the
time-series and Lorenz96 experiments, φw and ρw represent the two Neural Networks used
to build the PEN network fw as described in Eq. (16), and similarly φβ and ρβ represent
the ones used in building sβ. Finally, BN(p) represents a BatchNorm layer with momentum
p (as described in Appendix D.2), with γ, b, fixed respectively to be vectors of 1s and 0s.
We remark that the momentum value does not impact on the training of the network, but it
modifies the evaluation of the test loss, which we use for early stopping, as discussed below.

Network fw ηw sβ

Structure FC(10,30)
FC(30,50)
FC(50,50)
FC(50,20)
FC(20,3)

FC(2,15)
FC(15,30)
FC(30,30)
FC(30,15)
FC(15,2)
BN(0.9)

FC(10,30)
FC(30,50)
FC(50,50)
FC(50,20)
FC(20,2)

Table 3: Architectures used for the exponential family models (Gaussian, Gamma
and Beta).

Network
fw ηw

sβ

φw ρw φβ ρβ

Structure FC(3,50)
FC(50,50)
FC(50,50)
FC(30,20)

FC(22,50)
FC(50,50)
FC(50,3)

FC(2,15)
FC(15,30)
FC(30,30)
FC(30,15)
FC(15,2)
BN(0.9)

FC(3,50)
FC(50,50)
FC(50,30)
FC(30,20)

FC(22,50)
FC(50,50)
FC(50,2)

Table 4: Architectures used for the AR(2) model.

In all experiments, stochastic gradient descent with a batch size of 1000 samples is used
with Adam optimizer (Kingma and Ba, 2015), whose parameters are left to the default
values as implemented in Pytorch. Finally, we evaluate the test loss on a test set with same
size as the training set at intervals of Tcheck epochs and early-stop training if the test loss
increased with respect to the last evaluation. In order to have a better running estimate
of the quantities of interest for the BatchNorm layer, before each test epoch we perform a
forward pass of the whole training data set, without computing gradients, as discussed in

49

Pacchiardi and Dutta

Network
fw ηw

sβ

φw ρw φβ ρβ

Structure FC(11,50)
FC(50,50)
FC(50,30)
FC(30,20)

FC(30,50)
FC(50,50)
FC(50,3)

FC(2,15)
FC(15,30)
FC(30,30)
FC(30,15)
FC(15,2)
BN(0.9)

FC(11,50)
FC(50,50)
FC(50,30)
FC(30,20)

FC(30,50)
FC(50,50)
FC(50,2)

Table 5: Architectures used for the MA(2) model.

Network
fw ηw

sβ

φw ρw φβ ρβ

Structure FC(16,50)
FC(50,100)
FC(100,50)
FC(50,20)

FC(28,40)
FC(40,90)
FC(90,35)
FC(35,5)

FC(4,30)
FC(30,50)
FC(50,50)
FC(50,30)
FC(30,4)
BN(0.9)

FC(16,50)
FC(50,100)
FC(100,50)
FC(50,20)

FC(28,40)
FC(40,90)
FC(90,35)
FC(35,4)

Table 6: Architectures used for the Lorenz96 model in the small setup.

Network
fw ηw

sβ

φw ρw φβ ρβ

Structure FC(80,120)
FC(120,160)
FC(160,120)
FC(120,20)

FC(60,80)
FC(80,100)
FC(100,80)
FC(80,5)

FC(4,30)
FC(30,50)
FC(50,50)
FC(50,30)
FC(30,4)
BN(0.9)

FC(80,120)
FC(120,160)
FC(160,120)
FC(120,20)

FC(60,80)
FC(80,100)
FC(100,80)
FC(80,4)

Table 7: Architectures used for the Lorenz96 model in the large setup.

50

Score Matched Neural Exponential Families for LFI

Appendix D.2. We do not perform early stopping before epoch Tstart. The nets are trained
for a maximum of T training epochs with Ntrain training samples. In some experiments,
we used an exponential learning rate scheduler, which decreases progressively the learning
rate by multiplying it by a factor ζ < 1 at each epoch. We fixed ζ = 0.99. The values of the
parameters are reported in Table 8 for all the different models and setups, together with
the values of the learning rates (lr) used and whether the scheduler was used or not (Sch).

We remark that, in order to make the comparison fair, the learning rates for the FP
experiments were chosen by cross validation with several learning rates choices. Similarly,
we hand-picked the best learning rate values for training the Neural Networks with SM
and SSM, even if in that case it was not possible, due to computational constraints, to
perform a full search on a large set of values of learning rates for all experiments. In fact,
the computational cost of training the exponential family approximation with SM or SSM
is larger than the cost of learning the summary statistics with the FP approach. Moreover,
in this scenario we have two independent learning rates values to tune, as we train two
networks simultaneously. For this reason, we did not spend too much time trying different
lr values for models for which we already got satisfactory results.

Model Setup Learning rates Ntrain T Tstart Tcheck Sch

Gaussian
SM lr(fw) = 0.0003, lr(ηw) = 0.003 104 500 150 10 Yes
SSM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 200 10 Yes
FP lr(sβ) = 0.01 104 1000 300 25 No

Gamma
SM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 200 10 Yes
SSM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 200 10 Yes
FP lr(sβ) = 0.001 104 1000 300 25 Yes

Beta
SM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 200 10 Yes
SSM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 200 10 Yes
FP lr(sβ) = 0.01 104 1000 250 50 Yes

AR(2)
SM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 100 25 Yes
SSM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 100 25 Yes
FP lr(sβ) = 0.001 104 1000 500 25 Yes

MA(2)
SM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 100 25 Yes
SSM lr(fw) = 0.001, lr(ηw) = 0.001 104 500 100 25 Yes
FP lr(sβ) = 0.001 104 1000 500 25 Yes

Lorenz96
Small

SSM lr(fw) = 0.001, lr(ηw) = 0.001 104 1000 500 50 Yes
FP lr(sβ) = 0.001 104 1000 200 25 Yes

Lorenz96
Large

SSM lr(fw) = 0.001, lr(ηw) = 0.001 104 1000 500 50 Yes
FP lr(sβ) = 0.001 104 1000 200 25 Yes

Table 8: Hyperparameter values for NN training: “FP” denotes the least squares
regression by Fearnhead and Prangle (2012); Jiang et al. (2017) used for the ABC-FP
experiment, while “SM” and “SSM” denote respectively exponential family trained with
Score Matching and Sliced Score Matching.

51

Pacchiardi and Dutta

F. Additional experimental results

F.1 Exponential family models

F.1.1 Mean Correlation Coefficients for Neural Networks trained with
SSM

We report in Table 9 the weak and strong Mean Correlation Coefficient (MCC, Appendix B.1.1)
for Neural Networks trained with SSM, for the exponential family models. MCC is a metric
in [0, 1], with 1 denoting perfect recovery up to a linear transformation (weak) or permu-
tation (strong). As it can be seen in Table 9, our method leads to values quite close to 1,
particularly for the weak MCC, implying that our method is able to recover the embeddings
up to a linear transformation, as expected.

Model MCC weak in MCC weak out MCC strong in MCC strong out

Beta (statistics) 0.990 0.986 0.982 0.979
Beta (nat. par.) 0.987 0.989 0.983 0.985

Gamma (statistics) 0.939 0.928 0.723 0.709
Gamma (nat. par.) 0.977 0.977 0.792 0.794

Gaussian (statistics) 0.874 0.844 0.623 0.638
Gaussian (nat. par.) 0.861 0.862 0.581 0.543

Table 9: MCC for exponential family models between exact embeddings and
those learned with SSM. We show weak and strong MCC values; MCC is between 0 and
1 and measures how well an embedding is recovered up to permutation and rescaling of its
components (strong) or linear transformation (weak); the larger, the better. “in” denotes
MCC on training data used to find the best transformation, while “out” denote MCC on
test data. We used 500 samples in both training and test data sets.!

F.1.2 Learned and exact embeddings for the exponential family models

We compare here the exact and learned sufficient statistics and natural parameters of the
exponential family models; precisely, we draw samples (x(j), θ(j)) and then plot the learned
statistics fw(x(j)) versus the exact one, and similarly for the natural parameters. Figure 9
reports the results for Neural Networks trained with SM, while Figure 10 reports the results
for Neural Networks trained with SSM.

52

Score Matched Neural Exponential Families for LFI

980

960

940

920

900

Fi
rs

t l
ea

rn
ed

 st
at

ist
ics

10 0 10
First true statistics

600

580

560

540

520

500

480

Se
co

nd
 le

ar
ne

d
st

at
ist

ics

0 100 200 300 400
Second true statistics

(a) Statistics Gaussian

35.0

32.5

30.0

27.5

25.0

22.5

Fi
rs

t l
ea

rn
ed

 st
at

ist
ics

1 0 1 2
First true statistics

110

105

100

Se
co

nd
 le

ar
ne

d
st

at
ist

ics

2.5 5.0 7.5 10.0
Second true statistics

(b) Statistics Gamma

162.5

160.0

157.5

155.0

152.5

150.0

Fi
rs

t l
ea

rn
ed

 st
at

ist
ics

2 1
First true statistics

160

155

150

145

140

Se
co

nd
 le

ar
ne

d
st

at
ist

ics
2 1

Second true statistics

(c) Statistics Beta

0

1

2

3

Fi
rs

t l
ea

rn
ed

 p
ar

am
et

er
s

5 0 5
First true parameters

4

2

0

2

4

Se
co

nd
 le

ar
ne

d
pa

ra
m

et
er

s

0.5 0.4 0.3 0.2 0.1
Second true parameters

(d) Parameters Gaussian

2

1

0

1

2

Fi
rs

t l
ea

rn
ed

 p
ar

am
et

er
s

0.0 0.5 1.0 1.5 2.0
First true parameters

2

1

0

1

2

Se
co

nd
 le

ar
ne

d
pa

ra
m

et
er

s

1.0 0.8 0.6 0.4
Second true parameters

(e) Parameters Gamma

2

1

0

1

2

Fi
rs

t l
ea

rn
ed

 p
ar

am
et

er
s

1.0 1.5 2.0 2.5 3.0
First true parameters

2

1

0

1

2

Se
co

nd
 le

ar
ne

d
pa

ra
m

et
er

s

1.0 1.5 2.0 2.5 3.0
Second true parameters

(f) Parameters Beta

Figure 9: Learned and exact embeddings for exponential family models obtained
with SM. Each point represents a different x (for the statistics) or θ (for the natural
parameters); 1000 of each were used here.

53

Pacchiardi and Dutta

1540

1520

1500

1480

1460

1440

Fi
rs

t l
ea

rn
ed

 st
at

ist
ics

10 0 10
First true statistics

240

260

280

300

320

Se
co

nd
 le

ar
ne

d
st

at
ist

ics

0 100 200 300 400
Second true statistics

(a) Statistics Gaussian

254

252

250

248

246

Fi
rs

t l
ea

rn
ed

 st
at

ist
ics

1 0 1 2
First true statistics

68

66

64

62

60

58

56

54

Se
co

nd
 le

ar
ne

d
st

at
ist

ics

2 4 6 8 10
Second true statistics

(b) Statistics Gamma

298

296

294

292

290

288

286

284

Fi
rs

t l
ea

rn
ed

 st
at

ist
ics

2.5 2.0 1.5 1.0 0.5
First true statistics

42

44

46

48

50

52

54

Se
co

nd
 le

ar
ne

d
st

at
ist

ics

2.5 2.0 1.5 1.0 0.5
Second true statistics

(c) Statistics Beta

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Fi
rs

t l
ea

rn
ed

 p
ar

am
et

er
s

7.5 5.0 2.5 0.0 2.5 5.0 7.5
First true parameters

3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

Se
co

nd
 le

ar
ne

d
pa

ra
m

et
er

s

0.5 0.4 0.3 0.2 0.1
Second true parameters

(d) Parameters Gaussian

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Fi
rs

t l
ea

rn
ed

 p
ar

am
et

er
s

0.0 0.5 1.0 1.5 2.0
First true parameters

2

1

0

1

2

Se
co

nd
 le

ar
ne

d
pa

ra
m

et
er

s

1.0 0.8 0.6 0.4
Second true parameters

(e) Parameters Gamma

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Fi
rs

t l
ea

rn
ed

 p
ar

am
et

er
s

1.0 1.5 2.0 2.5 3.0
First true parameters

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Se
co

nd
 le

ar
ne

d
pa

ra
m

et
er

s

1.0 1.5 2.0 2.5 3.0
Second true parameters

(f) Parameters Beta

Figure 10: Learned and exact embeddings for exponential family models obtained
with SSM. Each point represents a different x (for the statistics) or θ (for the natural
parameters); 1000 of each were used here.

54

Score Matched Neural Exponential Families for LFI

10 30 100 200
Inner MCMC steps

0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

 d
ist

an
ce

Beta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RM
SE

 p
os

t m
ea

n
10 30 100 200

Inner MCMC steps
0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

 d
ist

an
ce

Gamma

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

RM
SE

 p
os

t m
ea

n

10 30 100 200
Inner MCMC steps
0

2

4

6

8

10

W
as

se
rs

te
in

 d
ist

an
ce

Gaussian

0

2

4

6

8

10

RM
SE

 p
os

t m
ea

n

(a) Exc-SM

10 30 100 200
Inner MCMC steps

0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

 d
ist

an
ce

Beta

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

 p
os

t m
ea

n

10 30 100 200
Inner MCMC steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

W
as

se
rs

te
in

 d
ist

an
ce

Gamma

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

RM
SE

 p
os

t m
ea

n

10 30 100 200
Inner MCMC steps
0

1

2

3

4

5

6

7

W
as

se
rs

te
in

 d
ist

an
ce

Gaussian

0

1

2

3

4

5

RM
SE

 p
os

t m
ea

n

(b) Exc-SSM

Figure 11: Performance of Exc-SM with different number of inner MCMC steps,
for exponential family models. Wasserstein distance from the exact posterior and
RMSE between exact and approximate posterior means are reported for 100 observations
using boxplots. Boxes span from 1st to 3rd quartile, whiskers span 95% probability density
region and horizontal line denotes median. The numerical values are not comparable across
examples, as they depend on the range of parameters.

F.1.3 Performance of Exc-SM and Exc-SSM

We study here the performance of Exc-SM and Exc-SSM with different numbers of inner
steps in the ExchangeMCMC algorithm (Algorithm 4) for the Exponential family models.
Specifically, we run the inference with 10, 30, 100 and 200 inner MCMC steps, and we
evaluate the performance in these 4 cases (Figure 11); considering the different models, we
observe that the performance with 30 steps is almost equivalent to the one with 100 and
200, albeit being faster (see the computational time in Table 10). In the main text, we
therefore present results using 30 inner MCMC steps.

Inner MCMC steps 10 30 100 200

Time (minutes) ≈ 2 ≈ 4 ≈ 16 ≈ 28

Table 10: Approximate computational time of Exc-SM with different number of
inner MCMC steps for the exponential family models. These values were obtained
by running on a single core.

55

Pacchiardi and Dutta

Inner MCMC steps 10 30 100 200

Time (minutes) ≈ 2 ≈ 5 ≈ 17 ≈ 29

Table 11: Approximate computational time of Exc-SM with different number of
inner MCMC steps, for the AR(2) and MA(2) models. These values were obtained
by running on a single core.

10 30 100 200
Inner MCMC steps

0.0

0.1

0.2

0.3

0.4

0.5

W
as

se
rs

te
in

 d
ist

an
ce

AR(2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

RM
SE

 p
os

t m
ea

n

10 30 100 200
Inner MCMC steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
as

se
rs

te
in

 d
ist

an
ce

MA(2)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

RM
SE

 p
os

t m
ea

n

(a) Exc-SM

10 30 100 200
Inner MCMC steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
as

se
rs

te
in

 d
ist

an
ce

AR(2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RM
SE

 p
os

t m
ea

n

10 30 100 200
Inner MCMC steps

0.0

0.1

0.2

0.3

0.4

0.5

W
as

se
rs

te
in

 d
ist

an
ce

MA(2)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

RM
SE

 p
os

t m
ea

n

(b) Exc-SSM

Figure 12: Performance of Exc-SM with different number of inner MCMC steps,
for AR(2) and MA(2) models. Wasserstein distance from the exact posterior and
RMSE between exact and approximate posterior means are reported for 100 observations
using boxplots. Boxes span from 1st to 3rd quartile, whiskers span 95% probability density
region and horizontal line denotes median.

F.2 AR(2) and MA(2) models

We study here the performance of Exc-SM and Exc-SSM with different numbers of inner
steps in the ExchangeMCMC algorithm (Algorithm 4) for the AR(2) and MA(2) models.
Specifically, we run the inference with 10, 30, 100 and 200 inner MCMC steps, and we
evaluate the performance in these 4 cases (Figure 12); considering the different models, we
observe that the performance with 30 steps is almost equivalent to the one with 100 and
200, albeit being faster (see the computational time in Table 11). In the main text, we
therefore present results using 30 inner MCMC steps.

F.3 Simulation cost to reach equivalent performance as Exc-SM

Above, we have showed that Exc-SM and Exc-SSM are competitive with the other ap-
proaches, even if they require no additional model simulations. Here, we quantify how
many model simulations are needed for the other techniques to reach the same performance
of Exc-SM in the exponential family and time-series models. The same analysis could be
done with respect to Exc-SSM but, as its performance is generally close to the one achieved
by Exc-SM, we avoid repeating it.

We compute therefore the performance of ABC-SM, ABC-SSM, ABC-FP, PMC-SL,
PMC-RE at each iteration for all 100 observations and find when their median performance

56

Score Matched Neural Exponential Families for LFI

(as quantifies by the Wasserstein distance with respect to the true posterior) becomes com-
parable or better than the median one achieved by Exc-SM. The number of required sim-
ulations are reported in Table 12. Notice that some techniques are not able to outperform
Exc-SM for some models; we highlight that by a dash in the Table. SL and RE reach
similar performance to Exc-SM with one single iteration, when they are able to do so; in
fact, we found empirically that the performance of them does not significantly improve with
iterations. Still, we remark that one single iteration of SL and RE requires a very large
number of model simulations.

In Table 12, we also give the number of simulations required for the preliminary NN
training in the methods which use one; further, we compute the overall cost of inference in
terms of model simulations (taking into account both NN training and inference) for different
number of observations; we remark that, as discussed previously, our method requires no
additional model simulations to perform inference after the NNs have been trained. From
Table 12, it can be seen that, for all models, ABC-SM, ABC-FP, PMC-RE and PMC-SL
require a number of simulations larger than the one needed to train the NNs in Exc-SM to
reach the performance achieved by Exc-SM, which makes the latter an interesting option
for models in which simulations are very expensive.

In Figures 13 and 14 we represent the performance attained by ABC-FP, ABC-SM,
ABC-SSM, PMC-SL and PMC-RE at each iteration of the iterative algorithm. On the
horizontal axis of all plots, we report the number of model simulations corresponding to the
iteration of the algorithm.

F.4 Validation with Scoring Rules for Lorenz96 model

Recall that the Lorenz96 model (Section 5.3) is a multivariate time-series model. Therefore,
we use the Scoring Rules (on which more details are given in Sec. 1.2.2 in the introduction
of the present thesis) to evaluate the predictive performance at each timestep separately.

First, let us recall the definition of the posterior predictive density:

p(x|x0) =

∫
p(x|θ)π(θ|x0),

whose corresponding posterior predictive distribution we denote as P (·|x0). In the above
expression, π(θ|x0) may represent the posterior obtained with any of the considered methods
(Exc-SM, Exc-SSM, ABC-FP, ABC-SM, ABC-SSM).

Let P (t)(·|x0) denote the posterior predictive distribution at time t conditioned on an
observation x0, and let x0,(t) denote the t-th timestep of the observation. Then, we are
interested in:

SE(P (t)(·|x0), x0,(t)) and Sk(P
(t)(·|x0), x0,(t));

we estimate these using samples from P (t)(·|x0) with the unbiased estimators which can be
easily derived for the Energy and Kernel Scores. In the Kernel Score, the bandwidth of the
Gaussian kernel is set from simulations as described in Appendix F.4.1.

In this way, we obtain a score for an observation x0 at each timestep of the model. This
procedure is repeated for 100 different observations; the scores at each timestep are reported
in Figure 15, while the summed scores over timesteps were reported in Figure 7 in the main
text. In both Figures, we report the median value and various quantiles over the considered

57

Pacchiardi and Dutta

Beta

Exc-SM ABC-SM ABC-SSM ABC-FP PMC-SL PMC-RE

NN training 2 · 104 2 · 104 2 · 104 2 · 104 - -
Inference 0 2.5 · 104 1.8 · 104 - 1 · 105 1 · 106

Total 1 obs 2 · 104 4.5 · 104 3.8 · 104 - 1 · 105 1 · 106

Total 3 obs 2 · 104 9.5 · 104 7.4 · 104 - 3 · 105 3 · 106

Total 100 obs 2 · 104 2.52 · 106 1.82 · 106 - 1 · 107 1 · 108

Gamma

Exc-SM ABC-SM ABC-SSM ABC-FP PMC-SL PMC-RE

NN training 2 · 104 2 · 104 2 · 104 2 · 104 - -
Inference 0 4.7 · 104 2.9 · 104 - 1 · 105 1 · 106

Total 1 obs 2 · 104 6.7 · 104 4.9 · 104 - 1 · 105 1 · 106

Total 3 obs 2 · 104 1.61 · 105 1.07 · 105 - 3 · 105 3 · 106

Total 100 obs 2 · 104 4.72 · 106 2.92 · 106 - 1 · 107 1 · 108

Gaussian

Exc-SM ABC-SM ABC-SSM ABC-FP PMC-SL PMC-RE

NN training 2 · 104 2 · 104 2 · 104 2 · 104 - -
Inference 0 2.7 · 104 2.6 · 104 - - 1 · 106

Total 1 obs 2 · 104 4.7 · 104 4.6 · 104 - - 1 · 106

Total 3 obs 2 · 104 1.01 · 105 9.8 · 104 - - 3 · 106

Total 100 obs 2 · 104 2.72 · 106 2.62 · 106 - - 1 · 108

AR2

Exc-SM ABC-SM ABC-SSM ABC-FP PMC-SL PMC-RE

NN training 2 · 104 2 · 104 2 · 104 2 · 104 - -
Inference 0 3.2 · 104 3.1 · 104 2.3 · 104 1 · 105 -

Total 1 obs 2 · 104 5.2 · 104 5.1 · 104 4.3 · 104 1 · 105 -
Total 3 obs 2 · 104 1.16 · 105 1.13 · 105 8.9 · 104 3 · 105 -
Total 100 obs 2 · 104 3.22 · 106 3.12 · 106 2.32 · 106 1 · 107 -

MA2

Exc-SM ABC-SM ABC-SSM ABC-FP PMC-SL PMC-RE

NN training 2 · 104 2 · 104 2 · 104 2 · 104 - -
Inference 0 3.1 · 104 2.1 · 104 2.0 · 104 1 · 105 -

Total 1 obs 2 · 104 5.1 · 104 4.1 · 104 4.0 · 104 1 · 105 -
Total 3 obs 2 · 104 1.13 · 105 8.3 · 104 8.0 · 104 3 · 105 -
Total 100 obs 2 · 104 3.12 · 106 2.12 · 106 2.02 · 106 1 · 107 -

Table 12: Model simulations needed for the different techniques, for both NN train-
ing and inference; for ABC-FP, ABC-SM, ABC-SSM, PMC-SL and PMC-RE, we report
simulations needed to obtain performance at least as good as Exc-SM; in case the approach
does not reach the same performance as Exc-SM, we denote that by a dash. Notice that
PMC-SL and PMC-RE do not require NN training before performing inference. We also
show the total number of simulations needed to apply the different approaches on 1, 3 and
100 observations, by taking into account NN training and inference steps.

58

Score Matched Neural Exponential Families for LFI

20 40 60 80 100
Number of simulations (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

W
as

se
rs

te
in

 d
ist

an
ce

Beta
ABC-FP
ABC-SM
ABC-SSM
Exc-SM

20 40 60 80 100
Number of simulations (×1000)

0.0

0.2

0.4

0.6

0.8

1.0
W

as
se

rs
te

in
 d

ist
an

ce

Gamma
ABC-FP
ABC-SM
ABC-SSM
Exc-SM

20 40 60 80 100
Number of simulations (×1000)

0

2

4

6

8

10

W
as

se
rs

te
in

 d
ist

an
ce

Gaussian
ABC-FP
ABC-SM
ABC-SSM
Exc-SM

200 400 600 800 1000
Number of simulations (×1000)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
as

se
rs

te
in

 d
ist

an
ce

Beta

PMC-SL
Exc-SM

200 400 600 800 1000
Number of simulations (×1000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
as

se
rs

te
in

 d
ist

an
ce

Gamma

PMC-SL
Exc-SM

200 400 600 800 1000
Number of simulations (×1000)

0

1

2

3

4

5

W
as

se
rs

te
in

 d
ist

an
ce

Gaussian
PMC-SL
Exc-SM

2000 4000 6000 8000 10000
Number of simulations (×1000)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

W
as

se
rs

te
in

 d
ist

an
ce

Beta

PMC-RE
Exc-SM

2000 4000 6000 8000 10000
Number of simulations (×1000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
as

se
rs

te
in

 d
ist

an
ce

Gamma

PMC-RE
Exc-SM

2000 4000 6000 8000 10000
Number of simulations (×1000)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

W
as

se
rs

te
in

 d
ist

an
ce

Gaussian

PMC-RE
Exc-SM

Figure 13: Wasserstein distance between approximate and exact posterior at dif-
ferent iterations of the sequential algorithms for the exponential family models,
for 100 different observations. The solid line denotes median, while colored regions denote
95% probability density region; an horizontal line denoting the value obtained with Exc-SM
is also represented, 95% probability density region denoted by dotted horizontal lines. The
horizontal axis reports the number of model simulations corresponding to the iteration of
the different algorithms.

59

Pacchiardi and Dutta

20 40 60 80 100
Number of simulations (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
as

se
rs

te
in

 d
ist

an
ce

AR(2)
ABC-FP
ABC-SM
ABC-SSM
Exc-SM

20 40 60 80 100
Number of simulations (×1000)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

W
as

se
rs

te
in

 d
ist

an
ce

MA(2)
ABC-FP
ABC-SM
ABC-SSM
Exc-SM

200 400 600 800 1000
Number of simulations (×1000)

0.00

0.05

0.10

0.15

0.20

0.25

W
as

se
rs

te
in

 d
ist

an
ce

AR(2)

PMC-SL
Exc-SM

200 400 600 800 1000
Number of simulations (×1000)

0.0

0.1

0.2

0.3

0.4

0.5

W
as

se
rs

te
in

 d
ist

an
ce

MA(2)

PMC-SL
Exc-SM

2000 4000 6000 8000 10000
Number of simulations (×1000)

0.0

0.2

0.4

0.6

0.8

W
as

se
rs

te
in

 d
ist

an
ce

AR(2)
PMC-RE
Exc-SM

2000 4000 6000 8000 10000
Number of simulations (×1000)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

W
as

se
rs

te
in

 d
ist

an
ce

MA(2)
PMC-RE
Exc-SM

Figure 14: Wasserstein distance between approximate and exact posterior at dif-
ferent iterations of the sequential algorithms for the AR(2) and MA(2) models,
for 100 different observations. The solid line denotes median, while colored regions denote
95% probability density region; an horizontal line denoting the value obtained with Exc-SM
is also represented, 95% probability density region denoted by dotted horizontal lines. The
horizontal axis reports the number of model simulations corresponding to the iteration of
the different algorithms.

60

Score Matched Neural Exponential Families for LFI

100 observations. It can be seen that ABC-FP is slightly outperformed by our proposed
methods for both the large and small Lorenz96 configuration. Additionally, notice how, in
the small configuration, the Energy score has an increasing trend over t, while the Kernel
one instead decreases.

0 0.5 1 1.5
t

100

200

300

400

500

En
er

gy
 S

co
re

Small Lorenz96
ABC-FP
ABC-SSM
Exc-SSM

0 1 2 3 4
t

1000

1250

1500

1750

2000

2250

2500

2750

En
er

gy
 S

co
re

Large Lorenz96
ABC-FP
ABC-SSM

0 0.5 1 1.5
t

0

1

2

3

4

5

6

7

8

Ke
rn

el
 S

co
re

Small Lorenz96
ABC-FP
ABC-SSM
Exc-SSM

0 1 2 3 4
t

0

5

10

15

20

25

30

35

40
Ke

rn
el

 S
co

re
Large Lorenz96

ABC-FP
ABC-SSM

Figure 15: Posterior predictive performance of the different methods at each
timestep according to the Kernel and Energy Scores; the smaller, the better. Sam-
ples from the posterior predictive were obtained for 100 observations, and both Scoring
Rules estimated. The solid lines denote medians over the 100 observations, while colored
regions denote 95% probability density region.

F.4.1 Setting γ in the kernel Scoring Rule

In the kernel score Sk, the Gaussian kernel in Eq. (??) is used across this work. There,
the kernel bandwidth γ is a free parameter. In order to ensure comparability between the
Scoring Rule values for different observations and inference methods, the value of γ needs
to be fixed independently on both.

Inspired by Park et al. (2016), we exploit an empirical procedure to set γ for the specific
case of multivariate time-series models (of which our Lorenz96 model is an instance, see
Section 5.3). Specifically, we use the following procedure:

1. Draw a set of parameter values θj ∼ π(θ) and simulations xj ∼ p(·|θj), for j =
1, . . . ,m.

2. Estimate the median of {||x(t)
j − x

(t)
k ||2}mjk and call it γ̂(t), for all values of t.

3. Set the estimate for γ as the median of γ̂(t) over all considered timesteps t.

61

Pacchiardi and Dutta

Empirically, we use m = 1000. Note that the above strategy uses medians rather than
means as those are more robust to outliers in the estimates. With this method, we obtain
γ ≈ 1.54 for the small version of the Lorenz96 model and γ = 6.38 for the large one.

References

Mattias Akesson, Prashant Singh, Fredrik Wrede, and Andreas Hellander. Convolutional neural networks as
summary statistics for approximate Bayesian computation. IEEE/ACM Transactions on Computational
Biology and Bioinformatics, 2021.

Carlo Albert, R. Künsch Hans, and Andreas Scheidegger. A simulated annealing approach to approximate
Bayesian computations. Statistics and Computing, 25:1217–1232, 2015.

Pierre Alquier, Nial Friel, Richard Everitt, and Aidan Boland. Noisy Monte Carlo: Convergence of Markov
chains with approximate transition kernels. Statistics and Computing, 26(1-2):29–47, 2016.

Ziwen An, Leah F South, David J Nott, and Christopher C Drovandi. Accelerating Bayesian synthetic
likelihood with the graphical lasso. Journal of Computational and Graphical Statistics, 28(2):471–475,
2019.

Ziwen An, David J Nott, and Christopher Drovandi. Robust Bayesian synthetic likelihood via a semi-
parametric approach. Statistics and Computing, 30(3):543–557, 2020.

Michael Arbel and Arthur Gretton. Kernel conditional exponential family. In International Conference on
Artificial Intelligence and Statistics, pages 1337–1346. PMLR, 2018.

V.I. Avrutskiy. Backpropagation generalized for output derivatives. arXiv preprint arXiv:1712.04185, 2017.

Espen Bernton, Pierre E. Jacob, Mathieu Gerber, and Christian P. Robert. Approximate Bayesian
computation with the Wasserstein distance. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 81(2):235–269, 2019. doi: https://doi.org/10.1111/rssb.12312. URL https:

//rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12312.

Alberto Caimo and Nial Friel. Bayesian inference for exponential random graph models. Social Networks,
33(1):41–55, 2011.

Olivier Cappé, Arnaud Guillin, Jean-Michel Marin, and Christian P Robert. Population Monte Carlo.
Journal of Computational and Graphical Statistics, 13(4):907–929, 2004.

Bob Carpenter, Andrew Gelman, Matthew D Hoffman, Daniel Lee, Ben Goodrich, Michael Betancourt,
Marcus Brubaker, Jiqiang Guo, Peter Li, and Allen Riddell. Stan: A probabilistic programming language.
Journal of statistical software, 76(1), 2017.

Yanzhi Chen, Dinghuai Zhang, Michael U Gutmann, Aaron Courville, and Zhanxing Zhu. Neural approxi-
mate sufficient statistics for implicit models. In Ninth International Conference on Learning Representa-
tions 2021, 2021.

Badr-Eddine Chérief-Abdellatif and Pierre Alquier. MMD-Bayes: Robust Bayesian estimation via maximum
mean discrepancy. In Symposium on Advances in Approximate Bayesian Inference, pages 1–21. PMLR,
2020.

Bo Dai, Hanjun Dai, Arthur Gretton, Le Song, Dale Schuurmans, and Niao He. Kernel exponential family
estimation via doubly dual embedding. In The 22nd International Conference on Artificial Intelligence
and Statistics, pages 2321–2330. PMLR, 2019a.

Bo Dai, Zhen Liu, Hanjun Dai, Niao He, Arthur Gretton, Le Song, and Dale Schuurmans. Exponential
family estimation via adversarial dynamics embedding. In Advances in Neural Information Processing
Systems, pages 10979–10990, 2019b.

62

Score Matched Neural Exponential Families for LFI

Alexander Philip Dawid and Monica Musio. Theory and applications of proper scoring rules. Metron, 72
(2):169–183, 2014.

Christopher Drovandi and David T Frazier. A comparison of likelihood-free methods with and without
summary statistics. arXiv preprint arXiv:2103.02407, 2021.

Ritabrata Dutta, Bastien Chopard, Jonas Lätt, Frank Dubois, Karim Zouaoui Boudjeltia, and Antoni-
etta Mira. Parameter estimation of platelets deposition: Approximate Bayesian computation with high
performance computing. Frontiers in physiology, 9, 2018.

Ritabrata Dutta, Susana N Gomes, Dante Kalise, and Lorenzo Pacchiardi. Using mobility data in the design
of optimal lockdown strategies for the covid-19 pandemic. PLoS Computational Biology, 17(8):e1009236,
2021a.

Ritabrata Dutta, Marcel Schoengens, Lorenzo Pacchiardi, Avinash Ummadisingu, Nicole Widmer, Pierre
Künzli, Jukka-Pekka Onnela, and Antonietta Mira. ABCpy: A high-performance computing perspective
to approximate bayesian computation. Journal of Statistical Software, 100(7):1–38, 2021b. doi: 10.18637/
jss.v100.i07. URL https://www.jstatsoft.org/index.php/jss/article/view/v100i07.

Richard G Everitt. Bayesian parameter estimation for latent Markov random fields and social networks.
Journal of Computational and graphical Statistics, 21(4):940–960, 2012.

Richard G Everitt, Dennis Prangle, Philip Maybank, and Mark Bell. Marginal sequential Monte Carlo for
doubly intractable models. arXiv preprint arXiv:1710.04382, 2017.

Matteo Fasiolo, Simon N Wood, Florian Hartig, and Mark V Bravington. An extended empirical saddlepoint
approximation for intractable likelihoods. Electronic Journal of Statistics, 12(1):1544–1578, 2018.

Paul Fearnhead and Dennis Prangle. Constructing summary statistics for approximate Bayesian computa-
tion: semi-automatic approximate Bayesian computation [with Discussion]. Journal of the Royal Statis-
tical Society. Series B (Statistical Methodology), 74(3):419–474, 2012. ISSN 1369-7412.

Charles J Geyer. Markov chain Monte Carlo maximum likelihood. In Computing science and statistics:
Proceedings of 23rd Symposium on the Interface Interface Foundation, Fairfax Station, 1991, pages 156–
163, 1991.

Alexander Gleim and Christian Pigorsch. Approximate Bayesian computation with indirect summary statis-
tics. Draft paper: http://ect-pigorsch. mee. uni-bonn. de/data/research/papers, 2013.

Tilmann Gneiting and Adrian E Raftery. Strictly proper scoring rules, prediction, and estimation. Journal
of the American statistical Association, 102(477):359–378, 2007.

David Greenberg, Marcel Nonnenmacher, and Jakob Macke. Automatic posterior transformation for
likelihood-free inference. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of
the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine Learn-
ing Research, pages 2404–2414. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/

greenberg19a.html.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. The Journal of Machine Learning Research, 13(1):723–773, 2012.

Michael U Gutmann and Aapo Hyvärinen. Noise-contrastive estimation of unnormalized statistical models,
with applications to natural image statistics. Journal of Machine Learning Research, 13(Feb):307–361,
2012.

Michael U Gutmann, Jukka Corander, et al. Bayesian optimization for likelihood-free inference of simulator-
based statistical models. Journal of Machine Learning Research, 2016.

63

Pacchiardi and Dutta

J Hakkarainen, A Ilin, A Solonen, M Laine, H Haario, J Tamminen, E Oja, and H Järvinen. On closure
parameter estimation in chaotic systems. Nonlinear processes in Geophysics, 19(1):127–143, 2012.

Joeri Hermans, Volodimir Begy, and Gilles Louppe. Likelihood-free MCMC with amortized approximate
ratio estimators. In International Conference on Machine Learning, pages 4239–4248. PMLR, 2020.

Geoffrey E Hinton. Training products of experts by minimizing contrastive divergence. Neural computation,
14(8):1771–1800, 2002.

Harold Hotelling. Relations between two sets of variates. Biometrika, 28(3/4):321–377, 1936.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of Machine
Learning Research, 6(Apr):695–709, 2005.

Aapo Hyvärinen. Some extensions of score matching. Computational statistics & data analysis, 51(5):
2499–2512, 2007.

Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating deep network training by reducing
internal covariate shift. In Francis Bach and David Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research, pages 448–456,
Lille, France, 07–09 Jul 2015. PMLR. URL http://proceedings.mlr.press/v37/ioffe15.html.

Marko Järvenpää, Michael U Gutmann, Arijus Pleska, Aki Vehtari, and Pekka Marttinen. Efficient ac-
quisition rules for model-based approximate Bayesian computation. Bayesian Analysis, 14(2):595–622,
2019.

Marko Jarvenpaa, Aki Vehtari, and Pekka Marttinen. Batch simulations and uncertainty quantification in
gaussian process surrogate approximate Bayesian computation. In Conference on Uncertainty in Artificial
Intelligence, pages 779–788. PMLR, 2020.

Marko Järvenpää, Michael U Gutmann, Aki Vehtari, and Pekka Marttinen. Parallel Gaussian process
surrogate Bayesian inference with noisy likelihood evaluations. Bayesian Analysis, 16(1):147–178, 2021.

Bai Jiang, Tung-yu Wu, Charles Zheng, and Wing H Wong. Learning summary statistic for approximate
Bayesian computation via deep neural network. Statistica Sinica, pages 1595–1618, 2017.

Ilyes Khemakhem, Ricardo Pio Monti, Diederik P. Kingma, and Aapo Hyvärinen. ICE-BeeM: Identifiable
conditional energy-based deep models. CoRR, abs/2002.11537, 2020. URL https://arxiv.org/abs/

2002.11537.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Nadja Klein, David J Nott, and Michael Stanley Smith. Marginally calibrated deep distributional regression.
Journal of Computational and Graphical Statistics, pages 1–17, 2020.

Bernard Osgood Koopman. On distributions admitting a sufficient statistic. Transactions of the American
Mathematical society, 39(3):399–409, 1936.

Olivier Ledoit and Michael Wolf. A well-conditioned estimator for large-dimensional covariance matrices.
Journal of multivariate analysis, 88(2):365–411, 2004.

Faming Liang. A double Metropolis–Hastings sampler for spatial models with intractable normalizing con-
stants. Journal of Statistical Computation and Simulation, 80(9):1007–1022, 2010.

Faming Liang, Ick Hoon Jin, Qifan Song, and Jun S Liu. An adaptive exchange algorithm for sampling from
distributions with intractable normalizing constants. Journal of the American Statistical Association, 111
(513):377–393, 2016.

64

Score Matched Neural Exponential Families for LFI

Jarno Lintusaari, Michael U. Gutmann, Ritabrata Dutta, Samuel Kaski, and Jukka Corander. Fundamentals
and recent developments in approximate Bayesian computation. Systematic Biology, 66(1):e66–e82, 2017.
ISSN 1076836X. doi: 10.1093/sysbio/syw077. URL https://doi.org/10.1093/sysbio/syw077.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian inference algo-
rithm. In Advances in neural information processing systems, pages 2378–2386, 2016.

Song Liu and Takafumi Kanamori. Estimating density models with complex truncation boundaries. arXiv
preprint arXiv:1910.03834, 2019.

Edward N Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability, volume 1,
1996.

Jan-Matthis Lueckmann, Pedro J Goncalves, Giacomo Bassetto, Kaan Öcal, Marcel Nonnenmacher, and
Jakob H Macke. Flexible statistical inference for mechanistic models of neural dynamics. In Advances in
Neural Information Processing Systems, pages 1289–1299, 2017.

Jan-Matthis Lueckmann, Giacomo Bassetto, Theofanis Karaletsos, and Jakob H Macke. Likelihood-free
inference with emulator networks. In Symposium on Advances in Approximate Bayesian Inference, pages
32–53. PMLR, 2019.

Kanti V Mardia, John T Kent, and Arnab K Laha. Score matching estimators for directional distributions.
arXiv preprint arXiv:1604.08470, 2016.

Jean-Michel Marin, Pierre Pudlo, Christian P Robert, and Robin J Ryder. Approximate Bayesian compu-
tational methods. Statistics and Computing, 22(6):1167–1180, 2012.

Pekka Marttinen, Nicholas J Croucher, Michael U Gutmann, Jukka Corander, and William P Hanage.
Recombination produces coherent bacterial species clusters in both core and accessory genomes. Microbial
Genomics, 1(5), 2015.

Takuo Matsubara, Jeremias Knoblauch, François-Xavier Briol, and Chris J. Oates. Robust generalised
Bayesian inference for intractable likelihoods. Journal of the Royal Statistical Society: Series B (Sta-
tistical Methodology), 84(3):997–1022, 2022. doi: https://doi.org/10.1111/rssb.12500. URL https:

//rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12500.

Trevelyan J McKinley, Ian Vernon, Ioannis Andrianakis, Nicky McCreesh, Jeremy E Oakley, Rebecca N
Nsubuga, Michael Goldstein, Richard G White, et al. Approximate Bayesian computation and simulation-
based inference for complex stochastic epidemic models. Statistical science, 33(1):4–18, 2018.

Edward Meeds and Max Welling. GPS-ABC: Gaussian process surrogate approximate Bayesian computation.
In Proceedings of the Thirtieth Conference on Uncertainty in Artificial Intelligence, pages 593–602, 2014.

Amanda Minter and Renata Retkute. Approximate Bayesian computation for infectious disease modelling.
Epidemics, 29:100368, 2019.

Matthew T Moores, Christopher C Drovandi, Kerrie Mengersen, and Christian P Robert. Pre-processing
for approximate Bayesian computation in image analysis. Statistics and Computing, 25(1):23–33, 2015.

Iain Murray, Zoubin Ghahramani, and David MacKay. MCMC for doubly-intractable distributions. arXiv
preprint arXiv:1206.6848, 2012.

Hien Duy Nguyen, Julyan Arbel, Hongliang Lü, and Florence Forbes. Approximate Bayesian computation
via the energy statistic. IEEE Access, 8:131683–131698, 2020.

Lorenzo Pacchiardi, Pierre Künzli, Marcel Schöngens, Bastien Chopard, and Ritabrata Dutta. Distance-
learning for approximate Bayesian computation to model a volcanic eruption. Sankhya B, Jan 2020. ISSN
0976-8394. doi: 10.1007/s13571-019-00208-8. URL https://doi.org/10.1007/s13571-019-00208-8.

65

Pacchiardi and Dutta

George Papamakarios and Iain Murray. Fast ε-free inference of simulation models with Bayesian conditional
density estimation. In Advances in Neural Information Processing Systems, pages 1028–1036, 2016.

George Papamakarios, David Sterratt, and Iain Murray. Sequential neural likelihood: Fast likelihood-free
inference with autoregressive flows. In Kamalika Chaudhuri and Masashi Sugiyama, editors, Proceedings
of Machine Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 837–848.
PMLR, 16–18 Apr 2019. URL http://proceedings.mlr.press/v89/papamakarios19a.html.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji Lakshmi-
narayanan. Normalizing flows for probabilistic modeling and inference. Journal of Machine Learning
Research, 22(57):1–64, 2021. URL http://jmlr.org/papers/v22/19-1028.html.

Jaewoo Park and Murali Haran. Bayesian inference in the presence of intractable normalizing functions.
Journal of the American Statistical Association, 113(523):1372–1390, 2018.

Mijung Park, Wittawat Jitkrittum, and Dino Sejdinovic. K2-ABC: Approximate Bayesian computation with
kernel embeddings. In Artificial Intelligence and Statistics, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. PyTorch: An imperative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and R. Garnett, editors, Advances in Neural
Information Processing Systems 32, pages 8024–8035. Curran Associates, Inc., 2019.

Leah F Price, Christopher C Drovandi, Anthony Lee, and David J Nott. Bayesian synthetic likelihood.
Journal of Computational and Graphical Statistics, 27(1):1–11, 2018.

Stefan T Radev, Ulf K Mertens, Andreas Voss, Lynton Ardizzone, and Ullrich Köthe. BayesFlow: Learning
complex stochastic models with invertible neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

Maria L Rizzo and Gábor J Székely. Energy distance. Wiley interdisciplinary reviews: Computational
statistics, 8(1):27–38, 2016.

Gareth O Roberts, Andrew Gelman, Walter R Gilks, et al. Weak convergence and optimal scaling of random
walk Metropolis algorithms. The annals of applied probability, 7(1):110–120, 1997.

Erlis Ruli, Nicola Sartori, and Laura Ventura. Approximate Bayesian computation with composite score
functions. Statistics and Computing, 26(3):679–692, 2016.

Jascha Sohl-Dickstein, Peter B Battaglino, and Michael R DeWeese. New method for parameter estimation
in probabilistic models: minimum probability flow. Physical review letters, 107(22):220601, 2011.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach to
density and score estimation. In Ryan P. Adams and Vibhav Gogate, editors, Proceedings of The 35th
Uncertainty in Artificial Intelligence Conference, volume 115 of Proceedings of Machine Learning Research,
pages 574–584, Tel Aviv, Israel, 22–25 Jul 2020. PMLR. URL http://proceedings.mlr.press/v115/

song20a.html.

Bharath Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Aapo Hyvärinen, and Revant Kumar. Density
estimation in infinite dimensional exponential families. The Journal of Machine Learning Research, 18
(1):1830–1888, 2017.

Esteban G Tabak, Giulio Trigila, and Wenjun Zhao. Conditional density estimation and simulation through
optimal transport. Machine Learning, pages 1–24, 2020.

Simon Tavaré, David J Balding, Robert C Griffiths, and Peter Donnelly. Inferring coalescence times from
DNA sequence data. Genetics, 145(2):505–518, 1997.

66

Score Matched Neural Exponential Families for LFI

Owen Thomas, Ritabrata Dutta, Jukka Corander, Samuel Kaski, Michael U Gutmann, et al. Likelihood-free
inference by ratio estimation. Bayesian Analysis, 2020.

Jean-Francois Ton, CHAN Lucian, Yee Whye Teh, and Dino Sejdinovic. Noise contrastive meta-learning for
conditional density estimation using kernel mean embeddings. In International Conference on Artificial
Intelligence and Statistics, pages 1099–1107. PMLR, 2021.

Tina Toni, David Welch, Natalja Strelkowa, Andreas Ipsen, and Michael PH Stumpf. Approximate Bayesian
computation scheme for parameter inference and model selection in dynamical systems. Journal of the
Royal Society Interface, 6(31):187–202, 2009.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computation, 23
(7):1661–1674, 2011.

Yuexi Wang, Tetsuya Kaji, and Veronika Ročková. Approximate bayesian computation via classification.
arXiv preprint arXiv:2111.11507, 2021.

Ziyu Wang, Shuyu Cheng, Li Yueru, Jun Zhu, and Bo Zhang. A Wasserstein minimum velocity approach
to learning unnormalized models. In Silvia Chiappa and Roberto Calandra, editors, Proceedings of the
Twenty Third International Conference on Artificial Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pages 3728–3738. PMLR, 26–28 Aug 2020. URL https://proceedings.

mlr.press/v108/wang20j.html.

Li Wenliang, Dougal Sutherland, Heiko Strathmann, and Arthur Gretton. Learning deep kernels for ex-
ponential family densities. In International Conference on Machine Learning, pages 6737–6746. PMLR,
2019.

Richard Wilkinson. Accelerating ABC methods using Gaussian processes. In Artificial Intelligence and
Statistics, pages 1015–1023. PMLR, 2014.

Daniel S Wilks. Effects of stochastic parametrizations in the Lorenz’96 system. Quarterly Journal of the
Royal Meteorological Society, 131(606):389–407, 2005.

Samuel Wiqvist, Pierre-Alexandre Mattei, Umberto Picchini, and Jes Frellsen. Partially exchangeable net-
works and architectures for learning summary statistics in approximate Bayesian computation. In Ka-
malika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages 6798–6807. PMLR,
09–15 Jun 2019. URL http://proceedings.mlr.press/v97/wiqvist19a.html.

Simon N Wood. Statistical inference for noisy nonlinear ecological dynamic systems. Nature, 466(7310):
1102, 2010.

Shiqing Yu, Mathias Drton, and Ali Shojaie. Generalized score matching for non-negative data. Journal of
Machine Learning Research, 20(76):1–70, 2019. URL http://jmlr.org/papers/v20/18-278.html.

67

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper

itself).

Title of Paper

 Score Matched Neural Exponential Families for Likelihood-Free Inference

Publication Status

 ☒ Published □ Accepted for Publication

 □Submitted for Publication □Unpublished and unsubmitted work written

 in a manuscript style

Publication Details

Pacchiardi, Lorenzo, and Ritabrata Dutta. "Score Matched Neural Exponential

Families for Likelihood-Free Inference." J. Mach. Learn. Res. 23 (2022): 38-1.

Student Confirmation

Student Name:

Lorenzo Pacchiardi

Contribution to the
Paper

I am the first author of this paper. Prof. Dutta provided the original idea of a way to

learn summary statistics using the exponential family. I came up with the precise

formulation, the way to train the exponential family with score matching, and the

possibility of using the resulting approximation as a stand-alone approximation scheme

(with doubly-intractable MCMC). I further coded the method, ran the simulations and

wrote most of the paper. Prof. Dutta advised along the way and corrected the paper

draft.

Signature

Date

1st September 2022

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Professor Geoff Nicholls

Supervisor comments

Signature

Date

15-09-22

This completed form should be included in the thesis, at the end of the relevant chapter.

Chapter 3

Generalized Bayesian
Likelihood-Free Inference Using
Scoring Rules Estimators

Unpublished and unsubmitted work.

98

Generalized Bayesian Likelihood-Free Inference

Using Scoring Rules Estimators

Lorenzo Pacchiardi1∗, Ritabrata Dutta2

1Department of Statistics, University of Oxford, UK
2Department of Statistics, University of Warwick, UK

Abstract

We propose a framework for Bayesian Likelihood-Free Inference (LFI) based on Generalized
Bayesian Inference. To define the generalized posterior, we use Scoring Rules (SRs), which evaluate
probabilistic models given an observation. In LFI, we can sample from the model but not evaluate
the likelihood; for this reason, we employ SRs which can be estimated empirically. Our framework
includes novel approaches and popular LFI techniques (such as Bayesian Synthetic Likelihood)
and enjoys posterior consistency in a well-specified setting when a strictly-proper SR is used (i.e.,
one whose expectation is uniquely minimized when the model corresponds to the data generating
process). In general, our framework does not approximate the standard posterior; as such, it is
possible to achieve outlier robustness, which we prove is the case for the Kernel and Energy Scores.
We also discuss a strategy for tuning the learning rate in the generalized posterior suitable for the
LFI setup. We run simulations studies with correlated pseudo-marginal Markov Chain Monte Carlo
and compare with related approaches, which we show do not enjoy robustness and consistency.

1 Introduction

This work is concerned with performing inference for intractable-likelihood models, for which it is
impossible or very expensive to evaluate the likelihood p(y|θ) for an observation y, but from which
it is easy to simulate for any parameter value θ. Given y and a prior π(θ) on the parameters, the
standard Bayesian posterior is π(θ|y) ∝ π(θ)p(y|θ). However, obtaining that explicitly or sampling
from it with Markov Chain Monte Carlo (MCMC) techniques is impossible without having access to
the likelihood.

Standard Likelihood-Free Inference (LFI) techniques exploit model simulations to approximate the
exact posterior distribution when the likelihood is unavailable. Broadly, two categories of approaches
exist, differing for the kind of approximation: methods in the first category [Price et al., 2018, An
et al., 2020, Thomas et al., 2020] replace the intractable likelihood with a surrogate one whose param-
eters are estimated from simulations. The second category is constituted by Approximate Bayesian
Computation (ABC) methods [Lintusaari et al., 2017, Bernton et al., 2019], which implicitly approx-
imate the likelihood by weighting parameter values according to the mismatch between observed and
simulated data.

In this work, we extend the first category above by building on the generalized Bayesian inference
setup [Bissiri et al., 2016, Jewson et al., 2018, Knoblauch et al., 2022]: given a generic loss `(y, θ)
between a single observation y and parameter θ, the following update for beliefs on parameter values
can be defined:

π(θ|y) ∝ π(θ) exp(−w · `(y, θ)); (1)

this allows to learn about the parameter value minimizing the expected loss over the data generating
process1 and respects Bayesian additivity (i.e., the posterior obtained by sequentially updating the

∗Corresponding author: lorenzo.pacchiardi@stats.ox.ac.uk.
1Indeed setting `(y, θ) = − log p(y|θ) and w = 1 recovers the standard Bayes update, which learns about the parameter

value minimizing the KL divergence [Bissiri et al., 2016].

1

belief with a set of observations does not depend on the order the observations are received). Here,
the learning rate w controls speed of learning.

In the following, we will distinguish between a statistical model (or distribution) Pθ and its likeli-
hood function p(y|θ). In general, the update in Eq. (1) does not require the quantity θ to parametrize
a statistical model Pθ. In LFI, however, we cannot evaluate p(y|θ), but a model Pθ is present. There-
fore, we propose to take `(y, θ) to be a Scoring Rule (SR) S(Pθ, y), which assesses the performance of
Pθ for an observation y, thus obtaining the Scoring Rule posterior πS . If S(Pθ, y) can be estimated
with samples from Pθ, we can apply this approach in a LFI setting without worrying about the missing
likelihood p(y|θ). Thus, our main contribution is: we introduce an LFI framework based on Scoring
Rules, which comprehends previously introduced LFI methods and novel ones. Additionally, for some
Scoring Rules, the resulting posterior enjoys outlier robustness while asymptotically concentrating on
the true parameter value in a well-specified setting.

Specifically, πS concentrates asymptotically on the minimizer of the expected Scoring Rule, pro-
vided such minimizer is unique; for well-specified models, the minimizer is the true parameter value
if so-called strictly proper SRs are used. To state this, we rely on previous results in Miller [2021], for
which we provide verifying assumptions for our setup. We also point out that the popular Bayesian
Synthetic Likelihood (BSL, Price et al. 2018) is an instance of our framework but does not use a strictly
proper SR, hence leading to some failures. Further, in general our framework does not approximate
the standard Bayesian posterior, as it is the case for commonly-used LFI techniques; by relaxing this
requirement, outlier robustness can be achieved, as we show for the Kernel and Energy Score. For the
same SRs, we also establish a finite sample generalization bound.

Finally, we discuss a tuning strategy for the learning rate w which is suitable for the SR posterior
in a LFI scenario and compare our Kernel and Energy Score posteriors with related approaches via
simulation studies. To sample from an approximation of the SR posterior, we employ pseudo-marginal
MCMC [Andrieu et al., 2009], inside which simulations from Pθ′ are generated for each proposed θ′. To
reduce the stickiness typical of pseudo-marginal chains, we exploit correlated pseudo-marginal MCMC
[Dahlin et al., 2015, Deligiannidis et al., 2018], which was validated for BSL in Picchini et al. [2022].
We study posterior concentration with the g-and-k model (in both well-specified and misspecified
case) and outlier robustness on a normal location example, as well as showcase the performance of our
methods on other benchmarks.

The rest of this manuscript is organized as follows. In Sec. 2, which contains most of our contribu-
tions, we first review Scoring Rules and define the SR posterior; we then discuss theoretical properties,
sampling method and our strategy to tune w. Next, we discuss the relation of our approach with pre-
vious works in Sec. 3, showing how some popular LFI approaches are instances of the SR posterior.
Our simulation studies are presented in Sec. 4 and we conclude and suggest future directions in Sec. 5.

1.1 Notation

We will denote respectively by X ⊆ Rd and Θ ⊆ Rp the data and parameter space, which we assume to
be Borel sets. We will assume the observations are generated by a distribution P0 and use Pθ and p(·|θ)
to denote the distribution and likelihood of our model. Generic distributions will be indicated by P or
Q, while S will denote a generic Scoring Rule. Other upper-case letters will denote random variables
while lower-case ones will denote observed (fixed) values. We will denote by Y or y the observations
(correspondingly random variables and realizations) and X or x the simulations. Subscripts will denote
sample index and superscripts vector components. Also, we will respectively denote by Yn = {Yi}ni=1 ∈
X n and yn = {yi}ni=1 ∈ X n a set of random and fixed observations. Similarly, Xm = {Xj}mj=1 ∈ Xm
and xm = {xj}mj=1 ∈ Xm denote a set of random and fixed model simulations. Finally, ⊥⊥ will
denote independence between random variables, while X ∼ P indicates a random variable distributed
according to P .

2 Bayesian inference using Scoring Rules

A Scoring Rule (SR, Gneiting and Raftery, 2007) S is a function of a probability distribution over X
and of an observation in X . In probabilistic forecasting, S(P, y) represents the penalty incurred when

2

stating a forecast P for an observation y.2

Assuming that y is a realization of a random variable Y with distribution Q, the expected Scoring
Rule is defined as:

S(P,Q) := EY∼QS(P, Y),

where we overload notation in the second argument of S. The Scoring Rule S is proper relative to a
set of distributions P(X) over X if

S(Q,Q) ≤ S(P,Q) ∀ P,Q ∈ P(X),

i.e., if the expected Scoring Rule is minimized in P when P = Q. Moreover, S is strictly proper
relative to P(X) if P = Q is the unique minimum:

S(Q,Q) < S(P,Q) ∀ P,Q ∈ P(X) s.t. P 6= Q;

when minimizing an expected strictly proper Scoring Rule, a forecaster provides their true belief
[Gneiting and Raftery, 2007].

The divergence related to a proper Scoring Rule [Dawid and Musio, 2014] can be defined as
D(P,Q) := S(P,Q) − S(Q,Q) ≥ 0. Notice that P = Q =⇒ D(P,Q) = 0, but there may be P 6= Q
such that D(P,Q) = 0. However, if S is strictly proper, D(P,Q) = 0 ⇐⇒ P = Q, which is the
commonly used condition to define a statistical divergence (as for instance the Kullback-Leibler, or
KL, divergence). Therefore, each strictly proper Scoring Rule corresponds to a statistical divergence
between probability distributions.

Consider now a set of independent and identically distributed observations yn ∈ X n by a distribu-
tion P0. We introduce the SR posterior for S by setting `(y, θ) = S(Pθ, y) in the general Bayes update
in Eq. (1):

πS(θ|yn) ∝ π(θ) exp

{
−w

n∑

i=1

S(Pθ, yi)

}
. (2)

The standard Bayes posterior is recovered from Eq. (2) by setting w = 1 and S(Pθ, y) = − log p(y|θ).
Such choice of S is called the log score, is strictly proper, and corresponds to the Kullback-Leibler
(KL) divergence. With the same S, w 6= 1 yields the fractional posterior [Holmes and Walker, 2017,
Bhattacharya et al., 2019].

Remark 1 (Bayesian additivity). The posterior in Eq. (2) satisfies Bayesian additivity (also called
coherence, Bissiri et al. 2016): sequentially updating the belief with a set of observations does not
depend on the order the observations are received. Some related approaches do not satisfy this property,
notably the ABC posterior [Lintusaari et al., 2017, Bernton et al., 2019]. Additionally, methods
building an estimate of the data generating density using all observations {yi}ni=1 break additivity (as
for instance the Hellinger posterior considered in Jewson et al. [2018]).

In Sec. 2.1, we review some Scoring Rules which can be easily estimated with intractable-likelihood
models. Some properties of the SR posterior are discussed in Sec. 2.2. In Sec. 2.3 and Sec. 2.4, we
show how to sample from an approximation of the SR posterior using pseudo-marginal MCMC and
propose a way to set the value of w.

2.1 Scoring Rules for LFI

Under the assumed LFI setup, we can sample from Pθ; therefore, we are interested in SRs for which
estimators can be easily obtained using generated samples. Specifically, we will estimate S(Pθ, y) with

Ŝ(x
(θ)
m , y), where x

(θ)
m = {x(θ)

j }mj=1 is a set of samples x
(θ)
j ∼ Pθ, and Ŝ is such that Ŝ(X

(θ)
m , y)→ S(Pθ, y)

in probability asm→∞ (i.e., it estimates the SR consistently). Two such Scoring Rules are the Energy
and Kernel Scores introduced in Sec. 1.2.2 in the introduction of the present thesis. Due to this and

2Some authors [Gneiting and Raftery, 2007] use the convention of S(P, y) representing a reward rather than a penalty,
which is equivalent up to change of sign.

3

their strict propriety, we will focus on those in studying our framework theoretically and empirically.
Specifically, we will fix β = 1 for the Energy Score and use the Gaussian kernel in the Kernel Score.

Another scoring rule which allows for unbiased estimators and is at the core of a widely used LFI
method is the Dawid–Sebastiani (DS) score, which is defined as:

SDS(P, y) = ln |ΣP |+ (y − µP)TΣ−1
P (y − µP), (3)

where µP and ΣP are the mean vector and covariance matrix of P . The DS score is the negative log-
likelihood of a multivariate normal distribution with mean µP and covariance matrix ΣP , up to some
constants. Therefore, it is equivalent to the log score when P is a multivariate normal distribution.
For a set of distributions P(X) with well-defined second moments, this SR is proper but not strictly
so: several distributions of that class may yield the same score, as long as the two first moments match
[Gneiting and Raftery, 2007]. It is strictly proper if distributions in P(X) are determined by their first
two moments, as it is the case for the normal distribution. Using SDS in Eq. (2) with w = 1 leads to the
popular Bayesian Synthetic Likelihood approach (see Sec. 3). In an LFI setup, an empirical estimator
ŜDS can be obtained by inserting any estimator of the mean and covariance matrix in Eq. (3).

Remark 2 (Non-invariance to change of data coordinates). Violation of the likelihood principle
implies that the SR posterior is in general not invariant to change of the coordinates used for repre-
senting the observations. This is a property common to loss-based frequentist estimators and to the
generalized posterior obtained from them [Matsubara et al., 2022b]; see Appendix B for more details.

2.2 Properties of the Scoring Rule posterior

2.2.1 Asymptotic normality

We first show that the SR posterior satisfies (under some conditions) a Bernstein-von Mises theorem
ensuring asymptotic normality. The result we give is of independent interest as it generalizes the
analogous result valid for the standard Bayesian posterior.

Without loss of generality, we fix here w = 1 (other values can be absorbed in the definition of S).
The proof relies on the following assumptions:

A1 The expected Scoring Rule S(Pθ, P0) is finite for all θ ∈ Θ; further, it has a unique minimizer:

θ? = arg min
θ∈Θ

S(Pθ, P0) = arg min
θ∈Θ

D(Pθ, P0).

Additionally, H? := ∇2
θS(Pθ, P0)

∣∣
θ=θ?

is positive definite.

A2 Let us denote S′′′(Pθ, y)jkl = ∂3

∂θj∂θk∂θl
S(Pθ, Y). There exists an open neighborhood E ⊆ Rd of

θ? whose closure Ē ⊆ Θ is such that, for all j, k, l ∈ {1, . . . , d}:

• θ → S′′′(Pθ, y)jkl is continuous in E and exists in Ē for any fixed y ∈ X ,

• y → S′′′(Pθ, y)jkl is measurable for any fixed θ ∈ Ē,

• EP0 supθ∈Ē |S′′′(Pθ, y)jkl| <∞.

A3 For E defined above, there exists a compact K ⊆ E, with θ? in the interior of K, such that:

P0

{
lim inf

n
inf

θ∈Θ\K
1

n

n∑

i=1

S(Pθ, Yi) > S(Pθ? , P0)

}
= 1.

A4 The prior has a density π(θ) with respect to Lebesgue measure; π(θ) is continuous and positive
at θ?.

4

Assumption A3 is a regularity condition which can be replaced with clearer (but less general)
Assumptions; see Appendix A.1.2. In Assumption A1, H? generalizes the standard Fisher information,
which can be obtained by setting S(Pθ, y) = − log p(y|θ). Additionally, uniqueness of θ? is obtained
by strictly proper S and a well-specified model (in which case observations were generated from Pθ?).
If the model class is misspecified, a strictly proper S does not guarantee a unique minimizer (as in
fact there may be pathological cases where multiple minimizers exist).

Theorem 1. Let Assumptions A1 to A4 be true. Then, there is a sequence θ̂(n) (Yn) which converges

almost surely to θ? as n → ∞. Denote now by π∗S (·|Yn) the density of
√
n
(
θ − θ̂(n) (Yn)

)
when

θ ∼ πS (·|Yn). Then as n→∞, with probability 1 over Yn:
∫

Rp

∣∣π∗S (s|Yn)−N
(
s|0, H−1

?

)∣∣ ds→ 0,

where N (·|0,Σ) denotes the density of a multivariate normal distribution with zero mean vector and
covariance matrix Σ.

Proof of Theorem 1 is reported in Appendix A.1.2 and uses a result for general Bayes posteriors
with generic losses found in Miller [2021].

Theorem 1 implies that the SR posterior concentrates, with probability 1, on the parameter value
minimizing the expected SR, if that minimizer is unique. If the model is well specified and S is strictly
proper, the SR posterior concentrates therefore on the true parameter value; this property is usually
referred to as posterior consistency.

Remark 3 (Non-invariance to change of data coordinates – continued). Following on from
Remark 2, notice that θ? depends on the data coordinates, unless the model is well specified and S is
strictly proper. If that is not the case, SR posteriors using different data coordinates will concentrate
on different parameter values in general. This property is coherent with the SR posterior learning
about the parameter value which minimizes the expected Scoring Rule, which in turn depends on the
chosen coordinate system. See Appendix B for more details.

2.2.2 Finite sample generalization bound

We now consider the Energy and Kernel Score posteriors and their corresponding divergences, and
provide a bound on the probability of deviation of the posterior expectation of the divergence from
the minimum divergence achievable by the model. The bound holds with finite number of samples
and does not require the model to be well specified nor the minimizer of the divergence to be unique.
Such results are usually referred to as generalization bounds [Chérief-Abdellatif and Alquier, 2020].
For our bound to hold, we require the following prior mass condition with respect to a divergence D:

A5 The prior has density π(θ) (with respect to Lebesgue measure) which satisfies
∫

Bn(α1)
π(θ)dθ ≥ e−α2

√
n

for some constants α1, α2 > 0 and for all positive n ∈ N, where we define the sets:

Bn (α1) :=
{
θ ∈ Θ : |D (Pθ, P0)−D (Pθ? , P0)| ≤ α1/

√
n
}
,

where θ? ∈ arg minθ∈ΘD(Pθ, P0), which is assumed to be nonempty.

Assumption A5 constrains the amount of prior mass given to D-balls with size decreasing as n−1/2

to decrease slower than e−α2
√
n for some α2. It is therefore a weak condition, as it bounds the mass

by a quickly decreasing function while the radius is decreasing more slowly. Similar assumptions are
taken in Chérief-Abdellatif and Alquier 2020, Matsubara et al. 2022b, where some examples of explicit
verification can be found.

Our result (proved in Appendix A.2) further assumes either a bounded kernel k for the Kernel
Score posterior, or bounded X for the Energy Score posterior.

5

Theorem 2. The following two statements hold for any ε > 0:

1. Let the kernel k be such that supx∈X k(x, x) ≤ κ < ∞, and let Dk be the divergence associated
to Sk. Consider θ? ∈ arg minθ∈ΘDk(Pθ, P0); if the prior π(θ) satisfies Assumption A5 for Dk,
we have for the kernel Score posterior πSk :

P0

(∣∣∣∣
∫

Θ
Dk(Pθ, P0)πSk(θ|Yn)dθ −Dk(Pθ? , P0)

∣∣∣∣ ≥ ε
)
≤ 2e

− 1
2

(√
nε−α1−α2/w

8κ

)2
.

2. Assume the space X is bounded such that supx,y∈X ‖x − y‖2 ≤ B < ∞, and let D
(β)
E be the

divergence associated with S
(β)
E . Consider θ? ∈ arg minθ∈ΘD

(β)
E (Pθ, P0); if the prior π(θ) satisfies

Assumption A5 for D
(β)
E , we have for the Energy score posterior π

S
(β)
E

:

P0

(∣∣∣∣
∫

Θ
D

(β)
E (Pθ, P0)π

S
(β)
E

(θ|Yn)dθ −D(β)
E (Pθ? , P0)

∣∣∣∣ ≥ ε
)
≤ 2e

− 1
2

(√
nε−α1−α2/w

8Bβ

)2
.

As ε or n increases, the bound on the probability tends to 0; for n→∞, this implies that the SR
posterior concentrates on those parameter values for which the model achieves minimum divergence
from the data generating process P0, ensuring therefore consistency in the well-specified case. With
respect to Theorem 1, Theorem 2 provides guarantees on the infinite sample behavior of the SR
posterior even when θ? is not unique; however, this result does not describe the specific form of the
asymptotic distribution, which Theorem 1 instead does.

2.2.3 Global bias-robustness

We establish now robustness with respect to contamination in the dataset for the Kernel Score posterior
with bounded kernel and the Energy Score posterior with bounded X .

First, consider the empirical distribution of the observations P̂n = 1
n

∑n
i=1 δyi . If we define:

L(θ, P̂n) :=
1

n

n∑

i=1

S(Pθ, yi) = EY∼P̂nS(Pθ, Y)

for a Scoring Rule S, the SR posterior in Eq. (2) can be rewritten as:

πS(θ|yn) = πS(θ|P̂n) ∝ π(θ) exp
{
−wnL(θ, P̂n)

}
.

Next, consider the ε-contamination distribution P̂n,ε,z = (1 − ε)P̂n + εδz, obtained by perturbing the
fixed empirical distribution with an outlier z of weight ε. In this setup, the posterior influence function
[Ghosh and Basu, 2016] can be defined as:

PIF
(
z, θ, P̂n

)
:=

d

dε
πS

(
θ
∣∣∣P̂n,ε,z

)∣∣∣∣
ε=0

,

which measures the rate of change of the posterior in θ when an infinitesimal perturbation in z is
added to the observations. We say the SR posterior is C-globally bias-robust if:

sup
θ∈Θ

sup
z∈X

∣∣∣PIF
(
z, θ, P̂n

)∣∣∣ ≤ C

and globally bias-robust if C <∞ [Matsubara et al., 2022b].

Theorem 3. The following two independent statements hold:

1. Consider a kernel k such that supx∈X k(x, x) ≤ κ <∞; then, the Kernel Score posterior πSk(·|yn)
is C-globally bias-robust with C ≤ 8wnκe6wnκ supθ∈Θ π(θ).

6

2. Alternatively, assume the space X is bounded such that supx,y∈X ‖x − y‖2 ≤ B < ∞; then, the

Energy Score posterior π
S
(β)
E

(·|yn) is globally bias-robust with C ≤ 8wnBβe2wnBβ supθ∈Θ π(θ).

Proof is given in Appendix A.3. The Gaussian kernel (used across this work, see Sec. 2.1) is
bounded. Our theoretical result does not hold for the Energy Score posterior when X is unbounded.
However, in practice we still find the Energy Score posterior to be robust to outliers in examples with
unbounded X (see Sec. 4.2).

2.3 Sampling the Scoring Rule posterior

In implementing our proposed approach, we use an MCMC where, for each proposed value of θ, we

simulate x
(θ)
m = {x(θ)

j }mj=1 and estimate the target in Eq. (2) with:

π(θ) exp

{
−w

n∑

i=1

Ŝ(x
(θ)
m , yi)

}
. (4)

This procedure is an instance of pseudo-marginal MCMC [Andrieu et al., 2009], with target:

π
(m)

Ŝ
(θ|yn) ∝ π(θ)p

(m)

Ŝ
(yn|θ), (5)

where:

p
(m)

Ŝ
(yn|θ) = E

[
exp

{
−w

n∑

i=1

Ŝ(X
(θ)
m , yi)

}]

=

∫
exp

{
−w

n∑

i=1

Ŝ(x
(θ)
m , yi)

}
m∏

j=1

p
(
x

(θ)
j

∣∣∣ θ
)
dx

(θ)
1 dx

(θ)
2 · · · dx(θ)

m .

For a single draw x
(θ)
m , the quantity in Eq. (4) is in fact a non-negative and unbiased estimate of the

target in Eq. (5); this approach is similar to what is proposed in Drovandi et al. [2015] for inference
with auxiliary likelihoods, which has also been used by Price et al. [2018] for BSL. As it was already

the case for the latter, the target π
(m)

Ŝ
(θ|yn) is not the same as πS(θ|yn) and depends on the number

of simulations m; in fact, in general:

E

[
exp

{
−w

n∑

i=1

Ŝ(X
(θ)
m , yi)

}]
6= exp

{
−w

n∑

i=1

S(Pθ, yi)

}
,

even if Ŝ(x
(θ)
m , y) is an unbiased estimate of S(Pθ, y). However, it is possible to show that, as m→∞,

π
(m)

Ŝ
converges to πS :

Theorem 4. If Ŝ(X
(θ)
m , yi) converges in probability to S(Pθ, yi) as m→∞ for all i = 1, . . . , n, then,

under some minor technical assumptions:

lim
m→∞

π
(m)

Ŝ
(θ|yn) = πS(θ|yn), ∀θ ∈ Θ.

The above result is an extension of the one in Drovandi et al. [2015] for Bayesian inference with
an auxiliary likelihood. Appendix A.4 gives the technical conditions explicitly (in Theorem 6) and
proves the result.

Remark 4 (Properties of pseudo-marginal MCMC target). Our results in Sec. 2.2 refer to the
“exact” SR posterior πS (Eq. 2), which, for finite m, is different from the pseudo-marginal MCMC

target π
(m)

Ŝ
in Eq. (5). Similarly to what was done in Frazier et al. [2022] for BSL, it could be possible

to show asymptotic normality of π
(m)

Ŝ
when both n→∞ and m→∞ at the same time; we leave this

for future work. Additionally, while πS satisfies Bayesian additivity (see Remark 1), π
(m)

Ŝ
does not in

general.

7

2.4 Choice of w

In the generalized posterior distribution (Eq. 1) , w represents the amount of information, with respect
to prior information, one observation brings to the decision maker. For the standard Bayesian update,
w is fixed to 1, which yields the optimal way to process information in a well-specified scenario [Zellner,
1988]. When the model is misspecified, some works have argued for the use of w 6= 1 in the standard
Bayes update [Grünwald and Van Ommen, 2017, Holmes and Walker, 2017, Wu and Martin, 2020], and
suggested criteria to select w. Many strategies for setting w for generalized Bayesian inference with
a generic loss have also been proposed (see Bissiri et al. 2016, Syring and Martin 2019, Lyddon et al.
2019, Loaiza-Maya et al. 2021 and Matsubara et al. [2022a], among others). Most of these approaches
are however inapplicable to the SR posterior for a LFI setting: Grünwald and Van Ommen [2017]
and Syring and Martin [2019] require to obtain the posterior with different values of w, which is
computationally costly; Holmes and Walker [2017], Lyddon et al. [2019] and Matsubara et al. [2022a]
exploit derivatives of the loss with respect to θ; Holmes and Walker [2017], Lyddon et al. [2019], Syring
and Martin [2019] and Matsubara et al. [2022a] estimate the value of θ yielding the minimum expected
loss, which cannot be obtained easily in LFI; finally, Loaiza-Maya et al. [2021] requires samples from
the exact posterior.

We propose therefore a strategy to select w without repeated posterior inferences, and without
relying on knowledge of the likelihood function. Notice that, as remarked by Bissiri et al. [2016]:

log

{
πS(θ|y)

πS (θ′|y)
/
π(θ)

π (θ′)

}

︸ ︷︷ ︸
BF(θ,θ′;y)

= −w {S(Pθ, y)− S(Pθ′ , y)} ⇐⇒ w = − log BF(θ, θ′; y)

S(Pθ, y)− S(Pθ′ , y)
,

where BF(θ, θ′; y) denotes the Bayes Factor of θ with respect to θ′ for observation y. Therefore, w can
be determined by fixing BF(θ, θ′; y) for a single choice of θ, θ′, y.

Assume the user has access to another posterior π̃(θ|y) which is obtained by means of a (in general

misspecified) likelihood p̃(y|θ), with corresponding Bayes Factor B̃F; for some θ, θ′, y, setting:

w = − log B̃F(θ, θ′; y)

S(Pθ, y)− S(Pθ′ , y)
,

would ensure B̃F(θ, θ′; y) = BF(θ, θ′; y). In practice, we have no reason to prefer a specific choice of

(θ, θ′); thus, we set w to be the median of − log B̃F(θ,θ′;y)
S(Pθ,y)−S(Pθ′ ,y) over values of (θ, θ′) sampled from the

prior. The median (with respect to the mean) leads to a strategy which is robust to outliers in the
computation of the above ratio. Additionally, if Pθ is an intractable-likelihood model, we estimate w

by replacing S(Pθ, y) with Ŝ(x
(θ)
m , y), by generating data x

(θ)
m for each considered values of θ.

Section 3.3. in Matsubara et al. [2022a] proposed to consider bootstrap datasets
{
x

(b)
i

}n
i=1

, b =

1, . . . , B and to find the loss minimizer θ
(b)
n = arg minθ∈ΘD

(b)
n (θ) for each of them; then, they find

w by minimizing the Fisher divergence between the empirical measure of these minimizers and the
generalized posterior for the same loss (you need the Fisher divergence to overcome the intractable
normalizing constant of the generalised posterior). If the loss is twice differentiable with respect
to the parameters, this leads to a closed form expression. This method is therefore embarassingly
parallelisable as the different minimizers can be computed independently. It is similar to Lyddon
et al. [2019] in using the bootstrap samples, but it does not rely on asymptotic quantities and takes
the prior into account. It is also somehow similar to Syring and Martin [2019] in trying to achieve
some calibration; however it is much more computationally tractable. It is also similar to Jewson and
Rossell [2021] in its use of the Fisher divergence.

Remark 5 (Posterior invariance with data rescaling). Following on from Remark 2, we highlight
here that the Kernel and Energy Score posteriors are invariant to an affine transformation of the data
(Z = a · Y + b for a, b ∈ R), albeit non-invariant to a generic transformation of the data coordinates.
Specifically, the Kernel Score posterior with Gaussian kernel is invariant to such transformations with
wZ = wY , provided the kernel bandwidth is scaled too, while the Energy Score posterior is invariant
when wZ · aβ = wY ; both are ensured by our strategy for selecting w.

8

3 Related approaches

As mentioned before, the popular LFI method Bayesian Synthetic Likelihood (BSL) corresponds to
the SR posterior when using the Dawid-Sebastiani score (Eq. (3)). The Kernel Score posterior was
already considered in Chérief-Abdellatif and Alquier [2020] under the name of MMD-Bayes. However,
our work provides a broader perspective and a thorough evaluation of the Energy Score. Further, we
study the robustness properties of the resulting posterior, which was not done in Chérief-Abdellatif
and Alquier [2020], and consider more models in our simulation study. Moreover, in contrast to
the variational approximation of Chérief-Abdellatif and Alquier [2020], we exploit pseudo-marginal
MCMC.

Other two methods that fall under the SR framework are the semi-parametric BSL An et al. [2020]
and the ratio-estimation methods Thomas et al. [2020]; we discuss these methods in Appendices C.2
and C.3.

Scoring Rules have been previously used to generalize Bayesian inference in Jewson et al. [2018],
Giummolè et al. [2019], Loaiza-Maya et al. [2021]; no previous work, however, was concerned explicitly
with LFI. Specifically, Giummolè et al. [2019] considered an update similar to ours, but fixed w = 1
and adjusted the parameter value (similarly to what was done in Pauli et al., 2011 and Ruli et al.,
2016) so that the posterior has the same asymptotic covariance matrix as the frequentist minimum
Scoring Rule estimator. Instead, Loaiza-Maya et al. [2021] considered a time-series setting in which
the task is to learn about the parameter value which yields the best prediction, given the previous
observations. Finally, Jewson et al. [2018] motivated Bayesian inference using general divergences
(beyond the KL one which underpins standard Bayesian inference) to bypass the issues of standard
Bayesian inference in an M-open setup (such as sensitivity to outliers). They discussed posteriors
which employ estimators of the divergences from observed data; some of these estimators can be
written using Scoring Rules (and thus satisfy Bayesian additivity), but they did not consider the
Kernel and Energy score we study. Interestingly, Jewson et al. [2018] found divergences different from
the KL to be robust to outliers, but no theory for why that is the case is provided.

A work released few weeks after the first version of the present manuscript [Matsubara et al., 2022b]
investigates the generalized posterior obtained by using a Kernel Stein Discrepancy [Chwialkowski
et al., 2016, Liu et al., 2016]. This posterior is shown to satisfy robustness and consistency properties,
and is computationally convenient for doubly-intractable models (i.e., for which the likelihood is
available, but only up to the normalizing constant). In contrast, our work focuses on models that do
not have an explicit likelihood.

Finally, Dellaporta et al. [2022], published months after the release of the first version of our
work, introduced a new LFI method which, similar to ours, enjoys outlier robustness and posterior
consistency; however, their method is derived from the Bayesian non-parametric learning framework
of Lyddon et al. [2018], Fong et al. [2019] rather than the generalized Bayesian posterior of Bissiri
et al. [2016].

4 Simulation studies

We present here simulation studies to illustrate our approach. Precisely, we first study the concen-
tration of different methods belonging to the SR posterior framework (the Energy and Kernel Scores,
BSL and semiBSL) in Sec. 4.1; next, in Sec. 4.2, we consider the effect of outliers in the observed
dataset; finally, in Sec. 4.3, we compare the posteriors obtained with different methods on two other
benchmarks.

Throughout, we consider β = 1 in the Energy Score and define the Kernel Score via the Gaussian
kernel with bandwidth set from simulations as illustrated in Appendix D. The LFI techniques are run
using the ABCpy Python library [Dutta et al., 2021], while the PyMC3 library [Salvatier et al., 2016] is
used to sample from the standard Bayes posterior when that is available (except for the M/G/1 exam-
ple, where the custom strategy described in Shestopaloff and Neal, 2014 is exploited). Code for repro-
ducing all results is available at https://github.com/LoryPack/GenBayes LikelihoodFree ScoringRules.

As mentioned in Sec. 2.3, we use pseudo-marginal MCMC to sample from an approximation of the

9

SR posterior. When the posterior is narrow, however, vanilla pseudo-marginal approaches [Andrieu
et al., 2009] can have a “sticky” behavior, due to the variability in estimating the target. To reduce this
issue, correlated pseudo-marginal MCMC has been suggested [Dahlin et al., 2015, Deligiannidis et al.,
2018] and explicitly tested for BSL in Picchini et al. [2022]; the idea is to keep track of the random
numbers used in simulating the model and reusing them for subsequent proposed parameter values.
This correlates the target estimates at subsequent steps and reduces the chances of the chain getting
stuck due to atypical random number draws. Specifically, the m simulations used in the posterior
estimate (Eq. 4) are split in G groups; at each MCMC step, a new set of random numbers is proposed
for the simulations in a randomly chosen group (alongside the proposed value for θ), and accepted or
rejected in the standard way. Additionally, when Θ is bounded, we run the MCMC on a transformed
unbounded space.

The algorithm described above is a valid pseudo-marginal MCMC and therefore targets Eq. (5)
which, as mentioned before, is not the same as the original SR posterior defined in Eq. (2). However,
as shown in Theorem 4, the former converges to the latter as m → ∞. In Appendix F, we report
experimental studies showing how, for m above some threshold (typically few hundreds), the MCMC
target is roughly constant. On the contrary, very small values of m lead to unsatisfactory MCMC
performance.

4.1 Concentration with the g-and-k model

Here, we study concentration of the posteriors belonging to the SR posterior framework with an
increasing number of observations. We will consider both a well-specified and misspecified case; in
the former, if a strictly proper SR (such as the Energy or Kernel Score) is used, the unique minimizer
θ? is the parameter value from which data are generated; the posterior will therefore concentrate on
θ? for large n (see Theorem 1). Indeed, in our experiments below we observe concentration for the
Energy or Kernel Score posteriors but not for BSL and semiBSL. In the misspecified case, it is hard
to verify analytically whether a unique θ? exists, for both proper and strictly proper SRs; we proceed
therefore by studying the behavior of the posterior with increasing n and deduce from this whether
θ? is unique or not for the different SRs. Additionally, we experience difficulties in sampling for BSL
and semiBSL for large n, while this is not the case for the Energy and Kernel Score posteriors.

We consider the univariate g-and-k model and its multivariate extension; the univariate g-and-k
distribution [Prangle, 2017] is defined in terms of the inverse of its cumulative distribution function
F−1. Given a quantile q, we define:

F−1(q) = A+B

[
q + 0.8

1− e−gz(q)
1 + e−gz(q)

]
(
1 + z(q)2

)k
z(q),

where the parameters A, B, g, k are broadly associated to the location, scale, skewness and kurtosis
of the distribution, and z(q) denotes the q-th quantile of the standard normal distribution N (0, 1).
Likelihood evaluation for this model is costly as it requires numerical inversion of F−1; instead,
sampling is immediate by drawing z ∼ N (0, 1) and inputing it in place of z(q) in the expression
above. A multivariate extension was first considered in the LFI literature in Drovandi and Pettitt
[2011]; here we follow the setup of Jiang [2018]. Specifically, we consider drawing a multivariate normal
(Z1, . . . , Z5) ∼ N (0,Σ), where Σ ∈ R5×5 has a sparse correlation structure: Σkk = 1, Σkl = ρ for
|k − l| = 1 and 0 otherwise; each component of Z is then transformed as in the univariate case. The
sets of parameters are therefore θ = (A,B, g, k) for the univariate case and θ = (A,B, g, k, ρ) for the
multivariate one. We use uniform priors on [0, 4]4 for the univariate case and [0, 4]4 × [−

√
3/3,
√

3/3]
for the multivariate case.

In both setups, we perform inference with our SR methods, BSL and semiBSL (excluding semiBSL
for the univariate g-and-k, as that is defined for multivariate distributions only) setting the number
of simulations per parameter value to m = 500, G = 500 and run MCMC for 110000 steps, of which
10000 are burned in. We repeat this with 1, 5, 10, 15, 20 up to 100 observations spaced by 5.

10

Figure 1: Marginal posterior distributions for the different parameters for the well-specified univariate
g-and-k model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100). Darker (respectively
lighter) colors denote a larger (smaller) number of observations. The densities are obtained by KDE
on the MCMC output thinned by a factor 10. The Energy and Kernel Score posteriors concentrate
around the true parameter value (green vertical line), while BSL does not.

4.1.1 Well-specified case

For both univariate and multivariate case, we consider synthetic observations generated from param-
eter values A? = 3, B? = 1.5, g? = 0.5, k? = 1.5 and ρ? = −0.3 (notice ρ is not used in the univariate
case). For the SR posteriors, we fix w by employing our suggested strategy with one single observation
(Sec. 2.4), using as a reference BSL. The used values of w are reported in Appendix E.1.1, together
with the proposal sizes for MCMC and the resulting acceptance rates.

For the univariate g-and-k, Fig. 1 reports the marginal posterior distributions for each parameter
at different number of observations for the considered methods. With increasing n, the BSL posterior
does not concentrate (except for the parameter k); the Energy Score posterior concentrates close to the
true value for all parameters (green vertical line), while the Kernel Score posterior performs slightly
worse, not being able to concentrate for the parameter g (albeit this may happen with an even larger
n, which we did not consider here). The poor performance of BSL is due to violation of the underlying
normality assumption (which is to say, the scoring rule used by BSL is not strictly proper for this
example), while the concentration of the Energy and Kernel Score posteriors are in line with them
being strictly proper SRs.

Similar results for the multivariate g-and-k are reported in Fig. 2. For this example, the MCMCs
targeting the semiBSL and BSL posteriors do not converge beyond respectively 1 and 10 observations;
those results are therefore deferred to Fig. 8 in Appendix. Instead, with the Kernel and Energy Scores
we do not experience such a problem. The Energy Score concentrates well on the exact parameter
value in this case too, while the Kernel Score is able to concentrate well for some parameters (g and
k) and some concentration can be observed for ρ; however, the Kernel Score posterior marginals for A
and B are flatter and noisier (it may be that larger n leads to more concentrate posterior for A and
B as well, but we did not research this further).

We investigate now the poor performance of semiBSL and BSL, by fixing n = 20 and running
MCMC with 10 different initializations. The chains look “sticky” and, after a short transient, get stuck
in different regions of Θ (see Fig. 9 in Appendix). This behavior can be explained by large variance

11

Figure 2: Marginal posterior distributions for the different parameters for the well-specified multivari-
ate g-and-k model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100). Darker (respec-
tively lighter) colors denote a larger (smaller) number of observations. The densities are obtained by
KDE on the MCMC output thinned by a factor 10. The Energy Score posterior concentrates well
around the true parameter value (green vertical line), with the Kernel Score one performing slightly
worse.

in the estimates of the pseudo-marginal MCMC target. We repeat therefore the same experiments
increasing the number of simulations m, as that decreases the variance of the target estimates (more
details in Appendix E.1.2); larger values of m slightly increase the acceptance rate for BSL but do not
almost change that for semiBSL. Additionally, while the BSL assumptions are unreasonable for this
model, the multivariate g-and-k fulfills the assumptions underlying semiBSL: in fact, applying a one-
to-one transformation to each component of a random vector does not change the copula structure,
which is Gaussian in this case. It is therefore surprising that the performance of semiBSL degrades so
rapidly when n increases.

4.1.2 Misspecified setup

Here, we consider as data generating process the Cauchy distribution, which has fatter tails than the
g-and-k one. For the univariate case, the univariate Cauchy is used; for the multivariate case, the
five components of each observation are drawn independently from the univariate Cauchy distribution
(i.e., no correlation between components). For the SR posteriors, we use the values of w which were
obtained with our strategy in the well-specified case; additional experimental details are reported in
Appendix E.1.3.

For the univariate g-and-k, we report the marginal posteriors in Fig. 3. The Energy and Kernel
Score posteriors concentrate on a similar parameter value; the BSL posterior concentrates as well
(differently from the well-specified case), albeit on a slightly different parameter value (especially for
B and k). Therefore, with this kind of misspecification, θ? is unique both when using the strictly proper
Kernel and Energy Scores, as well as the non-strictly proper Dawid–Sebastiani Score (corresponding
to BSL).

To assess out-of-sample performance of the inferred posterior, we implement the following posterior
predictive check: given draws from a posterior π(θ|yn), we generate simulations from the model for
the corresponding parameter value, which are therefore samples from the posterior predictive:

p(ynew|yn) =

∫
p(ynew|θ)π(θ|yn)dθ.

From these samples, we estimate the Energy and Kernel Score between the posterior predictive dis-
tribution and the observations yn, which assess how well the posterior predictive matches the original
observation. Results for n = 100 observations are reported in Table 1: not surprisingly, the posterior
predictive obtained for the Kernel Score posterior minimizes the Kernel Score, and similarly for the
Energy Score. Indeed, the SR posterior concentrates on the parameter value which achieves the lowest
expected SR.

12

Figure 3: Marginal posterior distributions for the different parameters for the univariate g-and-k
model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100) generated from the Cauchy
distribution. Darker (respectively lighter) colors denote a larger (smaller) number of observations.
The densities are obtained by KDE on the MCMC output thinned by a factor 10. The Energy and
Kernel Score posteriors concentrate around the same parameter value, while BSL concentrates on
slightly different one (specially for B and k).

For the multivariate g-and-k, we experienced the same issue with MCMC as in the well-specified
case for BSL and semiBSL; therefore, we do not report those results. Marginals for the Energy and
Kernel Score posteriors can be seen in Fig. 4; both posteriors concentrate for all parameters except for
ρ (which describes correlation among different components in the observations, here absent). For the
other parameters, the two methods concentrate on very similar parameter values, with slightly larger
difference for k, for which the Kernel Score posterior does not concentrate very well.

As before, we report the posterior predictive check results for n = 100 observations in Table 1;
here, the Energy Score posterior yields better posterior predictive according to both the Energy and
Kernel Score. However, notice that the Kernel Score values for the two methods are very close.

Misspecified univariate g-and-k Misspecified multivariate g-and-k

BSL Kernel Score Energy Score Kernel Score Energy Score

Energy Score 49046.1828 41540.6385 36912.0548 243599.3863 227662.0929
Kernel Score -7296.1355 -8088.4518 -8052.7533 -8856.8503 -8867.2898

Table 1: Posterior predictive check for misspecified univariate and multivariate g-and-k, for n = 100.
Each column refers to a different posterior (column headline), while rows report the estimated Energy
or Kernel Score between posterior predictive and the observations. Lower values are better, and bold
denotes smallest values.

4.2 Robustness to outliers in normal location model

We now study the performance of the Kernel and Energy Score posteriors in presence of outliers.
From our result in Theorem 3, we expect the Kernel Score to provide outlier robustness, which is
empirically verified; however, even the Energy Score posterior shows some robustness.

13

Figure 4: Marginal posterior distributions for the different parameters for the multivariate g-and-k
model, with increasing number of observations (n = 1, 5, 10, 15, . . . , 100) generated from the Cauchy
distribution. Darker (respectively lighter) colors denote a larger (smaller) number of observations.
The densities are obtained by KDE on the MCMC output thinned by a factor 10. Both Energy and
Kernel Score posteriors concentrate on a very similar parameter value, with slightly larger difference
for k.

We consider a univariate normal model with fixed standard deviation Pθ = N (θ, 1). As was done
in Matsubara et al. [2022b], we consider 100 observations, a proportion 1− ε of which is generated by
Pθ with θ = 1, while the remaining proportion ε is generated by N (z, 1) for some value of z. Therefore,
ε and z control respectively the number and location of outliers. The prior distribution on θ is set to
N (0, 1). To perform inference with our proposed SR posterior, we use m = 500, G = 50 and 60000
MCMC steps, of which 40000 are burned-in. Additionally, we perform standard Bayesian inference
(as the likelihood is available here). For the SR posteriors, w is fixed in order to get approximately
the same posterior variance as standard Bayes in the well-specified case (ε = 0); values are reported
in Appendix E.2, together with the proposal sizes for MCMC and the resulting acceptance rates.

We consider ε taking values in (0, 0.1, 0.2) and z in (1, 3, 5, 7, 10, 20); in Fig. 5, some results are
shown. Results for all combinations of z and ε are available in Fig. 11 in Appendix. The Kernel Score
posterior is highly robust with respect to outliers, while the Energy Score posterior performs slightly
worse. As expected, the standard Bayes posterior shifts significantly when either ε or z are increased.
We highlight that Theorem 3 only ensures robustness for small values of ε and all values of z for the
Kernel Score posterior, which is in fact experimentally verified (the robustness result for the Energy
Score posterior does not apply here as X is unbounded); however, we find empirically that both SR
posteriors are more robust than the standard Bayes one, when both z and ε are increased.

Finally, this example satisfies the BSL assumptions, which should therefore recover the standard
Bayes posterior. However, our simulation results with BSL were unsatisfactory; specifically, BSL is
able to reproduce the standard Bayes posterior when no outliers are present or when z is close to 1; in
all other cases, MCMC does not converge and presents a sticky behavior, similar to what was already
mentioned in Sec. 4.1. Further details on this are given in Appendix E.2.

4.3 Comparison of posteriors in MA(2) and M/G/1 models

We now show posteriors obtained with different methods for a single observation on the MA(2) and
M/G/1 models [Marin et al., 2012, An et al., 2020]. We consider a well specified setting, and also
report the standard Bayes posterior, which is available for these models. We stress again that the SR
posterior does not approximate the standard Bayes posterior, but rather is defined as a generalized
Bayesian update; for this reason, it is misleading to evaluate the SR posterior (with respect to, say,
BSL) by assessing the mismatch from the standard Bayes one. Still, it is insightful to show the
posterior obtained with our methods alongside the true posterior and its approximations BSL and
semiBSL. With both models, we find that the SR posteriors are located on similar regions of the
parameter space as the true posterior, but are centered on slightly different parameter values.

14

Figure 5: Posterior distribution for the misspecified normal location model, following experimental
setup introduced in Matsubara et al. [2022b]. First row: fixed outliers location z = 10 and varying
proportion ε; second row: fixed outlier proportion ε, varying location z. From both rows, it can be seen
that both Kernel and Energy score are more robust with respect to Standard Bayes. The densities
are obtained by KDE on the MCMC output thinned by a factor 10.

4.3.1 The MA(2) model

The Moving Average model of order 2, or MA(2), is a time-series model for which simulation is easy
and the likelihood is available in analytical form; it has 2 parameters θ = (θ1, θ2). Sampling from the
model is achieved with the following recursive process:

x1 = ξ1, x2 = ξ2 + θ1ξ1, xt = ξt + θ1ξt−1 + θ2ξt−2, t = 3, . . . , 50,

where ξt’s are i.i.d. samples from the standard normal distribution (recall here superscripts do not
represent power but vector indices). The vector random variable X ∈ R50 has a multivariate normal
distribution with sparse covariance matrix; therefore, this model satisfies the assumptions of both BSL
and semiBSL. We set the prior distribution over the parameters to be uniform in the triangular region
defined through the following inequalities: −1 < θ2 < 1, θ1 + θ2 > −1, θ1 − θ2 < 1. We consider an
observation generated from θ? = (0.6, 0.2); further, we use G = 50 groups, m = 500 simulations and
30000 MCMC steps, of which 10000 are burned-in, in order to sample from the different methods.

Exact posterior samples are obtained with MCMC using the exact MA(2) likelihood with 6 parallel
chains with 20000 steps, of which 10000 are burned in. For the SR posteriors, we set w with our
tuning strategy (Sec. 2.4). For all methods, we report the posteriors in Fig. 6. As expected, both BSL
and semiBSL recover the true posterior well. The Energy Score and Kernel Score posterior perform
similarly and are centered around the same parameter value as the true posterior, which is however
narrower. This of course depends on the chosen value for w. To better understand the impact of that,
we obtained the SR posteriors for different values of w: unsurprisingly, larger values of w lead to more
concentrate posteriors (see Appendix E.3 for graphical illustrations and other experimental details).

4.3.2 The M/G/1 model

The M/G/1 model is a single-server queuing system with Poisson arrivals and general service times.
Specifically, the distribution of the service time is Uniform in (θ1, θ2) and the interarrival times have
exponential distribution with parameter θ3; the set of parameters is therefore θ = (θ1, θ2, θ3). The
observed data is the logarithm of the first 50 interdeparture times; as shown in An et al. [2020], the

15

2 1 0 1 2
1

1.0

0.5

0.0

0.5

1.0
2

SyntheticLikelihood

2 1 0 1 2
1

semiBSL

2 1 0 1 2
1

KernelScore

2 1 0 1 2
1

EnergyScore

2 1 0 1 2
1

True posterior

Figure 6: Contour plot for the posterior distributions for the MA(2) model, with darker colors denoting
larger posterior density, and dotted line denoting true parameter value. The posterior densities are
obtained by KDE on the MCMC output thinned by a factor 10. Here, the Energy and Kernel Score
posteriors are similar and broader than the true posterior; notice that they do not approximate the
true posterior but rather provide a general Bayesian update. BSL and semiBSL reproduce the true
posterior well, as expected for this model. The prior distribution is uniform on the white triangular
region.

distribution of simulated data does not resemble any common distributions; we give more details on
the model and how to simulate from it in Appendix E.4.2. We set a Uniform prior on the region
[0, 10] × [0, 10] × [0, 1/3] for (θ1, θ2 − θ1, θ3) and generate observations from θ? = (1, 5, 0.2). We use
G = 50 groups, m = 1000 simulations and 30000 MCMC steps, of which 10000 are burned-in, in order
to sample from the different methods. To sample from the true posterior distribution, we employ the
custom procedure described in Shestopaloff and Neal [2014].

Again, we set w for the SR posteriors with our tuning strategy (Sec. 2.4). For all methods, we
report bivariate marginals of the posterior in Fig. 7. As already noticed in An et al. [2020], semiBSL is
able to recover the true posterior quite well, while BSL performs worse. The Kernel and Energy Score
posteriors are centered on slightly different parameter values from the true posterior, highlighting the
fact that the SRs focus on different features in the data. However, we remark here that all posteriors
are close in parameter space (notice that the axis in Fig. 7 do not span the full prior range). Notice
that both the true posterior and the SR posteriors are guaranteed (by our Theorem 1) to concentrate
on the exact parameter value as n→∞. For the used value of w, the Kernel Score posterior is much
narrower than the Energy Score one. To better understand the impact of w, we provide result over a
range of values in Appendix E.4, which also reports experimental details.

5 Conclusion

We introduced a way to perform Likelihood-Free Inference based on Generalized Bayesian Inference
using Scoring Rules (SR), which includes popular LFI approaches [Price et al., 2018, Thomas et al.,
2020, Chérief-Abdellatif and Alquier, 2020] as special cases. The SR posterior is computationally
convenient for intractable-likelihood models when the chosen SR can be easily estimated from samples.
For some SRs, it asymptotically recovers the exact parameter value in a well-specified setting.

A limitation of the SR posterior is that it does not approximate the standard Bayes posterior.
This makes the interpretation of the posterior challenging, as it learns about the parameter value
minimizing the expected SR. Importantly, outlier robustness is achieved as a consequence of this
relaxation. However, our posterior may be of limited practical interest particularly when the model is
well-specified and other LFI methods perform well.

However, we believe this connection between the Generalized Bayesian and LFI frameworks may
inspire new research directions. Here, we suggest the following extensions:

• many more Scoring Rules beyond the Kernel and Energy score exist [Gneiting and Raftery, 2007,
Dawid and Musio, 2014, Ziel and Berk, 2019], some of which may be successfully applied for
LFI.

16

0 1 2 3 4
1

0

2

4

6

8

10
2

SyntheticLikelihood

0 1 2 3 4
1

semiBSL

0 1 2 3 4
1

KernelScore

0 1 2 3 4
1

EnergyScore

0 1 2 3 4
1

True posterior

0 1 2 3 4
1

0.15

0.20

0.25

0.30

3

SyntheticLikelihood

0 1 2 3 4
1

semiBSL

0 1 2 3 4
1

KernelScore

0 1 2 3 4
1

EnergyScore

0 1 2 3 4
1

True posterior

0.0 2.5 5.0 7.5 10.0
2

0.15

0.20

0.25

0.30

3

SyntheticLikelihood

0.0 2.5 5.0 7.5 10.0
2

semiBSL

0.0 2.5 5.0 7.5 10.0
2

KernelScore

0.0 2.5 5.0 7.5 10.0
2

EnergyScore

0.0 2.5 5.0 7.5 10.0
2

True posterior

Figure 7: Posterior distributions for the M/G/1 model, with each row showing contour plots of the
bivariate marginals for a different pair of parameters; darker colors denote larger posterior density,
and dotted lines denote true parameter value. The posterior densities are obtained by KDE on the
MCMC output thinned by a factor 10. All posteriors are close in parameter space (as the axis do
not span the full prior range); however, the Energy and Kernel Score posteriors are different from
each other as well as from the BSL and true posteriors. We remark that the SR posteriors do not
approximate the true one but rather provide a general Bayesian update. As already noted in An et al.
[2020], semiBSL recovers the true posterior well, while BSL performs worse.

• Our proposal to tune w (Sec. 2.4) has a low computational cost. However, the amplitude of
the resulting generalized posterior is sometimes drastically different from that of the reference
one. Moreover, the requirement of a reference posterior in the first place is an hindrance. Other
strategies to tune w beyond our proposal in Sec. 2.4 could be designed. A promising strategy
is that of Matsubara et al. [2022a], which could be efficiently implemented using automatic-
differentiation libraries to compute the gradient of the scoring rule with respect to θ.

• Even with the correlated strategy, the pseudo-marginal MCMC used in our simulations had a
low acceptance rate in some cases (Sec. 4.1). The SR posterior could be alternatively sampled
using random weight particle filters [Del Moral et al., 2007, Fearnhead et al., 2008]. Alternatively,
variational inference methods could be exploited, similarly to what was done in Ong et al. [2018],
Chérief-Abdellatif and Alquier [2020] and Frazier et al. [2021b] for related methods.

• Generalized Bayesian approaches are often motivated with robustness arguments with respect
to model misspecification, as the standard Bayes posterior may perform poorly in this setup
[Bissiri et al., 2016, Jewson et al., 2018, Knoblauch et al., 2022]. Most LFI techniques are
approximations of the true posterior, and as such are unsuited to a misspecified setup (albeit an

17

emerging literature investigating the effect of misspecification in LFI exists, see Ridgway [2017],
Frazier et al. [2020b], Frazier [2020], Frazier et al. [2020a], Fujisawa et al. [2021]). In the present
work, we studied robustness result to outlier contamination; however, it would be interesting
to consider other forms of misspecification such as the distance in Prokhorov metric studied in
[Briol et al., 2019] or the adversarial contamination method in Chérief-Abdellatif and Alquier
[2022].

Acknowledgment

LP is supported by the EPSRC and MRC through the OxWaSP CDT programme (EP/L016710/1),
which also funds the computational resources used to perform this work. RD is funded by EPSRC
(grant nos. EP/V025899/1, EP/T017112/1) and NERC (grant no. NE/T00973X/1).
We thank Jeremias Knoblauch, François-Xavier Briol, Takuo Matsubara, Geoff Nicholls and Sebastian
Schmon for valuable feedback and suggestions on earlier versions of this work. We also thank Alex
Shestopaloff for providing code for exact MCMC for the M/G/1 model.

References

Z. An, D. J. Nott, and C. Drovandi. Robust Bayesian synthetic likelihood via a semi-parametric approach. Statistics
and Computing, 30(3):543–557, 2020.

C. Andrieu, G. O. Roberts, et al. The pseudo-marginal approach for efficient Monte Carlo computations. The Annals of
Statistics, 37(2):697–725, 2009.

E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert. Approximate Bayesian computation with the Wasserstein
distance. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 81(2):235–269, 2019. doi:
https://doi.org/10.1111/rssb.12312. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12312.

A. Bhattacharya, D. Pati, and Y. Yang. Bayesian fractional posteriors. The Annals of Statistics, 47(1):39–66, 2019.

P. Billingsley. Convergence of probability measures. John Wiley & Sons, 2nd edition, 1999.

P. G. Bissiri, C. C. Holmes, and S. G. Walker. A general framework for updating belief distributions. Journal of the
Royal Statistical Society. Series B, Statistical methodology, 78(5):1103, 2016.

F.-X. Briol, A. Barp, A. B. Duncan, and M. Girolami. Statistical inference for generative models with maximum mean
discrepancy. arXiv preprint arXiv:1906.05944, 2019.

B.-E. Chérief-Abdellatif and P. Alquier. MMD-Bayes: Robust Bayesian estimation via maximum mean discrepancy. In
Symposium on Advances in Approximate Bayesian Inference, pages 1–21. PMLR, 2020.

B.-E. Chérief-Abdellatif and P. Alquier. Finite sample properties of parametric MMD estimation: robustness to mis-
specification and dependence. Bernoulli, 28(1):181–213, 2022.

K. Chwialkowski, H. Strathmann, and A. Gretton. A kernel test of goodness of fit. In International conference on
machine learning, pages 2606–2615. PMLR, 2016.

J. Dahlin, F. Lindsten, J. Kronander, and T. B. Schön. Accelerating pseudo-marginal Metropolis-Hastings by correlating
auxiliary variables. arXiv preprint arXiv:1511.05483, 2015.

A. P. Dawid and M. Musio. Theory and applications of proper scoring rules. Metron, 72(2):169–183, 2014.

P. Del Moral, A. Doucet, and A. Jasra. Sequential Monte Carlo for Bayesian computation. Bayesian statistics, 8(1):34,
2007.

G. Deligiannidis, A. Doucet, and M. K. Pitt. The correlated pseudomarginal method. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 80(5):839–870, 2018.

C. Dellaporta, J. Knoblauch, T. Damoulas, and F.-X. Briol. Robust bayesian inference for simulator-based models via
the MMD posterior bootstrap. In International Conference on Artificial Intelligence and Statistics, pages 943–970.
PMLR, 2022.

C. C. Drovandi and A. N. Pettitt. Likelihood-free Bayesian estimation of multivariate quantile distributions. Computa-
tional Statistics & Data Analysis, 55(9):2541–2556, 2011.

18

C. C. Drovandi, A. N. Pettitt, and A. Lee. Bayesian indirect inference using a parametric auxiliary model. Statistical
Science, 30(1):72–95, 2015.

R. Dutta, M. Schoengens, L. Pacchiardi, A. Ummadisingu, N. Widmer, P. Künzli, J.-P. Onnela, and A. Mira. ABCpy: A
high-performance computing perspective to approximate bayesian computation. Journal of Statistical Software, 100(7):
1–38, 2021. doi: 10.18637/jss.v100.i07. URL https://www.jstatsoft.org/index.php/jss/article/view/v100i07.

P. Fearnhead, O. Papaspiliopoulos, and G. O. Roberts. Particle filters for partially observed diffusions. Journal of the
Royal Statistical Society: Series B (Statistical Methodology), 70(4):755–777, 2008.

E. Fong, S. Lyddon, and C. Holmes. Scalable nonparametric sampling from multimodal posteriors with the posterior
bootstrap. In International Conference on Machine Learning, pages 1952–1962. PMLR, 2019.

D. T. Frazier. Robust and efficient approximate Bayesian computation: A minimum distance approach. arXiv preprint
arXiv:2006.14126, 2020.

D. T. Frazier, C. Drovandi, and R. Loaiza-Maya. Robust approximate Bayesian computation: An adjustment approach.
arXiv preprint arXiv:2008.04099, 2020a.

D. T. Frazier, C. P. Robert, and J. Rousseau. Model misspecification in approximate bayesian computation: consequences
and diagnostics. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 82(2):421–444, 2020b. doi:
https://doi.org/10.1111/rssb.12356. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12356.

D. T. Frazier, C. Drovandi, and D. J. Nott. Synthetic likelihood in misspecified models: Consequences and corrections.
arXiv preprint arXiv:2104.03436, 2021a.

D. T. Frazier, R. Loaiza-Maya, G. M. Martin, and B. Koo. Loss-based variational Bayes prediction. arXiv preprint
arXiv:2104.14054, 2021b.

D. T. Frazier, D. J. Nott, C. Drovandi, and R. Kohn. Bayesian inference using synthetic likelihood: Asymptotics and
adjustments. Journal of the American Statistical Association, 0(0):1–12, 2022. doi: 10.1080/01621459.2022.2086132.
URL https://doi.org/10.1080/01621459.2022.2086132.

M. Fujisawa, T. Teshima, I. Sato, and M. Sugiyama. γ-ABC: Outlier-robust approximate Bayesian computation based on
a robust divergence estimator. In International Conference on Artificial Intelligence and Statistics, pages 1783–1791.
PMLR, 2021.

A. Ghosh and A. Basu. Robust Bayes estimation using the density power divergence. Annals of the Institute of Statistical
Mathematics, 68(2):413–437, 2016.

J. K. Ghosh and R. Ramamoorthi. Bayesian nonparametrics. Springer Science & Business Media, 2003.

F. Giummolè, V. Mameli, E. Ruli, and L. Ventura. Objective Bayesian inference with proper scoring rules. Test, 28(3):
728–755, 2019.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the American
statistical Association, 102(477):359–378, 2007.

P. Grünwald and T. Van Ommen. Inconsistency of Bayesian inference for misspecified linear models, and a proposal for
repairing it. Bayesian Analysis, 12(4):1069–1103, 2017.

C. Holmes and S. Walker. Assigning a value to a power likelihood in a general Bayesian model. Biometrika, 104(2):
497–503, 2017.

J. Jewson and D. Rossell. General bayesian loss function selection and the use of improper models. arXiv preprint
arXiv:2106.01214, 2021.

J. Jewson, J. Q. Smith, and C. Holmes. Principles of Bayesian inference using general divergence criteria. Entropy, 20
(6):442, 2018.

B. Jiang. Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy. In International
Conference on Artificial Intelligence and Statistics, pages 1711–1721, 2018.

J. Knoblauch, J. Jewson, and T. Damoulas. An optimization-centric view on bayes’ rule: Reviewing and generalizing
variational inference. Journal of Machine Learning Research, 23(132):1–109, 2022.

J. Lintusaari, M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander. Fundamentals and recent developments in approx-
imate Bayesian computation. Systematic Biology, 66(1):e66–e82, 2017. ISSN 1076836X. doi: 10.1093/sysbio/syw077.
URL https://doi.org/10.1093/sysbio/syw077.

19

Q. Liu, J. Lee, and M. Jordan. A kernelized Stein discrepancy for goodness-of-fit tests. In International conference on
machine learning, pages 276–284. PMLR, 2016.

R. Loaiza-Maya, G. M. Martin, and D. T. Frazier. Focused Bayesian prediction. Journal of Applied Econometrics, 36
(5):517–543, 2021.

S. Lyddon, S. Walker, and C. C. Holmes. Nonparametric learning from Bayesian models with randomized objective
functions. Advances in Neural Information Processing Systems, 31, 2018.

S. Lyddon, C. Holmes, and S. Walker. General Bayesian updating and the loss-likelihood bootstrap. Biometrika, 106
(2):465–478, 2019.

J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder. Approximate Bayesian computational methods. Statistics and
Computing, 22(6):1167–1180, 2012.

T. Matsubara, J. Knoblauch, F.-X. Briol, C. Oates, et al. Generalised bayesian inference for discrete intractable likelihood.
arXiv preprint arXiv:2206.08420, 2022a.

T. Matsubara, J. Knoblauch, F.-X. Briol, and C. J. Oates. Robust generalised Bayesian inference for intractable like-
lihoods. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 84(3):997–1022, 2022b. doi:
https://doi.org/10.1111/rssb.12500. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12500.

C. McDiarmid. On the method of bounded differences. Surveys in combinatorics, 141(1):148–188, 1989.

J. W. Miller. Asymptotic normality, concentration, and coverage of generalized posteriors. Journal of Machine Learning
Research, 22(168):1–53, 2021.

B. Nelson. Foundations and methods of stochastic simulation: a first course. Springer Science & Business Media, 2013.

H. D. Nguyen, J. Arbel, H. Lü, and F. Forbes. Approximate Bayesian computation via the energy statistic. IEEE Access,
8:131683–131698, 2020.

V. M.-H. Ong, D. J. Nott, M.-N. Tran, S. A. Sisson, and C. C. Drovandi. Likelihood-free inference in high dimensions
with synthetic likelihood. Computational Statistics & Data Analysis, 128:271–291, 2018.

M. Park, W. Jitkrittum, and D. Sejdinovic. K2-ABC: Approximate Bayesian computation with kernel embeddings. In
Artificial Intelligence and Statistics, 2016.

F. Pauli, W. Racugno, and L. Ventura. Bayesian composite marginal likelihoods. Statistica Sinica, pages 149–164, 2011.

U. Picchini, U. Simola, and J. Corander. Sequentially Guided MCMC Proposals for Synthetic Likelihoods and Correlated
Synthetic Likelihoods. Bayesian Analysis, pages 1 – 31, 2022. doi: 10.1214/22-BA1305. URL https://doi.org/10.

1214/22-BA1305.

D. Prangle. gk: An R package for the g-and-k and generalised g-and-h distributions. arXiv preprint arXiv:1706.06889,
2017.

L. F. Price, C. C. Drovandi, A. Lee, and D. J. Nott. Bayesian synthetic likelihood. Journal of Computational and
Graphical Statistics, 27(1):1–11, 2018.

J. Ridgway. Probably approximate Bayesian computation: nonasymptotic convergence of ABC under misspecification.
arXiv preprint arXiv:1707.05987, 2017.

M. L. Rizzo and G. J. Székely. Energy distance. Wiley interdisciplinary reviews: Computational statistics, 8(1):27–38,
2016.

E. Ruli, N. Sartori, and L. Ventura. Approximate Bayesian computation with composite score functions. Statistics and
Computing, 26(3):679–692, 2016.

J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in Python using PyMC3. PeerJ Computer
Science, 2:e55, 2016.

H. Scheffé. A useful convergence theorem for probability distributions. The Annals of Mathematical Statistics, 18(3):
434–438, 1947.

A. Y. Shestopaloff and R. M. Neal. On Bayesian inference for the M/G/1 queue with efficient MCMC sampling. arXiv
preprint arXiv:1401.5548, 2014.

N. Syring and R. Martin. Calibrating general posterior credible regions. Biometrika, 106(2):479–486, 2019.

20

O. Thomas, R. Dutta, J. Corander, S. Kaski, M. U. Gutmann, et al. Likelihood-free inference by ratio estimation.
Bayesian Analysis, 2020.

P.-S. Wu and R. Martin. A comparison of learning rate selection methods in generalized bayesian inference. arXiv
preprint arXiv:2012.11349, 2020.

A. Zellner. Optimal information processing and Bayes’s theorem. The American Statistician, 42(4):278–280, 1988.

F. Ziel and K. Berk. Multivariate forecasting evaluation: On sensitive and strictly proper scoring rules. arXiv preprint
arXiv:1910.07325, 2019.

A Proofs of theoretical results

A.1 Proof and more details on Theorem 1

A.1.1 Discussion and comparison with related results

Discussion on assumptions The uniqueness of the minimizer of the expected scoring rule θ? (in
Assumption A1) is satisfied in a well specified setup if S is a strictly proper scoring rule (in which
case Pθ? = P0). If the model class is not well specified, a strictly proper S does not guarantee the
minimizer to be unique (as in fact there may be pathological cases where multiple minimizers exist).

Additionally, it may be the case that, for a specific P0 and misspecified model class Pθ, the mini-
mizer of S(Pθ, P0) is unique even if S is not strictly proper; in fact, in general, being not strictly proper
means that there exist at least one pair of values θ(1), θ(2) for which S(Pθ(1) , Pθ(2)) = S(Pθ(1) , Pθ(1)),
but it may be that the arg minθ∈Θ S(Pθ, P0) is unique for that specific choice of P0, as the minimizer
is in a region of the parameter space for which there are no other parameter values which lead to the
same value of the scoring rule.

Our proof below builds on Theorem 5 in Miller [2021]; to do so, we require regularity conditions
on the third order derivatives of the SR (in Assumptions A2 or, alternatively, A2bis below). It may
be possible however to relax these assumptions to assuming θ → S(Pθ, y) can be locally written as
a quadratic function of θ, with bounded coefficient for the third order term; this is usually called a
Locally Asymptotically Normal (LAN) condition. With such, it would be possible to apply Theorem
4 in Miller [2021] (more general than Theorem 5) to show our result.

Related results Appendix A in Loaiza-Maya et al. [2021] provides a result which holds with non-
i.i.d. (independent and identically distributed) data, with a generalized posterior based on Scoring
Rules with a similar formulation to ours. Additionally, they replace our assumptions on differentiability
(which ensure the existence of the Taylor series expansion in the proof below) with assuming the
difference of the cumulative scoring rules have a LAN form. Finally, they only show convergence in
probability.

Another related result can be found in Matsubara et al. [2022b], which studies a generalized
posterior based on Kernel Stein Discrepancy; similarly to us, they build on Miller [2021], and provide
almost sure convergence. However, they exploit Theorem 4 in Miller [2021], while we rely on Theorem
5. In Matsubara et al. [2022b], third order differentiability conditions are assumed, analogously to our
Assumption A2. The remaining assumptions in Matsubara et al. [2022b] are similar to ours, including
prior continuity and uniqueness of the minimizer θ?.

Finally, we remark that, if multiple minimizers of S(Pθ, P0) exist (in finite number), it may be
possible to obtain an asymptotic fractional normality result, which ensures the SR posterior converges
to a mixture of normal distributions centered in the different minimizers; see for instance [Frazier et al.,
2021a] for an example of such results in the setting of BSL. We leave this for future work.

A.1.2 Alternative statements and proof

First, let us reproduce Theorem 5 in Miller [2021], on which our proof is based, for ease of reference.
Here, convergence and boundedness for vectors v ∈ Rp, matrices M ∈ Rp×p and tensors T ∈ Rp×p×p are

21

defined with respect to Euclidean-Frobenius norms, that is: |v| =
(∑

j v
2
j

)1/2
, ‖M‖ =

(∑
jkM

2
jk

)1/2

and ‖T‖ =
(∑

jkl T
2
jkl

)1/2
.

Theorem 5 (Theorem 5 in Miller [2021]). Let Θ ⊆ Rp. Let E ⊆ Θ be open (in Rp) and bounded.
Fix θ? ∈ E and let π : Θ→ R be a probability density with respect to Lebesgue measure. Consider the
following family of distributions:

πn(θ) =
π(θ) exp(−nfn(θ))∫
Θ π(θ) exp(−nfn(θ))

,

where fn : Θ→ R is a family of functions. Under the following conditions:

C1 π is continuous at θ? and π(θ?) > 0,

C2 fn have continuous third derivatives in E,

C3 fn → f pointwise for some f : Θ→ R,

C4 f ′′(θ?) is positive definite,

C5 f ′′′n is uniformly bounded in E,

C6 Either one of the following holds:

(a) for some compact K ⊆ E, with θ? in the interior of K, f(θ) > f(θ?) ∀θ ∈ K\{θ?} and
lim infn infθ∈Θ\K fn(θ) > f(θ?), or

(b) each fn is convex and f ′(θ?) = 0;

then, there is a sequence θn → θ? such that f ′n(θn) = 0 for all n sufficiently large, fn(θn)→ f(θ?) and,
letting qn be the density of

√
n(θ − θn) when θ ∼ πn:

∫ ∣∣qn(s)−N
(
s|0, (f ′′(θ?))−1

)∣∣ ds→ 0 as n→∞,

that is, qn converges to N
(
0, (f ′′(θ?))−1

)
in total variation. Additionally, C6b implies C6a under the

other conditions.

Notice that Theorem 5 considers deterministic fn and f . In order to prove our result, therefore,
we will verify the different conditions hold almost surely, which implies almost sure convergence.

Besides the assumptions considered in the main text (i.e. A1-A4), it is possible to prove the
asymptotic normality result in Theorem 1 under alternative sets of assumptions. For this reason, we
introduce the following:

A2bis The parameter space Θ is open, convex, and bounded; the function θ → S(Pθ, y), for any fixed

y ∈ X , can be extended to the closure Θ̄. Let us denote S′′′(Pθ, y)jkl = ∂3

∂θj∂θk∂θl
S(Pθ, Y). For

all j, k, l ∈ {1, . . . , d}:

• θ → S′′′(Pθ, y)jkl is continuous in Θ and exists in Θ̄ for any fixed y ∈ X ,

• y → S′′′(Pθ, y)jkl is measurable for any fixed θ ∈ Θ̄,

• EP0 supθ∈Θ̄ |S′′′(Pθ, y)jkl| <∞.

A3bis For each y ∈ X , the function: θ → S(Pθ, y) is convex.

The following extended form of Theorem 1 includes the formulation in the main text as well as
two alternative sets of assumptions.

Theorem 1 - extended version. Under either one of the following sets of assumptions:

22

1. A1, A2, A3, A4 (the set originally used in the main text),

2. A1, A2, A3bis, A4,

3. A1, A2bis, A4,

the statement of Theorem 1 in the main text holds.

We next move to proving our result.
Assumption A2 is used in the original set of assumptions to ensure the second part of Condi-

tion C6a holds almost surely. Under set of assumptions 2, convexity of the scoring rules (Assump-
tion A3bis) is used to show Condition C6b; alternatively, with set of assumptions 3, the constraints
on Θ are used to imply the second part of Condition C6a with probability 1 using Theorem 7 in Miller
[2021]. In both cases, Assumption A2 is not explicitly needed anymore – as in fact it is implied by
the remaining assumptions. However, we are unable to remove Assumption A2 under no constraints
on Θ or the convexity of θ → S(Pθ, y).

We now give our proof:

Proof of Theorem 1 - extended version. In order to obtain our result, we identify

fn (θ) =
1

n

n∑

i=1

S(Pθ, Yi), f(θ) = S(Pθ, P0);

this implies that fn is now a random quantity: as such, we show the conditions for Theorem 5 hold
almost surely over the stochasticity induced by Yn.

All three sets of assumptions include Assumptions A1 and A4; therefore, under all three sets of
assumptions:

• C1 corresponds to our Assumption A4,

• C3 holds almost surely thanks to the strong law of large numbers, as S(Pθ, P0) is finite ∀θ ∈ Θ
by Assumption A1,

• C4 is implied by Assumption A1.

Therefore, we are left with establishing C2, C5 and C6 separately for the different sets of assump-
tions.

Set of assumptions 1 (used in main text):

• C2 is implied by our Assumption A2 to hold with probability 1 for all n.

• In order to show C5, we proceed in similar manner as in Theorem 13 in Miller [2021]. For any
j, k, l ∈ {1, . . . , d}, Assumption A2 implies that, with probability 1, f ′′′n (θ)jkl = 1

n

∑n
i=1 S

′′′(Pθ, Yi)jkl
is uniformly bounded on Ē by the uniform law of large number (Theorem 1.3.3 in Ghosh and Ra-
mamoorthi 2003). Letting Cjkl(Y1, Y2, . . .) be such a uniform bound for each j, k, l, we have that
with probability 1, for all n ∈ N, θ ∈ Ē, ‖f ′′′n (θ)‖2 =

∑
jkl(f

′′′
n (θ)jkl)

2 ≤∑jkl Cjkl(Y1, Y2, . . .) <

∞. Thus, f ′′′n (θ) is almost surely uniformly bounded on Ē, and hence on E

• The first part of C6a is implied by Assumption A1, while the second part holds almost surely
by Assumption A3.

Set of assumptions 2: The only difference here is that we replace Assumption A3 with the stronger
convexity Assumption A3bis; therefore, C2 and C5 are shown in the same way as with set of as-
sumptions 1.

Next, consider C6b: the first part is implied to hold with probability 1 for all n by Assump-
tion A3bis, as the sum of convex functions is convex. The second part is instead consequence of θ?

being a stationary point of f due to Assumption A1, and of f ′(θ?) existing due to C4.

23

Set of assumptions 3: Under these assumptions, we fix E = Θ in the statement of Theorem 5, as
we consider Θ to be open and bounded. With that, we can exploit Assumption A2bis and follow the
same steps as with set of assumptions 1 to show that, over Θ, C2 and C5 hold with probability 1.

The first part of C6a is implied by Assumption A1, for any choice of K; it now remains to show
the second part. First, Theorem 7 in Miller [2021] implies that fn → f uniformly almost surely, as in
fact fn have continuous third derivatives by C2, f ′′′n is uniformly bounded with probability 1 by C5,
and fn → f with probability 1 due to C3 holding with probability 1.

Therefore, with probability 1:

lim inf
n

inf
θ∈Θ\K

fn(θ) = inf
θ∈Θ\K

f(θ) > inf
θ∈Θ

f(θ) = f(θ?),

where the first equality is due to uniform convergence allowing to “swap” the infimum and the limit.

A.2 Proof of Theorem 2

First, we prove a finite sample generalization bound which is valid for the generalized Bayes posterior
with a generic loss, assuming a concentration property and prior mass condition. Next, we will use
this Lemma to prove Theorem 2 reported in the main body of the paper (in Section 2.2.2), by first
proving concentration results for Kernel and Energy Scores.

We remark that our Theorem 2 is similar to Theorem 1 in Matsubara et al. [2022b] for the kernel
Stein Discrepancy (KSD) posterior, but provides a tighter probability bound. As the kernel used in
KSD is unbounded, in fact, Matsubara et al. [2022b] had to rely on weaker results with respect to
the ones used to prove Theorem 2. With a similar approach, a result for unbounded k or X may be
obtained in our case; we leave this for future exploration.

A.2.1 Lemma for generalized Bayes posterior with generic loss

In this Subsection, we consider the following generalized Bayes posterior:

πL(θ|yn) ∝ π(θ) exp {−wnL(θ,yn)} , (6)

where yn = {yi}ni=1 denote the observations, π is the prior and L(θ,yn) is a generic loss function
(which does not need to be additive in yi). Here, the SR posterior for the scoring rule S corresponds
to choosing:

L (θ,yn) =
1

n

n∑

i=1

S(Pθ, yi).

First, we state a result concerning this form of the posterior which we will use later (taken from
Knoblauch et al. 2022), and reproduce here the proof for convenience:

Lemma 1 (Theorem 1 in Knoblauch et al. [2022]). Provided that
∫

Θ π(θ) exp {−wnL(θ,yn)} dθ <∞,
πL(·|yn) in Eq. (6) can be written as the solution to a variational problem:

πL(·|yn) = arg min
ρ∈P(Θ)

{wnEθ∼ρ [L(θ,yn)] + KL(ρ‖π)} , (7)

where P(Θ) denotes the set of distributions over Θ, and KL denotes the KL divergence.

Proof. We follow here (but adapt to our notation) the proof given in Knoblauch et al. [2022], which
in turn is based on the one for the related result contained in Bissiri et al. [2016].

Notice that the minimizer of the objective in Eq. (7) can be written as:

π?(·|yn) = arg min
ρ∈P(Θ)

{∫

Θ

[
log (exp {wnL(θ,yn)}) + log

(
ρ(θ)

π(θ)

)]
ρ(θ)dθ

}

= arg min
ρ∈P(Θ)

{∫

Θ

[
log

(
ρ(θ)

π(θ) exp {−wnL(θ,yn)}

)]
ρ(θ)dθ

}
.

24

As we are only interested in the minimizer π?(·|yn) (and not in the value of the objective), it holds
that, for any constant Z > 0:

π?(·|yn) = arg min
ρ∈P(Θ)

{∫

Θ

[
log

(
ρ(θ)

π(θ) exp {−wnL(θ,yn)}Z−1

)]
ρ(θ)dθ − logZ

}

= arg min
ρ∈P(Θ)

{
KL
(
ρ(θ)‖π(θ) exp {−wnL(θ,yn)}Z−1

)}
.

Now, we can set Z =
∫

Θ π(θ) exp {−wnL(θ,yn)} dθ (which is finite by assumption) and notice that
we get:

π?(·|yn) = arg min
ρ∈P(Θ)

{KL (ρ||πL(·|yn))} ,

which yields π?(·|yn) = πL(·|yn) as the KL is minimized uniquely if the two arguments are the
same.

Next, we prove a finite sample (as it holds for fixed number of samples n) generalization bound.
Our statement and proof generalize Lemma 8 in Matsubara et al. [2022b] (as we consider a generic
loss function L(θ,yn), while they consider the Kernel Stein Discrepancy only).

In order to do this, let J be a function of the parameter θ, with J(θ) representing some loss (of
which we will assume L(θ,yn) is a finite sample estimate; the meaning of J will be made clearer in
the following and when applying this result to the SR posterior).

We will assume the following prior mass condition, which is more generic with respect to the one
considered in the main body of this manuscript (Assumption A5):

A5bis Denote θ? ∈ arg minθ∈Θ J(θ), which is supposed to be non-empty. The prior has a density π(θ)
(with respect to Lebesgue measure) which satisfies

∫

Bn(α1)
π(θ)dθ ≥ e−α2

√
n

for some constants α1, α2 > 0, where we define the sets

Bn (α1) :=
{
θ ∈ Θ : |J (θ)− J (θ?)| ≤ α1/

√
n
}
.

Assumption A5bis constrains the minimum amount of prior mass which needs to be given to J-
balls with decreasing size, and is in general quite a weak condition (similar assumptions are taken in
Chérief-Abdellatif and Alquier [2020], Matsubara et al. [2022b]).

Next, we state our result, which as mentioned above generalizes Lemma 8 in Matsubara et al.
[2022b]:

Lemma 2. Consider the generalized posterior πL(θ|yn) defined in Eq. (6), and assume that:

• (concentration) for all δ ∈ (0, 1]:

P0 {|L(θ,Yn)− J(θ)| ≤ εn(δ)} ≥ 1− δ, (8)

where εn(δ) ≥ 0 is an approximation error term;

• J(θ?) = minθ∈Θ J(θ) is finite;

• Assumption A5bis holds.

Then, for all δ ∈ (0, 1], with probability at least 1− δ:
∫

Θ
J(θ)πL(θ|Yn)dθ ≤ J(θ?) +

α1 + α2/w√
n

+ 2εn(δ),

where the probability is taken with respect to realisations of the dataset Yn = {Yi}ni=1, Yi
iid∼ P0 for i =

1, . . . , n; this also implies the following statement:

P0

(∣∣∣∣
∫

Θ
J(θ)πL(θ|Yn)dθ − J(θ?)

∣∣∣∣ ≥
α1 + α2/w√

n
+ 2εn(δ)

)
≤ δ.

25

This result ensures that, with high probability, the expectation over the posterior of J(θ) is close to
the minimum J(θ?), provided that the distribution of L(θ,Yn) (where Yn ∼ Pn0 is a random variable)
satisfies a concentration bound, which constrains how far L(θ,Yn) is distributed from the loss function
J(θ). Notice that this result does not require the minimizer of J to be unique.

Typically the approximation error term εn(δ) is such that εn(δ)
δ→0−−−→ +∞ and εn(δ)

n→∞−−−→ 0. If
the second limit is verified, the posterior concentrates, for large n, on the values of θ which minimize
J . In practical cases (as for instance for the SR posterior), it is common to have J(θ) = D(θ, P0), i.e.,
corresponding to a loss function relating θ with the data generating process P0.

We now prove the result.

Proof of Lemma 2. Due to the absolute value in Eq. (8), the following two inequalities hold simulta-
neously with probability (w.p.) at least 1− δ:

J(θ) ≤ L(θ,Yn) + εn(δ), (9)

L(θ,Yn) ≤ J(θ) + εn(δ). (10)

Taking expectation with respect to the generalized posterior on both sides of Eq. (9) yields,
w.p. ≥ 1− δ: ∫

Θ
J(θ)πL(θ|Yn)dθ ≤

∫

Θ
L(θ,Yn)πL(θ|Yn)dθ + εn(δ).

We now want to apply the identity in Eq. (7); therefore, we add (wn)−1KL (πL(·|Yn)‖π) ≥ 0 in the
right hand side such that, w.p. ≥ 1− δ:

∫

Θ
J(θ)πL(θ|Yn)dθ ≤ 1

wn

{∫

Θ
wnL(θ,Yn)πL(θ|Yn)dθ + KL (πL(·|Yn)‖π)

}
+ εn(δ).

Now by Eq. (7):
∫

Θ
J(θ)πL(θ|Yn)dθ ≤ 1

wn
inf

ρ∈P(Θ)

{∫

Θ
wnL(θ,Yn)ρ(θ)dθ + KL(ρ‖π)

}
+ εn(δ)

= inf
ρ∈P(Θ)

{∫

Θ
L(θ,Yn)ρ(θ)dθ +

1

wn
KL(ρ‖π)

}
+ εn(δ),

(11)

where P(Θ) denotes the space of probability distributions over Θ. Putting now Eq. (10) in Eq. (11)
we have, w.p. ≥ 1− δ:

∫

Θ
J(θ)πL(θ|Yn)dθ ≤ inf

ρ∈P(Θ)

{∫

Θ
J(θ)ρ(θ)dθ +

1

wn
KL(ρ‖π)

}
+ 2εn(δ),

and using the trivial bound J(θ) ≤ J(θ?) + |J(θ)− J(θ?)| we get:
∫

Θ
J(θ)πL(θ|Yn)dθ ≤ J(θ?) + inf

ρ∈P(Θ)

{∫

Θ
|J(θ)− J(θ?)| ρ(θ)dθ +

1

wn
KL(ρ‖π)

}
+ 2εn(δ).

Finally, we upper bound the infimum term by exploiting the prior mass condition in Assumption
A5bis. Specifically, letting Π(Bn) =

∫
Bn
π(θ)dθ, we take ρ(θ) = π(θ)/Π(Bn) for θ ∈ Bn and ρ(θ) = 0

otherwise. By Assumption A5bis, we have therefore
∫
Bn
|J(θ)− J(θ?)| ρ(θ)dθ ≤ α1/

√
n and that

KL(ρ‖π) =
∫

Θ log(ρ(θ)/π(θ))ρ(θ)dθ =
∫
Bn
− log (Π (Bn))π(θ)dθ/Π (Bn) = − log Π (Bn) ≤ α2

√
n.

Thus, we have: ∫

Θ
J(θ)πL(θ|Yn)dθ ≤ J(θ?) +

α1 + α2/w√
n

+ 2εn(δ),

as claimed in the first statement.
In order to obtain the second statement, notice that:

J(θ)− J(θ?) ≥ 0, ∀ θ ∈ Θ =⇒
∫

Θ
J(θ)πL(θ|Yn)dθ − J(θ?) ≥ 0;

thus:

P0

(∣∣∣∣
∫

Θ
J(θ)πL(θ|Yn)dθ − J(θ?)

∣∣∣∣ ≤
α1 + α2/w√

n
+ 2εn(δ)

)
≥ 1− δ;

taking the complement yields the result.

26

A.2.2 Case of Kernel and Energy Score posteriors

We now state and prove concentration results of the form in Eq. (8) for the Kernel and Energy Scores.
Here, we will assume X ⊥⊥ X ′ To this regards, notice that the kernel SR posterior can be written as:

πSk(θ|yn) ∝ π(θ) exp

{
−w

n∑

i=1

[
EX,X′∼Pθk(X,X ′)− 2EX∼Pθk(X, yi)

]
}

∝ π(θ) exp




−w

n∑

i=1


EX,X′∼Pθk(X,X ′)− 2EX∼Pθk(X, yi) +

1

n− 1

n∑

j=1
j 6=i

k(yi, yj)







,

as in fact the terms k(yi, yj) are independent of θ. From the second line in the above expression and
the form of the generalized Bayes posterior with generic loss in Eq. (6), we can identify:

L(θ,yn) = EX,X′∼Pθk(X,X ′)− 2

n

n∑

i=1

EX∼Pθk(X, yi) +
1

n(n− 1)

n∑

i,j=1
i 6=j

k(yi, yj). (12)

Similarly, the Energy Score posterior can be obtained by identifying in Eq. (6):

L(θ,yn) =
2

n

n∑

i=1

EX∼Pθ ||X − yi||β2 −
1

n(n− 1)

n∑

i,j=1
i 6=j

||yi − yj ||β2 − EX,X′∼Pθ ||X −X ′||
β
2 ; (13)

this can be obtained by simply setting k(x, y) = −‖x − y‖β2 in Eq. (12), as the Kernel SR with that
choice of kernel recovers the Energy SR.

For both SRs, L(θ,Yn) is an unbiased estimator (with respect to Yi ∼ P0) of the associated
divergences; in fact, considering X ⊥⊥ X ′ ∼ Pθ and Y ⊥⊥ Y ′ ∼ P0, the associated divergence for Kernel
SR is the squared MMD (see Section 2.1):

Dk(Pθ, P0) = Ek(X,X ′) + Ek(Y, Y ′)− 2Ek(X,Y), (14)

while, for the Energy SR, the associated divergence is the squared Energy Distance:

D
(β)
E (Pθ, P0) = 2E||X − Y ||β2 − E||X −X ′||β2 − E||Y − Y ′||β2 . (15)

In order to prove our concentration results, we will exploit the following Lemma:

Lemma 3 (McDiarmid’s inequality, McDiarmid 1989). Let g be a function of n variables yn = {yi}ni=1,
and let

δig(yn) := sup
z∈X

g (y1, . . . , yi−1, z, yi+1, . . . , yn)− inf
z∈X

g (y1, . . . , yi−1, z, yi+1, . . . , yn) ,

and ‖δig‖∞ := supyn∈Xn |δig(yn)|. If Y1, . . . , Yn are independent random variables:

P (g (Y1, . . . , Yn)− Eg (Y1, . . . , Yn) ≥ ε) ≤ e−2ε2/
∑n
i=1‖δig‖2∞ .

We are now ready to prove two concentration results of the form of Eq. (8). The first holds for the
Kernel SR assuming a bounded kernel, while the latter holds for the Energy SR assuming a bounded
X . Let us start with a simple equality stated in the following Lemma:

Lemma 4. For L(θ,Yn) defined in Eq. (12) and Dk(Pθ, P0) defined in Eq. (14), we have:

L(θ,Yn)−Dk(Pθ, P0) = g(Y1, Y2, . . . , Yn)− E[g(Y1, Y2, . . . , Yn)]

for

g(Y1, Y2, . . . , Yn) =
1

n(n− 1)

n∑

i,j=1
i 6=j

k(Yi, Yj)−
2

n

n∑

i=1

EX∼Pθk(X,Yi). (16)

Similar expression holds for L(θ,Yn) defined in Eq. (13) and D
(β)
E (Pθ, P0) defined in Eq. (15), by

setting k(x, y) = −‖x− y‖β2 .

27

Proof. First, notice that, for L(θ,Yn) defined in Eq. (12) and Dk(Pθ, P0) defined in Eq. (14):

L(θ,Yn)−Dk(Pθ, P0) = (((((((((EX,X′∼Pθk(X,X ′)− 2

n

n∑

i=1

EX∼Pθk(X,Yi) +
1

n(n− 1)

n∑

i,j=1
i 6=j

k(Yi, Yj)+

−(((((((((EX,X′∼Pθk(X,X ′)− EY,Y ′∼P0 [k(Y, Y ′)] + 2EX∼Pθ,Y∼P0 [k(X,Y)]

=
1

n(n− 1)

n∑

i,j=1
i 6=j

k(Yi, Yj)−
2

n

n∑

i=1

EX∼Pθk(X,Yi)+

−
(
EY,Y ′∼P0 [k(Y, Y ′)]− 2EX∼Pθ,Y∼P0 [k(X,Y)]

)

= g(Y1, Y2, . . . , Yn)− E[g(Y1, Y2, . . . , Yn)],

where the expectation in the last line is with respect to Yi ∼ P0, i = 1, . . . , n, and where we set g as
in Eq. (16).

Now, we give the concentration result for the kernel SR:

Lemma 5. Consider L(θ,yn) defined in Eq. (12) (corresponding to the loss function defining the Ker-
nel Score posterior) and Dk(Pθ, P0) defined in Eq. (14); if the kernel is such that supx,y∈X |k(x, y)| ≤
κ <∞, we have:

P0

(
|L(θ,Yn)−Dk(Pθ, P0)| ≤

√
−32κ2

n
log

δ

2

)
≥ 1− δ.

Proof. First, we write:

L(θ,Yn)−Dk(Pθ, P0) = g(Y1, Y2, . . . , Yn)− E[g(Y1, Y2, . . . , Yn)],

where g is defined in Eq. (16) in Lemma 4. Next, notice that:

P0(|g(Yn)− E[g(Yn)]| ≥ ε) ≤ P0(g(Yn)− E[g(Yn)] ≥ ε) + P0(g(Yn)− E[g(Yn)] ≤ −ε)
= P0(g(Yn)− E[g(Yn)] ≥ ε) + P0(−g(Yn)− E[−g(Yn)] ≥ ε)

by the union bound. We use now McDiarmid’s inequality (Lemma 3) to prove the result. Consider
first P0(g(Yn)− E[g(Yn)] ≥ ε); thus:

|δig(Yn)| =

∣∣∣∣∣∣∣∣
sup
z





2

n(n− 1)

n∑

j=1
j 6=i

k(z, Yj)−
2

n
EX∼Pθk(X, z)




− inf

z





2

n(n− 1)

n∑

j=1
j 6=i

k(z, Yj)−
2

n
EX∼Pθk(X, z)





∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣
sup
z





2

n(n− 1)

n∑

j=1
j 6=i

k(z, Yj)−
2

n
EX∼Pθk(X, z)





+ sup
z





2

n
EX∼Pθk(X, z)− 2

n(n− 1)

n∑

j=1
j 6=i

k(z, Yj)





∣∣∣∣∣∣∣∣

≤ sup
z

∣∣∣∣∣∣∣∣

2

n(n− 1)

n∑

j=1
j 6=i

k(z, Yj)−
2

n
EX∼Pθk(X, z)

∣∣∣∣∣∣∣∣
+ sup

z

∣∣∣∣∣∣∣∣

2

n
EX∼Pθk(X, z)− 2

n(n− 1)

n∑

j=1
j 6=i

k(z, Yj)

∣∣∣∣∣∣∣∣

= 2 · 2

n
sup
z

∣∣∣∣∣∣∣∣

1

n− 1

n∑

j=1
j 6=i

k(z, Yj)− EX∼Pθk(X, z)

∣∣∣∣∣∣∣∣
≤ 4

n
sup
z





1

n− 1

n∑

j=1
j 6=i

|k(z, Yj)|+ EX∼Pθ |k(X, z)|





≤ 4

n





1

n− 1

n∑

j=1
j 6=i

sup
z
|k(z, Yj)|

︸ ︷︷ ︸
≤κ

+EX∼Pθ sup
z
|k(X, z)|

︸ ︷︷ ︸
≤κ




≤ 4

n

{
1

n− 1
· (n− 1)κ+ κ

}
=

8κ

n

28

As the bound does not depend on Yn, we have that ||δig||∞ ≤ 8κ
n , from which McDiarmid’s inequality

(Lemma 3) gives:

P0(g(Yn)− E[g(Yn)] ≥ ε) ≤ exp

(
− 2ε2

n · 64κ2

n2

)
= e−

nε2

32κ2 .

For the bound on the other side, notice that ||δi(−g)||∞ = ||δig||∞; therefore, we also have

P0(−g(Yn)− E[−g(Yn)] ≥ ε) ≤ e−
nε2

32κ2 ,

from which:

P0(|g(Yn)− E[g(Yn)]| ≥ ε) ≤ 2e−
nε2

32κ2 .

Defining the right hand side of the bound as δ, we get:

P0

(
|g(Yn)− E[g(Yn)]| ≥

√
−32κ2

n
log

δ

2

)
≤ δ,

from which the result is obtained taking the complement.

We now give the analogous result for the Energy Score:

Lemma 6. Consider L(θ,yn) defined in Eq. (13) (corresponding to the loss function defining the

Energy Score posterior) and D
(β)
E (Pθ, P0) defined in Eq. (15); assume that the space X is bounded such

that supx,y∈X ||x− y||2 ≤ B <∞; therefore, we have:

P0

(∣∣∣L(θ,Yn)−D(β)
E (Pθ, P0)

∣∣∣ ≤
√
−32B2β

n
log

δ

2

)
≥ 1− δ.

Proof. We rely on Lemma 5; in fact, recall that the Kernel Score recovers the Energy Score for
k(x, y) = −‖x− y‖β2 . With this choice of k, Eqs. (12) and (14) (considered in Lemma 5) respectively
recover Eqs. (13) and (15).

Additionally, assuming X to be bounded ensures that |k(x, y)| = ‖x−y‖β2 ≤ Bβ; therefore, we can
apply Lemma 5 with κ = Bβ, from which the result follows.

We are finally ready to prove our generalization bound:

Proof of Theorem 2. The proof consists in verfying the assumptions of Lemma 2, for both the Energy
and Kernel Score posteriors. First, notice that A5 is a specific case of A5bis by identifying J(θ) =
Dk(Pθ, P0) or J(θ) = DE(Pθ, P0). We therefore need to verify the first and second assumptions only.

Let us first consider the Kernel Score posterior (part 1 of Theorem 2). Recall that, for positive-
definite, Cauchy-Schwarz inequality holds:

|k(x, y)| ≤
√
k(x, x)k(y, y).

Hence, the boundedness assumption stated in part 1 of Theorem 2 implies that in Lemma 5:

sup
x,y∈X

|k(x, y)| ≤ sup
x,y∈X

√
k(x, x)k(y, y) ≤ κ.

Also, the Kernel Score posterior corresponds to the generalized Bayes posterior in Eq. (6) by choosing
L(θ,Yn) defined in Eq. (12); with this choice of L(θ,Yn), Lemma 5 holds, which corresponds to the
first assumption of Lemma 2 with J(θ) = Dk(Pθ, P0) (Dk being the divergence related to the kernel
SR, defined in Eq. (14)) and:

εn(δ) =

√
−32κ2

n
log

δ

2
.

29

Finally, we have that Dk(Pθ, P0) ≥ 0, which ensures the second assumption of Lemma 2. Thus, we
have, from Lemma 2:

P0

(∣∣∣∣
∫

Θ
Dk(Pθ, P0)πSk(θ|Yn)dθ −Dk(Pθ? , P0)

∣∣∣∣ ≥
1√
n

(
α1 +

α2

w
+ 8κ

√
−2 log

δ

2

))
≤ δ;

by defining the deviation term as ε and inverting the relation, we obtain the result for the kernel Score
Posterior.

The same steps can be taken for the the Energy Score posterior; specifically, we notice that it
corresponds to the generalized Bayes posterior in Eq. (6) by choosing L(θ,Yn) defined in Eq. (13);
with this choice of L(θ,Yn), Lemma 6 holds, which corresponds to the first assumption of Lemma 2

with J(θ) = D
(β)
E (Pθ, P0) (D

(β)
E being the divergence related to the Energy SR defined in Eq. (15))

and:

εn(δ) =

√
−32B2β

n
log

δ

2
.

Finally, we have that D
(β)
E (Pθ, P0) ≥ 0, which ensures the second assumption of Lemma 2. Thus, we

have, from Lemma 2:

P0

(∣∣∣∣
∫

Θ
D

(β)
E (Pθ, P0)π

S
(β)
E

(θ|Yn)dθ −D(β)
E (Pθ? , P0)

∣∣∣∣ ≥
1√
n

(
α1 +

α2

w
+ 8Bβ

√
−2 log

δ

2

))
≤ δ;

by defining the deviation term as ε and inverting the relation, we obtain the result for the Energy
Score Posterior.

We remark here that Theorem 1 in Chérief-Abdellatif and Alquier [2020] proved a similar general-
ization bound for the Kernel Score posterior holding in expectation (rather than in high probability,
as for our bounds), albeit under a slightly different prior mass condition.

A.3 Proof of Theorem 3

Global bias-robustness (for a generic constant C <∞) was shown in Matsubara et al. [2022b] for their
kernel Stein discrepancy (KSD) posterior. Here, we provide an upper bound for the constant C for
both the kernel and energy score posteriors.

To prove our result, we first generalize Lemma 5 in Matsubara et al. [2022b] (our Lemma 7), which
provides bounds on the constant for global bias-robustness for a generalized Bayes posterior depending
on bounds on the loss function defining the posterior.

Across this Section, we define as P̂n = 1
n

∑n
i=1 δyi the empirical distribution given by the observa-

tions yn = {yi}ni=1 (considered to be non-random here) and consider the generalized Bayes posterior:

πL(θ|P̂n) ∝ π(θ) exp
{
−wnL(θ, P̂n)

}
, (17)

from which the SR posterior in Eq. (2) with Scoring Rule S is recovered with:

L(θ, P̂n) =
1

n

n∑

i=1

S(Pθ, yi) = EY∼P̂nS(Pθ, Y),

We remark that the notation is here slightly different from Appendix A.2, in which we considered L
to be a function of θ and yn (compare Eq. 17 with Eq. 6). The reason of this will be clear in the
following.

We start by stating the result we will rely on, to which we provide proof for ease of reference.

Lemma 7. Let πL(θ|P̂n) be the generalized posterior defined in Eq. (17) for fixed n ∈ N, with a generic

loss L(θ, P̂n) and prior π(θ). Let ∆n = supθ∈Θ L
(
θ; P̂n

)
− infθ∈Θ L

(
θ; P̂n

)
and DL

(
z, θ, P̂n

)
=

(d/dε)L
(
θ, P̂n,ε,z

)∣∣∣
ε=0

.

30

Then,

sup
θ∈Θ

sup
z∈X

∣∣∣PIF
(
z, θ, P̂n

)∣∣∣ ≤ 2wnewn∆n · sup
θ∈Θ

sup
z∈X

∣∣∣DL
(
z, θ, P̂n

)∣∣∣ · sup
θ∈Θ

π(θ).

Proof. First of all, Eq. (17) of Ghosh and Basu [2016] demonstrates that

PIF
(
z, θ, P̂n

)
= wnπL(θ|P̂n)

(
−DL

(
z, θ, P̂n

)
+

∫

Θ
DL

(
z, θ′, P̂n

)
πL(θ′|P̂n)dθ′

)

≤ wnπL(θ|P̂n)

(
sup
θ′∈Θ

DL
(
z, θ′, P̂n

)
−DL

(
z, θ, P̂n

))
,

where PIF denotes the posterior influence function defined in Sec. 2.2.3 in the main text and where
the inequality holds due to the mean of a random variable always being smaller than the maximum
value the variable can get.

We can now get the following upper bound:

sup
θ∈Θ

sup
z∈X

∣∣∣PIF
(
z, θ, P̂n

)∣∣∣ ≤ wn sup
θ∈Θ

{
πL(θ|P̂n)

(
sup
z∈X

∣∣∣DL
(
z, θ, P̂n

)∣∣∣+ sup
z∈X

sup
θ′∈Θ

∣∣∣DL
(
z, θ′, P̂n

)∣∣∣
)}

≤ wn sup
θ∈Θ

{
πL(θ|P̂n) sup

z∈X

∣∣∣DL
(
z, θ, P̂n

)∣∣∣
}

+ wn

{
sup
θ∈Θ

πL(θ|P̂n) · sup
z∈X

sup
θ′∈Θ

∣∣∣DL
(
z, θ′, P̂n

)∣∣∣
}

≤ 2wn

{
sup
θ∈Θ

πL(θ|P̂n) · sup
z∈X

sup
θ∈Θ

∣∣∣DL
(
z, θ, P̂n

)∣∣∣
}
.

Recall now that

πL(θ|P̂n) =
π(θ) exp

{
−wnL

(
θ; P̂n

)}

∫
Θ π(θ) exp

{
−wnL

(
θ; P̂n

))
dθ
≤
π(θ) exp

{
−wn infθ∈Θ L

(
θ; P̂n

)}

∫
Θ π(θ) exp

{
−wnL

(
θ; P̂n

))
dθ

≤
π(θ) exp

{
−wn infθ∈Θ L

(
θ; P̂n

)}

infθ∈Θ exp
{
−wnL

(
θ; P̂n

)) =
π(θ) exp

{
−wn infθ∈Θ L

(
θ; P̂n

))

exp
{
−wn supθ∈Θ L

(
θ; P̂n

))

= π(θ) exp

{
wn

(
sup
θ∈Θ

L
(
θ; P̂n

)
− inf
θ∈Θ

L
(
θ; P̂n

)))
,

Let us now denote ∆n = supθ∈Θ L
(
θ; P̂n

)
− infθ∈Θ L

(
θ; P̂n

)
. From the upper bound above, we have:

sup
θ∈Θ

sup
z∈X

∣∣∣PIF
(
z, θ, P̂n

)∣∣∣ ≤ 2wnewn∆n sup
θ∈Θ

π(θ) sup
z∈X

sup
θ∈Θ

∣∣∣DL
(
z, θ, P̂n

)∣∣∣

as claimed.

Next, we give the explicit form for DL
(
z, θ, P̂n

)
in our case in the following Lemma:

Lemma 8. For L
(
θ, P̂n,ε,z

)
= EY∼P̂n,ε,zS(Pθ, Y), we have:

DL
(
z, θ, P̂n

)
= S(Pθ, z)− EY∼P̂nS(Pθ, Y);

further, setting S = Sk, where Sk is the kernel scoring rule with kernel k, we have:

DL
(
z, θ, P̂n

)
= 2EX∼Pθ

[
EY∼P̂nk(X,Y)− k(X, z)

]
;

finally, the form for the energy score can be obtained by setting k(x, y) = −||x− y||β2 .

31

Proof. For the first statement, notice that:

EY∼P̂n,ε,zS(Pθ, Y) = (1− ε)EY∼P̂nS(Pθ, Y) + εS(Pθ, z),

from which differentiating with respect to ε gives the statement.
For the second statement, recall the form for the kernel SR:

Sk(P, z) = EX,X′∼P [k(X,X ′)]− 2EX∼P [k(X, z)],

from which:

DL
(
z, θ, P̂n

)
= Sk(Pθ, z)− EP̂nSk(Pθ, Y)

= EX,X′∼Pθ [k(X,X ′)]− 2EX∼Pθ [k(X, z)]− EY∼P̂n
[
EX,X′∼Pθ [k(X,X ′)]− 2EX∼Pθ [k(X,Y)]

]

= ((((((((((
EX,X′∼Pθ [k(X,X ′)]− 2EX∼Pθ [k(X, z)]−((((((((((

EX,X′∼Pθ [k(X,X ′)] + 2EY∼P̂nEX∼Pθ [k(X,Y)]

= 2EX∼Pθ
[
EY∼P̂nk(X,Y)− k(X, z)

]
.

Finally, we state the proof for Theorem 3:

Proof of Theorem 3. The proof consists in verifying the conditions necessary for Lemma 7 for the
Kernel and Energy Score posteriors

First, let us consider the Kernel Score posterior; recall that, for positive-definite kernels, Cauchy-
Schwarz inequality holds:

|k(x, y)| ≤
√
k(x, x)k(y, y).

Hence, the boundedness assumption in Theorem 3 yields:

sup
x,y∈X

|k(x, y)| ≤ sup
x,y∈X

√
k(x, x)k(y, y) ≤ κ.

Thus, we have:

∣∣∣L(θ, P̂n)
∣∣∣ ≤ 1

n

n∑

i=1

|Sk(Pθ, yi)| ≤
1

n

n∑

i=1

E
[∣∣k(X,X ′)

∣∣+ |2k(X, yi)|
]

≤ 1

n

n∑

i=1

[κ+ 2κ] = 3κ,

where all expectations are over X,X ′ ∼ Pθ and the bound exploits the fact that |k(x, y)| ≤ κ. This
implies that

∆n = sup
θ∈Θ

L
(
θ; P̂n

)
− inf
θ∈Θ

L
(
θ; P̂n

)
≤ 6κ.

Using a similar argument as above, notice that, for the kernel SR (using Lemma 8):

∣∣∣DL
(
z, θ, P̂n

)∣∣∣ = 2
∣∣∣EX∼PθEY∼P̂n [k(X,Y)− k(X, z)]

∣∣∣
≤ 2EX∼PθEY∼P̂n [|k(X,Y)|+ |k(X, z)|]
≤ 2EX∼PθEY∼P̂n [κ+ κ] = 4κ.

Hence, by Lemma 7 we have, for the kernel score posterior

sup
θ∈Θ

sup
z∈X

∣∣∣PIF
(
z, θ, P̂n

)∣∣∣ ≤ 8wnκe6wnκ sup
θ∈Θ

π(θ),

as claimed.

32

For the statement about the Energy Score posterior, we proceed in similar manner. First, let

us show that, under the assumptions of the Theorem, L(θ, P̂n) for the Energy Score S
(β)
E is lower

bounded; in fact:

L(θ, P̂n) =
1

n

n∑

i=1

S
(β)
E (Pθ, yi) =

1

n

n∑

i=1

E
[
2||X − yi||β2 − ||X −X ′||β2

]
=

2

n

n∑

i=1

E||X − yi||β2 − E||X −X ′||β2

=
2

n

n∑

i=1

E||X − yi||β2 − E||X −X ′||β2 −
1

n2

n∑

i,j=1

||yi − yj ||β2
︸ ︷︷ ︸

=D
(β)
E (Pθ,P̂n)

+
1

n2

n∑

i,j=1

||yi − yj ||β2 ,

whereD
(β)
E (Pθ, P̂n) is the squared Energy Distance between Pθ and the empirical distribution P̂n; as the

Energy Distance is a distance between probability measures [Rizzo and Székely, 2016], D
(β)
E (Pθ, P̂n) ≥

0, from which:

L(θ, P̂n) = D
(β)
E (Pθ, P̂n) +

1

n2

n∑

i,j=1

||yi − yj ||β2 ≥ 0.

Additionally, recall that, as we assume X to be bounded, there existsB <∞ such that supx,y∈X ‖x−
y‖2 ≤ B. Thus:

L(θ, P̂n) =
1

n

n∑

i=1

E
[
2||X − yi||β2 − ||X −X ′||β2

]
≤ 2

n

n∑

i=1

E||X − yi||β2 ≤ 2Bβ

Hence, we have

∆n = sup
θ∈Θ

L
(
θ; P̂n

)
− inf
θ∈Θ

L
(
θ; P̂n

)
≤ 2Bβ.

Moreover, for the Energy SR (using Lemma 8):
∣∣∣DL

(
z, θ, P̂n

)∣∣∣ = 2
∣∣∣EX∼PθEY∼P̂n

[
||X − z||β2 − ||X − Y ||β2

]∣∣∣

≤ 2EX∼PθEY∼P̂n
[∣∣∣||X − z||β2

∣∣∣+
∣∣∣||X − Y ||β2

∣∣∣
]

≤ 2EX∼PθEY∼P̂n
[
Bβ +Bβ

]
= 4Bβ,

where the last inequality is due to z ∈ X and the boundedness assumptions for X . Hence, by Lemma 7
we have, for the energy score posterior

sup
θ∈Θ

sup
z∈X

∣∣∣PIF
(
z, θ, P̂n

)∣∣∣ ≤ 8wnBβe2wnBβ sup
θ∈Θ

π(θ),

as claimed.

A.4 Precise statement and proof of Theorem 4

We recall here for simplicity the useful definitions. We consider the SR posterior:

πS(θ|yn) ∝ π(θ) exp

{
−w

n∑

i=1

S(Pθ, yi)

}

︸ ︷︷ ︸
pS(yn|θ)

.

Further, we recall the form of the target of the pseudo-marginal MCMC:

π
(m)

Ŝ
(θ|yn) ∝ π(θ)p

(m)

Ŝ
(yn|θ),

where:

p
(m)

Ŝ
(yn|θ) = E

[
exp

{
−w

n∑

i=1

Ŝ(X
(θ)
m , yi)

}]
=

∫
exp

{
−w

n∑

i=1

Ŝ(x
(θ)
m , yi)

}
m∏

j=1

p(x
(θ)
j |θ)dx1dx2 · · · dxm.

The complete version of Theorem 4 is given in the following:

33

Theorem 6. Assume the following:

1. Ŝ(X
(θ)
m , yi) converges in probability to S(Pθ, yi) as m→∞ for all i = 1, . . . , n.

2. supm E
[∣∣∣exp{−w∑n

i=1 Ŝ(X
(θ)
m , yi)}

∣∣∣
1+δ
]
<∞ for some δ > 0

3. infm
∫

Θ p
(m)

Ŝ
(yn|θ)π(θ)dθ > 0 and supθ∈Θ pS(yn|θ) < ∞.

Then,

lim
m→∞

π
(m)

Ŝ
(θ|yn) = πS(θ|yn).

A.5 Proof of Theorem 6

In order to prove Theorem 6, we extend the proof for the analogous result for Bayesian inference
with an auxiliary likelihood [Drovandi et al., 2015]. Our setup is slightly more general as we do not
constrain the update to be defined in terms of a likelihood; notice that the original setup in Drovandi
et al. [2015] is recovered when we consider S being the negative log likelihood, for some auxiliary
likelihood.

We begin by stating a useful property:

Lemma 9 (Theorem 3.5 in Billingsley [1999]). If Xn is a sequence of uniformly integrable random
variables and Xn converges in distribution to X, then X is integrable and E[Xn]→ E[X] as n→∞.

Remark 6 (Remark 1 in Drovandi et al. [2015]). A simple sufficient condition for uniform integrability
is that for some δ > 0:

sup
n

E[|Xn|1+δ] <∞.

The result in the main text is the combination of the following two Theorems, which respectively
generalize Results 1 and 2 in Drovandi et al. [2015]:

Theorem 7 (Generalizes Result 1 in Drovandi et al. [2015]). Assume that p
(m)

Ŝ
(yn|θ) → pS(yn|θ)

as m → ∞ for all θ with positive prior support; further, assume infm
∫

Θ p
(m)

Ŝ
(yn|θ)π(θ)dθ > 0 and

supθ∈Θ pS(yn|θ) < ∞. Then

lim
m→∞

π
(m)

Ŝ
(θ|yn) = πS(θ|yn).

Furthermore, if f : Θ→ R is a continuous function satisfying supm
∫

Θ |f(θ)|1+δπ
(m)
S (θ|yn)dθ <∞ for

some δ > 0 then

lim
m→∞

∫

Θ
f(θ)π

(m)

Ŝ
(θ|yn)dθ =

∫

Θ
f(θ)πS(θ|yn)dθ.

Proof. The first part follows from the fact that the numerator of

π
(m)

Ŝ
(θ|yn) =

p
(m)

Ŝ
(yn|θ)π(θ)

∫
Θ p

(m)

Ŝ
(yn|θ)π(θ)dθ

converges pointwise and the denominator is positive and converges by the bounded convergence the-
orem.

For the second part, if for each m ∈ N, θm is distributed according to π
(m)

Ŝ
(·|yn) and θ is distributed

according to πS(·|yn) then θm converges to θ in distribution as m → ∞ by Scheffé’s lemma [Scheffé,
1947]. Since f is continuous, f (θm) converges in distribution to f(θ) as n → ∞ by the continuous
mapping theorem and we conclude by application of Remark 6 and Lemma 9.

The following gives a convenient way to ensure p
(m)

Ŝ
(yn|θ)→ pS(yn|θ):

34

Theorem 8 (Generalizes Result 2 in Drovandi et al. [2015]). Assume that exp{−w∑n
i=1 Ŝ(X

(θ)
m , yi)}

converges in probability to pS(yn|θ) as m→∞. If

sup
m

E



∣∣∣∣∣exp{−w

n∑

i=1

Ŝ(X
(θ)
m , yi)}

∣∣∣∣∣

1+δ

 <∞

for some δ > 0 then p
(m)

Ŝ
(yn|θ)→ pS(yn|θ) as m→ ∞.

Proof. The proof follows by applying Remark 6 and Lemma 9.

We are finally ready to prove Theorem 6:

Proof of Theorem 6. First, notice how the convergence in probability of Ŝ(X
(θ)
m , yi) to S(Pθ, yi) (as-

sumption 1 in Theorem 6) and the continuity of the exponential function imply convergence in proba-

bility of exp{−w∑i Ŝ(X
(θ)
m , yi)} to pS(yn|θ). That, together with assumption 2 in Theorem 6, satisfy

the requirements of Theorem 8. With the latter and assumption 3 in Theorem 6, Theorem 7 holds,
which yields the result.

B Changing data coordinates

We give here some more details on the behavior of the SR posterior when the coordinate system used
to represent the data is changed, as mentioned in Remark 2.

Frequentist estimator First, we investigate whether the minimum scoring rule estimator (for a
strictly proper scoring rule) is affected by a transformation of the data. Specifically, considering a
strictly proper S, we are interested in whether θ?Y = arg minθ∈Θ S(P Yθ , QY) = arg minθ∈ΘD(P Yθ , QY)
is the same as θ?Z = arg minθ∈Θ S(PZθ , QZ) = arg minθ∈ΘD(PZθ , QZ), where Z = f(Y) =⇒ Y ∼
QY ⇐⇒ Z ∼ QZ and Y ∼ P Yθ ⇐⇒ Z ∼ PZθ . If the model is well specified, P Yθ?Y

= QY , P
Z
θ?Z

=

QZ =⇒ θ?Y = θ?Z . If the model is misspecified, for a generic SR the minimizer of the expected SR may
change according to the parametrization. We remark how this is not a drawback of the frequentist
minimum SR estimator but rather a feature, as such estimator is the parameter value corresponding
to the model minimizing the chosen expected scoring rule from the data generating process in that
coordinate system, and is therefore completely reasonable for it to change when the coordinate system
is modified.

Notice that a sufficient condition for θ?Y = θ?Z is S(P Yθ , y) = a · S(PZθ , z) + b for a > 0, b ∈ R. This
condition is verified when S is chosen to be the log-score, as in fact:

S(PZθ , f(y)) = − ln pZ(f(y)|θ) = S(PZθ , y) + ln |Jf (y)|,

where we assumed f to be a one-to-one function and we applied the change of variable formula to the
density pZ .

Generalized Bayesian posterior For a single observation, let πYS denote the SR posterior con-
ditioned on values of Y , while πZS denote instead the posterior conditioned on values of Z = f(Y)
for some one-to-one function f ; in general, πYS (θ|y) 6= πZS (θ|f(y)). By denoting as wZ (respectively
wY) and PZθ (respectively P Yθ) the weight and model distributions appearing in πZS (resp. πYS), the
equality would in fact require wZS(PZθ , f(y)) = wY S(P Yθ , y) +C ∀ θ, y for some choice of wZ , wY and
for all transformations f , where C is a constant in θ. Notice that this is satisfied for the standard
Bayesian posterior (i.e., with the log-score) with wZ = wY = 1. Instead, for other scoring rules the
above condition cannot be satisfied in general for any choice of wZ , wY . For instance, consider the
kernel SR:

S(PZθ , f(y)) = E[k(Z, Z̃)]− E[k(Z, f(y))] = E[k(f(Y), f(Ỹ))]− E[k(f(Y), f(y))];

35

for general kernels and functions f , the above is different from S(P Yθ , y) = E[k(Y, Ỹ)]− E[k(Y, f(x))]
up to a constant, unless the kernel is redefined as well. Therefore, the posterior shape depends on the
chosen data coordinates. Considering the expression for the kernel SR, it is clear that is a consequence
of the fact that the likelihood principle is not satisfied (as the kernel SR does not only depend on the
likelihood value at the observation). Similar argument holds for the Energy Score posterior as well.

We also remark that this is also the case for BSL [Price et al., 2018], as in that case the model
is assumed to be multivariate normal, and changing the data coordinates impacts their normality (in
fact it is common practice in BSL to look for transformations of data which yield distribution as close
as possible to a normal one).

The theoretical semiBSL posterior [An et al., 2020], instead, is invariant with respect to one-to-
one transformation applied independently to each data coordinate, which do not affect the copula
structure. Notice however that different data coordinate systems may yield better empirical estimates
of the marginal KDEs from model simulations.

C More details on related techniques

C.1 Energy Distance

The squared energy distance is a metric between probability distributions [Rizzo and Székely, 2016],
and is defined by:

D
(β)
E (P,Q) = 2 · E

[
‖X − Y ‖β2

]
− E

[
‖X −X ′‖β2

]
− E

[
‖Y − Y ′‖β2

]
,

for X ⊥⊥ X ′ ∼ P and Y ⊥⊥ Y ′ ∼ Q.
The probabilistic forecasting literature [Gneiting and Raftery, 2007] use a different convention of

the energy score and distance, which amounts to multiplying our definitions by 1/2. We follow here
the convention used in the statistical inference literature [Rizzo and Székely, 2016, Chérief-Abdellatif
and Alquier, 2020, Nguyen et al., 2020].

C.2 Semi-Parametric Synthetic Likelihood

Semi-parametric BSL (semiBSL, An et al. 2020) considers a Gaussian copula modeling the dependency
between the different components in Pθ and poses no constraints on marginal densities. The semiBSL
likelihood is thus:

psemiBSL (y|θ) = cRθ(Fθ,1(y1), . . . , Fθ,d(y
d))

d∏

k=1

fθ,k

(
yk
)
, (18)

where fθ,k and Fθ,k are respectively the marginal density and Cumulative Density Functions (CDFs) for
the k -th component of the model, and where cR(u) denotes the Gaussian copula density for u ∈ [0, 1]d

and correlation matrix R ∈ [−1, 1]d×d.
As in BSL, An et al. [2020] used a pseudo-marginal MCMC where simulations from Pθ are used

to obtain an estimate of the correlation matrix of the Gaussian copula R̂θ as well as Kernel Density
Estimates (KDE) of the marginals f̂θ,k (from which F̂θ,k are obtained by integration). We can connect
semiBSL to our framework by rewriting Eq. (18) as:

psemiBSL (y|θ) = exp

{
−

d∑

k=1

Slog

(
P kθ , y

k
)
− SGc(Cθ, (Fθ,1(y1), . . . , Fθ,d(y

d)))

}
,

where P kθ is the distribution associated to the model for the k-th component, Cθ is the copula associated
to Pθ and SGc(C, u) is the copula Scoring Rule associated to the Gaussian copula; we show below that
this is a proper, but not strictly so, Scoring Rule for copula random variables. Consistent estimators
of the marginal and copula SRs can be obtained using R̂θ, f̂θ,k and F̂θ,k.

36

Copula scoring rule Finally, we write down the explicit expression of the copula scoring rule SGc,
associated to the Gaussian copula. We show that this is a proper, but not strictly so, scoring rule
for copula distributions. Specifically, let C be a distribution for a copula random variable, and let
u ∈ [0, 1]d. We define:

SGc(C, u) =
1

2
log |RC |+

1

2

(
Φ−1(u)

)T
(R−1

C − Id)Φ
−1(u),

where Φ−1 is applied element-wise to u, and RC is the correlation matrix associated to C in the
following way: define the copula random variable V ∼ C and its transformation Φ−1(V); then,
Φ−1(V) will have a multivariate normal distribution with mean 0 and covariance matrix RC .

Similarly to the Dawid–Sebastiani score (see Sec. 2.1), this scoring rule is proper but not strictly so
as it only depends on the first 2 moments of the distribution of the random variable Φ−1(V) (the first
one being equal to 0). To show this, assume the copula random variable U has an exact distribution
Q and consider the expected scoring rule:

SGc(C,Q) = EU∼QSGc(C,U) =
1

2
log |RC |+ EU∼Q

[(
Φ−1(U)

)T
(R−1

C − Id)Φ
−1(U)

]
;

now, notice that Φ−1(U) is a multivariate normal distribution whose marginals are standard normals.
Therefore, let us denote as RQ the covariance matrix of Φ−1(U), which is a correlation matrix. From
the well-known form for the expectation of a quadratic form3, it follows that:

SGc(C,Q) =
1

2
log |RC |+

1

2
Tr
[
(R−1

C − Id) ·RQ
]

=
1

2
log |RC |+

1

2
Tr
[
R−1
C ·RQ

]
− 1

2
Tr [RQ]

=
1

2

{
log
|RC |
|RQ|

− d+ Tr
[
R−1
C ·RQ

]}

︸ ︷︷ ︸
DKL(ZQ||ZC)

+
1

2
logRQ +

d

2
− 1

2
Tr [RQ] ,

where DKL(ZQ||ZC) is the KL divergence between two multivariate normal distributions ZQ and ZC
of dimension d, with mean 0 and covariance matrix RQ and RC respectively. Further, notice that the
remaining factors do not depend on the distribution C. Therefore, SGc(C,Q) is minimized whenever
RC is equal to RQ; this happens when C = Q, but also for all other choices of C which share the
associated covariance matrix with Q. This implies that the Gaussian copula score is a proper, but not
strictly so, scoring rule for copula distributions.

C.3 Ratio estimation

The standard Bayes posterior can be written as π(θ|y) = π(θ) · r(y; θ), with r(y; θ) = p(y|θ)
p(y) . The

Ratio Estimation (RE) approach [Thomas et al., 2020] builds an approximate posterior by estimating
log r(y; θ) with some function ĥθ(y) and considering πre(θ|y) ∝ π(θ) exp(ĥθ(y)).

Thomas et al. [2020] run an MCMC where, for each proposed θ, m samples x
(θ)
m are generated

from Pθ. These, together with a set of m reference samples x
(r)
m = {x(r)

j }mj=1 from the marginal data

distribution4, are used to fit a logistic regression yielding ĥθ(y). Logistic regression is an optimization
problem in which the best function of X in distinguishing between the two sets of samples is selected.
If m → ∞ and all scalar functions are considered, the optimum hθ? is equal to log r(y; θ). For finite
data, however, the corresponding optimum ĥθm is only an approximation of the ratio.RE is therefore
a specific case of our SR posterior framework with w = 1 and:

ŜRE(x
(θ)
m ,x

(r)
m , y) = −ĥθm(y)

3E
[
XTΛX

]
= tr [ΛΣ] + µTΛµ, for a symmetric matrix Λ, and where µ and Σ are the mean and covariance matrix of

X (which in general does not need to be normal, but only needs to have well defined second moments).
4Which are obtained by drawing θj ∼ p(θ), xj ∼ p(·|θj), and discarding θj .

In general, the number of reference samples and samples from the model can be different, see Appendix C.3; we make
this choice here for the sake of simplicity.

37

which, differently from the other SR estimators considered previously, also depends on the reference
samples. Due to what we discussed above, ŜRE converges in probability to the log-score (up to a
constant term in θ) for m→∞.

The above argument relies on optimizing over all functions in logistic regression; in practice, the
optimization is restricted to a set of functions H (for instance, a linear combination of predictors). In
this case, the infinite data optimum hθH?(y) does not correspond to log r(y; θ), but to the best possible
approximation in H in some sense. Therefore, Ratio Estimation with a restricted set of functions H
cannot be written exactly under our SR posterior framework. However, very flexible function classes
(as for instance neural networks) can produce reasonable approximations to the log score for large
values of m.

D Tuning the bandwidth of the Gaussian kernel

Consider the Gaussian kernel:

k(x, y) = exp

(
−‖x− y‖

2
2

2γ2

)
;

inspired by Park et al. [2016], we fix the bandwidth γ with the following procedure:

1. Simulate a value θj ∼ π(θ) and a set of samples xjk ∼ Pθj , for k = 1, . . . ,mγ .

2. Estimate the median of {||xjk − xjl||2}mγkl and call it γ̂j .

3. Repeat points 1) and 2) for j = 1, . . . ,mθ,γ .

4. Set the estimate for γ as the median of {γ̂j}mθ,γj=1 .

Empirically, we use mθ,γ = 1000 and we set mγ to the corresponding value of m for the different
models.

E Further details on simulation studies reported in the main text

In all experiments, we use independent normal proposals on each component of the parameter space in
MCMC, with σ denoting the standard deviation of the normal proposal distribution, which we report
below. In all cases, whenever the parameter space is bounded, we run MCMC on a transformed
unbounded space obtained via a logistic transformation. Therefore, the proposal sizes refer to that
unbounded space.

E.1 The g-and-k model

E.1.1 Additional experimental details for well specified setup

We report here additional experimental details on the g-and-k model experiments (Sec. 4.1.1).
First, we discuss settings for the SR posteriors:

• For the Energy Score posterior, our strategy (Sec. 2.4) for setting w using BSL as a reference
resulted in w ≈ 0.35 for the univariate model and w ≈ 0.16 for the multivariate one.

• For the Kernel Score posterior, we first fit the value of the Gaussian kernel bandwidth parameter
as described in Appendix D, which resulted in γ ≈ 5.50 for the univariate case and γ ≈ 52.37
for the multivariate one. Then, the tuning strategy for w using BSL as a reference resulted in
w ≈ 18.30 for the univariate model and w ≈ 52.29 for the multivariate one.

Next, we discuss the proposal sizes for MCMC; recall that we use independent normal proposals
on each component of θ, with standard deviation σ. We report here the values for σ used in the
experiments; we stress that, as the MCMC is run in the transformed unbounded parameter space
(obtained applying a logit transformation), these proposal sizes refer to that space.

For the univariate g-and-k, the proposal sizes we use are the following:

38

N. obs.
Univariate g-and-k Multivariate g-and-k

BSL Kernel Score Energy Score BSL semiBSL Kernel Score Energy Score

1 0.362 0.507 0.420 0.216 0.190 0.468 0.445
5 0.221 0.329 0.375 0.069 / 0.136 0.224
10 0.133 0.252 0.272 0.036 / 0.127 0.216
15 0.109 0.253 0.217 / / 0.077 0.154
20 0.100 0.154 0.207 / / 0.151 0.278
25 0.092 0.149 0.208 / / 0.126 0.233
30 0.085 0.218 0.343 / / 0.124 0.222
35 0.080 0.172 0.315 / / 0.076 0.166
40 0.076 0.152 0.293 / / 0.119 0.246
45 0.070 0.130 0.256 / / 0.103 0.223
50 0.062 0.121 0.220 / / 0.103 0.219
55 0.060 0.189 0.317 / / 0.139 0.297
60 0.059 0.185 0.324 / / 0.129 0.286
65 0.057 0.173 0.314 / / 0.133 0.273
70 0.052 0.172 0.289 / / 0.119 0.256
75 0.048 0.161 0.273 / / 0.123 0.247
80 0.048 0.159 0.267 / / 0.117 0.233
85 0.045 0.150 0.252 / / 0.098 0.213
90 0.044 0.143 0.247 / / 0.087 0.198
95 0.044 0.136 0.244 / / 0.089 0.198
100 0.042 0.129 0.236 / / 0.076 0.190

Table 2: Acceptance rates for the univariate and multivariate g-and-k experiments with different
values of n, with the MCMC proposal sizes reported in Appendix E.1.1. “/” denotes experiments for
which MCMC did not run satisfactorily.

• For BSL, we use σ = 1 for all values of n.

• For Energy and Kernel Scores, we take σ = 1 for n from 1 up to 25 (included), σ = 0.4 for n
from 30 to 50, and σ = 0.2 for n from 55 to 100.

For the multivariate g-and-k:

• For BSL and semiBSL, we use σ = 1 for all values of n for which the chain converges. We
stress that we tried decreasing the proposal size, but that did not solve the non-convergence
issue (discussed in the main text in Sec. 4.1.1).

• For Energy and Kernel Scores, we take σ = 1 for n from 1 up to 15 (included), σ = 0.4 for n
from 20 to 35, σ = 0.2 for n from 40 to 50 and σ = 0.1 for n from 55 to 100.

In Table 2, we report the acceptance rates the different methods achieve for all values of n, with
the proposal sizes mentioned above. We denote by “/” the experiments for which we did not manage
to run MCMC satisfactorily. We remark how the Energy Score achieves a larger acceptance rates in
all experiments compared to the Kernel Score.

E.1.2 Poor MCMC performance for BSL and semiBSL

As discussed in the main text (Sec. 4.1.1), the correlated pseudo-marginal MCMC for BSL and
semiBSL performed poorly for the multivariate g-and-k example, not being able to converge when
using more than respectively 1 and 10 observations. In order to shed light on the reason for this be-
havior, we fix n = 20 and run MCMC with 10 different initializations, for 10000 MCMC steps with no
burn-in, for BSL and semiBSL, with m = 500. For all runs, we found that, after a short transient, the

39

SyntheticLikelihood

semiBSL
0 1 2 3 4

A

0.1

0.2

0.3

0.4

0 1 2 3 4
B

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4
g

0.2

0.4

0.6

0 1 2 3 4
k

0.0

0.5

1.0

1.5

0.5 0.0 0.5
0

1

2

0 1 2 3 4
A

0.1

0.2

0.3

0 1 2 3 4
B

0.1

0.2

0.3

0 1 2 3 4
g

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4
k

0.0

0.2

0.4

0.6

0.8

0.5 0.0 0.5
0.0

0.5

1.0

Figure 8: Marginal posterior distributions for the different parameters for the well specified multivari-
ate g-and-k model. For BSL, we were able to run the inference for n = 1, 5, 10, while we were only able
to do so for n = 1 for semiBSL. Darker (respectively lighter) colors denote a larger (smaller) number
of observations. The densities are obtained by KDE on the MCMC output thinned by a factor 10.

Figure 9: Traceplots for semiBSL and BSL for n = 20 for 10 different initializations (different colors),
with 10000 MCMC steps (no burn-in); the green dashed line denotes the true parameter value. It can
be seen that the chains are very sticky, and that they explore different parts of the parameter space.

different chains get stuck in different parameter values and have very “sticky” behavior. The results
can be seen in Fig. 9.

In order to understand the reason for this result, we investigate whether the poor performance is
due to large variance in the estimate of the target; as increasing the number of simulations reduces
such variance, we study the effect of this on the MCMC performance. Therefore, we report here the
results of a study increasing the number of simulations for a fixed number of observations n = 20 for
the g-and-k model. Specifically, we tested m = 500, 1000, 1500, 2000, 2500, 3000, 30000; as discussed in
Appendix E.1.1, we used a proposal size σ = 0.4, with which the Energy and Kernel Score posteriors
performed well. We report traceplots in Fig. 10 and corresponding acceptance rates in Table 3; from
this experiment, we note that BSL achieves acceptance rate as large as few percentage points with
larger m values, but there is no constant trend (for instance, acceptance rate with m = 3000 is smaller
than with m = 2000), which means that the method is still prone to getting stuck. For semiBSL, the
acceptance rate is abysmal even for very large m.

40

SyntheticLikelihood

semiBSL
0 5000 10000

MCMC step

0

1

2

3

4

A

0 5000 10000
MCMC step

0

1

2

3

4

B

0 5000 10000
MCMC step

0

1

2

3

4

g

0 5000 10000
MCMC step

1

2

3

k

0 5000 10000
MCMC step

0.50

0.25

0.00

0.25

0 5000 10000
MCMC step

0

1

2

3

A

0 5000 10000
MCMC step

1

2

3

4

B

0 5000 10000
MCMC step

0

1

2

3

4

g

0 5000 10000
MCMC step

1

2

3

k

0 5000 10000
MCMC step

0.50

0.25

0.00

0.25

500
1000
1500
2000
2500
3000
30000

500
1000
1500
2000
2500
3000
30000

Figure 10: Traceplots for BSL and semiBSL and BSL for n = 20 using different number of simulations
m, reported in the legend for each row; green dashed line denotes the true parameter value. There is
no improvement in the mixing of the chain for increasing the number of simulations.

N. simulations m 500 1000 1500 2000 2500 3000 30000

Acc. rate BSL 6.0 · 10−3 1.1 · 10−2 3.3 · 10−2 9.9 · 10−3 1.8 · 10−2 7.5 · 10−3 5.1 · 10−2

Acc. rate semiBSL 7.0 · 10−3 3.4 · 10−3 3.7 · 10−3 2.8 · 10−3 4.2 · 10−3 3.6 · 10−3 9.2 · 10−3

Table 3: Acceptance rates for BSL and semiBSL and BSL for n = 20 using different number of
simulations m; there is no improvement in the acceptance rate for increasing number of simulations.
We recall that we were not able to run semiBSL for m = 30000 due to its high computational cost.

E.1.3 Additional experimental details for misspecified setup

We report here additional experimental details on the misspecified g-and-k model experiments, where
the observations were generated by a Cauchy distribution (Sec. 4.1.2).

In order to have coherent results with respect to the well specified case, we use here the values of
w and γ determined in the well specified case (reported in Appendix E.1.1)

Next, we discuss the proposal sizes for MCMC (which is run with independent normal proposals
on each component of θ with standard deviation σ, in the same way as in the well specified case, after
applying a logit transformation to the parameter space).

• For the univariate g-and-k, for all methods (BSL, Energy and Kernel Scores), we take σ = 1 for
n from 1 up to 25 (included), σ = 0.4 for n from 30 to 50, and σ = 0.2 for n from 55 to 100.

• For the multivariate g-and-k, recall that we did not report results for BSL and semiBSL here
as we were not able to sample the posteriors with MCMC for large n, as already experienced
in the well specified case. For the remaining techniques, we used the same values of σ as in the
well specified experiments (Appendix E.1.3).

In Table 4, we report the acceptance rates the different methods achieve for all values of n, with
the proposal sizes discussed above. We remark how the Energy Score achieves a larger acceptance
rates in all experiments compared to the Kernel Score.

E.2 The misspecified normal location model

As mentioned in the main text (Sec. 4.2), we set the weight w such that the variance achieved by our
SR posteriors is approximately the same as the one achieved by the standard Bayes distribution for
the well specified case (ε = 0). This resulted in w = 1 for the Energy Score posterior and w = 2.8
for the Kernel Score posterior. Additionally, the bandwidth for the Gaussian kernel was tuned to be
γ ≈ 0.9566 (with the strategy discussed in Appendix D).

41

N. obs.
Misspecified univariate g-and-k Misspecified multivariate g-and-k

BSL Kernel Score Energy Score Kernel Score Energy Score

1 0.457 0.482 0.521 0.472 0.470
5 0.302 0.436 0.454 0.324 0.373
10 0.193 0.450 0.425 0.362 0.330
15 0.146 0.441 0.390 0.361 0.276
20 0.102 0.264 0.311 0.544 0.410
25 0.093 0.288 0.314 0.530 0.377
30 0.153 0.426 0.471 0.536 0.359
35 0.144 0.349 0.448 0.537 0.336
40 0.134 0.340 0.440 0.631 0.432
45 0.130 0.344 0.429 0.523 0.373
50 0.125 0.255 0.393 0.383 0.343
55 0.167 0.318 0.501 0.471 0.436
60 0.176 0.303 0.490 0.412 0.407
65 0.164 0.293 0.481 0.389 0.391
70 0.164 0.276 0.455 0.372 0.374
75 0.156 0.272 0.445 0.278 0.329
80 0.157 0.262 0.436 0.232 0.306
85 0.153 0.254 0.430 0.247 0.300
90 0.147 0.231 0.415 0.239 0.299
95 0.152 0.226 0.410 0.235 0.291
100 0.141 0.223 0.407 0.232 0.277

Table 4: Acceptance rates for the misspecified univariate and multivariate g-and-k experiments with
different values of n, with the MCMC proposal sizes reported in Appendix E.1.3.

In Figure 11 we report the full set of posterior distributions for the different values of ε and z
obtained with the standard Bayes posterior and with our SR posteriors.

In the MCMC with the SR posteriors, a proposal size σ = 2 is used for all values of ε and z. For all
experiments, Table 5 reports acceptance rates obtained with the SR posteriors, while Table 6 reports
the obtained posterior standard deviation with SR posteriors and for the standard Bayes distribution
(for which we do not give the proposal size and acceptance rate as it was sampled using more advanced
MCMC techniques than standard Metropolis-Hastings using the PyMC3 library [Salvatier et al., 2016]).

Setup
ε = 0 ε = 0.1 ε = 0.2

- z = 3 z = 5 z = 7 z = 10 z = 20 z = 3 z = 5 z = 7 z = 10 z = 20

Kernel Score 0.076 0.086 0.089 0.085 0.086 0.087 0.080 0.086 0.089 0.091 0.090
Energy Score 0.076 0.084 0.087 0.082 0.083 0.085 0.082 0.079 0.077 0.082 0.082

Table 5: Acceptance rates for MCMC targeting the Energy and Kernel Score posteriors for the different
outlier setups, for the misspecified normal location model.

Finally, as mentioned in the main text (Sec. 4.2), we attempted using BSL in this scenario. As the
model is Gaussian, we expected the BSL posterior to be very close to the standard posterior. Indeed,
this is what we observed in the well specified case and for small z (Figure 12). When however z is
increased, the MCMC targeting the BSL posterior does not perform satisfactorily (see the trace plots
in Figure 13). Neither reducing the proposal size nor running the chain for a longer number of steps
seems to solve this issues, which reminds of the issue discussed in Sec. 4.1.

42

0

1

2

3

4

5

Ge
ne

ra
liz

ed
 p

os
te

rio
rs

= 0.1, z = 3

0

1

2

3

4
= 0.1, z = 5

0

1

2

3

4
= 0.1, z = 7

0

1

2

3

4

= 0.1, z = 10

0

1

2

3

4

= 0.1, z = 20

1.0 1.5
0

1

2

3

4

5

Ge
ne

ra
liz

ed
 p

os
te

rio
rs

= 0.2, z = 3

1.0 1.5 2.0
0

1

2

3

4
= 0.2, z = 5

1 2
0

1

2

3

4
= 0.2, z = 7

1 2 3
0

1

2

3

4

= 0.2, z = 10

2 4
0

1

2

3

4

= 0.2, z = 20
Standard Bayes
KernelScore
EnergyScore

Figure 11: Posterior distribution obtained with the Scoring Rules and exact Bayes for the misspecified
normal location model; each panel represents a different choice of ε and z. It can be seen that both
Kernel and Energy score are more robust with respect to Standard Bayes, with the Kernel Score one
being extremely robust. The densities are obtained by KDE on the MCMC output thinned by a factor
10.

0

1

2

3

4

5

Ge
ne

ra
liz

ed
 p

os
te

rio
rs

z
=

3

Standard Bayes SyntheticLikelihood
= 0
= 0.1
= 0.2

0.75 1.00 1.25 1.50 1.75
0

1

2

3

4

5

Ge
ne

ra
liz

ed
 p

os
te

rio
rs

=
0.

1

0.75 1.00 1.25 1.50 1.75

z = 1
z = 3
z = 5

Figure 12: Standard Bayes and BSL posteriors for the normal location model, for different choices of
ε and z. First row: fixed outliers location z = 3 and varying proportion ε; second row: fixed outlier
proportion ε, varying location z. As expected, the BSL posterior is very close to the standard Bayes
posterior. The densities are obtained by KDE on the MCMC output thinned by a factor 10.

43

Setup
ε = 0 ε = 0.1 ε = 0.2

- z = 3 z = 5 z = 7 z = 10 z = 20 z = 3 z = 5 z = 7 z = 10 z = 20

Standard Bayes 0.100 0.100 0.099 0.099 0.099 0.100 0.099 0.099 0.100 0.099 0.099
Kernel Score 0.101 0.106 0.114 0.108 0.105 0.113 0.121 0.116 0.113 0.117 0.116
Energy Score 0.098 0.105 0.112 0.106 0.106 0.107 0.109 0.112 0.111 0.114 0.113

Table 6: Obtained posterior standard deviation for the standard Bayes and the Energy and Kernel
Score posteriors, for the different outlier setups, for the misspecified normal location model.

1.0

1.2

1.4

1.6
= 0.1, z = 3

1.0

1.2

1.4

1.6

1.8
= 0.1, z = 5

1.0

1.2

1.4

1.6
= 0.1, z = 7

1.0

1.2

1.4

1.6

1.8

= 0.1, z = 10

1.0

1.5

2.0

2.5

3.0
= 0.1, z = 20

0 10000 20000
MCMC step

1.0

1.2

1.4

1.6

1.8

= 0.2, z = 3

0 10000 20000
MCMC step

1.0

1.2

1.4

1.6

1.8

= 0.2, z = 5

0 10000 20000
MCMC step

1.0

1.5

2.0

= 0.2, z = 7

0 10000 20000
MCMC step

1.0

1.5

2.0

2.5

3.0

= 0.2, z = 10

0 10000 20000
MCMC step

1

2

3

4

5
= 0.2, z = 20

Figure 13: Trace plots for MCMC targeting the BSL posterior with different choices of z and ε, for
the misspecified normal location model. We used here proposal size σ = 2 and 60000 MCMC steps,
of which 40000 were burned in; reducing the proposal size or increasing the number of steps did not
seem to solve this issue.

E.3 The MA(2) model

For the Kernel Score posterior with the Gaussian Kernel, we first fit the value of the bandwidth of
the Gaussian kernel as described in Appendix D, which resulted in γ ≈ 12.77.

Next, we used our strategy (Sec.2.4) to tune the value of the weight w for both the Kernel and
Energy Score Posteriors; this resulted in w ≈ 12.97 for the Energy Score and w ≈ 208 for the Kernel
Score.

In Table 7 we report the proposal sizes σ and the resulting acceptance rates and trace of the
posterior covariance matrix Σpost for BSL, semiBSL and the SR posteriors with the above values of
w; we also report the trace of Σpost for the true posterior, for which we do not give the proposal
size and acceptance rate as it was sampled using more advanced MCMC techniques than standard
Metropolis-Hastings using the PyMC3 library [Salvatier et al., 2016].

Technique BSL semiBSL True posterior Kernel Score Energy Score

Proposal size σ 1 0.2 / 1 1

Acceptance rate 0.16 0.16 / 0.51 0.46

Tr[Σpost] 0.08595 0.05271 0.04483 0.3010 0.2600

Table 7: Proposal sizes and acceptance rates for the BSL, semiBSL, Kernel and Energy Score poste-
riors, and the true posterior for the MA2 model.

E.3.1 Different values of w

In order to understand the behavior of the SR posterior for different choices of w, we run an MCMC
chain with 30000 steps of which 10000 are burned in, by using m = 500 and G = 50, for a range of

44

Kernel Score

Energy Score

Figure 14: Contour plot for the posterior distributions for the MA(2) model with different values of
w, with darker colors denoting larger posterior density and dotted line denoting true parameter value.
The posterior densities are obtained by KDE on the MCMC output thinned by a factor 10. The prior
distribution is uniform on the white triangular region. We remark how increasing w leads to narrower
posteriors, as expected.

values of w. In Table 8, we report the proposal size, acceptance rate and the trace of the posterior
covariance matrix for the different weights used, for both the Kernel and Energy Score posteriors. We
highlight that increasing w leads to smaller posterior variance (as expected).

The posterior density plots for the different values of w are reported in Figure 14, where it can be
seen that increasing w leads to narrower posteriors.

Kernel Score Energy Score

w Prop. size σ Acc. rate Tr [Σpost] w Prop. size σ Acc. rate Tr [Σpost]

250 1 0.49 0.2828 12 0.3 0.67 0.2738
300 0.9 0.48 0.2653 14 0.3 0.65 0.2582
350 0.8 0.49 0.2537 16 0.3 0.63 0.2409
400 0.7 0.48 0.2437 18 0.3 0.62 0.2280
450 0.6 0.49 0.2273 20 0.15 0.69 0.2195
500 0.5 0.50 0.2192 22 0.15 0.67 0.2080
550 0.4 0.52 0.2164 24 0.15 0.64 0.2074
600 0.3 0.53 0.2160 26 0.15 0.63 0.2042
620 0.15 0.61 0.2068 28 0.1 0.65 0.1928
640 0.15 0.60 0.2037 30 0.1 0.63 0.1880

Table 8: Proposal size, acceptance rate and trace of the posterior covariance matrix for different weight
values for MA2, for the Kernel and Energy Score posteriors.

E.4 The M/G/1 model

For the Kernel Score posterior with the Gaussian Kernel, we first fit the value of the Gaussian kernel
bandwidth parameter as described in Appendix D, which resulted in γ ≈ 3.6439.

Next, we used our strategy (Sec.2.4) to tune the value of the weight w for both the Kernel and
Energy Score Posteriors; this resulted in w ≈ 10.98 for the Energy Score and w ≈ 797 for the Kernel
Score.

In Table 9 we report the proposal sizes σ and the resulting acceptance rates and trace of the

45

posterior covariance matrix Σpost for BSL, semiBSL and the SR posteriors with the above values of
w; we also report the trace of Σpost for the true posterior, for which we do not give the proposal
size and acceptance rate as it was sampled using more advanced MCMC techniques than standard
Metropolis-Hastings [Shestopaloff and Neal, 2014].

Technique BSL semiBSL True posterior Kernel Score Energy Score

Proposal size σ 1 0.2 / 0.01 1

Acceptance rate 0.12 0.11 / 0.2697 0.1477

Tr[Σpost] 4.518 0.2726 0.2108 0.336 4.499

Table 9: Proposal sizes and acceptance rates for the BSL, semiBSL, Kernel and Energy Score poste-
riors, and the true posterior for the M/G/1 model.

E.4.1 Different values of w

In order to understand the behavior of the SR posterior for different choices of w, we run run an
MCMC chain with 30000 steps of which 10000 are burned in, by using m = 1000 and G = 50, for
a range of values of w. In Table 10, we report the proposal size, acceptance rate and the trace of
the posterior covariance matrix for the different weights used, for both the Kernel and Energy Score
posteriors. We highlight here that the larger values of w lead to much smaller posterior variance than
BSL, and almost as small as semiBSL and the true posterior.

The posterior density plots for the different value of w are reported in Figure 15, where it can be
seen that increasing w leads to narrower posteriors.

Kernel Score Energy Score

w Prop. size σ Acc. rate Tr [Σpost] w Prop. size σ Acc. rate Tr [Σpost]

50 1 0.20 5.2641 11 0.9 0.17 4.6423
100 1 0.11 4.5269 14 0.8 0.14 4.1235
150 0.4 0.16 4.0499 17 0.6 0.16 4.0349
200 0.3 0.13 3.2948 20 0.5 0.15 3.8567
250 0.2 0.17 4.6480 23 0.4 0.15 3.8503
300 0.1 0.21 2.7522 26 0.3 0.17 3.2135
350 0.07 0.25 3.9636 29 0.2 0.20 2.2610
400 0.05 0.26 2.5626 32 0.05 0.43 4.4932
450 0.05 0.23 3.3643 35 0.05 0.40 2.9258
500 0.05 0.22 3.7557 38 0.05 0.38 3.3495
550 0.02 0.31 0.6334 41 0.05 0.37 3.6486
600 0.02 0.29 0.4585 44 0.04 0.39 3.6295
700 0.01 0.31 0.3652 47 0.04 0.39 4.9781
800 0.01 0.27 0.2561 50 0.04 0.36 3.2886
900 0.01 0.12 0.1907 53 0.04 0.34 3.3311

- - - - 56 0.01 0.56 0.5347

Table 10: Proposal size, acceptance rate and trace of the posterior covariance matrix for different
weight values for M/G/1, for the Kernel and Energy Score posteriors.

E.4.2 Simulating the M/G/1 model

We give here two different recursive formulations of the M/G/1 model which can be used to generate
samples from it.

46

Kernel Score

Energy Score

Figure 15: Posterior densities for the Kernel and Energy Score posteriors with different values of
w for the M/G/1 model; for both methods, each row shows bivariate marginals for a different pair
of parameters, with darker colors denoting larger posterior density and dotted line denoting true
parameter value. In the figure for the Kernel Score posterior, we write w̃ = w/10 for brevity. The
posterior densities are obtained by KDE on the MCMC output thinned by a factor 10. Notice that
the axis do not span the full prior range of the parameters. We remark how increasing w leads to
narrower posteriors, as expected.

47

We follow the notation and the model description in Shestopaloff and Neal [2014]. Specifically,
we consider customers arriving at a single server with independent interarrival times Wi distributed
according to an exponential distribution with parameter θ3. The service time Ui is assumed to be
Ui ∼ Uni(θ1, θ2); the observed random variables are the interdeparture times Yi.
In Shestopaloff and Neal [2014], Yi is written using the following recursive formula:

Yi = Ui + max


0,

i∑

j=1

Wj −
i−1∑

j=1

Yj


 = Ui + max(0, Vi −Xi−1), (19)

where Vi =
∑i

j=1Wj andXi =
∑i

j=1 Yj is the departure time are respectively the arrival and departure
time of the i -th customer.

A different formulation of the same process is given in Chapter 4.3 in Nelson [2013] by exploiting
Lindley’s equation, and is of independent interest. We give it here and we show how the two formula-
tions correspond. Specifically, this formulation considers an additional variable Zi which denotes the
waiting time of customer i. For this, a recursion can be obtained to be:

Zi = max(0, Zi−1 + Ui−1 −Wi),

where Z0 = 0 and U0 = 0. Then, the interdeparture time is found to be:

Yi = Wi + Ui − Ui−1 + Zi − Zi−1; (20)

this can be easily found as the absolute departure time for i -th client is
∑i

j=1Wj + Ui + Zi.
These two formulations are the same; indeed, the latter can be written as:

Yi = Ui + max(0, Zi−1 + Ui−1 −Wi)− Zi−1 − Ui−1 +Wi = Ui + max(0,Wi − Zi−1 − Ui−1). (21)

By comparing Eqs. (19) and (21), the two formulations are equal if the following equality is verified:

max(0,Wi − Zi−1 − Ui−1) = max


0,

i∑

j=1

Wj −
i−1∑

j=1

Yj




which is equivalent to:

Wi − Zi−1 − Ui−1 =
i∑

j=1

Wj −
i−1∑

j=1

Yj ⇐⇒ Zi−1 + Ui−1 =
i−1∑

j=1

(Yj −Wj)

Now, from Eq. (20) we have:

i−1∑

j=1

(Yj −Wj) =

i−1∑

j=1

(Uj + Zj − Uj−1 − Zj−1) = Ui + Zi − U0 − Z0 = Ui + Zi,

from which the chain of equalities are satisfied.

F Study on values of m

Here, we consider the univariate and multivariate g-and-k, both well specified and misspecified, the
MA(2) and the M/G/1 models, and study the impact of varying m in the resulting MCMC target.
As we span from very small to large values of m, we use here the vanilla pseudo-marginal MCMC of
Andrieu et al. [2009] instead of the correlated pseudo-marginal MCMC which was used for all other
simulations.

The choice of m has two different impacts on the MCMC:

48

1. first, it changes the pseudo-marginal MCMC target, as discussed in Section 2.3 in the main text;
recall how, there, we proved that, for m→∞, the pseudo-marginal MCMC target converges to
the original SR posterior defined in Eq. (2) in the main text. Therefore, we expect, for large
enough m, the pseudo-marginal MCMC target to be roughly constant.

2. Additionally, smaller values of m imply that the target estimate has a larger variance. Therefore,
we expect sampling to be harder for small m, in terms of acceptance rate of the MCMC, and
easier for large m (albeit that is more computationally intensive).

In our simulation study below, we consider m values from 10 to 1000. Our results empirically
verify our expectations above. In particular, we find that, for m larger than a threshold which is
typically few hundreds, the pseudo-marginal MCMC target is roughly constant. Additionally, very
small values of m (few tens) make sampling impractical.

Moreover, our empirical results suggest that larger values of m are required for the MCMC for
semiBSL to be stable. For the other methods, the required m seem to be fairly similar, with slightly
larger values for BSL for some models.

Typically, we found m values in the few hundreds to strike a good balance between larger compu-
tational cost and improved acceptance rate with larger m. Additionally, this consideration depends
also on how quickly the simulation cost scales with m: even when not parallelizing model simulations
across different processors, if the implementation is vectorized, the computational cost can scale sub-
linearly in m, which means a better MCMC efficiency is reached for a larger m. A more extensive
study considering for instance the effective sample size per CPU time could be carried out.

In all experiments, except where said otherwise, we use the value of w found via our tuning strategy
(Section 2.4 in the main text) and reported above.

F.1 Univariate g-and-k

Here, we report results considering n = 10 observations.

m
BSL Kernel Score Energy Score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.104 4.5245 0.011 3.6030 0.063 3.9822
20 0.122 4.4439 0.035 3.6679 0.115 3.9642
50 0.129 4.3778 0.098 3.3803 0.179 3.6105
100 0.134 4.4095 0.157 3.2220 0.219 3.5335
200 0.136 4.1753 0.204 3.1628 0.243 3.4730
300 0.135 4.2261 0.220 3.1181 0.252 3.3537
400 0.135 4.1769 0.229 3.0716 0.257 3.3553
500 0.132 4.1702 0.234 3.1079 0.262 3.4362
600 0.130 4.2095 0.239 3.0295 0.259 3.2612
700 0.133 4.2417 0.243 3.0536 0.265 3.3629
800 0.132 4.2421 0.247 3.0216 0.265 3.3077
900 0.132 4.1084 0.248 3.0477 0.267 3.3815
1000 0.137 4.2930 0.253 3.1181 0.269 3.3570

Table 11: Acceptance rate and trace of the posterior covariance matrix for different values of m for
the well specified univariate g-and-k, for the BSL, Kernel and Energy Score posteriors.

49

SyntheticLikelihood

KernelScore

EnergyScore

0 1 2 3 4
A

0.10

0.15

0.20

0.25

0 1 2 3 4
B

0.1

0.2

0.3

0 1 2 3 4
g

0.10

0.15

0.20

0.25

0 1 2 3 4
k

0.0

0.5

1.0

0 1 2 3 4
A

0.0

0.2

0.4

0.6

0 1 2 3 4
B

0.0

0.2

0.4

0 1 2 3 4
g

0.1

0.2

0.3

0.4

0 1 2 3 4
k

0.0

0.2

0.4

0 1 2 3 4
A

0.0

0.1

0.2

0.3

0.4

0 1 2 3 4
B

0.0

0.1

0.2

0.3

0 1 2 3 4
g

0.1

0.2

0.3

0 1 2 3 4
k

0.0

0.2

0.4

0.6

0.8

Figure 16: Univariate posterior marginals for different m values for the well specified univariate g-
and-k distribution, for the BSL, Kernel and Energy Score posteriors. Lighter (respectively darker)
colors denote smaller (resp. larger) values of m. For small values of m, the marginals are spiky, which
is due to unstable MCMC. The densities are obtained by KDE on the MCMC output thinned by a
factor 10.

F.2 Misspecified univariate g-and-k

Here, we report results considering n = 10 observations.

m
BSL Kernel Score Energy Score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.038 3.3664 0.047 3.4141 0.164 3.8095
20 0.072 2.3207 0.069 3.2060 0.216 3.4900
50 0.130 1.9729 0.184 2.6690 0.306 2.9483
100 0.159 2.0145 0.298 2.4529 0.364 2.7232
200 0.179 1.8829 0.359 2.4037 0.391 2.7153
300 0.187 2.0198 0.389 2.3623 0.402 2.6055
400 0.188 1.9498 0.405 2.3403 0.410 2.6164
500 0.189 1.9092 0.412 2.3756 0.413 2.5579
600 0.191 1.8259 0.422 2.3461 0.414 2.5704
700 0.186 1.9207 0.430 2.3452 0.417 2.5484
800 0.184 1.9509 0.432 2.3810 0.419 2.6276
900 0.190 1.9475 0.434 2.4472 0.423 2.6468
1000 0.194 1.9763 0.436 2.3434 0.425 2.6386

Table 12: Acceptance rate and trace of the posterior covariance matrix for different values of m for
the misspecified univariate g-and-k, for the BSL, Kernel and Energy Score posteriors.

50

SyntheticLikelihood

KernelScore

EnergyScore

0 1 2 3 4
A

0

1

2

3

0 1 2 3 4
B

0.0

0.2

0.4

0.6

0.8

0 1 2 3 4
g

0.0
0.2
0.4
0.6
0.8

0 1 2 3 4
k

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
A

0

2

4

6

0 1 2 3 4
B

0

1

2

0 1 2 3 4
g

0.0

0.2

0.4

0.6

0 1 2 3 4
k

0.0

0.2

0.4

0.6

0 1 2 3 4
A

0

1

2

0 1 2 3 4
B

0.0

0.2

0.4

0.6

0 1 2 3 4
g

0.2

0.4

0 1 2 3 4
k

0.0

0.2

0.4

0.6

Figure 17: Univariate posterior marginals for different m values for the misspecified univariate g-and-k
distribution, for the BSL, Kernel and Energy Score posteriors. Lighter (respectively darker) colors
denote smaller (resp. larger) values of m. The densities are obtained by KDE on the MCMC output
thinned by a factor 10.

F.3 Multivariate g-and-k

Here, we report results considering n = 10 observations.
For this model, small m lead to extremely small acceptance rates for BSL and semiBSL (Table 13);

in those cases, the trace of the posterior covariance matrix is also very small due to the chain being
almost still. Additionally, even large m values lead to small acceptance rate for semiBSL; that is
consequence of the issues discussed in Section 4.1 in the main text and in Appendix E.1.2. We report
nevertheless the results here.

51

m
BSL semiBSL Kernel Score Energy Score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 <0.001 1.0566 <0.001 0.4227 0.006 3.6061 0.070 4.5255
20 <0.001 0.3674 <0.001 0.6383 0.023 4.0455 0.123 3.9212
50 0.003 2.8320 <0.001 0.6331 0.055 3.8924 0.170 3.8571
100 0.002 2.3666 <0.001 0.6131 0.078 4.1250 0.194 3.8126
200 0.001 0.7140 0.001 0.8603 0.099 3.9624 0.206 3.7142
300 0.008 2.8229 0.002 2.2184 0.108 4.2766 0.208 3.9078
400 0.009 2.5694 0.001 0.6885 0.113 3.9710 0.212 3.8284
500 0.009 3.3583 0.002 1.2885 0.116 4.0250 0.217 3.8383
600 0.013 2.9646 0.005 1.3359 0.120 3.9632 0.216 3.7698
700 0.010 3.7043 0.005 0.6511 0.119 4.0173 0.214 3.7437
800 0.016 3.3017 0.006 0.6679 0.122 3.9607 0.214 3.7512
900 0.022 2.9915 0.005 0.6411 0.126 4.1293 0.216 3.9202
1000 0.017 3.1304 0.006 0.5892 0.122 3.9757 0.216 3.7959

Table 13: Acceptance rate and trace of the posterior covariance matrix for different values of m for
the well specified multivariate g-and-k, for the BSL, semiBSL, Kernel and Energy Score posteriors.

SyntheticLikelihood

semiBSL

KernelScore

EnergyScore

0 1 2 3 4
A

0

1

2

3

0 1 2 3 4
B

0

2

4

0 1 2 3 4
g

0
1
2
3
4

0 1 2 3 4
k

0

5

10

0.5 0.0 0.5
0

10

20

30

0 1 2 3 4
A

0

2

4

0 1 2 3 4
B

0

2

4

6

0 1 2 3 4
g

0

20

40

60

80

0 1 2 3 4
k

0

2

4

6

8

0.5 0.0 0.5
0

20

40

0 1 2 3 4
A

0.0

0.2

0.4

0 1 2 3 4
B

0.1

0.2

0.3

0.4

0 1 2 3 4
g

0.1

0.2

0.3

0 1 2 3 4
k

0.0
0.2
0.4
0.6
0.8

0.5 0.0 0.5

0.5

1.0

1.5

0 1 2 3 4
A

0.1

0.2

0.3

0 1 2 3 4
B

0.1

0.2

0.3

0 1 2 3 4
g

0.1

0.2

0.3

0.4

0 1 2 3 4
k

0.00

0.25

0.50

0.75

0.5 0.0 0.5
0.25

0.50

0.75

1.00

Figure 18: Univariate posterior marginals for different m values for the well specified multivariate g-
and-k distribution, for the BSL, semiBSL, Kernel and Energy Score posteriors. Lighter (respectively
darker) colors denote smaller (resp. larger) values of m. For small values of m, the marginals are
spiky, which is due to unstable MCMC. The densities are obtained by KDE on the MCMC output
thinned by a factor 10.

52

F.4 Misspecified multivariate g-and-k

Here, we report results considering n = 10 observations. We do not report results for BSL and
semiBSL as those were unable to run satisfactorily for that number of observations, for all considered
values of m.

m
Kernel Score Energy Score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.017 4.5045 0.174 3.4306
20 0.108 3.6950 0.252 3.2373
50 0.243 3.4612 0.300 3.0291
100 0.308 3.4759 0.316 3.0081
200 0.344 3.4666 0.323 2.9303
300 0.348 3.4583 0.321 2.9160
400 0.355 3.4158 0.331 3.0031
500 0.359 3.4047 0.332 2.9743
600 0.363 3.3847 0.330 2.9321
700 0.360 3.3485 0.329 2.9249
800 0.361 3.3505 0.332 2.9854
900 0.363 3.3627 0.331 3.0155
1000 0.363 3.3307 0.330 2.9277

Table 14: Acceptance rate and trace of the posterior covariance matrix for different values of m for
the misspecified multivariate g-and-k, for the Kernel and Energy Score posteriors.

53

KernelScore

EnergyScore
0 1 2 3 4

A

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4
B

0.0

0.2

0.4

0.6

0 1 2 3 4
g

0.2

0.4

0.6

0 1 2 3 4
k

0.0

0.2

0.4

0.6

0.5 0.0 0.5

0.50

0.75

1.00

1.25

0 1 2 3 4
A

0.0

0.5

1.0

1.5

0 1 2 3 4
B

0.0

0.2

0.4

0.6

0 1 2 3 4
g

0.1

0.2

0.3

0.4

0 1 2 3 4
k

0.0

0.2

0.4

0.6

0.5 0.0 0.5

0.4

0.6

0.8

1.0

Figure 19: Univariate posterior marginals for different m values for the misspecified multivariate g-
and-k distribution, for the Kernel and Energy Score posteriors. Lighter (respectively darker) colors
denote smaller (resp. larger) values of m. For small values of m, the marginals are spiky, which is due
to unstable MCMC. The densities are obtained by KDE on the MCMC output thinned by a factor
10.

F.5 MA2 model

Here, we consider a single observation (n = 1). Notice additionally how small m values lead to
very small acceptance rates for all methods except BSL; in those cases, the trace of the posterior
covariance matrix is also very small due to the chain being almost still. Moreover, running semiBSL
failed altogether for m = 10 and m = 50 due to numerical errors in the estimate of some quantities.
That problem does not happen for larger m values.

m
BSL semiBSL Kernel Score Energy Score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.031 0.1667 nan nan <0.001 <0.0001 <0.001 <0.0001
20 0.123 0.2149 <0.001 0.0151 0.008 0.3371 0.001 0.2041
50 0.178 0.1901 nan nan 0.106 0.3288 0.041 0.2709
100 0.178 0.1392 0.003 0.0214 0.215 0.3189 0.111 0.2748
200 0.168 0.1128 0.041 0.0565 0.303 0.3042 0.203 0.2772
300 0.170 0.0958 0.081 0.0496 0.360 0.3062 0.251 0.2554
400 0.165 0.0890 0.123 0.0505 0.392 0.2974 0.303 0.2516
500 0.157 0.0860 0.155 0.0527 0.414 0.2940 0.330 0.2546
600 0.154 0.0817 0.165 0.0441 0.434 0.2956 0.347 0.2574
700 0.143 0.0749 0.191 0.0458 0.442 0.2975 0.372 0.2617
800 0.137 0.0722 0.209 0.0494 0.446 0.2900 0.375 0.2511
900 0.132 0.0678 0.222 0.0505 0.454 0.2886 0.384 0.2576
1000 0.144 0.0684 0.230 0.0481 0.463 0.2956 0.395 0.2611

Table 15: Acceptance rate and trace of the posterior covariance matrix for different values of m for
MA2, for the BSL, semiBSL, Kernel and Energy Score posteriors. nan values corresponds to settings
in which semiBSL failed.

54

BSL

semiBSL

Kernel Score

Energy Score

Figure 20: Bivariate posterior marginals for different m values for the MA(2) model, for the BSL,
semiBSL, Kernel and Energy Score posteriors. Lighter (respectively darker) colors denote smaller
(resp. larger) values of m. For small values of m, the marginals are spiky, which is due to unstable
MCMC. Additionally, panels for m = 10 and m = 50 for semiBSL are empty as MCMC failed for
those setups. The densities are obtained by KDE on the MCMC output thinned by a factor 10.

F.6 M/G/1 model

Here, we consider a single observation (n = 1). Additionally, we set w = 200 for the Kernel Score
experiment, which leads to nicer visualizations. Notice additionally how small m values lead to very
small acceptance rates for all methods except Energy Score; in some of those cases, the trace of the
posterior covariance matrix is also very small due to the chain being almost still. Moreover, running
semiBSL failed altogether for m = 50 due to numerical errors in the estimate of some quantities. That
problem does not happen for larger m values.

55

m
BSL semiBSL Kernel Score Energy Score

Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost] Acc. rate Tr [Σpost]

10 0.004 3.4400 <0.001 1.1318 <0.001 0.0072 0.015 7.1089
20 0.039 4.7629 <0.001 <0.001 0.001 0.4960 0.032 6.9773
50 0.084 4.6943 nan nan 0.007 0.7041 0.082 4.9889
100 0.100 5.0199 0.002 0.3024 0.048 4.1120 0.104 4.4941
200 0.113 4.9298 0.018 0.3448 0.059 2.4117 0.127 5.0424
300 0.109 4.2174 0.036 0.3350 0.067 1.2283 0.133 4.3495
400 0.115 4.9477 0.066 0.3468 0.099 3.2122 0.142 5.2047
500 0.119 4.5245 0.072 0.3241 0.100 2.9637 0.144 4.7920
600 0.113 4.7229 0.086 0.3383 0.109 3.7342 0.148 5.1760
700 0.112 4.9816 0.091 0.3082 0.120 4.5793 0.146 4.5703
800 0.114 4.7486 0.089 0.2843 0.114 3.1445 0.151 5.1457
900 0.113 4.6482 0.114 0.3123 0.110 2.5299 0.154 4.9276
1000 0.120 4.5183 0.106 0.2726 0.120 3.0236 0.147 4.7525

Table 16: Acceptance rate and trace of the posterior covariance matrix for different values of m for
M/G/1, for the BSL, semiBSL, Kernel and Energy Score posteriors. nan values corresponds to settings
in which semiBSL failed.

56

BSL

semiBSL

Kernel Score

Figure 21: Bivariate posterior marginals for different m values for the M/G/1 model, for the BSL,
semiBSL, Kernel and Energy Score posteriors. Lighter (respectively darker) colors denote smaller
(resp. larger) values of m. For small values of m, the marginals are spiky, which is due to unstable
MCMC. Additionally, panels for m = 50 for semiBSL are empty as MCMC failed for those setups.
The densities are obtained by KDE on the MCMC output thinned by a factor 10.

57

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper

itself).

Title of Paper

Generalized Bayesian Likelihood-Free Inference Using Scoring Rules Estimators

Publication Status

 □ Published □ Accepted for Publication

 □Submitted for Publication ☒ Unpublished and unsubmitted work written
in a manuscript style

Publication Details

Joint work with Prof. Ritabrata Dutta (University of Warwick).

Student Confirmation

Student Name:

Lorenzo Pacchiardi

Contribution to the
Paper

I am the first author of this paper. I had the original idea of using scoring rules for
likelihood-free inference. Discussing with prof. Dutta, this was crystallized in the
present form based on generalized Bayesian inference. I obtained the theoretical
results, implemented the method, ran the simulations and wrote most of the paper.
Prof. Dutta advised along the way and corrected the paper draft.

Signature

Date

1st September 2022

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Professor Geoff Nicholls

Supervisor comments

Signature

Date

15-09-22

This completed form should be included in the thesis, at the end of the relevant chapter.

Chapter 4

Likelihood-Free Inference with
Generative Neural Networks via
Scoring Rule Minimization

Unpublished and unsubmitted work.

157

Likelihood-Free Inference with Generative Neural Networks

via Scoring Rule Minimization

Lorenzo Pacchiardi1∗, Ritabrata Dutta2

1Department of Statistics, University of Oxford, UK
2Department of Statistics, University of Warwick, UK

Abstract

Bayesian Likelihood-Free Inference methods yield posterior approximations for simulator models
with intractable likelihood. Recently, many works trained neural networks to approximate either
the intractable likelihood or the posterior directly. Most proposals use normalizing flows, namely
neural networks parametrizing invertible maps used to transform samples from an underlying base
measure; the probability density of the transformed samples is then accessible and the normalizing
flow can be trained via maximum likelihood on simulated parameter-observation pairs. A recent
work [Ramesh et al., 2022] approximated instead the posterior with generative networks, which
drop the invertibility requirement and are thus a more flexible class of distributions scaling to
high-dimensional and structured data. However, generative networks only allow sampling from
the parametrized distribution; for this reason, Ramesh et al. [2022] follows the common solution of
adversarial training, where the generative network plays a min-max game against a “discriminator”
network. This procedure is unstable and can lead to a learned distribution underestimating the
uncertainty - in extreme cases collapsing to a single point. Here, we propose to approximate the
posterior with generative networks trained by Scoring Rule minimization, an overlooked adversarial-
free method enabling smooth training and better uncertainty quantification. In simulation studies,
the Scoring Rule approach yields better performances with shorter training time with respect to
the adversarial framework.

1 Introduction

Intractable-likelihood (or simulator) models are models for which it is impossible to evaluate the
likelihood p(y|θ) for an observation y, but from which it is easy to simulate for any parameter value
θ. Given y and a prior π(θ), the standard Bayesian posterior is π(θ|y) ∝ π(θ)p(y|θ). However,
obtaining that explicitly or sampling from it with Markov Chain Monte Carlo (MCMC) is impossible
without having access to the likelihood.

Bayesian Likelihood-Free Inference (LFI) techniques exploit model simulations to approximate the
exact posterior distribution when the likelihood is unavailable. Popular approaches include Approx-
imate Bayesian Computation methods [Lintusaari et al., 2017, Bernton et al., 2019] and Synthetic
Likelihood [Price et al., 2018, An et al., 2020].

A recent strand of literature [Papamakarios and Murray, 2016, Lueckmann et al., 2017, Papa-
makarios et al., 2019, Lueckmann et al., 2019, Greenberg et al., 2019, Durkan et al., 2020, Radev
et al., 2020] has explored using neural networks to perform LFI1. Many methods employ normalizing
flows [Papamakarios et al., 2021]: invertible neural networks which parametrize complex probability
distributions by transforming samples from a simple one (say, multivariate Gaussian). Normalizing
flows allow evaluating the density of the distribution via the change-of-variables formula enabled by
invertibility; using the latter, normalizing flows can be trained via maximum likelihood estimation on
parameter-simulation pairs. They can be used to represent either the likelihood [Papamakarios et al.,
2019, Lueckmann et al., 2019] or the posterior [Papamakarios and Murray, 2016, Lueckmann et al.,
2017, Greenberg et al., 2019, Radev et al., 2020].

∗Corresponding author: lorenzo.pacchiardi@stats.ox.ac.uk.
1Check https://neurallikelihoodfreeinference.github.io/ for an interactive up-to-date list.

1

However, imposing invertibility strongly constrains the network architecture. More general gen-
erative networks drop this requirement, thus gaining expressiveness and the ability to easily scale to
large input and output sizes, but forgoing density evaluation: from a generative network, you can only
obtain draws from the parametrized probability distribution. For this reason, maximum likelihood es-
timation of neural network weights is impossible and people use training methods based on generating
samples from the generative network. A paradigmatic example is the popular Generative Adversarial
Network, or GAN, framework of Goodfellow et al. [2014], where the generative network is trained in a
min-max game against an additional discriminator network aiming at distinguishing between training
samples and simulations from the generative network2.

For LFI, Ramesh et al. [2022] used a generative network to represent a posterior approximation
and trained it with an adversarial approach. From the trained network, approximate posterior samples
can be directly obtained. Here, we build on Ramesh et al. [2022] by proposing a different training
strategy based on minimizing values of Scoring Rules (SR, Gneiting and Raftery, 2007), which are
functions assessing the match between a probability distribution and an observation. In contrast
to the adversarial approach, often leading to mode collapse (in which the parametrized probability
distribution collapses on a single point, see Arora et al., 2017, Bellemare et al., 2017, Arora et al.,
2018, Richardson and Weiss, 2018), SR training has been found to better capture the full shape of the
probability distribution in the setting of probabilistic forecasting (Chapter 5 of the present thesis).
Additionally, the SR-minimization approach leads to simpler training with respect to the adversarial
one, as it does not require a discriminator or solving a min-max problem.

The rest of the paper is organized as follows. Section 2 discusses how to use a generative network
to represent and approximate posterior and reviews the training method employed in Ramesh et al.
[2022]. Section 3 introduces SR-minimization training for LFI. Section 4 reports simulation results
and Section 5 gives concluding remarks.

Notation We will denote respectively by Y ⊆ Rd and Θ ⊆ Rp the data and parameter space. We
will use P (·|θ) and p(·|θ) to denote the distribution and likelihood (with respect to Lebesgue measure)
of the considered likelihood-free model. Π and π will denote prior distribution and prior density on
Θ, and Π(·|y) and π(·|y) will denote corresponding posterior quantities for observation y. In general,
we will use P or Q to denote distributions, while S will denote a generic Scoring Rule. Other upper-
case letters (X,Y and Z) will denote random variables while lower-case ones will denote observed
(fixed) values. We will denote by Y or y the observations (correspondingly random variables and
realizations). Bold symbols denote vectors, and subscripts to bold symbols denote sample index (for
instance, yi). Instead, subscripts to normal symbols denote component indices (for instance, yj is
the j-th component of y, and yi,j is the j-th component of yi). Finally, ⊥⊥ will denote independence
between random variables, while Y ∼ P indicates a random variable distributed according to P and
y ∼ P a sample from such random variable.

2 Approximate posterior via generative network

We use a generative network to represent an approximate posterior distribution Qφ(·|y) on the parame-
ter space Θ given an observation y ∈ Y. The density of Qφ(·|y) (with respect to the Lebesgue measure)
will be denoted by qφ(·|y). The generative network is defined via a neural network gφ : Z × Y → Θ
transforming samples from a probability distribution Pz over the space Z conditionally on an obser-
vation y ∈ Y; φ represents neural network weights. Samples from Qφ(·|y) are therefore obtained by
sampling z ∼ Pz and computing θ̃ = gφ(z,y) ∼ Qφ(·|y)3

In the following, as it is standard in the LFI setup, we assume to have access to parameter-
simulations pairs (θi,yi)

n
i=1 generated from the prior θi ∼ Π and the model yi ∼ P (·|θi); critically,

these can also be considered as being samples from the data marginal yi ∼ P and the posterior

2Notice that generative networks and adversarial training are older techniques than normalizing flows. We introduce
them in this order by following their usage in the LFI context.

3Formally, Qφ(·|y) is the push-forward of Pz through the map gφ(·,y): Qφ(·|y) = gφ(·,y)]Pz, which means that, for
any set A belonging to the Borel σ-algebra σ(Θ), Qφ(A|y) = Pz ({z ∈ Z : gφ(z,y) ∈ A}).

2

θi ∼ Π(·|yi). Using these samples, we want to tune φ such that Qφ(·|y) ≈ Π(·|y) for all values of y;
this is therefore an amortized setting [Radev et al., 2020], namely the resulting posterior approximation
is valid for multiple observations.

In the amortized setting, a single neural network has to map the observation into a posterior for
all possible observations; intuitively, we expect this to work well for those cases where such inversion
process is in some sense “generic”. In contrast, the amortized approach will perform poorly when the
posterior distribution depends on the data in a non-linear way. Additionally, the amortized approach
may be wasteful in terms of model simulations when inference for a single observation is needed, as
the simulations from the likelihood-free model are drawn independently from it, so that many will be
uninformative. In Sec 3.4, we discuss strategies for tailoring simulations to a specific observation.

2.1 Adversarial posterior inference

In Ramesh et al. [2022], the posterior approximation Qφ was trained in an adversarial framework.
This requires introducing a discriminator or critic neural network cψ : Θ × Y → R with weights ψ
whose task is to distinguish draws from the approximate and true posteriors. The loss employed in
Ramesh et al. [2022] is the conditional version of the original GAN loss from Goodfellow et al. [2014],
which was originally discussed in Mirza and Osindero [2014]:

L(φ, ψ) = Eθ∼ΠEY∼P (·|θ)EZ∼Pz [log cψ(θ,Y) + log (1− cψ (gφ(Z,Y),Y))]

= EY∼P
[
Eθ∼Π(·|Y) (log cψ(θ,Y)) + Eθ̃∼Qφ(·|Y)

(
log
(

1− cψ(θ̃,Y)
))]

,
(1)

whose saddle point solution
min
φ

max
ψ

L(φ, ψ) (2)

leads to Qφ(·|y) being the exact posterior for all choices of y for which p(y) > 0 (provided qφ and cψ
have infinite expressive power; that in fact corresponds to minimizing the Jensen-Shannon divergence,
see Appendix B.1 in Chapter 5 of the present thesis).

The practical training procedure employs Stochastic Gradient Descent (SGD): we replace the
expectations in Eq. (1) with empirical means over (a mini-batch of) the training dataset and draws
from the generative network and alternate maximization steps over ψ with minimization steps over φ.
This alternating optimization is however unstable and requires careful hyperparameters tuning and
specialized training routines [Salimans et al., 2016]. It has been empirically shown [Arora et al., 2018,
Isola et al., 2017, Richardson and Weiss, 2018] that adversarial training can lead to mode collapse, in
which the distribution parametrized by the generative network collapses onto a single point. Arora
et al. [2017] showed how mode collapse can happen due to the finite capacity of the discriminator,
while Bellemare et al. [2017] theoretically linked it to the use of biased gradient estimates for φ in
optimizing Eq. (2) (in fact, we compute gradients with respect to φ relying on a value of ψ obtained
by few optimization steps, rather than the value maximizing eq. 1).

Mode collapse may not be an issue in some applications of generative networks where uncertainty
quantification is not important, but it can be detrimental for approximate posterior inference.

3 Posterior inference via Scoring Rules minimization

We discuss here the use of Scoring Rules to define an adversarial-free training objective for generative
networks, focusing on the specific case of a generative network parametrizing an approximate posterior.
In Chapter 5 of the present thesis, SR-training for probabilistic forecasting can be found. Other works
employing SR training, albeit not for the LFI framework, are Bouchacourt et al. [2016], Gritsenko
et al. [2020], Harakeh and Waslander [2021].

We first introduce Scoring Rules for a distribution P related to a generic random variable X. A
Scoring Rule (SR, Gneiting and Raftery, 2007) S(P,x) is a function of P and of an observation x of
the random variable X. If X is distributed according to Q, the expected Scoring Rule is defined as:

S(P,Q) := EX∼QS(P,X),

3

The Scoring Rule S is proper relative to a set of distributions P over X if

S(Q,Q) ≤ S(P,Q) ∀ P,Q ∈ P,

i.e., if the expected Scoring Rule is minimized in P when P = Q. Moreover, S is strictly proper
relative to P if P = Q is the unique minimum:

S(Q,Q) < S(P,Q) ∀ P,Q ∈ P s.t. P 6= Q.

3.1 Patched SRs

In practice, we will use the Energy and Kernel Scores introduced in Sec. 1.2.2 in the introduction
of the present thesis, fixing β = 1 for the Energy Score and use the Gaussian kernel in the Kernel
Score. However, those scores consider X as a multivariate variable, where the individual entries can
be permuted. Some of the examples in Sec. 4 generate however data on a 1D or 2D grid and the
Energy and Kernel Scores would be oblivious to such structure. To better represent it, we propose
computing the SRs on localized patches across the grid and cumulate the score; in this way, short-scale
correlations are given more importance. For a given SR S, therefore, the patched SR is:

Sp(P,x) = w1S(P,x) + w2

∑

p∈P
S(P |p,x|p),

where w1, w2 > 0, |p denotes the restriction of a distribution or of a vector to a patch p and P is a set
of patches.

However, the resulting Scoring Rule is not strictly proper; to fix this, we add the SR computed
over the full x, which makes the overall SR strictly proper, as shown in the following Lemma (proven
in Appendix A):

Lemma 1. Consider two proper SRs S1 and S2, and let α1, α2 > 0; the quantity:

S+(P,y) = α1 · S1(P,y) + α2 · S2(P,y)

is a proper SR. If at least one of S1 and S2 is also strictly proper, then S+ is strictly proper.

In Chapter 5 of the present thesis, another SR capturing spatial information based on the variogram
[Scheuerer and Hamill, 2015] is tested; as that performed worse than the patched one, we exclude it
from our analysis.

3.2 Scoring Rule training

Let us now go back to the Bayesian LFI setting introduced at the start of the paper. Denoting
by Qφ(·|y) the approximate posterior parametrized by the generative network, solving the following
problem for a strictly proper S:

arg min
φ

EY∼PEθ∼Π(·|Y)S(Qφ(·|Y),θ) = arg min
φ

Eθ∼ΠEY∼P (·|θ)S(Qφ(·|Y),θ) (3)

leads to qφ(·|y) = π(·|y) for all values of y for which p(y) > 0.
An empirical version of Eq. (3) is obtained by replacing the expectations with empirical means

over the training dataset:

arg min
φ

1

n

n∑

i=1

S(Qφ(·|yi),θi); (4)

computing the objective directly is intractable as, in general, we do not have access to S(Qφ(·|y),θ).
Notice, however, that in order to solve Eq. (4) via SGD it is enough to obtain unbiased estimates of
∇φS(Qφ(·|yi),θi), which can be easily done whenever S admits an unbiased empirical estimator Ŝ
such that:

E
[
Ŝ({θ̃(y)

j }mj=1,θ)
]

= S(Qφ(·|y),θ),

4

where the expectation is over θ̃
(y)
j ∼ Qφ(·|y). More details can be found in Appendix B. If S admits

such an estimator, each step of SGD involves generating m simulations from the generative network
Qφ(·|yi) for each yi in the training batch.

For the Energy and Kernel Scores introduced in Sec. 1.2.2 in the introduction of the present thesis,
unbiased estimators are available (see Sec. 1.2.2 in the introduction). These estimators require m > 1;
to train GAN, instead, a single draw from the generative network for each training sample at each SGD
step is enough. In experiments, however, small values of m (m = 10 for instance) lead to satisfactory
results. Additionally, as mentioned above, the SR approach does not require a discriminator network
and has a smoother training process, which implies convergence is generally reached with less training
epochs. These two factors lead to lower computational and memory cost with respect to adversarial
training (see Section 4 for details).

3.3 Connection with normalizing flows

As mentioned in the introduction, normalizing flows are generative networks which impose invertibility
of the map gφ(z,y) with respect to z. As such, density evaluation of the resulting qφ is possible via
the change-of-variables formula, so that φ is usually trained via maximum likelihood [Papamakarios
et al., 2021]. For instance, in Radev et al. [2020], the following problem was considered, where DKL

denotes the Kullback-Leibler divergence:

argmin
φ

EY∼P [DKL (Π(· | Y)‖Qφ(· | Y))]

= argmin
φ

EY∼PEθ∼Π(·|Y) [− log qφ(θ | Y)]

= argmin
φ

Eθ∼ΠEY∼P (·|θ) [− log qφ(θ | Y)] ,

which corresponds to our SR-based approach in Eq. (3) by identifying S(Qφ(·|y),θ) = − log qφ(θ|y),
which is the strictly-proper logarithmic scoring rule [Gneiting and Raftery, 2007].

3.4 Sequential training

Up to this point, we have considered the training data from the simulator model (θi,yi)
n
i=1 to be

generated independently from the observation on which inference is performed; under this assumption,
we have discussed ways to learn posterior approximations valid for all values of y such that p(y) > 0.
Once the neural network is trained, therefore, inference can be performed for as many observations as
we wish. This is a so-called amortized setup [Radev et al., 2020].

However, practitioners may require posterior inference for a single observation yo. What they are
interested in, therefore, is the quality of the approximation for values of θ with large posterior density
for the observed yo. In this case, generating training samples independently from yo may be wasteful:
a more efficient method (in terms of simulations from the model p(·|θ)) would generate more training
samples θi’s close to the modes of the true posterior, as those convey more information on the precise
posterior shape. This can be done in a sequential fashion: given a small amount of training data, a
first approximation Qφ1 is obtained; from that, additional training samples (θi,yi) are generated by
θi ∼ Qφ1(·|yo),yi ∼ P (·|θi) and used to (re-)train an approximation Qφ2 . This procedure is iterated
several times, allowing the training samples to progressively focus around the posterior modes and
thus refining the approximation [Lueckmann et al., 2017, Greenberg et al., 2019].

However, naively following that strategy is incorrect. To see this, assume that, at the second
round, we just train on samples drawn from the approximate posterior Π̃ = Qφ1(·|yo) obtained at the
first round. Such a sampled pair (θi,yi) was drawn from a joint density π̃(θi)p(yi|θi) = p̃(yi)π̃(θi|yi),
where π̃ on the left-hand side of the equality is the density of the proposal Π̃ and the quantities
on the right-hand side are univocally defined by the left-hand side. The optimal φ? obtained via
SR-minimization thus corresponds to qφ?(·|y) = π̃(·|y), which is not the correct target.

The traditional way to fix this entails introducing importance weights in the training objective

5

(Eq. 3):

Eθ∼ΠEY∼P (·|θ)S(Qφ(·|Y),θ) = Eθ∼Π̃

π(θ)

π̃(θ)
EY∼P (·|θ)S(Qφ(·|Y),θ).

As π̃(θ) cannot be evaluated, a solution is to fit a probabilistic classifier (at each round of the sequential

procedure) to samples from π(θ) and π̃(θ) and use it to estimate the ratio π(θ)
π̃(θ) . This classifier is not

required for the normalizing flows approaches, where the ratio can be evaluated explicitly [Lueckmann
et al., 2017, Greenberg et al., 2019] (unless the prior π is also defined implicitly, as in the camera
model example in Section 4). For the GAN approach, a similar importance weights approach requires

additionally to estimate the ratio p̃(y)
p(y) [Ramesh et al., 2022].

An alternative approach, which was applied to the GAN approach in Ramesh et al. [2022], involves
correcting the distribution of the variable Z which is transformed by the generative network. Specif-
ically, Ramesh et al. [2022] showed that π(θ|y) = π̃(θ|y)w(θ,y) ⇐⇒ π̃(θ|y) = π(θ|y)(w(θ,y))−1,

where w(θ,y) = π(θ)
π̃(θ)

p̃(y)
p(y) . Therefore you can consider a modified approximation Q̃φ(·|Y) and a new

training objective:

EY∼P̃Eθ∼Π̃(·|Y)S(Q̃φ(·|Y),θ) = Eθ∼Π̃EY∼P (·|θ)S(Q̃φ(·|Y),θ) (5)

whose minimization leads to Q̃φ(·|Y) = Π̃(·|Y). By setting

Q̃φ(·|Y) = Qφ(·|Y)(w(θ,y))−1,

you ensure Qφ(·|Y) = Π(·|Y). To train φ using the objective in Eq. (5), draws from Q̃φ(·|Y) are
required; those can be obtained by sampling z ∼ P̃z, whose density is p̃z(z) = pz(z)(w(gφ(z,y),y))−1,
and computing θ = gφ(z,y), which is thus a sample from Q̃φ(·|Y). Compared to using importance
weights, the variance of the training objective is here smaller. However, rejection sampling or MCMC
are needed to sample from P̃z, and two ratios have to be estimated via probabilistic classifiers (p̃(y)

p(y)

and π(θ)
π̃(θ)), making this strategy more expensive than using importance weights

On the examples considered in Ramesh et al. [2022], the sequential approaches did not perform
better than the amortized one, mainly due to the additional computational cost associated to estimat-
ing the ratios. As we employ the same examples here, we do not test these methods, but we discussed
them anyway as they may turn out to be useful in other applications.

4 Simulation study

Following Ramesh et al. [2022], we present here results on two benchmark problems and two high-
dimensional models, one of which has an implicitly defined prior. For all examples, we evaluate the
performance of the different methods as in Ramesh et al. [2022]. Besides that, we assess the calibra-
tion of the approximate posteriors by the discrepancy between credible intervals in the approximate
posteriors and the frequency with which the true parameter belongs to the credible interval itself
(we call this metric calibration error). We also evaluate how close the posterior means are to the
true parameter value by the Normalized Root Mean-Square Error (NRMSE) and the coefficient of
determination R2; these metrics were used for LFI in Radev et al. [2020]; we provide more detail in
Appendix C. As all these metrics are for scalar variables, we compute their values independently for
each component of θ and report their average.

We compare our generative networks trained with SRs with the GAN-based one of Ramesh et al.
[2022]; in both setups, we adapt the generative networks defined in Ramesh et al. [2022] for the
different tasks. Additional training details for all models are reported in Appendix D. Notice how
Ramesh et al. [2022] compared with additional LFI methods, concluding that the generative-network
based one performs worse for the simple models but is competitive for the high-dimensional ones.
Here, we do not compare with these other methods as the focus of our paper is to provide a different
training strategy for the generative network approach.

6

1000 10 000 100 000
Number of simulations

0.875

0.900

0.925

0.950

0.975

1.000
C2

ST
 (a

cc
ur

ac
y)

SLCP

1000 10 000 100 000
Number of simulations

0.7

0.8

0.9

C2
ST

 (a
cc

ur
ac

y)

Two Moons
GAN
Energy 3
Energy 5
Energy 10
Energy 20
Kernel 3
Kernel 5
Kernel 10
Kernel 20

A B

Figure 1: C2ST for SR and GAN methods for the SLCP and Two Moons benchmarks; larger values
are worse. For the SR methods, we report results for different choices of the number of generative
network samples m used in training. SLCP: GAN performs better, but poorly on an absolute scale.
Two Moons: methods based on the Energy Score perform better.

4.1 Benchmark models

We consider here the “Simple Likelihood Complex Posterior” (SLCP) and the “Two Moons” bench-
marks; in the former, a 5-dimensional θ defines the distribution of an 8-dimensional Gaussian y
in a nonlinear manner. In the Two Moons model, both y and θ are 2-dimensional. We refer to
Ramesh et al. [2022] and references therein for more details4 For both models, we train all methods
on ntrain = 1000, 10000 and 100000 posterior samples. We consider the SR methods with the Energy
and Kernel Score trained with m = 3, 5, 10 or 20 samples from the generative network for each yi in
a training batch. The SR methods are trained on a single CPU, while GAN is trained on an NVIDIA
Tesla-V100 GPU. For the Two Moons model, we do not use early stopping for the SR methods;
additionally, we employ the optimal configuration found in Ramesh et al. [2022] for GAN.

For these two models, samples from reference posteriors are available [Lueckmann et al., 2021];
therefore, as done in Ramesh et al. [2022], we assess the performance of the different methods via the
discrimination ability of a classifier trained to distinguish samples from the reference and approximate
posteriors (classification-based two-sample test, C2ST). If the classification accuracy is 0.5, the classi-
fier is unable to distinguish between the two sets of samples, implying perfect posterior approximation.

In Figure 1, we report C2ST values for the GAN and SR methods for the different number of
training simulations. For SLCP, GAN performs better (although the performance is poor on an
absolute scale and worse than other LFI methods, see Ramesh et al., 2022). For the Two Moons
example, methods based on the Energy Score perform better.

In Tables 1 and 2, we report other performance metrics, together with the runtime and the epoch
at which training was early stopped, for GAN, Energy and Kernel Score, with ntrain = 100000 and
m = 20. Notice how the SR methods were trained in much shorter time (and on a single CPU).
Additional results are reported in Appendices E.1 and E.2.

Table 1: SLCP: performance metrics, runtime and early stopping epoch for GAN, Energy and Kernel
Score methods, with ntrain = 100000 and m = 20. Notice how the SR methods were trained on a
single CPU, while GAN was trained on a GPU. The maximum number of training epochs was 20000.

C2ST ↓ NRMSE ↓ Cal. Err. ↓ R2 ↑ Runtime (sec) Early stopping epoch

GAN 0.92 ± 0.03 0.23 ± 0.05 0.06 ± 0.03 0.35 ± 0.30 30963 20000
Energy 0.95 ± 0.02 0.22 ± 0.06 0.07 ± 0.04 0.38 ± 0.32 1645 2100
Kernel 0.98 ± 0.01 0.22 ± 0.06 0.13 ± 0.10 0.37 ± 0.31 1210 1200

4These models are implemented in the sbibm Python package, whose accompanying paper [Lueckmann et al., 2021]
provides additional details.

7

Table 2: Two Moons: performance metrics, runtime and early stopping epoch for GAN, Energy and
Kernel Score methods, with ntrain = 100000 and m = 20. Notice how the SR methods were trained
on a single CPU, while GAN was trained on a GPU. Here, no early stopping was used (the maximum
number of training epochs was 20000).

C2ST ↓ NRMSE ↓ Cal. Err. ↓ R2 ↑ Runtime (sec) Early stopping epoch

GAN 0.82 ± 0.07 0.20 ± 0.00 0.07 ± 0.02 0.51 ± 0.01 30232 20000
Energy 0.73 ± 0.04 0.20 ± 0.00 0.03 ± 0.00 0.51 ± 0.01 10805 20000
Kernel 0.92 ± 0.02 0.20 ± 0.00 0.03 ± 0.01 0.50 ± 0.01 10902 20000

4.2 Shallow water model

The shallow water model is obtained as the discretization of a PDE describing the propagation of
an initial disturbance across the surface of a 1D shallow basin; the parameter θ ∈ R100 represents
the depth of the basin at equidistant points; the simulator outputs the evolution over 100 time-steps
(producing a raw observation of size 100× 100 = 10000); then, a Fourier transform is computed and
the real and imaginary parts are concatenated and summed to Gaussian noise, leading to y ∈ R20k.
More details are given in Ramesh et al. [2022]. Besides the GAN method, we test here the Energy and
Kernel score with m = 10 computed in three different configurations: 1) on the full parameter space,
2) with patch size 10 and step 5, and 3) with patch size 20 and step 10. Training is done on 100k
samples on a NVIDIA Tesla-V100 GPU; additional details are discussed in Appendix D.2. Among the
SR methods, the Energy Score with patch size 20 and step 10 performed better; therefore, we report
only results for that method in the main body of the paper; results for the other configurations are
given in Appendix E.3.

In Figure 2, we report posterior and posterior predictive samples for both methods, together with
prior samples and the ground-truth depth profile. For the Energy Score, posterior samples better
follow the ground truth profile and, similarly, posterior predictive samples better match the true
observation.

In Table 3, we report the performance metrics, runtime and epoch of early stopping of the GAN
and Energy Score method; notice how the calibration error is much smaller for the latter, whose
training run faster. We also assess calibration via Simulation Based Calibration (Talts et al., 2018,
details in Appendix C.2.2) in Figure 3. That as well highlights how the calibration of the Energy
Score method is better than the one achieved by GAN.

Table 3: Shallow Water model: performance metrics, runtime and early stopping epoch for GAN and
the Energy Score with patch size 20 and step 10. The latter method achieved better results with
shorter training time. We do not train GAN from scratch but rather relied on the trained network
obtained in Ramesh et al. [2022]. The training time we report here corresponds to what is mentioned
in Ramesh et al. [2022], which used two GPUs for training (with respect to a single one for the SR
methods). For the same reason, we do not report the epoch at which GAN training was early stopped.

NRMSE ↓ Cal. Err. ↓ R2 ↑ Runtime (sec) Early stopping epoch

Energy 0.05 ± 0.01 0.03 ± 0.02 0.89 ± 0.05 60017 12400
GAN 0.07 ± 0.01 0.12 ± 0.09 0.78 ± 0.05 ≈345600 -

4.3 Noisy Camera model

Here, we consider θ ∈ R28×28 to be the images of the EMNIST dataset [Cohen et al., 2017], from
which the data y ∈ R28×28 are generated by applying some blurring (see Ramesh et al., 2022 for

8

0

10

20

De
pt

h
pr

of
ile Ground truth

Prior samples

 T
im

e

1
22
50
69
94 0.03

0.00

0.03

Am
pl

itu
de

t = 22 t = 69 t = 94

0

10

20

De
pt

h
pr

of
ile GAN

 T
im

e

1
22
50
69
94 0.03

0.00

0.03
Am

pl
itu

de

1 50 100
Position

0

10

20

De
pt

h
pr

of
ile ENERGY SCORE

 Position
1 50 100

 T
im

e

1
22
50
69
94

1 50 100
Position

0.03

0.00

0.03

Am
pl

itu
de

1 50 100
Position

1 50 100
Position

A

B

C

Figure 2: Shallow water model: inference results with GAN and Energy Score with patch size 20
and step 10. The figure structure closely follows that in Ramesh et al. [2022]. Row A: Ground
truth, observation and prior samples. Left: ground-truth depth profile and prior samples. Middle:
surface wave simulated from ground-truth profile as a function of position and time. Right: wave
amplitudes at three different fixed times for ground-truth depth profile (black), and waves simulated
from multiple prior samples (gray). Rows B and C refer respectively to GAN and Energy Score (with
patch size 20 and step 10). For both, left represents posterior samples versus ground-truth (black)
depth profiles, from which it can be seen how posterior samples for the Energy Score better follow
the truth with respect to GAN; middle represents surface wave simulated from a single posterior
sample; right represents wave amplitudes simulated from multiple posterior samples, at three different
fixed times, with black line denoting the actual observation; again, Energy Score better follows the
observation, except for t = 94.

9

(a) GAN

0 500 1000
Rank

0.0

0.5

1.0

CD
F

Uniform CDF
energy_score

(b) Energy Score, patch size 20 and step 10

Figure 3: Shallow Water model: Simulation Based Calibration. Each line corresponds to a single
dimension of θ and represents the CDF of the rank of the true parameter value with respect to a set of
posterior samples. A calibrated posterior implies uniform CDF (diagonal black line, with associated
99% confidence region for that number of samples in gray).

details). Posterior inference corresponds therefore to Bayesian denoising. In this model, the dimen-
sion of parameter space is larger than in typical LFI applications; additionally, the prior is defined
implicitly as we can only generate samples from it. This prevents the application of many standard
LFI methods. Besides the GAN method, we test here the Energy and Kernel score with m = 10 in
three different configurations: 1) on the full parameter space, 2) with patch size 14 and step 7, and
3) with patch size 8 and step 5. Training is done on 800 thousands samples on a NVIDIA Tesla-V100
GPU; additional details are discussed in Appendix D.3. Among the SR methods, those with patch
size 8 and step 5 performed better; therefore, we report only results for the Kernel and Energy Score
in that configuration in the main body of the paper; results for the other configurations are given in
Appendix E.4.

In Figure 4, we report posterior mean and standard deviation for a set of observations for the
different methods. SR methods lead to cleaner image reconstruction and more meaningful uncertainty
quantification.

In Table 4, we report the performance metrics, runtime and epoch of early stopping of the GAN and
SR methods; the latter lead to smaller calibration error, although that is still quite poor in absolute
terms. The R2 values here are also poor. We believe these low metric values are due to each pixel only
taking a discrete set of values between 0 and 1, with white spaces assigned 0 and darkest pixels being
assigned 1. The generative network outputs is bounded in (0, 1) as it is obtained via a continuous
transformation from R. For the calibration error (see Appendix C.2.1), that means that a credible
interval obtained from the generative network cannot contain the extreme values 0 or 1; similarly,
the approximate posterior mean can never be smaller than 0 or larger than 1, thus decreasing the R2

values (see Appendix C.1.2). Additionally, we report here the un-normalized RMSE, as computing the
normalization would lead to infinite values for the pixels in which the true value is 0 for all training
samples (see Appendix C.1.1).

Table 4: Noisy Camera model: performance metrics, runtime and early stopping epoch for GAN and
for the Energy and Kernel Score with patch size 8 and step 5. The latter methods achieved better
performance with shorter training time. All methods are trained on a single GPU.

RMSE ↓ Cal. Err. ↓ R2 ↑ Runtime (sec) Early stopping epoch

GAN 0.25 ± 0.19 0.50 ± 0.00 -23.94 ± 366.08 45398 3600
Energy 0.06 ± 0.05 0.36 ± 0.12 -2.14 ± 55.86 22633 4000
Kernel 0.07 ± 0.05 0.36 ± 0.12 -10.29 ± 222.12 22545 3200

10

y

Figure 4: Noisy Camera model: ground truth and posterior inference with different methods, for
a set of observations (each observation corresponds to a column). The first two rows represent the
ground-truth values of θ and the corresponding observation yo. The remaining rows represent mean
and Standard Deviation (SD) for GAN and Energy and Kernel Score methods with patch size 8 and
step 5. Notice how the posterior mean for the SR methods are neater than those obtained with GAN;
additionally, the SD is larger close to the boundary of the reconstructed digit (notice the different
color scale in the SD for GAN and for the SR methods).

5 Conclusions

We considered using a generative network to represent posterior distributions for Bayesian Likelihood-
Free Inference, following Ramesh et al. [2022], and investigated training it via Scoring Rule minimiza-
tion rather than in the adversarial setup of Ramesh et al. [2022]. The Scoring Rule approach is
theoretically grounded and does not suffer from training instability and biased gradients, as does the
adversarial approach. In simulation studies, and especially on high-dimensional tasks, we found that
the scoring rule approach generally performed better and was substantially cheaper to train.

For the Scoring Rule approach, employing patched scores (Sec. 3.1) leads to a small performance
improvement over the vanilla ones on the high-dimensional examples (see Appendix E.3 and E.4).
While we designed the patches to capture the data structure, the improvement we observe could simply
be due to computing the Energy and Kernel scores on lower-dimensional objects. To disentangle these
two effects, we could define scoring rules using a random subset of components of θ of the same size
as the patches used above. We leave this for future work.

Analogously to the patched scores, it may be that employing a patched discriminator [Isola et al.,
2017] improves results with GAN; however, we believe this would not completely close the performance
gap, which is mostly due to the harder optimization objective in GAN. To this point, more advanced
adversarial training algorithms than the original GAN objective [Goodfellow et al., 2014] may lead to
better results; however, for probabilistic forecasting, the results in Chapter 5 of the present thesis show
Scoring Rule minimization to outperform state-of-the-art adversarial approach, while being cheaper
and easier to train. We expect the same to hold for likelihood-free inference.

In the present work, we did not provide any theoretical guarantees for the Scoring Rule minimiza-
tion approach; it could be of interest to prove a generalization bound between the empirical (Eq. 4)
and population (Eq. 3) objectives, or a consistency result for the minimizer of Eq. (4), similarly to
what done for probabilistic forecasting in Chapter 5. We leave these extensions for future work.

11

Finally, using a learned kernel to train a generative network via Kernel Score minimization could
make the method more flexible. This could be done by learning the kernel adversarially (as in MMD
GAN, Bińkowski et al., 2018), which however would break the ease of optimization which is the main
advantage of the Scoring Rule approach. We hope that future research will address achieving both
these goals together.

Acknowledgements

The authors thank Poornima Ramesh for helping to use the code used to create the results reported
in Ramesh et al. [2022] and for providing additional result files.

LP is supported by EPSRC and MRC through the OxWaSP CDT programme (EP/L016710/1),
which also funds the computational resources used to perform this work. RD is funded by EPSRC
(grant nos. EP/V025899/1, EP/T017112/1) and NERC (grant no. NE/T00973X/1). The authors
thank Geoff Nicholls for valuable feedback and suggestions.

References

Z. An, D. J. Nott, and C. Drovandi. Robust Bayesian synthetic likelihood via a semi-parametric
approach. Statistics and Computing, 30(3):543–557, 2020.

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International
conference on machine learning, pages 214–223. PMLR, 2017.

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative
adversarial nets (GANs). In International Conference on Machine Learning, pages 224–232. PMLR,
2017.

S. Arora, A. Risteski, and Y. Zhang. Do GANs learn the distribution? some theory and empirics.
In International Conference on Learning Representations, 2018. URL https://openreview.net/

forum?id=BJehNfW0-.

M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, and
R. Munos. The Cramer distance as a solution to biased Wasserstein gradients. arXiv preprint
arXiv:1705.10743, 2017.

E. Bernton, P. E. Jacob, M. Gerber, and C. P. Robert. Approximate Bayesian computation with the
Wasserstein distance. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
81(2):235–269, 2019. doi: https://doi.org/10.1111/rssb.12312. URL https://rss.onlinelibrary.

wiley.com/doi/abs/10.1111/rssb.12312.

M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying MMD GANs. In Interna-
tional Conference on Learning Representations, 2018.

D. Bouchacourt, P. K. Mudigonda, and S. Nowozin. DISCO nets: DISsimilarity COefficient networks.
Advances in Neural Information Processing Systems, 29:352–360, 2016.

B.-E. Chérief-Abdellatif and P. Alquier. MMD-Bayes: Robust Bayesian estimation via maximum
mean discrepancy. In Symposium on Advances in Approximate Bayesian Inference, pages 1–21.
PMLR, 2020.

J. Cockayne, M. M. Graham, C. J. Oates, T. J. Sullivan, and O. Teymur. Testing whether a learning
procedure is calibrated. Journal of Machine Learning Research, 23(203):1–36, 2022. URL http:

//jmlr.org/papers/v23/21-1065.html.

G. Cohen, S. Afshar, J. Tapson, and A. Van Schaik. EMNIST: Extending MNIST to handwritten
letters. In 2017 international joint conference on neural networks (IJCNN), pages 2921–2926. IEEE,
2017.

12

C. Durkan, I. Murray, and G. Papamakarios. On contrastive learning for likelihood-free inference. In
International Conference on Machine Learning, pages 2771–2781. PMLR, 2020.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of
the American statistical Association, 102(477):359–378, 2007.

T. Gneiting, F. Balabdaoui, and A. E. Raftery. Probabilistic forecasts, calibration and sharpness.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(2):243–268, 2007.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27,
2014.

D. Greenberg, M. Nonnenmacher, and J. Macke. Automatic posterior transformation for likelihood-
free inference. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
2404–2414. PMLR, 09–15 Jun 2019. URL http://proceedings.mlr.press/v97/greenberg19a.

html.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test.
The Journal of Machine Learning Research, 13(1):723–773, 2012.

A. Gritsenko, T. Salimans, R. van den Berg, J. Snoek, and N. Kalchbrenner. A spectral energy distance
for parallel speech synthesis. Advances in Neural Information Processing Systems, 33:13062–13072,
2020.

A. Harakeh and S. L. Waslander. Estimating and evaluating regression predictive uncertainty in deep
object detectors. In International Conference on Learning Representations, 2021. URL https:

//openreview.net/forum?id=YLewtnvKgR7.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1125–1134, 2017.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Y. Bengio and Y. LeCun, editors,
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114.

J. Lintusaari, M. U. Gutmann, R. Dutta, S. Kaski, and J. Corander. Fundamentals and recent
developments in approximate Bayesian computation. Systematic Biology, 66(1):e66–e82, 2017. ISSN
1076836X. doi: 10.1093/sysbio/syw077. URL https://doi.org/10.1093/sysbio/syw077.

J.-M. Lueckmann, P. J. Goncalves, G. Bassetto, K. Öcal, M. Nonnenmacher, and J. H. Macke. Flexible
statistical inference for mechanistic models of neural dynamics. In Advances in Neural Information
Processing Systems, pages 1289–1299, 2017.

J.-M. Lueckmann, G. Bassetto, T. Karaletsos, and J. H. Macke. Likelihood-free inference with emulator
networks. In Symposium on Advances in Approximate Bayesian Inference, pages 32–53. PMLR,
2019.

J.-M. Lueckmann, J. Boelts, D. Greenberg, P. Goncalves, and J. Macke. Benchmarking simulation-
based inference. In A. Banerjee and K. Fukumizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics, volume 130 of Proceedings of Machine Learning
Research, pages 343–351. PMLR, 13–15 Apr 2021.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

13

H. D. Nguyen, J. Arbel, H. Lü, and F. Forbes. Approximate Bayesian computation via the energy
statistic. IEEE Access, 8:131683–131698, 2020.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using variational
divergence minimization. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 271–279, 2016.

L. Pacchiardi, R. Adewoyin, P. Dueben, and R. Dutta. Probabilistic forecasting with conditional
generative networks via scoring rule minimization. arXiv preprint arXiv:2112.08217, 2022.

G. Papamakarios and I. Murray. Fast ε-free inference of simulation models with Bayesian conditional
density estimation. In Advances in Neural Information Processing Systems, pages 1028–1036, 2016.

G. Papamakarios, D. Sterratt, and I. Murray. Sequential neural likelihood: Fast likelihood-free infer-
ence with autoregressive flows. In K. Chaudhuri and M. Sugiyama, editors, Proceedings of Machine
Learning Research, volume 89 of Proceedings of Machine Learning Research, pages 837–848. PMLR,
16–18 Apr 2019. URL http://proceedings.mlr.press/v89/papamakarios19a.html.

G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan. Normalizing
flows for probabilistic modeling and inference. Journal of Machine Learning Research, 22(57):1–64,
2021. URL http://jmlr.org/papers/v22/19-1028.html.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019.

L. F. Price, C. C. Drovandi, A. Lee, and D. J. Nott. Bayesian synthetic likelihood. Journal of
Computational and Graphical Statistics, 27(1):1–11, 2018.

S. T. Radev, U. K. Mertens, A. Voss, L. Ardizzone, and U. Köthe. BayesFlow: Learning complex
stochastic models with invertible neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

P. Ramesh, J.-M. Lueckmann, J. Boelts, Á. Tejero-Cantero, D. S. Greenberg, P. J. Goncalves, and
J. H. Macke. GATSBI: Generative adversarial training for simulation-based inference. In Interna-
tional Conference on Learning Representations, 2022. URL https://openreview.net/forum?id=

kR1hC6j48Tp.

E. Richardson and Y. Weiss. On GANs and GMMs. In Proceedings of the 32nd International Con-
ference on Neural Information Processing Systems, pages 5852–5863, 2018.

M. L. Rizzo and G. J. Székely. Energy distance. Wiley interdisciplinary reviews: Computational
statistics, 8(1):27–38, 2016.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training GANs. Advances in neural information processing systems, 29, 2016.

M. Scheuerer and T. M. Hamill. Variogram-based proper scoring rules for probabilistic forecasts of
multivariate quantities. Monthly Weather Review, 143(4):1321–1334, 2015.

S. Talts, M. Betancourt, D. Simpson, A. Vehtari, and A. Gelman. Validating Bayesian inference
algorithms with simulation-based calibration. arXiv preprint arXiv:1804.06788, 2018.

14

Appendix

A Proof of Lemma 1

Proof. By the definition of proper SR, we have that:

α1 · S1(Q,Q) ≤ α1 · S1(P,Q) ∀ P,Q ∈ P,

and similar for S2. By adding the two inequalities, we have therefore that:

α1 · S1(Q,Q) + α2 · S2(Q,Q) ≤ α1 · S1(P,Q) + α2 · S2(P,Q) ∀ P,Q ∈ P,

which implies that S+ is a proper SR.
Assume now additionally that S1, without loss of generality, is strictly proper, i.e.:

α1 · S1(Q,Q) < α1 · S1(P,Q) ∀ P,Q ∈ P;

then, summing the above with the corresponding inequality for S2 gives that:

α1 · S1(Q,Q) + α2 · S2(Q,Q) < α1 · S1(P,Q) + α2 · S2(P,Q) ∀ P,Q ∈ P,

which implies that S+ is a strictly proper SR.

B Unbiased estimate of the training objective

We discuss here how we can obtain unbiased gradient estimates for the Scoring Rule training objective
in Eq. (4) with respect to the parameters of the generative network φ.

Recall now that we want to solve:

φ̂ := arg min
φ

J(φ), J(φ) =
1

n

n∑

i=1

S(Qφ(·|yi),θi). (6)

To do this, we exploit Stochastic Gradient Descent (SGD), which requires unbiased estimates of
J(φ). Notice how, for all the Scoring Rules used across this work, as well as any weighted sum of those,

we can write: S(P,x) = EX̃,X̃′∼P

[
h(X̃, X̃′,x)

]
for some function h; namely, the SR is defined through

an expectation over (possibly multiple) samples from P . That is the form exploited in Sec. 1.2.2 in
the introduction of the present thesis to obtain unbiased SR estimates.

Now, we will use this fact to obtain unbiased estimates for the objective in Eq. (6).

J(φ) =
1

n

n∑

i=1

E
θ̃,θ̃

′∼Qφ(·|yi)

[
h(θ̃, θ̃

′
,θi)

]
=

1

n

n∑

i=1

EZ,Z′∼Pz

[
h(gφ(Z,yi), gφ(Z′,yi),θi)

]
,

where we used the fact that Qφ is the distribution induced by a generative network with transformation
gφ; this is called the reparametrization trick [Kingma and Welling, 2014]. Now:

∇φJ(φ) = ∇φ
1

n

n∑

i=1

EZ,Z′∼Pz

[
h(gφ(Z,yi), gφ(Z′,yi),θi)

]

=
1

n

n∑

i=1

EZ,Z′∼Pz

[
∇φh(gφ(Z,yi), gφ(Z′,yi),θi)

]
.

In the latter equality, the exchange between expectation and gradient is not a trivial step, due to the
non-differentiability of functions (such as ReLU) used in gφ. Fortunately, Theorem 5 in Bińkowski
et al. [2018] proved that to be valid almost surely with respect to a measure on the space Φ to which
the weights of the neural network φ belong, under mild conditions on the NN architecture.

15

We can now easily obtain an unbiased estimate of the above using samples zi,j ∼ Pz, j = 1, . . . ,m,
for each i ∈ {1, . . . , n}. Additionally, Stochastic Gradient Descent usually considers a small batch
of training samples at each step, obtained by taking a random subset (or batch) B ⊆ {1, 2, . . . , n}.
Therefore, the following unbiased estimate of ∇φJ(φ) can be obtained:

∇̂φJ(φ) =
1

|B|
∑

i∈B

1

m(m− 1)

m∑

j,k=1
j 6=k

∇φh(gφ(zi,j ; yi), gφ(zi,k; yi),θi).

In practice, the above is obtained by computing the gradient of the following unbiased estimate of
J(φ) via autodifferentiation libraries (see for instance Paszke et al., 2019):

Ĵ(φ) =
1

|B|
∑

i∈B

1

m(m− 1)

m∑

j,k=1
j 6=k

h(gφ(zi,j ; yi), gφ(zi,k; yi),θi).

In Algorithm 1, we train a generative network for a single epoch using a scoring rule S for which
unbiased estimators can be obtained by using m > 1 samples from Qφ. Compare it with the adversarial
approach reported in Algorithm 2 in the Introduction of the present thesis; in the SR approach,
multiple samples from the generative networks are required at each step (m > 1), while a unique one
is enough for the adversarial approach. Conversely, the SR approach does not require an additional
critic network and learning rate γ and is simpler and faster to train (see the results in Sec. 4 and
Chapter 5 for more details). As in Algorithm 2 in the Introduction of the present thesis, we use a
single pair (θi,yi) to estimate the gradient.

Algorithm 1 Single epoch generative-SR training.

Require: Parametric map gφ, SR S, learning rate ε.
for each training pair (θi,yi) do

Sample multiple z1, . . . , zm

Obtain θ̃
φ
i,j = gφ(zj ,yi)

Obtain unbiased estimate Ŝ(Qφ(·|yi),θi) from θ̃
φ
i,j

Set φ← φ− ε · ∇φŜ(Qφ(·|yi),θi)
end for

C Details on performance measures

Here, we review the measures of performance used in the empirical studies. We follow Radev et al.
[2020] in defining these measures and report them here for ease of reference. All these metrics are for
univariate θ; when handling multivariate θ, we therefore compute them on each dimension separately
and report the average.

C.1 Deterministic performance measures

We discuss two measures of performance of a deterministic forecast θ̂i for a realization θi; across our
work, we take θ̂i to be the mean of the (univariate) probability distribution Qφ(·|yi).

C.1.1 RMSE

We first introduce the Root Mean-Square Error (RMSE) as:

RMSE =

√√√√ 1

n

n∑

i=1

(
θ̂i − θi

)2
,

16

where we consider here for simplicity i = 1, . . . , n. From the above, we obtain the Normalized RMSE
(NRMSE) as:

NRMSE =
RMSE

maxi{θi} −mini{θi}
.

NRMSE = 0 implies θ̂i = θi for all i’s. NRMSE ∈ [0, 1] and allows to compare performance over
different tasks. Notice however that, when maxi{θi} = mini{θi}, NRMSE diverges; in that case, we
consider the un-normalized RMSE.

C.1.2 Coefficient of determination

The coefficient of determination R2 measures how much of the variance in {θi}ni=1 is explained by
{θ̂i}ni=1. Specifically, it is given by:

R2 = 1−
∑n

i=1

(
θi − θ̂i

)2

∑n
i=1

(
θi − θ̄

)2 ,

where θ̄ = 1
n

n∑
i=1

θi. R2 ≤ 1 and R2 = 1 =⇒ θ̂i = θi for all i’s.

C.2 Calibration measures

Here, we review two measures of calibration of a probabilistic forecast. Both measures consider the
univariate marginals of the approximate posterior distribution Qφ(·|yi); for the component l, let us
denote it by Qφ,l(·|yi).

C.2.1 Calibration error

The calibration error [Radev et al., 2020] quantifies how well the credible intervals of the approximate
posteriors Qφ,l(·|yi) for different yi match the empirical distribution of θi,l. Specifically, let α(l) be
the proportion of times the verification θi,l falls into an α-credible interval of Qφ,l(·|yi), computed over
all values of i. If the marginal forecast distribution is perfectly calibrated for component l, α(l) = α
for all values of α ∈ (0, 1).

Therefore, we define the calibration error as the median of |α(l)−α| over 100 equally spaced values
of α ∈ (0, 1). Therefore, the calibration error is a value between 0 and 1, where 0 denotes perfect
calibration.

In practice, the credible intervals of the predictive are estimated using a set of samples from
Qφ(·|yi).

The calibration error can be related to the strong calibration of Cockayne et al. [2022], which
implies correct coverage for credible sets (see their Remark 2.9).

C.2.2 Simulation-Based Calibration (SBC)

SBC [Talts et al., 2018] tests a self-consistency property of the Bayesian posterior in a posterior
approximation. In fact, the Bayesian posterior satisfies the following equality:

π(θ) =

∫
p(θ, θ̃, ỹ)dỹdθ̃ =

∫
p(θ, ỹ | θ̃)π(θ̃)dỹdθ̃ =

∫
π(θ | ỹ)p(ỹ | θ̃)π(θ̃)dỹdθ̃ (7)

in practice, this means that, if you sample from the prior θ̃ ∼ π, use that to generate a sample from
the likelihood ỹ ∼ p(·|θ) and use the latter in turn to generate a posterior sample θ ∼ π(·|ỹ), θ is
distributed according to the prior π(θ). If you repeat the same procedure by sampling θ from an
approximate posterior, say θ ∼ Qφ(·|ỹ), then θ ∼ π is a necessary condition for qφ(·|y) = π(·|y), i.e.
for the approximate posterior to be exact. Notice, however, how this is not a sufficient condition: the
equality can be satisfied even if qφ(·|y) is different from the posterior (it is in fact trivially satisfied
qφ(·|y) = π, i.e., when the approximate posterior corresponds to the prior).

17

A way to empirically test the above property involves, for a given prior sample θ̃, drawing from the
likelihood multiple times yi ∼ p(·|θ̃), i = 1, . . . , N and, for each of these, obtaining a single approximate
posterior sample θi ∼ qφ(·|yi). Given these, you compute the rank of θ̃: r =

∑N
i=1 1[θi<θ̃] (this only

makes sense if θ is univariate; otherwise, you compute the rank independently for each dimension of
θ). If θi’s were effectively distributed from the prior, r is a uniform random variable on {1, 2, . . . , N}.
Therefore, repeating this procedure for different prior samples θ̃ and visualizing the distribution of
the resulting r’ s (for instance, through a histogram or by plotting the CDF) gives an indication of
whether an equivalence such as Eq. (7) is satisfied for qφ. See Algorithm 2 in Radev et al. [2020] for
a precise description of this procedure, which goes under the name of Simulation-Based Calibration
(SBC). SBC tests the weak calibration of Cockayne et al. [2022]; additionally, it is closely related to the
concept of probabilistic calibration and rank histogram in the framework of probabilistic forecasting
[Gneiting et al., 2007].

D Experimental details

Precise configuration details can be found in the code accompanying the paper.

D.1 Benchmark models

Except for the details reported in the main body of the paper, the training configuration for the two
benchmark models is the same as in Ramesh et al. [2022]; of course, some hyperparameter values for
the GAN training routine do not apply to the SR one (for example, all the hyperparameters related
to the discriminator).

D.2 Shallow Water Model

We train all methods for at most 40k epochs on 100k training samples. For the SR method, we tried
both m = 3 and m = 10, with the latter resulting in improved performance; all the results reported
in the paper refer to m = 10.

GAN used a batch size of 125 (as in Ramesh et al., 2022), while SR methods used a batch size of
60 (otherwise, GPU memory overflow occurs).

Recall that the parameters θ ∈ R100 are arranged along a 1D uniform grid. When using the
patched SR configuration, we consider patches of size patch size disposed at a distance patch step

from each other. Therefore, the number of patches is

n patches = (100− patch size)/patch step + 1.

We used therefore the following patched SR configurations on the 1D grid:

1. patch size = 10 and patch step= 5, resulting in n patches = 19.

2. patch size = 20 and patch step= 10, resulting in n patches = 9.

The patched SR is added to the overall score over the full parameter space.
The training time (per epoch) is roughly constant in the un-patched and the two different patched

configurations.

D.3 Camera Model

We train all methods for at most 10k epochs on 800k training samples. For the SR method, we tried
both m = 3 and m = 10, with the latter resulting in better performance.

Both the SR and GAN methods used a batch size of 800 as in Ramesh et al. [2022].
Here, the parameters θ are on a 28×28 square grid. When using the patched SR configuration, we

consider patches of size patch size×patch size disposed at a distance patch step from each other
in both spatial dimensions. The number of patches is obtained as

n patches = [(28− patch size)/patch step + 1]2.

18

We used therefore the following patched SR configurations on the 2D grid:

1. patch size = 14 and patch step = 7, resulting in n patches = 9.

2. patch size= 8 and patch step = 5, resulting in n patches = 25.

The patched SR is added to the overall score over the full parameter space.
The training time (per epoch) is roughly constant in the un-patched and the two different patched

configurations.

E Additional experimental results

E.1 SLCP

In Figure 5, we report the posterior samples obtained with the Energy Score with m = 20 and
compare them with the samples from the reference posterior. In Figure 6, we report Simulation-
Based Calibration results (see Appendix C.2.2): for each dimension of θ, the corresponding histogram
represents the distribution of the rank of the true parameter value in a set of samples from the
approximate posterior. We show that for GAN and for the Energy Score with m = 20.

Tables 5, 6, 7, 8, 9 and 10 report the different performance metrics, the runtime, and the early
stopping epoch for all methods (columns) and all number of training samples (rows); for Energy and
Kernel Score, the number in the column header denotes the number of draws from the generative
network during training for each yi in the training batch.

Table 5: SLCP: classification-based two-sample test (C2ST); lower is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.97 ± 0.02 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.00 0.99 ± 0.01 1.00 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01
10000 0.94 ± 0.03 0.98 ± 0.01 0.97 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01 0.99 ± 0.01

100000 0.92 ± 0.03 0.97 ± 0.01 0.97 ± 0.02 0.96 ± 0.02 0.95 ± 0.02 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01 0.98 ± 0.01

Table 6: SLCP: NRMSE; lower is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.24 ± 0.05 0.25 ± 0.05 0.25 ± 0.05 0.25 ± 0.05 0.25 ± 0.06 0.25 ± 0.05 0.25 ± 0.05 0.25 ± 0.05 0.25 ± 0.05
10000 0.23 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 0.23 ± 0.05 0.23 ± 0.05

100000 0.23 ± 0.05 0.22 ± 0.05 0.22 ± 0.06 0.22 ± 0.06 0.22 ± 0.06 0.22 ± 0.06 0.22 ± 0.06 0.22 ± 0.05 0.22 ± 0.06

Table 7: SLCP: calibration error; lower is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.13 ± 0.05 0.19 ± 0.07 0.20 ± 0.05 0.20 ± 0.05 0.22 ± 0.07 0.24 ± 0.09 0.23 ± 0.10 0.24 ± 0.08 0.24 ± 0.08
10000 0.08 ± 0.03 0.11 ± 0.05 0.10 ± 0.05 0.12 ± 0.07 0.10 ± 0.07 0.15 ± 0.10 0.13 ± 0.09 0.14 ± 0.10 0.16 ± 0.10

100000 0.06 ± 0.03 0.08 ± 0.07 0.08 ± 0.04 0.07 ± 0.05 0.07 ± 0.04 0.13 ± 0.11 0.13 ± 0.10 0.12 ± 0.08 0.13 ± 0.10

19

Figure 5: SLCP: posterior samples for Energy Score trained with m = 20 and reference posterior
samples. Diagonal panels represent univariate marginals, while off-diagonals panels represent bivariate
marginals. A similar graph for GAN can be found in the supplementary material in Ramesh et al.
[2022].

20

0 250 500 750 1000
Rank statistic

1

0 250 500 750 1000
Rank statistic

2

0 250 500 750 1000
Rank statistic

3

0 250 500 750 1000
Rank statistic

4

0 250 500 750 1000
Rank statistic

5

(a) GAN

0 250 500 750 1000
Rank statistic

1

0 250 500 750 1000
Rank statistic

2

0 250 500 750 1000
Rank statistic

3

0 250 500 750 1000
Rank statistic

4

0 250 500 750 1000
Rank statistic

5

(b) Energy Score, m = 20

Figure 6: SLCP: Simulation-Based Calibration results represented as rank histograms; for each dimen-
sion of θ, the corresponding histogram represents the distribution of the rank of the true parameter
value in a set of samples from the approximate posterior. If the approximate posterior is calibrated,
histogram bars should be in the grey region with 99% probability.

Table 8: SLCP: R2; larger is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.25 ± 0.29 0.24 ± 0.30 0.22 ± 0.30 0.25 ± 0.31 0.18 ± 0.35 0.22 ± 0.30 0.22 ± 0.30 0.24 ± 0.30 0.23 ± 0.31
10000 0.35 ± 0.30 0.35 ± 0.30 0.35 ± 0.30 0.35 ± 0.30 0.34 ± 0.31 0.35 ± 0.29 0.35 ± 0.30 0.34 ± 0.30 0.34 ± 0.30

100000 0.35 ± 0.30 0.36 ± 0.30 0.37 ± 0.30 0.38 ± 0.32 0.38 ± 0.32 0.37 ± 0.31 0.36 ± 0.31 0.36 ± 0.30 0.37 ± 0.31

Table 9: SLCP: runtime in seconds; recall that GAN was trained on GPU while the SR methods were
trained on a single CPU.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 4796 654 692 620 885 515 531 682 1330
10000 9671 651 658 639 720 636 658 655 697

100000 30963 1060 1160 1305 1645 1245 1044 1057 1210

21

Table 10: SLCP: epoch at which early stopping occurred; the max number of training epochs was
20000.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 20000 1000 1000 1000 1100 1100 1000 1000 1000
10000 20000 1100 1000 1100 1100 1100 1100 1000 1000

100000 20000 1000 1200 1500 2100 1600 1100 1000 1200

22

E.2 Two Moons

In Figure 7, we report posterior samples obtained with the Energy Score with m = 20 and compare
them with samples from the reference posterior. In Figure 8, we report Simulation-Based Calibration
results (see Appendix C.2.2): for each dimension of θ, the corresponding histogram represents the
distribution of the rank of the true parameter value in a set of samples from the approximate posterior.
We show that for GAN and for the Energy Score with m = 20.

Tables 11, 12, 13, 14, 15 and 16 report the different performance metrics, the runtime and the
early stopping epoch for all methods (columns) and all number of training samples (rows); for Energy
and Kernel Score, the number in the column header denotes the number of draws from the generative
network during training for each yi in the training batch.

Table 11: Two Moons: classification-based two-sample test (C2ST); lower is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.85 ± 0.05 0.85 ± 0.06 0.87 ± 0.05 0.85 ± 0.03 0.85 ± 0.04 0.94 ± 0.03 0.94 ± 0.02 0.93 ± 0.03 0.96 ± 0.02
10000 0.81 ± 0.03 0.79 ± 0.04 0.76 ± 0.05 0.76 ± 0.04 0.74 ± 0.07 0.92 ± 0.03 0.93 ± 0.01 0.91 ± 0.03 0.93 ± 0.01

100000 0.82 ± 0.07 0.79 ± 0.03 0.74 ± 0.06 0.73 ± 0.05 0.73 ± 0.04 0.90 ± 0.04 0.92 ± 0.03 0.90 ± 0.02 0.92 ± 0.02

Table 12: Two Moons: NRMSE; lower is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.21 ± 0.00 0.20 ± 0.00
10000 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00

100000 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00 0.20 ± 0.00

Table 13: Two Moons: calibration error; lower is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.07 ± 0.01 0.05 ± 0.01 0.09 ± 0.02 0.07 ± 0.01 0.06 ± 0.00 0.08 ± 0.01 0.11 ± 0.00 0.14 ± 0.02 0.12 ± 0.01
10000 0.06 ± 0.01 0.04 ± 0.02 0.03 ± 0.01 0.04 ± 0.03 0.03 ± 0.01 0.04 ± 0.00 0.03 ± 0.01 0.03 ± 0.02 0.03 ± 0.01

100000 0.07 ± 0.02 0.04 ± 0.01 0.03 ± 0.00 0.04 ± 0.02 0.03 ± 0.00 0.04 ± 0.00 0.03 ± 0.01 0.06 ± 0.01 0.03 ± 0.01

23

Figure 7: Two Moons: posterior samples for Energy Score trained with m = 20 and reference posterior
samples. Diagonal panels represent univariate marginals, while off-diagonal panels represent bivariate
marginals. A similar graph for GAN can be found in the supplementary material in Ramesh et al.
[2022].

Table 14: Two Moons: R2; larger is better.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 0.50 ± 0.01 0.49 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.51 ± 0.01 0.48 ± 0.01 0.49 ± 0.01 0.48 ± 0.01 0.49 ± 0.01
10000 0.49 ± 0.01 0.50 ± 0.01 0.51 ± 0.01 0.51 ± 0.01 0.51 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01

100000 0.51 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.50 ± 0.01 0.51 ± 0.01 0.50 ± 0.01 0.51 ± 0.01 0.50 ± 0.01 0.50 ± 0.01

Table 15: Tow Moons: runtime in seconds; recall that GAN was trained on GPU while the SR methods
were trained on a single CPU.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 4799 578 690 759 896 585 613 651 852
10000 8163 1775 1917 2415 3228 1708 1883 2329 3267

100000 30232 9266 9388 9903 10805 9283 9479 9859 10902

Table 16: Two Moons: epoch at which early stopping occurred; the max number of training epochs
was 20000.

GAN Energy 3 Energy 5 Energy 10 Energy 20 Kernel 3 Kernel 5 Kernel 10 Kernel 20

1000 20000 20000 20000 20000 20000 20000 20000 20000 20000
10000 20000 20000 20000 20000 20000 20000 20000 20000 20000

100000 20000 20000 20000 20000 20000 20000 20000 20000 20000

24

0 200 400 600 800 1000
Rank statistic

1

0 200 400 600 800 1000
Rank statistic

2

(a) GAN

0 200 400 600 800 1000
Rank statistic

1

0 200 400 600 800 1000
Rank statistic

2

(b) Energy Score, m = 20

Figure 8: Two Moons: Simulation-Based Calibration results represented as rank histograms; for
each dimension of θ, the corresponding histogram represents the distribution of the rank of the true
parameter value in a set of samples from the approximate posterior. If the approximate posterior is
calibrated, histogram bars should be in the grey region with 99% probability.

25

E.3 Shallow Water Model

In Figure 9, we show results, analogously to what done in Figure 2, for all methods. Table 17 reports
the different performance metrics, the runtime and the early stopping epoch for all methods. Finally,
Figure 10 reports Simulation-Based Calibration results for all SR methods.

Table 17: Shallow Water model: performance metrics, runtime and early stopping epoch for all
methods. We do not train GAN from scratch but rather relied on the trained network obtained in
Ramesh et al. [2022]. The training time we report here is what is mentioned in Ramesh et al. [2022],
which used two GPUs for training (in contrast, we used a single GPU for the SR methods). For the
same reason, we do not report the epoch at which GAN training was early stopped.

RMSE ↓ Cal. Err. ↓ R2 ↑ Runtime (sec) Early stopping epoch

Energy 0.05 ± 0.01 0.03 ± 0.02 0.87 ± 0.05 51328 10400
Energy patched 10 20 0.05 ± 0.01 0.03 ± 0.02 0.89 ± 0.05 60017 12400
Energy patched 5 10 0.06 ± 0.01 0.03 ± 0.02 0.86 ± 0.06 49626 9600
Kernel 0.06 ± 0.01 0.11 ± 0.05 0.84 ± 0.06 39608 7800
Kernel patched 10 20 0.06 ± 0.01 0.09 ± 0.04 0.86 ± 0.06 47642 9000
Kernel patched 5 10 0.06 ± 0.01 0.09 ± 0.04 0.86 ± 0.06 44590 9200
GAN 0.07 ± 0.01 0.12 ± 0.09 0.78 ± 0.05 ≈345600 -

26

0

10

20

De
pt

h
pr

of
ile Ground truth

Prior samples
 T

im
e

1
22
50
69
94 0.03

0.00

0.03

Am
pl

itu
de

t = 22 t = 69 t = 94

0

10

20

De
pt

h
pr

of
ile GAN

 T
im

e
1

22
50
69
94 0.03

0.00

0.03

Am
pl

itu
de

0

10

20

De
pt

h
pr

of
ile ENERGY SCORE

 T
im

e

1
22
50
69
94 0.03

0.00

0.03
Am

pl
itu

de

0

10

20

De
pt

h
pr

of
ile ENERGY SCORE 5 10

 T
im

e

1
22
50
69
94 0.03

0.00

0.03

Am
pl

itu
de

0

10

20

De
pt

h
pr

of
ile ENERGY SCORE 10 20

 T
im

e

1
22
50
69
94 0.03

0.00

0.03

Am
pl

itu
de

0

10

20

De
pt

h
pr

of
ile KERNEL SCORE

 T
im

e

1
22
50
69
94 0.03

0.00

0.03

Am
pl

itu
de

0

10

20

De
pt

h
pr

of
ile KERNEL SCORE 5 10

 T
im

e

1
22
50
69
94 0.03

0.00

0.03

Am
pl

itu
de

1 50 100
Position

0

10

20

De
pt

h
pr

of
ile KERNEL SCORE 10 20

 Position
1 50 100

 T
im

e

1
22
50
69
94

1 50 100
Position

0.03

0.00

0.03

Am
pl

itu
de

1 50 100
Position

1 50 100
Position

Figure 9: Shallow water model: inference results with all methods. See Figure 2 for a description of
the different panels.

27

0 500 1000
Rank

0.0

0.5

1.0

CD
F

Uniform CDF
energy_score

(a) Energy Score

0 500 1000
Rank

0.0

0.5

1.0

CD
F

Uniform CDF
kernel_score

(b) Kernel Score

0 500 1000
Rank

0.0

0.5

1.0

CD
F

Uniform CDF
energy_score

(c) Energy Score patched 5, 10

0 500 1000
Rank

0.0

0.5

1.0
CD

F
Uniform CDF
kernel_score

(d) Kernel Score patched 5, 10

0 500 1000
Rank

0.0

0.5

1.0

CD
F

Uniform CDF
energy_score

(e) Energy Score patched 10, 20

0 500 1000
Rank

0.0

0.5

1.0

CD
F

Uniform CDF
kernel_score

(f) Kernel Score patched 10, 20

Figure 10: Shallow Water model: Simulation Based Calibration for all SR methods. Each line cor-
responds to a single dimension of θ and represents the CDF of the rank of the true parameter value
with respect to a set of posterior samples. A calibrated posterior implies uniform CDF (diagonal black
line, with associated 99% confidence region for the considered number of samples in gray).

28

E.4 Camera model

In Figure 11, we show results, analogously to what is done in Figure 4, for all methods. Table 18
reports the different performance metrics, runtime, and early stopping epoch for all methods.

Table 18: Noisy Camera model: performance metrics, runtime and early stopping epoch for all meth-
ods.

RMSE ↓ Cal. Err. ↓ R2 ↑ Runtime (sec) Early stopping epoch

GAN 0.25 ± 0.19 0.50 ± 0.00 -23.94 ± 366.08 45398 3600
Energy 0.08 ± 0.05 0.36 ± 0.12 -24.39 ± 450.13 24555 4200
Energy patched 5 8 0.06 ± 0.05 0.36 ± 0.12 -2.14 ± 55.86 22633 4000
Energy patched 7 14 0.07 ± 0.05 0.37 ± 0.12 -10.33 ± 227.38 24033 3600
Kernel 0.06 ± 0.05 0.32 ± 0.15 -7.22 ± 164.26 21862 3200
Kernel patched 5 8 0.07 ± 0.05 0.36 ± 0.12 -10.29 ± 222.12 22545 3200
Kernel patched 7 14 0.10 ± 0.06 0.38 ± 0.11 -144.56 ± 2952.80 20605 3600

29

y

Figure 11: Noisy Camera model: ground truth and posterior inference with all methods, for a set of
observations (each observation corresponds to a column). The first two rows represent the ground
truth values of θ and the corresponding observation yo. The remaining rows represent the mean and
Standard Deviation (SD) for all methods.

30

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper

itself).

Title of Paper

Likelihood-Free Inference with Generative Neural Networks via Scoring Rule

Minimization

Publication Status

 □ Published □ Accepted for Publication

 □Submitted for Publication ☒ Unpublished and unsubmitted work written

 in a manuscript style

Publication Details

Joint work with Prof. Ritabrata Dutta (University of Warwick).

Student Confirmation

Student Name:

Lorenzo Pacchiardi

Contribution to the
Paper

I am the first author of this paper. After I originally thought of using scoring rules to train
generative networks, the idea of applying this method to LIkelihood-Free Bayesian
Inference was raised by Prof. Geoff Nicholls in a meeting with Prof. Dutta and myself. I
then formalized the methodology, coded the method, run the simulations and wrote
most of the paper. Prof. Dutta advised along the way and corrected the paper draft.

Signature

Date

1st September 2022

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Professor Geoff Nicholls

Supervisor comments

Signature

Date

15-09-22

This completed form should be included in the thesis, at the end of the relevant chapter.

Chapter 5

Probabilistic Forecasting with
Generative Networks via Scoring
Rule Minimization

Unpublished and unsubmitted work.

189

Probabilistic Forecasting with Generative Networks
via Scoring Rule Minimization

Lorenzo Pacchiardi1∗, Rilwan A. Adewoyin2,3, Ritabrata Dutta2, Peter Dueben4

1Department of Statistics, University of Oxford, UK
2Department of Statistics, University of Warwick, UK

3Department of Computer Science and Engineering, Southern University of Science and Technology, China
4 Earth System Modelling Section, ECMWF, UK

Abstract

Generative networks are often trained to minimize a statistical divergence between the reference
distribution and the generative one in an adversarial setting. Some works trained instead generative
networks to minimize Scoring Rules, functions assessing how well the generative distribution matches
each training sample individually. We show how the Scoring Rule formulation easily extends to the so-
called prequential (predictive-sequential) score, whose minimization allows performing probabilistic
forecasting with generative networks. This objective leads to adversarial-free training, therefore
easily avoiding uncertainty underestimation due to mode collapse, which is a common issue in the
adversarial setting and undesirable for probabilistic forecasting. We provide consistency guarantees
for the minimizer of the prequential score and employ that to perform probabilistic forecasting for
two chaotic dynamical models and a benchmark dataset of global weather observations. For this
last example, we define scoring rules for spatial data by drawing from the relevant literature, with
which we obtain better uncertainty quantification with little hyperparameter tuning compared to
adversarial training.

1 Introduction

In many disciplines (for instance econometrics and meteorology), practitioners want to forecast the
future state of a phenomenon. Providing prediction uncertainty (ideally by stating a full probability
distribution) is often essential. This task is called probabilistic forecasting [Gneiting and Katzfuss,
2014] and is commonplace in Numerical Weather Prediction (NWP, Palmer, 2012), where physics-based
models are run multiple times to obtain an ensemble of forecasts representing the possible evolution
of the weather Leutbecher and Palmer [2008]. To assess the performance of NWP systems, people
commonly use Scoring Rules (SRs, Gneiting and Raftery, 2007), functions quantifying the quality of a
probabilistic forecast with respect to the observed outcome.

Here, we use generative (neural) networks to provide probabilistic forecasts. In a generative network,
a neural network maps a latent random variable to the required output space; hence, samples on the
latter are obtained by transforming latent variable draws. As the density is inaccessible, the distribution
is implicitly defined and specialized techniques are necessary to train generative networks. Among those,
the popular Generative Adversarial Networks (GANs, Goodfellow et al., 2014, Mirza and Osindero,
2014, Nowozin et al., 2016, Arjovsky et al., 2017) framework trains a generative network by defining
a min-max game against a competitor, termed critic. However, adversarial training is unstable: it
requires ad-hoc strategies [Gulrajani et al., 2017] and careful hyperparameter tuning [Salimans et al.,
2016] but, even so, the trained generative network may not fully capture the data distribution, a
phenomenon referred to as mode collapse [Goodfellow, 2016, Isola et al., 2017, Arora et al., 2017,
Bellemare et al., 2017, Arora et al., 2018, Richardson and Weiss, 2018]. This prevents practitioners
from reliably applying GANs to tasks where calibrated uncertainty quantification is paramount, such
as probabilistic forecasting. Additionally, it is unclear how to extend the GAN training objective to

∗Corresponding author: lorenzo.pacchiardi@stats.ox.ac.uk.

1

the temporal data considered in probabilistic forecasting. Indeed, the adversarial framework is derived
from divergences between probability distributions and considers data as independent and identically
distributed samples from one of those distributions.

Therefore, motivated by the use of scoring rules to evaluate traditional forecasting systems, we
propose to train generative networks to minimize scoring rule values. Given a recorded temporal
sequence of the phenomenon of interest, we use the generative network to forecast all steps of the
sequence conditioned on the past. Then, our objective is the average over steps of the scoring rule
between forecasts and realizations. In contrast to the adversarial framework, this so-called prequential
(predictive-sequential, Dawid, 1984) scoring rule captures the temporal structure of the data. Addi-
tionally, the minimizer of the prequential scoring rule enjoys consistency under mild conditions on the
temporal sequence. Furthermore, our proposal allows adversarial-free training through a reparametriza-
tion trick [Kingma and Welling, 2014] for SRs defined as expectations over the generative distribution.
Training with our objective is therefore drastically easier than with GAN, requires less hyperparameter
tuning and easily avoids mode collapse. More in detail, our contributions are:

• We introduce a novel training objective for probabilistic forecasting based on a prequential scoring
rule.

• Under stationarity and mixing conditions of the time series, we prove that the minimizer of the
prequential scoring rule coincides asymptotically with that of the expected prequential scoring
rule. Importantly, the latter corresponds to the true parameter value if the distribution induced
by the generative network is well-specified.

• We leverage previous works in meteorology [Gneiting and Raftery, 2007, Scheuerer and Hamill,
2015] and design training objectives for high-dimensional spatio-temporal data, enabling good
performance with no need for a learnable data transformation.

• We test our method and state-of-the-art adversarial approaches on two chaotic models and a
spatio-temporal weather dataset. We find our method to be more stable and perform better,
particularly in terms of uncertainty quantification of the forecast.

The rest of the paper is organized as follows. In Sec. 2, we review the standard setup of generative
networks training via divergence minimization, introduce the Scoring Rules formulation and connect
to previous works which used it. In Sec. 3, which contains the main contributions of our work, we
formalize the training objective for probabilistic forecasting and discuss SRs for time-series and spatial
data. We discuss some related works in Sec. 4 and show simulation results in Sec. 5. We conclude in
Sec. 6.

Notation We use upper case X,Y and Z to denote random variables, and their lower-case counterpart
to denote observed values. Bold symbols denote vectors, and subscripts to bold symbols denote sample
index (for instance, yt). Instead, subscripts to normal symbols denote component indices (for instance,
yi is the i-th component of y, and yt,j is the j-th component of yt). Finally, we use notation
yj:k = (yj ,yj+1, . . . ,yk−1,yk), for j ≤ k.

2 Background

2.1 Generative networks via divergence minimization

A generative network represents distributions on some space Y via a map hφ : Z → Y transforming
samples from a probability distribution Q over the space Z; the map is parametrized by a Neural
Network (NN) with weights φ. Samples from P φ are obtained by generating z ∼ Q and computing
hφ(z) ∈ Y; therefore, expectations EY∼Pφ [g(Y)] can be computed by EZ∼Q[g(hφ(Z))].

Assume now we observe data from a distribution P ? and want to tune φ so that P φ is as close as
possible to P ?. A divergence D(P ?||P φ) is a function of two distributions such that D(P ?||P φ) ≥ 0

2

and D(P ?||P φ) = 0 ⇐⇒ P ? = P φ. Therefore, for a given D, we can attempt solving:

arg min
φ

D(P ?||P φ). (1)

Various proposed approaches differ according to (i) their choice of divergence D and (ii) how they
estimate the optimal solution in Eq. (1) using samples from P ? and P φ. A popular strategy is choosing
D to be an f -divergence (termed f -GAN, Nowozin et al., 2016), in which case a variational lower bound
can be obtained:

Df (P ?||P φ) ≥ sup
c∈C

(EY∼P ?c(Y)− EX∼Pφf
∗(c(X))) ,

where f∗ is the Fenchel conjugate of the function f (Appendix B.1.1) and C is any set of functions
from Y to the domain of f∗. By representing the set C by a neural network cψ (termed critic) with
parameters ψ ∈ Ψ, the problem in Eq. (1) is:

min
φ

max
ψ

(EY∼P ?cψ(Y)− EX∼Pφf
∗(cψ(X))) .

The WGAN of Arjovsky et al. [2017], which uses the 1-Wasserstein distance, has a similar objective to
Eq. (2), differing mainly in taking C to be the set of 1-Lipschitz functions. Details in Appendix B.1.2.

The problem in Eq. (2) is solved by alternating optimization steps over ψ and φ; the expectations
are estimated via samples from both P ? (i.e., a minibatch of observations) and from P φ . This approach
is termed adversarial as P φ and cψ respectively aim to minimize and maximize the same objective.

Adversarial training of generative networks is however unstable and difficult. A well-known
consequence of unstable adversarial training is mode collapse [Goodfellow, 2016, Isola et al., 2017,
Arora et al., 2017, Bellemare et al., 2017, Arora et al., 2018, Richardson and Weiss, 2018], in which
the generative distribution underestimates uncertainty and, in extreme cases, can collapse to a single
point. Mode collapse has been related to the approximations involved in adversarial training: Arora
et al. [2017] showed that mode collapse can arise due to finite capacity of the critic cψ, while Bellemare
et al. [2017] and Bińkowski et al. [2018] respectively linked it to using finite data and a finite number of
steps in optimizing the cψ network and subsequently using it to obtain gradient estimates for φ, which
are thus biased.

To avoid adversarial training altogether and bypass the above issues, Moment Matching Networks
Li et al. [2015], Dziugaite et al. [2015] are trained by considering D to be the squared Maximum Mean
Discrepancy (MMD) induced by a positive definite kernel k:

Dk

(
P ?, P φ

)
:= E

[
k
(
X,X′

)
− 2k(X,Y) + k

(
Y,Y′

)]
, X,X′ ∼ P φ, Y,Y′ ∼ P ? (3)

From Eq. (3), an empirical unbiased estimate ofDk and its gradients can be obtained without introducing
a critic network. However, using a fixed kernel on raw data can yield small discriminative power (as
in the case of images, where numerical values have little meaning), leading to poor fit of P φ to P ?.
Li et al. [2017] suggested therefore applying a learnable transformation before computing the kernel,
with parameters trained to maximize the MMD. This approach, termed MMD-GAN, leads again to an
adversarial setting and to the issues mentioned above. Details in Appendix B.1.3.

Conditional setting To represent a conditional distribution P φ(·|θ), θ ∈ Θ, a map hφ : Z ×Θ→ Y
can be used; similarly to above, samples from P φ(·|θ) for fixed θ can be obtained via hφ(z;θ), z ∼ Q.
In this way, f -GAN, WGAN and MMD-GAN can all be easily extended to the setting in which we
have data

(θi,yi)
n
i=1, where θi ∼ Π and yi ∼ P ?(·|θi), (4)

and want P φ(·|θ) = P ?(·|θ) Π-almost everywhere. For instance, the f -GAN objective in Eq. (2)
becomes:

min
φ

max
ψ

Eθ∼Π

(
EY∼P ?(·|θ)cψ(Y;θ)− EY∼Pφ(·|θ)f

∗(cψ(Y;θ))
)
,

where now cψ : Y ×Θ→ domf∗ . More details can be found in Appendix B.1.

3

2.2 Generative networks via scoring rules minimization

Here, we review a formulation for training generative networks which, in some cases, is intrinsically
adversarial-free, as for Moment Matching Networks. This different perspective is based on Scoring Rules
(SR), which we introduce next, and will allow us to design objective functions suitable for probabilistic
forecasting of time-series (Sec. 3.1) and for tackling spatial data (Sec. 3.2).

A SR S is a function of a distribution and an observation; specifically, S(P φ,y) represents the penalty
assigned to the distribution P φ when y is observed Gneiting and Raftery [2007], Dawid and Musio [2014].
If y is the realization of a random variable Y ∼ P ?, the expected SR is: S(P φ, P ?) := EY∼P ?S(P φ,Y).
S is said to be proper relative to a set of distributions P if the expected Scoring Rule is minimized in
P φ when P φ = P ?:

S(P ?, P ?) ≤ S(P φ, P ?) ∀ P φ, P ? ∈ P.
Moreover, S is strictly proper relative to P if P φ = P ? is the unique minimum. In plain words,
P φ minimizes an expected proper SR S if it has some features corresponding to those of the data
distribution P ?; if S is strictly proper, P ? and P φ coincide.

For a strictly proper SR S, the quantity D(P φ||P ?) := S(P φ, P ?) − S(P ?, P ?) is a statistical
divergence, as in fact D(P φ||P ?) ≥ 0 and D(P φ||P ?) = 0 ⇐⇒ P φ = P ?. However, not all divergences
can be written in terms of a SR (that is not possible, e.g., for the Wasserstein distance).

SRs have been previously used to train conditional generative networks in Bouchacourt et al. [2016],
Gritsenko et al. [2020], Harakeh and Waslander [2021], where the authors considered:

min
φ

Eθ∼ΠEY∼P ?(·|θ)S(P φ(·|θ),Y); (5)

for strictly proper S, the solution is P φ(·|θ) = P ?(·|θ) Π-almost everywhere. With data as in Eq. (4),
we can replace Eq. (5) with:

min
φ

1

n

n∑

i=1

S(P φ(·|θi),yi), (6)

i.e., we evaluate P φ(·|θi) according to how well it predicts yi. The objective in Eq. (6) is an unbiased
estimate of that in Eq. (5); therefore, to train P φ via Stochastic Gradient Descent, it is enough to obtain
unbiased estimates of ∇φS(P φ(·|θi),yi). That is possible whenever S is defined via an expectation
over P φ, in which case we can train P φ without adversarial setup. More details in Appendix C.

Eq. (5) is equivalent to minφ Eθ∼ΠD(P φ(·|θ)||P ?(·|θ)), where D is the divergence associated to S.
For instance, conditional Moment Matching Network corresponds to setting S in Eq. (5) to be the
Kernel Score [Gneiting and Raftery, 2007]:

Sk(P
φ,y) := E[k(X,X′)]− 2 · E[k(X,y)], X,X′ ∼ P φ (7)

where k is a positive definite kernel. We can obtain unbiased gradient estimates for Eq. (7) by replacing
expectations with empirical means over simulations from P φ. Under some conditions on P φ and for a
specific class of kernels, Sk is strictly proper (see Sec. 1.2.2 in the introduction of the present thesis).
Additionally, the Energy Score used in Bouchacourt et al. [2016], Gritsenko et al. [2020], Harakeh and
Waslander [2021] can be obtained from Sk by choosing k(x,y) = −||y−x||β for β ∈ (0, 2) Gneiting and
Raftery [2007]. See more details in Sec. 1.2.2 in the introduction of the present thesis. In the following,
we will fix β = 1 for the Energy Score and use the Gaussian kernel in the Kernel Score.

3 Generative networks for spatio-temporal models via SR minimiza-
tion

We will now extend the SR formulation to a training objective for probabilistic forecasting for time-series
(Sec. 3.1). Later (Sec. 3.2), we will exploit the SR formulation to tackle high dimensional spatial
data, by relying on scores studied in the probabilistic forecasting and meteorology literature Gneiting
and Raftery [2007], Scheuerer and Hamill [2015]. The resulting objectives can be minimized without
recurring to adversarial training.

4

Observation
window

yt-k+1 yt yt+l...

hφ
Noise

Draw
z',z''...

S

Predictions for yt+l

yt+l,' yt+l...
''

Generative net

yt+l+1

tObserved sequence

Figure 1: Estimation of the SR evaluating the forecast P φt+l(·|yt−k+1:t) for the realization yt+l. The
prequential SR is obtained by repeating this procedure for all t’s and summing the scores.

3.1 Time-series probabilistic forecasting via the prequential SR

Consider a temporal stochastic process (Y1,Y2, . . . ,Yt, . . .) = (Yt)t ∼ P ?, where Yt ∈ Y; in general,
Yt’s are not independent. For a generic distribution P for (Yt)t, we denote by Pt the marginal
distribution for Yt, and by Pr:s the marginal distribution for Yr:s; the conditional distribution for
Yt|yu:v will be denoted by Pt(·|yu:v) and similar for Yr:s.

Having observed y1:t, we produce a probabilistic forecast for Yt+l for a given lead time l via a
generative network conditioned on the last k observations, P φt+l(·|yt−k+1:t). By repeating this procedure
for all t’s in a recorded window of length T , P φ induces a joint distribution over Yk+l:T given y1:k+l−1,
denoted P φk+l:T (·|y1:k+l−1) (as in fact the generative network cannot forecast the first elements of the
sequence y1:k+l−1). For each t, we evaluate the forecast performance via S(P φt+l(·|yt−k+1:t),yt+l) for a
SR S (Fig. 1); summing this for all t’s, we obtain:

ST (P φk+l:T (·|y1:k+l−1),yk+l:T) :=

T−l∑

t=k

S(P φt+l(·|yt−k+1:t),yt+l). (8)

The above notation only makes sense as the distribution for Yt+l in P φk+l:T (·|y1:k+l−1) depends
only on Yt−k+1:t; otherwise, y1:k+l−1 should also appear explicitly in the conditioning of P φt+l. This is
formalized by the following property (which recovers the standard k-Markov property for l = 1):

Definition 3.1. A probability distribution P1:T is k-Markovian with lag l if, assuming it has density
p1:T with respect to some base measure, it can be decomposed as:

p1:T (y1:T) = p1:k+l−1(y1:k+l−1)

T−l∏

t=k

pt+l(yt+l|yt−k+1:t).

We call ST in Eq. (8) the prequential (or predictive-sequential) score [Dawid, 1984, Dawid and
Musio, 2015], as it evaluates sequential predictions. ST is a SR for distributions over Yk+l:T |y1:k+l−1

which are k-Markovian with lag l.
We propose therefore to learn φ by:

φ̂T (y1:T) := arg min
φ

ST (P φk+l:T (·|y1:k+l−1),yk+l:T), (9)

which picks the best φ for which the average l-steps ahead forecast in the training data is optimal
according to S. Operationally, Eq. (9) can be solved in the same way as Eq. (6), i.e., by simulating
from P φ for each observation window yt−k+1:t in a training batch, unbiasedly estimating the SR S
and descending the gradient. However, contrarily to the independent-data setting of Eq. (6), Eq. (9)
cannot be motivated as an empirical estimate of an expected SR, as the different yt’s are dependent.
Still, we show below how the empirical minimizer φ̂T (Y1:T) converges, under some stationarity and
mixing conditions of (Yt)t, to a fixed quantity corresponding to the minimizer of a proper SR. First,
Theorem 3.2 below (proven in Appendix A.1.2) establishes propriety properties of ST :

Theorem 3.2. If S is (strictly) proper, then ST is (strictly) proper for distributions over Yk+l:T |y1:k+l−1

which are k-Markovian with lag l.

5

Stot = S1 + S2 + S3

Figure 2: Patched SR: a SR for multivariate data is computed on localized patches, and the resulting
values are summed.

Consider now the following two quantities:

φ̃T (y1:k+l−1) := arg min
φ

EYk+l:T |y1:k+l−1
ST (P φk+l:T (·|y1:k+l−1),Yk+l:T),

φ?T := arg min
φ

EST (P φk+l:T (·|Y1:k+l−1),Yk+l:T).

φ̃T (y1:k+l−1) is the minimizer of the expected prequential SR with respect to Yk+l:T |y1:k+l−1 which,
from Theorem 3.2, is minimized when the true distribution for Yk+l:T |y1:k+l−1 is recovered. φ?T instead
minimizes the expectation of ST with respect to the full sequence Y1:T .

Now, each term in the sum defining ST depends on a finite number of observations; therefore, if (Yt)t
satisfies some mixing and stationarity properties, we expect φ̃T (y1:k+l−1) to not depend on y1:k+l−1

for large T ; similarly, we expect the empirical estimator φ̂T (y1:T) to converge to a fixed quantity. The
following Theorem proves such consistency of φ̂T (y1:T) and φ̃T (y1:k+l−1) to φ?T .

Theorem 3.3. Assume φ?T and φ̃T (y1:k+l−1) are unique for each fixed y1:k+l−1, and (Yt)t is asymptot-
ically stationary and satisfies some mixing properties. Then, under some regularity conditions, it exists
a metric d such that d(φ?T , φ̂T (Y1:T)) → 0 and d(φ̃T (Y1:k+l−1), φ̂T (Y1:T)) → 0 when T → ∞ almost
surely with respect to (Yt)t ∼ P ?. It also follows that d(φ̃T (Y1:k+l−1), φ?T)→ 0.

The precise statement of Theorem 3.3 is given and proven in Appendix A.2; our proof holds when
P φt+l depends on t only through the value of the past observations, which is our case of interest as we
use the same generative network for all t’s. In plain words, the mixing properties require Yt−m and
Yt to become independent as m → ∞, while asymptotic stationarity means that the average of the
marginal distributions over different t converges to a constant distribution.

Under the assumptions of Theorem 3.3, with large enough T , φ̂T (y1:T) and φ̃T (y1:k+l−1) will both
be independent of the observed sequence y1:T and will converge to φ?T . Therefore, minimizing the
empirical prequential SR in Eq. (8) asymptotically recovers the minimizer of an expected proper SR,
which additionally does not depend on the initial conditions of the sequence y1:k+l−1.

3.2 Scoring rules for spatial data

In contrast to multivariate, spatial data (such as the dataset used in Sec. 5.2) is structured: the relation
between different entries depends on their spatial distance. Computing, say, the Kernel SR in Eq. (7)
would not capture this structure; as discussed in Sec 3.1 in Chapter 4 of the present thesis, one way to
address that is computing the SR on patches and cumulating it; see Fig. 2 for a representation. Another
option is the following:

6

Variogram Score Say now Y ⊆ Rd. For any p > 0, the Variogram Score Scheuerer and Hamill
[2015] is defined as:

S(p)
v (P φ,y) :=

d∑

i,j=1

wij (|yi − yj |p − EX∼Pφ |Xi −Xj |p)2 ,

where wij > 0 are fixed scalars. Scheuerer and Hamill [2015] set wij to be inversely proportional to the
distance of locations i and j to capture the spatial structure. However, S(p)

v is proper but not strictly
so: it is invariant to change of sign and shift of all entries of X by a constant, and only depends on the
moments of P φ up to order 2p Scheuerer and Hamill [2015]. We will fix p = 1 in the rest of our work.

Probabilistic forecasting for spatial data Inserting the spatial SRs discussed above in the pre-
quential score in Eq. (8) enables probabilistic forecasting for spatial data using generative networks. For
the patched SR, unbiased gradient estimates can be computed if the underlying SR admits unbiased
gradient estimates (which is the case for the Energy and Kernel SRs, see Sec. 1.2.2 in the introduction
of the present thesis). For the Variogram Score, instead, it is immediate to obtain an unbiased estimate
by:

Ŝv
(p)

({xj}mj=1,y) =
d∑

i,j=1

wij

(
|yi − yj |p −

1

m

m∑

k=1

|xk,i − xk,j |p
)2

,

where xj ∼ P, j = 1, . . . ,m.

4 Related works

In the statistics literature, Dawid et al. [2016] studied a SR parameter estimator for independent
and identically distributed data; instead, Dawid and Musio [2013] used SRs to infer parameters for
spatial models, considering the conditional distribution in each location given all the others to be
available; finally, Dawid and Musio [2015] considered model selection based on SRs and studied a
prequential application. Properties of prequential losses for forecasting systems, such as our Eq. (8),
were investigated in Skouras [1998], which also gave consistency results similar to our Theorem 3.3.

Kwon and Park [2019], Koochali et al. [2021], Bihlo [2021] and Ravuri et al. [2021], among others,
all used GANs for forecasting. However, they all considered the training samples to be independent in
their formulation and did not study theoretically the consequence of using dependent data. Bihlo [2021]
considered a task similar to ours (which we privileged for ease of reproducibility as it is a standardized
dataset) and found the GAN to underestimate uncertainty, so they considered a GANs ensemble increase
the uncertainty. Instead, Ravuri et al. [2021] exploited GANs for a precipitation nowcasting task (i.e.,
predicting for small lead time), achieving good deterministic and probabilistic performance with large
amount of architecture hand-tuning and computing power.

Deterministic forecasting with NNs for the WeatherBench dataset (Sec. 5.2) was studied extensively
Dueben and Bauer [2018], Scher [2018], Scher and Messori [2019], Weyn et al. [2019]. Fewer studies
tackled probabilistic forecasting: Scher and Messori [2021] combined deterministic NNs with ad-hoc
strategies, not guaranteed to lead to the correct distribution. Clare et al. [2021] binned instead the
data, thus mapping the problem to that of estimating a categorical distribution.

5 Simulation study

We first study two low-dimensional time-series model which allow exhaustive hyperparameter tuning
and architecture comparison, but still have challenging dynamics due to their chaotic nature. We then
move to a high-dimensional spatio-temporal meteorology dataset. For all examples, we train generative
models with the Energy and the Kernel Scores (Sec. 1.2.2 in the introduction of the present thesis)
and their sum, termed Energy-Kernel Score (a strictly proper SR due to Lemma 1 in Chapter 4 of
the present thesis). Additional SRs, discussed later in Sec. 5.2, are used for the meteorology example.
For the Kernel Score, we use the Gaussian kernel with bandwidth γ tuned from the validation set

7

(Appendix E.1). For all SR methods, we use 10 forecasts from the generator for each observation window
to estimate SR values during training; however, performance does not degrade when using as few as 3
simulations (Appendix F.3.2), which lowers the computational cost (Appendix F.3.3). We compare
with the original GAN Goodfellow et al. [2014] and WGAN with gradient penalties (WGAN-GP,
Gulrajani et al., 2017). The latent variable Z has independent components with standard normal
distribution. To put in context the deterministic performance of the probabilistic methods, we compare
with deterministic networks trained to minimize the standard regression loss.

All datasets consist of a long time series, which we split into training, validation and test set. We
use the validation set for early stopping and hyperparameter tuning and report final performance on
the test set. The adversarial methods do not allow early stopping or hyperparameter selection using
the training objective, as the generator loss depends on the critic state. For these methods, therefore,
we use other metrics to pick the best hyperparameters (see below).

On the test set, we assess the calibration of the probabilistic forecasts by the calibration error (the
discrepancy between credible intervals in the forecast distribution and the actual frequencies). We also
evaluate how close the means of the forecast distributions are to the observation by the Normalized
Root Mean-Square Error (NRMSE) and the coefficient of determination R2; we detail all these metrics
in Appendix D. As all these metrics are for scalar variables, we compute their values independently for
each component and report their average (standard deviation in Appendix F).

Our simulations show how the SR methods are easier to train and provide better uncertainty
quantification. The adversarial methods require more hyperparameter tuning. We find the original
GAN to be unstable and very poor at quantifying uncertainty due to mode collapse; WGAN-GP
performs better, but has still inferior performance with respect to the SR approaches. Likely, ad-hoc
adversarial training strategies could lead to better performance; however, the possibility of effortlessly
training with off-the-shelf methods is an advantage of the SR approaches. Code for reproducing results
is available here.

0 5 10 15 20 25 30
t

20

10

0

10

y

True
Energy
GAN
WGAN-GP

(a) Lorenz63

0 5 10 15 20 25 30
t

5

0

5

10

15

x 1

True
Energy-Kernel
GAN
WGAN-GP

(b) Lorenz96 (first data component).

Figure 3: Results for selected methods for Lorenz63 and Lorenz96 (first data component): median
forecasts (solid line) and 99% credible area (shaded area) for a part of the test set. For each t, forecasts
are obtained using the previous observation window. Credible regions for GAN and WGAN-GP are
broader but contain the truth less frequently.

5.1 Time-series models

We consider the Lorenz63 Lorenz [1963] and Lorenz96 Lorenz [1996] chaotic models (Appendices E.2.1
and E.3.1). The former is defined on a 3-dimensional variable, a single component of which we assume to
observe. The latter contains two sets of variables; we observe only one of them, which is 8-dimensional.
In both cases, we generate an observed trajectory from a long model integration, from which we take
the first 60% as training set, the following 20% as validation and the remaining 20% as test.

We train the generative networks to forecast the next time-step (l = 1) from an observation window
of size k = 10. We use recurrent NNs based on Gated Recurrent Units (GRU, Cho et al. [2014];
Appendices E.2.2 and E.3.2); we also tested fully connected networks but they had worse performance
(see results in Appendix F.1 and F.2). For the SR methods, we select the best learning rate among 6

8

values according to the validation loss. For the adversarial methods, we consider instead 14 learning rates
for both generator and critic; we also try two hidden dimensions for the GRU layers and four numbers of
critic training steps for WGAN-GP; overall, we run 392 experiments for GAN and 1568 for WGAN-GP.
As the validation loss is not a meaningful metric for adversarial approaches, we report results for 3
different configurations for GAN and WGAN-GP, maximizing either deterministic performance (1) or
calibration (2), or striking the best balance between these two (3). More details are in Appendix E.2.3
and E.3.3). These experiments are run on CPU machines and take at most few minutes to complete.

In Table 1, we report performance metrics on the test set. The Kernel Score excels in deterministic
forecast, getting close or outperforming the regression loss; however, all SR methods lead to combined
great deterministic and probabilistic performance. On the other hand, adversarial methods are capable
of good deterministic performance (1) or calibration (2) independently; but either of these two is at
the expense of the other; the configuration with the best trade-off (3) is in fact much worse than the
SR methods (with WGAN-GP better than GAN). In Fig. 3, we show observation and forecast for a
part of the test set, for GAN and WGAN-GP in configuration 3, the Energy Score for Lorenz63 and
the Energy-Kernel Score for Lorenz96. For the two SR methods, the median forecast is close to the
observation and the credible region contains the true observation for most time-steps. For GAN and
WGAN-GP, the match with the observation is worse and credible regions generally contain the truth
less frequently albeit being wider. Additional results in Appendices F.1 and F.2.

Table 1: Performance on test set for the different methods, on the Lorenz63 and Lorenz96 models.
Results with three hyperparameter configurations are reported for GAN and WGAN-GP, see text.
Overall, SR methods perform well on both calibration and deterministic forecast metrics (NMRSE and
R2), while adversarial approaches are incapable of doing so.

Lorenz63 Lorenz96

Cal. error ↓ NRMSE ↓ R2 ↑ Cal. error ↓ NRMSE ↓ R2 ↑
Regression - 0.0079 0.9977 - 0.0198 0.9905
Energy 0.0380 0.0105 0.9960 0.0205 0.0166 0.9933
Kernel 0.0910 0.0083 0.9975 0.2196 0.0164 0.9935
Energy-Kernel 0.1000 0.0114 0.9953 0.0104 0.0173 0.9928
GAN (1) 0.4830 0.0274 0.9729 0.4644 0.0354 0.9696
GAN (2) 0.0860 0.2425 -1.1166 0.2671 0.1500 0.4537
GAN (3) 0.3590 0.0698 0.8245 0.3700 0.0763 0.8590
WGAN-GP (1) 0.4710 0.0398 0.9429 0.4134 0.0330 0.9736
WGAN-GP (2) 0.0270 0.1243 0.4440 0.0565 0.1081 0.7165
WGAN-GP (3) 0.2100 0.0914 0.6996 0.1648 0.0786 0.8502

5.2 Meteorological dataset

The WeatherBench dataset1 for data-driven weather forecasting Rasp et al. [2020] contains hourly values
of several atmospheric fields from 1979 to 2018 at different resolutions; we choose here a resolution of
5.625◦ over both longitude and latitude, corresponding to a 32×64 grid. We consider a single observation
per day (12:00 UTC) and the 500 hPa geopotential (Z500) variable. We forecast with a lead of 3 days
(l = 3) from a single observation (k = 1). We use the years from 1979 to 2006 as training set, 2007 to
2016 as validation test and 2017 to 2018 as test set.

In addition to the Energy, Kernel and Energy-Kernel Scores, we test the spatial SRs introduced
in Sec 3.2. Specifically, we consider the Variogram Score with weights w inversely proportional to
the distance on the globe (Appendix E.4.1) and sum it to the Energy (Energy-Variogram) or to the
Kernel (Kernel-Variogram) Scores. We also consider the Patched Energy Score with patch size 8 and

1Released under MIT license, see here.

9

Figure 4: Realization and example of predictions obtained with the patched Energy Score (patch size
16) for a specific date in the test set for the WeatherBench dataset. The predictions capture the main
features but are slightly different from each other.

16; to ensure the score is strictly proper, we add the overall Energy Score (summation weights in
Appendix E.4.2). We also consider patched regression loss.

We employ a U-NET architecture [Olaf et al., 2015] for the generative network and a PatchGAN
discriminator [Isola et al., 2017] for the critic (Appendix E.4.3). For the SR methods, we select the
best learning rate among 6 values according to the validation loss; for the adversarial ones, we consider
instead 7 values for both generator and critic, resulting in 49 experiments. We then pick the setups
optimizing deterministic or calibration performance. For WGAN-GP, a single configuration optimizes
both; for GAN, that did not happen. As for the time-series models, we report therefore results for
setups maximizing either deterministic performance (1) or calibration (2), or striking the best balance
between these two (3). All trainings are run on a single Tesla V100 GPU; computing times are reported
in Appendix F.3.3.

Table 2 contains performance metrics on the test set. The Patched Energy Scores yield the best
performance, with deterministic skill only slightly worse than the regression loss. Energy-Variogram and
Kernel-Variogram are worse than the standard Energy and Kernel ones; moreover, as the Variogram Score
requires quadratic memory in data size, a smaller batch size was needed for training (Appendix E.4.4).
All GAN configurations have bad performance, while WGAN-GP is acceptable, but still worse than the
SR methods. In Fig. 4 we show observation and three different predictions obtained with the Patched
Energy Score for a date in the test set. More results in Appendix F.3.

6 Conclusions

We gave an overview of a formulation for generative networks training based on Scoring Rules and
compared it to the standard one based on divergences, to which the former is complementary. The
advantages of the Scoring Rule formulation are: (i) it provides a principled objective for probabilistic
forecasting; (ii) it yields adversarial-free training, with which better uncertainty quantification is
possible, as we show empirically; (iii) it enables leveraging the literature on SRs to define objectives
for spatio-temporal datasets. These findings corroborate those reported in Chapter 4 of the present
thesis for Bayesian Likelihood-Free Inference tasks, making Scoring Rules minimization an appealing
method to train generative networks, particularly when uncertainty quantification in the approximate
distribution is critical.

The resulting training method involves choosing the scoring rule (including scoring-rule-specific
choices, such as the kernel, the patch size and the variogram weights); we argue however that this is
an easier problem than designing a discriminator network, as it is required for adversarial approaches.
Moreover, in contrast to adversarial methods, the use of a single neural network makes tuning the
hyperparameter for the optimizer scheme drastically easier.

We highlight the following limitations of our work: first, our Theorem 3.3 relies on assumptions

10

Table 2: Performance on WeatherBench test set for different methods. Results with three hyperparameter
configurations are reported for GAN, see text. SR methods perform well on both calibration and
deterministic forecast metrics (NMRSE and R2). WGAN-GP is worse and GAN is drastically worse.

Cal. error ↓ NRMSE ↓ R2 ↑
Regression - 0.1162 0.5300
Patched Regression, 8 - 0.1147 0.5459
Patched Regression, 16 - 0.1144 0.5509
Energy 0.0863 0.1208 0.4968
Kernel 0.0797 0.1200 0.5097
Energy-Kernel 0.0794 0.1194 0.5150
Energy-Variogram 0.0899 0.1192 0.5177
Kernel-Variogram 0.1704 0.1203 0.5050
Patched Energy, 8 0.0550 0.1189 0.5217
Patched Energy, 16 0.0690 0.1186 0.5248
GAN (1) 0.4845 0.1573 0.1418
GAN (2) 0.3130 0.2487 -2.7970
GAN (3) 0.3625 0.1693 -0.0117
WGAN-GP 0.1009 0.1302 0.4340

which are hard to verify; however, we believe similar consistency properties hold provided the temporal
process satisfies some generic stationarity and memory-less properties. Secondly, we do not experiment
forecasting multiple time-steps at once as we preferred focusing on single time-step forecast tasks for
the matter of analytical simplicity while developing our framework. Doing so would be however a useful
extension of our work; in practice, SRs assessing temporal coherence analogous to what done with
temporal discriminators in Ravuri et al. [2021] in the adversarial setting could be developed. Finally,
training the generative networks with a fixed scoring rule, instead of a learned discriminator, may make
the spatial structure of single samples from the generative distribution less realistic than those obtained
by an adversarial method. While results on the considered datasets did not seem to present this issue
at visual inspection, combining adversarial and SR training could address this issue; to get the best of
both methods, this would need to preserve the smooth dynamics of SR training. Measuring progress on
this front is however hindered by the lack of a good “realism” metric2, which must be subject of future
investigation.

Acknowledgment

LP is supported by the EPSRC and MRC through the OxWaSP CDT programme (EP/L016710/1),
which also funds the computational resources used to perform this work. RD is funded by EPSRC
(grant nos. EP/V025899/1, EP/T017112/1) and NERC (grant no. NE/T00973X/1). PD gratefully
acknowledges funding from the Royal Society for his University Research Fellowship, as well as from
the ESiWACE Horizon 2020 project (#823988) and the MAELSTROM EuroHPC Joint Undertaking
project (#955513). We thank Geoff Nicholls, Christian Robert, Peter Watson, Matthew Chantry, Mihai
Alexe and Eugenio Clerico for valuable feedback and suggestions.

References

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative adversarial networks. In International
conference on machine learning, pages 214–223. PMLR, 2017.
2Our evaluation metrics are univariate and thus not capturing the spatial structure of the samples.

11

S. Arora, R. Ge, Y. Liang, T. Ma, and Y. Zhang. Generalization and equilibrium in generative
adversarial nets (GANs). In International Conference on Machine Learning, pages 224–232. PMLR,
2017.

S. Arora, A. Risteski, and Y. Zhang. Do GANs learn the distribution? some theory and empirics.
In International Conference on Learning Representations, 2018. URL https://openreview.net/
forum?id=BJehNfW0-.

M. G. Bellemare, I. Danihelka, W. Dabney, S. Mohamed, B. Lakshminarayanan, S. Hoyer, and R. Munos.
The Cramer distance as a solution to biased Wasserstein gradients. arXiv preprint arXiv:1705.10743,
2017.

A. Bihlo. A generative adversarial network approach to (ensemble) weather prediction. Neural Networks,
139:1–16, 2021.

M. Bińkowski, D. J. Sutherland, M. Arbel, and A. Gretton. Demystifying MMD GANs. In International
Conference on Learning Representations, 2018.

D. Bouchacourt, P. K. Mudigonda, and S. Nowozin. DISCO nets: DISsimilarity COefficient networks.
Advances in Neural Information Processing Systems, 29:352–360, 2016.

R. C. Bradley. Basic properties of strong mixing conditions. a survey and some open questions.
Probability surveys, 2:107–144, 2005.

B.-E. Chérief-Abdellatif and P. Alquier. MMD-Bayes: Robust Bayesian estimation via maximum mean
discrepancy. In Symposium on Advances in Approximate Bayesian Inference, pages 1–21. PMLR,
2020.

K. Cho, B. van Merriënboer, D. Bahdanau, and Y. Bengio. On the properties of neural machine
translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation, pages 103–111, Doha, Qatar, Oct. 2014. Association
for Computational Linguistics. doi: 10.3115/v1/W14-4012. URL https://aclanthology.org/
W14-4012.

M. C. Clare, O. Jamil, and C. J. Morcrette. Combining distribution-based neural networks to predict
weather
probabilities. Quarterly Journal of the Royal Meteorological Society, 147(741):4337–4357, 2021.

A. P. Dawid. Present position and potential developments: Some personal views statistical theory the
prequential approach. Journal of the Royal Statistical Society: Series A (General), 147(2):278–290,
1984.

A. P. Dawid and M. Musio. Estimation of spatial processes using local scoring rules. AStA Advances in
Statistical Analysis, 97(2):173–179, 2013.

A. P. Dawid and M. Musio. Theory and applications of proper scoring rules. Metron, 72(2):169–183,
2014.

A. P. Dawid and M. Musio. Bayesian model selection based on proper scoring rules. Bayesian analysis,
10(2):479–499, 2015.

A. P. Dawid, M. Musio, and L. Ventura. Minimum scoring rule inference. Scandinavian Journal of
Statistics, 43(1):123–138, 2016.

I. Domowitz and H. White. Misspecified models with dependent observations. Journal of Econometrics,
20(1):35–58, 1982. ISSN 0304-4076. doi: https://doi.org/10.1016/0304-4076(82)90102-6. URL
https://www.sciencedirect.com/science/article/pii/0304407682901026.

P. D. Dueben and P. Bauer. Challenges and design choices for global weather and climate models based
on machine learning. Geoscientific Model Development, 11(10):3999–4009, 2018.

12

G. K. Dziugaite, D. M. Roy, and Z. Ghahramani. Training generative neural networks via maximum
mean discrepancy optimization. In Proceedings of the Thirty-First Conference on Uncertainty in
Artificial Intelligence, pages 258–267, 2015.

D. J. Gagne, H. M. Christensen, A. C. Subramanian, and A. H. Monahan. Machine learning for
stochastic parameterization: Generative adversarial networks in the Lorenz’96 model. Journal of
Advances in Modeling Earth Systems, 12(3):e2019MS001896, 2020.

T. Gneiting and M. Katzfuss. Probabilistic forecasting. Annual Review of Statistics and Its Application,
1:125–151, 2014.

T. Gneiting and A. E. Raftery. Strictly proper scoring rules, prediction, and estimation. Journal of the
American statistical Association, 102(477):359–378, 2007.

I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160,
2016.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

A. Gretton, K. M. Borgwardt, M. J. Rasch, B. Schölkopf, and A. Smola. A kernel two-sample test. The
Journal of Machine Learning Research, 13(1):723–773, 2012.

A. Gritsenko, T. Salimans, R. van den Berg, J. Snoek, and N. Kalchbrenner. A spectral energy distance
for parallel speech synthesis. Advances in Neural Information Processing Systems, 33:13062–13072,
2020.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville. Improved training of Wasserstein
GANs. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
pages 5769–5779, 2017.

A. Harakeh and S. L. Waslander. Estimating and evaluating regression predictive uncertainty in
deep object detectors. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YLewtnvKgR7.

H. Hersbach. Decomposition of the continuous ranked probability score for ensemble prediction systems.
Weather and Forecasting, 15(5):559–570, 2000.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
1125–1134, 2017.

D. P. Kingma and M. Welling. Auto-encoding variational Bayes. In Y. Bengio and Y. LeCun, editors,
2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April
14-16, 2014, Conference Track Proceedings, 2014. URL http://arxiv.org/abs/1312.6114.

A. Koochali, A. Dengel, and S. Ahmed. If you like it, GAN it—probabilistic multivariate times
series forecast with GAN. Engineering Proceedings, 5(1):40, Jul 2021. ISSN 2673-4591. doi:
10.3390/engproc2021005040. URL http://dx.doi.org/10.3390/engproc2021005040.

Y.-H. Kwon and M.-G. Park. Predicting future frames using retrospective cycle gan. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1811–1820, 2019.

M. Leutbecher and T. N. Palmer. Ensemble forecasting. Journal of computational physics, 227(7):
3515–3539, 2008.

C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos. MMD GAN: Towards deeper understanding
of moment matching network. In NIPS, 2017.

13

Y. Li, K. Swersky, and R. Zemel. Generative moment matching networks. In International Conference
on Machine Learning, pages 1718–1727. PMLR, 2015.

E. N. Lorenz. Deterministic nonperiodic flow. Journal of atmospheric sciences, 20(2):130–141, 1963.

E. N. Lorenz. Predictability: A problem partly solved. In Proc. Seminar on predictability, volume 1,
1996.

M. Mirza and S. Osindero. Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784,
2014.

H. D. Nguyen, J. Arbel, H. Lü, and F. Forbes. Approximate Bayesian computation via the energy
statistic. IEEE Access, 8:131683–131698, 2020.

S. Nowozin, B. Cseke, and R. Tomioka. f-GAN: Training generative neural samplers using variational
divergence minimization. In Proceedings of the 30th International Conference on Neural Information
Processing Systems, pages 271–279, 2016.

R. Olaf, F. Philipp, and B. Thomas. U-Net: Convolutional networks for biomedical image segmentation,
2015.

T. Palmer. Towards the probabilistic Earth-system simulator: a vision for the future of climate and
weather prediction. Quarterly Journal of the Royal Meteorological Society, 138(665):841–861, 2012.

M. Park, W. Jitkrittum, and D. Sejdinovic. K2-ABC: Approximate Bayesian computation with kernel
embeddings. In Artificial Intelligence and Statistics, 2016.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. PyTorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché Buc, E. Fox, and
R. Garnett, editors, Advances in Neural Information Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

B. M. Pötscher and I. R. Prucha. A uniform law of large numbers for dependent and heterogeneous
data processes. Econometrica: Journal of the Econometric Society, pages 675–683, 1989.

S. T. Radev, U. K. Mertens, A. Voss, L. Ardizzone, and U. Köthe. BayesFlow: Learning complex
stochastic models with invertible neural networks. IEEE Transactions on Neural Networks and
Learning Systems, 2020.

S. Rasp, P. D. Dueben, S. Scher, J. A. Weyn, S. Mouatadid, and N. Thuerey. WeatherBench: a
benchmark data set for data-driven weather forecasting. Journal of Advances in Modeling Earth
Systems, 12(11):e2020MS002203, 2020.

S. Ravuri, K. Lenc, M. Willson, D. Kangin, R. Lam, P. Mirowski, M. Fitzsimons, M. Athanassiadou,
S. Kashem, S. Madge, et al. Skilful precipitation nowcasting using deep generative models of radar.
Nature, 597(7878):672–677, 2021.

E. Richardson and Y. Weiss. On GANs and GMMs. In Proceedings of the 32nd International Conference
on Neural Information Processing Systems, pages 5852–5863, 2018.

M. L. Rizzo and G. J. Székely. Energy distance. Wiley interdisciplinary reviews: Computational
statistics, 8(1):27–38, 2016.

T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen. Improved techniques
for training GANs. Advances in neural information processing systems, 29, 2016.

S. Scher. Toward data-driven weather and climate forecasting: Approximating a simple general
circulation model with deep learning. Geophysical Research Letters, 45(22):12–616, 2018.

14

S. Scher and G. Messori. Weather and climate forecasting with neural networks: using general circulation
models (GCMs) with different complexity as a study ground. Geoscientific Model Development, 12
(7):2797–2809, 2019.

S. Scher and G. Messori. Ensemble methods for neural network-based weather forecasts. Journal of
Advances in Modeling Earth Systems, 13(2), 2021.

M. Scheuerer and T. M. Hamill. Variogram-based proper scoring rules for probabilistic forecasts of
multivariate quantities. Monthly Weather Review, 143(4):1321–1334, 2015.

K. Skouras. On the optimal performance of forecasting systems: The prequential approach. University
of London, University College London (United Kingdom), 1998.

J. A. Weyn, D. R. Durran, and R. Caruana. Can machines learn to predict weather? Using deep
learning to predict gridded 500-hPa geopotential height from historical weather data. Journal of
Advances in Modeling Earth Systems, 11(8):2680–2693, 2019.

15

Appendix

A Proofs of theoretical results

A.1 Propriety of the prequential SR

In this Section, let P ? denote the data generating distribution for (Y1,Y2, . . . ,Yt, . . .) = (Yt)t, and
let P denote a generic distribution assigned to (Yt)t. From the distribution on the full sequence P ,
conditional and marginals can be obtained, and denoted as follows: Pt+1(·|y1:t) denotes the conditional
distribution for Yt+1 given y1:t, and P1:t the (marginal) distribution for (Y1,Y2, . . . ,Yt). Similar
notation will be used for the conditional and marginals induced by P ?.

A.1.1 Generic 1-step ahead prequential SR

We first consider a simplified case in which we can access the marginal for Y1 and all subsequent
conditionals from P . Given y1:t, we use the distribution P to construct a forecast distribution for Yt+1,
namely Pt+1(·|y1:t); we penalize the forecast, against the verifying observation yt+1, via a SR S:

S(Pt+1(·|y1:t),yt+1).

From the above, we construct the prequential SR for the forecast P1:T as follows:

ST (P1:T ,y1:T) =
1

T

[
T−1∑

t=1

S(Pt+1(·|y1:t),yt+1) + S(P1,y1)

]
; (10)

the above assumes that at each time instant we obtain a probabilistic forecast Pt+1(·|y1:t) from the
distribution P and we verify it against the next observed element of the sequence yt+1. Additionally,
at the first time step, we have not yet received any observation, so our forecast P1 is unconditional.
Also, let us define the expected prequential score as:

ST (P1:T , P
?
1:T) := EY1:T∼P ?1:TST (P1:T ,Y1:T),

Theorem A.1. If the scoring rule S is proper, then the prequential score ST in Eq. (10) is proper for
distributions over YT , i.e.:

ST (P ?1:T , P
?
1:T) ≤ ST (P1:T , P

?
1:T).

Similarly, if S is strictly proper, the prequential score ST is strictly proper, i.e. the equality only holds
if P1:T = P ?1:T .

Proof. First, notice that P1:T is fully determined by the marginal P1 and by the conditionals Pt+1(·|y1:t),
1 ≤ t ≤ T − 1. In fact, if P1:T has densities, you can write:

p1:T (y1:T) = p1(y1)p2(y2|y1)p3(y3|y1:2) . . . pT−1(yT−1|y1:T−2)pT (yT |y1:T−1).

By definition of proper SR, we have that:

EYt+1∼P ?t+1(·|y1:t)S(P ?t+1(·|y1:t),Yt+1) ≤ EYt+1∼P ?t+1(·|y1:t)S(Pt+1(·|y1:t),Yt+1)

for any conditional distribution Pt+1(·|y1:t) and for any values y1:t.
Similarly, it holds:

EY1∼P ?1 S(P ?1 ,Y1) ≤ EY1∼P ?1 S(P1,Y1), (11)

for any distribution P1.
For the expected prequential SR, it holds that:

ST (P1:T , P
?
1:T) = EY1:T∼P ?1:TST (P1:T ,Y1:T)

=
1

T

[
T−1∑

t=1

EY1:T∼P ?1:TS(Pt+1(·|Y1:t),Yt+1) + EY1:T∼P ?1:TS(P1,Y1)

]

=
1

T

[
T−1∑

t=1

EY1:t+1∼P ?1:t+1
S(Pt+1(·|Y1:t),Yt+1) + EY1∼P ?1 S(P1,Y1)

]
;

16

but now:

EY1:t+1∼P ?1:t+1
S(Pt+1(·|Y1:t),Yt+1) = EY1:t∼P ?1:t

[
EYt+1∼P ?t+1(·|Y1:t)S(Pt+1(·|Y1:t),Yt+1)

]

≥ EY1:t∼P ?1:t

[
EYt+1∼P ?t+1(·|Y1:t)S(P ?t+1(·|Y1:t),Yt+1)

]
,

(12)

so that:

ST (P1:T , P
?
1:T) ≥ 1

T

[
T−1∑

t=1

EY1:t+1∼P ?1:t+1
S(P ?t+1(·|Y1:t),Yt+1) + EY1∼P ?1 S(P ?1 ,Y1)

]

=
1

T

[
T−1∑

t=1

EY1:T∼P ?1:TS(P ?t+1(·|Y1:t),Yt+1) + EY1:T∼P ?1:TS(P ?1 ,Y1)

]

= ST (P ?1:T , P
?
1:T),

(13)

which proves that ST is proper.
To show that ST is strictly proper if S is, notice that the equality in Eq. (13) holds if and only if the

equalities in Eq. (11) and (12) are verified for all 1 ≤ t ≤ T ; if S is strictly proper, however, that requires
that P1 = P ?1 and Pt+1(·|y1:t) = P ?t+1(·|y1:t) for 1 ≤ t ≤ T − 1, which implies that P1:T = P ?1:T due to
distributions on Y1:T being determined by the marginal for Y1 and the conditional on Yt+1|Y1:t.

A.1.2 l-steps ahead prequential SR (Theorem 3.2)

We now go back to the specific setting considered in the main body of the paper. By discarding the model
parameter φ in the notation for simplicity, the generative network induces conditional distributions
Pt+l(·|y1:t) for Yt+l which only depend on the last k observations, i.e. Pt+l(·|y1:t) = Pt+l(·|yt−k+1:t).
Therefore, the joint distribution for Yk+l:T induced by the generative network satisfies the following
property:

Definition A.2. A probability distribution P1:T is k-Markovian with lag l if it can be decomposed as
follows, assuming it has density p1:T with respect to some base measure:

p1:T (y1:T) = p1:k+l−1(y1:k+l−1)
T−l∏

t=k

pt+l(yt+l|yt−k+1:t).

Setting l = 1 recovers the standard definition of k-Markovian models.
Notice also that the set of distributions which are k-Markovian with lag l is a subset of (k + l − 1)-

Markovian distributions, for which in fact:

p1:T (y1:T) = p1:k+l−1(y1:k+l−1)

T∏

t=k+l

pt(yt|yt−k−l+1:t−1)

= p1:k+l−1(y1:k+l−1)
T−l∏

t=k

pt+l(yt+l|yt−k+1:t+l−1);

the additional assumption in Definition A.2 with respect to (k+ l− 1)-Markovian is that the conditional
distribution for Yt is not influenced by the last l − 1 elements.

In our setting, we can only access Pt+l(·|yt−k+1:t) for k ≤ t ≤ T − l; the marginals P1:k+l−1 are not
available. Therefore, we consider the following quantity:

Sk,lT (Pk+l:T (·|y1:k+l−1),yk+l:T) :=
1

T − l − k + 1

T−l∑

t=k

S(Pt+l(·|yt−k+1:t),yt+l); (14)

in contrast to Eq. (8) in the main text, we make explicit the dependence on k and l in the notation
for Sk,lT and introduce a scaling constant for simplicity, which however does not impact the following

17

arguments. The notation in Eq. (14) only makes sense if P is a (k + l − 1)-Markovian distribution, as
otherwise y1:k+l−1 would also appear explicitly in the conditioning of Pt+l on the right hand-side. The
notation therefore makes sense for P obtained from the generative network, as that is k-Markovian
with lag l which, as mentioned above, is a specific case of (k + l − 1)-Markovian.

As mentioned in the main text, Sk,lT is the prequential score and is a SR for distributions over
Yk+l:T |y1:k+l−1 which are (k + l − 1)-Markovian.

From Eq. (14), we can define the expected SR as:

Sk,lT (Pk+l:T (·|y1:k+l−1),P ?k+l:T (·|y1:k+l−1)) :=

EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S
k,l
T (Pk+l:T (·|y1:k+l−1),Yk+l:T).

For the scoring rule defined in Eq. (14), the following Theorem holds, which we state in more
generality with respect to Theorem 3.2 in the main text:

Theorem A.3. If the scoring rule S is proper, then, for all choices of y1:k+l−1, the prequential score
Sk,lT in Eq. (14) is proper for distributions on Yk+l:T |y1:k+l−1 which are (k+ l− 1)−Markovian; namely,
the following inequality holds:

Sk,lT (P ?k+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)) ≤ Sk,lT (Pk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)), (15)

where P1:T and P ?1:T are (k + l − 1)-Markovian.
If additionally S is strictly proper, then, for all choices of y1:k+l−1, S

k,l
T is proper for distributions

on Yk+l:T |y1:k+l−1 which are k-Markovian with lag l, i.e. the equality in Eq. (15) only holds if
Pk+l:T (·|y1:k+l−1) = P ?k+l:T (·|y1:k+l−1), where P1:T and P ?1:T are k-Markovian with lag l.

The prequential score Sk+l
T is non-strictly proper for distributions that are (k+ l− 1)-Markovian but

not k-Markovian with lag l. In fact, it builds forecasts from P ?k+l:T (·|y1:k+l−1) with lead of l timesteps,
meaning that the information included in observations yt+1:t+l−1 is not used in formulating the forecast
for Yt+l. It is therefore unable to distinguish between different distributions for Yk+l:T |y1:k+l−1 which
have the same conditionals at lead l, but for which the conditionals change if one takes into account
yt+1:t+l−1 in forecasting Yt+l. Therefore, you need to restrict the class of distributions to those in
which the value yt+1:t+l−1 does not impact the distribution for Yt+l in order to get strict propriety.

We now prove the Theorem.

Proof. The proof steps follow those of Theorem A.1.
By definition of proper SR, we have that, for all t ≥ k:

EYt+l∼P ?t+l(·|yt−k+1:t)S(P ?t+l(·|yt−k+1:t),Yt+l) ≤ EYt+l∼P ?t+l(·|yt−k+1:t)S(Pt+l(·|yt−k+1:t),Yt+l) (16)

for any conditional distribution Pt+l(·|yt−k+1:t) and for any values yt−k+1:t.
For the expected prequential SR, it holds that:

Sk,lT (P ?k+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1))

= EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S
k,l
T (P ?k+l:T (·|y1:k+l−1),Yk+l:T)

= EY1:T∼P ?1:T (·|y1:k+l−1)S
k,l
T (P ?k+l:T (·|Y1:k+l−1),Yk+l:T)

=
1

T − l − k + 1

T−l∑

t=k

EY1:T∼P ?1:T (·|y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l)

=
1

T − l − k + 1

T−l∑

t=k

EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l);

18

the second equality in the Equation above is trivial but we use it to simplify notation in the following.
Now:

EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l)

= EYt−k+1:t∼P ?t−k+1:t(·|y1:k+l−1)

[
EYt+l∼P ?t+l(·|Yt−k+1:t,y1:k+l−1)S(P ?t+l(·|Yt−k+1:t),Yt+l)

]

= EYt−k+1:t∼P ?t−k+1:t(·|y1:k+l−1)

[
EYt+l∼P ?t+l(·|Yt−k+1:t)S(P ?t+l(·|Yt−k+1:t),Yt+l)

]

≤ EYt−k+1:t∼P ?t−k+1:t(·|y1:k+l−1)

[
EYt+l∼P ?t+l(·|Yt−k+1:t)S(Pt+l(·|Yt−k+1:t),Yt+l)

]

= EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l);

(17)

in the first equality above, we have marginalized over all components of Y1:t+l which do not appear in
the expected quantity and we have used the definition of conditional probability together with the tower
property of expectations. In the second equality, we have exploited the (k + l − 1)−Markov property3

of P ? which ensures that the distribution for Yt+l does not depend on Y1:t−k. The inequality holds for
any conditional distribution Pt+l(·|yt−k+1:t) and for any values yt−k+1:t thanks to Eq. (16). Finally,
the last equality is obtained via the reverse of the argument used for the first one.

Now, we can write:

Sk,lT (P ?k+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1))

≤ 1

T − l − k + 1

T−l∑

t=k

EY1:t+l∼P ?1:t+l(·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l)

=
1

T − l − k + 1

T−l∑

t=k

EY1:T∼P ?1:T (·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l)

=
1

T − l − k + 1

T−l∑

t=k

EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S(Pt+l(·|Yt−k+1:t),Yt+l)

= Sk,lT (Pk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)),

(18)

which proves that Sk,lT is proper for distributions over Yk+l:T |y1:k+l−1 which are (k + l)−Markov.
Now, consider P1:T and P ?1:T to be k-Markovian with lag l. The equality in Eq. (18) holds

if and only if the equality in Eq. (17) is verified for all k ≤ t ≤ T − l; if S is strictly proper,
however, that requires that Pt+l(·|yt−k+1:t) = P ?t+l(·|yt−k+1:t) for k ≤ t ≤ T − l, which implies that
Pk+l:T (·|y1:k+l−1) = P ?k+l:T (·|y1:k+l−1) due to the k-Markov with lag l property.

A.2 Proof and precise statement of the consistency result (Theorem 3.3)

We follow here the notation introduced at the start of Appendix A.1. Specifically, P ? denotes the data
generating distribution for (Y1,Y2, . . . ,Yt, . . .) = (Yt)t.

We consider a model class parametrized by a set of parameters φ. For such models, we assume the
conditional distributions P φt+l(·|y1:t) for Yt+l only depends on the last k observations, i.e. P φt+l(·|y1:t) =

P φt+l(·|yt−k+1:t). Additionally, we assume that the conditional distribution does not depend explicitly on
t, such that P φt+l(·|yt−k+1:t) = P φ(l)(·|yt−k+1:t), where the bracketed subscript denotes that the forecast
is for l steps ahead. This is the setting considered in the main manuscript.

In this specific case, therefore, the scoring rule used to penalize the forecast P φ(l)(·|yt−k+1:t) against
the verification yt+l (Eq. 14) becomes:

S(P φ(l)(·|yt−k+1:t),yt+l).

3Technically, you can relax the (k+l−1)−Markov assumption for the full sequence to assuming (k+l−1)−Markovianity
for Y1:2k+l−1 and independence of Y2k+l:T on Y1:k+l−1; this is however quite artificial.

19

Therefore, the prequential score defined in Eq. (14) becomes:

Sk,lT (P φk+l:T (·|y1:k+l−1),yk+l:T) =
1

T − l − k + 1

T−l∑

t=k

S(P φ(l)(·|yt−k+1:t),yt+l); (19)

notice that we introduce here a scaling constant for simplicity; that however does not impact any of the
following arguments. Recall also the definition of the expected prequential score:

Sk,lT (P φk+l:T (·|y1:k+l−1),P ?k+l:T (·|y1:k+l−1))

:= EYk+l:T∼P ?k+l:T (·|y1:k+l−1)S
k,l
T (P φk+l:T (·|y1:k+l−1),Yk+l:T),

(20)

for which we will use the following notation for brevity:

S̃k,lT (P φk+l:T (·|y1:k+l−1)) := Sk,lT (P φk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1))

As discussed in Appendix A.1.2 and shown in Theorem A.3, provided that S is strictly proper, Sk,lT
is a strictly proper SR for k-Markovian with lag l distributions over Yk+l:T |y1:k+l−1, for all values of
y1:k+l−1.

We will also consider the minimizer of the expectation of the expected prequential SR in Eq. (20)
with respect to the initial data y1:k+l−1, i.e.:

Sk,l?T (P φk+l:T) : = EY1:k+l−1∼P?1:k+l−1
Sk,lT (P φk+l:T (·|Y1:k+l−1), P ?k+l:T (·|Y1:k+l−1))

= EY1:T∼P ?1:TS
k,l
T (P φk+l:T (·|Y1:k+l−1),Yk+l:T).

(21)

Theorem 3.3 in the main text states that the value of φ minimizing the empirical prequential SR
(Eq. (19)) converges to both the minimizer of the expected (with respect to Yk+l:T |y1:k+l−1 for fixed
y1:k+l−1) SR in Eq. (20) and to the minimizer of the expected (with respect to Yk+l:T) SR in Eq. (21).
We will split the original result in two separate statements, which hold under similar Assumptions.

We now set notation and introduce the relevant quantities. From now onwards, we will drop k and
l for brevity in the definition of ST ; all following results hold for each fixed value of k and l. We write
therefore ST (P φk+l:T (·|y1:k+l−1),yk+l:T) = Sk,lT (P φk+l:T (·|y1:k+l−1),yk+l:T), S̃T (P φk+l:T (·|y1:k+l−1)) =

S̃k,lT (P φk+l:T (·|y1:k+l−1)) and S?T (P φk+l:T) = Sk,l?T (P φk+l:T). Next, we define the minimizers of the empirical
and expected prequential scores:

φ̂T (y1:T) : ST (P
φ̂T (y1:T)
k+l:T (·|y1:k+l−1),yk+l:T) = min

φ∈Φ
ST (P φk+l:T (·|y1:k+l−1),yk+l:T)

φ̃T (y1:k+l−1) : S̃T (P
φ̃T (y1:k+l−1)
k+l:T (·|y1:k+l−1)) = min

φ∈Φ
S̃T (P φk+l:T (·|y1:k+l−1)).

φ?T : S?T (P
φ?T
k+l:T) = min

φ∈Φ
S?T (P φk+l:T).

Convergence of φ̂T to φ?T We first introduce Assumptions and give the statement linking φ̂T (y1:T)
to φ?T (Theorem A.4). We require the sequence (Yt)t to be stationary and to satisfy some mixing
properties. Specifically, the following Assumptions are required. The precise definition of the mixing
properties is postponed to later in Appendix A.2.2.

A1 Φ is compact.

A2 φ?T is unique; additionally, there exist a metric d on Φ such that, for all ε > 0:

lim inf
T→+∞

{
min

φ:d(φ,φ?T)≥ε
S?T (P φk+l:T)− S?T (P

φ?T
k+l:T)

}
> 0

A3 (Asymptotic stationarity) Let Gt be the marginal distribution of Yt−k+1:t+l for t ≥ k; then,
(T − l − k + 1)−1

∑T−l
t=k Gt converges weakly to some probability measure on Yk+l as T →∞.

20

A4 Both conditions below are satisfied:

(a) (Mixing) Either one of the following holds:

i. (Yt)t is α-mixing with mixing coefficient of size r/(2r − 1), with r ≥ 1, or
ii. (Yt)t is ϕ-mixing with mixing coefficient of size r/(r − 1) with r > 1.

(b) (Moment boundedness) Define H(yt−k+1:t+l) = supφ∈Φ |S(P φ(·|yt−k+1:t),yt+l)|; then,

sup
t≥k

E
[
H(Yt−k+1:t+l)

r+δ
]
<∞

for some δ > 0, for the value of r corresponding to the condition above which is satisfied.

S being strictly proper and P φk+l:T (·|y1:k+l−1) being a well specified model for Yk+l:T |y1:k+l−1 is a
sufficient (but not necessary) condition for the uniqueness of φ?T in Assumption A2 (see Lemma A.8
in Appendix A.2.1), provided that the parameters φ are identifiable. Notice that neural networks
do not have identifiable parameters; we require however this assumption to prove the Theorem. In
case the parameters are not identifiable, we believe it is possible to show asymptotic convergence
of the distributions minimizing the empirical and expected prequential SR, instead of convergence
of the parameters. Extending the proof to this setting is technically challenging, as the distance in
Assumption A1 needs to be replaced by a divergence between probability distributions. We leave this
extension for future work.

The rest of Assumption A2 is a standard condition ensuring that the function which we are
minimizing does not get flatter and flatter around the optimal value as T → ∞. The asymptotic
stationarity condition in Assumption A3 is implied by the stronger condition of the marginals Gt
being the same for each t. Assumption A4(a) is a mixing condition, ensuring that the dependence
between two different Yt,Y

′
t decreases as t− t′ →∞ (defined precisely in Appendix A.2.2). Finally,

Assumption A4(b) is a boundedness condition; for the specific case of the Kernel and Energy SR, that
can be verified by simpler conditions as discussed in Lemma A.9 in Appendix A.2.1.

We will now state our first result.

Theorem A.4. If Assumptions A1, A2, A3 and A4 hold, and if (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l)
is continuous on Yk+l × Φ, then d(φ̂T (Y1:T), φ?T)→ 0 with probability 1 with respect to (Yt)t ∼ P ?.

The Theorem above relies on a generic consistency result (discussed in Appendix A.2.3) for which
a uniform law of large numbers is required. Such a uniform law of large numbers can be obtained
under stationarity and mixing conditions; we report in Appendix A.2.4 a result ensuring this. We prove
Theorem A.4 by combining the above two elements in Appendix A.2.5.

Convergence of φ̃T to φ?T We now give the statement linking φ̂T (y1:T) to φ̃T (y1:t) (Theorem A.6).
We will require similar Assumptions to what considered above, but holding for fixed values of y1:k+l−1:

B1 φ̃T (y1:k+l−1) is unique; additionally, there exist a metric d on Φ such that, for all ε > 0:

lim inf
T→+∞

{
min

φ:d(φ,φ̃T (y1:k+l−1))≥ε
S̃T (P φk+l:T (·|y1:k+l−1))− S̃T (P

φ̃T (y1:k+l−1)
k+l:T (·|y1:k+l−1))

}
> 0

B2 (Asymptotic stationarity) Let G̃t be the marginal distribution of Yt−k+1:t+l|y1:k+l−1 for t ≥ k;
then,

(T − l − k + 1)−1
T−l∑

t=k

G̃t

converges weakly to some probability measure on Yk+l as T →∞.

B3 Both conditions below are satisfied:

(a) (Mixing) Let (Xt)t ∼ P ?(·|y1:k+l−1); then, either one of the following holds:

21

i. (Xt)t is α-mixing with mixing coefficient of size r/(2r − 1), with r ≥ 1, or
ii. (Xt)t is ϕ-mixing with mixing coefficient of size r/(r − 1) with r > 1.

(b) (Moment boundedness) Define H(yt−k+1:t+l) = supφ∈Φ |S(P φ(·|yt−k+1:t),yt+l)|; then,

sup
t≥k

EYt−k+1:t+l|y1:k+l−1

[
H(Yt−k+1:t+l)

r+δ
]
<∞

for some δ > 0, for the value of r corresponding to the condition above which is satisfied.

We can therefore state the following:

Theorem A.5. If Assumptions A1, B1, B2 and B3 hold, and if (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l)
is continuous on Yk+l×Φ, then d(φ̂T (y1:k+l−1,Yk+l:T), φ̃T (y1:k+l−1))→ 0 with probability 1 with respect
to (Yt)t ∼ P ?(·|y1:k+l−1).

Notice how now in φ̂T we split the dependence with respect to the fixed y1:k+l−1 and the random
Yk+l:T .

Proof. Theorem A.5 is proven following the same steps as Theorem A.4 (given in Appendix A.2.5).
Specifically, Corollary A.16 can be used to obtain a uniform Law of Large Numbers such as in
Assumption A5. Then, an equivalent to Theorem A.13 can be shown following the exact same steps.
That implies the result of Theorem A.5.

The above result is saying that, for the sequence (Yt)t conditioned on y1:k+l−1, if stationarity and
mixing conditions hold for a fixed y1:k+l−1, then the empirical minimizer φ̂T converges to the minimizer
φ̃, both with fixed y1:k+l−1.

Clearly, if the above Assumptions hold for all values of y1:k+l−1, the statement also does. This is
made precise by the following Corollary:

Corollary A.6. If Assumptions A1, B1, B2 and B3 hold almost surely for Y1:k+l−1 ∼ P ?1:k+l−1, and
if (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l) is continuous on Yk+l × Φ, then

d(φ̂T (Y1:k+l−1,Yk+l:T), φ̃T (Y1:k+l−1))→ 0

with probability 1 with respect to (Yt)t ∼ P ?.

Proof. If Assumptions A1, B1, B2 and B3 hold almost surely for Y1:k+l−1 ∼ P ?1:k+l−1, and under
the continuity condition, the following statement holds with probability 1 with respect to Y1:k+l−1 ∼
P ?1:k+l−1: “d(φ̂T (Y1:k+l−1,Yk+l:T), φ̃T (Y1:k+l−1)) → 0 with probability 1 with respect to (Yt)t ∼
P ?(·|Y1:k+l−1),” from which the result follows by considering that a statement holding with probability
1 with respect to (Yt)t ∼ P ?(·|Y1:k+l−1), for each value Y1:k+l−1 takes, and with probability 1 with
respect to Y1:k+l−1 ∼ P ?1:k+l−1 holds almost surely with respect to (Yt)t ∼ P ?.

Putting the two results together Finally, we also have the following, which is a precise version of
Theorem 3.3 in the main text:

Corollary A.7. If Assumptions A1, A2, A3 and A4 hold, and if Assumptions B1, B2 and B3 hold
almost surely for Y1:k+l−1 ∼ P ?1:k+l−1, and if (yt−k+1:t+l, φ)→ S(P φ(·|yt−k+1:t),yt+l) is continuous on
Yk+l × Φ, then

1. d(φ̂T (Y1:T), φ?T)→ 0 with probability 1 with respect to (Yt)t ∼ P ?;

2. d(φ̂T (Y1:T), φ̃T (Y1:k+l−1))→ 0 with probability 1 with respect to (Yt)t ∼ P ?;

3. d(φ?T , φ̃T (Y1:k+l−1))→ 0 with probability 1 with respect to Y1:k+l−1 ∼ P ?1:k+l−1.

22

Proof. Under the Assumptions, both Theorem A.4 and Corollary A.6 hold, from which the first two
statements follow. For the last statement, applying the triangle inequality yields:

d(φ?T , φ̃T (Y1:k+l−1)) ≤ d(φ̂T (Y1:T), φ̃T (Y1:k+l−1)) + d(φ̂T (Y1:T), φ?T)→ 0.

As the left-hand side above depends only on Y1:k+l−1, the result holds almost surely with respect to
Y1:k+l−1 ∼ P ?1:k+l−1.

In case in which all the Assumption hold, therefore, the minimizer of the expected prequential SR
over Yk+l:T |Y1:k+l−1 converges to the minimizer of the expected prequential SR over Y1:T , which is a
deterministic quantity. Therefore, this result is saying that for large T , φ̃T does not depend on the
initial conditions, as it is intuitive under mixing and stationarity of (Yt)t. Indeed, the same holds for
the empirical minimizer φ̂T , in which no expectation at all is computed.

In the next Subsections, we will discuss how to verify the Assumptions in some specific cases, and
then move to introducing preliminary results for proving Theorem A.4, which we do in Appendix A.2.5.
As mentioned above, the proof of Theorem A.5 follows the same steps as the one for Theorem A.4, but
with the corresponding set of Assumptions. For this reason, we do not give that in details.

A.2.1 Verifying the Assumptions in specific cases

Before delving into proving Theorem A.4, we here show sufficient conditions under which φ?T and
φ̃T (y1:k+l−1) are unique and under which Assumption A4(b) holds. Specifically, for the former
(Lemma A.8), we consider the model P φk+l:T (·|y1:k+l−1) to be a well specified model and the scoring
rule S to be strictly proper; for the latter, we consider instead the Kernel and Energy SR and obtain
more precise conditions, which are easily satisfied.

First, consider uniqueness of φ?T :

Lemma A.8. If S is strictly proper and P φk+l:T (·|y1:k+l−1) is a well specified model for Yk+l:T |y1:k+l−1,
for all values of T , then φ?T and φ̃T (y1:k+l−1) are unique for all values of T and y1:k+l−1.

Proof. If P φ is well specified, there exists a φ? such that P ?k+l:T (·|y1:k+l−1) = P φ
?

k+l:T (·|y1:k+l−1) ∀ T, ∀ y1:k+l−1.
Notice that this implies that P ? is k-Markovian with lag l. If S is strictly proper, we have by Theorem A.3
that:

φ? = arg min
φ∈Φ

ST (P φk+l:T (·|y1:k+l−1), P ?k+l:T (·|y1:k+l−1)

is unique, for all y1:k+l−1. Therefore, φ̃T (y1:k+l−1) = φ? for all values of y1:k+l−1. Recalling now the
definition of S?T (P φk+l:T) in Eq. (21), notice that the quantity inside the expectation EY1:k+l−1∼P ?1:k+l−1

is minimized uniquely by φ = φ?, so that S?T (P φk+l:T) is also uniquely minimized by φ?T = φ?.

We now consider Assumption A4(b):

Lemma A.9. Assumption A4(b) is verified in the following cases:

• Kernel SR When S = Sk for a kernel k which satisfies either of the following:

1. with probability 1 with respect to (Yt)t ∼ P ?4, for all t ≥ k and φ, E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

|k(X,X′)| <
∞ and E

X∼Pφ
(l)

(·|Yt−k+1:t)
|k(X,Yt+l)| <∞;

2. k is bounded, i.e. |k(y,x)| < +∞ ∀ y,x ∈ Y (this implies the above condition).

• Energy SR When S = S
(β)
E and either of the following holds:

1. with probability 1 with respect to (Yt)t ∼ P ?, for all t ≥ k and φ, E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

||X−
X′|| <∞ and E

X∼Pφ
(l)

(·|Yt−k+1:t)
||X−Yt+l|| <∞;

4Put simply, this condition means that the following has to be true for all observed sequences (yt)t which can be
generated by the distribution P ?.

23

2. the space Y is bounded, such that ||y|| ≤ B <∞ ∀ y ∈ Y (this implies the first condition);

3. β ≥ 1, E||Yt+l||β(r+δ) <∞ for all t and, with probability 1 with respect to (Yt)t ∼ P ?, for
all t and φ, E

X∼Pφ
(l)

(·|yt−k+1:t)
||X||β ≤ B <∞.

Proof. First, notice that supt≥k E
[
H(Yt−k+1:t+l)

r+δ
]
<∞ ⇐⇒ E

[
H(Yt−k+1:t+l)

r+δ
]
<∞ ∀ t ≥ k.

Kernel SR Consider the kernel SR S = Sk:

|Sk(P φ(l)(·|yt−k+1:t),yt+l)| = |EX,X′∼Pφ
(l)

(·|yt−k+1:t)
[k(X,X′)− 2k(X,yt+l)]|

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

|k(X,X′)− 2k(X,yt+l)|

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

[|k(X,X′)|+ 2|k(X,yt+l)|].
(22)

We first show why condition 1 yields the result. If, with probability 1 with respect to (Yt)t ∼ P ?, for
all t ≥ k and φ:

E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

|k(X,X′)| ≤ κ1 <∞ and E
X∼Pφ

(l)
(·|Yt−k+1:t)

|k(X,Yt+l)| ≤ κ2 <∞,

we have that:
|Sk(P φ(l)(·|Yt−k+1:t),Yt+l)| ≤ κ1 + 2κ2 <∞,

from which:

E
[
H(Yt−k+1:t+l)

r+δ
]

= E



(

sup
φ∈Φ
|Sk(P φ(l)(·|Yt−k+1:t),Yt+l)|

)r+δ


≤ E



(

sup
φ∈Φ

κ1 + 2κ2

)r+δ
 = (κ1 + 2κ2)r+δ <∞.

Now, condition 2 implies condition 1. Therefore, condition 2 yields the result.

Energy SR Notice how the kernel SR recovers the Energy SR when k(y,x) = −||y− x||β ; condition
1 for the kernel SR corresponds therefore to condition 1 for the Energy SR; therefore, the result holds
under condition 1.

For condition 2 for the Energy SR, notice that

|k(y,x)| = ||y − x||β ≤ (||y||+ ||x||)β ≤ (2B)β,

where the first inequality comes from applying the triangle inequality and the second comes from
condition 2 for the Energy SR. Therefore, condition 2 for the Energy SR implies condition 2 for the
corresponding Kernel SR, from which the result follows.

Finally, an alternative route leads to condition 3. Specifically, for the Energy SR, Equation (22)
becomes:

|S(β)
E (P φ(l)(·|yt−k+1:t),yt+l)| ≤ E

X,X′∼Pφ
(l)

(·|yt−k+1:t)
[||X−X′||β + 2||X− yt+l||β]

≤ E
X,X′∼Pφ

(l)
(·|yt−k+1:t)

[(||X||+ ||X′||)β + 2(||X||+ ||yt+l||)β]

by triangle inequality. Now, for any β > 1, a, b > 0, (a+ b)β ≤ 2β−1(aβ + bβ);5 therefore,

|S(β)
E (P φ(l)(·|yt−k+1:t),yt+l)| ≤ E

X,X′∼Pφ
(l)

(·|yt−k+1:t)
[2β−1(||X||β + ||X′||β) + 2β(||X||β + ||yt+l||β)].

5This inequality is well-known and can be shown by convexity.

24

From the above, we have that:

E
[
H(Yt−k+1:t+l)

r+δ
]

= E



(

sup
φ∈Φ
|S(β)
E (P φ(l)(·|Yt−k+1:t),Yt+l)|

)r+δ


≤ E



(

sup
φ∈Φ

E
X,X′∼Pφ

(l)
(·|Yt−k+1:t)

[2β−1(||X||β + ||X′||β) + 2β(||X||β + ||Yt+l||β)]

)r+δ
 .

If, with probability 1 with respect to (Yt)t ∼ P ?, for all t ≥ k and φ, E
X∼Pφ

(l)
(·|Yt−k+1:t)

||X||β ≤ B <∞,

we have therefore:

E
[
H(Yt−k+1:t+l)

r+δ
]
≤ E

[(
2β−1(B +B) + 2β(B + ||Yt+l||β)

)r+δ]

= E
[(

2β+1B + 2β||Yt+l||β
)r+δ]

.

Now, denote δ′ = r + δ; δ′ > 1 by assumption. It holds therefore, as above, (a+ b)δ
′ ≤ 2δ

′−1(aδ
′
+ bδ

′
)

for a, b > 0; we have therefore that:

E
[
H(Yt−k+1:t+l)

δ′
]
≤ 2−1

(
2β+2B

)δ′
+ 2δ

′(β+1)−1E||Yt+l||βδ
′
;

the above expression is therefore bounded whenever E||Yt+l||β(r+δ) <∞.

A.2.2 Defining the mixing conditions

Here, we give the precise definitions for the mixing conditions stated in Assumption A4(a). More
background on the following definitions can be found, for instance, in Bradley, 2005.

Definition A.10 (Measures of dependence). Consider a probability space (Ω,F , P); for any two sigma
algebras A ⊆ F and B ⊆ F , define:

αP (A,B) := sup
A∈A,B∈B

|P (A ∩B)− P (A)P (B)| ,

ϕP (A,B) := sup
A∈A,B∈B:P (B)>0

|P (B|A)− P (B)| .

For 1 ≤ r ≤ s ≤ ∞, define the Borel σ-algebra of events generated from (Yr,Yr+1, . . . ,Ys−1,Ys)
as Gsr . Then, we define:

αY(m) = sup
r≥1

αP ?(Gr1 ,G+∞
r+m), ϕY(m) = sup

r≥1
ϕP ?(Gr1 ,G+∞

r+m).

Definition A.11. The random sequence (Yt)t is said α-mixing if αY(m)→ 0 as m→∞ and ϕ-mixing
if ϕY(m)→ 0 as m→∞. It can be seen that ϕ-mixing implies α-mixing [Domowitz and White, 1982].

Definition A.12. We say that the mixing coefficients ϕY(m) are of size s [Domowitz and White, 1982]
if ϕY(m) = O(m−λ) for λ > s; similar definition can be given for the coefficients αY(m).

In Bradley [2005], the definitions for the quantities above consider a sequence (Xt)t∈Z, and defined:

αX(m) = sup
r∈Z

αP (Gr−∞,G+∞
r+m),

for some distribution P , and similar for φX(m). Our definition can be cast in this way by defining
Xt = Yt ∀ t ≥ 1 and Xt = 0 ∀ t ≤ 0.

25

A.2.3 Generic consistency result

We consider here the following Assumption:

A5 (Uniform Law of Large Numbers.) The following holds with probability 1 with respect to
(Yt)t ∼ P ?:

sup
φ∈Φ

∣∣∣ST (P φk+l:T (·|Y1:k+l−1),Yk+l:T)− S?T (P φk+l:T)
∣∣∣→ 0.

We give here a consistency result more general than Theorem A.4, as in fact Assumption A5 is
more general than the stationarity and mixing conditions in Assumption A3 and A4.

Theorem A.13 (Theorem 5.1 in Skouras, 1998). If Assumptions A2 and A5 hold, then d(φ̂T (Y1:T), φ?T)→
0 with probability 1 with respect to (Yt)t ∼ P ?.

We report here a proof for ease of reference.

Proof. By the definition of lim inf, for a fixed ε > 0, Assumption A2 implies that there exists T1(ε)
such that:

δ(ε) :=

{
inf

T>T1(ε)
min

φ:d(φ,φ?T)≥ε
S?T (P φk+l:T)− S?T (P

φ?T
k+l:T)

}
> 0. (23)

Due to Assumption A5, with probability 1 with respect to (Yt)t ∼ P ?, there exists T2((Yt)t, δ(ε))
such that, for all T > T2((Yt)t, δ(ε)):

∣∣∣ST (P
φ?T
k+l:T (·|Y1:k+l−1),Yk+l:T)− S?T (P

φ?T
k+l:T)

∣∣∣ < δ(ε)/2,

which implies:

S?T (P
φ?T
k:T) > ST (P

φ?T
k:T (·|Y1:k+l−1),Yk+l:T)− δ(ε)/2 ≥ ST (P

φ̂T (Y1:T)
k+l:T (·|Y1:k+l−1),Yk+l:T)− δ(ε)/2, (24)

where the second inequality is valid thanks to the definition of φ̂T (Y1:T).
Similarly, by exploiting Assumption A5 again, with probability 1 with respect to (Yt)t ∼ P ?, there

exists T3((Yt)t, δ(ε)) such that, for all T > T3((Yt)t, δ(ε)):
∣∣∣S?T (P

φ̂T (Y1:T)
k+l:T)− ST (P

φ̂T (Y1:T)
k+l:T (·|Y1:k+l−1),Yk+l:T)

∣∣∣ < δ(ε)/2. (25)

Then, with probability 1 with respect to (Yt)t ∼ P ?, for all T > max{T2((Yt)t, δ(ε)), T3((Yt)t, δ(ε))}:

S?T (P
φ̂T (Y1:T)
k+l:T)− S?T (P

φ?T
k+l:T) ≤ S?T (P

φ̂T (Y1:T)
k+l:T)− ST (P

φ̂T (Y1:T)
k+l:T (·|Y1:k+l−1),Yk+l:T) + δ(ε)/2

< δ(ε)/2 + δ(ε)/2 = δ(ε),
(26)

where the first inequality is thanks to Eq. (24) and the second is thanks to Eq (25).
Now, Eq. (23) and Eq. (26) both hold with probability 1 with respect to (Yt)t ∼ P ? for all

T > max{T1(δ(ε)), T2((Yt)t, δ(ε)), T3((Yt)t, δ(ε))}. Notice that Eq. (26) ensures that the difference
considered in Eq. (23) is smaller than δ(ε) for φ = φ̂T (Y1:T); However, Eq. (23) states that the
same difference is larger or equal than δ(ε) for all φ : d(φ, φ?T) ≥ ε, from which it follows that
d(φ̂T (Y1:T), φ?T) < ε with probability 1 with respect to (Yt)t ∼ P ?. As ε is however arbitrary, it follows
that, with probability 1 with respect to (Yt)t ∼ P ?:

d(φ̂T (Y1:T), φ?T)→ 0.

26

A.2.4 Uniform law of large numbers

We will here show how the Uniform Law of Large Numbers in Assumption A5 can be obtained from
the stationarity and mixing conditions in A3 and A4. To this aim, we exploit a result in Pötscher and
Prucha [1989].

We consider now a generic sequence of random variables Zt ∈ Z, and a function q : Z ×Φ→ R. Let
us denote now by F the Borel σ-algebra generated by the sequence (Zt)t, ΩZ the space of realizations
of (Zt)t and Q? the probability distribution for it.

Consider the following Assumptions:

C1 (Dominance condition) For D(z) = supφ∈Φ |q(z, φ)|, there is some δ > 0 such that

sup
t

1

N

N∑

t=1

E
[
D(Zt)

1+δ
]
<∞.

C2 (Asymptotic stationarity) Let Q?t be the marginal distribution of Zt; then, N−1
∑N

t=1Q
?
t converges

weakly to some probability measure F on Z.

C3 (Pointwise law of large numbers) For some metric ρ on Φ, let:

q̄(z, φ, τ) := sup
φ′:ρ(φ,φ′)<τ

q(z, φ′), q(z, φ, τ) := inf
φ′:ρ(φ,φ′)<τ

q(z, φ′).

For all φ ∈ Φ, there exists a sequence of positive numbers τi(φ) such that τi(φ)→ 0 as i→∞,
and such that for each τi the random variables q̄(Zt, φ, τi) and q(Zt, φ, τi) satisfy a strong law of
large numbers, i.e., as N →∞:

1

N

N∑

t=1

{q̄(Zt, φ, τi)− E [q̄(Zt, φ, τi)]} → 0

1

N

N∑

t=1

{
q(Zt, φ, τi)− E

[
q(Zt, φ, τi)

]}
→ 0,

where the two above equations hold with probability 1 with respect to (Zt)t ∼ Q?.

Theorem A.14 (Theorem 2 in Pötscher and Prucha, 1989). If Assumptions A1, C1, C2 and C3
hold and if q(z, φ) is continuous on Z × Φ, then:

(i) with probability 1 with respect to (Zt)t ∼ Q?,

lim
t→∞

sup
φ∈Φ

∣∣∣∣∣
1

N

N∑

t=1

{q(Zt, φ)− E [q(Zt, φ)]}
∣∣∣∣∣ = 0;

(ii)
∫
q(z, φ)dF (z) exists and is finite, continuous on Φ and, with probability 1 with respect to

(Zt)t ∼ Q?,

lim
t→∞

sup
φ∈Φ

∣∣∣∣∣
1

N

N∑

t=1

q(Zt, φ)−
∫
q(z, φ)dF (z)

∣∣∣∣∣ = 0;

We now give sufficient conditions for Assumption C3 to hold. In fact, sequences for which the
dependence of Zt on a past observation Zt−m decreases to 0 quickly enough as m → ∞ satisfy
Assumption C3. This can be made more rigorous considering the definitions of α- and ϕ-mixing
sequences given in Appendix A.2.2.

Given the sequence (Zt)t, for 1 ≤ r ≤ s ≤ ∞, define the Borel σ-algebra of events generated from
(Zr,Zr+1, . . . ,Zs−1,Zs) as Fsr . Then, we define the mixing coefficients for (Zt)t as:

αZ(m) = sup
r≥1

αQ?(Fr1 ,F+∞
r+m), ϕZ(m) = sup

r≥1
ϕQ?(Fr1 ,F+∞

r+m).

27

Similarly to before, the random sequence (Zt)t∈Z is said α-mixing if αZ(m) → 0 as m → ∞ and
ϕ-mixing if ϕZ(m)→ 0 as m→∞. Additionally, we say that the mixing coefficients ϕZ(m) are of size
s Domowitz and White [1982] if ϕZ(m) = O(m−λ) for λ > s; similar definition can be given for the
coefficients αZ(m).

Let us define now the following additional assumption:

C4 Both conditions below hold:

(a) (Mixing) Either one of the following holds:
i. (Zt)t is α-mixing with mixing coefficient of size r/(2r − 1), with r ≥ 1, or
ii. (Zt)t is ϕ-mixing with mixing coefficient of size r/(r − 1) with r > 1.

(b) (Moment boundedness) supt E
[
D(Zt)

r+δ
]
< ∞ for some δ > 0, for the value of r corre-

sponding to the condition above which is satisfied.

We give the following Lemma, which is contained in Corollary 1 in Pötscher and Prucha, 1989.

Lemma A.15 (Corollary 1 in Pötscher and Prucha, 1989). Assumption C4 implies Assumptions C1
and C3.

We can therefore state the following.

Corollary A.16. If Assumptions A1, C2 and C4 hold and if q(z, φ) is continuous on Z × Φ, then
the conclusions of Theorem A.14 are satisfied.

A.2.5 Proving Theorem A.4

Here, we finally prove Theorem A.4 by combining the generic consistency result in Appendix A.2.3
with the uniform law of large number result reported in Appendix A.2.4.

Notice that, in stating Theorem A.14 and Corollary A.16, we have considered a generic sequence
(Zt)t. In the setting of our interest, however, we want to study the prequential scoring rule defined
in Eq. (19), and use Corollary A.16 to state conditions under which Assumption A5, and therefore
Theorem A.13, hold.

To this aim, we identify nowN = T−k−l+1, Zt = Yt:t+k+l−1 and q(Zt, φ) = S(P φ(l)(·|Yt:t+k−1),Yt+k+l−1);
which leads to:

1

N

N∑

t=1

q(Zt, φ) =
1

T − k − l + 1

T−k−l+1∑

t=1

S(P φ(l)(·|Yt:t+k−1),Yt+k+l−1)

=
1

T − k − l + 1

T−l∑

t=k

S(P φ(l)(·|Yt−k+1:t),Yt+l)

= ST (P φk+l:T (·|Y1:k+l−1),Yk+l:T).

The distribution Q? on (Zt)t considered in the previous section is induced therefore by P ? over (Yt)t.
We want now to relate αY(m) and ϕY(m) to αZ(m) and ϕZ(m); in order to do so, notice that, as

Zt = Yt:t+k+l−1, Fsr = Gs+k+l−1
r . Therefore,

αZ(m) = sup
r≥1

αZ(Fr1 ,F+∞
r+m) = sup

r≥1
αY(Gr+k+l−1

1 ,G+∞
r+m)

= sup
r≥k+l

αY(Gr1 ,G+∞
r+m−k−l+1) ≤ sup

r≥1
αY(Gr1 ,G+∞

r+m−k−l+1) = αY(m− k − l + 1),

and, similarly, ϕZ(m) ≤ ϕY(m− k − l + 1). As k is fixed, ϕY(m)→ 0 =⇒ ϕZ(m)→ 0 as m→∞,
which is to say, (Yt)t being ϕ-mixing implies (Zt)t is ϕ-mixing as well, and similar for α-mixing.
Additionally, if the mixing coefficients for (Zt)t have a given size s, then the mixing coefficients for
(Yt)t will have the same size, and viceversa. In fact, ϕZ(m) ≤ ϕY(m− k − l + 1) = O(m−λ) implies
either ϕY(m) = O(m−λ) or ϕY(m) = o(m−λ), and similar for α-mixing.

We are now ready to prove Theorem A.4.

28

Proof of Theorem A.4. Notice that, by identifying Zt = Yt:t+k+l−1 and q(Zt, φ) = S(P φ(l)(·|yt:t+k−1),yt+k+l−1),
Assumption A3 corresponds to Assumption C2, and Assumption A4 implies Assumption C4, due to
the conservation of size of the mixing coefficients discussed above.

Together with Assumption A1 and the continuity condition, therefore, Corollary A.16 holds, from
which you have that, with probability 1 with respect to (Yt)t ∼ P ?,

lim
T→∞

sup
φ∈Φ

∣∣∣∣∣
1

T − k − l + 1

T−l∑

t=k

{
S(P φ(l)(·|Yt−k+1:t),Yt+l)− E

[
S(P φ(l)(·|Yt−k+1:t),Yt+l)

]}∣∣∣∣∣ = 0;

which, recalling the definition of ST (P φk+l:T (·|Y1:k+l−1),Yk+l:T) and S?T (P φk+l:T) in Eqs. (19) and (20),
is the same as Assumption A5. Thanks to this and Assumption A2, therefore, Theorem A.13 holds,
from which the result follows.

B More details on the different methods

B.1 Training generative networks via divergence minimization

B.1.1 f-GAN

The f -GAN approach is defined by considering an f -divergence in place of D in Eq. (1) in the main
text:

Df (P ?||P φ) =

∫

Y
pφ(y)f

(
p?(y)

pφ(y)

)
dµ(y),

where f : R+ → R is a convex, lower-semicontinuous function for which f(1) = 0, and where pφ and p?

are densities of P φ and P ? with respect to a base measure µ. Let now domf denote the domain of f .
By exploiting the Fenchel conjugate f∗(t) = supu∈domf

{ut− f(u)}, Nowozin et al., 2016 obtain the
following variational lower bound:

Df (P ?||P φ) ≥ sup
c∈C

(EY∼P ?c(Y)− EX∼Pφf
∗(c(X))) ,

which holds for any set of functions C from Y to domf∗ . By considering a parametric set of functions
C = {cψ : Y → domf∗ , ψ ∈ Ψ}, a surrogate to the problem in Eq. (1) in the main text becomes:

min
φ

max
ψ

(EY∼P ?cψ(Y)− EX∼Pφf
∗(cψ(X))) .

In the conditional setting discussed in Section 2.1 in the main text, the above generalizes to:

min
φ

max
ψ

Eθ∼Π

(
EY∼P ?(·|θ)cψ(Y;θ)− EY∼Pφ(·|θ)f

∗(cψ(Y;θ))
)
, (28)

By denoting as P ?θ,Y and P φθ,Y the joint distributions over Θ×Y , Eq. (28) corresponds to the relaxation
of Df (P ?θ,Y||P

φ
θ,Y) under the constraint that the marginal of P φθ,Y for θ is equal to Π.

In order to solve the problem in Eq. (28), alternating optimization over φ and ψ can be performed;
in Algorithm 1, we show a single epoch (i.e., a loop on the full training dataset) of conditional f -GAN
training; for simplicity, we consider here using a single pair (θi,yi) to estimate the expectations in
Eq. (28) (i.e., the batch size is 1), but using a larger number of samples is indeed possible. Notice how
in Algorithm 1 we update the critic once every generator update; however, multiple critic updates can
be done.

B.1.2 Wasserstein-GAN (WGAN)

Arjovsky et al., 2017 exploited the following expression for the 1-Wasserstein distance:

W
(
P ?, P φ

)
= sup

c:‖c‖L≤1
EY∼P? [c(Y)]− EX∼Pφ [c(X)], (29)

29

Algorithm 1 Single epoch conditional f -GAN training.
Require: Parametric map hφ, critic network cψ, learning rates ε, γ.
for each training pair (θi,yi) do
Sample z ∼ Q
Obtain x̂φi = hφ(z,θi)

Set ψ ← ψ + γ · ∇ψ
[
cψ(yi,θi)− f∗(cψ(x̂φi ,θi))

]

Set φ← φ− ε · ∇φ
[
− f∗(cψ(x̂φi ,θi))

]

end for

where ||c||L denotes the Lipschitz constant of the function c. The different notation here highlights
how W is a symmetric function. Plugging Eq. (29) into Eq. (1) in the main text leads again to an
adversarial setting; here, the Lipschitz constraint can be enforced by clipping the weights of the neural
network to a given range Arjovsky et al. [2017]. Alternatively, this hard constraint can be relaxed to a
soft one via gradient penalization Gulrajani et al. [2017].

B.1.3 MMD-GAN

A specific case of the MMD (Eq. 3 in the main text) is the Energy Distance:

E
(
P ?, P φ

)
= E

[
2||X−Y||β2 − ||X−X′||β2 − ||Y −Y′||β2

]
,

where β ∈ (0, 2) and || · ||2 denotes the `2 norm. In Bellemare et al., 2017, the above is used to define
an algorithm to train generative networks, termed Cramer-GAN.

In Li et al. [2017], the authors proposed to compute the kernel k in Eq. (3) in the main text on a
learnable transformation cψ, whose weights are trained to maximize the discrepancy. Specifically, that
leads to a new discrepancy measure:

max
ψ

E
[
k
(
cψ(X), cψ(X′)

)
− 2k(cψ(X), cψ(Y)) + k

(
cψ(Y), cψ(Y′)

)]
,

which is a meaningful divergence between probability distributions [Li et al., 2017]. In this setting, again
people recur to alternating maximization steps over ψ with minimization over φ. This, as mentioned
in the main text, leads to biased estimates of gradients. However, for MMD-GANs, training is made
easier by applying the gradient regularization techniques described in Gulrajani et al. [2017], as shown
in Bińkowski et al. [2018].

Notice that, in minimizing Equations (3) in the main text with respect to φ, one could ignore the
term involving Y,Y′; however, when introducing cψ, this cannot be done as that term depends on ψ as
well.

In the conditional setting, a natural approach for MMD-GAN is minimizing Eθ∼Π[MMD2
(
P ?(·|θ), P φ(·|θ)

)
],

as MMD2(P ?θ,Y, P
φ
θ,Y) would require computing kernel over Θ× Y.

Notice however how, in estimating MMD2
(
P ?(·|θ), P φ(·|θ)

)
, multiple samples Y,Y′ ∼ P ?(·|θ) are

used (see Eq. 3 in the main text), but those are unavailable (empirical samples are of the form in Eq. 4 in
the main text); as discussed before, however, k(Y,Y′) does not depend on φ, so that it can be discarded
in the minimization process. However, if the data is transformed via cψ, k(cψ(Y), cψ(Y′)) cannot be
dropped anymore, which makes the problem intractable. In Bellemare et al. [2017], this problem is
solved by replacing k(cψ(Y), cψ(Y′)) with some other tractable terms; however, that approach leads to
an ill-defined statistical divergence, as it can be minimized by two distributions which are not the same
[Bińkowski et al., 2018].

C Unbiased estimate for gradient of ST

We discuss here how we can get unbiased gradient estimates for the prequential SR in Eq. (8) in the
main text with respect to the parameters of the generative network φ. This follow closely what is done
in Chapter 4.

30

Recall now we want to solve:

φ̂T (y1:T) := arg min
φ

ST (P φk+l:T (·|y1:k+l−1),yk+l:T),

where, for simplicity, we re-define ST in Eq. (8) in the main text with an additional scaling constant:

ST (P φk+l:T (·|y1:k+l−1),yk+l:T) :=
1

T − l − k + 1

T−l∑

t=k

S(P φt+l(·|yt−k+1:t),yt+l). (30)

In order to do this, we exploit Stochastic Gradient Descent (SGD), which requires unbiased estimates
of ST (P φk+l:T (·|y1:k+l−1),yk+l:T) (notice we are not talking here of unbiased estimates with respect to
the observed sequence y1:T).

Notice how, for all the Scoring Rules used across this work, as well as any weighted sum of those,
we can write: S(P,y) = EY,Y′∼P [g(Y,Y′,y)] for some function g; namely, the SR is defined through
an expectation over (possibly multiple) samples from P . That is the form exploited in Sec. 1.2.2 in the
introduction of the present thesis to obtain unbiased SR estimates.

Now, we will use this fact to obtain unbiased estimates for the objective in Eq. (30). For brevity, let
us now denote J(φ) = ST (P φk+l:T (·|y1:k+l−1),yk+l:T), which we can rewrite as (letting N = T − l−k+ 1
for brevity):

J(φ) =
1

N

T−l∑

t=k

EY,Y′∼Pφ(·|yt−k+1:t)

[
g(Y,Y′,yt+l)

]

=
1

N

T−l∑

t=k

EZ,Z′∼Q
[
g(hφ(Z;yt−k+1:t), hφ(Z′;yt−k+1:t),yt+l)

]
,

where we used the fact that P φ is the distribution induced by a generative network with transformation
hφ; this is called the reparametrization trick [Kingma and Welling, 2014]. Now:

∇φJ(φ) = ∇φ
1

N

T−l∑

t=k

EZ,Z′∼Q
[
g(hφ(Z;yt−k+1:t), hφ(Z′;yt−k+1:t),yt+l)

]

=
1

N

T−l∑

t=k

EZ,Z′∼Q
[
∇φg

(
hφ(Z;yt−k+1:t), hφ(Z′;yt−k+1:t),yt+l

)]
.

In the latter equality, the exchange between expectation and gradient is not a trivial step, due to the
non-differentiability of functions (such as ReLU) used in hφ. Luckily, Theorem 5 in Bińkowski et al.
[2018] proved the above step to be valid almost surely with respect to a measure on Φ, under mild
conditions on the NN architecture.

We can now easily obtain an unbiased estimate of the above. Additionally, Stochastic Gradient
Descent usually consider a small batch of training samples, obtained by considering a random subset
T ⊆ {k, k + 1 . . . , n − l − 1, n − l}. Therefore, the following unbiased estimator of ∇φJ(φ) can be
obtained, with samples zt,j ∼ Q, j = 1, . . . ,m:

∇̂φJ(φ) =
1

|T |
∑

t∈T

1

m(m− 1)

m∑

i,j=1
i 6=j

∇φg(hφ(zt,i;yt−k+1:t), hφ(zt,j ;yt−k+1:t),yt+l).

In practice, we then use autodifferentiation libraries (see for instance Paszke et al., 2019) to compute
the gradients in the above quantity.

In Algorithm 2, we train a generative network for a single epoch using a scoring rule S for which
unbiased estimators can be obtained by using more than one sample from P φ. As in Algorithm 1, we
use a single pair (θi,yi) to estimate the gradient.

31

Algorithm 2 Single epoch generative-SR training.
Require: Parametric map hφ, SR S, learning rate ε.
for each training pair (θi,yi) do
Sample multiple z1, . . . , zm
Obtain x̂φi,j = hφ(zj ,θi)

Obtain unbiased estimate Ŝ(P φ(·|θi),yi) from x̂φi,j
Set φ← φ− ε · ∇φŜ(P φ(·|θi),yi)

end for

D Performance measures for probabilistic forecast

D.1 Deterministic performance measures

We discuss two measures of performance of a deterministic forecast ŷt+l for a realization yt+l; across
our work, we take ŷt+l to be the mean of the probability distribution P φ(·|yt−k+1:t).

D.1.1 Normalized RMSE

We first introduce the Root Mean-Square Error (RMSE) as:

RMSE =

√√√√ 1

N

N∑

t=1

(ŷt+l − yt+l)2,

where we consider here for simplicity t = 1, . . . , N . From the above, we obtain the Normalized RMSE
(NRMSE) as:

NRMSE =
RMSE

maxt{yt+l} −mint{yt+l}
.

NRMSE = 0 means that ŷt+l = yt+l for all t’s.

D.1.2 Coefficient of determination

The coefficient of determination R2 measures how much of the variance in {yt+l}Nt=1 is explained by
{ŷt+l}Nt=1. Specifically, it is given by:

R2 = 1−
∑N

t=1 (yt+l − ŷt+l)2

∑N
t=1 (yt+l − ȳ)2

,

where ȳ = 1
N

N∑
t=1

yt+l. When R2 = 1, ŷt+l = yt+l for all t’s.

D.2 Calibration error

We review here a measure of calibration of a probabilistic forecast; this measure considers the univariate
marginals of the probabilistic forecast distribution P φ(·|yt−k+1:t); for component i, let us denote that
by Pφ,i(·|yt−k+1:t).

The calibration error [Radev et al., 2020] quantifies how well the credible intervals of the probabilistic
forecast Pφ,i(·|yt−k+1:t) match the distribution of the verification Yt+l,i. Specifically, let α?(i) be the
proportion of times the verification yt+l,i falls into an α-credible interval of Pφ,i(·|yt−k+1:t), computed
over all values of t. If the marginal forecast distribution is perfectly calibrated for component i,
α?(i) = α for all values of α ∈ (0, 1).

We define therefore the calibration error as the median of |α?(i)− α| over 100 equally spaced values
of α ∈ (0, 1). Therefore, the calibration error is a value between 0 and 1, where 0 denotes perfect
calibration.

In practice, the credible intervals of the predictive are estimated using a set of samples from
P φ(·|yt−k+1:t).

32

E Additional experimental details

E.1 Tuning γ in the Gaussian kernel

We define the kernel Score by using the Gaussian kernel:

k(x,y) = exp

(
−‖x− y‖22

2γ2

)
.

Similar to what was suggested for instance in Park et al., 2016, we set γ in the Gaussian kernel to
be the median of the pairwise distances ||yi − yj || over all pairs of observations yi,yj , i 6= j in the
validation window.

E.2 Lorenz63 model

E.2.1 Model definition

The Lorenz63 model [Lorenz, 1963] is defined by the following differential equations:

dx

dt
= σ(y − x),

dy

dt
= x(ρ− z)− y,

dz

dt
= xy − βz.

To generate our dataset, we consider σ = 10, ρ = 28, β = 2.667 and integrate the model using
Euler scheme with dt = 0.01 starting from x = 0, y = 1, z = 1.05. We discard the first 10 time units
and integrate the model for additional 9000 time units, during which we record the value of y every
∆t = 0.3 and discard the values of x and z.

E.2.2 Neural Networks architecture

We experiment with a Fully Connected Neural Network (FCNN) and a Recurrent Neural Network
(RNN). The latter performs better as it is more suitable to capture the temporal structure in the
data; we therefore report results for that in the main text, while results with FCNN are reported in
Appendix F.1.2.

FCNN The generative network is a Fully Connected NN with 5 hidden layers which takes as input
the concatenation of the values in the observation window and a latent variable Z with size 1, and
outputs a forecast for the next timestep. For the deterministic setting trained with the regression loss,
the architecture is analogous, the only difference being that no latent variable Z is concatenated to the
input.

In the adversarial settings, the critic is a fully connected NN again, which takes as input the
concatenation of the values in the observation window and the observation/forecast. In the GAN case,
the critic outputs a value between 0 and 1 indicating how confident the critic believes that is a fake
sample. In the WGAN-GP case, the critic output is a real number.

RNN For the generative network, the observation window is passed through a Gated Recurrent Units
(GRU, Cho et al. [2014]) layer with depth 1 and hidden size 8 or 16 (that is a tuning hyperparameter,
the choice of which we discuss below). The output of the GRU layer is then concatenated to the latent
variable Z with size 1 and passed through 3 fully connected layers, which output a forecast for the next
timestep. For the deterministic setting trained with the regression loss, the architecture is analogous,
the only difference being that no latent variable Z is concatenated to the output of the GRU layer.

In the adversarial settings, the critic has a GRU layer with depth 1 that, analogously to the
generative net, processes the information in the past observation window. As above, we try hidden

33

sizes 8 and 16. Then, the output of the GRU layer and the observation/forecast are concatenated and
transformed by 3 fully connected layers. In the GAN case, the critic outputs a value between 0 and 1
indicating how confident the critic believes that is a fake sample. In the WGAN-GP case, the critic
output is a real number.

E.2.3 Training hyperparameters

For the experiments on Lorenz63, we considered the batch size to be 1000. For the SR and deterministic
approaches, we used Adam optimizer and tested the following learning rate values: 10−i for i = 1, . . . , 6
for the SR methods and 10−i−1 and 3 · 10−i−1 for i = 1, . . . , 3 for regression. For the RNN setting, we
fix the GRU hidden size to 8. We report then the performance achieved with the learning rate yielding
lower loss on the validation set, which is indicated in Table 3.

Table 3: Optimal learning rate values for SR and regression (deterministic) approaches for Lorenz63.

Energy Kernel Energy-Kernel Regression

FCNN 0.01 0.01 0.01 0.003
RNN 0.01 0.001 0.01 0.001

For the GAN and WGAN-GP approach, we used Adam optimizer and we tested the following
learning rate values for both critic and generative network: 10−i and 3 · 10−i for i = 1, . . . , 7. In
total, those are 14 learning rate values. For the FCNN case, we fixed additionally the number of critic
training steps each generator training steps to 1 for GAN and 5 for WGAN-GP. Overall, therefore,
we run 142 = 196 experiments for GAN and WGAN-GP respectively. For the RNN, we hidden size
8 and 16; further, we experiment with 4 number of critic training steps for WGAN-GP (1, 3, 5, 10),
in order to have the best possible results to compare with our SR methods, while we left the number
of critic training steps to 1 for GAN. Overall, therefore, we had 2 · 142 = 392 experiments for GAN
and 2 · 4 · 142 = 1568 for WGAN-GP; notice the extremely larger number number of experiments for
the adversarial approaches with respect to SR ones, which highlights an advantage of our approach.
We stress that such a number of trials could be possible only for the low-dimensional setting of the
Lorenz63 and Lorenz96 models, in which training is cheap, but not in real-life applications.

Additionally, the adversarial approaches do not allow to select hyperparameters according to loss on
a validation set, as the generator loss depends on the current state of the discriminator (i.e., there is no
absolute loss scale). Therefore, we report results for 3 different configurations for GAN and WGAN-GP,
maximizing either deterministic performance (1) or calibration (2), or striking the best balance between
these two (3). The resulting learning rates are in Table 4 below.

Table 4: Optimal hyperparameter values for adversarial approaches for Lorenz63 model.

GAN (1) GAN (2) GAN (3) WGAN-GP (1) WGAN-GP (2) WGAN-GP (3)

FCNN Generator l.r. 0.03 0.00003 0.0001 0.0003 0.0003 0.003
Critic l.r. 0.01 0.03 0.0003 0.01 0.003 0.01

RNN

Generator l.r. 0.0003 0.001 0.0001 0.003 0.0003 0.0003
Critic l.r. 0.03 0.01 0.001 0.001 0.1 0.03
GRU hidden size 16 8 8 8 8 8
Critic training steps 1 1 1 5 5 5

34

E.3 Lorenz96 model

E.3.1 Model definition

The Lorenz96 model [Lorenz, 1996] is a toy representation of atmospheric behavior containing slow (x)
and fast (y) evolving variables.

Specifically, the evolution of the variables is determined by the following differential equations:

dxk
dt

= −xk−1(xk−2 − xk+1)− xk + F − hc

b

kJ∑

j=J(k−1)+1

yj ;

dyj
dt

= −cbyj+1(yj+2 − yj−1)− cyj +
hc

b
Xint[(j−1)/J]+1.

where k = 1, . . . ,K, and j = 1, . . . , JK, and cyclic boundary conditions are assumed, so that index
k = K + 1 corresponds to k = 1 and similarly for j. The above equations connect the fast and slow
variables in a cyclic way. Additionally, xk reciprocally depends on J fast variables.

Following Gagne et al., 2020, we take K = 8, J = 32, h = 1, b = 10, c = 10 and F = 20. We
then integrate the above equations with RK4 scheme with dt = 0.001, starting from xk = yj = 0
for k = 2, . . . ,K and j = 2, . . . JK and x1 = y1 = 1. We discard the first 2 time units and record
the values of x every ∆t = 0.2 (which corresponding to roughly one atmospheric day with respect to
predictability, Gagne et al., 2020). We do this for additional 4000 time units, and split the resulting
dataset in training, validation and test according to the proportions 60%, 20% and 20%.

E.3.2 Neural Networks architecture

We experiment with a Fully Connected Neural Network (FCNN) and a Recurrent Neural Network
(RNN). The latter performs better as it is more suitable to capture the temporal structure in the
data; we therefore report results for that in the main text, while results with FCNN are reported in
Appendix F.2.2.

FCNN The generative network is a Fully Connected NN with 5 hidden layers which takes as input
the concatenation of the values in the observation window (flattened to an 8 · 10 = 80 dimensional
vector) and a latent variable Z with size 8, and outputs a forecast for the next timestep. For the
deterministic setting trained with the regression loss, the architecture is analogous, the only difference
being that no latent variable Z is concatenated to the input.

In the adversarial settings, the critic is a fully connected NN again, which takes as input the
concatenation of the flattened values in the observation window and the observation/forecast. In the
GAN case, the critic outputs a value between 0 and 1 indicating how confident the critic believes that
is a fake sample. In the WGAN-GP case, the critic output is a real number.

RNN For the generative network, the observation window is passed through a Gated Recurrent Units
(GRU, Cho et al. [2014]) layer with depth 1 and hidden size 32 or 64 (that is a tuning hyperparameter,
the choice of which we discuss below). The output of the GRU layer is then concatenated to the latent
variable Z with size 1 and passed through 3 fully connected layers, which output a forecast for the next
timestep. For the deterministic setting trained with the regression loss, the architecture is analogous,
the only difference being that no latent variable Z is concatenated to the output of the GRU layer.

In the adversarial settings, the critic has a GRU layer with depth 1 that, analogously to the
generative net, processes the information in the past observation window. As above, we try hidden
sizes 8 and 16. Then, the output of the GRU layer and the observation/forecast are concatenated and
transformed by 3 fully connected layers. In the GAN case, the critic outputs a value between 0 and 1
indicating how confident the critic believes that is a fake sample. In the WGAN-GP case, the critic
output is a real number.

35

E.3.3 Training hyperparameters

For the experiments on Lorenz96, we considered the batch size to be 1000. For the SR and deterministic
approaches, we used Adam optimizer and tested the following learning rate values: 10−i for i = 1, . . . , 6
for the SR methods and 10−i−1 and 3 · 10−i−1 for i = 1, . . . , 3 for regression. For the RNN setting, we
fix the GRU hidden size to 32. We report then the performance achieved with the learning rate yielding
lower loss on the validation set, which is indicated in Table 5.

Table 5: Optimal learning rate values for SR and regression (deterministic) approaches for Lorenz96.

Energy Kernel Energy-Kernel Regression

FCNN 0.001 0.001 0.001 0.0003
RNN 0.01 0.001 0.001 0.003

For the GAN and WGAN-GP approach, we used Adam optimizer and we tested the following
learning rate values for both critic and generative network: 10−i and 3 · 10−i for i = 1, . . . , 7. In
total, those are 14 learning rate values. For the FCNN case, we fixed additionally the number of critic
training steps each generator training steps to 1 for GAN and 5 for WGAN-GP. Overall, therefore,
we run 142 = 196 experiments for GAN and WGAN-GP respectively. For the RNN, we hidden size
8 and 16; further, we experiment with 4 number of critic training steps for WGAN-GP (1, 3, 5, 10),
in order to have the best possible results to compare with our SR methods, while we left the number
of critic training steps to 1 for GAN. Overall, therefore, we had 2 · 142 = 392 experiments for GAN
and 2 · 4 · 142 = 1568 for WGAN-GP; notice the extremely larger number number of experiments for
the adversarial approaches with respect to SR ones, which highlights an advantage of our approach.
We stress that such a number of trials could be possible only for the low-dimensional setting of the
Lorenz63 and Lorenz96 models, in which training is cheap, but not in real-life applications.

Additionally, the adversarial approaches do not allow to select hyperparameters according to loss on
a validation set, as the generator loss depends on the current state of the discriminator (i.e., there is no
absolute loss scale). Therefore, we report results for 3 different configurations for GAN and WGAN-GP,
maximizing either deterministic performance (1) or calibration (2), or striking the best balance between
these two (3). The resulting learning rates are in Table 6 below. Notice that, for GAN, there was no
configuration leading to intermediate performance between (1) and (2), so that the column for (3) is
left empty.

Table 6: Optimal hyperparameter values for adversarial approaches for Lorenz96 model.

GAN (1) GAN (2) GAN (3) WGAN-GP (1) WGAN-GP (2) WGAN-GP (3)

FCNN Generator l.r. 0.01 0.0001 - 0.0001 0.0001 0.0001
Critic l.r. 0.001 0.001 - 0.003 0.03 0.01

RNN

Generator l.r. 0.01 0.0001 0.0001 0.001 0.00003 0.0001
Critic l.r. 0.001 0.003 0.001 0.001 0.1 0.01
GRU hidden size 64 32 64 64 64 64
Critic training steps 1 1 1 10 1 5

E.4 WeatherBench dataset

E.4.1 Variogram Score

For the Variogram Score, we use a weight matrix which is inversely proportional to the Haversine
distance, which measures the angular distance between two points on the surface of a sphere. Specifically,

36

by denoting the longitude and latitude (in radians) of component i of y as loni, lati, the Haversine
distance is defined as:

dij = 2 arcsin

[√
sin2((lati− latj)/2) + cos(lati) cos(latj) sin2((loni− lonj)/2)

]

The physical distance along the sphere can be computed by multiplying the above by Earth’s radius
(approximately 6371 km). However, that is just a scaling constant, therefore we ignore it in defining
the variogram, which we take to be wij = 1/dij .

E.4.2 Choice of weights for summed scores

In the summed Scores (Energy-Variogram, Kernel-Variogram, Energy-Kernel and Patched Energy
Score), we need to select the weights for the two addends. Notice that, in the Patched Energy Score,
we consider the Energy Score computed on the full data to be the first addend, and the sum of the
Energy Scores computed on each patch to be the second addend.

We fix the weights such that the two addends have roughly the same magnitude. This results, for
the Energy-Variogram, Kernel-Variogram, Energy-Kernel, in the choices reported in the following Table:

Table 7: Weights for summed Scores.

Energy-Kernel Energy-Variogram Kernel-Variogram

α1 1/70 1 1
α2 1 6.94 · 10−7 1.3 · 10−8

For the Patched Energy Score, we use the following two setups in our experiments:

• Patches of size 16 separated by 8 grid points: this leads to 32 patches. As the Energy Score scales
as the data dimensionality, each of the 16× 16 = 256 patches has relative magnitude with respect
to Energy Score computed on the full WeatherBench grid 256/2048 = 0.125, where 32×64 = 2048
is the size of the WeatherBench grid. However, we sum the Score for each of the 32 patches, which
leads to a quantity with magnitude 4 times the one of the overall Energy Score.

• Patches of size 8 separated by 4 grid points: this leads to 128 patches. Following the argument
above, each 8× 8 = 64 patch gives a Score with relative magnitude 64/2048 = 0.03125. As there
are 128 patches, again the cumulative patched score has magnitude 4 times the overall one.

In both cases, we leave therefore α1 = α2 = 1, as the patched and overall components are already of
similar magnitude (they just differ by a factor 4).

E.4.3 Neural Networks architecture

For the generative network, we use a U-NET architecture [Olaf et al., 2015], which is an encoder-decoder
structure, where each subsequent layer of the encoder outputs a downscaled latent representation of
the input variables. The final output of the encoder is passed to a bottleneck layer, which performs
no up/down scaling. The output of this bottleneck layer is then passed to the decoder. Conversely
to the encoder, each subsequent layer of the decoder outputs an upscaled latent representation of the
bottleneck layer output. Additionally, skip connections allow information to pass directly between layers
of the encoder and decoder at the same scale; in this way, both large scale structures and high-frequency
information contributes to the output. The latent variable Z is summed to the latent representation
in the bottleneck layer. Figure 5 gives a graphical representation of the UNet. For the deterministic
setting trained with the regression loss, the architecture is analogous, the only difference being that no
latent variable Z is summed to the latent representation.

In the adversarial setups, we use the PatchGAN critic suggested in Isola et al. [2017]. Specifically,
this is a convolutional network which considers separate patches of the input image and outputs a

37

(a) Structure of each
block.

(b) Full U-NET architecture.

Figure 5: U-NET architecture.

numerical value for each patch, corresponding, in the original GAN setting of Goodfellow et al. [2014],
to the confidence with which the critic believes that patch is real, in contrast to generated from the
generative network. The GAN or WGAN loss is then computed for each of the output values and
averaged.

The PatchGAN critic employs some Batch Normalization layers; however, these cannot be used when
the gradient penalization strategy of WGAN-GP is used [Gulrajani et al., 2017]. Therefore, as suggested
in Gulrajani et al. [2017], we replace the Batch Normalization layers with Layer Normalization.

As before, in the GAN case, the critic outputs a value between 0 and 1 indicating how confident the
critic believes that is a fake sample. In the WGAN-GP case, the critic output is a real number.

E.4.4 Training hyperparameters

For the SR approaches for the WeatherBench dataset, we considered the batch size to be 128 for all
experiments, except for those on the Energy-Variogram and Kernel-Variogram score, which resulted in
GPU memory overflow with that batch size (in fact, computing the Variogram Score is an operation
requiring quadratic memory with respect to data size); for these two, we fixed therefore the batch size
to be 48. We used Adam optimizer and tested the following learning rate values 10−i for i = 1, . . . , 6.
We report then the performance achieved with the learning rate yielding lower loss on the validation
set in Table 8.

For the deterministic network trained via regression, we test learning rule values 10−i−1 for
i = 1, . . . , 4; additionally, we use an exponential learning rate scheduler which reduces the learning rate
by multiplying it by a factor γ every 10 training epochs. We also use a `2 weight regularization with
weight λ. We try different values of these parameters in conjunction with the learning rate values; the
ones with which best validation loss is obtained are γ = 0.8 and λ = 0.001. The best learning rate value
is reported in Table 8. Notice that the same learning rate value was optimal for the full (non-patched)
regression loss and for the patched loss in both configurations.

For the GAN and WGAN-GP approach, we used Adam optimizer and we tested the following
learning rate values for both critic and generative network: 10−i, i = 1, . . . , 7. In total, those are 7
learning rate values, which result in 72 = 49 experiments. Notice additionally that the adversarial
approaches does not allow to select hyperparameters according to loss on a validation set, as the
generator loss depends on the current state of the discriminator (i.e., there is no absolute loss scale).
Additionally, the adversarial approaches do not allow to select hyperparameters according to loss on a

38

Table 8: Optimal learning rate values for the SR and regression (deterministic) approaches for Weather-
Bench.

Regression Energy kernel Energy-Kernel Energy-Variogram

Learning rate 0.01 0.0001 0.0001 0.0001 10−5

Kernel-Variogram Patched Energy (8) Patched Energy (16)

Learning rate 10−5 10−5 10−5

validation set, as the generator loss depends on the current state of the discriminator (i.e., there is no
absolute loss scale). Therefore, we report results for 3 different configurations for GAN, maximizing
either deterministic performance (1) or calibration (2), or striking the best balance between these two
(3). For WGAN-GP, a single configuration maximized both calibration and deterministic performance,
so that we report that one. The resulting learning rates are in Table 9 below.

Table 9: Optimal hyperparameter values for adversarial approaches for WeatherBench.

GAN (1) GAN (2) GAN (3) WGAN-GP

Generator learning rate 0.001 10−6 10−5 10−5

Critic learning rate 0.0001 0.0001 10−5 0.01

F Additional experimental results

F.1 Lorenz63 model

F.1.1 Additional results with RNN

We report here additional results with the RNN used in the main text of the paper. Figure 6 contains
separate plots for all methods showing forecasts and realization for a portion of the test set (the same
used in Section 5.1 in the main text).

39

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Forecast

(a) Regression

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(b) Energy Score

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(c) Kernel Score

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(d) Energy-Kernel Score

100 120 140 160 180 200
t

20

10

0

10

y

True
Median forecast
99% credible region

(e) GAN (1)

100 120 140 160 180 200
t

20

0

20

40

60

y

True
Median forecast
99% credible region

(f) GAN (2)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(g) GAN (3)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(h) WGAN-GP (1)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(i) WGAN-GP (2)

100 120 140 160 180 200
t

20

10

0

10

y

True
Median forecast
99% credible region

(j) WGAN-GP (3)

Figure 6: Results for the Lorenz63 model with all considered methods, for RNN. The figures show
observations, median forecast and 99% credible interval for a portion of the test set. For each time-step,
forecasts are obtained using the previous observation window.

F.1.2 Results with FCNN

We report here results with the Fully Connected NN (FCNN). Table 10 contains performance metrics
for the different methods. Figure 7 contains separate plots for all methods showing forecasts and
realization for a portion of the test set. Overall, performances are worse than with RNN.

40

Table 10: Performance measures for forecasts obtained with the different methods, on the test set for
the Lorenz63 dataset, with FCNN.

Cal. error ↓ NRMSE ↓ R2 ↑
Regression - 0.0297 0.9682
Energy 0.0510 0.0293 0.9692
Kernel 0.1220 0.0155 0.9913
Energy-Kernel 0.0800 0.0188 0.9873
GAN (1) 0.4930 0.0651 0.8475
GAN (2) 0.3710 0.1890 -0.2857
GAN (3) 0.4580 0.1201 0.4805
WGAN-GP (1) 0.4410 0.1018 0.6269
WGAN-GP (2) 0.3260 0.1164 0.5120
WGAN-GP (3) 0.4330 0.1083 0.5776

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Forecast

(a) Regression

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(b) Energy Score

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(c) Kernel Score

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(d) Energy-Kernel Score

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(e) GAN (1)

100 120 140 160 180 200
t

60

40

20

0

20

y

True
Median forecast
99% credible region

(f) GAN (2)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(g) GAN (3)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(h) WGAN-GP (1)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(i) WGAN-GP (2)

100 120 140 160 180 200
t

20

10

0

10

20

y

True
Median forecast
99% credible region

(j) WGAN-GP (3)

Figure 7: Results for the Lorenz63 model with all considered methods, for FCNN. The figures show
observations, median forecast and 99% credible interval for a portion of the test set. For each time-step,
forecasts are obtained using the previous observation window.

41

F.2 Lorenz96 model

F.2.1 Additional results with RNN

We report here additional results with the RNN used in the main text of the paper.
Table 11 reports the average and standard deviation of the different performance measures computed

across the different data components. It contains the same results as Table 1 in the main text, where
however the standard deviation was not reported.

Figure 8 contains separate plots for all methods showing forecasts and realization for a portion of
the test set (the same used in Section 5.1 in the main text).

Table 11: Average and standard deviation of performance measures for forecasts obtained with the
different methods, on the test set for the Lorenz96 dataset, with the RNN. Metrics are computed on
each data component individually; then, the average and standard deviation is computed.

Cal. error ↓ NRMSE ↓ R2 ↑
Regression - 0.0198 ± 0.0006 0.9905 ± 0.0006
Energy 0.0205 ± 0.0176 0.0166 ± 0.0014 0.9933 ± 0.0012
Kernel 0.2196 ± 0.0123 0.0164 ± 0.0003 0.9935 ± 0.0003
Energy-Kernel 0.0104 ± 0.0060 0.0173 ± 0.0004 0.9928 ± 0.0004
GAN (1) 0.4644 ± 0.0062 0.0354 ± 0.0026 0.9696 ± 0.0044
GAN (2) 0.2671 ± 0.0559 0.1500 ± 0.0090 0.4537 ± 0.0619
GAN (3) 0.3700 ± 0.0369 0.0763 ± 0.0030 0.8590 ± 0.0099
WGAN-GP (1) 0.4134 ± 0.0051 0.0330 ± 0.0007 0.9736 ± 0.0009
WGAN-GP (2) 0.0565 ± 0.0339 0.1081 ± 0.0037 0.7165 ± 0.0200
WGAN-GP (3) 0.1648 ± 0.0444 0.0786 ± 0.0041 0.8502 ± 0.0149

42

0
10

x 1

0
10x 2

0
10

x 3

0
10

x 4
0

10
x 5

0
10x 6

0
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(a) Regression

100
10

x 1

0
10x 2

0
10

x 3

010x 4

0
10

x 5

0
10x 6

100
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(b) Energy Score.

100
10

x 1

0
10x 2

010x 3

100
10

x 4

100
10

x 5

010x 6

100
10x 7

100 120 140 160 180 200
t

0
10

x 8

(c) Kernel Score.

100
10

x 1

0
10x 2

0
10

x 3

0
10x 4
0

10
x 5

010x 6

100
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(d) Energy-Kernel Score

010

x 1

0
10x 2

0
10

x 3

0
10

x 4

0
10

x 5

0
10x 6

010

x 7

100 120 140 160 180 200
t

0
10

x 8

(e) GAN (1)

010x 1

0
20

x 2

0
10x 3

0
10x 4

010x 5

0
10x 6

0
20

x 7

100 120 140 160 180 200
t

0
10

x 8

(f) GAN (2)

100
10

x 1

0
10

x 2

010x 3

0
10

x 4

100
10

x 5

0
10

x 6

100
10x 7

100 120 140 160 180 200
t

0
10

x 8

(g) GAN (3)

0
10

x 1

0
10x 2

0
10

x 3

0
10

x 4

0
10x 5

0
10x 6

100
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(h) WGAN-GP (1)

0
20

x 1

100
10

x 2

0
20

x 3

0
20

x 4

0
20

x 5

0
20

x 6

0
20

x 7

100 120 140 160 180 200
t

0
20

x 8

(i) WGAN-GP (2)

0
20

x 1

0
10x 2

010x 3

100
10x 4

100
10x 5

0
20

x 6

100
10x 7

100 120 140 160 180 200
t

0
10x 8

(j) WGAN-GP (3)

Figure 8: Results for the Lorenz96 model with all considered methods for RNN. Panels show observations
(dashed line), median forecast (solid line) and 99% credible interval (shaded region) for a portion of the
test set. That is done for all 8 components of x. For each time-step, forecasts are obtained using the
previous observation window.

43

F.2.2 Results with FCNN

We report here results with the Fully Connected NN (FCNN). In Table 12 below, the average and
standard deviation of the different performance measures are computed across the different data
components, for the various methods. Figure 7 contains separate plots for all methods showing forecasts
and realization for a portion of the test set, as done before for FCNN. Overall, performances are worse
than with RNN.

Table 12: Average and standard deviation of performance measures for forecasts obtained with the
different methods, on the test set for the Lorenz96 dataset, with FCNN. Metrics are computed on each
data component individually; then, the average and standard deviation is computed.

Cal. error ↓ NRMSE ↓ R2 ↑
Regression - 0.0243 ± 0.0007 0.9857 ± 0.0008
Energy 0.1230 ± 0.0366 0.0176 ± 0.0015 0.9925 ± 0.0012
Kernel 0.1179 ± 0.0244 0.0175 ± 0.0009 0.9926 ± 0.0008
Energy-Kernel 0.1560 ± 0.0172 0.0145 ± 0.0005 0.9949 ± 0.0003
GAN (1) 0.4875 ± 0.0025 0.0873 ± 0.0039 0.8151 ± 0.0167
GAN (2) 0.3775 ± 0.0125 0.1113 ± 0.0079 0.6994 ± 0.0372
WGAN-GP (1) 0.2054 ± 0.0218 0.0762 ± 0.0017 0.8593 ± 0.0040
WGAN-GP (2) 0.1678 ± 0.0181 0.0928 ± 0.0025 0.7913 ± 0.0091
WGAN-GP (3) 0.2016 ± 0.0208 0.0823 ± 0.0022 0.8361 ± 0.0075

44

100
10

x 1

0
10x 2

0
10

x 3

0
10

x 4
0

10
x 5

0
10x 6

100
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(a) Regression

100
10

x 1

0
10

x 2

0
10

x 3

0
10x 4

0
10

x 5

0
10x 6

100
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(b) Energy Score.

010

x 1

0
10x 2

0
10

x 3

100
10

x 4

0
10

x 5

010x 6

100
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(c) Kernel Score.

100
10

x 1

0
10x 2

0
10

x 3

0
10x 4
0

10
x 5

0
10x 6

100
10

x 7

100 120 140 160 180 200
t

0
10

x 8

(d) Energy-Kernel Score

010x 1

010x 2

0
10x 3

0
10

x 4

0
10

x 5

010

x 6

010x 7

100 120 140 160 180 200
t

0
10

x 8

(e) GAN (1)

0
20

x 1

0
10x 2

10
0

10

x 3

010x 4

010x 5

100
10x 6

0
20

x 7

100 120 140 160 180 200
t

10
0

10

x 8

(f) GAN (2)

100
10x 1

0
10

x 2

100
10

x 3

010x 4

010x 5

100
10x 6

100
10x 7

100 120 140 160 180 200
t

100
10

x 8

(g) WGAN-GP (1)

010x 1

100
10

x 2

100
10x 3

100
10x 4

100
10x 5

100
10x 6

100
10x 7

100 120 140 160 180 200
t

100
10x 8

(h) WGAN-GP (2) (i) WGAN-GP (3)

Figure 9: Results for the Lorenz96 model with all considered methods for FCNN. Panels show
observations (dashed line), median forecast (solid line) and 99% credible interval (shaded region) for
a portion of the test set. That is done for all 8 components of x. For each time-step, forecasts are
obtained using the previous observation window.

45

F.3 WeatherBench dataset

F.3.1 Standard deviation of performance measures

In Table 13 below, the average and standard deviation of the different performance measures are
computed across the different data components.

Table 13: Average and standard deviation of performance measures for forecasts obtained with the
different methods, on the test section of the WeatherBench dataset. Metrics are computed on each
data component individually; then, the average and standard deviation is computed.

Cal. error ↓ NRMSE ↓ R2 ↑
Regression - 0.1162 ± 0.0256 0.5300 ± 0.2559
Patched Regression, 8 - 0.1147 ± 0.0238 0.5459 ± 0.2297
Patched Regression, 16 - 0.1144 ± 0.0227 0.5509 ± 0.2188
Energy 0.0863 ± 0.0407 0.1208 ± 0.0256 0.4968 ± 0.2596
Kernel 0.0797 ± 0.0455 0.1200 ± 0.0226 0.5097 ± 0.2226
Energy-Kernel 0.0794 ± 0.0433 0.1194 ± 0.0226 0.5150 ± 0.2225
Energy-Variogram 0.0899 ± 0.0541 0.1192 ± 0.0220 0.5177 ± 0.2180
Kernel-Variogram 0.1704 ± 0.0607 0.1203 ± 0.0238 0.5050 ± 0.2399
Patched Energy, 8 0.0550 ± 0.0348 0.1189 ± 0.0209 0.5217 ± 0.2064
Patched Energy, 16 0.0690 ± 0.0478 0.1186 ± 0.0208 0.5248 ± 0.2034
GAN (1) 0.4845 ± 0.0089 0.1573 ± 0.0391 0.1418 ± 0.5267
GAN (2) 0.3130 ± 0.1143 0.2487 ± 0.2248 -2.7970 ± 17.1346
GAN (3) 0.3625 ± 0.0545 0.1693 ± 0.0494 -0.0117 ± 0.8348
WGAN-GP 0.1009 ± 0.0679 0.1302 ± 0.0214 0.4340 ± 0.2271

F.3.2 Number of generator simulations for the SR methods

We study here the effect of using different numbers of simulations from the generative network for each
input (i.e., how many forecasts the generative network provides) during training. Recall in fact how the
Energy and Kernel Score need multiple samples to be estimated (see Sec. 1.2.2 in the introduction of
the present thesis).

Specifically, we consider the WeatherBench dataset and the Energy Score, with learning rate 0.0001,
which was found to be the optimal value when using 10 generator simulations (Appendix E.4.4). We
report the measures used in the main text in Table 14. Notice how good performance is achieved when
using as little as 2 or 3 simulations.

Table 14: Performance on test set of probabilistic forecasts obtained by training with the Energy Score,
with different numbers of generator simulations, for the WeatherBench dataset.

Cal. error ↓ NRMSE ↓ R2 ↑
2 0.0625 ± 0.0340 0.1211 ± 0.0258 0.4935 ± 0.2656
3 0.0701 ± 0.0342 0.1176 ± 0.0208 0.5338 ± 0.1961
5 0.0727 ± 0.0348 0.1164 ± 0.0198 0.5446 ± 0.1842
10 0.0863 ± 0.0407 0.1208 ± 0.0256 0.4968 ± 0.2596
20 0.0738 ± 0.0336 0.1179 ± 0.0206 0.5329 ± 0.1925
30 0.0738 ± 0.0350 0.1169 ± 0.0202 0.5407 ± 0.1864
50 0.0749 ± 0.0356 0.1172 ± 0.0203 0.5379 ± 0.1889

46

F.3.3 Computational cost and early stopping

In Table 15, we report the computational cost and the early stopping achieved by the methods presented
in the main text. All experiments are run on a Tesla v100 GPU, and methods are run for a maximum
of 1000 epochs. We use early stopping for the SR methods, but not for GAN and WGAN-GP, for which
early stopping is not possible. Recall that the methods with the Variogram Score used training batch
size 48, while all others used 128; this fact contributes to the larger computational time for both the
Energy-Variogram and Kernel-Variogram Scores.

Table 15: Per-epoch and total computational cost, in seconds, for the different methods reported in the
main text. We also report epoch at which early stopping occurred.

Per-epoch Computational cost Early stopping at epoch Total computational cost

Regression 8.45 250 2112
Patched Regression, 8 8.65 200 1729
Patched Regression, 16 8.5 250 2122
Energy 54.2 100 5417
Kernel 53.3 100 5329
Energy-Kernel 55.4 100 5542
Energy-Variogram 97.38 250 24346
Kernel-Variogram 95.52 250 24393
Patched Energy, 8 56.71 400 22682
Patched Energy, 16 54.93 450 24717
GAN (1) 8.36 - 8357
GAN (2) 8.37 - 8373
GAN (3) 8.33 - 8326
WGAN-GP 7.00 - 7000

Additionally, recall that, in order to achieve the performance reported in the main text, we tried
49 learning rate values for GAN and WGAN-GP, but only 6 for the SR methods. Therefore, the
total computing time for GAN and WGAN-GP is the one below multiplied by 49, with respect to 6
for the SR methods. Under that perspective, even the total computing time for Energy-Variogram
and Kernel-Variogram Scores is smaller than the one for the adversarial methods. For instance, if we
consider Energy-Variogram, do not use early stopping and run for 1000 epochs 6 times, we get a total of
97.38× 6000 = 584280 seconds. For WGAN-GP, we obtain instead 7.00× 49× 1000 = 343000 seconds,
which is only slightly smaller than the grand total for Energy-Variogram. For the latter, this number
does not take into account early stopping which, as can be seen from Table 15, reduces largely the total
number of epochs required for training.

Additionally, we highlight how, in the results used for Table 15, the SR methods were trained using
10 simulations from the generator for each observation window (i.e., 10 forecasts). In Appendix F.3.2,
we studied the effect of the number of simulations used on training, highlighted how the performance is
good with as little as 2 or 3 simulations. This greatly reduces the computational cost; we report that in
Table 16; for this study, the Energy Score was used.

47

Table 16: Per-epoch and total computational cost, in seconds, for the Energy Score for different numbers
of generator simulations. We also report epoch at which early stopping occurred.

Per-epoch Computational cost Early stopping at epoch Total computational cost

2 13.7 100 1371
3 19.1 100 1913
5 29.6 100 2967
10 54.2 100 5417
20 107.0 100 10700
30 159.2 100 15916
50 258.7 100 25865

F.3.4 Maps for a chosen date

Figure 10 reports realization and prediction with the deterministic regression methods; instead, in
Figures 11, 12, and 13 we report realization and 5 different forecasts obtained with all probabilistic
methods discussed in the main text (Section 5.2). In Figures 14, 15, and 16, we show the deviation of
the same realizations and forecasts from the forecast mean (obtained empirically from 100 forecasts). If
the forecast distribution is calibrated, the realization should look similar to the forecasts themselves.
You can see how this is roughly the case for the best performing SRs (as for instance the Patched
Energy Score in Figure 15) as well as for WGAN-GP, but it clearly not the case for GAN (Figure 16).

Realization Prediction

6

4

2

0

2

Z500, 2017-08-12

(a) Regression
Realization Prediction

6

4

2

0

2

Z500, 2017-08-12

(b) Patched Regression, 8
Realization Prediction

6

4

2

0

2

Z500, 2017-08-12

(c) Patched Regression, 16

Figure 10: Realization and prediction obtained with the Regression and Patched Regressions for a
specific date in the test set for the WeatherBench dataset.

48

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

10

8

6

4

2

0

2

4

Z500, 2017-08-12

(a) Energy Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

4

Z500, 2017-08-12

(b) Kernel Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

4

Z500, 2017-08-12

(c) Energy-Kernel Score

Figure 11: Realization and example of predictions obtained with the Energy, Kernel and Energy-Kernel
Scores for a specific date in the test set for the WeatherBench dataset.

49

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

4

Z500, 2017-08-12

(a) Energy-Variogram Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

Z500, 2017-08-12

(b) Kernel-Variogram Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

4

Z500, 2017-08-12

(c) Patched Energy Score (8)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

4

Z500, 2017-08-12

(d) Patched Energy Score (16)

Figure 12: Realization and example of predictions obtained with the Energy-Variogram, Kernel-
Variogram and Patched Energy Score (with patch size 8 and 16) for a specific date in the test set for
the WeatherBench dataset.

50

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

6

4

2

0

2

Z500, 2017-08-12

(a) GAN (1)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

4

Z500, 2017-08-12

(b) GAN (2)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

6

4

2

0

2

4

Z500, 2017-08-12

(c) GAN (3)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

8

6

4

2

0

2

4

Z500, 2017-08-12

(d) WGAN-GP

Figure 13: Realization and example of predictions obtained with the three considered GAN setups and
WGAN-GP for a specific date in the test set for the WeatherBench dataset. Notice how the second
GAN setup leads to unphysical features.

51

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

2

1

0

1

2

Z500, Centered in mean prediction, 2017-08-12

(a) Energy Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

3

2

1

0

1

2

Z500, Centered in mean prediction, 2017-08-12

(b) Kernel Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

2

1

0

1

2

3

Z500, Centered in mean prediction, 2017-08-12

(c) Energy-Kernel Score

Figure 14: Deviations of the realization and forecasts from the forecast mean (obtained empirically
from 100 forecasts) for the Energy, Kernel and Energy-Kernel Scores for a specific date in the test set
for the WeatherBench dataset. The absolute values of the forecasts used here are shown in Figure 11.

52

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

2

1

0

1

2

3

Z500, Centered in mean prediction, 2017-08-12

(a) Energy-Variogram Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

Z500, Centered in mean prediction, 2017-08-12

(b) Kernel-Variogram Score

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

3

2

1

0

1

2

3

Z500, Centered in mean prediction, 2017-08-12

(c) Patched Energy Score (8)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

2

1

0

1

2

3

Z500, Centered in mean prediction, 2017-08-12

(d) Patched Energy Score (16)

Figure 15: Deviations of the realization and forecasts from the forecast mean (obtained empirically
from 100 forecasts) for the Energy-Variogram, Kernel-Variogram and Patched Energy Score (with patch
size 8 and 16) for a specific date in the test set for the WeatherBench dataset. The absolute values of
the forecasts used here are shown in Figure 12.

53

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

Z500, Centered in mean prediction, 2017-08-12

(a) GAN (1)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

2

1

0

1

2

Z500, Centered in mean prediction, 2017-08-12

(b) GAN (2)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

1.0

0.5

0.0

0.5

1.0

1.5

Z500, Centered in mean prediction, 2017-08-12

(c) GAN (3)

Realization Prediction 1 Prediction 2

Prediction 3 Prediction 4 Prediction 5

2

1

0

1

2

3

Z500, Centered in mean prediction, 2017-08-12

(d) WGAN-GP

Figure 16: Deviations of the realization and forecasts from the forecast mean (obtained empirically
from 100 forecasts) for the three considered GAN setups and WGAN-GP for a specific date in the
test set for the WeatherBench dataset. Notice how, for the first and third GAN setups, the scale of
variations with respect to the predictive mean to the realization is much larger for the realization than
for the predictions. Instead, the second GAN setup leads to unphysical features. The absolute values of
the forecasts used here are shown in Figure 13.

54

F.3.5 Time-series plots for selected variables on the grid

In Figures 17, 18, 19 and 20, and show the time series evolution, for a portion of the test period, for 8
randomly selected locations on the WeatherBench grid, for all considered methods (the same locations
are shown for all methods). The dashed line represents the true evolution, the solid one the forecast
mean, while the shaded region represents 99% credible intervals.

7.5
5.0x 1

5
0

x 2

0.0
2.5x 3

2.753.003.25

x 4

2.753.003.25

x 5

2
4

x 6

2.5
0.0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(a) Regression

7.5
5.0x 1

5
0

x 2

0.0
2.5x 3

2.753.003.25

x 4

2.753.003.25

x 5
12
3x 6

2.5
0.0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(b) Patched Regression, 8

7.5
5.0x 1

5
0

x 2

0.0
2.5x 3

2.753.003.25

x 4

2.753.003.25

x 5

12
3x 6

2.5
0.0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(c) Patched Regression, 16

Figure 17: Results with the Regression and patched regression losses for 8 locations on the WeatherBench
grid. The panels show observations (dashed line) and median forecast (solid line)

7.5
5.0
2.5

x 1

5
0

x 2

0.0
2.5

x 3

2.53.03.5

x 4

2.5
3.0
3.5

x 5

0.0
2.5x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

5
0

x 8

(a) Energy Score.

7.5
5.0x 1

5
0

x 2

0.0
2.5

x 3

2.53.03.5

x 4

2.5
3.0
3.5

x 5

0.0
2.5x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

5
0

x 8

(b) Kernel Score.

7.5
5.0
2.5

x 1

5
0

x 2

0.0
2.5

x 3

2.53.03.5

x 4

3.0
3.5

x 5

0.0
2.5x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(c) Energy-Kernel.

Figure 18: Results with the the Energy, Kernel and Energy-Kernel Scores for 8 locations on the
WeatherBench grid. The panels show observations (dashed line), median forecast (solid line) and 99%
credible interval (shaded region) for a portion of the test set.

55

7.5
5.0x 1

5
0

x 2

0.0
2.5

x 3

2.53.03.5

x 4

2.5
3.0
3.5

x 5

0.0
2.5x 6

5
0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(a) Energy-Variogram Score

7.5
5.0x 1

5
0

x 2

0.0
2.5

x 3

2.5
3.0
3.5

x 4
2.753.003.25

x 5

0.0
2.5x 6

2.50.0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(b) Kernel-Variogram Score

7.5
5.0
2.5

x 1

5
0

x 2

0.0
2.5x 3

2.53.03.5

x 4

2.53.03.5

x 5

0.0
2.5x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(c) Patched Energy Score (8)

7.5
5.0
2.5

x 1

5
0

x 2

0.0
2.5x 3

2
3x 4

2
3x 5

0.0
2.5x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(d) Patched Energy Score (16)

Figure 19: Results with the Energy-Variogram, Kernel-Variogram and Patched Energy Score (with
patch size both 8 and 16) Scores for 8 locations on the WeatherBench grid. The panels show observations
(dashed line), median forecast (solid line) and 99% credible interval (shaded region) for a portion of the
test set.

56

7.5
5.0x 1

5
0

x 2

0.0
2.5x 3

2.5
3.0x 4

2.753.003.25

x 5

2
4

x 6

2.50.0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(a) GAN (1).

7.5
5.0x 1

5
0

x 2

0.0
2.5x 3

3
4

x 4

3
4

x 5
2
4

x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(b) GAN (2).

7.5
5.0
2.5

x 1

5
0

x 2

0.0
2.5

x 3

2.53.03.5

x 4

2.753.003.25

x 5

2
4

x 6

2.50.02.5

x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(c) GAN (3).

7.5
5.0x 1

5
0

x 2

0.0
2.5

x 3

2.5
3.0
3.5

x 4

2.5
3.0
3.5

x 5

0.0
2.5x 6

5
0x 7

100 120 140 160 180 200
t

2.5
0.0

x 8

(d) WGAN-GP

Figure 20: Results with the three considered GAN setups and WGAN-GP Scores for 8 locations on the
WeatherBench grid. The panels show observations (dashed line), median forecast (solid line) and 99%
credible interval (shaded region) for a portion of the test set. Notice how the first GAN setup severely
underestimates the uncertainty region, while the second one forecasts unpyhsical evolution for some
time intervals.

57

Statement of Authorship for joint/multi-authored papers for PGR thesis

To appear at the end of each thesis chapter submitted as an article/paper

The statement shall describe the candidate’s and co-authors’ independent research contributions in the thesis

publications. For each publication there should exist a complete statement that is to be filled out and signed by the

candidate and supervisor (only required where there isn’t already a statement of contribution within the paper

itself).

Title of Paper

Probabilistic Forecasting with Generative Networks via Scoring Rule

Minimization

Publication Status

 □ Published □ Accepted for Publication

 □ Submitted for Publication ☒ Unpublished and unsubmitted work written

 in a manuscript style

Publication Details

Joint work with Prof. Ritabrata Dutta (University of Warwick), Rilwan A.

Adewoyin (University of Warwick) and Dr. Peter Dueben (European Center for

Medium-Range Weather Forecast).

Student Confirmation

Student Name:

Lorenzo Pacchiardi

Contribution to the
Paper

I am the first author of this paper. I originally thought of using scoring rules to train
generative networks for probabilistic forecasting. To reach this idea, the discussions
with Dr Dueben and Prof. Dutta about the use of scoring rules in meteorology and the
possibility of weather forecasting based on deep learning were essential. I then
formalized the methodology, proved the theoretical results, implemented most of the
code, run the experiments and wrote the paper. Adewoyin helped with the neural
network implementation. Dr Dutta advised along the way, especially in connecting our
approach with related works, and corrected the paper draftt. Dr Dueben further advised
on relevant datasets and models on which the method could be tested.

Signature

Date

1st September 2022

Supervisor Confirmation

By signing the Statement of Authorship, you are certifying that the candidate made a substantial contribution to the
publication, and that the description described above is accurate.

Supervisor name and title: Professor Geoff Nicholls

Supervisor comments

Signature

Date

15-09-22

This completed form should be included in the thesis, at the end of the relevant chapter.

Chapter 6

Conclusions and discussion

In this final chapter, I summarise the results presented in the thesis and outline

possible directions for future research.

6.1 Summary

In this thesis, I considered generative networks and simulator models. These (im-

plicit) generative models enable high flexibility through the generation of samples

from a distribution whose density is inaccessible, so they require specialised inference

methods that only rely on sample generation. However, methods for the two classes

of generative models have different desiderata: as simulator models typically have

relatively few physically meaningful parameters, a distribution on parameter values

is convenient; instead, the many parameters (or weights) of generative networks are

physically meaningless and this, jointly with the availability of gradients via auto-

matic differentiation, makes giving a point estimate more practical.

Although much research effort has focussed on inference for generative models

(Sec. 1.1), open problems remain: methods for simulator models often require spe-

cifying summary statistics and are sensitive to outliers in the data; I address these

issues respectively in Chapters 2 and 3. On the other hand, standard adversarial train-

ing for generative networks can lead to overconfident distributions; in Chapters 4 and

5, I discuss an alternative training framework avoiding this danger.

More in detail, in Chapter 2 I used the sufficient statistics of the best exponential

family approximation to the simulator model as summary statistics for Approxim-

ate Bayesian Computation (ABC, Sec. 1.1.1.1). The exponential family is fitted to

simulated data using score matching (Hyvärinen, 2005) and can be also employed to

directly sample from an approximate posterior using MCMC for doubly intractable

distributions, without requiring additional model simulations.

248

Next, in Chapter 3, I designed a new posterior for simulator models based on a

generalised Bayesian inference formulation (Sec. 1.2.1). In contrast, common Bayesian

Likelihood-Free Inference methods (Sec. 1.1.1) are motivated as approximations of the

standard posterior. I proved concentration and outlier robustness properties for this

new posterior and extended the results by Drovandi et al. (2015) to justify the use of

pseudomarginal MCMC. In empirical studies, I showed improved performance over

related methods.

Finally, in Chapters 4 and 5, I trained generative networks via Scoring Rule Min-

imization. This strategy is simpler than the standard adversarial one (Sec. 1.1.2.1)

and yields better calibrated generative distributions. Therefore, I applied this ap-

proach to tasks where uncertainty quantification is paramount: in Chapter 4 I ad-

dressed Bayesian Likelihood-Free Inference for simulator models, thus falling back to

the theme of Chapters 2 and 3; instead, in Chapter 5 I tackled probabilistic forecast-

ing by extending the training objective to dependent data, for which I established

consistency.

6.2 Extensions

Here, I outline some possible extensions for my work.

Gradient-based inference for the posterior in Chapter 3 In Chapter 3, I

relied on correlated pseudo-marginal MCMC (Picchini et al., 2022) to sample from

the Scoring Rule posterior. Unfortunately, the chains produced by this method are

“sticky” (albeit less so than those obtained with the standard pseudomarginal MCMC

of Andrieu et al., 2009) and require a large number of simulations from the simulator

model at each MCMC step. Furthermore, the target is biased, although the bias

vanishes as the number of simulations increases.

Another possible inference strategy is to fit a variational approximation to the

target through black-box variational inference (Ranganath et al., 2014), which relies

on unstable gradient estimates and, as such, typically requires control variates (Tran

et al., 2017; Ong et al., 2018b,a). Variational inference methods based on the repara-

metrisation trick (Kingma and Welling, 2014) are generally better, but applying them

to the Scoring Rule posterior requires computing unbiased estimates of the gradients

of the log target, which involves propagating gradients through the simulator model.

Modern automatic differentiation packages (Bradbury et al., 2018; Paszke et al.,

2019) enable effortless gradient computation; if the simulator model is implemented

249

with such packages, reparametrisation-trick variational inference can be applied to the

Scoring Rule posterior (this was already done for other targets for simulator models

in Moreno et al., 2016 and Chérief-Abdellatif and Alquier, 2020) Doing so would also

allow sampling from the Scoring Rule posterior by Stochastic-Gradient Markov-Chain

Monte Carlo (SGMCMC, Nemeth and Fearnhead, 2021); these class of methods are

approximate but only require unbiased gradient estimates of the log target and do

not involve rejection steps, and are thus likely to perform better than pseudomarginal

MCMC for the Scoring Rule posterior.

Training Neural Stochastic Differential Equations with the Signature Ker-

nel Score Stochastic Differential Equations (SDEs) are an extension of Ordinary

Differential Equations including a deterministic and a diffusion term. Neural SDEs

(Tzen and Raginsky, 2019; Li et al., 2020; Hodgkinson et al., 2021) parametrise these

two terms using neural networks. From these models, it is possible to sample a path

(by integrating the SDE with a numerical solver), but the density of the SDE solutions

cannot be evaluated. Kidger et al. (2021) thus proposed to consider Neural SDEs as

continuous-time generative networks and designed an adversarial training approach,

using another type of Neural Differential Equation as the discriminator.

Similarly to what was done for traditional generative networks in Chapters 4 and 5,

the adversarial formulation of Kidger et al. (2021) could be replaced with Scoring Rule

minimization. As Neural SDEs produce paths, defining a Scoring Rule over paths is

required. To this end, recall that the signature of a path γ = (γ1, . . . , γd) : [0, T]→ Rd

is the infinite collection of iterated integrals (Lyons, 2014; Kidger et al., 2019):

Sig(γ) =






∫
· · ·
∫

0<t1<···<tk<1

k∏

j=1

dγij
dt

(tj)dt1 · · · dtk




1≤i1,...,ik≤d



k≥0

.

The signature characterises univocally γ up to a negligible equivalence class (Kidger

et al., 2019). Therefore, two paths γ and ξ can be compared through the dot product

〈Sig(γ), Sig(ξ)〉 of their signatures, whose direct computation can, however, only be

approximated by truncation. Luckily, Király and Oberhauser (2019) showed that

there exists a kernel kSig such that kSig(γ, ξ) = 〈Sig(γ), Sig(ξ)〉. The kernel Score

(Sec. 1.2.2.2) built using kSig was proven to be proper in Bonnier and Oberhauser

(2021); it is thus possible to use it to train neural SDEs by Scoring Rule Minimization,

taking advantage of the method in Salvi et al. (2021) to obtain gradients of kSig.

250

Combining Scoring Rule Minimization and adversarial training In Chapters

4 and 5, I presented Scoring Rule Minimization and adversarial training as alternat-

ive approaches but, in some cases, it may be beneficial to combine them: targeting

Scoring Rules would allow to better represent the uncertainty, while the discriminator

trained adversarially may lead to more realistic samples by the generative network.

Many ways to combine the two approaches are possible: for instance, one can altern-

ate a few steps of adversarial training and Scoring Rule Minimization, or train via

Scoring Rule Minimization up to convergence and then perform adversarial training.

In future work, I plan to investigate the best combination approach.

251

Bibliography

Akesson, M., Singh, P., Wrede, F., and Hellander, A. (2021). Convolutional

neural networks as summary statistics for approximate Bayesian computation.

IEEE/ACM Transactions on Computational Biology and Bioinformatics.

Alsing, J., Charnock, T., Feeney, S., and Wandelt, B. (2019). Fast likelihood-free

cosmology with neural density estimators and active learning. Monthly Notices of

the Royal Astronomical Society, 488(3):4440–4458.

An, Z., Nott, D. J., and Drovandi, C. (2020). Robust Bayesian synthetic likelihood

via a semi-parametric approach. Statistics and Computing, 30(3):543–557.

An, Z., South, L. F., Nott, D. J., and Drovandi, C. C. (2019). Accelerating Bayesian

synthetic likelihood with the graphical lasso. Journal of Computational and Graph-

ical Statistics, 28(2):471–475.

Andrieu, C., Roberts, G. O., et al. (2009). The pseudo-marginal approach for efficient

Monte Carlo computations. The Annals of Statistics, 37(2):697–725.

Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training generat-

ive adversarial networks. In International Conference on Learning Representations.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial

networks. In International conference on machine learning, pages 214–223. PMLR.

Arora, S., Ge, R., Liang, Y., Ma, T., and Zhang, Y. (2017). Generalization and

equilibrium in generative adversarial nets (GANs). In International Conference on

Machine Learning, pages 224–232. PMLR.

Arora, S., Risteski, A., and Zhang, Y. (2018). Do GANs learn the distribution? some

theory and empirics. In International Conference on Learning Representations.

Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and eco-

logy. Annual review of ecology, evolution, and systematics, 41:379–406.

252

Beaumont, M. A. (2019). Approximate bayesian computation. Annual review of

statistics and its application, 6:379–403.

Bellemare, M. G., Danihelka, I., Dabney, W., Mohamed, S., Lakshminarayanan, B.,

Hoyer, S., and Munos, R. (2017). The Cramer distance as a solution to biased

Wasserstein gradients. arXiv preprint arXiv:1705.10743.

Bernton, E., Jacob, P. E., Gerber, M., and Robert, C. P. (2019). Approximate

Bayesian computation with the Wasserstein distance. Journal of the Royal Statist-

ical Society: Series B (Statistical Methodology), 81(2):235–269.

Bharti, A., Filstroff, L., and Kaski, S. (2022). Approximate Bayesian computation

with domain expert in the loop. In Chaudhuri, K., Jegelka, S., Song, L., Szepes-

vari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th International

Conference on Machine Learning, volume 162 of Proceedings of Machine Learning

Research, pages 1893–1905. PMLR.

Bińkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. (2018). Demystifying

MMD GANs. In International Conference on Learning Representations.

Bissiri, P. G., Holmes, C. C., and Walker, S. G. (2016). A general framework for

updating belief distributions. Journal of the Royal Statistical Society. Series B,

Statistical methodology, 78(5):1103.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational infer-

ence: A review for statisticians. Journal of the American Statistical Association,

112(518):859–877.

Bonnier, P. and Oberhauser, H. (2021). Proper scoring rules, gradients, divergences,

and entropies for paths and time series. arXiv preprint arXiv:2111.06314.

Bouchacourt, D., Mudigonda, P. K., and Nowozin, S. (2016). DISCO nets: DISsim-

ilarity COefficient networks. Advances in Neural Information Processing Systems,

29:352–360.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,

Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q.

(2018). JAX: composable transformations of Python+NumPy programs.

253

Bröcker, J. (2009). Reliability, sufficiency, and the decomposition of proper scores.

Quarterly Journal of the Royal Meteorological Society: A journal of the atmospheric

sciences, applied meteorology and physical oceanography, 135(643):1512–1519.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al. (2020). Language models

are few-shot learners. Advances in neural information processing systems, 33:1877–

1901.

Candille, G. and Talagrand, O. (2005). Evaluation of probabilistic prediction systems

for a scalar variable. Quarterly Journal of the Royal Meteorological Society: A

journal of the atmospheric sciences, applied meteorology and physical oceanography,

131(609):2131–2150.

Cannon, P., Ward, D., and Schmon, S. M. (2022). Investigating the impact

of model misspecification in neural simulation-based inference. arXiv preprint

arXiv:2209.01845.

Chen, Y., Zhang, D., Gutmann, M. U., Courville, A., and Zhu, Z. (2021). Neural

approximate sufficient statistics for implicit models. In Ninth International Con-

ference on Learning Representations 2021.

Chérief-Abdellatif, B.-E. and Alquier, P. (2020). MMD-Bayes: Robust Bayesian

estimation via maximum mean discrepancy. In Symposium on Advances in Ap-

proximate Bayesian Inference, pages 1–21. PMLR.

Clark, A., Donahue, J., and Simonyan, K. (2019). Adversarial video generation on

complex datasets. arXiv preprint arXiv:1907.06571.

Cockayne, J., Graham, M. M., Oates, C. J., Sullivan, T. J., and Teymur, O. (2022).

Testing whether a learning procedure is calibrated. Journal of Machine Learning

Research, 23(203):1–36.

Cranmer, K., Pavez, J., and Louppe, G. (2015). Approximating likelihood ratios with

calibrated discriminative classifiers. arXiv preprint arXiv:1506.02169.

Dawid, A. P. (1984). Present position and potential developments: Some personal

views statistical theory the prequential approach. Journal of the Royal Statistical

Society: Series A (General), 147(2):278–290.

Dawid, A. P. (2006). Probability forecasting. Encyclopedia of statistical sciences.

254

Dawid, A. P. and Musio, M. (2014). Theory and applications of proper scoring rules.

Metron, 72(2):169–183.

Dawid, A. P., Musio, M., and Ventura, L. (2016). Minimum scoring rule inference.

Scandinavian Journal of Statistics, 43(1):123–138.

Del Moral, P., Doucet, A., and Jasra, A. (2012). An adaptive sequential Monte

Carlo method for approximate Bayesian computation. Statistics and Computing,

22(5):1009–1020.

Drovandi, C. and Frazier, D. T. (2022). A comparison of likelihood-free methods with

and without summary statistics. Statistics and Computing, 32(3):1–23.

Drovandi, C. C., Grazian, C., Mengersen, K., and Robert, C. (2018). Approximating

the likelihood in ABC. Handbook of Approximate Bayesian Computation, pages

321–368.

Drovandi, C. C., Pettitt, A. N., and Lee, A. (2015). Bayesian indirect inference using

a parametric auxiliary model. Statistical Science, 30(1):72–95.

Durkan, C., Murray, I., and Papamakarios, G. (2020). On contrastive learning for

likelihood-free inference. In International Conference on Machine Learning, pages

2771–2781. PMLR.

Dziugaite, G. K., Roy, D. M., and Ghahramani, Z. (2015). Training generative

neural networks via maximum mean discrepancy optimization. In Proceedings of the

Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 258–267.

Fasiolo, M., Wood, S. N., Hartig, F., and Bravington, M. V. (2018). An extended

empirical saddlepoint approximation for intractable likelihoods. Electronic Journal

of Statistics, 12(1):1544–1578.

Fearnhead, P. and Prangle, D. (2012). Constructing summary statistics for approx-

imate Bayesian computation: semi-automatic approximate Bayesian computation

[with Discussion]. Journal of the Royal Statistical Society. Series B (Statistical

Methodology), 74(3):419–474.

Forbes, F., Nguyen, H., Nguyen, T., and Arbel, J. (2021). Approximate bayesian

computation with surrogate posteriors.

255

Frazier, D. T. (2020). Robust and efficient approximate Bayesian computation: A

minimum distance approach. arXiv preprint arXiv:2006.14126.

Frazier, D. T. and Drovandi, C. (2021). Robust approximate bayesian inference with

synthetic likelihood. Journal of Computational and Graphical Statistics, pages 1–

39.

Frazier, D. T., Drovandi, C., and Nott, D. J. (2021). Synthetic likelihood in misspe-

cified models: Consequences and corrections. arXiv preprint arXiv:2104.03436.

Frazier, D. T., Nott, D. J., Drovandi, C., and Kohn, R. (2022). Bayesian inference

using synthetic likelihood: Asymptotics and adjustments. Journal of the American

Statistical Association, 0(0):1–12.

Fujisawa, M., Teshima, T., Sato, I., and Sugiyama, M. (2021). γ-ABC: Outlier-robust

approximate Bayesian computation based on a robust divergence estimator. In

International Conference on Artificial Intelligence and Statistics, pages 1783–1791.

PMLR.

Ghosh, J. K., Delampady, M., and Samanta, T. (2006). An introduction to Bayesian

analysis: theory and methods, volume 725. Springer.

Glaser, P., Arbel, M., Doucet, A., and Gretton, A. (2022). Maximum likelihood

learning of energy-based models for simulation-based inference. arXiv preprint

arXiv:2210.14756.

Glöckler, M., Deistler, M., and Macke, J. H. (2022). Variational methods for

simulation-based inference. In International Conference on Learning Represent-

ations.

Gneiting, T., Balabdaoui, F., and Raftery, A. E. (2007). Probabilistic forecasts, calib-

ration and sharpness. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 69(2):243–268.

Gneiting, T. and Katzfuss, M. (2014). Probabilistic forecasting. Annual Review of

Statistics and Its Application, 1:125–151.

Gneiting, T. and Raftery, A. E. (2007). Strictly proper scoring rules, prediction, and

estimation. Journal of the American statistical Association, 102(477):359–378.

256

Goodfellow, I. (2016). Nips 2016 tutorial: Generative adversarial networks. arXiv

preprint arXiv:1701.00160.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,

Courville, A., and Bengio, Y. (2014). Generative adversarial nets. Advances in

neural information processing systems, 27.

Greenberg, D., Nonnenmacher, M., and Macke, J. (2019). Automatic posterior trans-

formation for likelihood-free inference. In Chaudhuri, K. and Salakhutdinov, R.,

editors, Proceedings of the 36th International Conference on Machine Learning,

volume 97 of Proceedings of Machine Learning Research, pages 2404–2414. PMLR.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., and Smola, A. (2012). A

kernel two-sample test. The Journal of Machine Learning Research, 13(1):723–773.

Gritsenko, A., Salimans, T., van den Berg, R., Snoek, J., and Kalchbrenner, N.

(2020). A spectral energy distance for parallel speech synthesis. Advances in Neural

Information Processing Systems, 33:13062–13072.

Grover, A., Dhar, M., and Ermon, S. (2018). Flow-gan: Combining maximum like-

lihood and adversarial learning in generative models. In Proceedings of the AAAI

conference on artificial intelligence, volume 32.

Grünwald, P. and Van Ommen, T. (2017). Inconsistency of Bayesian inference for

misspecified linear models, and a proposal for repairing it. Bayesian Analysis,

12(4):1069–1103.

Gui, J., Sun, Z., Wen, Y., Tao, D., and Ye, J. (2021). A review on generative

adversarial networks: Algorithms, theory, and applications. IEEE Transactions on

Knowledge and Data Engineering.

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., and Courville, A. (2017).

Improved training of Wasserstein GANs. In Proceedings of the 31st International

Conference on Neural Information Processing Systems, pages 5769–5779.

Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2018). Likelihood-free

inference via classification. Statistics and Computing, 28(2):411–425.

Gutmann, M. U. and Hyvärinen, A. (2012). Noise-contrastive estimation of unnor-

malized statistical models, with applications to natural image statistics. Journal

of Machine Learning Research, 13(Feb):307–361.

257

Harakeh, A. and Waslander, S. L. (2021). Estimating and evaluating regression pre-

dictive uncertainty in deep object detectors. In International Conference on Learn-

ing Representations.

Hermans, J., Begy, V., and Louppe, G. (2020). Likelihood-free MCMC with amortized

approximate ratio estimators. In International Conference on Machine Learning,

pages 4239–4248. PMLR.

Hersbach, H. (2000). Decomposition of the continuous ranked probability score for

ensemble prediction systems. Weather and Forecasting, 15(5):559–570.

Hodgkinson, L., van der Heide, C., Roosta, F., and Mahoney, M. W. (2021).

Stochastic continuous normalizing flows: training SDEs as ODEs. In de Campos,

C. and Maathuis, M. H., editors, Proceedings of the Thirty-Seventh Conference on

Uncertainty in Artificial Intelligence, volume 161 of Proceedings of Machine Learn-

ing Research, pages 1130–1140. PMLR.

Holmes, C. and Walker, S. (2017). Assigning a value to a power likelihood in a general

Bayesian model. Biometrika, 104(2):497–503.

Hyvärinen, A. (2005). Estimation of non-normalized statistical models by score

matching. Journal of Machine Learning Research, 6(Apr):695–709.

Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-to-image translation

with conditional adversarial networks. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1125–1134.

Jewson, J., Smith, J. Q., and Holmes, C. (2018). Principles of Bayesian inference

using general divergence criteria. Entropy, 20(6):442.

Jiang, B., Wu, T.-y., Zheng, C., and Wong, W. H. (2017). Learning summary statistic

for approximate Bayesian computation via deep neural network. Statistica Sinica,

pages 1595–1618.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyas-

uvunakool, K., Bates, R., Ž́ıdek, A., Potapenko, A., et al. (2021). Highly accurate

protein structure prediction with AlphaFold. Nature, 596(7873):583–589.

Kajihara, T., Kanagawa, M., Yamazaki, K., and Fukumizu, K. (2018). Kernel recurs-

ive ABC: Point estimation with intractable likelihood. In International Conference

on Machine Learning, pages 2400–2409. PMLR.

258

Kidger, P., Bonnier, P., Perez Arribas, I., Salvi, C., and Lyons, T. (2019). Deep

signature transforms. Advances in Neural Information Processing Systems, 32.

Kidger, P., Foster, J., Li, X., and Lyons, T. J. (2021). Neural SDEs as infinite-

dimensional GANs. In International Conference on Machine Learning, pages 5453–

5463. PMLR.

Kingma, D. P. and Welling, M. (2014). Auto-encoding variational Bayes. In Bengio, Y.

and LeCun, Y., editors, 2nd International Conference on Learning Representations,

ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings.

Király, F. J. and Oberhauser, H. (2019). Kernels for sequentially ordered data.

Journal of Machine Learning Research, 20.

Kleijn, B. J. and van der Vaart, A. W. (2012). The bernstein-von-mises theorem

under misspecification. Electronic Journal of Statistics, 6:354–381.

Koochali, A., Dengel, A., and Ahmed, S. (2021). If you like it, GAN it—probabilistic

multivariate times series forecast with GAN. Engineering Proceedings, 5(1):40.

Li, C.-L., Chang, W.-C., Cheng, Y., Yang, Y., and Póczos, B. (2017). MMD GAN:

Towards deeper understanding of moment matching network. In NIPS.

Li, X., Wong, T.-K. L., Chen, R. T., and Duvenaud, D. K. (2020). Scalable gradients

and variational inference for stochastic differential equations. In Symposium on

Advances in Approximate Bayesian Inference, pages 1–28. PMLR.

Li, Y., Swersky, K., and Zemel, R. (2015). Generative moment matching networks.

In International Conference on Machine Learning, pages 1718–1727. PMLR.

Lintusaari, J., Gutmann, M. U., Dutta, R., Kaski, S., and Corander, J. (2017). Funda-

mentals and recent developments in approximate Bayesian computation. Systematic

Biology, 66(1):e66–e82.

Lueckmann, J.-M., Bassetto, G., Karaletsos, T., and Macke, J. H. (2019). Likelihood-

free inference with emulator networks. In Symposium on Advances in Approximate

Bayesian Inference, pages 32–53. PMLR.

Lueckmann, J.-M., Boelts, J., Greenberg, D., Goncalves, P., and Macke, J. (2021).

Benchmarking simulation-based inference. In Banerjee, A. and Fukumizu, K., edit-

ors, Proceedings of The 24th International Conference on Artificial Intelligence and

259

Statistics, volume 130 of Proceedings of Machine Learning Research, pages 343–351.

PMLR.

Lueckmann, J.-M., Goncalves, P. J., Bassetto, G., Öcal, K., Nonnenmacher, M.,

and Macke, J. H. (2017). Flexible statistical inference for mechanistic models of

neural dynamics. In Advances in Neural Information Processing Systems, pages

1289–1299.

Lyddon, S., Holmes, C., and Walker, S. (2019). General Bayesian updating and the

loss-likelihood bootstrap. Biometrika, 106(2):465–478.

Lyons, T. (2014). Rough paths, signatures and the modelling of functions on streams.

arXiv preprint arXiv:1405.4537.

Marjoram, P., Molitor, J., Plagnol, V., and Tavaré, S. (2003). Markov chain Monte

Carlo without likelihoods. Proceedings of the National Academy of Sciences,

100(26):15324–15328.

Matsubara, T., Knoblauch, J., Briol, F.-X., Oates, C., et al. (2022a). Gen-

eralised bayesian inference for discrete intractable likelihood. arXiv preprint

arXiv:2206.08420.

Matsubara, T., Knoblauch, J., Briol, F.-X., and Oates, C. J. (2022b). Robust gener-

alised Bayesian inference for intractable likelihoods. Journal of the Royal Statistical

Society: Series B (Statistical Methodology), 84(3):997–1022.

Miller, J. W. (2021). Asymptotic normality, concentration, and coverage of general-

ized posteriors. Journal of Machine Learning Research, 22(168):1–53.

Mohamed, S. and Lakshminarayanan, B. (2017). Learning in implicit generative

models. arXiv preprint arXiv:1610.03483.

Montahaei, E., Alihosseini, D., and Baghshah, M. S. (2021). Dgsan: discrete gener-

ative self-adversarial network. Neurocomputing, 448:364–379.

Moreno, A., Adel, T., Meeds, E., Rehg, J. M., and Welling, M. (2016). Automatic

variational ABC. arXiv preprint arXiv:1606.08549.

Murray, I., Ghahramani, Z., and MacKay, D. (2012). MCMC for doubly-intractable

distributions. arXiv preprint arXiv:1206.6848.

260

Nadjahi, K., De Bortoli, V., Durmus, A., Badeau, R., and Şimşekli, U. (2020). Ap-

proximate Bayesian computation with the sliced-Wasserstein distance. In ICASSP

2020-2020 IEEE International Conference on Acoustics, Speech and Signal Pro-

cessing (ICASSP), pages 5470–5474. IEEE.

Nemeth, C. and Fearnhead, P. (2021). Stochastic gradient markov chain monte carlo.

Journal of the American Statistical Association, 116(533):433–450.

Nguyen, H. D., Arbel, J., Lü, H., and Forbes, F. (2020). Approximate Bayesian

computation via the energy statistic. IEEE Access, 8:131683–131698.

Nowozin, S., Cseke, B., and Tomioka, R. (2016). f-GAN: Training generative neural

samplers using variational divergence minimization. In Proceedings of the 30th

International Conference on Neural Information Processing Systems, pages 271–

279.

Ong, V. M., Nott, D. J., Tran, M.-N., Sisson, S. A., and Drovandi, C. C. (2018a).

Variational Bayes with synthetic likelihood. Statistics and Computing, 28(4):971–

988.

Ong, V. M.-H., Nott, D. J., Tran, M.-N., Sisson, S. A., and Drovandi, C. C. (2018b).

Likelihood-free inference in high dimensions with synthetic likelihood. Computa-

tional Statistics & Data Analysis, 128:271–291.

Pacchiardi, L., Künzli, P., Schöngens, M., Chopard, B., and Dutta, R. (2020).

Distance-learning for approximate Bayesian computation to model a volcanic erup-

tion. Sankhya B.

Papamakarios, G. and Murray, I. (2016). Fast ε-free inference of simulation models

with Bayesian conditional density estimation. In Advances in Neural Information

Processing Systems, pages 1028–1036.

Papamakarios, G., Nalisnick, E., Rezende, D. J., Mohamed, S., and Lakshminaray-

anan, B. (2021). Normalizing flows for probabilistic modeling and inference. Journal

of Machine Learning Research, 22(57):1–64.

Papamakarios, G., Sterratt, D., and Murray, I. (2019). Sequential neural likelihood:

Fast likelihood-free inference with autoregressive flows. In Chaudhuri, K. and Su-

giyama, M., editors, Proceedings of Machine Learning Research, volume 89 of Pro-

ceedings of Machine Learning Research, pages 837–848. PMLR.

261

Park, M., Jitkrittum, W., and Sejdinovic, D. (2016). K2-ABC: Approximate Bayesian

computation with kernel embeddings. In Artificial Intelligence and Statistics.

Parry, M., Dawid, A. P., Lauritzen, S., et al. (2012). Proper local scoring rules. The

Annals of Statistics, 40(1):561–592.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T.,

Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito,

Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and

Chintala, S. (2019). PyTorch: An imperative style, high-performance deep learning

library. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc, F., Fox, E.,

and Garnett, R., editors, Advances in Neural Information Processing Systems 32,

pages 8024–8035. Curran Associates, Inc.

Picchini, U., Simola, U., and Corander, J. (2022). Sequentially Guided MCMC Pro-

posals for Synthetic Likelihoods and Correlated Synthetic Likelihoods. Bayesian

Analysis, pages 1 – 31.

Prangle, D. (2018). Summary statistics. In Handbook of approximate Bayesian com-

putation, pages 125–152. Chapman and Hall/CRC.

Price, L. F., Drovandi, C. C., Lee, A., and Nott, D. J. (2018). Bayesian synthetic

likelihood. Journal of Computational and Graphical Statistics, 27(1):1–11.

Radev, S. T., Mertens, U. K., Voss, A., Ardizzone, L., and Köthe, U. (2020). Bayes-

Flow: Learning complex stochastic models with invertible neural networks. IEEE

Transactions on Neural Networks and Learning Systems.

Ramesh, P., Lueckmann, J.-M., Boelts, J., Tejero-Cantero, Á., Greenberg, D. S., Gon-

calves, P. J., and Macke, J. H. (2022). GATSBI: Generative adversarial training

for simulation-based inference. In International Conference on Learning Repres-

entations.

Ranganath, R., Gerrish, S., and Blei, D. (2014). Black Box Variational Inference. In

Kaski, S. and Corander, J., editors, Proceedings of the Seventeenth International

Conference on Artificial Intelligence and Statistics, volume 33 of Proceedings of

Machine Learning Research, pages 814–822, Reykjavik, Iceland. PMLR.

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons,

M., Athanassiadou, M., Kashem, S., Madge, S., et al. (2021). Skilful precipitation

nowcasting using deep generative models of radar. Nature, 597(7878):672–677.

262

Richardson, E. and Weiss, Y. (2018). On GANs and GMMs. In Proceedings of the

32nd International Conference on Neural Information Processing Systems, pages

5852–5863.

Rizzo, M. L. and Székely, G. J. (2016). Energy distance. Wiley interdisciplinary

reviews: Computational statistics, 8(1):27–38.

Robert, C. P. and Casella, G. (2005). Monte Carlo Statistical Methods (Springer

Texts in Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA.

Rozet, F. and Louppe, G. (2021). Arbitrary marginal neural ratio estimation for

simulation-based inference. In Fourth Workshop on Machine Learning and the

Physical Sciences (NeurIPS 2021).

Saatci, Y. and Wilson, A. G. (2017). Bayesian GAN. Advances in neural information

processing systems, 30.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X.

(2016). Improved techniques for training GANs. Advances in neural information

processing systems, 29.

Salvi, C., Cass, T., Foster, J., Lyons, T., and Yang, W. (2021). The signature kernel

is the solution of a Goursat PDE. SIAM Journal on Mathematics of Data Science,

3(3):873–899.

Schmitt, M., Bürkner, P.-C., Köthe, U., and Radev, S. T. (2022). Detecting model

misspecification in amortized bayesian inference with neural networks. arXiv pre-

print arXiv:2112.08866.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. nature,

529(7587):484–489.

Sisson, S. A., Fan, Y., and Beaumont, M. (2018). Handbook of approximate Bayesian

computation. CRC Press.

Song, Y., Garg, S., Shi, J., and Ermon, S. (2020). Sliced score matching: A scalable

approach to density and score estimation. In Adams, R. P. and Gogate, V., editors,

Proceedings of The 35th Uncertainty in Artificial Intelligence Conference, volume

263

115 of Proceedings of Machine Learning Research, pages 574–584, Tel Aviv, Israel.

PMLR.

Stephenson, D. B. (2012). Glossary. In Jolliffe, I. T. and Stephenson, D. B., editors,

Forecast verification: a practitioner’s guide in atmospheric science, pages 241–249.

John Wiley & Sons, Second edition.

Sutherland, D. J., Tung, H.-Y., Strathmann, H., De, S., Ramdas, A., Smola, A. J.,

and Gretton, A. (2017). Generative models and model criticism via optimized

maximum mean discrepancy. In ICLR (Poster).

Syring, N. and Martin, R. (2019). Calibrating general posterior credible regions.

Biometrika, 106(2):479–486.

Székely, G. J. and Rizzo, M. L. (2005). A new test for multivariate normality. Journal

of Multivariate Analysis, 93(1):58–80.

Thomas, O., Dutta, R., Corander, J., Kaski, S., Gutmann, M. U., et al. (2020).

Likelihood-free inference by ratio estimation. Bayesian Analysis.

Tran, M.-N., Nott, D. J., and Kohn, R. (2017). Variational Bayes with intractable

likelihood. Journal of Computational and Graphical Statistics, 26(4):873–882.

Tzen, B. and Raginsky, M. (2019). Theoretical guarantees for sampling and inference

in generative models with latent diffusions. In Conference on Learning Theory,

pages 3084–3114. PMLR.

Wang, Y., Kaji, T., and Ročková, V. (2021). Approximate bayesian computation via

classification. arXiv preprint arXiv:2111.11507.

Wilks, D. S. (2019). Chapter 9 - forecast verification. In Wilks, D. S., editor, Statistical

Methods in the Atmospheric Sciences, pages 369–483. Elsevier, Fourth edition.

Winkler, R. L. (1977). Rewarding expertise in probability assessment. In Decision

making and change in human af

s, pages 127–140. Springer.

Wiqvist, S., Frellsen, J., and Picchini, U. (2021). Sequential neural posterior and

likelihood approximation.

264

Wiqvist, S., Mattei, P.-A., Picchini, U., and Frellsen, J. (2019). Partially exchangeable

networks and architectures for learning summary statistics in approximate Bayesian

computation. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings of the

36th International Conference on Machine Learning, volume 97 of Proceedings of

Machine Learning Research, pages 6798–6807. PMLR.

Wu, P.-S. and Martin, R. (2020). A comparison of learning rate selection methods in

generalized bayesian inference. arXiv preprint arXiv:2012.11349.

Xing, H. (2021). Improving bridge estimators via f -gan. arXiv preprint

arXiv:2106.07462.

Yoon, J., Jarrett, D., and van der Schaar, M. (2019). Time-series generative ad-

versarial networks. In Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché Buc,

F., Fox, E., and Garnett, R., editors, Advances in Neural Information Processing

Systems, volume 32. Curran Associates, Inc.

Zellner, A. (1988). Optimal information processing and Bayes’s theorem. The Amer-

ican Statistician, 42(4):278–280.

Zhang, D., Malkin, N., Liu, Z., Volokhova, A., Courville, A., and Bengio, Y. (2022).

Generative flow networks for discrete probabilistic modeling. In Chaudhuri, K.,

Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of

the 39th International Conference on Machine Learning, volume 162 of Proceedings

of Machine Learning Research, pages 26412–26428. PMLR.

265

	Introduction and Literature review
	Inference for generative models
	Bayesian Likelihood-Free Inference
	Approximate Bayesian Computation methods
	Surrogate Likelihood methods
	Neural network approximations

	Inference for generative networks
	Generative Adversarial Networks

	Background
	Generalised Bayesian inference
	Properties and issues of standard Bayesian inference
	Loss-based generalised Bayesian inference

	Scoring Rules
	Scoring Rules and probabilistic forecasting
	Examples of Scoring Rules for continuous distributions

	Contributions and thesis outline
	Score Matched Neural Exponential Families forLikelihood-Free Inference
	Generalised Bayesian Likelihood-Free Inference Using Scoring Rules Estimators
	Training generative networks via Scoring Rule minimization

	Score Matched Neural Exponential Families for Likelihood-Free Inference
	Generalized Bayesian Likelihood-Free Inference Using Scoring Rules Estimators
	Likelihood-Free Inference with Generative Neural Networks via Scoring Rule Minimization
	Probabilistic Forecasting with Generative Networks via Scoring Rule Minimization
	Conclusions and discussion
	Summary
	Extensions

	Bibliography

