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There exist several methods for simulating biological and physical systems as represented by chemical reaction networks. Systems
with low numbers of particles are frequently modeled as discrete-state Markov jump processes and are typically simulated via a
stochastic simulation algorithm (SSA). An SSA, while accurate, is often unsuitable for systems with large numbers of individuals, and
can become prohibitively expensive with increasing reaction frequency. Large systems are often modeled deterministically using
ordinary differential equations, sacrificing accuracy and stochasticity for computational efficiency and analytical tractability. In this
paper, we present a novel hybrid technique for the accurate and efficient simulation of large chemical reaction networks. This
technique, which we name the regime-conversion method, couples a discrete-state Markov jump process to a system of ordinary
differential equations by simulating a reaction network using both techniques simultaneously. Individual molecules in the network
are represented by exactly one regime at any given time, and may switch their governing regime depending on particle density.
In this manner, we model high copy-number species using the cheaper continuum method and low copy-number species using the
more expensive, discrete-state stochastic method to preserve the impact of stochastic fluctuations at low copy number.The
motivation, as with similar methods, is to retain the advantages while mitigating the shortfalls of each method. We demonstrate
the performance and accuracy of our method for several test problems that exhibit varying degrees of inter-connectivity and
complexity by comparing averaged trajectories obtained from both our method and from exact stochastic simulation.

   

  Contribution to the field

Biological and biochemical systems at all scales exhibit behaviors that emerge from the actions of, and interactions between, their
individual constituents. One of the most common models applied to such systems is the chemical reaction network (CRN), which
represents individuals' actions and interactions as reactions that produce some set of products (molecules, proteins, cells, etc.)
from some set of reactants. While CRNs may be easy to specify, they are seldom so easy to analyze. There are two oft-used
approaches for analyzing the dynamics of a system modeled by a CRN. Individual-based modeling involves simulating discrete
trajectories of the network according to a stochastic simulation algorithm. While accurate, the associated computational cost can
rapidly render this approach prohibitively expensive for large systems. Continuum approximations sacrifice accuracy for
computational feasibility by modeling species densities with a system of ordinary differential equations that can be cheaply solved.
While computationally cheap, such approximations necessarily fail for systems where stochasticity cannot be neglected. In this
work we describe a novel technique for simulating well-mixed CRNs, which combines both approaches in a manner that maximizes
accuracy and minimizes computational cost by allowing individuals to convert between stochastic simulation and continuum
approximation depending on species density.
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ABSTRACT2

There exist several methods for simulating biological and physical systems as represented by3
chemical reaction networks. Systems with low numbers of particles are frequently modelled as4
discrete-state Markov jump processes and are typically simulated via a stochastic simulation5
algorithm (SSA). An SSA, while accurate, is often unsuitable for systems with large numbers of6
individuals, and can become prohibitively expensive with increasing reaction frequency. Large7
systems are often modelled deterministically using ordinary differential equations, sacrificing8
accuracy and stochasticity for computational efficiency and analytical tractability. In this paper,9
we present a novel hybrid technique for the accurate and efficient simulation of large chemical10
reaction networks. This technique, which we name the regime-conversion method, couples a11
discrete-state Markov jump process to a system of ordinary differential equations by simulating12
a reaction network using both techniques simultaneously. Individual molecules in the network13
are represented by exactly one regime at any given time, and may switch their governing regime14
depending on particle density. In this manner, we model high copy-number species using the15
cheaper continuum method and low copy-number species using the more expensive, discrete-16
state stochastic method to preserve the impact of stochastic fluctuations at low copy number.17
The motivation, as with similar methods, is to retain the advantages while mitigating the shortfalls18
of each method. We demonstrate the performance and accuracy of our method for several test19
problems that exhibit varying degrees of inter-connectivity and complexity by comparing averaged20
trajectories obtained from both our method and from exact stochastic simulation.21

Keywords: Population Dynamics, Stochastic Simulation, Chemical Reaction Network Simulation, Hybrid Method, Continuum Model22

1 INTRODUCTION

A chemical reaction network (CRN) is a representation of a reacting (bio)chemical system of several23
species interacting via some number of reaction channels. CRNs, such as those found in biological systems,24
are often represented by continuous time, discrete-state Markov processes [1]. This modelling regime is25

1
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appropriate when the described system has a small number of interacting particles and provides an exact26
description of reaction dynamics under appropriate assumptions; specifically, that the inter-event times27
between the ‘firing’ of reaction channels are independent and exponentially distributed. Such Markov28
processes are most often simulated via a stochastic simulation algorithm (SSA), the prototypical example29
of which is the Gillespie direct method [2]. Several improvements to the Gillespie direct method have been30
proposed for reaction networks with particular structural characteristics. For example, the next reaction31
method [3] and the optimised direct method [4] are exact and efficient SSAs for systems with a large32
number of loosely-coupled reaction channels. Further extensions also exist, such as the modified next33
reaction method [5], that facilitate the simulation of systems with time-dependent reaction rates.34

For any reaction network, and under mild differentiability assumptions, one can derive a system of35
ordinary differential equations called the chemical master equation (CME) that describes the time-evolution36
of the probability density of the system existing in any given state [6]. The CME, as a single equation37
that encapsulates all stochastic information of a system, is neither solvable analytically nor practicable38
to solve numerically in all but the most straightforward of systems. Rather, the practical utility of the39
CME lies in the ease with which one can derive time-evolution equations for the raw moments of the40
system. These moment equations take the form of a system of ordinary differential equations (ODEs) that41
govern the moments of each constituent species. In cases where the CRN contains reactions of at least42
second-order, these moment equations do not form a closed system; in particular, the equations governing43
the nth moments will, in general, depend on the (n+ 1)th or higher-order moments. These systems are not44
solvable analytically. As such, one generally applies a so-called ‘moment-closure’ that closes the system of45
moment equations at a given order by making explicit assumptions about the relationships between lower-46
and higher-order moments. Commmon moment-closures (or, simply, closures) include the mean-field47
closure, wherein all moments above the first are set to zero, and the Poisson closure, where diagonal48
cumulants are assumed equal to their corresponding mean and all mixed cumulants are set to zero [7].49

In general, determining the most appropriate closure assumptions for a given system can be challenging50
and higher-order closures often yield systems of moment equations that can be difficult to solve; as such,51
straightforward closures like the mean-field see the widest application. In the case of the mean-field52
closure, the resulting system of mean-field ODEs provides an approximate, continuous, and deterministic53
description of the time evolution of the mean of the underlying Markov process, and can be solved either54
analytically or numerically.55

The primary downside of SSAs is that they may become computationally intractable for large systems56
of interacting particles. Even for systems with favourable network structures, large systems can quickly57
become infeasible to simulate exactly. This is contrasted with deterministic modelling techniques that58
sacrifice accuracy in exchange for computational efficiency where, notably, the efficiency of numerical59
simulation methods (i.e., those for ODEs and PDEs) is typically independent of copy number. The various60
advantages and disadvantages of each modelling regime discussed have motivated the development of61
so-called hybrid methods that combine regimes to leverage their advantages and mitigate their limitations62
(see e.g. [8]). Several general hybrid approaches have been developed to tackle these issues.63

One such approach is to model certain species under a continuous regime (such as an ODE or SDE) and64
others under a discrete regime (via a SSA). Typically, this extension of the system is accomplished by65
categorising reactions as either being ‘fast’ or ‘slow’, applying a continuous representation to the former66
and using a discrete method for the latter. Cao, Gillespie, and Petzold [9] pioneered this technique in67
the development of the ‘slow-scale SSA’, a method for simulating dynamically stiff chemical reaction68
networks. Their method separates reactions and reactant species into fast and slow categories in a manner69
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that allows for only the slow-scale reactions and species to be simulated stochastically, subject to certain70
stability criteria of the fast system. The fast-slow paradigm was also applied by Cotter, et al. [10] for71
simulating chemical reaction networks that can be extended into fast and slow ‘variables’, which may be72
reactant species or combinations thereof. They define a ‘conditional stochastic simulation algorithm’ that73
can draw sample values of fast variables conditioned on the values of the slow variables. These samples74
are then used to approximate the drift and diffusion terms in a Fokker-Planck equation that describes the75
overall state of the system.76

There are a number of other hybrid-type methods in the literature for simplifying the computation of77
SSAs that do not necessarily partition species into fast/slow reactions. Hellander and Löstedt [11] present a78
hybrid method for simulating chemical systems with disparities in species copy number or reaction rates79
that would render pure stochastic simulation extremely expensive. Those species which exhibit both small80
variance and take part in fast reactions are simulated using approximate reaction rate equations, while the81
evolution of the probability density function of those species which are involved in slow reactions or have82
large variance are estimated using a modified SSA to preserve accuracy. Smith, Cianci, and Grima [12] take83
an approach based not on the separation of species by reaction time-scale but on the separation of species by84
their abundance. This involves forming a ‘reduced’ CME from the non-abundant species by taking a limit85
of the CME as the number of abundant species tends to infinity. This reduced CME can then be sampled86
using an SSA. Jahnke [13] contributes to a much-studied line of enquiry investigating approximations of87
the chemical master equation. Particularly, it provides error bounds for the modelling error of two reduced88
models from the literature and proposes another, called the model reduction by conditional expectations89
(MRCE). Roughly, these reduced models partition the species into two subsets: those deemed of interest90
and the remaining variables. Approximations of the CME occur as different assumptions are made about91
the overall probability distribution in terms of these two subsets, for example, that it decomposes into92
a product of probability distributions (the product approximation) and the so-called Hellander–Lötstedt93
model from [11], which approximates a marginal probability distribution of one subset and the expectation94
with respect to the other.95

In this paper we detail the development of a novel hybrid simulation technique for well-mixed CRNs; that96
is, systems of interacting (bio)chemical species distributed homogeneously within a reactor vessel of fixed97
volume. As discussed, continuum methods are advantageous when copy numbers are high and the effects98
of stochasticity can be safely assumed to be small. Discrete methods, on the other hand, are best applied in99
low copy number systems and where stochasticity is a critical driver of the dynamics. It is this fundamental100
tension between computational efficiency and model accuracy that our method seeks to address. Where101
other, similar methods aim to subdivide species and/or the reactions between them into categories based on102
reaction rates, we take a simpler approach that is instead based on particle density. Our objective is to create103
a method that is simple to implement, computationally efficient, accurate, and flexible enough to handle104
not only reaction networks with fast/slow reactions, but also more uniform reaction networks where no105
such fast/slow distinctions can be leveraged. Further, the method offers additional flexibility by permitting106
species to transition between regimes during run-time, as opposed to being fixed in a predetermined regime.107

Our method, which we term the regime-conversion method (RCM), consists of a system of ODEs and a108
discrete-state Markov jump process that, taken together, form an inexact yet computationally amenable109
representation of a well-mixed CRN. The key idea behind the method is to run, simultaneously, a numerical110
method for solving the system of ODEs alongside a SSA for simulating stochastic trajectories. Individuals111
in the system are represented by exactly one of the two regimes at any given time, but are permitted to112
switch back and forth between each modelling regime in response to the current concentration of their113

Frontiers 3

In review



Kynaston et al. The regime-conversion method

species. To accomplish this, we describe a ‘network extension’ procedure by which one can convert a114
CRN into a larger network that is probabilistically equivalent to the original in a manner that we describe.115
The extended network is larger than the original in three specific ways. First, each species in the original116
corresponds to two species in the extended network, where one species is to be governed by the discrete117
regime and the other by the continuous. Second, to satisfy the combinatorial requirements that give rise118
to the probabilistic equivalence of each network, the extension requires that we add additional reactions119
that allow the continuous and discrete species to interact. The final ingredient in the extended network are120
first-order conversion reactions that allow discrete species to enter the continuous regime and vice versa,121
adaptively redistributing species concentrations between regimes to maximise computational efficiency122
and accuracy.123

From the extended network we construct an augmented reaction network (ARN) that governs the124
same species as the extended network. The critical difference is that we represent the species marked as125
‘continuous‘ (and the reactions between them) in the extended network by a system of ODEs. This system126
of ODEs is derived by forming the CME that would govern the continuous species (were they discrete)127
from the set of reactions that act exclusively on continuous species, deriving the moment equations for these128
species, and taking an appropriate moment closure. Under this representation, reactions between continuous129
species are governed exclusively by the continuum approximation, and reactions between discrete species130
are governed exclusively by the discrete simulation regime. To retain accuracy in bimolecular reactions,131
and to mitigate the impact of moment closure, reactions that have both a continuous and a discrete reactant132
are governed by the discrete simulation regime. Given that mass is converted back-and-forth between133
discrete and continuous representations depending on copy-number, we can reasonably view the ARN as a134
mechanism for representing ‘low copy-number reactions’ under the discrete simulation regime, and ‘high135
copy-number reactions’ under the continuum approximation. This new structure, the ARN, provides an136
intermediate description of a CRN that is both continuous and discrete. The RCM, then, is a method for137
simulating the trajectories of an ARN. We find that the RCM can indeed strike a balance between efficiency138
and accuracy.139

The remainder of this work is divided into three sections. In Section 2, we outline the construction of an140
ARN from a CRN alongside the mathematical prerequisites, the theoretical justification, and the specific141
algorithmic formulation of the RCM. In Section 3, we present numerical results that evaluate the accuracy142
and bias of our method for a series of test problems of increasing complexity. We conduct this evaluation143
by comparing the results from the RCM against results from an exact SSA. Finally, in Section 4 we give144
remarks on the relative advantages and limitations of our method versus traditional stochastic or numerical145
methods, and signpost future potential avenues of development and application for the method.146

2 METHOD

In this section we describe the regime-conversion method (RCM) which couples a CRN described by a147
discrete-state Markov jump process with a system of ordinary differential equations representing the mean148
dynamics of the same CRN. We begin our discussion of the method with some preliminary information149
regarding stochastic simulation and continuum modelling before presenting the theoretical justification and150
implementation of our proposed coupling scheme.151

2.1 Stochastic simulation and stoichiometry152

We consider a CRN, N , with K chemical species that interact via a set R of reaction channels within a153
reaction vessel of unit volume. Denote by Xk(t) ∈ N, for k = 1, . . . , K, the number of individuals of the154
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kth species at continuous time t, and denote the overall state of the system by X(t) := (X1(t), . . . , XK(t)).155
We make the assumption that reaction r ∈ R fires with an exponentially distributed waiting time with rate156
λr. The reaction rate coefficient λr is typically taken to be constant over time; however, we note that the157
results in the remainder of this paper hold in the case that λr is piecewise constant in time, with the caveat158
that there are only finitely many such discontinuities. Reactions in the network take the form159

K∑
k=1

µrkXk
λr−→

K∑
k=1

ηrkXk, for r ∈ R,

where µr = (µrk)k=1,...,K and ηr = (ηrk)k=1,...,K . We can thus, for each reaction, define the stoichiometric160
vector161

νr := ηr − µr

which represents the change in state upon the firing of reaction r. These vectors are often collected into a162
single stoichiometric matrix, which we denote S, where each column in S corresponds to a stoichiometric163
vector νr. To form this matrix, one must decide on an ordering of the reactions in R - we note that this164
choice is arbitrary and bears no impact on the dynamics of the system.165

The most common method for drawing sample trajectories of X(t) is the aforementioned Gillespie direct166
method (GDM). Whilst the coupling technique for our hybrid method, which we will discuss later, is167
strictly independent of the choice of SSA, we will describe its implementation under the Gillespie direct168
method.169

2.2 Continuum modelling170

Given a CRN, N , we can derive the associated CME as follows. Define for each reaction a propensity171
function αr(X(t)), defined such that αr(X(t))dt is the probability that said reaction occurs within the172
infinitesimally small time interval [t, t+ dt). Under the law of mass-action, the propensity functions are173
given by174

αr(x) := λr

K∏
k=1

xk!

(xk − µrk)!
,

where for brevity we have subsumed any combinatorial coefficients into the rate coefficient λr [14].175
Standard techniques [6] reveal that the corresponding CME for this system is given by176

dp(x, t)
dt

=
∑
r∈R

[αr(x− vr)p(x− vr, t)− αr(x)p(x, t)] , (1)

where p(x, t) is the probability that X(t) = x at time t. Multiplying Equation (1) by xk and summing over177
the state space xk, yields the evolution equation for the mean concentration of each species. Denoting by178
⟨f(x)⟩ the expectation of f(x) with respect to p(x, t) for some function f , we have179

d⟨xi⟩
dt

=
∑
r∈R

νri⟨αr(x)⟩.
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Defining the vector of propensity functions α(x) = (αr(x))r∈R, this can be written in matrix form,180

d⟨x⟩
dt

= S⟨α(x)⟩,

assuming that the enumeration of reactions in the vector α corresponds to the column order of the181
stoichimetric matrix S. One can likewise, albeit through a somewhat laborious calculation, obtain higher-182
order moments of the system. These equations, however, do not in general admit closed-form solutions.183
Indeed, for CRNs with reactions of at least second-order, the system of moment equations itself is not184
closed; for example, for species which are reactants in a second-order reaction, the equation governing185
the evolution of the first moment of that species depends on the equations for the second moments, the186
equations for the second moments depend on the equations for the third moments, and so on.187

Making a moment-closure approximation requires the explicit adoption of some set of assumptions about188
the moments of a system. As such, these closures are necessarily ad hoc and it is, in general, impossible189
to quantify a given closure’s accuracy a priori. Nevertheless, there are several closures that see wide190
application. The simplest and possibly most common closure is the so-called ‘mean-field’ closure [15,191
p. 82]. Under the mean-field closure, all variances and covariances are assumed to be zero, yielding192

⟨xixj⟩ = ⟨xi⟩⟨xj⟩,

for all i, j = 1, . . . , K. Another common closure is the Poisson closure [16], which assumes that variances193
are equal to their corresponding means and that all covariances are zero, i.e.:194

⟨x2i ⟩ = ⟨xi⟩+ ⟨xi⟩2,

for all i = 1, . . . , K, and195
⟨xixj⟩ = ⟨xi⟩⟨xj⟩,

for all i, j = 1, . . . , K where i ̸= j. Both the mean-field and Poisson closures close the system of moment196
equations at first-order. While there exist several higher-order closures [7], they are generally unsuitable for197
use in hybrid methods, as there is currently no clear method for coupling higher-order moment equations198
to SSAs.199

2.3 Reaction network extension200

We begin our discussion of the RCM by noting that we will henceforth only consider reactions of at most201
second-order. These are reactions for which at most two individual reactant molecules are present. While a202
simultaneous interaction of three or more individuals is, in principle, possible, collision theory suggests203
that the probability of three or more distinct molecules interacting simultaneously is vanishingly small (see,204
e.g. [17]). Accordingly, a more realistic description of interactions of this type involves the formation of205
a highly reactive intermediary complex that subsequently reacts with the remaining reactants — such a206
system is of at most second order [18].207

The RCM partitions each chemical species Xk into two ‘partition species’, Ck and Dk, each of which is208
governed by a different modelling regime, termed continuous and discrete, respectively. On these extension209
species we define a new reaction network that is both equivalent to the original network and computationally210
amenable. Further, this new ‘extended’ reaction network contains additional ‘conversion’ reactions that211
permit individuals to switch their partition at a rate proportional to the species-wise density. To do so, for212
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each reaction in the network, we generate a new extended set of reactions for each possible combination of213
reactant regimes. In each reaction r, at most two species appear as reactants, which we label without loss214
of generality Xi and Xj , where i, j ∈ {1, . . . , K}, and where we may have that i = j. We require that this215
extended set of reactions obeys the following criteria:216

C1 To maximise efficiency, we wish to minimise unnecessary conversion back-and-forth between regimes.217
We thus determine that all molecules produced by reaction r belonging to the ith species (resp. jth) are218
allocated to the same regime as reactant Xi (resp. Xj).219

C2 To maximise accuracy, we aim to retain much of the stochasticity in the system. In particular, for each220
reaction r, we allocate all product molecules from non-reactant species (i.e. species other than Xi and221
Xj) to the discrete regime.222

C3 Applying C2 without further restriction could yield a ‘trivial’ reaction network wherein all continuous223
molecules are gradually converted to discrete molecules over time. As such, for reactions r where all224
reactant molecules are in the continuous regime, we assign all the reaction’s products to the continuous225
regime also.226

We begin our exposition of the RCM with reactions of order zero; that is, reactions of the form227

∅ → P

for some set of reaction products P . The choice of whether to place these reaction products into the discrete228
or continuous regime may be problem dependent; specifically, it may be the case that all products in P229
belong to species that are known a priori to be of high copy number, and as such might best be placed in230
the continuous regime. Nevertheless, in light of C2, we place any such products into the discrete regime.231

First-order reactions are dealt with trivially when applying the criteria above. Specifically, reactions of232
the form233

Xi
λr−→

K∑
k=1

ηrkXk, (2)

are extended into234

Ci
λr−→

K∑
k=1

ηrkCk, (3)

Di
λr−→

K∑
k=1

ηrkDk, (4)

Any second-order reaction r ∈ R can be written uniquely in the form235

Xi +Xj
λr−→ ηriXi + ηrjXj +

∑
k=1,...,K
k ̸=i,j

ηrkXk, (5)
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for some i, j ∈ {1, . . . , K} with i ≤ j. To extend such a reaction we consider the four possible236
combinations of reactant regimes and apply C1 - C3, yielding237

Ci + Cj
λr−→

K∑
k=1

ηrkCk, (6)

Di + Cj
λr−→ ηrjCj +

∑
k=1,...,K

k ̸=j

ηrkDk, (7)

Ci +Dj
λr−→ ηriCi +

∑
k=1,...,K

k ̸=i

ηrkDk, (8)

Di +Dj
λr−→

K∑
k=1

ηrkDk, (9)

Note that in the case of a homodimerisation, where i = j, reactions (7) and (8) are identical. Nevertheless,238
both must be included in the resultant network — this is explained in detail in Section 2.4. Applying this239
extension procedure to each reaction in the original network yields a new extended reaction network with240
chemical species Ck and Dk for k = 1, . . . , K.241

Remaining are the regime conversion reactions that facilitate the conversion of species at high- and242
low-copy numbers to the continuous and discrete regimes, respectively. To this end, we append to the243
extended network reactions of the form244

Ck

κf,k−−⇀↽−−
κb,k

Dk,

where κf,k and κb,k are non-constant rates of the form245

κf,k
def
= γf,k1{Ck+Dk<Tk},

κb,k
def
= γb,k1{Ck+Dk>Tk},

(10)

for pre-determined regime-conversion rates γf,k and γb,k, conversion thresholds Tk, and where the subscript246
characters f and b indicate the ‘forward’ and ‘backward’ conversions, respectively.247

The collection of the species Ck and Dk for k = 1, . . . , K alongside the set of reactions obtained from248
the procedures detailed above form the extended version of the network N . In completing our description249
of this network, it is useful at this point to introduce notational conventions that reflect both its structure250
and its provenance. For a CRN N , we denote its extended version by Ñ . We denote the state vector251

of Ñ by Y (t), taking without loss of generality Y (t)
def
= C(t) ⊕ D(t), where C(t) = (C1, . . . , CK),252

D(t) = (D1, . . . DK), and the operator ⊕ denotes vector concatenation. Finally, we denote the collection253
of reactions in Ñ by R̃.254

2.4 Network equivalence255

We claim that the evolution of the quantity Xk in the CRN N is the same as the evolution of the quantity256
Ck +Dk in the partitioned version Ñ , for all i = 1, . . . , K, provided that the species Ck are treated as257
discrete and simulated using the stochastic simulation algorithm. Before embarking on the derivation of258
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this equivalence, we must first specify what, precisely, we are aiming to demonstrate. Define p(x, t) to259
be the probability that {X(t) = x} and q(x, t) to be the probability that {C(t) +D(t) = x}. Our aim,260
therefore, is to demonstrate that for any choice of x ∈ NK and t > 0 we have q(x, t) = p(x, t), provided261
that the initial conditions for Ck +Dk are the same as those for Xk.262

To this end, consider a CRN N with K species and |R| = |R0|+ |R1|+ |R2| reactions, where R0, R1,263
and R2 are the sets of zeroth-, first-, and second-order reactions in the network, respectively. Recalling that264
the CME for this network is given by Equation (1), we rewrite the CME for N in the form265

d
dt
p(x, t) =

2∑
d=0

∑
r∈Rd

αr(x− vr)p(x− vr, t)

−
2∑

d=0

∑
r∈Rd

αr(x)p(x, t).

(11)

The extension procedure from Section 2.3 gives a CRN Ñ with 2K species and a set of reactions R̃,266
where |R̃| = |R0| + 2|R1| + 4|R2| + 2K. We associate each reaction in Ñ (excluding the 2K regime267
conversion reactions) with the original reactions from which they were extended. Each zeroth-order reaction268
in N is associated with a zeroth order reaction in N . Similarly, first- and second-order reactions in N are269
associated with two first- and four second-order reactions in Ñ , respectively. To track these relationships,270
we must introduce some new notation. We denote by ν̃r,ℓ, where r ∈ Rd, ℓ = 1, . . . , 2d, and d = 0, 1, 2,271

the stoichiometric vectors for the 2d reactions in Ñ associated with reaction r in N . In particular, notice272
that our extension procedure guarantees that273

(ν̃r,ℓ)1:K + (ν̃r,ℓ)K+1:2K = νr, (12)

for all reactions r ∈ R, ℓ = 1, . . . , 2d, d = 0, 1, 2, and where vn:m = (vn, ..., vm) for n ≤ m. Additionally,274
we define the extended set of propensity functions for each reaction r ∈ R via the usual mass-action275
kinetics, denoted by α̃r,ℓ for ℓ = 1, . . . , 2d. Note that in both cases, there is an implied ordering on the276
stoichiometric vectors and propensity functions associated with each reaction that is induced by ℓ - any such277
enumeration is arbitrary and exists only for notational utility; the only restriction is that the enumerations278
of stoichiometric vectors and propensity functions match for any given r.279

The propensity functions for the forward and backward regime conversion reactions (10) are not strictly280
governed by mass-action kinetics by virtue of their rates’ dependence on the concentration of non-reactant281
species. Specifically, we choose the propensity functions for the forward and backward reactions for each282
species k = 1, . . . , K to take the forms283

α̃f,k(y)
def
= γf,kdk1{ck+dk>Tk},

α̃b,k(y)
def
= γb,kck1{ck+dk<Tk},
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respectively, with associated stoichiometric vectors given by284

ν̃f,k
def
= ek − ek+K ,

ν̃b,k
def
= ek+K − ek,

again respectively, and where ek denotes the kth standard basis vector in R2K . The CME for the network285
Ñ can thus be expressed as286

d
dt
p̃(y, t) =

2∑
d=0

2d∑
ℓ=1

∑
r∈Rd

α̃r,ℓ(y − ν̃r,ℓ)p̃(y − ν̃r,ℓ, t)

−
2∑

d=0

2d∑
ℓ=1

∑
r∈Rd

α̃r,ℓ(y)p̃(y, t)

+
K∑
i=1

α̃f,i(y − ν̃f,i)p̃(y − ν̃f,i, t) + α̃b,i(y − ν̃b,i)p̃(y − ν̃b,i, t)

−
K∑
i=1

α̃f,i(y)p̃(y, t) + α̃b,i(y)p̃(y, t),

where p̃(y, t) denotes the probability that {Y (t) = y} at time t, where y = c⊕ d. Recalling the definition287
of q(x, t), we can additionally write the master equation governing q(c+ d, t),288

d
dt
q(c+ d, t) =

2∑
d=0

∑
r∈Rd

q(c+ d− νr, t)
2d∑
ℓ=1

α̃r,ℓ(c⊕ d− ν̃d
r,ℓ)

−
2∑

d=0

∑
r∈Rd

q(c+ d, t)
2d∑
ℓ=1

α̃r,ℓ(c⊕ d),

(13)

noticing that the regime conversion reactions contribute nothing to the evolution of q, since each conserves289
the quantity c(t) + d(t). Comparing Equations (11) and (13), the critical step in our proof of equivalence290
is demonstrating that291

2d∑
ℓ=1

α̃r,ℓ(c⊕ d) = αr(x), (14)

for all r ∈ R, and for any c,d ∈ NK where c+ d = x. To prove this, we will consider how the sum (14)292
behaves for each reaction order. To begin, fix c,d ∈ NK and x = c+ d. Consider the case z = 0, where z293
denotes the reaction order we are considering. For any zeroth order reaction under the law of mass-action,294
we trivially have that α̃r,1(c⊕d) = λr = αr(c+d) for all r ∈ R0. Since each reaction r ∈ R0 corresponds295

with exactly one reaction in R̃, Equation (14) holds for d = 0.296

We now consider the case z = 1 and consider a reaction r ∈ R1 of the form (2), taking without loss297
of generality ℓ = 1 to denote the reaction (3) and ℓ = 2 to denote the reaction (4). Notice that we have298
α̃r,1(c⊕ d) = αr(c) and α̃r,2(c⊕ d) = αr(d). Further, under mass-action, the functions αr are linear for299
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any first-order reaction r. Therefore, we have300

α̃r,1(c⊕ d) + α̃r,2(c⊕ d) = αr(c) + αr(d)

= λrck + λrdk = λr(ck + dk)

= αr(c+ d) = αr(x),

for all r ∈ R1 and Equation (14) holds for first-order reactions.301

Next, consider z = 2 and consider a second-order reaction r of the form (5). Similarly to the first-302
order case, we enumerate without loss of generality the propensity functions α̃r,ℓ by setting ℓ = 1, . . . , 4303
to correspond with reactions (6) through (9), respectively. Note that there are two distinct classes of304
second-order reaction; namely, homodimerisations, where both reactants are of the same species, and305
heterodimerisations, where both reactants are of different species. Each class yields propensity functions306
of a different functional form and must, therefore, be considered separately. For a homodimerisation r of307
reactant species Xk, we have that308

α̃r,1(c⊕ d) = λr(c
2
k − ck),

α̃r,2(c⊕ d) = λrdkck,

α̃r,3(c⊕ d) = λrckdk,

α̃r,4(c⊕ d) = λr(d
2
k − dk),

under mass-action kinetics. Summing these four equations yields309

4∑
ℓ=1

α̃r,ℓ(c⊕ d) = λr(ck + dk)(ck + dk − 1) = αr(c+ d) = αr(x),

and therefore Equation (14) holds for homodimerisations. Likewise, for a heterodimerisation r and reactant310
species of reactant species Xi and Xj , we have311

α̃r,1(c⊕ d) = λrcicj ,

α̃r,2(c⊕ d) = λrdicj ,

α̃r,3(c⊕ d) = λrcidj ,

α̃r,4(c⊕ d) = λrdidj ,

under mass-action kinetics. Summing these four equations yields312

4∑
ℓ=1

α̃r,ℓ(c⊕ d) = λr(ci + di)(cj + dj) = αr(c+ d) = αr(x),
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and therefore Equation (14) holds for heterodimerisations. The final step of the proof is to observe that the313
innermost summand in the master equation (13) can be written314

2d∑
ℓ=1

α̃r,ℓ(c⊕ d− ν̃r,ℓ) =
2d∑
ℓ=1

α̃r,ℓ

(
(c− (ν̃r,ℓ)1:K)⊕ (d− (ν̃r,ℓ)K+1:2K)

)
= αr

(
(c− (ν̃r,ℓ)1:K) + (d− (ν̃r,ℓ)K+1:2K)

)
= αr (c+ d− νr) = αr(x− νr),

(15)

where the second step follows from equivalence (14) and the third follows from relationship (12). Taken315
together, Equations (14) and (15) allow us to rewrite (13) as316

d
dt
q(c+ d, t) =

d
dt
q(x, t) =

2∑
d=0

∑
r∈Rd

αr(x− νr, t)q(x− νr, t)

−
2∑

d=0

∑
r∈Rd

αr(x)q(x, t),

which, upon inspection, is identical to the evolution equation that governs p; namely, Equation (11).317

2.5 The augmented reaction network318

In this subsection, we use the extended network Ñ to construct an augmented reaction network (ARN),319
which we denote M, that consists of both a chemical reaction network (simulated stochastically) and a set of320
ODEs (simulated deterministically) that, taken together, provide an approximation of the original network321
N and that can be simulated at lower computational expense. Indeed, simply simulating the network Ñ322
using an SSA would be at least as computationally expensive as simply simulating N . Specifically, the323
ARN contains all 2K species of Ñ — the key difference is that in forming the ARN we separate out324
all reactions that contain only continuous species. These ‘continuous-only’ reactions are not simulated325
using the discrete method; rather, we derive from the continuous-only reactions a system of approximate326
time-evolution equations that govern (in part) the means of the continuous species Ck. It is this system327
of equations that we simulate using the continuous method. Note that not all reactions in which the Ck328
participate are continuous-only; indeed, many of the first- and second-order reactions in Ñ contain both329
continuous and discrete species. These reactions that involve both continuous and discrete species are330
of ‘mixed-type’, and are simulated using the discrete method. In this manner, the discrete species are331
governed exclusively by the discrete method; on the other hand, the continuous species are governed by the332
continuous method for all high copy-number reactions (the continuous-only reactions) and by the discrete333
method for low copy-number reactions (the mixed-type reactions).334

We now detail the construction of the ARN. Beginning with a CRN, N , we apply the extension procedure335
set out in Section 2.3 to produce the extended network Ñ . As before, we denote by C(t) and D(t) the336
number of individuals in the continuous and discrete regimes at time t, respectively, which we combine337
into a single state vector Y (t) = C(t) ⊕D(t). The complete set of reactions in the extended network338
numbers |R0| + 2|R1| + 4|R2| + 2K, of which a total of |R1| + |R2| are continuously-only — one for339
each first-order reaction and one for each second-order reaction in the original network. We denote the340
sets of continuous-only first- and second-order reactions by Rc

1 and Rc
2, respectively. From Rc

1 ∪ Rc
2 we341

derive a master equation governing the evolution of P(C(t) = c(t)) under this set of reactions. Finally, we342
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derive mean time-evolution equations and close the system at first-order (via the mean-field or Poisson343
moment closures, for example). This procedure yields a system of ODEs that will ultimately be simulated344
by the continuous method. The remaining |R0|+ |R1|+ 3|R2|+ 2K reactions are those aforementioned345
mixed-type and discrete-only reactions, which will be simulated by the discrete method.346

Following this procedure, we find that the mean of the kth continuous species under the action of the347
reactions in the set Rc

1 ∪Rc
2 obeys the following evolution equation,348

d
dt
⟨Ci⟩ =

∑
r∈Rc

1∪Rc
2

νri⟨αr(c(t))⟩. (16)

Given that this description contains only first and second-order reactions, it is straightforward to derive349
mean time-evolution equations for each of the Ci under the mean-field and Poisson closures. Define for a350
reaction r the function πr(n) that returns the nth reactant species of said reaction, where n = 1, . . . , d. For351
example, for a reaction r of the form (6), the function takes the values πr(1) = Ci and πr(2) = Cj . Denote352
by Rc

H and Rc
O the sets of hetero and homodimerisations, respectively, such that Rc

H ∪Rc
O = Rc

2. Note that353
the definition of a homodimerisation guarantees that for any such reaction r, πr(1) = πr(2). We can now354
write the mean time-evolution equations for each of the Ck. Under the mean-field closure, Equation (16)355
becomes356

d
dt
⟨Ck⟩ =

∑
r∈Rc

1

λrνrk⟨πr(1)⟩+
∑
r∈Rc

H

λrνrk⟨πr(1)⟩⟨πr(2)⟩+
∑
r∈Rc

O

λrνrk⟨πr(1)⟩2. (17)

Similarly, under the Poisson closure, Equation (16) becomes357

d
dt
⟨Ck⟩ =

∑
r∈Rc

1

λrνrk⟨πr(1)⟩+
∑
r∈Rc

H

λrνrk⟨πr(1)⟩⟨πr(2)⟩+
∑
r∈Rc

O

λrνrk
[
⟨πr(1)⟩+ ⟨πr(1)⟩2

]
. (18)

To complete our description of the ARN, we also must specify the stoichiometry matrix, denoted M, that358
represents the set of reactions that will be simulated using the discrete method. This matrix may be written359
in block form,360

M =
[
MR MK

]
,

where MR is the stoichiometric matrix obtained all remaining |R0|+ |R1|+ 3|R2| discrete reactions in Ñ ,361
and MK is the stoichiometric matrix representing the regime conversion reactions. Notice that without loss362
of generality we can write363

MK =

[
IK −IK
−IK IK

]
, (19)

where IK is the K ×K-dimensional identity matrix.364

The ARN corresponding to the CRN N is thus defined to be the tuple of the set of 2K species Ci, Di365
(i = 1, . . . , K), the stoichiometry matrix M and associated propensity functions α̃r,ℓ (r ∈ Rd, k =366
1, . . . , 2d, d = 0, 1, 2), and the system of ODEs given by either (17) or (18), depending on the chosen367
closure. We call these the mean-field ARN (M-ARN) and the Poisson ARN (P-ARN) associated with the368
CRN N , respectively.369
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2.6 The Mass-Conversion Method370

We now describe in detail our proposed algorithm for the efficient simulation of an ARN M: the regime-371
conversion method. The method itself resembles that of other hybrid methods based on the Gillespie direct372
method, and its implementation is straightforward — the mathematical machinery that gives the method its373
computational efficiency is implicit in the structure of the ARN.374

The only strictly numerical parameters in the method are ∆t, the ODE update step size, which should be375
chosen according to the numerical method used for solving the system of ODEs, and; the regime conversion376
rates γf,k and γb,k and thresholds Tk, which can be iteratively refined for a given problem of interest over377
the course of several shorter test runs. In the present description of the method, we take the step size378
∆t to be fixed; however, we note that all instances of fixed ∆t may be replaced with a suitable value to379
accommodate, for example, adaptive time-stepping methods. We further comment that in all test problems380
presented here, the forward and backward regime conversion rates γf,k and γb,k are taken to be equal for381
each k = 1, ..., K.382

The method is initialised by specifying the initial conditions Y (0) = C(0)⊕D(0), the first ODE update383
time, td = ∆t, and the initial and final simulation times t0 and tf , respectively. We next calculate the value384
of each propensity function at the initial time t = t0 and calculate their sum α0(t). As in the Gillespie385
direct method, the sum α0(t) is used to determine the time until the next discrete-regime reaction τ using386
the formula387

τ =
1

α0
ln

(
1

u

)
,

where u ∼ U(0, 1) is a uniformly distributed random number.388

If, at time t, the time of the next reaction is before that of the next ODE update (i.e. t+ τ < td) then a389
regular stochastic event is executed. Notice, however, that since the state C is partially governed by the390
system of ODEs, the mass of any given species Ck is not necessarily integer-valued. It is possible then391
that the firing of an event in the usual manner may result in Ck < 0 for some k = 1, . . . , K. To avoid392
this unphysical occurrence we perform a rejection sampling step when a reaction attempts to destroy or393
convert a continuous mass molecule of species k when Ck ∈ (0, 1). Specifically, we sample u ∼ U(0, 1) –394
if u < Ck, we execute the reaction and set Ck = 0; otherwise, the reaction does not occur.395

If t+ τ > td we set t = t+ τ . Then, we enumerate without loss of generality all reactions by the order396
in which they appear in the stoichiometry matrix M of M, denoting by α̃p(t) the value of the propensity397
function at time t associated with the pth reaction under said enumeration. The reaction to be executed is398
then sampled by selecting r ∼ U(0, 1) uniformly at random and finding j such that399

j∑
p=1

α̃p(t) < rα0 <

j+1∑
p=1

α̃p(t).

In the case that the next reaction would occur after that of the next ODE update (i.e. t+ τ > td), an ODE400
update is performed to calculate the concentrations of the continuous species C. This may be achieved401
using any suitable numerical method. After this, the time is set to be equal to the current ODE update time402
t = td, the time of the next ODE update is set td = td +∆t, and the process of sampling a new stochastic403
event is begun anew at time t. This procedure continues until the final time tf is reached, and forms the404
entirety of the RCM. An algorithmic description of the RCM is given in Algorithm 1405
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3 RESULTS

In this section we demonstrate the accuracy of the RCM for three example problems of increasing406
complexity. We choose to use the classical fourth-order Runge Kutta method (see, e.g. [19, p. 352]) for407
solving the systems of ODEs, and the GDM for simulating stochastic trajectories. We make special note408
that the validity of our coupling is independent of the chosen numerical method for simulating the system409
of ODEs. Nevertheless, the accuracy of the method as a whole will naturally depend to a large extent on410
the accuracy of the underlying numerical techniques; a phenomenon that we explore in Test Case 3.2. To411
measure the error in a simulation run, we define the relative error between the SSA and the RCM by412

εk,RCM(t)
def
=

fk,RCM(t)− fk,SSA(t)

fk,SSA(t)
,

where fk,SSA is the computed density of the kth species at time t as approximated by the SSA (resp. by the413
RCM). Likewise, we define the relative error between the system of ODEs and the SSA by414

εk,ODE
def
=

fk,ODE(t)− fk,SSA(t)

fk,SSA(t)
,

where fk,ODE is the computed density of the kth species at time t according to the system of ODEs as415
simulated by the numerical method.416

3.1 Test Case 1 — Alternating exponential growth417

Our first test case aims to demonstrate the accuracy of the method in the case of network with a single418
species, where continuous mass is degraded by a first-order degradation reaction to induce a continuous-to-419
discrete regime conversion, and discrete mass is produced by a zeroth-order production reaction to induce420
a discrete-to-continuous regime conversion. We thus consider the following simple reaction network N421
consisting of a single species X and two reactions,422

∅
λ1−⇀↽−
λ2

X,

where the rates are of the form423

λi(t) =

{
ki t ∈ Ii,

0 otherwise,

where ki > 0 and Ii is some finite, non-empty union of time intervals. In our specific example, we choose424
these intervals such that the degradation reaction is ‘on’ precisely when the production reaction is ‘off’,425
and vice-versa. This network has stoichiometry matrix426

S =
[
1 −1

]
,

and propensity functions427
α1 = λ1, α2 = λ2x.
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From this, we form the corresponding M-ARN M with two species C and D. This network has428
stoichiometry matrix429

M =

[
1 0
0 −1

M1

]
, recalling M1 =

[
1 −1
−1 1

]
,

and propensity functions430
α̃1,1 = λ1, α̃2,1 = λ2d,

corresponding to the zeroth-order production and the first-order degradation of discrete mass, respectively.431
The first-order degradation of continuous mass is modelled via the ODE432

d
dt
⟨C⟩ = −λ2⟨C⟩.

We present the results of this test case in Figure 1 using the parameter values given in Table 1. This proof-433
of-concept example demonstrates the key behaviour of the RCM — the conversion between discrete- and434
continuum-governed mass. As expected, when overall density falls below the threshold value we observe435
the conversion of continuum to discrete mass, and vice versa when density again becomes sufficiently436
high. We observe no evidence of bias in the RCM, with the fluctuations away from zero in Figure 1a not437
persisting between simulation runs.438

Figure 1a. Plot of the density of D + C as
simulated by the RCM.

Figure 1b. Relative error in D + C between the
RCM and the SSA.

Figure 1. Results of Test Case 1 (Section 3.1) with parameters as specified in Table 1 with conversion
threshold T = 650. Simulation results averaged over 105 repeats.

3.2 Test Case 2 – Alternating logistic growth439

Our second test case aims to demonstrate the accuracy of the method in the case of a network with a single440
species, this time where continuous mass is degraded by a second-order degradation reaction to induce441
a continuous-to-discrete regime conversion, and discrete mass is produced by a first-order production442
reaction to induce a discrete-to-continuous regime conversion. As in Test Case 1, we take N consisting of443
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a single species X , this time with reactions444

X
λ1−⇀↽−
λ2

X +X,

where the rate λ1 is constant over time and λ2 is governed by445

λ2(t) =

{
k2 t ∈ I,

0 otherwise,

where k2 > 0 and I is some finite, non-empty union of time intervals. Again, we select these intervals such446
that the production reaction is ‘on’ precisely when the degradation reaction is ‘off’, and vice-versa. This447
network has stoichiometry matrix448

S =
[
1 −1

]
,

this time with propensity functions449

α1 = λ1x, α2 = λ2x(x− 1).

Following extension, we obtain an ARN M with two species C and D. This network has stoichiometry450
matrix451

M =

[
1 0 −1 0
0 −1 0 −1

M1

]
,

and propensity functions452

α̃1,1 = λ1d, α̃2,1 = λ2d(d− 1), α̃2,2 = α̃2,3 = λ2dc,

representing the production of a discrete molecule from a discrete molecule, the degradation of a discrete453
molecule by a discrete molecule, the degradation of a continuous molecule by a discrete molecule, and the454
degradation of a discrete molecule by a continuous molecule, respectively. We form the equation governing455
the second-order degradation of continuous mass by continuous mass and the production of continuous456
mass from continuous mass using the Poisson closure; this equation is given by the ODE457

d
dt
⟨C⟩ = λ1⟨C⟩ − λ2⟨C⟩2.

We present the results of this test case in Figure 2 using the parameter values given in Table 2. The results458
of this test case demonstrate a particular limitation of the RCM; namely, that the error in the RCM is, in459
some sense, ‘tethered’ to the error in the solution to the system of ODEs in the associated ARN. We see this460
most clearly at the parameter transition point t = 20, when the second-order reaction degradation activates.461

3.3 Test Case 3 — Chemical signalling462

For our third test case, consider a CRN, N , consisting of three chemical species X1, X3, and X2, which463
we refer to as the signal, intermediate, and product species respectively, within a reactor vessel of unit464
volume. The product X2 is produced via the intermediate X3 and is degraded via a first-order sink reaction.465
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Figure 2a. Plot of the density of D + C as
simulated by the RCM.

Figure 2b. Relative error in D + C between the
RCM and the SSA and between the system of
ODEs and the SSA.

Figure 2. Results of Test Case 2 (Section 3.2) with parameters as specified in Table 2 with conversion
threshold T = 300. Simulation results averaged over 105 repeats.

The intermediate is produced via a zeroth-order source reaction.466

∅ λ1−→ X3
λ2−→ X2

λ3−→ ∅.

The signal species X1 is coupled indirectly with X2 via the following reaction,467

X1 +X3
λ4−→ X1,

in which the signal degrades the intermediate X3. Finally, the signal species itself is produced and degraded468
according to the same reaction system we used in Test Case 1,469

∅
λ5−⇀↽−
λ6

X1.

This CRN, N , has stoichiometry matrix470

S =

0 0 0 0 1 −1
0 1 −1 0 0 0
1 −1 0 −1 0 0

 ,

with propensity functions given by471

α1 = λ1, α2 = λ2x3, α3 = λ3x2,

α4 = λ4x1x3, α5 = λ5, α6 = λ6x1.
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Under the mean-field closure, the means of X1, X2, and X3 are governed by the following system of ODEs472

d⟨X1⟩
dt

= λ5 − λ6⟨X1⟩,

d⟨X2⟩
dt

= λ2⟨X3⟩ − λ3⟨X2⟩,

d⟨X3⟩
dt

= λ1 − λ2⟨X3⟩ − λ4⟨X1⟩⟨X3⟩.

(20)

As demonstrated in [20], the steady-state behaviour of N is determined to a substantial degree by the473
stochastic fluctuations of X3. This system, therefore, benefits greatly from a hybrid modelling approach,474
where the low-copy-number X1 and X3 can be modelled discretely. From the CRN N we form the M-ARN475
M, which has stoichiometry matrix476

MR =



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0
0 0 0 0 0 0 1 −1
0 1 −1 0 0 0 0 0
1 −1 0 −1 0 −1 0 0

M3

 ,

where M3 is defined in Equation (19); reaction propensities477

α̃1,1 = λ1, α̃2,1 = λ2d3, α̃3,1 = λ3d2,
α̃4,1 = λ4d1d3, α̃4,2 = λ4d1c3, α̃4,3 = λ4c1d3,
α̃5,1 = λ5, α̃6,1 = λ6d1,

and; the following system of ODEs,478

d⟨C1⟩
dt

= −λ6⟨C1⟩,

d⟨C2⟩
dt

= λ2⟨C3⟩ − λ3⟨C2⟩.

d⟨C3⟩
dt

= −λ2⟨C3⟩ − λ4⟨C1⟩⟨C3⟩.

To demonstrate the utility of the RCM in this case, we compare the mean densities of N as approximated479
by both the Gillespie SSA and by the mean-field equations (20) with the mean density of M as approximated480
by the RCM. For this problem, we wish to simulate the species X1 and X3 purely via the discrete regime481
and the product species X2 will be permitted to switch regimes dependent on density. The model parameters482
used for our test case are listed in Table 3. We present the results of this test case in Figure 3. Notice that483
the density of D2 appears to decrease before reaching the threshold value. This is to be expected since, as484
the system is governed wholly by the discrete regime until the threshold is reached, a non-zero number of485
simulation trajectories reach threshold before the mean trajectory. This manifests as the mean trajectory486
beginning regime transition before the threshold is actually reached.487

Evidently, the RCM substantially outperforms the mean-field ODEs at approximating the true trajectory488
of this reaction network. The reason for this is that the RCM guarantees the simulation of the X3 species489
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Figure 3a. Plot of the density of C2 + D2 as
simulated by the RCM, SSA, and ODEs. Note
that the density as determined by the SSA is
indistinguishable at this scale from the density
determined by the RCM - as such the trajectory of
the RCM obscures that of the SSA in the plot.

Figure 3b. Relative error in C2+D2 between the
RCM and the SSA. Simulation results averaged
over 1.6 · 104 repeats.

Figure 3. Results of Test Case 3 (Section 3.3) with parameter values given in Table 3.

exclusively via the discrete regime by setting the relevant regime conversion threshold values to infinity. As490
such, the method retains information of the stochastic fluctuations in X3 where the system of mean-field491
ODEs does not. We further note the lack of bias in the error of the RCM.492

3.4 Test Case 4 — Michaelis-Menten Enzyme Kinetics493

Here we apply the RCM to the well-studied Michaelis-Menten model of enzyme kinetics [21, 22]. We494
consider a slight generalisation of the classical model wherein the substrate species is continuously supplied495
to the system. The model can be represented as a CRN with the following reactions:496

∅ λ1−→ S, E + S
λ3−⇀↽−
λ2

M
λ4−→ E + P. (21)

This network models the conversion of a substrate species S into a product species P via catalysis with497
some enzyme E. This conversion occurs when a member of the substrate species binds with the enzyme498
to form an intermediate enzyme-substrate complex M . The complex M can then unbind either into its499
original constituents E + S or into a new product P , freeing the enzyme E to bind with further substrate.500
Note that, since E acts only as a catalyst in the above network, the quantity ET = E +M is conserved501
over time.502

For the purposes of our demonstration, tracking the growth in copy number of the species P is unimportant.503
Thus, we henceforth neglect to include this species in the network, though we retain the reaction channel504
to leave the dynamics of the remaining species unchanged. Taking the mean-field closure of the master505
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equation formed from the system of reactions (21), we obtain the following system of ODEs:506

d⟨S⟩
dt

= λ1 − λ2⟨E⟩⟨S⟩+ λ3⟨M⟩,

d⟨E⟩
dt

= −λ2⟨E⟩⟨S⟩+ (λ3 + λ4)⟨M⟩,

d⟨M⟩
dt

= λ2⟨E⟩⟨S⟩ − (λ3 + λ4)⟨M⟩,

which can be shown to have a steady-state solution given by507

⟨S⟩ = λ1(λ3 + λ4)

λ2(λ4ET − λ1),

⟨M⟩ = ET − ⟨E⟩ = λ1
λ4

.

We now form the M-ARN for system (21), which has stoichiometry matrix508

MR =



0 0 0 −1 0 0
0 0 −1 0 0 0
0 0 0 0 0 0
1 −1 −1 0 1 0
0 −1 0 −1 1 1
0 1 1 1 −1 −1

M3

 ,

reaction propensities509

α̃1,1 = λ1, α̃2,1 = λ2dEdS , α̃2,2 = λ2cEdS ,
α̃2,3 = λ2dEcS , α̃3,1 = λ3dM , α̃4,1 = λ4dM ,

and the following system of ODEs,510

d⟨CS⟩
dt

= −λ2⟨CE⟩⟨CS⟩+ λ3⟨CM ⟩,

d⟨CE⟩
dt

= −λ2⟨CE⟩⟨CS⟩+ (λ3 + λ4)⟨CM ⟩,

d⟨CM ⟩
dt

= λ2⟨CE⟩⟨CS⟩ − (λ3 + λ4)⟨CM ⟩.

As in prior test cases, we again evaluate the accuracy of the RCM against the Gillespie SSA. For this511
system, we select parameters such that all species except for the enzyme species E are simulated using the512
continuous regime in order to evaluate how well the RCM performs at estimating both the mean and the513
variance of E at steady state. We present the results for the mean estimate in Figure 4. This case highlights514
a key feature of the RCM. Notice that, despite E having a threshold of ∞ (and therefore suggesting that all515
mass should be governed by the discrete regime), a small proportion of the mass is nevertheless represented516
by the continuous regime at steady state. This proportion can be tweaked to different values depending on517
the specific enzymatic reaction being modelled by increasing or decreasing the regime transition rates γf,E518
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Figure 4a. Plot of the density of DE + CE as
simulated by the RCM. Shown is the amount of
mass DE in the discrete regime and the amount of
mass CE in the continuous regime, alongside the
total mass DE + CE . Results from the SSA over
the same time period are overlaid.

Figure 4b. Relative error in the density of DE +
CE as predicted by the RCM and versus the SSA
over time.

Figure 4. Results of Test Case 4 (Section 3.4) with parameter values given in Table 3. Simulation results
averaged over 1 · 105 repeats.

and γb,E . This non-zero mass CE , as well as the fact that all other species are governed primarily by the519
continuous regime, manifests as a slight positive bias in the RCM versus the SSA (Figure 4b). A parameter520
sweep demonstrates that this bias is reduced by decreasing the step size used in the numerical method;521
however, this naturally comes at greater computational cost.522

Figure 5 compares the steady-state distribution of the mass of E as estimated by the RCM versus the SSA.523
In both cases, we consider the system to have reached steady state by t = 5, and sample the distribution524
of E at this time. Here, we observe that while the overall shape of the distribution is largely preserved,525
the variance predicted by the RCM is slightly lower than that predicted by the SSA, as evidenced by the526
thinner tails of the distribution. Unlike the bias in the mean, this damping of the variance is not dependent527
on the step size used. This discrepancy in the variance is perhaps unsurprising, given that a proportion of E528
is governed by the (approximate and deterministic) continuous regime.529

4 DISCUSSION

In this work we introduced a novel hybrid method for simulating well-mixed chemical reaction networks.530
This method couples a system of ODEs with a Markov process representation of a chemical reaction531
network by constructing a so-called augmented reaction network that combines both representations. The532
continuous and discrete components of the augmented network can be simulated simultaneously using533
different techniques to maximise computational efficiency and minimise the loss of accuracy resultant534
from taking continuum approximations. We demonstrated the accuracy of the method in three separate test535
problems of increasing complexity, evidencing in the final test case a substantial improvement in accuracy536
using our method versus the standard continuum approximation technique.537
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Figure 5. Steady-state distribution of the amount of mass in species E as estimated by the RCM versus
the SSA.

While our method demonstrates substantially better accuracy versus the continuum-only models in the538
test cases we present, its advantage versus a traditional SSA is, in general, dependent on network structure.539
Specifically, in systems where the majority of computation time (when simulated via a SSA) is spent on540
the simulation of low copy-number species interacting with high copy-number species via bimolecular541
reaction channels, there is little computational benefit to our approach. The reason for this is that such542
reactions are (assuming each species is below and above the transition thresholds, respectively) necessarily543
simulated using the SSA, and therefore may impart no computational benefit in the RCM versus the SSA544
alone. In cases where both reactant species in a bimolecular reaction are of sufficiently high concentration545
to be above their respective transition thresholds, it may be the case that the RCM yields similar accuracy546
to that of a continuum-based approach. Nevertheless, in neither case is there reason to expect a priori that547
use of the RCM is necessarily disadvantageous. With these caveats in mind, there are clear instances where548
the RCM may be suitable to use over traditional methods. In loosely-coupled networks where the majority549
of interactions are of first-order (networks of this type frequently arise when modelling cellular populations550
[23, 24, 25, 26]), the RCM demonstrates a clear computational advantage.551

Another limitation of the RCM is that it may estimate moments of order two and above with some552
inaccuracy. This is a limitation shared by several other hybrid methods [11, 12]. Indeed, we see that by553
simulating a significant proportion of the dynamics of a system via the continuous method (as seen in554
Test Case 3.4, one induces a damping effect on the variance in species numbers. Nevertheless, the results555
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demonstrate that the RCM allows for partial recovery of the distributions of constituent species. A possible556
solution to this problem would be to replace the system of deterministic, mean-field ODEs governing the557
continuous regime with appropriate stochastic differential equations. This approach has been used to solve558
the variance damping problem in spatial hybrid methods [27]. Additional work is required to conduct a full559
examination of the evolution of higher-order moments in the RCM and to quantify how such evolution is560
related to model parameters.561

Our method differs from similar hybrid methods [11, 12, 13] in two crucial ways. First, our method562
allows for mass to transition dynamically between regimes. While it is possible to set thresholds (by563
setting threshold values to 0 or ∞) and transition rates (by setting transition rates to particularly small564
or particularly large values) such that mass is preferentially represented by one of the two regimes, the565
intended use case of the RCM is for systems where there is significant variability in the copy number of one566
of more species over the course of a simulation run. Second, in many cases, species simulated by the RCM567
have both a discrete and a continuous component. This allows for the partial recovery of these species’568
distributions, which would not be possible with a continuum-only approximation of the first moments of a569
network.570

There are several ways in which the RCM might be extended to accommodate a wider variety of571
problems and to increase its computational efficiency. The first and most obvious direction is to extend its572
dimensionality; for example, to a spatial setting. The RCM, being an effective simulation technique for well-573
mixed reaction networks, might be extended to a spatial reaction-diffusion setting in several ways. Under574
a mesoscopic modelling regime (see e.g., [8]), where individual system components are collected into575
well-mixed spatial ‘bins’ of fixed size, the RCM could be used to simulate reactions by treating individuals576
in each bin as distinct species that do not interact with neighbouring bins. In this framework, diffusive jumps577
between bins are simply reactions that convert individuals in one ‘bin species’ to another. A spatial model578
consisting of binned particles and ordinary differential equations associated with each bin is thereby easily579
treated via the RCM. Nevertheless, this representation of a reaction-diffusion process is limited - for spatial580
domains with many bins, simulating large systems of (potentially) non-linear ODEs may be prohibitively581
expensive. A more sensible choice would be to represent the continuous approximation as a system of582
partial differential equations on an explicitly spatial domain; indeed, contemporary spatially-extended583
hybrid methods that couple continuous and mesoscopic regimes generally use this representation [8]. In584
this case, the matter of coupling the stochastic and diffusive reactions in each bin is not so straightforward,585
requiring numerical integration of the partial differential equation over relevant spatial regions. Extending586
the RCM in this manner to a spatially-extended mesoscopic-to-continuous hybrid method will form the587
basis of an upcoming investigation.588

The RCM may also be extended to incorporate additional dimensionality along non-spatial lines. An589
important class of demographic and biological models are those with size- or age-structure, or a combination590
thereof. These model systems of interacting individuals (either eukaryotic or prokaryotic cells) undergoing591
some variant of the classical cell-cycle [28], and for which an individual’s size (or age) is an important592
contributor to overall population dynamics. These systems are often modelled as either discrete-state593
stochastic processes [26, 29, 30, 31] or as continuous partial differential equations via the McKendrick-von594
Foerster equation [32, 33]. Despite their ubiquity, to the best of the authors’ knowledge there exist no hybrid595
simulation techniques that can accommodate, without modification, size- or age-structure. Depending596
on the specific functional form of any size- or age-mediated reactions, a method of ‘spatial’ numerical597
integration over intervals of age or size similar to that proposed for spatial extension may prove fruitful for598
coupling these two modelling regimes.599
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An important area of research in numerical methods in general is the development of so-called ‘adaptive’600
methods. These are methods for which certain numerical parameters can be changed mid-way through a601
simulation run to adapt to situations that might otherwise prove numerically challenging or computationally602
infeasible. The prototypical example of this is in adaptive time-stepping methods for solving systems of603
ordinary differential equations, wherein the usual fixed time step of a numerical solver is replaced with a604
variable time step that is recalculated at each update step to ensure stability even when the derivatives of605
the system undergo large variations [34]. As noted in our description of the RCM, one could apply such an606
adaptive time-stepping method for computing approximations to the continuum regime description without607
needing to modify the algorithm. Nevertheless, it is not difficult to conceive of a more specialised form of608
time-stepping that would take into consideration more than just the mass in the continuous regime and609
instead consider both the discrete mass and the calculated propensity functions at the time of an update610
step. For example, large numbers of individuals either entering or leaving the continuous regime may, by611
affecting the gradient of the continuum approximation, inject undesirable numerical instabilities into the612
RCM in extreme cases - something that traditional adaptive time-stepping methods are not designed to613
handle. Adaptivity in terms of time-stepping is not the only potential improvement, however. Presently,614
the RCM requires that the threshold values for the regime conversion reactions are set and fixed a priori.615
One can envisage modifications to the RCM where the conversion thresholds vary in response to changes616
in density, computational cost, rates of density change, and the stochasticity present in the system at any617
given time.618

Finally, the method may be extended to incorporate reactions of arbitrary molecular order. While any619
reactions of molecular order of at least three can be decomposed into sequences of reactions of molecular620
order of at most two, these decompositions can be difficult to compute in practice. We conjecture that621
the same techniques used to demonstrate equivalence between the CRN and its associated ARN apply to622
higher-order reactions; however, proving this in generality is likely to be cumbersome. Further, one needs623
2d ODEs to satisfy the coupling requirements C1, C2 for a reaction of order d which, while not necessarily624
impacting computation time, may quickly become impractical to implement for large networks.625

To summarise, our method provides a novel and computationally efficient technique for simulating626
well-mixed chemical reactions networks using a hybrid discrete/continuous methodology. Unlike similar627
existing methods, ours does not depend on the system of interest possessing certain properties; i.e., a628
particular decomposability of reactions or species into ‘fast’ and ‘slow’ categories. Further, it represents a629
promising coupling mechanism between the mesoscopic and macroscopic regimes that may permit for630
the development of new spatially-extended hybrid techniques that have a particular intrinsic adaptivity;631
namely, the ability to simulate spatial density distributions with significant and dynamic heterogeneity.632
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[16] Nåsell I. An extension of the moment closure method. Theor Popul Biol 64 (2003) 233–239.660

[17] Laidler KJ. Reaction Kinetics (Pergamon), first edn. (1963).661

[18] Aris R, Gray P, Scott SK. Modelling cubic autocatalysis by successive bimolecular steps. Chem Eng662
Sci 43 (1988) 207–211.663

[19] Suli E, Mayers DF. An Introduction to Numerical Analysis (Cambridge University Press) (2003).664

[20] Paulsson J, Berg OG, Ehrenberg M. Stochastic focusing: Fluctuation-enhanced sensitivity of665
intracellular regulation. PNAS 97 (2000) 7148–7153.666

[21] Michaelis L, Menten ML. Die kinetik der invertinwirkung. Biochem Z 49 (1913) 352.667

[22] Murray JD. Reaction Kinetics. Murray JD, editor, Mathematical Biology (New York, NY: Springer668
New York), vol. 17 (1993), 175–217.669

[23] Simpson MJ, Towne C, McElwain DS, Upton Z. Migration of breast cancer cells: Understanding the670
roles of volume exclusion and cell-to-cell adhesion. Phys Rev E 82 (2010) 041901.671

[24] Simpson MJ, Landman KA, Hughes BD. Cell invasion with proliferation mechanisms motivated by672
time-lapse data. Physica A 389 (2010) 3779–3790.673

[25] Yates CA, Ford MJ, Mort RL. A multi-stage representation of cell proliferation as a Markov process.674
Bull Math Biol 79 (2017) 2905–2928.675

[26] Kynaston JC, Guiver C, Yates CA. Equivalence framework for an age-structured multistage676
representation of the cell cycle. Physical Review E 105 (2022) 064411.677

[27] Alexander FJ, Garcia AL, Tartakovsky DM. Algorithm refinement for stochastic partial differential678
equations: I. Linear diffusion. J Comp Phys 182 (2002) 47–66.679

[28] Schafer KA. The cell cycle: A review. Vet Pathol 35 (1998) 461–478.680

[29] Stukalin EB, Aifuwa I, Kim JS, Wirtz D, Sun SX. Age-dependent stochastic models for understanding681
population fluctuations in continuously cultured cells. J R Soc Interface 10 (2013).682

[30] Greenman CD, Chou T. A kinetic theory for age-structured stochastic birth-death processes. Phys Rev683
E 93 (2016) 012112.684

[31] Chou T, Greenman CD. A hierarchical kinetic theory of birth, death and fission in age-structured685
interacting populations. J Stat Phys 164 (2016) 49–76.686

Frontiers 26

In review



Kynaston et al. The regime-conversion method

[32] Trucco E. Mathematical models for cellular systems. The von Foerster equation. Part I. B Math687
Biophys 27 (1965) 285–304.688

[33] Rossini L, Contarini M, Speranza S. A novel version of the Von Foerster equation to describe689
poikilothermic organisms including physiological age and reproduction rate. Ric Mat 70 (2021)690
489–503.691

[34] Hairer E, Norsett SP, Wanner G. Solving Ordinary Differential Equations I: Nonstiff Problems692
(Springer) (1987).693

TABLES

Algorithm 1 The regime-conversion method

1: Specify initial conditions Y (0) = (C(0),D(0)) and t0, final time tf , and ODE update step size ∆t.
2: Set td = ∆t
3: while t < tf do
4: Calculate the value of each reaction propensity function α̃r,k(X(t))
5: Calculate the value of each conversion reaction propensity function α̃f,i(X(t)) and α̃b,i(X(t))
6: Calculate the sum of all propensity functions at time t

α0 =
∑
r∈R

2d∑
j=1

α̃r,j +
K∑
i=1

(
α̃f,i + α̃b,i

)
7: Sample uniformly at random a number u from the interval [0, 1]
8: Determine the time until the next stochastic event

τ =
1

α0
ln

(
1

u

)
9: if t+ τ < td then ▷ The next stochastic event occurs

10: Determine which event occurs by finding j such that

j∑
p=1

α̃p(t) < rα0 <

j+1∑
p=1

α̃p(t).

11: if The firing of reaction j would result in Ck < 0 for some k then
12: if Ck < u for u ∼ U(0, 1) then
13: The reaction is not executed.
14: else
15: Update the state via Y (t+ τ) = Y (t) + νp and set Ck = 0.
16: else
17: Update the state via Y (t+ τ) = Y (t) + νp.
18: Set t = t+ τ .
19: else ▷ The next ODE update occurs
20: Perform an ODE update step to calculate c(td)
21: Set t = td
22: Set td = t+∆t
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Variable Value

Initial conditions C 1.0 · 103
D 0

Reaction rates
λ1 1.0 · 100
λ2 2.0 · 102
γ 1.0 · 101

Threshold values T1 6.5 · 102

Simulation parameters ∆t 1.0 · 10−4

tf 8.0 · 100

Other I1 [4,∞)

I2 [0, 4)

Table 1. Initial and parameter values for Test Problem 1.

Variable Value

Initial conditions C 0.0 · 100
D 6.0 · 101

Reaction rates
λ1 1.0 · 10−3

λ2 6.0 · 10−1

γ 1.0 · 100

Threshold values T1 3.0 · 102

Simulation parameters ∆t 1.0 · 10−2

tf 8.0 · 100

Other I [0, 20) ∪ [40, 60)

Table 2. Initial and parameter values for Test Problem 2.
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Variable Value

Initial conditions D [10, 100, 0]

C [0, 0, 0]

Reaction rates

λ1 1.0 · 102
λ2 1.0 · 103
λ3 1.0 · 10−2

λ4 9.9 · 103
λ5 5.0 · 102
λ6 1.0 · 102
γ 1.0 · 100

Threshold values
T1, T3 ∞
T2 2.0 · 102

Simulation parameters ∆t 1.0 · 10−1

tf 2.0 · 102

Table 3. Initial and parameter values for Test Problem 3.

Variable Value

Initial conditions D [0, 100, 0]

C [1000, 0, 400]

Reaction rates

λ1 2.5 · 101
λ2 4.025 · 10−2

λ3 1.0 · 101
λ4 6.25 · 10−2

γ 1.0 · 102

Threshold values
TS , TM 0

TE ∞

Simulation parameters ∆t 5.0 · 10−4

tf 1.0 · 100

Table 4. Initial and parameter values for Test Problem 4.
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