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Abstract
In modern manufacturing industries, the importance of multi-objective optimization cannot be overemphasized
particularly when the desired responses are differing in nature towards each other. With the emergence of new
technologies, the need to achieve overall efficiency in terms of energy, output, and tooling is on the rise. Resultantly,
endeavor is to make the machining process sustainable, productive, and efficient simultaneously. In this research,
the effects of machining parameters (feed, cutting speed, depth of cut, and cutting condition including dry, wet,
and cryogenic) were analyzed. Since sustainable production demands a balance between production quality and
energy consumption, therefore, response parameters including specific cutting energy, tool wear, surface roughness,
and material removal rate were considered. Taguchi-gray integrated approach was adopted in this study. Multi-
objective function was developed using gray relational methodology, and its regression analysis was conducted.
Response surface optimization was carried out to optimize the formulated multi-objective function and derive the
optimum machining parameters. Concurrent responses were optimized with best-suited values of input parameters
to make the most out of the machining process. Analysis of variance results showed that feed is the most effective
parameter followed by cutting condition in terms of overall contribution in multi-objective function. The proposed
optimum parameters resulted in improvement of tool wear and surface roughness by 30% and 22%, respectively,
whereas specific cutting energy was reduced by 4%.

Keywords:- Titanium; Ti-6Al-4 V; Cryogenic machining;  Sustainable machining; Multi-objective optimization;  Gray relational 
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1 Introduction

Past few decades has seen exponential growth in industries in terms of technology, output, and efficiency. The focus is on 
increasing output quantity while ensuring sustainability and improving quality. This desire of excellence has fueled the 
need of optimization in machine and process domains. Energy, quality, and productivity are the three main avenues 
for research in today’s manufacturing scenario [1]. These parameters are defined by different output responses which are 
optimized collectively to improve the manufacturing systems. About 20% of energy consumed worldwide is used in the 
manufacturing industry [2]. In addition to the obvious economic impact, this huge consumption has a significant 90%
environmental impact [3]. According to one report, the manufacturing sector accounts for almost 13% of total CO2 
emissions worldwide [4]. Hence the optimization of energy parameters is of utmost importance. Machining accounts for 
almost 10% of all manufacturing usage [5]. Turning is an efficient and economical machining process having benefits of 
intricate part machiability with less complicated setup and greater production [6].

Titanium alloy Ti-6Al-4 V by virtue of its excellent physical and mechanical properties as shown in Table 1 accounts for 
almost 60% of all titanium alloy usage [8]. On the other hand, limiting factors on utilization of Ti-6Al-4 V includes low 
elastic modulus, high temperature strength, and poor thermal conduction [9]. Low thermal conductivity acts as a catalyst in 
chemical reactivity of titanium with the tool owing to attainment of higher temperatures during cutting operations [10]. 
Keeping in view the significant tool wear during machining of hard to cut materials, past researchers have used various cooling 
techniques like traditional high pressure coolant (HPC) [11, 12], minimum quantity lubrication (MQL)[13–15],
and then lately cryogenic coolants [16–22]. Since about 20% of the total manufacturing cost can be attributed to coolants 
[23, 24], its influence on overall efficiency has to be gauged for overall optimization. Multi-objective optimization (MOO) 
can produce an optimized solution to complex input domain. Such technique seeks trade-off among machining parameters 
which otherwise influences the responses in a varying manner. Different researchers have used different techniques to 
achieve MOO. Bhushan [25] carried out the optimization technique using response surface methodology (RSM) taking 
speed, cutting depth, feed, and radius of tool nose into account during turning of 7075 Al alloy. Tool wear and power 
consumption were reduced by 22% and 14%, respectively, using optimum machining conditions. Using the same 
technique, Camposeco-Negrete [26] found feed as the most influential element affecting surface roughness whereas energy 
consumption was mainly influenced by cutting depth along with feed. Kumar et al. [27] simultaneously optimized surface 
integrity, productivity, and power consumption using Taguchi design of experiment. Technique for order preference by 
similarity to ideal solution (TOPSIS) method was adopted to obtain multi-performance composite index (MPCI). It was 
found that for MPCI with analytic hierarchy process (AHP) weights, depth of cut was the vital factor whereas for MPCI 
with equal and entropy weights nose radius became the significant input. Warsi et al. [28] conducted MOO during turning 
of Al 6061 T6 alloy. After assessing independent effects, RSM was employed for optimization. It was concluded that feed is 
the most influential parameter. Specific cutting energy and material removal rate were improved by 5% and 33%, 
respectively, using optimum machining parameters.

Desirability function approach was used by Gupta et al.[29] to investigate responses including tool life, surface integrity, 
and cutting forces during turning of grade 2 titanium alloy under MQL conditions. Investigation showed that overall 
optimization was attained at 200 m/min cutting speed, 0.10 mm/rev feed, and 90o cutting edge angle. Mia et al. [30] 
optimized turning of Ti-6Al-4 V using gray relational analysis. Cutting condition (dry and HPC) was selected as input 
variable along with feed and speed. Multi-objective analysis concluded that overall optimization was achieved at 165 m/min 

Table 1 Properties of aerospace alloys at room temperature (adapted from [7])

Property Material

Titanium Ti-6Al-4 V Ti-6Al-6 V-2Sn Ti-10 V-2Fe-3Al Inconel 718 Al 7075-T6 Alloy

4.43 4.54 4.65 8.22 2.81

30–36 38 32 38–44 ~ 7 (equivalent)

950 1050 970 1350 572

880 980 900 1170 503

113.8 110 110 200 71.7

14 14 9 16 11

75 60 – 96.4 20–29

6.7 6.6 7.8 11.4 130

Density (g/cm3)

Hardness (HRC)

Ultimate tensile strength (MPa)

Yield strength (MPa)

Modulus of elasticity (GPa)

Ductility (%)

Fracture toughness (MPa m1/2)

Thermal conductivity (W/mK)

Max. operating temperature (°C)

4.5

10–12 (equivalent)

220

140

116

54

70

17

~ 150 315 315 315 650 –



cutting speed and 0.12 mm/rev feed under HPC conditions. Ramana et al.[31] carried out MOO taking basic input 
cutting parameters while turning Ti-6Al-4 V. Feed resulted as the most significant parameter. Effect of coating material 
under different cutting conditions (dry, wet, and cryogenic) on drillability of Inconel 718 was investigated by Ucak and 
Cicek [32]. It was found that although cryogenic drilling improved surface integrity and hole quality, the tool life 
was negatively affected due to excessive chipping and enhanced thrust force. Taguchi-gray augmented approach 
was used for collective optimization of surface integrity and tool life during turning of cobalt alloy Haynes 25 [33]. 
Vegetable-based cutting fluid with flow rate of 180 mL/h and cutting speed of 30 m/min gave optimized output. 
Overall cutting fluid was found to be the most significant variable. A comparative optimization study [34] was 
carried out taking different cooling conditions including high-pressure jet, cryogenic, MQL and MQL with 
nanofluid during machining of super alloy Inconel 718. Other input variables included feed, speed, and rake angle. It 
was concluded that cryogenic environment produced most favorable results in terms of tool wear. Mia et al. [35] 
conducted multi-objective optimization through Taguchi-gray integrated approach taking various responses 
including cutting force, specific energy, temperature, surface roughness, and material removal rate using single 
and dual cryogenic jet configuration. Desired targets were achieved at lower feed and higher speed values. A recent 
study performed MOO of Ti-6Al-4 V under dry conditions [36]. Tool wear and surface roughness were improved by 
7% and 2% under optimum conditions whereas specific cutting energy was reduced by 6%. Present research has 
taken the previous work a step further by incorporating the machining environment including dry, wet, and cryogenic 
as input variable.

2 Research motivation

Specific cutting energy (SCE) and tool wear rate (R) are vital signs for sustainability of any machining system
whereas productivity index includes material removal rate (MRR) and surface roughness (Ra). This research is based 
on the fact that these key output parameters need to be optimized collectively to maximize the sustainability, 
productivity, and efficiency of machining processes. Cutting conditions (dry, wet, cryogenic) are vested as input variable 
to fully benefit from the optimized values of other machining parameters. Taguchi-gray integrated approach is adopted to 
highlight the importance of MOO as individual responses are dissimilar in nature. This approach has been previously
applied with different materials [28, 33] or with different set of parameters [30, 31, 35, 36]. The aim is to formulate and 
optimize a multi-objective function in terms of input parameters which is sustainable, productive, and efficient at the 
same time.

3 Experimental details

A comprehensive experimental layout was developed keeping in view the various machining environment 
requirements including dry, wet, and cryogenic conditions. Various aspects of experimental methodology are discussed 
below:

3.1 Experimental setup

Turning was performed on Ti-6Al-4 V bar using computerized numerical control (CNC) turning center 
ML-300. Machining setup is shown in Fig. 1. Rated power and maximum spindle speed were 26 kW and 3500 RPM, 
respectively. Chemical composition of workpiece as found in optical emission spectroscopy is given in Table 2 
which is in conformance with ASTM B265–15 for Ti-6Al-4 V [37]. Uncoated Sandvik cutting inserts (CCMW 
09 T3 04 H13) were used with 0o rake angle and without chip breaker. Carbide tool was selected for experiments 
owing to its impact strength and toughness in cryogenic conditions [38]. A new insert was used in every 
experimental run for later inspection and record.



3.2 Machining environments

Three types of cutting conditions were used in the present research, namely; dry, wet, and cryogenic. Dry runs were
conducted in absence of any cooling media. For wet runs, CNC Turning center ML-300 uses bio-stable water-
soluble Shell Dromus B cutting oil at flow rate of 6 lit/min. Cryogenic cooling system was arranged as
shown in Fig. 2. High pressure cylinder XL-160 (160 l capacity) was used to store liquid nitrogen (LN2).
LN2 is most widely used among all cryogenics because of its inert nature and global availability [39].
Furthermore, literature highlights the enhanced effectiveness of LN2 when used between uncoated carbide tool
and Ti alloy workpiece [40]. Pressure regulator kept a steady pressure of 20 psi. Vacuum-insulated cryogenic
pipes were used to carry the media to a bifurcated cryogenic needle valve. Previous researches [35, 41, 42] have
found that dual jets are the most efficient configuration for extending tool life. Therefore, two copper pipes
(dia 4 mm) were used to impinge the cryogenic media, one each at flank and rake face with collective flow rate
of 4 lit/min.

Work 

Piece 

Spindle 

LN2 

Nozzles 

Cutting Tool 

Cutting Fluid Nozzle 

Cryogenic valve 

Cryogenic Pipe 

Fig. 1 Experimental machining
setup

3.3 Selection of machining parameters

Cutting speed (v), feed (f), depth of cut (d), and cutting con-ditions (CC) (dry, wet, cryogenic) have significant effects on
SCE, R, Ra, and MRR [27, 28, 34, 35]. Hence v, f, d, and CC were taken as the four input parameters. The selected levels
and range of these input parameters were based on literature [36, 43], concerned ISO standards [44] and tool
manufacturer guidelines (cutting speed 45–180 m/min, feed 0.01–0.26 mm/rev, depth of cut 0.01–4.5 mm) [45]. Table 3
presents the selected cutting parameters with their designated levels.

3.4 Measured responses

SCE, R, Ra, and MRR were measured as output responses. ISO 3685 criterion of average flank wear of 0.3 mm or
maximum flank wear of 0.6 mm was followed for tool wear. Optical microscope was used for wear
measurement. Figure 3 shows the flank wear measurement of a worn-out tool.

Tool wear rate was calculated using Eq. 1. A lower tool wear is indicated by a higher negative value of R.

R ¼ log
VB

ls

� �
¼ VB

1000tV

� �
ð1Þ

Here, V represents cutting velocity (m/min). Eq. (2) is used to work out the machining time.

t ¼
�

πDls
1000fV

�
ð2Þ



Ra was calculated using piezoelectric roughness tester times TR 110 with measuring range 0.05–10.0 μm. Multiple 
readings were taken at different points to eliminate variations. Power consumed during machining was 
calculated by Yokogawa power analyzer CW-240-F clamp-on meter (measurement interval 0.1 s). Two-cycle 
approach previously utilized effectively by different researchers [28, 36, 42, 46] was used. SCE is the amount of 
energy required to remove unit volume of material. It was determined using Eq. 3. It is highlighted that SCE is 
independent of make, type, and power rating of machine tool and its mechanical or electrical efficiency [36, 43, 47]. 
The machine tool independence was accomplished by carrying out selected runs on various machine tools.

SCE J=mm3
� � ¼ Pcut Wð Þ

MRR mm3=sð Þ ð3Þ

In the above Eq., Pcut is the actual cutting power expanded on productive work. It is calculated by taking the difference 
(Eq. 4) of Pacutal and Pair. Here, Pair is the power required by machine for energizing its components including motor and 
pumps, short of actual cutting whereas Pactual corresponds to the power consumed during actual cutting in which the tool 
workpiece contact takes place.

Pcut Wð Þ ¼ Pactual Wð Þ−Pair Wð Þ ð4Þ

Pcut is the machining power which when divided with MRR, i.e., amount of material removed per unit time gives 
the specific cutting energy in Joules per mm3. MRR is the product of f, V, and d as shown in Eq. 5.

Table 2 Workpiece chemical composition (wt.%)

Ti V Al Fe Cu Cr

89.44 4.2 5.7 0.15 0.003 0.0023

Response Measuring Equipment Cryogenic Setup

Flank face 
nozzle Rake face 

nozzle

(a)

(b) (c)

Fig. 2 Cryogenic experimental
setup (a) CNC turning center with
response measuring equipment
and cryogenic setup (b) dual
nozzle configuration (c)
cryogenic cylinder schematic
diagram



MRR ¼ f � V � d ð5Þ

3.5 Design of experiment

Taguchi design of experiments (devised by Genichi Taguchi [48]) was used to formulate an orthogonal L9 array.
Taguchi method was preferred due to its efficiency in having lesser numbers of runs required [49, 50]. Taguchi
orthogonal arrays which are utilized as per the factors and their levels are known to produce conclusive results [51].
Various past researchers have used it effectively [26, 36, 52, 53]. Experimental runs were repeated to measure 
responses twice. Average values of measured responses are displayed against their machining parameters 
combinations in Table 4.

Table 3 Cutting parameters with levels

Parameter Level 1 Level 2 Level 3

0.12 0.16 0.20

50 100 150

1 1.5 2

Feed (mm/rev)

Cutting speed (m/min)

Depth of cut (mm)

Cutting condition (CC) Dry Wet Cryogenic

Fig. 3 Flank wear analysis using optical microscope imagery



4 Analysis

Effects of various input cutting parameters are plotted as shown in Fig. 4. All four responses are plotted on the same
plane, separately for each input. It gives a comparative view of output responses as the input varies throughout its
domain. Each input was analyzed individually.

4.1 Effect of feed

Feed (axial travel of tool) is a significant machining parameter having profound effects on responses as evident
from Fig. 4(a). R, Ra, and MRR are increasing with increasing feed whereas SCE decreases. In contribution to
the low thermal conductivity of titanium alloy, R increases with increasing feed as the heat dissipation rate
recedes [54]. Diffusion dissolution and abrasion wear which are the primary causes of tool wear increases
manifold with increasing temperature resulting in high R [41]. Feed influences Ra mainly because of its geometric
contribution. Higher Ra with increasing feed is due to the higher peaks and crest on the machined surface
[55]. Also, the increased vibration at tool-workpiece interface at higher feed values adds to Ra [56]. Besides the
localized heat in titanium which induces thermal softening and lowers SCE, the elevated shear angle at higher feed
values reduces SCE [57].  MRR relation with feed is linear as shown by Eq. 2.

4.2 Effect of speed

Speed as an input parameter is taken in linear terms for example in this study from 50 m/min to 150 m/
min. However, it is fed after conversion into radial speed (RPM). Schulz and Moriwaki [58] has categorized
different machining ranges for different materials based on speed as shown in Fig. 5. Here, titanium
transitional machining ranges from 60 to 120 m/min. In the present research findings, increasing speed
increases R, SCE, and MRR, whereas Ra decreases during this transition as shown in Fig. 4(b). Cutting
zone temperature increases sharply with increase in cutting speed [59]. Titanium alloy cutting zone temperature
can reach around 800 °C [60] which significantly accelerates wear [41]. On the other hand, increasing the
cutting speed reduces Ra as chatter, which is induced by the built-up edge (BUE) at low speed, diminishes [61]. The
phenomena of work hardening of titanium alloys at high cutting speeds increases the specific
cutting energy by increasing the bearing loads [36, 62]. Also, the aggravated tool wear because of the high
temperature strength of titanium alloys and material adhesion on cutting edge contributes to specific cutting energy
[43]. It is reported [63, 64] that the phenomenon of decreasing cutting forces with increasing temperature is a 
material-based property and mainly depends on the speed range under consideration. MRR has increased with 
speed because of its direct relationship as already highlighted.

4.3 Effect of depth of cut

Depth of cut is a relatively less effective parameter as compared to feed and speed. Although it is inconsistent
with R and Ra, MRR is directly dependent on it. Increasing depth of cut increases MRR as the amount of removed
material increases. Power consumption is directly proportional to the material removed. Even with
increased power consumption, SCE decreases because MRR increases at a higher rate than power. This is
evident from the main effects plot as shown in Fig. 4(c).

4.4 Effect of machining environment

Dry, wet, and cryogenic cutting conditions were used in this research which differs not only in their cooling capacity but also
their lubrication effect.  Dry condition has no extra mechanism for heat extraction which results in highest R followed by
wet condition [65]. C  ryogenic cooling which has an extremely lower temperature (− 197 °C [18]) significantly reduces R as 
wear mechanism mainly depends on cutting zone temperature [66]. Reduction of cutting zone temperature by use of
cryogenic media is mainly because of prevention of heat generation and to a lesser extent by swift heat extrication [18]. Ra
improves under wet and cryogenic conditions due to the added lubrication effect of coolant [17]. Cryogenic results
are better because of the coolant plus lubricant effect. Lubrication gains are less pronounced at higher speed 
due to the difficulty of penetration of media into the cutting zone [67]. It is also reported that tool-work tribology 
significantly alters due to coolant usage in terms of reduction in coefficient of friction [68].



SCE is lower under dry conditions than wet because of the thermal softening gain at higher temperatures. However, 
the work hardening of titanium alloys which is the main reason of increasing SCE lowers with temperature [69]. 
This causes cryogenic to reduce energy consumption owing to its extremely low temperature. Results are in 
line with the findings reported by earlier researchers [19, 35, 36, 47].

4.5 Optimization of individual process responses

In this study R, Ra, and SCE were based on smaller is better model whereas MRR was based on larger is
better. Table 5 displays the desired values of input parameters for optimizing selective responses individually as
deduced from the main effects plot presented earlier. Figure 6 shows the flank wear of tools used in best
and worst experiments in terms of wear.

Table 4 Taguchi array along with the measured responses

Run f (mm/rev) V (m/min) d (mm) Cutting
Conditions*

Wear rate
R

Ra (μm) SCE (J/mm3) MRR (cm3/s)

1 0.12 50 1 1 1.52 1.1254 0.0999

2 0.12 100 1.5 2 1.20 1.2671 0.2998

3 0.12 150 2 3 1.14 1.2171 0.5997

4 0.16 50 1.5 3 1.83 1.0409 0.1999

5 0.16 100 2 1 1.76 1.1911 0.5331

6 0.16 150 1 2 1.62 1.3380 0.3998

7 0.20 50 2 2 2.97 1.0954 0.3332

8 0.20 100 1 3 2.62 1.1404 0.3332

9 0.20 150 1.5 1

− 6.1864
− 6.1603
− 5.9464
− 6.2015
− 5.7817
− 5.7683
− 5.9425
− 5.8803
− 5.1824 2.67 1.2605 0.7497

*1 = dry, 2 = wet, and 3 = cryogenic

4.6 Need for multi-objective optimization

Analysis of Table 5 highlights that different responses optimize at different values of input variables. This differing
situation brought up the need to draw a balance between all the responses through MOO.

5 Multi-objective optimization using gray relational analysis

MOO is the way forward towards the research goal of achieving optimum multiple responses simultaneously.
Technique used in this research was introduced by Deng Julong [70] in 1989. The concept of gray system was first
floated by Deng Julong in 1981 [71] in which it  was  explained as something which is not explicit in black
or white, hence gray. The idea was to process the available data in a way to make decision-making possible.
Gray relational grade was first proposed in 1985 by Wang Ting [72] . The process consists of a few steps [27,
28, 31, 36] which will be explained briefly one by one. Methodology used in this research is shown in Fig. 7.

5.1 Pre-processing measured data

In this step, each response value was brought to a common scale with extremes at 0 and 1. R, Ra, and SCE are normalized
using Eq. (6) as they are based on smaller the better model whereas MRR is normalized using Eq. (7) being based on 
larger the better model.

Zij ¼
max

�
yij; i ¼ 1; 2;…::n –

�
yij

max
�
yij; i ¼ 1; 2;…::n –

�
min

�
yij; i ¼ 1; 2;…::n

� ð6Þ



0.12 0.16 0.20

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

M
R

R
 (c

m
3 /s

)

SC
E

(J
/m

m
3 )

f (mm/rev)

SCE
Ra
MRR
R

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

R
a 

(µ
m

)

0.25

0.30

0.35

0.40

0.45

0.50

0.55

(a)

-6.2

-6.1

-6.0

-5.9

-5.8

-5.7

-5.6

R

50 100 150

1.05

1.10

1.15

1.20

1.25

1.30

R

SC
E

(J
/m

m
3 )

v (m/min)

SCE
Ra
MRR
R

(b)

1.4

1.6

1.8

2.0

2.2

2.4

R
a 

(µ
m

)

0.1

0.2

0.3

0.4

0.5

0.6

M
R

R
 (m

m
3 /s)

-6.15

-6.00

-5.85

-5.70

-5.55

0.5 1.0 1.5 2.0 2.5

1.16

1.17

1.18

1.19

1.20

1.21

SC
E

(J
/m

m
3 )

d (mm)

SCE
R

Ra
MRR

1.7

1.8

1.9

2.0

2.1

2.2

2.3

R
a 

(µ
m

)

0.2

0.3

0.4

0.5

0.6

(c)

M
R

R
 (c

m
3 /s)

-5.975

-5.950

-5.925

-5.900

-5.875

-5.850

-5.825

R

10 32 4

1.10

1.15

1.20

1.25

SC
E

(J
/m

m
3 )

CC

SCE
R

Ra
MRR

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

2.15

R
a 

(µ
m

)

0.2

0.3

0.4

0.5

0.6

(d)
M

R
R

 (c
m

3 /s)

-6.05

-6.00

-5.95

-5.90

-5.85

-5.80

-5.75

-5.70

R

Fig. 4 Effect of machining parameters on responses (a) effect of feed (b) effect of speed (c) effect of depth of cut (d) effect of machining environment

Fig. 5 Cutting speed categories for machining of different materials [58]
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Here j = 1, 2, …m and I = 1, 2, …n where m is the number of responses studied and index n is the count of 
experimental data parameters.

5.2 Gray relational coefficient (GRC) calculation

After data processing, Eq. (8) is used to calculate gray relational coefficient [73].

γ Zo;Zij ¼ Δminþ ξΔmax� �
Δoj kð Þ þ ξΔmax

ð8Þ

Here, value of γ ( Zo, Zij) i s  g  reater than 0   and less than or equal to 1.Zij(k) and Zo(k) are the comparability and reference
sequences, respectively, where Zo(k) = 1, k  = 1…m. Also, deviation sequence i s computed from E  q. ( 9).

Δoj kð Þ ¼ j Zo kð Þ−Zij kð Þj ð9Þ

Δmin and Δmax corresponds to the smallest and largest values of Δoj(k). ξ  is   known as the distinguishing coefficient 
which i s k  ept equal to .0 5 i f all parameters have same weightage. Generally ξ ϵ ∣0, 1  ∣.

5.3 Gray relational grade (GRG) calculation

In this step, the varying multiple objectives are converted into single gray relational grade (GRG). Optimum results 
can be produced by maximizing the obtained GRG. E    q.  ( 10) is used to compute GRG where ωr  i s the weight of rth 

objective.

Table 5 Machining parameter
combinations for individual best
and worst responses

Input

parameters

Responses

Wear rate, R SCE (J/mm3) μR m)a ( MRR (cm3/s)

Best Worst Best Worst Best Worst Best Worst

f (mm/rev) 0.12 0.20 0.20 0.12 0.12 0.20 0.20 0.12

v (m/min) 50 150 50 150 150 50 150 50

d (mm) 1 1.5 2 1 1.5 2 2 1

CC 3 1 3 2 3 1 – –

(a) (b)

Flank wear = 0.074 mm Flank wear = 0.250 mmFig. 6 Scanning electron
microscopy images (a) Min wear
at 0.16,50,1.5,cryogenic (b) max
wear at 0.2,150,1.5,dry

Weight is determined by manufacturer through customer re-quirement or prescribed policy. In the present research, all
responses are given equal weight [31, 35].

Grade Zo;Zij

� � ¼ ∑r
n
¼1ωr γ

�
Zo;Zij

� ð10Þ
∑r

n
¼1ωr ¼ 1 ð11Þ



5.4 GRG order

All the experimental runs were then ranked from 1 to 9 with respect to their corresponding GRG values. Optimum run is
identified with highest GRG value and is ranked number 1. This condition indicates the ideal machining parameters for 
concurrent optimization of the machining process. GRG ranking of the experimental runs is shown in Table 
6. Experiment# 4 displayed the highest value of GRG with input parameters of feed 0.16 mm/rev, speed 50 m/min, and
depth of cut 1.5 mm under cryogenic condition.

6 Regression analysis

An elaborate regression analysis was carried out including regression modeling and its optimization. Analysis of variance
was used to identify significant contributing parameters followed by validation experiments. Step-wise analysis is 
as follows.

Feed Cutting speed

Cutting 

Conditions

Taguchi DOE
Depth of cut

Dry

Wet

Cryogenic

Ti-6Al-4V

Carbide inserts

(CCMW 09 T3 04 H13)

Multiple responses

Wear rate         Surface roughness             Specific cutting energyergy          Material oval rate

Single Response analysis GRA Regression

Wear rate analysis

Surface roughness analysis

Specific cutting energy analysis

Material removal rate analysis

Preprocessing data

Grey relational coefficient

Grey relational  grade

Optimum cutting conditions

Regression modeling

Surface and contour plots analysis

Analysis of variance

Regression optimization

Influence of factors Multi objective optimization Regression analysis

Fig. 7 Methodology for multi-
objective optimization used in
this research

6.1 Regression modeling of multi-objective function

Regression modeling was carried out and optimized using RSM. In the present research, machining environment was a
noncontinuous categorical factor having three distinct levels, i.e., dry, wet, and cryogenic. A separate function for each
cutting condition was formulated as shown at Eq. 11, Eq. 12, and  Eq. 13, respectively.

GRG f ;V ; d; dryð Þ 0:16¼ 6–0:42 f –0:00247V

þ 0:945d–3:97 f * f

þ 0:000010V*V–0:2947 d*d ð11Þ



GRG f ;V ; d;wetð Þ 0:¼ 171–0:42 f –0:00247V

þ 0:945d–3:97 f *f

þ 0:000010V*V–0:2947 d*d ð12Þ

Table 6 GRC values for R, Ra,
SCE, and MRR; and GRG for
each experiment

Exp f

(mm/

rev)

V

(m/

min)

d
(mm)

Cutting
conditions

(CC)

Gray relational coefficients GRG Rank

GRC

(R)

GRC

(Ra)

GRC

(SCE)

GRC

(MRR)

1 0.12 50 1 1 0.9712 0.7066 0.6317 0.3333 0.6607 4

2 0.12 100 1.5 2 0.9251 0.9385 0.3956 0.4194 0.6696 3

3 0.12 150 2 3 0.6664 1.0000 0.4557 0.6842 0.7016 2

4 0.16 50 1.5 3 1.0000 0.5701 1.0000 0.3714 0.7354 1

5 0.16 100 2 1 0.5483 0.5961 0.4948 0.6000 0.5598 5

6 0.16 150 1 2 0.5405 0.6559 0.3333 0.4815 0.5028 9

7 0.20 50 2 2 0.6630 0.3333 0.7228 0.4382 0.5393 6

8 0.20 100 1 3 0.6134 0.3820 0.5941 0.4382 0.5069 8

9 0.20 150 1.5 1 0.3333 0.3742 0.4027 1.0000 0.5276 7
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The main difference between the above three equations is the positive intercept value. Cryogenic condition has a positive 
intercept gain of 45% and 51% on wet and dry conditions, respectively. Above three equations hold good for all values of
input parameters. Figure 8 displays the surface plots of GRG at different machining parameters for dry, wet, and cryogenic 
conditions. It can be seen that higher values of GRG is measured towards lesser values of feed and speed, with cryogenic GRG 
being highest of the three conditions. Fig. 9 displays the contour plots of GRG at different machining parameters for dry, 
wet, and cryogenic conditions. The two tone results of dry and wet are comparable as there is slight difference with wet machining 
having an edge over dry machining. However, clear shift towards the higher side can be seen in plots of cryogenic machining. In 
other words, for same machining parameters, cryogenic conditions give an overall advantage over dry and wet 
machining. A comparison between the values of GRG determined from model and obtained experimentally is shown in Fig. 
10. Maximum deviation of 2% is obtained which indicates substantial validity of model.

6.2 Analysis of variance (ANOVA)

Table 7 displays the ANOVA of regression model. Contribution ratio of feed was found highest at 42.36%
whereas cutting condition stood second with contribution ratio of 19.63%. Depth of cut and cutting speed showed 
contributions of 8.69% and 6.14%, respectively. Among square terms depth of cut proved significant with 16.79%
contribution.

6.3 Regression model optimization

Response surface optimization was used to find the correct combination of machining parameters for optimum output 
response. Result is shown in Fig. 11. Further they were experimentally validated.

6.4 Validation experiments

Machining parameters optimized through RSM along with best run condition in initial experiments (experiment # 4) 
are tabulated in Table 8. Validation of these conditions was carried out with results showing significant improvement. R 
and Ra improved by 30% and 22%, respectively, whereas SCE improved by 4%.

Fig. 11 Response surface
optimization of GRG



Table 7 Analysis of variance for
regression model Source DF Seq SS Adj MS Seq MS F P CR

8 0.123614 0.123614 0.015452 24.29 0.000 95.57%

5 0.099356 0.099356 0.019871 31.23 0.000 76.82%

1 0.054792 0.000017 0.054792 86.12 0.000 42.36%

1 0.007941 0.003721 0.007941 12.48 0.006 6.14%

1 0.011236 0.024601 0.011236 17.66 0.002 8.69%

2 0.025386 0.025386 0.012693 19.95 0.000 19.63%

3 0.024258 0.024258 0.008086 12.71 0.001 18.76%

1 0.000162 0.000162 0.000162 0.25 0.626 0.12%

1 0.002378 0.002378 0.002378 3.74 0.085 1.84%

1 0.021718 0.021718 0.021718 34.13 0.000 16.79%

9 0.005726 0.005726 0.000636 4.43%

Regression model

Linear

f (mm/rev)

V (m/min)

d (mm)

Cutting conditions (CC)

Square

f*f

V*V

d*d

Error

Total 17 0.129340 100%

S = 0.0252242 R-Sq = 94.64% R-Sq.(pred) = 85.29%

DF, degrees of freedom; SS, sum of squares; MS, mean squares; F, F value; P, P value; CR, contribution ratio (%);
S, standard deviation; R-Sq.(pred) predicted R2

Table 8 Comparison of
optimized run with best initial
experimental run # 4

Machining conditions Responses

f V d CC R Ra SCE MRR

Best run 0.16 50 1.5 3 (Cryo) 1.83 1.0409 0.1999

Optimized run 0.12 50 1.6 3 (Cryo)

− 6.2015
− 6.3502 1.44 1.0004 0.1609

7 Conclusion

Present research focused on sustainability, productivity, and efficiency of machining process by turning Ti-6Al-4 V
under dry, wet, and cryogenic conditions. SCE, R, Ra, and MRR were chosen as the performance output parameters
where the first two represents sustainability and efficiency and last two advocates for productivity of machining
processes. Based on this work the following conclusions can be chalked:

• Cryogenic coolant being applied in dual nozzle configuration has played an effective role in reducing R,
Ra, and SCE. Out of all the initial experiments run, # 4 was found to give the collective optimum results. R
and Ra were further reduced by 30% and 22%, respectively, whereas SCE was improved by 4% when
cryogenic machining was carried out at optimum conditions.

• Wet machining showed better results in terms of R and Ra than dry machining. Nevertheless, the thermal softening
at higher temperatures resulted in lower SCE consumption for dry machining.

• ANOVA results identified feed as the most influential parameter with 42.36% contribution ratio followed by cutting
conditions (19.63%). While among interaction parameters, d*d was significant with 16.79% contribution ratio.

• Regression analysis showed GRG gain for cryogenic environment over wet and dry conditions as 45% and 51%,
respectively. This highlights the benefits of using cryogenic media in collectively improving the machining process.

• Specific cutting energy is a material-based property as it depends on a number of external and inherent factors.
Work hardening of titanium alloys which increases SCE at elevated speeds tends to lower with temperature
especially with cryogenic temperatures.

• Surface roughness improves under wet and cryogenic machining environment due to their added lubrication effect.

It is imperative to highlight the benefit of using a suitable coolant at an already optimized machining condition. It
can significantly contribute towards sustainability, productivity, and efficiency of machining process by increasing
productivity and reducing cost. The effects of cryogenic as an input variable in subsurface characterization and chip
morphology needs investigation and will be taken up in future. In addition, wear progression under cryogenic media
merits research in order to quantitatively compare the benefits of cryogenic. This will serve in moving towards the
prime objective of sustainable manufacturing.
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