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Abstract

This thesis consists of three independent chapters. The first chapter “Bayesian Inference

in Dynamic Panel Stochastic Frontier Models” proposes a new stochastic frontier model

which accounts for the intertemporal production behaviour. The conceptualization is based on

the notion that firms face production adjustment costs in the short run due to the presence of

quasi-fixed inputs. Consequently, this sluggish adjustment of the entire production process will

create a dependency between the current and past production state. To capture this dynamic

process, this chapter utilizes the traditional partial adjustment mechanism. The mechanism

delivers a dynamic specification and allows factor inputs and inefficiency shocks to have an

intertemporal effect on the production process. Moreover, the model allows heterogeneous

adjustment speeds and input elasticities across the production units. Model inference is based

on Bayesian MCMC techniques with data-augmentation. We illustrate the new model in an

empirical application where we estimate the productivity and efficiency growth of the Egyptian

private manufacturing sector during the early 90’s.

In a similar vein, the second chapter, “Dynamic Panel Stochastic Frontier Models

with Inefficiency Effects”, deals with dynamic panel frontier models where inefficiency effects

can be a function of exogenous environmental variables. This chapter builds upon advancements

in the field and utilizes parametric cumulative distribution functions to specify technical effi-

ciency. The proposed model allows the presence of fixed effects and time-varying inefficiencies.

Model estimation is based on the Generalized Method of Moments (GMM) approach, where

various forms of input endogeneity can be effectively addressed.

Last, the third chapter “A simple method for modelling the energy efficiency

rebound effects with an application to energy demand frontiers” proposes a new

simple method for estimating the energy inefficiency rebound effects. Model estimation is based

on a two-stage approach. In the first stage, we argue in estimating a reduced form stochastic

frontier model with country-specific inefficiency heteroscedastic effects. In the second stage, the

energy efficiency rebound effects can be obtained effectively using moment-matching methods

such as the GMM approach. We apply the proposed model on aggregate energy frontiers where
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we estimate the energy efficiency and the corresponding rebound effects for a balanced panel of

OECD economies. The empirical results suggest an overall upward trend of energy efficiency

scores. The energy rebound effects range from 28% to 92%, indicating that energy efficiency

actions could have a limited impact on achieving environmental objectives.
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Chapter 1

Bayesian Inference in Dynamic

Panel Stochastic Frontier Models

Abstract

In this chapter, we propose a dynamic panel stochastic frontier model that incorporates firms’

intertemporal decision behaviour and the short-run stagnant adjustment of the production pro-

cess. The dynamic production specification utilizes the fact that in the short-run, production

systems can be subject to adjustment costs, and the final produced output can only be partially

adjusted to the optimum production level. The proposed model nests previous panel stochastic

frontier models and is able to adequately separate the firm-specific unobserved effects from the

latent time-varying technical inefficiencies. Model inference is based on Bayesian Markov Chain

Monte Carlo (MCMC) techniques with data augmentation. Using artificial data, we illustrate

that our model performs very well in small and moderate samples. Last, we display the new

model in an empirical example and illustrate that static specifications that ignore production

adjustment effects can generate biased technical efficiency estimates. Overall, the proposed

reduced-form model provides meaningful economic results that align with the recent macroeco-

nomic and microeconomic literature, indicating that the proposed model can be considered a

good alternative for economic analysis.
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1.1 Introduction

Stochastic frontier analysis (SFA) was first introduced by Aigner et al. (1977) and Meeusen and

van Den Broeck (1977) and incorporates the fact that the final production output can deviate

from the maximum feasible output (production frontier) not only due to technical inefficiencies

that may exist in the process but also due to stochastic factors outside the firm’s control (e.g.

general macroeconomic environment). Since then, SFA consists as a standard econometric

tool for measuring production technical efficiencies and has been applied in various fields such

as the neoclassical production theory, energy economics, banking economics, growth models,

educational and health economics.

Despite the vast expansion of the stochastic frontier literature1 that have emerged through-

out the years, the main body of stochastic frontier models is built under different static frame-

works. The primary assumption under a static specification is that firms can adjust their input

levels costless, and their operational process can be instantaneously adjusted to the new eco-

nomic conditions. Nevertheless, in real production environments, it is well documented that

firms face factor adjustment costs, and hence, the intertemporal production decision is subject

to those input adjustment constraints. In practical terms, adjustment costs can be present due

to the fact that firms face short-run costs related to quasi-fixed costs. Some early influential

papers that discuss the underlying economic mechanisms can be found in Lucas Jr (1967),

Treadway (1970), Hamermesh (1995), Hamermesh and Pfann (1996), Nickell (1996). In this

line, some more recent studies that illustrate the importance of accounting for the input ad-

justment frictions in the economic modelling consist of Hall (2004) where the author examines

the factor adjustment costs for the US sectors, Cooper and Haltiwanger (2006) where capital

adjustment costs are investigated in a sample of plant-level data, Groth and Khan (2010) ex-

amine the impact of investment costs on the US economy, Bergeaud and Ray (2021) explore

the effects of real estate friction on firms’ dynamics, and Artuç et al. (2010), Artuc et al. (2022)

illustrate the effects of trade shocks on labour adjustment frictions, among others.

Said that it is apparent that in any production process, even in the absence of any other

source of output fall, such as the presence of technical inefficiencies, the sluggish behaviour of

factor inputs can directly affect the production process and, consequently, the final produced

output. As a result, model and econometric specifications which ignore the aforementioned

production dynamics can generate misleading inferences regarding the economic performance

of a production unit.

1For an excellent literature review, see the textbooks by Kumbhakar and Lovell (2000), Greene (2008) and

Kumbhakar et al. (2020) for more recent advances.
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In this line, this paper introduces a reduced-form econometric model which is able to

account for the evidence introduced above. Specifically, we present a generalized panel stochastic

frontier model incorporating the short-run production dynamics arising from firms facing factor

adjustment costs. We utilize a partial adjustment mechanism where the production output

follows a sluggish intertemporal path towards the long-run equilibrium state. The proposed

model specification delivers a dynamic panel model with time-varying inefficiency effects. In

order to estimate the model and retrieve the latent technical inefficiency effects, we propose a

Bayesian hierarchical model where the heterogeneity effects are incorporated using a random

coefficient setting. The proposed specification allows for a flexible form of heterogeneity where

firms can display different production capabilities. In addition, our approach allows economic

sectors to face different speeds of adjustments and hence different intertemporal paths towards

the equilibrium state. This specification allows us to analyze economic sectors more realistically

since it is evident they are subject to different underlying economic conditions; therefore, each

sector can replace its input factors at a different cost and pace.

Model inference and estimation are based on Bayesian Markov Chain Monte Carlo (MCMC)

techniques with data augmentation. In particular, we demonstrate a Gibbs Sampler iteration

approach where the corresponding marginal posterior distributions can be effectively obtained.

Using generated artificial data, we test the performance of the proposed Gibbs Sampler and we

illustrate that our Bayesian technique performs very well in both small and moderate samples.

Last, we apply our proposed model to the same dataset as in Getachew and Sickles (2007)

and Bhattacharyya (2012), where the authors analyze the effects of market liberation during the

early 90s in the Egyptian manufacturing sector. We illustrate that our model can adequately

control for the unobserved heterogeneity effects and separate the manufacturing specif effects

from the technical efficiency scores. Moreover, we show that when ignoring the presence of

adjustment costs, the model will underestimate the technical efficiency scores. In addition, we

illustrate the adjustment rate towards the optimal state is approximately 86%, indicating that

labour mobility had a mild impact on the manufacturing sector. Overall, the proposed reduced-

form model provides meaningful economic results that align with the recent macroeconomic

and microeconomic literature, indicating that the proposed model can be considered a good

alternative for economic analysis.

The rest of the chapter is organized as follows. In section 1.2, we present the theoretical

framework of the partial adjustment effect and the proposed model. In section 1.3, we illustrate

a generalization of the model. In section 1.4, we illustrate the proposed Bayesian approach. In

section 1.5, we test the performance of the model using artificial data. In section 1.6, we present
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the empirical application. Last, in section 1.7, we conclude.

Related Literature: The proposed model fits into several different literature strands as

we extend existing specifications and bring several distinct threads into the literature together.

First, Nickell (1996) and Nickell et al. (1997) are some of the existing papers in the literature

that utilize dynamic panel production functions to incorporate the short-run adjustment fric-

tions and examine the firms’ total factor productivity. In all these studies, the authors analyze

the total factor productivity through control variables that affect productivity evolution and do

not explicitly estimate the corresponding technical inefficiencies. Moreover, Ayed-Mouelhi and

Goaied (2003) and Bhattacharyya (2012) utilize the partial adjustment mechanism to model

the intertemporal production behaviour allowing the presence of time-invariant technical ineffi-

ciency. As in our model, they utilize a dynamic panel model where the autoregressive parameter

of the lag output captures the magnitude of the sluggish adjustment. They propose a two-stage

solution, wherein the first step, a Generalized Method of Moments (GMM) approach, is used to

estimate the parameters of interest. In order to retrieve the corresponding efficiency scores, the

authors use a Schmidt and Sickles (1984) approach where the technical inefficiency is obtained

by relative comparison with the “fully efficient” firm. In our model, in contrast, we allow for a

flexible specification where different sectors face different technological possibilities. In addition,

we allow technical inefficiency to be time-varying, and we separate the unobserved heterogeneity

effects from the inefficiency effects. This is quite important in practice since, as has been illus-

trated in the stochastic frontier literature, failing to control for the unobserved heterogeneity

adequately will result in very distorted efficiency scores (see Greene (2005a,b), Wang and Ho

(2010), Chen et al. (2014), Belotti and Ilardi (2018), Kutlu et al. (2019), among others.). This

is evident in our empirical findings, where our model’s absolute technical efficiency estimates

are substantially higher than the relative efficiency scores.

Another strand of the literature deals with reduced-form dynamic models, where the tech-

nical inefficiency is specified as an autoregressive function of its past values. The motivation

behind the autoregressive structure of technical inefficiency is that the input adjustment costs

will cause sluggish adoption of new technological innovations. Therefore, the technical ineffi-

ciency evolution towards the long-run state will be more stagnant. Econometric modeling in

this direction can be seen at Ahn et al. (2000), Tsionas (2006), Emvalomatis (2012a), Galán

et al. (2015), Amsler et al. (2014) and Lai and Kumbhakar (2020).

Last, Tsionas et al. (2020) provide a new structural economic model where the production

process can be subject to adjustment costs. Their framework allows technical inefficiencies to be

determined endogenously from the firm’s intertemporal optimization problem. Although struc-
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tural models can provide comprehensive economic results, in this paper, we focus on providing

a flexible reduced-form model that empirical scholars can easily implement.

1.2 Model Setup

To illustrate the idea of dynamic production frontiers, let’s assume an economic sector where

N firms are operating over a time period T . Each firm is using a set of inputs Xit ∈ RK
+ in

order to produce a single output Y ∗
it ∈ R+. Output Y ∗

it is a latent variable and it can be seen

as the targeted level of output that the firm wants to achieve. This production process can be

simply described as:

Y ∗
it = f(Xit;β

∗)τ ∗
it (1.1)

where f(.) can be any production function, such as the Cobb-Douglas or the Translog function,

Xit is the set of inputs (e.g. labour, capital, energy, materials) used by firm i at time t, β∗ is the

vector of the technological parameters and τ ∗
it depicts the output-oriented technical efficiency

of firm i at time t. Technical efficiency lies on the interval τ ∗
it ∈ (0, 1] and reflects the fact that

firms may not lie on the production frontier, but instead, they can display technical inefficiencies

which will deviate their production output from the frontier. The production model in 1.1 can be

seen as the long-run equilibrium specification. Here, we should highlight that the specification

in 1.1 allows firms to be technical inefficient even in the long run. The rationale behind this is

that the firms can still survive and continue operating in a market even if they exhibit some

level of technical inefficiency.

In logarithm form, the stochastic production frontier will be:

y∗it = a∗i + x′
itβ

∗ + v∗it − u∗it (1.2)

where y∗it is the desired production log-output of firm i at time t, a∗i is the usual firm-specific

term which captures time-invariant heterogeneity across the firms, xit is the K×1 vector of log-

inputs used in the process, β∗ is the K × 1 parameter vector which can be interpreted as input

elasticities, v∗it is the symmetric error term which captures common statistical measurement

errors and u∗it is a non-negative term which determines the level of technical inefficiency of firm

i at time t.

As mentioned above, firms due to different market conditions or the presence of input

adjustment imperfections are not able to adjust their production instantaneously to their tar-

geted production y∗it. Instead, the final produced output faces a gradual adjustment towards

the desired level. The simplest partial adjustment mechanism can be described as:

yit − yit−1 = λ(y∗it − yit−1) , i = 1, 2, . . . , N , t = 1, 2, . . . , T (1.3)
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where yit is the observed output at time t, yit−1 is the output produced at the lagged period

t− 1, y∗it is the desired or targeted output at time t and 0 < λ ≤ 1 is the adjustment coefficient

which reflects the speed of output adjustment towards the long-run level y∗it. It is clear that in

the case where λ = 1, the real output yit is adjusted instantaneously to the desired level y∗it.

On the other hand, when 0 < λ < 1, the process is subject to some level of inertia and the final

output yit lags behind the target level y∗it. In the economics literature, specification in equation

1.3 is known as the Partial Adjustment Model and has been introduced by Nerlove (1958).

Combining the equilibrium relationship in equation 1.2 with the short-run dynamics from

equation 1.3 , we obtain the final form of the model:

yit = ρyit−1 + x′
itβ + ai + vit − uit (1.4)

where ρ = (1 − λ), β = λβ∗, ai = λa∗i , vit = λv∗it and uit = λu∗it. In this form, it is clear

that the partial adjustment mechanism delivers a dynamic panel data stochastic frontier model.

Estimation and inference in dynamic panel data models have been at the heart of modern

econometrics and typically involve GMM methods. Relative literature consists of Holtz-Eakin

et al. (1988), Anderson and Hsiao (1981, 1982), Arellano and Bond (1991) and Blundell and

Bond (1998), where the authors proposed different GMM and SYS-GMM techniques. Recently,

Cave et al. (2022) illustrated an extensive Monte Carlo simulation study, where the statistical

performance of different dynamic panel estimators is evaluated.

Although the aforementioned GMM methods have been extensively used by empirical

researchers, and the fact that estimation routines have been developed in most of the statistical

software, in a model where the time-varying technical inefficiency term is incorporated, the

above-stated literature cannot be useful. As stated above, by using the IV/GMM/SYS-GMM

approach, we would be able to identify only relative inefficiency scores2 and not the efficiency

scores in absolute levels. Therefore, in this framework, it is obvious that introducing a dynamic

panel stochastic frontier model which incorporates distribution assumptions for the time-varying

inefficiency effects and at the same time controlling for the unobserved firm heterogeneity effects

is of great importance.

1.3 A Generalization of the Model

To generalize the model in 1.4, one way to capture unobserved heterogeneity in the production

process is to introduce a random coefficients stochastic frontier model where the heterogeneity

2Here we need to assume that at least one firm lies on the frontier (fully efficient firm) and the inefficiency

scores of the remaining firms can be estimated relative to the best-performed firm.
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effects are not only captured by the usual time-invariant random effects term but also from the

fact that different firms are facing different technological capabilities. The fact that different

firms face different production capabilities has been evident in various empirical examples where

random coefficients settings have been employed (see Tsionas (2002), Emvalomatis (2012b),

Feng et al. (2018), Tsionas and Tzeremes (2021), among others). Moreover, in a dynamic

panel setting similar evidence has been illustrated by Hsiao et al. (1999), Liu et al. (2017),

Assaf and Tsionas (2019). Our proposed model is based on the dynamic panel model with

heterogeneous effect proposed by Hsiao et al. (1999). The authors illustrate that the Bayesian

hierarchical approach is asymptotically equivalent to the mean group estimator of Pesaran and

Smith (1995) as N → ∞ and T → ∞, and illustrate that the hierarchical model performs better

in small and moderate samples.

Hence, the proposed generalized panel stochastic frontier model has the form:

yit = ρiyit−1 + x′
itβi + ai + vit − uit (1.5)

Throughout the paper, we make the following model assumptions:

Assumption 1 The common measurement errors vit ∼ iid(0, σ2v).

Assumption 2 The inefficiency term uit is iid from a probability density distribution with

non-negative support.

Assumption 3 The measurement errors vit are independent of the inefficiency term uit.

Assumption 4 The input vector xit is independent of the error term vis and the inefficiency

term uis for all t and s.

Assumption 1 is common in the stochastic frontier literature. Assumption 2 derives nat-

urally from the fact that the inefficiency term cannot take negative values. In addition, As-

sumption 3 is dominant in the stochastic frontier literature and is vital for the derivation of

the marginal distribution of the composite term εit = vit − uit. Last, Assumption 4 implies

that the input vector is strictly exogenous. In general, we think that all the above assumptions

can be considered minimalistic in order to identify the parameters of interest as long as the

latent inefficiency scores.

In matrix form, the above model can be written as:

yi = ρiyi,−1 +Xiβi + vi − ui , for each i = 1, 2, . . . , N (1.6)

where yi = [yi1, yi2, . . . , yiT ]
′ is a T×1 matrix of the dependent variable, yi,−1 = [yi0, yi1, . . . , yiT−1]

′

is a T × 1 matrix of the lagged log-output, Xi = [x′
i1,x

′
i2, . . . ,x

′
iT ]

′ is a T × K matrix of

13



the log-inputs, vi = [vi1, vi2, . . . , viT ] is the T × 1 matrix of the symmetric error term and

ui = [ui1, ui2, . . . , uiT ]
′ is the T × 1 matrix of the technical inefficiency term. Regarding the

initial values conditions yi0 for each i = 1, 2, . . . , N , we depart from the approach used in Hsiao

et al. (1999), where the initial values are considered as fixed and known, and instead, we are

treating them as latent variables to be estimated.

In order to complete the model, for the two-sided error term we assume vi ∼ N (0, σ2v) and

for the inefficiency term, we make use of the half-normal distribution, as proposed by Aigner

et al. (1977)3, with:

ui ∼ N+(0, σ2u) (1.7)

It is obvious that the proposed model in 1.5, can be seen as a generalization of previous

panel data stochastic frontier models that have been introduced in the literature, so far. First, we

should note that in the case where firms adjust perfectly their production to their targeted levels,

viz. ρi = 0, we obtain the stochastic frontier model with random coefficients as introduced by

Tsionas (2002). As discussed in the original paper, the models account for the fact that different

firms may face different technological capabilities. In addition, when the random coefficients

assumption is constrained to a fixed coefficient specification, viz β1 = β2 = · · · = βN = β̄,

then the random coefficient SFM returns to a stochastic frontier model where the only source of

heterogeneity is captured by the usual firm specific ai term. This model specification is known as

the True Fixed Effects (TFE) or True Random Effects (TRE) model and was originally proposed

by Greene (2005a,b)4. Both specifications are able to separate the firm-specific heterogeneity

effects from the firm’s technical inefficiency. In addition, Fernandez et al. (1997) present different

panel stochastic frontier models using Bayesian posterior inference.

Last, in the case of a simple stochastic frontier model under the absence of any het-

erogeneity source, viz σ2a = 0, we arrive at the original model as proposed by Aigner et al.

(1977). Under the Bayesian framework, estimation inference for the normal-half-normal model

was presented by Van den Broeck et al. (1994) and later by Tsionas (2001)5.

3Other well-known specifications, include the Exponential function proposed by Meeusen and van Den Broeck

(1977), the Truncated Normal distribution proposed by Stevenson (1980) and the Gamma distribution introduced

by Greene (1990).

4A parallel literature which elaborates panel stochastic frontier models under fixed effects consists of Wang

and Ho (2010), Chen et al. (2014), Belotti and Ilardi (2018), Kutlu et al. (2019), among others.

5In both papers, the authors present posterior inference under a truncated normal distribution with u ∼

N+(µ, σ2
u). Obviously, the Normal-Half-Normal model can obtained by imposing µ = 0.
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1.4 Bayesian Estimation

In this section, we built a Bayesian Hierarchical model in order to estimate consistently the

parameters of interest. For illustration purposes, we rewrite the model in 1.6, as:

yi = Ziδi + vi − ui , for each i = 1, 2, . . . , N (1.8)

with

vi ∼ N (0, σ2v) , ui ∼ N+(0, σ2u)

where Zi = [yi,−1,Xi] will be a T × J matrix and δi = [ρi,βi]
′ is the J × 1 matrix of unknown

parameters, where J = K + 1. Equation 1.8 consists of the first stage of our hierarchical

structure.

1.4.1 Hierarchical Priors

Having defined the first stage of the model, we need to proceed with the following stages of

our hierarchical model. For the heterogeneous frontier coefficients, a convenient hierarchical

prior distribution is to assume that each δi is an independent draw from a multivariate Normal

distribution, with:

δi =

ρi
βi

 ∼ N (δ̄,Ω) (1.9)

where δ̄ is a J × 1 matrix of the mean values of the parameters of interest, and Ω is a general

positive-definite J × J variance-covariance matrix of the parameters. In addition, instead of a

general covariance matrix, one can restrict the assumption of correlated parameters and assume

that Ω is a diagonal matrix, which implies that the parameters are independent of each other.

The third stage of the hierarchical structure for the frontier parameters is to assume again a

multivariate Normal distribution of the form:

δ̄ ∼ N (µ0,Λ0) (1.10)

where µ0 is a J×1 vector of mean values and Λ0 is the corresponding J×J variance-covariance

matrix, which both of them are assigned by the researcher, according to her prior beliefs. From

1.9, it is obvious that one can assume a fully non-informative flat prior by imposing µ0 = 0J×1

and Λ0 = 103 × IJ×J , where 0J×1 is the (J × 1) null matrix and IJ×J is a (J × J) identity

matrix.

For the prior distribution of the variance-covariance matrix Ω, we assume an Inverse-

Wishart conjugate prior distribution of the form:

Ω|Ψ0, v0 ∼ IW(Ψ0, v0) (1.11)
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with probability density function:

π(Ω|Ψ0, v0) ∝ det(Ω)−
v0+J+1

2 exp

{
−1

2
tr(Ψ0Ω

−1)

}
(1.12)

where det(.) corresponds to the determinant of a matrix, tr(.) denotes the trace of a matrix,

Ψ0 is the J × J positive definite scale matrix and v0 are the corresponding degrees of freedom.

Obviously, the parameter v0 and the scale matrix Ψ0 are assigned by the researcher reflecting

her prior belief on the variance-covariance matrix Ω. Here, a common choice is to set v0 = 0

and Ψ0 = 10−6 × IJ×J , which leads to the multivariate non-informative Jeffrey’s prior, of the

form:

Ω ∝ det(Ω)−
J+1
2 (1.13)

In addition, since the mean of the distribution is given by:

E(Ω|Ψ0, v0) =
Ψ0

v0 − J − 1
, v0 > J + 1

one can pick v0 = J +2 in order for the prior mean of the variance-covariance matrix to be free

from the corresponding degrees of freedom. As a result, the prior elicitation for the expectation

of Ω will depend only on the choice of Ψ0. For instance, if the researcher believes that the

variance of the parameters δi is 0.1, then a natural prior would be Ψ0 = 0.1× IJ×J .

Turning now our attention to the case where the variance-covariance matrix Ω is diagonal,

with:

Ω =


ω2
1 0 0 . . . 0

0 ω2
2 0 . . . 0

...
...

. . .
...

...

0 0 0 . . . ω2
J

 (1.14)

the choice of the Inverse-Wishart distribution can not still be valid, since it assumes some

correlation between the parameters δ̄. Instead, by incorporating a diagonal matrix with the

probability density in equation 1.12, we obtain:

π(Ω|Ψ0, v0) ∝

 J∏
j=1

ω2
j

− v0+J+1
2 J∏

j=1

exp

{
−

1
2ψ0j

ω2
j

}
(1.15)

where ψ0j is the jth element of Ψ0. From equation 1.15, we see that the obtained probability

density implies Inverse Gamma type prior distributions for each element ω2
j of the form:

π(ω2
j |ψ0j , v0) ∝ (ω2

j )
− v0+J−1

2
−1exp

{
−

1
2ψ0j

ω2
j

}
, j = 1, 2, . . . , J (1.16)

or more simply:

ω2
j |ψ0j , v0 ∝ IG

(
v0 + J − 1

2
,
1

2
ψ0j

)
, j = 1, 2, . . . , J (1.17)
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For the variance of the error term, we use the Inverse-Gamma prior distribution, of the

form:

σ2v |a0, a1 ∼ IG(a0, a1) (1.18)

where a0 and a1 correspond to the shape and the scale parameter, respectively. The choice of

the Inverse-Gamma distribution is a standard approach in Bayesian econometrics since it is a

natural conjugate prior distribution for the variance of a normal distribution. In the special

case where a0 = 0 and a1 = 0, we obtain the standard non-informative Jefrey’s prior, viz

π(σ2v) ∝ 1
σ2
v
. However, in order for the posterior distribution to be well defined, the shape and

the scale hyperparameters can not be zero. Instead, in order to achieve the same result, one

can assign values close to zero, such as a0 = a1 = 10−6 (see Fernandez et al. (1997), page 186).

A similar approach can be followed for the variance of the inefficiency term, where again,

an Inverse-Gamma distribution can be assigned as a prior belief, with:

σ2u|γ0, γ1 ∼ IG(γ0, γ1) (1.19)

where γ0 and γ1 correspond to the shape and the scale parameter, respectively. Again, the

two hyperparameters are assigned by the researcher according to her prior belief regarding the

technical inefficiency scores.

Last, a convenient way to state prior “ignorance” regarding the initial values yi0 for each

i = 1, 2, . . . , N , is to assign a vague normal distribution prior of the form:

yi0 ∼ N (ȳ0, σ
2
0) (1.20)

This states that the latent initial values conditions are distributed around a common mean ȳ0

and a variance σ20. The above probability density function can be written as:

yi0 = ȳ0 + ξi , ξi ∼ N (0, σ20) , i = 1, 2, . . . , N (1.21)

Interestingly, such “knowing little” prior specification is aligned with the initial condition as-

sumptions introduced in Anderson and Hsiao (1981, 1982). As stated by the authors, the above

specification depicts the firm initial endowments and these effects gradually vanish over time.

1.4.2 Posterior Analysis

Following the above Bayesian hierarchical structure and using the Bayes rule, we have:

p(θ, δi,u,y0|Y ,Z) ∝ f(Y ,Z|θ, δi,u,y0)f(δi,u,y0|θ)π(θ) (1.22)

where Y = [y1,y2, . . . ,yN ]′ and Z = [Z1,Z2, . . . ,ZN ]′, p(θ, δi,u,y0|Y ,Z) denotes the aug-

mented posterior distribution of the structural parameters θ = [δ̄, σ2v , σ
2
u,Ω]′ and the latent
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parameters δi,u,y0, f(Y ,Z|θ, δi,u,y0) depicts the conditional likelihood function of the ob-

served data from the first stage of the hierarchical structural, f(δi,u,y0|θ) illustrates the dis-

tribution assigned in the second stage of the model and π(θ) depicts the prior distribution of

the unknown structural parameters θ.

Since, δi,u,y0 are elements not observed by the researcher, we can not provide posterior

inference about the structural parameter vector θ conditioning on the latent parameters. For

this reason, the unobserved elements have to be integrated out of the posterior density function

in 1.22. Therefore, in order to obtain the marginal posterior distribution of the structural

parameters θ, we need to integrate the augmented posterior distribution with respect to the

latent parameters δi, u and y0 as:

p(θ|Y ,Z) ∝
∫ ∫ ∫

p(θ, δi,u,y0|Y ,Z)dδidudy0 (1.23)

The marginal distribution in 1.23 involves high dimensional integration and the provision of an

exact solution seems not to be feasible. For this reason, in order to resolve the high complexity

of the marginal distribution, we can treat the latent elements of the model δi,u,y0 as unknown

parameters to be estimated and posterior inference can be conducted using Bayesian MCMC

techniques such as the Gibbs Sampler. This method is called data augmentation and has been

initially proposed by Tanner and Wong (1987)6.

6Bayesian MCMC with data-augmentation consists a standard tool in Bayesian stochastic frontier economet-

rics.
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1.4.3 The Joint Augmented Posterior

Using the above Bayesian hierarchical structure, the joint augmented posterior density of the

unknown parameter vector Θ = (δ̄, {δi}i=1,2,...,N , σ2v , σ
2
u,Ω, {yi0}i=1,2,...,N ,u)′, will be given by:

p(Θ|y,Z,Ψ0, v0,µ0,Λ0) ∝ (1.24)

(σ2v)
−NT

2 exp

{
− 1

2σ2v

N∑
i=1

(yi −Ziδi + ui)
′(yi −Ziδi + ui)

}

× (σ2u)
−NT

2 exp

{
− 1

2σ2u

N∑
i=1

u′
iui

}
1(ui ≥ 0)

× det(Ω)−
N
2 exp

{
−1

2

N∑
i=1

(δi − δ̄)′Ω−1(δi − δ̄)

}

× det(Λ0)
− 1

2 exp

{
−1

2
(δ̄ − µ0)

′Λ−1
0 (δ̄ − µ0)

}
× (σ2v)

−a0−1exp

{
−a1
σ2v

}
× (σ2u)

−γ0−1exp

{
− γ1
σ2u

}
× det(Ω)−

J+v0+1
2 exp

{
−1

2
tr(Ψ0Ω

−1)

}
× (σ20)

−N
2 exp

{
− 1

2σ20

N∑
i=1

(yi0 − ȳ0)
2

}

The first line of the joint posterior distribution corresponds to the likelihood function of yi and

arrives from the fact that yi|Zi,ui ∼ N (Ziδi−ui, σ
2
v) for each i = 1, 2, . . . , N . The second line

determines the half-normal distribution of the technical inefficiency term ui. In addition to,

the third equation reflects the normal multivariate structure of the heterogeneous coefficients

δi. The remaining five equations depict the prior information assigned by the researcher for the

parameters δ̄, σ2v , σ
2
u, Ω and y0, respectively.

1.4.4 Posterior Analysis using Gibbs Sampling

Gibbs sampling is an iterative procedure that utilizes the conditional density distributions of

the unknown parameter vector Θ from the joint posterior distribution in 1.24. The iterated

algorithm is used to approximate the marginal distribution of the corresponding parameters. In

order to obtain a sample {Θs with s = 1, 2, . . . , S} that converges to the marginal distribution

of each unknown parameter, we can follow the below procedure:

• Step 1: Draw δi ∼ p(δi|δ̄, σ2v , σ2u,Ω,u,y0)

• Step 2: Draw δ̄ ∼ p(δ̄|δiσ2v , σ2u,Ω,u,y0)
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• Step 3: Draw σ2v ∼ p(σ2v |δ̄, δi, σ2u,Ω,u,y0)

• Step 4: Draw σ2u ∼ p(σ2u|δ̄, δi, σ2v ,Ω,u,y0)

• Step 5: Draw Ω ∼ p(Ω|δ̄, δi, σ2v , σ2u,u,y0)

• Step 6: Draw ui ∼ p(ui|δ̄, δi, σ2v , σ2u,Ω,y0)

• Step 7: Draw y0 ∼ p(y0|δ̄, δi, σ2v , σ2u,Ω,u)

• Step 8: Repeat the above steps S times

Once we obtain the S sample from the conditional distribution of the parameters Θ, the pos-

terior mean estimates can be obtained by:

Θ̂ =
1

S

S∑
s=1

Θs

1.4.5 Conditional Posterior Distributions

In order to perform the Gibbs Sampler, knowledge of the conditional posterior distributions

is required. The conditional posterior distributions of the parameters of interest are presented

below:

• Conditional Distribution of δi’s:

δi|δ̄, σ2v , σ2u,Ω,u,y0 ∼ N (b̂i, V̂i) (1.25)

where

b̂i =

(
Z ′

iZi

σ2v
+Ω−1

)−1(Z ′
i(yi + ui)

σ2v
+Ω−1δ̄

)
V̂i =

(
Z ′

iZi

σ2v
+Ω−1

)−1

• Conditional Distribution of δ̄:

δ̄|δiσ2v , σ2u,Ω,u,y0 ∼ N (B[NΩ−1δ̃ +Λ−1
0 µ0],B) (1.26)

where

δ̃ =
1

N

N∑
i=1

δi

B = [NΩ−1 +Λ−1
0 ]−1

• Conditional Distribution of σ2v :

σ2v |δ̄, δi, σ2u,Ω,u,y0 ∼ IG

(
NT

2
+ a0,

∑N
i=1(yi −Ziδi + ui)

′(yi −Ziδi + ui)

2
+ a1

)
(1.27)
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• Conditional Distribution of σ2u:

σ2u|δ̄, δi, σ2v ,Ω,u,y0 ∼ IG

(
NT

2
+ γ0,

∑N
i=1 u

′
iui

2
+ γ1

)
(1.28)

• Conditional Distribution of Ω (non-diagonal):

Ω|δ̄, δi, σ2v , σ2u,u,y0 ∼ IW
(
N + v0,

N∑
i=1

(δi − δ̄)(δi − δ̄)′ +Ψ0

)
(1.29)

• Conditional Distribution of the diagonal elements ω2
j of Ω (in the case of di-

agonal matrix):

ω2
j |δ̄, δi, σ2v , σ2u,u,y0 ∼ IG

(
N + v0 + J − 1

2
,

∑N
i=1(δij − δ̄j)

2 + ψ0j

2

)
(1.30)

• Conditional Distribution of ui’s:

ui|δ̄, δi, σ2v , σ2u,Ω,y0 ∼ N+

(
−σ

2
u(yi −Ziδi)

σ2u + σ2v
,
σ2vσ

2
u

σ2u + σ2v

)
(1.31)

• Conditional Distribution of y0:

The two equations involving the unobserved initial values yi0 are:

yi0 = ȳ0 + ξi , ξi ∼ N(0, σ20) , i = 1, 2, . . . , N

which derives from the prior normal probability density in equations 1.20-1.21, and

yi1 = ρiyi0 + x′i1βi + vi1 − ui1 , i = 1, 2, . . . , N

which comes from the dynamic panel production frontier model at time t = 1. In matrix

form, the above two equations can be written as:yi1 − x′i1βi + ui1

ȳ0

 =

ρi
1

 yi0 +
vi1
ξi

 , i = 1, 2, . . . , N

where vi1
ξi

 ∼ N

0
0

 ,
σ2v 0

0 σ20


Therefore, in the above form, we can treat the initial conditions yi0, as the unknown

parameter of a linear model. Using the Theil-Goldberger Generalized Linear Mixed esti-

mator (see Theil and Goldberger (1961)), the initial values {yi0}i=1,2,...,N can be obtained

from:

yi0 =

[ρi 1
]σ2v 0

0 σ20

−1 ρi
1




−1[ρi 1
]σ2v 0

0 σ20

−1 yi1 − x′i1βi + ui1

ȳ0



(1.32)

for each i = 1, 2, . . . , N .
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1.4.6 Efficiency Measurement

Once the sequence of the conditional posterior technical inefficiencies are obtained from the

Gibbs Sampling iterations:

u1
i ,u

2
i ,u

3
i , ...,u

S
i (1.33)

where S is the number of MCMC iterations, a common approach to obtain estimates of a firm’s

inefficiency level is to use the average of the draws, as:

ûi = S−1
S∑

s=1

us
i (1.34)

Hence, the corresponding technical efficiency scores can be obtained by utilizing the definition

of technical efficiency, as:

ˆTEi = exp(−ûi) (1.35)

where ˆTEi is a T × 1 vector of the estimated efficiencies of firm i.
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1.5 Performance of the model using artificial data

1.5.1 Data Generating Process

In this section, we present an experiment in order to evaluate the finite sample performance of

the proposed MCMC algorithm. In particular, for the purpose of this experiment, we estimate

a dynamic panel random coefficients production frontier model with a single input xit according

to the following Data Generated Process (DGP):

yit = ai + ρiyit−1 + βixit + vit − uit

vit ∼ N (0, σ2v)

uit ∼ N+(0, σ2u)

The random coefficients ai, ρi and βi are generated using the multivariate normal distribution

structure as: 
ai

ρi

βi

 ∼ N



ā

ρ̄

β̄

 ,

σ2a 0 0

0 σ2ρ 0

0 0 σ2β




where for simplicity we assume a diagonal variance-covariance matrix of the parameters which

implies that the parameters are generated independently from each other. We perform this

experiment for different settings, where we evaluate our model for the different number of cross-

sectional units N = {50, 100}, different time periods T = {10, 20} and different values of the

autoregressive parameters ρ̄ = {0.2, 0.5, 0.8}.

The input variable xit is generated from a N (0, 1) and can be seen as a transformed

variable that reflects deviations of the original input, let’s say Xit, from the average X̄, in

logarithm form7. In order to secure that the autoregressive parameters ρi lie on the interval

[0, 1], we pick σρ = 0.05 for the cases where ρ̄ = {0.2, 0.8}. For the scenario where ρ̄ = 0.5 we

choose σρ = 0.1, since it is ensured that the generated autoregressive parameters will lie on the

required interval8. Last, for the βi’s coefficients, for all scenarios we use β̄ = 1 and σβ = 0.1.

In general, we believe that the choice of all the above parameters is realistic and can describe

real empirical specifications.

In addition, for all the different experimental settings, in order to ensure the existence of

7Such a parameterization is very common in many empirical applications, especially in cases where macroe-

conomic variables are incorporated in the analysis.

8Another approach, where we can ensure the stationarity of the process in our DGP is to follow closely Hsiao

et al. (1999) and for the data generating process of the autoregressive parameter to use the truncated normal

distribution.
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the above effects in our generated data, for each unit i we generate m+ T time periods, where

the first m time periods are dropped out from our analysis. We set m = 10.

Furthermore, we pay particular attention to the signal-to-noise ratio, defined as F =

σu/σv, since, from the stochastic frontier literature, it is well known that small values of F

create identification issues regarding the inefficiency estimates. The rationale here is that as

σv → ∞ and consequently F → 0, the distribution of the common error term will dominate

the probability density function of the inefficiencies uit, and as a result, the identification of

technical inefficiency will not be possible. On the other hand, as σu → ∞ there will be enough

evidence to identify the latent uit term. In Table 1.1, we present the different experiment

settings.

Table 1.1: Experiment Settings

Experiment Setting (I) σv = 0.1 σu = 0.2 F = 2 N = {50, 100} T = {10, 20}

Experiment Setting (II) σv = 0.1 σu = 0.1 F = 1 N = {50, 100} T = {10, 20}

Experiment Setting (III) σv = 0.05 σu = 0.15 F = 3 N = {50, 100} T = {10, 20}

Experiment Setting (IV) σv = 0.01 σu = 0.05 F = 5 N = {50, 100} T = {10, 20}

1.5.2 Prior Specifications

In this subsection, we illustrate our choice for the prior hyperparameters. More specifically, for

the mean value and the variance-covariance matrix of the parameters and the set µ0 = 03×1 and

Λ0 = 103 × I3×3. This particular choice generates a pretty diffuse normal prior distribution;

hence, our prior specification cannot dominate the likelihood function. For the variances of

the error term σ2v and the variance of the inefficiency term σ2u, we set a0 = a1 = 10−6 and

γ0 = γ1 = 10−6. As discussed above, these hyperparameters generate the usual non-informative

Jeffrey’s prior distribution. Last, for the variance-covariance matrix, we set v0 = 0 and Ψ0 =

10−6 × I3×3. These hyperparameters create vague prior probability densities.

1.5.3 Results

In Tables 1.2-1.5 we present the posterior estimates of our experiments. In particular, for the

different number of firms N and time periods T , we report the conditional posterior average

and the posterior standard deviation for all the unknown parameters. In addition, for each

experiment, we report the Pearson correlation between the true (the generated) and the esti-

mated inefficiencies. The Bayesian MCMC is based on 10,000 iterations from which the first

5,000 posterior draws are discarded from our analysis in order to eliminate potential effects of

the initial values.
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In general, we see that for all the different experiment designs, the corresponding posterior

densities are distributed around the true values of the parameters. In particular, we see that for

all the generated posterior densities, the true parameter values belong to 95% credible interval.

This illustrates that our proposed Bayesian hierarchical model with data augmentation is able

to estimate consistently all the structural parameters of interest.

In addition, we see that as the signal-to-noise ratio F increases, the Pearson correlation

between the real and the estimated inefficiency scores tends to unity. More specifically, for the

Experiment Setting (I) presented in Table 1.2, where the F = 2 we see that the correlation

coefficient is around 0.70 and increases to 0.76, as T increases from 10 to 20. On the other

hand, as λ increases to 3 and 5, as presented in Experiment Setting (II) and (III) in Tables 1.4

and 1.5, respectively, we observe that the correlation coefficient increases from around 0.78 and

0.85, for T = 10 and T = 20, to 0.84 and 0.91, for T = 10 and T = 20, respectively. On the

contrary, as we can see from Table 1.3 where the signal-to-noise ratio F = 1, the correlation

between the true and estimated inefficiencies drop to range between 0.45 and 0.53, for the two

different time periods T = {10, 20}. These statistical properties of the proposed model are

a-priori expected and indicate that our proposed model is able to identify the latent inefficiency

term, as long as the inefficiency signal is adequate to draw posterior inference.
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Table 1.2: Posterior Estimates for the Experiment Setting (I)

Panel A

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0240 0.0243 1.0045 0.0209 1.0227 0.0168 1.0001 0.0138

ρ̄ 0.20 0.2130 0.0126 0.1905 0.0110 0.1987 0.0085 0.2094 0.0073

β̄ 1.00 1.0027 0.0165 1.0050 0.0168 1.0095 0.0122 1.0111 0.0111

σa 0.10 0.1050 0.0128 0.1007 0.0116 0.0941 0.0092 0.0984 0.0081

σρ 0.05 0.0722 0.0084 0.0692 0.0076 0.0640 0.0059 0.0637 0.0052

σβ 0.10 0.1053 0.0116 0.1125 0.0122 0.1091 0.0093 0.1031 0.0081

σv 0.10 0.0841 0.0146 0.1032 0.0099 0.0909 0.0102 0.0952 0.0064

σu 0.20 0.2130 0.0212 0.2004 0.0171 0.2118 0.0151 0.2051 0.0106

cor(uit; ûit) 0.7056 0.7481 0.7168 0.7650

Panel B

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0176 0.0242 1.0043 0.0208 1.0248 0.0185 0.9971 0.0142

ρ̄ 0.50 0.5195 0.0169 0.4731 0.0151 0.4961 0.0115 0.5098 0.0111

β̄ 1.00 1.0036 0.0168 1.0055 0.0171 1.0099 0.0121 1.0110 0.0111

σa 0.10 0.1081 0.0150 0.1024 0.0124 0.0974 0.0108 0.1030 0.0091

σρ 0.10 0.1079 0.0116 0.1006 0.0103 0.1050 0.0082 0.1055 0.0076

σβ 0.10 0.1067 0.0123 0.1116 0.0122 0.1077 0.0090 0.1036 0.0081

σv 0.10 0.0805 0.0119 0.1024 0.0092 0.0863 0.0105 0.0958 0.0061

σu 0.20 0.2181 0.0173 0.2029 0.0151 0.2178 0.0148 0.2040 0.0100

cor(uit; ûit) 0.7098 0.7469 0.7078 0.7639

Panel C

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0016 0.0311 0.9899 0.0284 0.9968 0.0240 0.9992 0.0177

ρ̄ 0.80 0.8128 0.0112 0.7869 0.0096 0.8021 0.0074 0.8047 0.0066

β̄ 0.10 1.0059 0.0166 1.0071 0.0167 1.0102 0.0117 1.0116 0.0110

σa 0.10 0.1118 0.0194 0.1046 0.0153 0.0966 0.0143 0.1077 0.0118

σρ 0.05 0.0671 0.0070 0.0636 0.0064 0.0605 0.0046 0.0593 0.0043

σβ 0.10 0.1042 0.0115 0.1107 0.0118 0.1071 0.0091 0.1037 0.0079

σv 0.10 0.0817 0.0158 0.1111 0.0110 0.0937 0.0103 0.0929 0.0069

σu 0.20 0.2163 0.0222 0.1881 0.0214 0.2088 0.0153 0.2085 0.0108

cor(uit; ûit) 0.7134 0.7495 0.7176 0.7668
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Table 1.3: Posterior Estimates for the Experiment Setting (II)

Panel A

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0342 0.0285 1.0004 0.0232 0.9802 0.0304 0.9944 0.0162

ρ̄ 0.20 0.2098 0.0114 0.1890 0.0104 0.1980 0.0074 0.2083 0.0067

β̄ 1.00 1.0002 0.0164 1.0043 0.0165 1.0064 0.0117 1.0116 0.0108

σa 0.10 0.1009 0.0120 0.1001 0.0111 0.0969 0.0088 0.0999 0.0076

σρ 0.05 0.0703 0.0078 0.0666 0.0070 0.0613 0.0054 0.0618 0.0047

σβ 0.10 0.1055 0.0112 0.1110 0.0116 0.1082 0.0086 0.1031 0.0078

σv 0.10 0.0895 0.0127 0.1043 0.0073 0.1097 0.0088 0.0981 0.0056

σu 0.10 0.1195 0.0297 0.0968 0.0218 0.0613 0.0347 0.0968 0.0154

cor(uit; ûit) 0.4591 0.5077 0.4888 0.5235

Panel B

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0210 0.0381 0.9483 0.0355 0.9807 0.0332 0.9935 0.0181

ρ̄ 0.50 0.5147 0.0166 0.4718 0.0146 0.4955 0.0114 0.5090 0.0106

β̄ 1.00 1.0008 0.0163 1.0039 0.0164 1.0072 0.0116 1.0118 0.0110

σa 0.10 0.1039 0.0136 0.1020 0.0120 0.0999 0.0102 0.1048 0.0088

σρ 0.10 0.1079 0.0113 0.1001 0.0102 0.1043 0.0078 0.1046 0.0075

σβ 0.10 0.1058 0.0113 0.1107 0.0116 0.1075 0.0085 0.1034 0.0077

σv 0.10 0.0906 0.0172 0.1159 0.0084 0.1082 0.0106 0.0977 0.0058

σu 0.10 0.1114 0.0426 0.0349 0.0396 0.0655 0.0376 0.0978 0.0171

cor(uit; ûit) 0.4640 0.5084 0.4836 0.5232

Panel C

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0371 0.0298 0.9855 0.0275 0.9474 0.0314 0.9988 0.0186

ρ̄ 0.80 0.8087 0.0106 0.7860 0.0096 0.8010 0.0069 0.8044 0.0062

β̄ 1.00 1.0006 0.0160 1.0046 0.0163 1.0080 0.0117 1.0119 0.0107

σa 0.10 0.1080 0.0183 0.1066 0.0143 0.0989 0.0142 0.1131 0.0116

σρ 0.05 0.0668 0.0067 0.0632 0.0063 0.0600 0.0044 0.0587 0.0042

σβ 0.10 0.1047 0.0113 0.1097 0.0112 0.1073 0.0083 0.1030 0.0076

σv 0.10 0.0783 0.0122 0.1083 0.0065 0.1126 0.0071 0.0953 0.0051

σu 0.10 0.1412 0.0210 0.0839 0.0231 0.0475 0.0306 0.1053 0.0128

cor(uit; ûit) 0.4679 0.5067 0.4890 0.5286
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Table 1.4: Posterior Estimates for the Experiment Setting (III)

Panel A

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0198 0.0176 1.0044 0.0168 1.0146 0.0130 0.9997 0.0110

ρ̄ 0.20 0.2112 0.0111 0.1883 0.0099 0.1978 0.0072 0.2067 0.0066

β̄ 1.00 0.9973 0.0154 1.0036 0.0162 1.0067 0.0114 1.0090 0.0105

σa 0.10 0.1009 0.0114 0.1027 0.0107 0.0941 0.0080 0.0977 0.0072

σρ 0.05 0.0678 0.0075 0.0654 0.0068 0.0625 0.0052 0.0621 0.0047

σβ 0.10 0.1032 0.0106 0.1112 0.0114 0.1074 0.0081 0.1012 0.0075

σv 0.05 0.0381 0.0086 0.0528 0.0058 0.0425 0.0079 0.0489 0.0040

σu 0.15 0.1560 0.0105 0.1488 0.0082 0.1551 0.0084 0.1514 0.0054

cor(uit; ûit) 0.7886 0.8422 0.7901 0.8516

Panel B

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0160 0.0200 1.0028 0.0168 1.0131 0.0131 1.0004 0.0117

ρ̄ 0.50 0.5166 0.0160 0.4709 0.0144 0.4944 0.0110 0.5079 0.0108

β̄ 1.00 0.9975 0.0157 1.0033 0.0162 1.0067 0.0113 1.0097 0.0103

σa 0.10 0.1007 0.0119 0.1034 0.0115 0.0948 0.0089 0.0999 0.0080

σρ 0.10 0.1071 0.0111 0.1000 0.0100 0.1058 0.0077 0.1058 0.0076

σβ 0.10 0.1039 0.0108 0.1107 0.0112 0.1067 0.0081 0.1015 0.0073

σv 0.05 0.0317 0.0111 0.0522 0.0053 0.0404 0.0067 0.0471 0.0043

σu 0.10 0.1611 0.0117 0.1498 0.0074 0.1570 0.0081 0.1535 0.0058

cor(uit; ûit) 0.7880 0.8417 0.7862 0.8504

Panel C

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 0.9999 0.0239 0.9992 0.0194 0.9977 0.0178 0.9960 0.0137

ρ̄ 0.80 0.8125 0.0100 0.7857 0.0092 0.7998 0.0066 0.8042 0.0062

β̄ 1.00 0.9991 0.0153 1.0045 0.0162 1.0070 0.0113 1.0098 0.0104

σa 0.10 0.1082 0.0158 0.1042 0.0131 0.0942 0.0116 0.1022 0.0096

σρ 0.05 0.0658 0.0066 0.0625 0.0061 0.0597 0.0045 0.0594 0.0042

σβ 0.10 0.1029 0.0106 0.1097 0.0110 0.1063 0.0081 0.1011 0.0073

σv 0.05 0.0275 0.0124 0.0543 0.0055 0.0421 0.0086 0.0473 0.0039

σu 0.15 0.1633 0.0100 0.1478 0.0080 0.1558 0.0095 0.1532 0.0055

cor(uit; ûit) 0.7969 0.8445 0.7997 0.8523
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Table 1.5: Posterior Estimates for the Experiment Setting (IV)

Panel A

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0214 0.0143 1.0054 0.0146 1.0091 0.0101 1.0039 0.0097

ρ̄ 0.20 0.2070 0.0094 0.1846 0.0088 0.1958 0.0059 0.2037 0.0060

β̄ 1.00 0.9910 0.0146 1.0005 0.0153 1.0037 0.0107 1.0083 0.0101

σa 0.10 0.0970 0.0096 0.1030 0.0102 0.0987 0.0071 0.0963 0.0066

σρ 0.05 0.0649 0.0064 0.0619 0.0059 0.0593 0.0042 0.0597 0.0042

σβ 0.10 0.1020 0.0098 0.1082 0.0105 0.1061 0.0074 0.0996 0.0071

σv 0.01 0.0051 0.0042 0.0123 0.0015 0.0044 0.0023 0.0092 0.0012

σu 0.05 0.0505 0.0028 0.0484 0.0019 0.0515 0.0018 0.0510 0.0013

cor(uit; ûit) 0.8323 0.9105 0.8313 0.9113

Panel B

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0193 0.0143 1.0048 0.0149 1.0062 0.0103 1.0035 0.0099

ρ̄ 0.50 0.5105 0.0151 0.4676 0.0142 0.4929 0.0104 0.5056 0.0106

β̄ 1.00 0.9914 0.0144 1.0011 0.0155 1.0037 0.0107 1.0087 0.0100

σa 0.10 0.0964 0.0099 0.1026 0.0100 0.0981 0.0071 0.0970 0.0070

σρ 0.10 0.1060 0.0102 0.0988 0.0098 0.1045 0.0073 0.1051 0.0073

σβ 0.10 0.1018 0.0100 0.1088 0.0107 0.1060 0.0074 0.0994 0.0070

σv 0.01 0.0069 0.0020 0.0117 0.0016 0.0073 0.0021 0.0092 0.0013

σu 0.05 0.0501 0.0024 0.0489 0.0021 0.0502 0.0020 0.0510 0.0014

cor(uit; ûit) 0.8387 0.9104 0.8371 0.9112

Panel C

N = 50 N = 100

T = 10 T = 20 T = 10 T = 20

Parameters True Value Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std Post. Mean Post. Std

ā 1.00 1.0135 0.0151 1.0051 0.0150 1.0011 0.0110 1.0009 0.0101

ρ̄ 0.80 0.8068 0.0093 0.7837 0.0088 0.7970 0.0061 0.8030 0.0058

β̄ 1.00 0.9922 0.0145 1.0006 0.0153 1.0035 0.0106 1.0084 0.0100

σa 0.10 0.0951 0.0107 0.1028 0.0104 0.0978 0.0080 0.0969 0.0072

σρ 0.05 0.0648 0.0063 0.0617 0.0060 0.0592 0.0042 0.0591 0.0042

σβ 0.10 0.1023 0.0100 0.1080 0.0105 0.1056 0.0074 0.0996 0.0070

σv 0.01 0.0046 0.0026 0.0117 0.0016 0.0078 0.0018 0.0095 0.0012

σu 0.05 0.0515 0.0026 0.0492 0.0021 0.0503 0.0019 0.0507 0.0014

cor(uit; ûit) 0.8344 0.9104 0.8477 0.9091
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1.6 Empirical Application

1.6.1 Data

In this empirical application, we employ the proposed model in the same empirical application

presented in Bhattacharyya (2012), where the author employs the two-stage approach in order

to estimate the technical efficiency scores of 28 Egyptian manufacturing sectors during the

financial years 1987/1988 to 1995/1996 (9 years). The data used in the paper are coming

directly from the study initially performed by Getachew and Sickles (2007) where the authors

analyze the cost performance of the Egyptian private manufacturing sectors9. In particular,

Bhattacharyya (2012) follow a different approach and investigate the production performance

of the manufacturing sectors by employing the dynamic panel production frontier model. As

mentioned by the author, during the period of the early 90s, the Egyptian government undertook

privatization reforms which generated many new employment opportunities for unskilled and

semi-skilled labour, and as a result, the different sectors were affected by the sluggish adjustment

of the new workers.

The dependent variable is the Output Quantity Index measured as the total revenue de-

flated by the relevant price indices. For the inputs used in the process, we have data on Capital,

Labour, Energy, and the corresponding Materials used in each sector. Further details and sum-

mary statistics of this dataset can be found in Getachew and Sickles (2007) and Bhattacharyya

(2012).

The objective of this empirical application is twofold. First, we want to illustrate the dif-

ferences in technical efficiency estimates between the static and the dynamic stochastic frontier

specification. Secondly, we want to compare the results obtained from the proposed Bayesian

hierarchical dynamic panel model with those obtained from the two-stage approach. The cross-

examination of the two approaches is based on the estimates of (i) the autoregressive parameter,

(ii) the short-run input elasticities, and (iii) the level of the estimated technical efficiency scores.

Additionally, using the proposed DRC-SFM, we present the estimated technological progress,

efficiency change and Total Factor Productivity.

9The dataset is available by the Journal of Applied Econometrics Data Archive.
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1.6.2 The Empirical Model

For the empirical model we follow closely Bhattacharyya (2012) and adopt a simple Cobb-

Douglas production function10. The empirical model under the dynamic specification will be:

yit = ρi yit−1 + βKi kit + βLi lit + βEi eit + βMi mit + ai + γ ′
ift + vit − uit (1.36)

where kit, lit, eit and mit are the capital, labour, energy and materials used in each sector i

at time t. In the analysis, all the variables are used in natural logarithm form. In addition,

to account for the sector-specific technological progress or regress, we include the vector ft

which contains the linear and quadratic time trend. Last, as in the previous sections for the

measurement errors we assume vit ∼ N (0, σ2v) and for the non-negative inefficiency term we

have uit ∼ N+(0, σ2u).

The above dynamic specification enables us to obtain both the average short-run and the

long-run input elasticities as:

Short-Run Effects:
∂yit
∂kit

= β̄K ,
∂yit
∂lit

= β̄L ,
∂yit
∂eit

= β̄E ,
∂yit
∂mit

= β̄M

Long-Run Effects:
∂yit
∂kit

=
β̄K
1− ρ̄

,
∂yit
∂lit

=
β̄L

1− ρ̄
,

∂yit
∂eit

=
β̄E

1− ρ̄
,

∂yit
∂mit

=
β̄M
1− ρ̄

Moreover, we can distinguish between the technical inefficiency that arises from the fact that

sectors do not utilize perfectly their input variables, and the output fall due to the firm’s short-

run inability to operate at full capacity. Specifically, we have:

uit = technical inefficiency obtained from the model , uadjit =
uit

1− ρ̄
− uit

where uadjit illustrates the contribution of adjustment costs to the overall output fall.

As discussed extensively in the previous sections, under the assumption that output ad-

justs instantaneously to the long-run equilibrium, viz. ρi = 0 for each i = 1, 2, . . . , N , the

proposed specification nests previous panel stochastic frontier models. For comparison reasons,

we also estimate a panel stochastic frontier model under a static specification that has dominated

the empirical literature. In particular, we present estimates of the True Random Effects (TRE)

panel stochastic frontier model with fixed coefficients as proposed by Greene (2005a,b), where

we can control for the time-invariant heterogeneity effects across the sectors. As in the case of

the dynamic specification, in order for our results to be directly comparable, for the TRE-SF

model we adopt a hierarchical structure where the estimation inference is based on Bayesian

10We performed the same analysis using the translog production function and we found that the technical

efficiency estimates remain fundamentally the same. For this reason, we chose to report only the results obtained

from the Cobb-Douglas specification.
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MCMC techniques11. In Table 1.6, we summarize the two different model specifications used

in this study.

Table 1.6: Bayesian Hierarchical Empirical Models

Static Specification

(Assumption under Perfect Adjustment)

M1 BH-TRE-SFM yit = x′
itβ + ai + vit − uit

vit ∼ N (0, σ2
v) , uit ∼ N (0, σ2

u)

ai ∼ N (0, σ2
a)

Dynamic Specification

(Assumption under Partial Adjustment)

M2 BH-DRC-SFM yit = ρiyit−1 + x′
itβi + vit − uit

vit ∼ N (0, σ2
v) , uit ∼ N (0, σ2

u)

[ρi, βi]
′ ∼ N

(
[ρ̄, β̄]′,Σ

)

1.6.3 Prior Specifications

Before we proceed with the empirical results we present the prior elicitation for our dynamic

random coefficient model. For the variance of the error term σ2v we have a0 = a1 = 10−2. For

the variance of the inefficiency term σ2u we specify γ0 = 3 and γ1 = 1 which leads to a highly non-

informative Inverse-Gamma distribution. For the random coefficients we have µ0 = 0 × 1J×1

and Λ0 = 100 × IJ×J . Last, for the variance-covariance matrix Ω we choose v0 = 0 and

Ψ0 = 10−6 × IJ×J . In addition, for the BH-TRE-SFM model, where ai ∼ N (0, σ2a), for the

variance σ2a the prior specification is assigned as σ2a|q0, q1 ∼ IG(q0, q1), with q0 = q1 = 10−2.

Last, for the slope parameters for the BH-TRE-SFM we use the uninformative flat prior, viz.

π(β) ∝ 1.

1.6.4 Empirical Results

In Table 1.7, we report the estimated parameters using both the SYS-GMM approach and the

proposed Bayesian hierarchical modeling. More specifically, in the first two columns, we present

the GMM estimates for the static and the dynamic specification, as presented in the original

paper. In the third and fourth column, we report posterior averages and posterior standard

deviations of the parameters using the BH-TRE-SFM and BH-DRC-SFM, respectively. For the

two hierarchical models, all Gibbs Sampling computations are conducted using 30,000 iterations

from which the first 10,000 draws are discarded from our analysis to mitigate any initial values

11In Appendix A, we present the Bayesian posterior analysis of the TRE-SFM.
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Table 1.7: Posterior estimates of parameters and technical efficiency scores

Parameters Description SYS-GMM Bayesian Hierarchical

Static Dynamic TRE-SFM DRC-SFM

Frontier Parameters

ā Constant 0.803*** 0.33 0.2597 0.2619

(0.15) (0.29) (0.0731) (0.0837)

ρ̄ Lagged Log-Output - 0.16*** - 0.1565

(0.06) (0.0248)

β̄K Capital Elas. 0.014 0.02 0.0228 0.0214

(0.01) (0.05) (0.0161) (0.0183)

β̄L Labour Elas. 0.123*** 0.22*** 0.1439 0.1506

(0.04) (0.09) (0.0440) (0.0502)

β̄E Energy Elas. 0.044*** 0.04 0.0322 0.0294

(0.02) (0.05) (0.0241) (0.0245)

β̄M Material Elas. 0.833** 0.65*** 0.7948 0.6448

(0.03) (0.09) (0.0439) (0.0485)

σa Heterogeneity Std. 0.1853

(0.0363)

σv Noise Std. 0.1438 0.0537

(0.0142) (0.0129)

σu Inefficiency Std. 0.2552 0.2495

(0.0222) (0.0183)

Technical Efficiency Estimates

Median 70.0% 74.5% 83.5% 84.5%

Mean 68.3% 74.7% 82.5% 82.9%

Max 100.0% 100.0% 96.4% 96.6%

Min 59.6% 54.2% 47.6% 53.6%

Notes*: The results using the SYS-GMM technique are reported as presented by Bhattacharyya (2012). For the

Bayesian hierarchical specifications, we report the posterior average and posterior standard deviation of the parameters.

The MCMC algorithm is based on 30,000 iterations from which the first 10,000 samples are discarded. For the SYS-GMM

the time effects are captured by using T − 1 time dummy variables. We do not report those estimates to save space.

effect. Therefore, the empirical inference is based on the remaining 20,000 posterior sample

draws.

First, from the static and the dynamic Bayesian hierarchical specifications presented in

the third and fourth column of Table 1.7, we see that dynamic specification generates higher

efficiency estimates. This illustrates the importance of controlling the production dynamics

when the efficiency evaluation is particularly important. Regarding the potential technical

efficiency improvements, the results indicate that the manufacturing sectors were able to increase

their production output and reduce their average production cost on average by 20%12.

12The potential output increase can be calculated as 1/0.83=1.20, where 0.83 is the average technical efficiency
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Comparing the efficiency estimates obtained from the hierarchical models with those ob-

tained from the two-stage approach, we see that the relative efficiency estimates using the

Schmidt and Sickles (1984) method will underestimate the real technical efficiency level. In

particular, the average efficiency score obtained by the SYS-GMM method, presented in the

second column of the Table 1.7 is 74.7%, around 8% lower than the estimate provided by the

BH-DRC-SFM. These results were anticipated, since as we illustrated in the previous sections,

the relative comparison method is not able to separate the sector-specific unobserved effects

from the inefficiency effects, and as a result, the generated efficiency scores will be distorted.

Regarding the mean autoregressive parameter ρ̄, we see that the posterior average is 0.1565

with a posterior standard deviation of 0.0248, which implies that the data do not support the

assumption of instantaneous production adjustment. More specifically, the posterior average

implies an average production catch-up rate of 84.4%. This result is numerically very similar to

the System-GMM approach presented in the second column of Table 1.7. Moreover, in Figure

1.1, we illustrate the marginal posterior distribution of each autoregressive parameter ρi. From

the graph, it is clear that there is evidence that the speed of adjustment is quite heterogeneous

among the different sectors, and each sector is facing a different speed of adjustment towards

the long-run equilibrium.

Figure 1.1: 68% Credible Interval of the autoregressive parameters ρi

In addition, in Table 1.8, we report the corresponding annual adjustment rate of pro-

score obtained from the BH-DRC-SFM.
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duction for each sector. Overall, the adjustment rate is relatively high, indicating that the

adjustment frictions generated by the market liberalization, such as labour mobility, had a mild

impact on the manufacturing sector. As Getachew and Sickles (2007) highlighted, during that

period the Egyptian economy faced high unemployment rates and one plausible explanation is

that labour could be replaced more easily. Moreover, another factor that could have contributed

to low adjustment frictions is the absence of sufficient labour market regulations making the

labour adjustment frictions less costly (e.g. absence of hiring and firing costs, elastic labour

arrangements, etc.).

Table 1.8: Period required for production full adjustment

Industrial Activity Annual Adjustment Industrial Activity Annual Adjustment

Rate Rate

Food Manufacturing 0.861 Other petroleum and coal 0.898

Other Food Manufacturing 0.825 Manufacture of rubber products 0.881

Beverage and liquor 0.886 Manufacture of plastic products 0.881

Tobacco 0.815 Manufacture of pottery and china 0.888

Manufacture of textile 0.870 Manufacture of glass and glass products 0.837

Manufacture of wearing apparels 0.899 Manufacture of other non metallic products 0.819

Manufacture of leather products 0.892 Iron and steel basic industries 0.686

Manufacture of footwear 0.887 Non-ferrous basic industries 0.894

Manufacture of wood products 0.845 Manufacture of fabricated metal products 0.837

Manufacture of furniture & fixture 0.790 Manufacture of machinery except electrical 0.891

Manufacture of paper products 0.702 Manufacture of electrical machinery 0.851

Printing and publishing industries 0.869 Manufacture of transport equipment 0.807

Manufacture of industrial chemicals 0.842 Manufacture of professional equipment 0.859

Manufacture of other chemical products 0.827 Other manufacture industries 0.820

Notes*: The Annual Adjustment Rate is calculated as 1− ρ̄i, where ρ̄i is the posterior average of the sector specif

autoregressive parameter.

Besides the efficiency scores, from the BH-DRC-SFM, we are able to obtain the implied

overall output loss. We see that the median and the average output loss are 20.0% and 23.2%,

respectively. These posterior estimates are approximately 3.0% higher than the technical ineffi-

ciency scores obtained from the Bayesian DRC specification. In economic terms, this indicates

that the short-run input adjustment frictions, contribute to the overall output loss on average by

3%. In Figure 1.2, we illustrate the difference between technical inefficiency and overall output

fall. As a result, it is evident that ignoring for the dynamic structure and the intertemporal

optimization problem, static specifications can lead to bias technical efficiency estimates.

Regarding the Return to scales, from the BH-DRC-SFM we see that the posterior average

of the short-run RTS is 0.8462. This implies that in the short-run if the firms decide to scale up

their production and increase their inputs by 10%, the total cost will increase by 11.82%. This

suggests, that firms will face a 1.82% additional cost, which should be attributed to the short-
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Figure 1.2: Output fall related to partial input contribution.

Table 1.9: Long-Run Posterior Estimates

Input Elasticities and Returns to Scales

Capital Elas. Labor Elas. Energy Elas. Material Elas. RTS

Post. Mean 0.0255 0.1784 0.0349 0.7642 1.0030

Post. Std. (0.0219) (0.0594) (0.0349) (0.0511) (0.0456)

Overall Output Loss

Median Mean Max Min

20.01% 23.22% 73.95% 4.20%

Notes*: This table reports the posterior average and posterior standard deviation of the long-run input elasticities, the

RTS, and the Technical Efficiency scores. As in Table 1.7, the estimates are based on 30,000 MCMC iterations from

which the first 10,000 are discarded.

run adjustment costs. Moreover, in Table 1.9, we present the posterior averages and standard

deviations of the long-run input elasticities, the RTS, and the overall output-loss. The posterior

average of the long-run RTS is 1.003, indicating that our model provides estimates consistent

with the economic theory.

Last, comparing the technical efficiency scores obtained from the dynamic and the mis-

specified static Bayesian hierarchical models, we see that except for the fact that the estimated

efficiency scores are different, we obtain very different results regarding the efficiency rankings

of the different manufacturing sectors. In particular, in Table 1.11 of Appendix B, we present

the technical efficiency scores and the corresponding rankings for each manufacturing sector.

Table 1.11, depicts the fact that using static models where the partial adjustment structure is
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ignored, will fairly distort the efficiency rankings of each sector.

1.6.5 Total Factor Productivity Analysis

Last, in this subsection we present estimates of the technological progress, efficiency change and

the total factor productivity growth from the DRC-SFM. The technological progress is defined

as the exogenously induced shifts of the production frontier captured by the parameter estimated

of the time effects ft, the efficiency change between two period is defined as −(uit − uit−1) and

the total factor productivity can be estimated as the sum of the two components. In Table 1.10,

we present the estimated TFP growth and it’s sub-components. In addition, we present the

TFP and the Efficiency Index in order to illustrate the productivity and efficiency intertemporal

behaviour.

Table 1.10: Technological Progress, Efficiency Change and TFP Growth

Tech. Progress Eff. Change TFP Growth TFP Index Eff. Index

Pre Reform Period

1987/88 100 100

1988/89 -1.59% 0.87% -0.72% 99.28 100.87

1989/90 -0.74% -3.20% -3.95% 95.35 97.64

1990/91 0.10% -1.33% -1.23% 94.18 96.34

Post Reform Period

1991/92 0.95% 1.80% 2.75% 96.77 98.07

1992/93 1.79% 3.11% 4.90% 101.53 101.12

1993/94 2.64% -4.04% -1.39% 100.11 97.04

1994/95 3.49% 1.31% 4.80% 104.92 98.31

1995/96 4.33% -3.65% 0.68% 105.64 94.72

Overall, we see that the liberation reforms introduced during the early 90s increased

the total factor productivity of the private manufacturing sector. Specifically, the TFP Index

illustrates that during the study period, the TFP increased by 5.64%. Additionally, we see

that the main driver of productivity growth was the exogenous technological progress induced

by market liberalization. On the other hand, we see that the technical efficiency during the

post-reform period reduced significantly (on average by 6%), indicating that the sectors could

not utilize the whole available technology despite the positive technological shock.
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1.7 Conclusions

In this study, we proposed a Bayesian hierarchical panel stochastic frontier model which accounts

for the production adjustment costs. In particular, we built a dynamic panel random coefficient

stochastic frontier model where the heterogeneity across the production units is captured by

utilizing the fact that production systems can be subject to heterogeneous technological capa-

bilities. We illustrate that our model can adequately separate the time-invariant unobserved

heterogeneity effects from the latent time-varying inefficiency effects. To estimate the model,

we present Bayesian Markov Chain Monte Carlo (MCMC) techniques to effectively obtain the

posterior densities of the parameters of interest. The proposed Gibbs Sampler can be very

easily implemented by empirical researchers. Using artificial data, we illustrate that our model

performs very well in small and moderate samples.

In an empirical application, we show that static models that ignore the dynamics of a pro-

duction process can generate misleading estimates regarding the short-run technical efficiency

estimates. In addition, we illustrate that the market reforms introduced in Egypt during the

early 90s, created significant factor adjustment frictions, with an adjustment rate of approxi-

mately 86%. Moreover, we show that the reform introduced during that period increased total

factor productivity, which was mainly driven by exogenous technological progress. These results

are in line with the recent economic literature which investigates the role of factor adjustment

frictions in the production process, indicating that our reduced form model provides economic

meaningful inference.

In terms of future research, an interesting extension would be to allow the probability

density of the inefficiency term to be a function of different environmental variables and analyze

the firm-level and macroeconomic determinants of technical inefficiency. Moreover, the model

can be extended to allow for time variation in the autoregressive parameter and hence study

the evolution of adjustment frictions in time.
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Appendix A

In this Appendix, we present the Bayesian posterior analysis of the BH-TRE-SFM. The TRE-

SFM takes the following form:

yit = x′
itβ + ai + vit − uit , i = 1, 2, . . . , N , t = 1, 2, . . . , T

ai ∼ N (0, σ2a)

vit ∼ N (0, σ2v)

uit ∼ N+(0, σ2u)

given that xit contains the vector with ones. In matrix form the model can be written as:

Y = Xβ + (a⊗ 1T ) + v − u

where

a =


a1

a2
...

aN

 and 1T =


1

1
...

1


As above, for the prior specifications of the parameters we have:

π(β) ∝ 1

σ2a|q0, q1 ∼ IG(q0, q1)

σ2v |a0, a1 ∼ IG(a0, a1)

σ2u|γ0, γ1 ∼ IG(γ0, γ1)

From the above, the joint augmented posterior distribution will be:

p(Θ|Y ,X) ∝ (σ2v)
−NT

2 exp

{
− 1

2σ2v
(Y −Xβ − (a⊗ 1T ) + u)′(Y −Xβ − (a⊗ 1T ) + u)

}
× (σ2a)

−N
2 exp

{
− 1

2σ2a

N∑
i=1

a2i

}

× (σ2u)
−NT

2 exp

{
− 1

2σ2u

N∑
i=1

u′
iui

}
1(ui ≥ 0)

× (σ2a)
−q0−1exp

{
− q1
σ2a

}
× (σ2v)

−a0−1exp

{
−a1
σ2v

}
× (σ2u)

−γ0−1exp

{
− γ1
σ2u

}
where the first line reflects that Y |X,a,u ∼ N (Xβ + (a ⊗ 1T ) − u, σ2v), the second line

reflects the normality of ai ∼ N(0, σ2a), the third line depicts the half-normal distribution of
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the inefficiency term and the remaining three lines correspond to the prior specification of the

parameters of interest.

From the augmented posterior distribution we can derive the conditional distributions of

the parameters of interest. In particular, we have:

• Conditional distribution of β:

β|a, σ2v ,u ∼ N (b̂, σ2v(X
′X)−1)

where

b̂ = (X ′X)−1(X ′(Y − (a⊗ 1T ) + u))

• Conditional distribution of σ2v :

σ2v |β,a, σ2a, σ2u,u, a0, a1 ∼ IG
(
NT

2
+ a0,

(Y −Xβ − (a⊗ 1T ) + u)′(Y −Xβ − (a⊗ 1T ) + u)

2
+ a1

)

• Conditional distribution of σ2u:

σ2u|β,a, σ2v , σ2a,u, γ0, γ1 ∼ IG

(
NT

2
+ γ0,

∑N
i=1 u

′
iui

2
+ γ1

)

• Conditional distribution of σ2a:

σ2a|β,a, σ2v , σ2u,u, q0, q1 ∼ IG

(
N

2
+ q0,

∑N
i=1 a

2
i

2
+ q1

)

• Conditional distribution of uit:

uit ∼ N+

(
−σ

2
u(yit − ai − x′itβ)

σ2u + σ2v
,
σ2vσ

2
u

σ2u + σ2v

)

• Conditional distribution of ai:

ai ∼ N

 1

T + σ2
v

σ2
a

(Yi −Xiβ + ui)
′1T ,

σ2vσ
2
a

Tσ2a + σ2v
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Appendix B

In this appendix, we illustrate differences regarding the technical efficiency estimates between

the static and the dynamic Bayesian hierarchical model. In Table 1.11, we report the average

technical efficiencies and the corresponding rankings for each sector for the BH-TRE-SFM the

BH-DRC-SFM.

Table 1.11: Technical Efficiency estimates and rankings of Manufacturing Sectors for the dif-

ferent models

BH-TRE-SFM BH-DRC-SFM

Industrial Activity Average TE Ranking Average TE Ranking

1 Food Manufacturing 83.9% 4 84.6% 5

2 Other Food Manufacturing 84.0% 3 85.5% 2

3 Beverage and liquor 80.3% 27 83.6% 12

4 Tobacco 82.6% 16 82.9% 15

5 Manufacture of textile 83.6% 10 84.0% 8

6 Manufacture of wearing apparels 83.6% 8 85.3% 3

7 Manufacture of leather products 82.7% 15 83.6% 11

8 Manufacture of footwear 83.8% 5 84.6% 6

9 Manufacture of wood products 81.0% 25 82.2% 21

10 Manufacture of furniture & fixture 81.0% 24 82.6% 18

11 Manufacture of paper products 76.9% 28 82.4% 20

12 Printing and publishing industries 80.8% 26 80.1% 27

13 Manufacture of industrial chemicals 82.9% 13 81.4% 24

14 Manufacture of other chemical products 84.5% 2 87.3% 1

15 Other petroleum and coal 82.2% 20 82.9% 16

16 Manufacture of rubber products 81.8% 22 82.7% 17

17 Manufacture of plastic products 83.7% 7 83.2% 13

18 Manufacture of pottery and china 83.8% 6 83.6% 10

19 Manufacture of glass and glass products 84.6% 1 84.0% 8

20 Manufacture of other non metallic products 83.4% 11 82.4% 19

21 Iron and steel basic industries 81.2% 23 80.3% 26

22 Non-ferrous basic industries 82.4% 27 83.9% 9

23 Manufacture of fabricated metal products 82.8% 14 80.7% 25

24 Manufacture of machinery except electrical 83.6% 9 82.2% 2

25 Manufacture of electrical machinery 83.3% 12 83.1% 14

26 Manufacture of transport equipment 82.1% 21 84.9% 4

27 Manufacture of professional equipment 82.3% 19 79.6% 28

28 Other manufacture industries 82.3% 18 81.5% 23

41



Chapter 2

Dynamic Panel Stochastic Frontier

Models with Inefficiency Effects

Abstract

This chapter proposes a dynamic panel production frontier model where the production process

can be subject to production adjustment effects. The idea behind dynamic production func-

tions is to allow input production and inefficiency shocks to have intertemporal effects on the

production process. We extend the literature by incorporating the time-invariant unobserved

heterogeneity and the time-varying technical inefficiency. The inefficiency term is specified as

a parametric function of exogenous variables that may explain the technical inefficiency scores.

A Generalized Method of Moments (GMM) approach is proposed where endogeneity issues can

be effectively addressed. The proposed specification performs very well in small and moderate

samples.
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2.1 Introduction

Measuring firm productivity and technical efficiency is an important task for firms to assess their

production performance, understand their cost-saving potentials, and, of course, help them to

improve competitiveness and survive within a competitive market. Stochastic Frontier Analysis

consists of a standard econometric tool to achieve this goal. Stochastic frontier models were

first introduced by Aigner et al. (1977) and Meeusen and van Den Broeck (1977) and allow

the econometric analysis to consider potential technical inefficiencies within the production

process. Under this framework, the total factor productivity growth is decomposed into two

parts, the common technological process, which affects all the firms symmetrically, and the

technical efficiency change, which incorporates the firms’ efficiency improvements throughout

the years. Since its inception, stochastic frontier analysis has been used in a wide range of

empirical analysis such as in the neoclassical production theory, banking models, educational

economics and energy economics, among many others.

The most recent advances in panel data stochastic frontier models have focused on (i)

effectively separating the time-invariant heterogeneity effects across the production units from

the inefficiency effects and (ii) dealing with endogeneity problems, which are prominent in

efficiency and productivity studies. Regarding the incidental parameter problem, the stochastic

frontier literature has focused on ways to tackle this issue by proposing different ways to separate

the latent heterogeneity from the inefficiency effects (see Tsionas (2002), Greene (2005a,b),

Wang and Ho (2010), Chen et al. (2014), Belotti and Ilardi (2018), Kutlu et al. (2019) etc.),

where the unobserved heterogeneity is modelled through production unit-specific effects or slope

heterogeneity. In addition, some recent works that handle endogeneity problems in stochastic

frontier models can be found at Kutlu (2010), Griffiths and Hajargasht (2016), Amsler et al.

(2016), Kutlu et al. (2019), Centorrino and Pérez-Urdiales (2021), and Tsionas and Kumbhakar

(2022) among others.

However, the majority of the aforementioned panel data stochastic frontier models lie

on the assumption that once production inputs are introduced in the process, they are able

to contribute to the final output within their maximum capabilities. Nevertheless, in real

production environments, the instantaneous adjustment of inputs is a restrictive assumption.

In the economics production theory, many papers highlight the importance of input adjustment

costs. In more simple words, they support that once the inputs are introduced in the production

system, it is required some time to get adapted to their new production environments. For

example, there are periods when firms are facing unexpected demand shifts, and they require

some time for their production supply to cover the new production demands. In addition,
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another fact is that the introduction of new inputs in the process, such as new employees

(labour) or new production machines (capital), requires some additional time for employees

to learn how to use these new machines, the time needed to train the new labour force, etc.

Some more recent studies that illustrate the importance of accounting for the input adjustment

frictions in the economic modelling consist of Hall (2004) where the author examines the factor

adjustment costs for the US sectors, Cooper and Haltiwanger (2006) where capital adjustment

costs are investigated in a sample of plant-level data, Groth and Khan (2010) examine the

impact of investment costs on the US economy, Bergeaud and Ray (2021) explore the effects

of real estate friction on firms’ dynamics, and Artuç et al. (2010), Artuc et al. (2022) illustrate

the effects of trade shocks on labour adjustment frictions, among others.

It is clear that in any production process, the sluggish behaviour of factor inputs can

directly affect the production process and, consequently, the final produced output. As a result,

model and econometric specifications which ignore the aforementioned production dynamics

can generate misleading inferences regarding the short-run input elasticities and hence, the

economic performance estimation of the production units.

This chapter proposes a simple stochastic frontier model that incorporates fixed effects and

various forms of endogeneity along with the intertemporal behaviour of the production process.

In particular, we propose a general dynamic panel production frontier model by incorporating

the time-invariant unobserved heterogeneity across firms and the time-varying technical inef-

ficiency. Furthermore, our model specification allows factor inputs to be either uncorrelated

or correlated with the production shocks. Moreover, we assume a fully parameterized tech-

nical efficiency specification as proposed by Paul and Shankar (2018, 2019), where exogenous

variables explain the level of technical inefficiency. To estimate the model, we propose a non-

linear Generalized Method of Moments approach where arbitrary endogenous effects can be

effectively addressed. We assess the proposed method using extensive Monte Carlo experiments

and illustrate that the model performs very well in finite and moderate samples.

The rest of the chapter is organized as follows. In Section 2.2, we present the theoretical

model. In Section 2.3, we present the econometric model. In Section 2.4, we present the

proposed Non-Linear GMM. In Section 2.5, we illustrate some Monte Carlo experiments to

assess the performance of the proposed model in small and moderate samples. Last, in Section

2.6, we conclude.

Related Literature: The proposed model fits into several literature strands as we ex-

tend existing specifications and bring several distinct threads into the literature together. First,

Nickell (1996) and Nickell et al. (1997) are some of the existing papers in the literature that
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utilize dynamic panel production functions to incorporate the short-run adjustment frictions

and examine the firms’ total factor productivity. In all these studies, the authors analyze the

total factor productivity through control variables that affect productivity evolution and do

not explicitly estimate the corresponding technical inefficiencies. Moreover, Ayed-Mouelhi and

Goaied (2003) and Bhattacharyya (2012) utilize the partial adjustment mechanism to model

the intertemporal production behaviour allowing the presence of time-invariant technical ineffi-

ciency. As in our model, they utilize a dynamic panel model where the autoregressive parameter

of the lag output captures the magnitude of the sluggish adjustment. They propose a two-stage

solution, wherein the first step, a Generalized Method of Moments (GMM) approach, is used

to estimate the parameters of interest. In order to retrieve the corresponding efficiency scores,

the authors use a Schmidt and Sickles (1984) approach where the technical inefficiency is ob-

tained by relative comparison with the “fully efficient” firm. In our model, in contrast, we allow

technical inefficiency to be time-varying, and we separate the unobserved heterogeneity effects

from the inefficiency effects. This is quite important in practice since, as has been illustrated in

the stochastic frontier literature, failing to control for the unobserved heterogeneity adequately

will result in very distorted efficiency scores (see Greene (2005a,b), Wang and Ho (2010), Chen

et al. (2014), Belotti and Ilardi (2018), Kutlu et al. (2019), among others.).

Furthermore, Jonuzaj and Tsionas (2023) propose a flexible dynamic panel stochastic

frontier model where the autoregressive parameter and the input elasticities can differ across

the firms. They propose a Bayesian framework for model estimation and illustrate that the

model can separate the firm-specific heterogeneity from the time-invariant inefficiency effects.

Another strand of the literature deals with reduced-form dynamic models, where the tech-

nical inefficiency is specified as an autoregressive function of its past values. The motivation

behind the autoregressive structure of technical inefficiency is that the input adjustment costs

will cause sluggish adoption of new technological innovations. Therefore, the technical ineffi-

ciency evolution towards the long-run state will be more stagnant. Econometric specification in

this direction can be seen at Ahn et al. (2000), Tsionas (2006), Emvalomatis (2012a), Amsler

et al. (2014) and Lai and Kumbhakar (2020).

Last, Tsionas et al. (2020) and Tsionas et al. (2022) provide some new structural models

where the production process can be subject to adjustment costs. Although structural models

can provide comprehensive economic results, in this paper, we focus on providing a flexible

reduced-form model that empirical scholars can easily implement.
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2.2 The Model

2.2.1 Theoretical Framework

Let’s consider a production process where N firms are producing over a time period T . Each

firm is using a set of inputs Xit ∈ Rp
+ in order to produce a single output Y ∗

it ∈ R+. In

addition, the firm is subject to a Hicks-neutral total factor productivity level Ωit. Output Y ∗
it

can be treated as a latent variable, not observed by the firms, and can be seen as the maximum

feasible output or the targeted output that firms “wish” to succeed, conditional on the level of

inputs and the productivity level. The production process can be described as:

Y ∗
it = f(Xit;β)Ωit (2.1)

where f(.) can be any production function such as the Cobb-Douglas and β are the correspond-

ing technological parameters. Following the stochastic frontier literature, we can decompose

total factor productivity into three components; (i) a time-invariant firm-specific component

that captures the production heterogeneity between firms, (ii) the common technological com-

ponent that affects symmetrically all firms and (iii) a time-varying firm-specific component

exp(−uit) which reflects the technological utilization or the technical efficiency of each firm.

The technical inefficiency exp(−uit) lies on the interval (0, 1] and reflects how efficient a firm is

relative to the maximum potential production. Moreover, the inefficiency term uit, should be

non-negative and reflects the deviation of production from the maximum feasible output. In

particular, we have:

Ωit = exp(ηi + ht − uit) = exp(ηi)× exp(ht)× exp(−uit) (2.2)

Nevertheless, as mentioned above, firms can be subject to adjustment costs and are not able to

adjust their production instantaneously to their targeted output Y ∗
it . Instead, they face a gradual

adjustment towards the desired level. The following equation can describe the mechanism

behind the output adjustment:

Yit
Yit−1

=

(
Y ∗
it

Yit−1

)λ

, 0 < λ ≤ 1 (2.3)

In the economics literature, this mechanism is known as the partial adjustment model, and

the idea behind this is that the observed output Yit differs from the desired level Y ∗
it due to

some inertia that may exist in the production process. Equation 2.3 illustrates that the output

adjustment is subject to the parameter λ which takes values between (0, 1], and determines the

magnitude of the adjustment. Here, we should note that parameter λ can not take the zero

value, since we assume there must be some level of adjustment. Also, we assume that firms are
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identical to each other, they face the same production restrictions, and the level of adjustment

is common across the firms. Hence, the parameter λ, can be seen as an adjustment speed of the

production output to the desired one. For instance, in the case where λ = 1, firms adjust their

outputs instantly, and apparently, the realized production output will be exactly the targeted

one, viz. Yit = Y ∗
it . On the other hand, when λ → 0, the speed of adjustment is relatively low,

firms are not able to adjust their production supply to the demanded output, and the output

gap increases.

From equation 2.3, by taking the natural logarithm, we end up with:

yit − yit−1 = λ(y∗it − yit−1) , 0 < λ ≤ 1 (2.4)

where yit is the natural logarithm of the observed output of firm i at time t, yit−1 is the natural

logarithm of the output of firm i at the lagged period t − 1, y∗it is the targeted or the desired

output that firms want to achieve and λ is the speed of adjustment.

Rewriting equation 2.4 and combining with equations 2.1 and 3.2, we have:

yit = (1− λ)yit−1 + λ(x′
itβ + ηi + ηt − uit) + vit (2.5)

where vit is usual two-sided error term. It is clear, that the presence of partial adjustment

effects delivers a dynamic panel stochastic frontier model. In particular, equation 2.5 can be

written more compactly as:

yit = ρyit−1 + x′
itβ

sr + εit

εit = ai + at + vit − u+it

(2.6)

where ρ = (1 − λ), βsr = βλ, ai = ληi, at = ληt and u+it = λuit. Thus, the dynamic

structure introduced in equations 2.5 and 2.6 allows input and inefficiency shocks to have an

intertemporal impact on the current production process. As discussed above, this specification

enables to model of the implicit dynamic behaviour of any production process. In particular, the

proposed dynamic specification distinguishes between short-run and long-run effects of input

and inefficiency shocks. Specifically, for the short and long-run input elasticities we have:

SR:
∂yit
∂xit

= βsr LR:
∂yit
∂xit

=
βsr

1− ρ
(2.7)

and for inefficiency effects we have:

SR:
∂yit
∂uit

= −1 LR:
∂yit
∂uit

= − 1

1− ρ
(2.8)
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2.2.2 The Econometric Model

To generalize the above, the proposed Dynamic Panel Stochastic Frontier model (hereafter

DPSF model) can be written in the following reduced form:

yit = ρyit−1 + x′
itβ + εit , 0 ≤ ρ < 1

εit = ηi + vit − u+it

i = 1, 2, . . . , N , t = 2, 3, . . . , T

(2.9)

The composite error term εit consists of ηi which captures the time-invariant unobserved het-

erogeneity across firms, vit ∼ N(0, σ2v) is the two-sided error term which captures production

shocks and u+it is the non-negative term which determines the technical inefficiency of firm i at

time t. A common choice for technical inefficiency is to assume a distribution with non-negative

support, such as the half-norm, the truncated normal, exponential, or gamma distribution.

Moreover, we can allow inefficiency effects to be affected by different exogenous variables that

may explain the inefficiency level as in Wang and Schmidt (2002), Wang and Ho (2010), among

many others.

In this study, we follow Paul and Shankar (2018, 2019) where the technical efficiency

term is specified as a parametric function of different exogenous variables that may explain

the efficiency level. Specifically, given the fact that technical efficiency should lie on the [0, 1]

interval, the authors argue the use of cumulative distributions in order to ensure this property.

In particular, we have:

TEit = e−u+
it = H(z′

itγ) ⇒ −u+it = ln H(z′
itγ) (2.10)

where H(.) could be any cumulative distribution function, zit is the vector of these exogenous

variables and γ is the corresponding parameter vector. A common choice for the CDF could

be the standard normal CDF or the Logistic function. Similar specifications have been utilized

in many recent econometric and empirical studies, such as in Tsionas and Mamatzakis (2019)

and Kumbhakar and Tsionas (2020).

Thus, combining the model in 2.9 with the specification in 2.10, we end up with the final

form of the model:

yit = ρyit−1 + x′itβ + ηi + ηt + ln H(z′itγ) + vit , 0 ≤ ρ < 1 (2.11)

The model in equation 2.11 can be seen as a dynamic panel data model with non-linear ineffi-

ciency effects. In addition, specification 2.11 can be seen as a generalization of previous panel

stochastic frontier models. In particular, under the assumption of instantaneous adjustment,
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viz. ρ = 0, the model collapse to the model proposed by Paul and Shankar (2018, 2019).

The authors proposed a simple non-linear least squares approach and Tsionas and Mamatzakis

(2019) argue for a GMM approach that can handle different endogeneity issues.

Moreover, under the full efficiency assumption, viz. H(z′
itγ) = 1, the model returns to a

linear dynamic panel model. A number of methods have been proposed to estimate dynamic

panel data, with the most prevailing in the empirical work being GMM methods. The main idea

is that the presence of fixed effects will make the standard OLS and FE estimators inappropriate

since the estimates of the autoregressive parameter will be biased in finite samples (see Nickell

(1981)), and therefore we will have inaccurate estimates regarding the adjustment speed. For

this reason, a standard approach is to eliminate the fixed effects using a first difference trans-

formation, and then different instrumental variables can be used to consistently identify the

parameter of interest. Estimation and inference in dynamic panel data models have been at

the heart of modern econometrics and typically involve GMM methods. Relative literature con-

sists of Holtz-Eakin et al. (1988), Anderson and Hsiao (1981, 1982), Arellano and Bond (1991)

and Blundell and Bond (1998), where the authors proposed different GMM and SYS-GMM

techniques. Recently, Cave et al. (2022) illustrated an extensive Monte Carlo simulation study,

where the statistical performance of different dynamic panel estimators is evaluated.

Overall, consistent estimation of the non-linear dynamic panel stochastic frontier model

in equation 2.11 will incorporate all the above. In the next section, we illustrate the proposed

Non-Linear GMM approach.

2.3 The Non-Linear GMM approach

In this section, we illustrate the proposed Non-Linear GMM approach. For simplicity, we ignore

the time effects from the model specification. Hence we have:

yit = ηi + ρyit−1 + x′
itβ + ln H(z′

itγ) + vit (2.12)

where ηi are the usual fixed-effects, x′
it = [x1it, x2it, . . . , xPit] is a 1 × P vector of inputs,

z′
it = [z1it, z2it, . . . , zKit] is the 1 × K vector of exogenous variables that affect the level of

technical inefficiencies and vit are uncorrelated production shocks outside firm’s control.

To begin with, we assume for simplicity that the inputs are considered to be strictly

exogenous, viz. Cov(xit; vis) = 0 for all s = 1, 2, . . . , T . In addition, we assume that the

environmental vector zit is strictly exogenous to production shocks, and hence Cov(zit; vis) = 0

for all s = 1, 2, . . . , T . As discussed above, since the nuisance parameters ηi cause bias problems,
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from the first difference transformation, we end up with:

∆yit = ρ∆yit−1 +∆x′
itβ +m(z′

it, z
′
it−1,γ) + ∆vit (2.13)

where

m(z′
it, z

′
it−1,γ) =

[
ln H(z′

itγ)− ln H(z′
it−1γ)

]
(2.14)

is the non-linear function of the strictly exogenous variables z′
it and z′

it−1 which determines the

first difference of technical inefficiencies. In order to identify the parameters in model 2.13 using

the GMM approach, we need to define the moment conditions, as:

E[∆vit(θ)⊗ wit] = 0 (2.15)

where ∆vit(θ) = ∆yit − ρ∆yit−1 − ∆x′
itβ − m(z′

it, z
′
it−1,γ) and wit is the vector of orthogo-

nality conditions used to identify the parameters θ = [ρ,β,γ]′. As mentioned above, following

Anderson and Hsiao (1981, 1982) and Arellano and Bond (1991) in order to identify the au-

toregressive parameter ρ, as instrumental variables we can use the level lagged values yit−s with

s = 2, 3, . . . , t− 1.

For identifying the input elasticities vector β, inputs at first difference ∆xit can be

considered as valid instruments since we assumed that they are strictly exogenous to the

process and E(∆xit∆vit) = 0. Similarly, as long as zit and zit−1 are assumed strictly ex-

ogenous, they can also be used to identify the corresponding parameter vector γ. Thus,

wit = [1, yit−s,∆xit, zit, zit−1]
′ will be a L× 1 vector of the instrumental variables.

Consequently, the moment conditions g(Yit, θ) will be given by:

g(Yit,θ) = E


(∆yit − ρ∆yit−1 −∆x′

itβ −m(z′
it, z

′
it−1,γ))⊗



1

yit−s

∆xit

zit

zit−1




= 0 (2.16)

where Yit = [∆yit,∆yit−1,∆x′
it, z

′
it, z

′
it−1] is the vector of the observed variables, θ ∈ RM is the

vector of the unknown parameters ρ, β and γ and s = 2, 3, . . . , t− 1 determines the number of

lagged values.

Here, we should highlight that the assumption of strictly exogenous production input

is very restrictive. Overall, it is known that production and macroeconomic shocks can have

an intertemporal effect on the firm’s input decision. For this reason, we relax the strictly

exogeneity assumption, and we allow vit to have a dynamic impact on the input vector xit, viz.

Cov(xit−s; vit) = 0 for all s ≥ 0. Under this assumption, the production inputs are considered
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to be predetermined, and therefore, the input choice will be affected by past production and

macroeconomic shocks. Under this condition, the vector ∆xit can not be considered a valid

instrument, since:

Cov(∆xit; ∆vit) = E(∆xit∆vit)

= E(xitvit)− E(xitvit−1)− E(xit−1vit) + E(xit−1vit−1)

= −E(xitvit−1) ̸= 0

To solve this correlation problem, we need to instrument ∆xit. A valid instrument is the vector

xit−1 since it is relevant with ∆xit and orthogonal to ∆vit, meaning Cov(xit−1; ∆xit) ̸= 0 and

Cov(xit−1; ∆vit) = 0. Thus, under predetermined regressors, the moment conditions g(Yit, θ)

will be given by:

g(Yit,θ) = E


(∆yit − ρ∆yit−1 −∆x′

itβ −m(z′
it, z

′
it−1,γ))⊗



1

yit−s

xit−1

zit

zit−1




= 0 (2.17)

Moreover, for any l ≥ 1 we have Cov(xit−l; ∆vit) = 0 and hence, one can increase the cor-

responding orthogonality conditions. However, when the number of periods is large, we must

consider the many weak instrument problems.

Given the moment conditions in 2.16 and 2.17, in order to estimate the GMM parameters,

the minimization criterion will be:

Q(θ) = arg min

[
1

N(T − 2)

N∑
i=1

T−2∑
t=1

g(Yit,θ)

]′
W

[
1

N(T − 2)

N∑
i=1

T−2∑
t=1

g(Yit,θ)

]
(2.18)

where W is a (L×L) positive definite weighting matrix which weights the moment conditions.

For the first step, one can use the identity matrix (W = I) by giving a-priori the same weights

to all moment conditions. This is known as the 1-step GMM (D-GMM-1) and we can obtain

consistent estimates and asymptotically normal. The variance-covariance matrix of the D-

GMM-1 estimator will have the form:

Σ = (G′WG)−1G′WΩWG(G′WG)−1 (2.19)

where

G =
1

N(T − 2)

N∑
i=1

T−2∑
t=1

∂g(Yit,θ)

∂θ
, Ω =

1

N(T − 2)

N∑
i=1

T−2∑
t=1

g(Yit,θ)g(Yit,θ)
′ (2.20)
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For the second step, it has be shown that by choosing the optimal weighting matrix, as Ŵ = Ω̂−1

and plugged in the minimization criterion 2.18, we can obtain the most efficient estimator. This

method is called 2-step GMM (D-GMM-2) and the estimator is still consistent and asymptoti-

cally normal, with variance-covariance matrix:

Σ = (G′ŴG)−1 (2.21)

The same procedure as the 2-step GMM, can be performed iteratively, where the weighting

matrix Ŵ is recalculated several times until the estimator converges to a specific value. This

method is called Iterated-GMM (D-GMM-Iter), and the minimization criterion, will be:

Q(θb+1) = arg min

[
1

N(T − 2)

N∑
i=1

T−2∑
t=1

g(Yit, θ̂b)

]′
W(θ̂b)

[
1

N(T − 2)

N∑
i=1

T−2∑
t=1

g(Yit, θ̂b)

]
(2.22)

where b = 2, 3, . . . , B is the number of iterations performed until convergence succeeds. However,

the Iterated-GMM (D-GMM-Iter) does not provide any asymptotic improvement. Nevertheless,

many Monte-Carlo experiments suggest this approach performs better in finite samples.

Last, an alternative approach is the Continuously-Updated GMM (D-GMM-CUE) esti-

mator, which allows the weighting matrix to be a function of the parameter vector θ = [ρ,β,γ]′.

The minimization criterion is:

Q(θ) = arg min

[
1

N(T − 2)

N∑
i=1

T−2∑
t=1

g(Yit,θ)

]′
W(θ)

[
1

N(T − 2)

N∑
i=1

T−2∑
t=1

g(Yit,θ)

]
(2.23)

where both the parameter vector θ and the optimal weighting matrix are W(θ) are estimated

simultaneously.

By minimizing the GMM criterion using all the aforementioned methods, we can obtain

the estimated parameters θ̂ = [ρ̂, β̂, γ̂]′. As a result, the estimation of the technical efficiency

scores is straightforward, since ˆTEit = H(z′
itγ̂).
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2.4 Monte Carlo Replications

In this section, we investigate the performance of the proposed Non-Linear GMM method in

finite samples. In particular, we assess the model under the two aforementioned scenarios: (i)

the firm’s inputs are strictly exogenous, viz. Cov(xit; vis) = 0 for all s = 1, 2, . . . , T , which

is a common assumption in the stochastic frontier literature; and (ii) the input decision is

predetermined, viz. Cov(xit−s; vit) = 0 for all s ≥ 0 .

More specifically, the first scenario implies that production shocks do not affect the input

decision of the firm. In other words, the firm is choosing its inputs according to an internal

decision rule which is based on the firm’s business plan. In the second scenario, we allow past

production shocks to affect the current input decision of the firm. For instance, the impact of

different shocks could take some time to affect the firm’s decision for labour or investments.

We estimate the model for different number of firms N = {100, 200} and different time

periods T = {5, 10}. In addition, we estimate the model for different values of the autoregressive

parameter ρ = {0.2, 0.5, 0.8}. In order to guarantee a safe inference of the results, we use 500

Monte Carlo iterations. We assess the non-linear GMM approach based on the estimated frontier

parameters and the estimated technical efficiencies.

For the purpose of this experiment, we estimate a simple AR(1) dynamic panel production

frontier model according to the following Data Generated Process (DGP):

yit = ρyit−1 + βxit + ηi + vit − h(zit; γ)
+

xit = (1− ρx)(µx + τηi) + ρxxit−1 + ξit + kvit−1

h(zit; γ)
+ = −ln Φ(γ1zit)

ηi ∼ N(0, σ2η) , vit ∼ N(0, σ2v) , ξit ∼ N(0, σ2ξ )

(2.24)

where ηi captures the time-invariant unobserved heterogeneity across firms, yit is the natural

logarithm of the observed output of firm i at t, yit−1 is the natural logarithm of firm i at time

t−1, xit is the natural logarithm of input used by firm i at time t, h(zit; γ)
+ is the non-negative

function which represents the inefficiency of firm i at time t, zit is an exogenous variable which

affects firm’s technical efficiency scores and vit is the two-sided error term representing the

production and general macroeconomic shocks outside firms control.

The input used in the process xit is generated as an AR(1) function of the lagged input

xit−1, in order to allow deviations from the long-run mean. The long-run state is given by the

term µx + τηi. Hence, we allow heterogeneity effects to be correlated with xit. In addition, we

allow lag production and business cycle shock vit−1 to affect input decisions, as well. Specifically,

vit−1 is augmented with a constant parameter k, which determines the magnitude of this effect.
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For instance, when k = 0, production shocks do not affect input choice, and hence the input xit

is strictly exogenous to the process. On the other hand, when k ̸= 0, input choice is affected

by the past production shocks and therefore, becomes predermined to the production process.

We pick µx = 1, τ = 0.25 and ρx = 0.7 which indicates a persistent process. Moreover, we add

a stochastic term ξit in order to capture unobserved factors with σξ = 0.1.

For the technical efficiency, we assume a single exogenous factor zit which is generated as

zit = t/max(T )+wit, with wit ∼ N(0, 0.12). Here, we want to generate a non-negative variable

that is increasing in time, because we want to represent different factors, such as managerial

skills or experience, which overall are represented by non-negative variables. In addition, we

assume γ1 = 1. A positive γ1 parameter indicates that the variable zit positively affects the

technical efficiency scores. We choose these variables in order to generate technical efficiencies

between 70% and 95%. This generated range of technical efficiency scores is common in many

empirical findings.

For the time-invariant unobserved heterogeneity, we draw from a N(0, σ2η) with ση = 1.

To generate the two-sided error term we draw from a N(0, σ2v) with σv = 0.1. In addition, for

the initial values we assume yi0 =
β

1−ρxi0 and xi0 = µx + τηi.

In order to ensure the existence of the above effects in our generated data, for each firm i

we generate m+T time periods. Then, for each firm, the first time m = 20 periods are dropped

from the analysis. Last, the proposed model is estimated using the 1-step GMM (D-GMM-1),

the 2-step GMM (D-GMM-2), the Iterated GMM (D-GMM-Iter) and the Continuously updating

GMM (D-GMM-CUE).

2.4.1 Model with strictly exogenous inputs (k = 0)

As discussed above, for the input xit to be strictly exogenous to the process, we need to impose

k = 0. As a result, the input is unaffected by past production shocks vit−1. In order to estimate

the model, we use the following moment conditions:

E


(∆yit − ρ∆yit−1 − β∆xit −m(zit, zit−1; γ))⊗



1

yit−s

∆xit

zit

zit−1

z2it

z2it−1




= 0 (2.25)
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Here, for simplicity we use s = 2, indicating that the only instrument used in order to identify

the autoregressive parameter ρ is the lagged value yit−2. Apparently, one can use more lagged

values, such as s = 2, 3, . . . , T − 1. In addition, in order to help the estimation procedure, we

adopt a common practise in GMM approach, by adding more moment conditions, such as the

z2it and z2it−1. Therefore, the moment conditions in 2.25 consist of a system of 7 non-linear

equations with 4 unknown parameters.

In Table 2.1 and Table 2.2, we report the Bias and the Mean Squared Error (hereafter

MSE) of the estimated parameters for N = 100 and N = 200, respectively. Each table consists

of three panels (Panel A, Panel B and Panel C), where we present the simulation results for the

different values of the autoregressive parameter (ρ = 0.2, ρ = 0.5 and ρ = 0.8). We generate

parameter β as β = 1× (1− ρ) such that the long-run effect equals 1.

It is clear, that the proposed non-linear GMM performs well in finite samples. In partic-

ular, we see that as we increase the time period T , the MSE of the parameters decreases. The

same behaviour can be observed, when we keep the time constant and increase the number of

firms N . In addition, we see that the Biases of the parameters are very low, as well.

Moreover, in Figure 2.1, we present some indicative results for technical efficiencies esti-

mates using the results from Panel A presented in Tables 2.1 and 2.2. In particular, for each

model, we estimate the technical efficiency as Φ(γ̂1zit), where γ̂1 = 1
S

∑S
s=1 γ̂

s
1 and γ̂s1 is the

estimated parameter from each iteration s = 1, 2, . . . , 500. Overall, all the different models

generate technical efficiency estimates very close to the real ones. An interesting fact is that not

only we are able to obtain accurate estimates regarding the average technical efficiency score,

but also we can capture the whole shape of the efficiency density.

Last, the 2-step GMM (D-GMM-2) outperforms the 1-step GMM (D-GMM-1). Specifi-

cally, we obtain smaller Biases and MSE for all the different parameters, number of time periods

T and number of firms N . In addition, the D-GMM-Iter and D-GMM-CUE seem to perform

very well in finite samples, but they do not outperform the D-GMM-2. Overall, our Monte

Carlo results indicate that all the proposed methods can be utilized effectively for empirical

analysis.

2.4.2 Model with predetermined inputs (k ̸= 0)

Following the above, to generate endogenous input, we need k ̸= 0. For this simulation, we

impose k = 0.1. Since E[xitvit−1] ̸= 0, in order to identify the parameter β, the lagged values

xit−1 can be used as valid instruments. It is clear, one can use more lagged values, such as

xt−1, xt−2, . . . , xi1. However, for illustration purposes, we choose to use only one lagged value,
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to keep our analysis as simple as possible. Hence, in this case, to estimate the model, we make

use of the following moment conditions:

E


(∆yit − ρ∆yit−1 − β∆xit −m(zit, zit−1; γ))⊗



1

yit−s

xit−1

zit

zit−1

z2it

z2it−1




= 0 (2.26)

Again, to identify the autoregressive parameter ρ, for simplicity, we use s = 2. As we see in 2.26,

except for the orthogonality condition for identifying β, all the remaining moment conditions

are the same as in 2.25. As before, in Table 2.3 and Table 2.4, we report the Bias and the

MSE of the estimated parameters and the estimated technical efficiencies for both N = 100 and

N = 200.

Again, the proposed non-linear GMM performs very well, even in the presence of predeter-

mined regressors. In particular, we see that the MSE of the estimated parameters is decreasing

in firm size N and time period T . Moreover, in Figure 2.2, we present the kernel densities of

the real efficiencies (black solid line) and the estimated efficiency scores using the correspond-

ing methods. The reported densities indicate that all methods generate very accurate efficiency

score estimates. Overall, we can conclude that our proposed GMM model can effectively address

arbitrary endogeneity issues.

Last, the D-GMM-2 method performs better than the D-GMM-1 which aligns with the

GMM theoretical properties. Moreover, the D-GMM-Iter and the D-GMM-CUE produce very

small MSEs for all parameters of interest, which indicates that they can be good alternatives

in empirical applications.
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Figure 2.1: Kernel Densities of Estimated Technical Efficiencies for ρ = 0.2 and k = 0
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Figure 2.2: Kernel Densities of Estimated Technical Efficiencies for ρ = 0.2 and k = 0.1

2.5 Conclusions

In this chapter, we propose a dynamic panel production frontier model where the production

process can be subject to partial adjustment effects. We extend the literature by allowing factor

inputs and inefficiency shocks to have an intertemporal impact on production. Furthermore,

our model is able to incorporate the time-invariant unobserved heterogeneity along with the

time-varying technical inefficiency. The technical efficiency term is specified using cumulative

distribution functions of exogenous variables that may explain the efficiency scores. A Gen-

eralized Method of Moments (GMM) approach can be used where endogeneity issues can be

effectively addressed. We evaluate the performance of the proposed model under different sce-

narios, where inputs can be both exogenous and predetermined to the model. We show that in

both cases, our model performs very well in finite samples.

In terms of future work, we plan to illustrate the usefulness of the proposed model in

an empirical application where we will use firm-level data for the UK manufacturing and con-
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struction sector. The application will be interesting to examine the impact of certain firm-level

and macroeconomic characteristics on the level of technical efficiency. In addition, part of the

future research agenda is to extend the model and allow the autoregressive parameter to be a

time-varying function of different variables. This will allow us to exploit the determinants of

the sluggish adjustment of production.
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Table 2.1: Monte Carlo Experiment for strictly exogenous input and N = 100

Panel A: ρ = 0.2 , β = 0.8 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 0.0026 0.0212 0.0030 0.0219 0.0462 0.0236

D-GMM-2 -0.0355 0.0179 -0.0007 0.0061 0.0256 0.0274

D-GMM-Iter -0.0400 0.0184 -0.0010 0.0063 0.0222 0.0278

D-GMM-CUE 0.0016 0.0207 0.0038 0.0066 0.0264 0.0273

T = 10 D-GMM-1 -0.0008 0.0091 -0.0012 0.0071 0.0532 0.0158

D-GMM-2 -0.0156 0.0082 -0.0021 0.0024 0.0141 0.0252

D-GMM-Iter -0.0193 0.0086 -0.0025 0.0024 0.0294 0.0258

D-GMM-CUE -0.0072 0.0093 -0.0010 0.0025 0.0144 0.0255

Panel B: ρ = 0.5 , β = 0.5 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 0.0028 0.0173 0.0002 0.0257 0.0430 0.0243

D-GMM-2 -0.0282 0.0160 -0.0037 0.0062 0.0282 0.0289

D-GMM-Iter -0.0313 0.0163 -0.0035 0.0063 0.0198 0.0291

D-GMM-CUE 0.0046 0.0178 0.0005 0.0065 0.0316 0.0285

T = 10 D-GMM-1 0.0030 0.0050 0.0018 0.0101 0.0320 0.0158

D-GMM-2 -0.0073 0.0044 -0.0016 0.0024 0.0008 0.0263

D-GMM-Iter -0.0083 0.0045 -0.0018 0.0024 0.0197 0.0265

D-GMM-CUE 0.0022 0.0047 -0.0005 0.0025 0.0023 0.0264

Panel C: ρ = 0.8 , β = 0.2 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 -0.0025 0.0057 -0.0044 0.0328 0.0110 0.0242

D-GMM-2 -0.0111 0.0047 -0.0013 0.0062 0.0013 0.0270

D-GMM-Iter -0.0115 0.0048 -0.0011 0.0064 -0.0159 0.0272

D-GMM-CUE 0.0012 0.0049 -0.0003 0.0066 0.0085 0.0273

T = 10 D-GMM-1 0.0008 0.0001 0.0071 0.0253 0.0018 0.0200

D-GMM-2 -0.0010 0.0007 -0.0004 0.0027 0.0079 0.0250

D-GMM-Iter -0.0009 0.0007 -0.0004 0.0027 0.0027 0.0252

D-GMM-CUE 0.0017 0.0007 -0.0002 0.0028 0.0076 0.0252
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Table 2.2: Monte Carlo Experiment for strictly exogenous input and N = 200

Panel A: ρ = 0.2 , β = 0.8 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 0.0070 0.0177 0.0023 0.0167 0.0379 0.0212

D-GMM-2 -0.0195 0.0136 0.0013 0.0035 0.0136 0.0278

D-GMM-Iter -0.0225 0.0139 0.0009 0.0035 0.0105 0.0282

D-GMM-CUE 0.0031 0.0158 0.0043 0.0037 0.0178 0.0277

T = 10 D-GMM-1 0.0063 0.0041 -0.0032 0.0039 0.0504 0.0129

D-GMM-2 -0.0059 0.0036 -0.0036 0.0012 0.0095 0.0236

D-GMM-Iter -0.0073 0.0037 -0.0038 0.0012 0.0197 0.0239

D-GMM-CUE -0.0017 0.0038 -0.0031 0.0012 0.0116 0.0238

Panel B: ρ = 0.5 , β = 0.5 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 0.0105 0.0112 0.0034 0.0198 0.0311 0.0224

D-GMM-2 -0.0152 0.0097 -0.0003 0.0032 0.0132 0.0263

D-GMM-Iter -0.0169 0.0099 -0.0005 0.0032 0.0063 0.0266

D-GMM-CUE 0.0042 0.0101 0.0019 0.0033 0.0146 0.0263

T = 10 D-GMM-1 0.0062 0.0024 -0.0027 0.0054 0.0322 0.0121

D-GMM-2 -0.0021 0.0022 -0.0008 0.0013 0.0117 0.0228

D-GMM-Iter -0.0026 0.0023 -0.0009 0.0013 0.0228 0.0229

D-GMM-CUE 0.0020 0.0023 -0.0004 0.0013 0.0131 0.0229

Panel C: ρ = 0.8 , β = 0.2 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 -0.0038 0.0027 -0.0028 0.0305 0.0135 0.0237

D-GMM-2 -0.0068 0.0022 0.0023 0.0031 0.0191 0.0255

D-GMM-Iter -0.0073 0.0022 0.0026 0.0032 -0.0110 0.0260

D-GMM-CUE -0.0010 0.0022 0.0030 0.0032 0.0218 0.0258

T = 10 D-GMM-1 -0.0002 0.0005 -0.0073 0.0168 0.0025 0.0152

D-GMM-2 -0.0005 0.0004 -0.0004 0.0012 0.0081 0.0242

D-GMM-Iter -0.0004 0.0004 -0.0004 0.0012 0.0151 0.0244

D-GMM-CUE 0.0007 0.0004 -0.0003 0.0012 0.0099 0.0245
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Table 2.3: Monte Carlo Experiment for predetermined input and N = 100

Panel A: ρ = 0.2 , β = 0.8 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 -0.0007 0.0234 -0.0252 0.0297 0.0428 0.0222

D-GMM-2 -0.0437 0.0133 -0.0413 0.0191 0.0192 0.0252

D-GMM-Iter -0.0474 0.0139 -0.0460 0.0199 0.0211 0.0260

D-GMM-CUE -0.0138 0.0148 -0.0113 0.0229 0.0207 0.0256

T = 10 D-GMM-1 0.0043 0.0090 0.0005 0.0218 0.0457 0.0144

D-GMM-2 -0.0119 0.0061 -0.0106 0.0122 -0.0116 0.0248

D-GMM-Iter -0.0145 0.0065 -0.0134 0.0128 0.0104 0.0253

D-GMM-CUE -0.0007 0.0074 0.0034 0.0147 -0.0116 0.0250

Panel B: ρ = 0.5 , β = 0.5 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 -0.0081 0.0158 -0.0094 0.0329 0.0335 0.0242

D-GMM-2 -0.0315 0.0130 -0.0261 0.0188 0.0192 0.0269

D-GMM-Iter -0.0336 0.0133 -0.0275 0.0192 0.0164 0.0274

D-GMM-CUE 0.0024 0.0144 -0.0021 0.0206 0.0245 0.0270

T = 10 D-GMM-1 0.0005 0.0042 0.0047 0.0245 0.0380 0.0162

D-GMM-2 -0.0103 0.0041 -0.0102 0.0090 -0.0011 0.0271

D-GMM-Iter -0.0115 0.0043 -0.0117 0.0093 0.0185 0.0274

D-GMM-CUE -0.0003 0.0045 -0.0012 0.0100 0.0011 0.0272

Panel C: ρ = 0.8 , β = 0.2 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 -0.0014 0.0045 -0.0024 0.0346 0.0208 0.0244

D-GMM-2 -0.0105 0.0039 -0.0075 0.0132 0.0105 0.0268

D-GMM-Iter -0.0112 0.0040 -0.0087 0.0135 -0.0017 0.0268

D-GMM-CUE 0.0016 0.0040 -0.0007 0.0145 0.0134 0.0269

T = 10 D-GMM-1 0.0017 0.0009 0.0056 0.0309 0.0038 0.0178

D-GMM-2 -0.0003 0.0007 -0.0025 0.0055 0.0006 0.0261

D-GMM-Iter -0.0002 0.0007 -0.0025 0.0055 0.0038 0.0261

D-GMM-CUE 0.0026 0.0007 -0.0002 0.0057 0.0010 0.0264
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Table 2.4: Monte Carlo Experiment for predetermined input and N = 200

Panel A: ρ = 0.2 , β = 0.8 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 0.0100 0.0153 -0.0076 0.0290 0.0295 0.0200

D-GMM-2 -0.0246 0.0094 -0.0261 0.0182 0.0241 0.0259

D-GMM-Iter -0.0272 0.0099 -0.0281 0.0188 0.0207 0.0263

D-GMM-CUE -0.0036 0.0107 -0.0014 0.0206 0.0263 0.0257

T = 10 D-GMM-1 0.0088 0.0048 0.0044 0.0185 0.0534 0.0133

D-GMM-2 -0.0025 0.0035 -0.0038 0.0070 -0.0022 0.0237

D-GMM-Iter -0.0038 0.0037 -0.0053 0.0074 0.0164 0.0241

D-GMM-CUE 0.0023 0.0041 0.0027 0.0081 -0.0003 0.0240

Panel B: ρ = 0.5 , β = 0.5 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 -0.0008 0.0109 -0.0148 0.0320 0.0400 0.0222

D-GMM-2 -0.0302 0.0098 -0.0281 0.0153 0.0132 0.0262

D-GMM-Iter -0.0318 0.0101 -0.0288 0.0155 0.0107 0.0263

D-GMM-CUE -0.0106 0.0103 -0.0114 0.0164 0.0152 0.0261

T = 10 D-GMM-1 0.0024 0.0022 -0.0015 0.0193 0.0309 0.0129

D-GMM-2 -0.0067 0.0024 -0.0037 0.0044 0.0137 0.0245

D-GMM-Iter -0.0073 0.0024 -0.0043 0.0045 0.0209 0.0246

D-GMM-CUE -0.0024 0.0025 0.0003 0.0046 0.0160 0.0247

Panel C: ρ = 0.8 , β = 0.2 , γ1 = 1

ρ β γ1

Bias MSE Bias MSE Bias MSE

T = 5 D-GMM-1 -0.0018 0.0022 -0.0090 0.0342 0.0154 0.0214

D-GMM-2 -0.0051 0.0019 0.0002 0.0096 0.0057 0.0260

D-GMM-Iter -0.0055 0.0019 0.0002 0.0097 -0.0096 0.0261

D-GMM-CUE 0.0011 0.0019 0.0056 0.0101 0.0094 0.0258

T = 10 D-GMM-1 0.0023 0.0005 0.0035 0.0287 0.0032 0.0153

D-GMM-2 0.0003 0.0003 0.0011 0.0029 -0.0025 0.0238

D-GMM-Iter 0.0003 0.0003 0.0012 0.0029 -0.0013 0.0238

D-GMM-CUE 0.0015 0.0003 0.0022 0.0030 -0.0024 0.0240
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Chapter 3

A simple method for modelling the

energy efficiency rebound effects

with an application to energy

demand frontiers

Abstract

This chapter proposes a new simple approach to model the macroeconomic energy efficiency

rebound effects. The method follows recent developments in stochastic frontier models and

assumes that energy efficiency improvements do not necessarily reduce energy demand propor-

tionally. Instead, we allow country-specific rebound effects to mitigate or intensify the efficiency

effects on the aggregate energy demand. The method incorporates a reduced-form stochastic

frontier model with country-specific heteroscedasticity, and the method of moments approach

for estimating the country-specific rebound effects. The estimation can be implemented rela-

tively easily in any standard statistical package. Last, we illustrate the model in an empirical

application, estimating the energy efficiency scores and the corresponding rebound effects for

20 OECD member countries from 1980 to 2018. Our results reveal that for most countries, we

find modest to considerable partial rebound effects ranging from 28% to 92%. In addition, we

show that for 2018 the average energy efficiency score is approximately 84%, indicating that

there is potential for further energy savings.
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3.1 Introduction

Improving energy efficiency is a key strategic objective for developed economies around the

globe to reduce their aggregate energy use, reduce their GHG emissions, and enhance their

energy supply security by reducing their energy dependency on third parties. However, despite

all the energy efficiency actions and the legislation implemented throughout recent years, it is

evident that in many economies, the aggregate energy consumption remains at the same levels

or, in some instances, continues to increase steadily at the same rates.

To incorporate the underlying drivers of aggregate energy demand, the energy economics

literature has been extended in various directions trying to shed light on the different mech-

anisms that drive aggregate energy use. One interesting mechanism that has attracted the

attention of many energy economists and policymakers is the so-called economy-wide rebound

effect. The mechanism implies that part of the initial energy efficiency gains will be offset, and

consequently, the markets cannot utilize all the energy efficiency actions. The intuition behind

the macroeconomic rebound effects is that improving energy efficiency in the markets will de-

crease the cost of energy-intensive products and services, and consequently, this will generate

additional disposable income and productivity gains. Thus, this will stimulate the demand for

other products and services and, as a result, the demand for energy use (Saunders (2000)).

However, the magnitude of this effect may vary for different economies and is subject to differ-

ent factors related to the economic structure of each economy, behavioural factors and social

norms.

Thus, estimating and assessing the magnitude of the energy efficiency rebound effects is

essential for energy policymakers and contributes to understanding and designing the necessary

policy actions. Although there is growing literature on empirically investigating the economy-

wide energy rebound effects, the empirical strategy seems ambiguous among energy economists

and policymakers (Stern (2020), and Brockway et al. (2021) present some excellent literature

reviews).

This study tries to shed additional light on the topic by proposing an alternative econo-

metric identification strategy. In this study, we follow recent advances in the literature and

introduce an energy input distance function where we allow the inefficiency term to affect

aggregate energy consumption in a non-proportional way. Specifically, we present a flexible

econometric specification which allows for country-specific rebound effects. Our model does not

impose any restriction on the sign and the magnitude of the rebound effect. The proposed spec-

ification implies a reduced form stochastic frontier model with country-specific heteroscedastic

inefficiency term. We suggest a simple estimation strategy that involves two stages to avoid
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computational complexity. First, we propose estimating the reduced-form model using stan-

dard Maximum Likelihood or Bayesian techniques. In particular, we utilize Bayesian techniques

organized around MCMC inference and illustrate the corresponding conditional distributions.

Next, we construct relevant moment conditions using information from the posterior estimates

and the theoretical moment conditions arising from the inefficiency distribution, which incor-

porate the energy efficiency rebound effects. Finally, we estimate the country-specific rebound

effects in the second stage using the Generalized Method of Moments (GMM) approach.

Last, we present an empirical application where we illustrate the practicality of our method

in a panel of 20 OECD member countries. Our empirical findings reveal that for most of the

OECD economies, there is evidence in favour of considerable partial rebound effects ranging

from approximately 28% to 92%. This supports the argument that a vast part of initial en-

ergy efficiency gains is re-spent in supporting economic development. We find that Denmark is

the only economy that exhibits zero rebound effects. On the other hand, we find that during

the whole sample period, Germany and U.K. have been conservative regarding their aggregate

energy use. Regarding energy efficiency estimates, our study reveals that the average energy

efficiency for 2018 is approximately 86%, but the values of energy efficiencies are quite hetero-

geneous, ranging from 70% to 99%.

The rest of the chapter is organized as follows. In section 3.2, we briefly present the defi-

nition of the economy-wide rebound effects. In section 3.3, we present the proposed econometric

strategy. In section 3.4, we present the empirical study. Last, in section 3.5, we conclude.

Related Literature This chapter stands in the energy economics literature, which pro-

vides econometric empirical evidence on the macroeconomic rebound effects. The first paper

that presents econometric evidence on macroeconomic rebound effects seems to be Orea et al.

(2015), where the authors propose an energy demand stochastic frontier model with non-zero

rebound effects. The authors apply the model in an empirical study using data on US states.

They provide evidence of considerable high-energy rebound effects. Adetutu et al. (2016) assess

the rebound effects for a panel of 55 countries. In their specification, they employ a two-stage

approach, wherein in the first stage, an input distance function is utilized for measuring the

country-level energy efficiency scores. In the second stage, they utilize a dynamic panel model

where they estimate the effect of energy efficiency on aggregate energy consumption. Their

method allows obtaining both short-run and long-run rebound effects. Last, using time series

data (in monthly and quarterly frequency), Bruns et al. (2021) and Berner et al. (2022) utilize

Structural and Factor vector autoregressive models (SVAR & FAVAR), respectively, and pro-

vide evidence for high partial rebound effects for several European economies and the USA. In
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the same spirit, Jafari et al. (2022) utilize an SVAR model for studying the Iranian economy,

illustrating that the rebound effects are approximately 84%.

Our econometric approach is closely related to the method proposed by Orea et al. (2015),

where the authors proposed an energy demand stochastic frontier approach with an inefficiency

correction term, to allow non-proportional effects between the inefficiency component and the

dependent variable. The authors, restrict the magnitude of the rebound effect on the [0, 1)

interval allowing only partial rebound effects to be present. To accomplish identification, they

utilize the logistic function and express the rebound effects as a function of different covariates.

As explained above, even though our specification does not allow for time-varying rebound

effects, the major advantage of our approach is that it suggests a flexible way to identify all

sorts of rebound effects, such as negative and zero rebound effects. In addition, in contrast to

Adetutu et al. (2016), where the authors use an input distance function and measure the feasible

contraction of all production inputs, we utilize an energy input distance function, and our

estimated distance can be interpreted as the potential contraction of energy input conditional

on all other inputs. Moreover, our study seems to be one of the few empirical studies (Adetutu

et al. (2016) seems to be the only study to present country-level estimates) that present country-

level rebound effects using annual data.
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3.2 Economy-wide Rebound Effects

To begin with, in this section, we present a brief explanation and definition of the energy ef-

ficiency rebound effects. According to the energy economics literature, the rebound effect is

defined as the percentage of potential savings that were not achieved due to several macroeco-

nomic factors. A simple equation of the definition of the energy rebound effects is:

R =

[
1− Actual Savings

Potential Savings

]
× 100%

where Actual Savings is the observed energy consumption decrease during a specific period of

time, and Potential Savings are the savings that we would expect from an energy-efficient action

or investment that is implemented. For instance, if an agent implements an energy efficiency

investment which, from an engineering point of view, is expected to achieve 40% energy savings

and the observed savings were 30%, we say that the rebound effect is R = 1 − 0.3/0.4 = 0.25

or 25%.

Therefore, we define the economy-wide energy rebound effect using the standard definition

that appears in the literature (e.g. Saunders (2000), Orea et al. (2015), among others), as:

R = 1− ηf (3.1)

where ηf denotes the elasticity of energy consumption E with respect to energy efficiency

improvements. In the next table, we present all the different potential rebound effect outcomes

and the corresponding energy efficiency elasticities.

Table 3.1: Economy-wide Rebound Effect Scenarios

1 R > 1 Backfire ηf > 0

2 R = 1 Full Rebound ηf = 0

3 0 < R < 1 Partial Rebound −1 < ηf < 0

4 R = 0 Zero Rebound ηf = −1

5 R < 0 Super-Conservation ηf < −1

Hence to draw inferences regarding the macroeconomic rebound effects, the estimation of

the elasticity between energy efficiency and aggregate energy consumption, viz. ηf , is required.

In the next section, we present our identification strategy.
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3.3 Identification Strategy

3.3.1 Definition of Energy Efficiency

We consider a production process where each economy is using capital, labour and energy inputs

{K,L,E} ∈ R+, to produce output Y ∈ R+. This production technology can be written as:

T (t) = {(K,L,E, Y ) : K,L,E can produces Y at time t} , t = 1, 2, . . . , T (3.2)

In this paper, to identify the economy-wide energy efficiencies, we follow recent literature devel-

opments based on Boyd (2008), Stern (2012), Filippini and Hunt (2011, 2015), and Tajudeen

(2021), among others, and we define the economy-wide energy efficiency in a similar manner as:

EF =
Eopt

E
∈ (0, 1] (3.3)

where Eopt denotes the minimum/optimum energy consumption needed to produce the required

services and products in an economy, and E is the measured/actual energy consumption in the

economy. Therefore, from equation 3.3, we see that the level of energy efficiency indicates

the deviations of the observed energy consumption from the minimum feasible one. Specifically,

when an economy consumes higher energy units than the minimum energy required, viz. Eopt <

E, we can say that the economy is not fully energy efficient; there are energy wastes and, as a

result, the underlying energy efficiency will be EF < 1. On the other hand, when the economy

operates using the minimum feasible units of energy, viz. Eopt = E, the market is fully energy

efficiency (EF = 1) and there are no energy wastes.

That said, from the definition of energy efficiency in 3.3, it can be seen that the energy

efficiency estimation requires the knowledge of the latent minimum energy consumption. A

common way to address this issue is to parameterize the latent minimum energy use using a

parametric function of output and production inputs as:

h(Y,K,L)

E
= exp(−u) , u ≥ 0 (3.4)

where h(Y,K,L) usually takes the form of a Cobb-Douglas or any other flexible functional

form, and the term exp(−u) denotes the energy efficiency, which by definition should lie on

the interval (0, 1]. Hence, to model energy efficiency, we utilize stochastic frontier analysis as

an econometric tool to measure the energy inefficiencies or, in simpler words, to measure the

distance of the observed energy consumption from the “hypothetical” minimum feasible energy

use.

Applying the natural logarithm from both sides in equation 3.4, and re-arranging we have:

e = TL(y, k, l) + u (3.5)
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where e is the natural logarithm of E, TL(y, k, l) denotes a translog function of log-output

y, log-capital k and log-labour l and u ≥ 0 denotes the energy inefficiency. Equation 3.5 is

equivalent to an energy input distance function or energy demand stochastic frontier model as

utilized by Boyd (2008), Stern (2012), Filippini and Hunt (2011, 2015), Tajudeen (2021), among

others.

Having defined the above energy input distance function, the final form of our model is:

eit =βkkit + βllit +
1

2
βkkk

2
it +

1

2
βlll

2
it + βklkitlit (3.6)

+ βyyit +
1

2
βyyy

2
it + βykyitkit + βylyitlit + vit + uit

where uit denotes the energy inefficiency of country i at time t and vit is the usual two-sided

error term. The empirical model has a stochastic frontier econometric representation and can

be written more compactly as:

eit = z′
itβ + vit + uit (3.7)

where zit is a vector including all the variables io the right-hand side of equation 3.6, including

the ηi and ηt that are the country and time effects, respectively, vit ∼ N(0, σ2v) is the usual

two-sided error term and uit ≥ 0 is the non-negative inefficiency term. In this paper, we follow

Aigner et al. (1977) and assume that the inefficiency term follows uit ∼ N+(0, σ2u).

According to equation 3.7, the usual stochastic frontier specification suggests a model

with zero-rebound effects. In particular, the elasticity of aggregate energy demand with respect

to inefficiency is:
∂eit
∂uit

= 1 and R = 1− ∂eit
∂uit

= 0

which implies that energy efficiency improvements will have a proportional effect on aggregate

energy demand. Thus in this form, the identification of rebound effects is not possible, and

the model implies zero rebound effects. Therefore, to resolve the issue of the energy-rebound

identification, we proceed according to Orea et al. (2015), and we introduce a country specific

“correction factor” Ci = (1 − Ri), that interacts with the time-varying inefficiency uit. The

empirical model will have the form:

eit = z′
itβ + vit + Ciuit (3.8)

Thus, incorporating the above correction allows the model to identify all sorts of energy rebound

effects (values for Ri < 1), since the elasticity of energy inefficiency, is given by:

∂eit
∂uit

= Ci = 1−Ri

Here we need to highlight the fact, that under a frontier specification, the model will be well-

defined only for Ri < 1. It is obvious that for rebound effects with Ri ≥ 1, the model implies
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the inefficiency term to be uit ≤ 0, which is impossible in our framework. Thus, as Orea et al.

(2015) note, if there is a-prior belief for backfire effects, frontier-based methods can not be

appropriate tools for identification.

Consequently, the specification in 3.8, implies that the composed inefficiency ũit = Ciuit

follows a half-normal distribution with country-specific variance σ2ui. This follows from the first

and the second moments (mean and variance) of the half-normal distribution, where:

E(Ciuit) = CiE(uit) = σui

√
2√
π

V ar(Ciuit) = C2
i V ar(uit) = C2

i σ
2
u

(
1− 2

π

)
= σ2ui

(
1− 2

π

)
Hence, the energy input distance function with a country-specific energy rebound effect implies

a stochastic frontier specification with country-specific heteroscedasticity.

3.3.2 The Econometric Model

The reduced form econometric specification will have the form:

eit = z′
itβ + vit + ũit

vit ∼ N (0, σ2v) , ũit ∼ N+(0, σ2ui)

i = 1, 2, . . . , N , t = 1, 2, . . . , T

(3.9)

From the above model, we can see that the structural parameters to be estimated is the vector

θ = [β, σv, {σui}i=1,2,...,N ]′. Additionally, we assume that the pdf of the vector zit is independent

of the vit and uit and is not evolving any of the structural parameters θ. Hence, the joint density

function will be given by:

f(eit, ũit|zit,θ) ∝ fN (eit|z′
itβ + ũit, σ

2
v)fN (ũit|0, σ2ui)I(uit ≥ 0) (3.10)

for each i = 1, 2, . . . , N and t = 1, 2, . . . , T , where fN (.|A,B) denotes the pdf of the normal

distribution with mean A and variance B. However, the composed inefficiency term ũit is a

latent term, and as a result, to able to proceed with the model estimation, the inefficiency term

ũit has to be integrated out of the joint pdf in 3.10. Hence, the marginal density can be obtained

by the following integration:

f(eit|zit,θ) =
∫
ũit∈R+

fN (eit|z′
itβ + ũit, σ

2
v)fN (ũit|0, σ2ui)I(ũit ≥ 0)dũit (3.11)

The solution of the above integral has been presented in Aigner et al. (1977) and is available in

closed form:

f(eit|zit,θ) =
2

σi
ϕ

(
εit
σi

)
Φ

(
λi
σi
εit

)
(3.12)
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where εit = eit − z′
itβ, λi = σui/σv and σ2i = σ2v + σ2ui. Last, the likelihood function

L(e|Z,θ) =
N∏
i=1

T∏
t=1

f(eit|zit,θ) (3.13)

can be maximized with respect to the unknown structural parameters θ = [β, σv, {σui}i=1,2,...,N ]′.

However, as we can see from equations 3.10-3.11, the likelihood function L(e|Z,θ) is highly non-

linear on the parameters θ = [β, σv, {σui}i=1,2,...,N ]′, and the maximization of the log-likelihood

usually involves complex numerical estimation techniques.

For this reason, we proceed with Bayesian analysis (see Van den Broeck et al. (1994),

Fernandez et al. (1997)) using Markov Chain Monte Carlo methods where the latent inefficiencies

are considered as parameters to be estimated. This method is called data-augmentation and

has been initially introduced by Tanner and Wong (1987)1.

Following the Bayes rule, we have:

p(θ, ũ|e,Z) ∝ f(e|Z, ũ,θ)f(ũ|θ)π(θ) (3.14)

where p(θ, ũ|e,Z) is the posterior distribution of the unknown structural parameters θ and

the composed inefficiency vector ũ, f(e|Z, ũ,θ) is the likelihood function conditioning on the

unknown structural parameters θ and the latent inefficiency vector ũ, f(ũ|θ) denotes the half-

normal pdf of the latent composed inefficiency vector and π(θ) is the prior distribution of the

structural parameters. Before proceeding with the Bayesian estimation, one needs to define the

prior distributions of the parameters:

π(θ) ∝ π(β)π(σ2v)

n∏
i=1

π(σ2ui) (3.15)

For the parameter vector β we assume a non-informative flat prior as:

π(β) ∝ 1 (3.16)

For the variances of the error term and the inefficiency term, we use the Inverse-Gamma distri-

bution:

σ2v |a0, a1 ∼ IG(a0, a1) , σ2ui|q0, q1 ∼ IG(q0, q1) for i = 1, 2, . . . , n (3.17)

where a0, q0 and a1, q1 are the corresponding shape and scale parameters, respectively. The

choice of the Inverse-Gamma distribution is a standard approach in Bayesian econometrics

since it is the natural conjugate prior distribution for the variance of a normal distribution. For

the hyperparameters of σv we choose a0 = a1 = 10−2, and for all σui’s we set q0 = q1 = 10−2.

1Tsionas (2001) presents an excellent simulation study for the Bayesian stochastic frontier model with trun-

cated normal distribution.
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The choice of these hyperparameters is standard in bayesian analysis and produces the non-

informative Jeffrey’s priors.

Given the above prior distributions for the parameter vectorΘ = [β, σv, {σui}i=1,2,...,N , ũ]
′,

the joint augmented posterior distribution will have the form:

p(Θ|e,Z) ∝ (σ2v)
−NT

2 exp

{
−(e−Zβ − ũ)′(e−Zβ − ũ)

2σ2v

}
(3.18)

×
N∏
i=1

[
(σ2ui)

−T
2 exp

{
− ũi

′ũi

2σ2ui

}
I(ũit ≥ 0)

]
× (σ2v)

−a0−1exp

{
−a1
σ2v

}
×

N∏
i=1

[
(σ2ui)

−q0−1exp

{
− q1
σ2ui

}]
where the first line denotes the likelihood function, the second line illustrates the half-normal dis-

tributions of the inefficiency vector ũi and the third and fourth lines, depict the inverse-gamma

prior distribution of σv and σui’s. From the above, we are able to obtain the corresponding

conditional distributions for the unknown parameter vector Θ. More specifically, we have:

• Conditional distribution of β:

β|Θ−β ∼ N ((Z ′Z)−1(Z ′(e− ũ)), σ2v(Z
′Z)−1) (3.19)

• Conditional distribution of σ2v :

σ2v |Θ−σ2
v
∼ IG

(
NT

2
+ a0,

(e−Zβ − ũ)′(e−Zβ − ũ)

2
+ a1

)
(3.20)

• Conditional distribution of σ2ui for i = 1, 2, . . . , N :

σ2ui|Θ−σ2
ui

∼ IG
(
T

2
+ q0,

ũ′
iũi

2
+ q1

)
(3.21)

• Conditional distribution of latent inefficiency vector ũi for i = 1, 2, . . . , N :

ũi|Θ−ũi
∼ N+

(
σ2ui(ei −Ziβ)

σ2ui + σ2v
,
σ2vσ

2
ui

σ2ui + σ2v

)
(3.22)

Once the conditional distributions are known, we can proceed with posterior inference us-

ing different MCMC techniques, for instance, the Gibbs sampler algorithm. The Gibbs Sampler

helps us to obtain a sequence of posterior samples which enables us to approximate the marginal

posterior distribution of the corresponding unknown parameters. To obtain point estimates for

all the parameters, one can use the posterior average or the posterior median.
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3.3.3 The Rebound Effects

Once we obtain the estimates from the reduced form stochastic frontier model, we can proceed

with the identification of the unknown rebound effects Ri’s and the σu. To identify these

parameters of interest, we use the theoretical model conditions which follow from the mean and

the variance of the half-normal distribution, along with the information we obtained from the

reduced form stochastic frontier model regarding the composed inefficiency term ũit and the

country-specific σui’s.

The first set of moment conditions consists of the following N conditions:

(1−Ri)σu − σ̂ui = 0 for i = 1, 2, . . . , N (3.23)

Moreover, we utilise the first and the second moments of the half-normal distribution. Specifi-

cally, we have:

(1−Ri)σu

√
2√
π
− E(ˆ̃ui) = 0 for i = 1, 2, . . . , N (3.24)

and

(1−Ri)
2σ2u

(
1− 2

π

)
− V ar(ˆ̃ui) = 0 for i = 1, 2, . . . , N (3.25)

Therefore, we are able to elaborate the 3×N moment conditions in 3.23, 3.24 and 3.25 to identify

the N+1 unknown parameter vector Λ = [R1, R2, . . . , RN , σu]
′. Of course, one can include addi-

tional moment conditions by including the squared of the aforementioned moments, etc. To iden-

tify the parameter vector Λ that achieves the matching of the above moment conditions, one can

use standard econometric tools such as the Generalized Method of Moments (GMM) (Hansen

(1982)). Thus, in this step, the posterior estimates regarding the ˆ̃uit and σ̂ui, will be considered

as known and they will be treated as observed data, viz. F = [ˆ̃u1, ˆ̃u2, . . . , ˆ̃uN , {σ̂ui}i=1,2,...,N ]′.
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More compactly, the moment conditions g(Λ|F) can be written in a vector form as:

g(Λ|F) = E



(1−R1)σu − σ̂u1

(1−R2)σu − σ̂u2
...

(1−RN )σu − σ̂uN

(1−R1)σu
√
2√
π
− E(ˆ̃u1)

(1−R2)σu
√
2√
π
− E(ˆ̃u2)

...

(1−RN )σu
√
2√
π
− E(ˆ̃uN )

(1−R1)
2σ2u

(
1− 2

π

)
− V ar(ˆ̃u1)

(1−R2)
2σ2u

(
1− 2

π

)
− V ar(ˆ̃u2)

...

(1−RN )2σ2u
(
1− 2

π

)
− V ar(ˆ̃uN )



= 0 (3.26)

where g(Λ|F) corresponds to the moment vector. Here we should highlight that we can replace

the E(ˆ̃ui) and V ar(ˆ̃ui) for i = 1, 2, . . . , N , with their corresponding sample moments.

To estimate the unknown parameters, the GMM seeks to minimize the criterion below:

Q(Λ) = arg min g(Λ|F)′W g(Λ|F) (3.27)

where W is a (L × L) positive definite weighting matrix, with L = 3 × N is the number of

moment conditions. It is well known that the GMM estimator, under well-defined moment

conditions, is consistent and asymptotically normal.

For the first step, a common choice is to use the identity matrix (W = I) by giving

the same weights to all moment conditions. This is known as the 1-step GMM (GMM-1), and

we can obtain consistent estimates that are asymptotically normal. Despite its simplicity, it is

known that this estimator is not efficient. For this reason, given the estimates from the GMM-1,

we can proceed with the second stage (GMM-2), where the GMM minimizes the criterion in

3.27 using the Ŵ ∝ [g(Λ̂1|F)′g(Λ̂1|F)]−1, where Λ̂1 are the GMM-1 estimates. The intuition

behind the GMM-2 is that we update the weights according to the importance of each moment

condition. The GMM-2 is well known to be asymptotically more efficient than the GMM-1

estimator2.

2Similar estimators include the iterated (GMM-Iterated) and the continuous updating GMM (GMM-CUE).
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3.4 Empirical Study

3.4.1 Energy Efficiency estimates and the Rebound Effects

Here we implement the proposed econometric identification procedure in an empirical example

where we estimate the energy efficiency scores and the corresponding rebound effects for several

developed economies. We use a balanced panel of 20 OECD member states3 using data on

Output, Capital, Labour and Energy from 1980 to 2018. The choice for the number of countries

and the period is driven by data availability. In Table 3.2, we present descriptive statistics of

the variables used in our study.

Table 3.2: Descriptive Statistics of the variables

Variable Units Mean Std Source

Output GDP (in mil. 2017US$, PPP) 1622163 3031095 PWT 10.0

Capital Capital Stock (in min. 2017US$, PPP) 6918161 11462996 PWT 10.0

Labour Persons Engaged (in mil.) 19.60 30.37 PWT 10.0

Energy TEC (in quad Btu) 9.53 19.50 U.S. EIA

Industrial Production Index (2015=100) 85.63 23.59 OECD

Energy Prices Index (2015=100) 67.62 26.13 OCED Database

Trade Openness Exports + Imports (% of GDP) 0.79 0.45 PWT 10.0

TFP Solow Residual 1107.02 257.09 Own Calculation

FDI Weighted Index ∈ [0, 1] 0.62 0.20 IMF Database

Moreover, we control for a number of macroeconomic variables that could possibly explain

the aggregate energy demand and lessen problems arising from the omitted variable bias. In

particular, we include the Industrial Production Index, which can be used as a proxy for the

energy intensity of each economy, the Energy Prices, the Trade Openness, which captures the

energy demand embedded in trade activity, the Total Factor Productivity reflecting the tech-

nological progress in each economy and last, the Financial Development Index which developed

by the International Monetary Fund (IMF) and reflects the ability of domestic firms to have

access to credit and therefore financing investments. In addition, we control for common time

effects using time dummies. Moreover, to control for the unobserved heterogeneity across the

countries, we estimate the True-Fixed Effects (TFE) stochastic frontier model as presented by

Greene (2005a,b). As Greene reported, failing to control for country-specific effects will generate

biased energy efficiency estimates4.

3The countries included in our study are Australia, Austria, Belgium, Canada, Denmark, Finland, France,

Germany, Ireland, Italy, Japan, Netherlands, New Zealand, Norway, Portugal, Spain, Sweden, Switzerland, UK

and USA.

4The importance of accounting for the unobserved heterogeneity effects has been extensively elaborated in
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Table 3.3: Posterior Parameter Estimates

TFE-SFM

Post. Mean Post. Std

Frontier Parameters

ln(K) 0.1377 0.0282

ln(L) 0.7077 0.0644

0.5 ln(K)2 -0.1191 0.0720

0.5 ln(L)2 -0.5734 0.0724

ln(K) ln(L) 0.3654 0.0488

ln(Y ) 0.0365 0.0534

0.5 ln(Y )2 -0.1098 0.1094

ln(K) ln(Y ) -0.2609 0.0756

ln(L) ln(Y ) 0.3446 0.0699

Control Variables

ln(Price) 0.0001 0.0174

ln(Ind) 0.0769 0.0189

ln(TradeOP ) 0.0119 0.0189

ln(Fin) 0.1088 0.0133

Country Effects Yes

Time Dummies Yes

σv 0.0231 0.0016

Composed Inefficiency Term

Median 0.0460

Average 0.0743

Max 0.5034

Min 0.0052

Note: Posterior analysis has been performed using 30,000 iterations from which the first 10,000 draws have been

discarded to eliminate any initial values effect. In our model, we exclude the TFP variable since it creates collinearities

issues. In addition, we have estimated the model, including the TFP and excluding the time effects; and the results are

virtually the same.

In Table 3.3, we report the posterior parameter estimates and descriptive statistics of

the corresponding composed inefficiency term. From the TFE-SFM presented in Table 3.3, we

see that all the elasticities seem to have reasonable values. In particular, the average capital,

labour and income elasticity have positive values of 0.19, 0.51 and 0.16, respectively. Regarding

the elasticity of industrial production, the posterior average is 0.0769 (posterior std is 0.0189),

indicating that energy-intensive economies require higher energy use. On the other hand, we

find that trade openness does not play a crucial role in determining aggregate energy demand.

the stochastic frontier literature. Some recent studies that elaborate panel stochastic frontier models under fixed

effects consist of Wang and Ho (2010), Chen et al. (2014), Belotti and Ilardi (2018), Kutlu et al. (2019), among

others.
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Table 3.4: Energy Efficiency Rebound Effects estimates

Country Parameter GMM-1 GMM-2

Australia R̂1 0.5649 0.5407

Austria R̂2 0.4231 0.4002

Belgium R̂3 0.6632 0.6716

Canada R̂4 0.6930 0.7236

Denmark R̂5 -0.0301 -0.0445

Finland R̂6 0.7202 0.7878

France R̂7 0.7670 0.9241

Germany R̂8 -0.1975 -0.2005

Ireland R̂9 0.4647 0.4331

Italy R̂10 0.7504 0.8649

Japan R̂11 0.7426 0.8536

Netherlands R̂12 0.7375 0.8332

New Zealand R̂13 0.5088 0.4767

Norway R̂14 0.5737 0.5481

Portugal R̂15 0.5146 0.4743

Spain R̂16 0.6535 0.6541

Sweden R̂17 0.3066 0.2759

Switzerland R̂18 0.7311 0.8248

UK R̂19 -0.7867 -0.8099

USA R̂20 0.6077 0.5909

σ̂u 0.1802 0.1782

Note: The table reports the parameters estimates using the 1-stage GMM and the 2-stage GMM. We have used (6×N)

to identify N + 1 parameters. To minimize the GMM criterion, we have used the quasi-Newton algorithm. All

computations have been performed in the R programming language.

Interestingly, the energy prices seem not to affect aggregate energy demand, indicating that

the aggregate energy demand is inelastic in energy price shocks. Similar results have been

reported in various energy economics-related studies. Last, the estimated standard deviation

of the error term seems to be very low (the posterior average is 0.0231), indicating that the

proposed specification fits the data very well.

Next, we proceed with the estimation of the country-specific rebound effects and the

corresponding energy efficiency scores. To do that, we use the proposed moment conditions to

extract the relative information using the composed inefficiency term (ˆ̃uit) and the country-specif

σ̂ui’s obtained from the reduced form energy input stochastic distance function. In addition, we

increase our moment conditions by including the squared of proposed orthogonality conditions

(3×N additional moments). In Table 3.4, we present the parameter estimates using the GMM-1

and GMM-2 methods.

From the above estimates, we find that during the last 40 years, most developed countries
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exhibited partial rebound effects ranging approximately from 28% to 92%. This shows that

for 17 economies in our sample, part of the energy efficiency improvements has been offset by

economic activity. In practical terms, this can be explained by the fact that part of the energy

cost-effective improvements have been “re-invested” to support the high economic growth that

has been observed during the last decades. These results are in line with recent econometric

empirical findings, which highlight the fact that part of initial energy efficiency improvements

will vanish (e.g. Orea et al. (2015), Adetutu et al. (2016), Bruns et al. (2021), Berner et al.

(2022), among others).

Specifically, from Table 3.4, we see that the highest rebound effects are observed in France,

Italy, Japan, Netherlands, Switzerland, Finland and Canada, ranging from approximately 72%

to 92%. In the rest of the countries, we see modest rebound effects ranging from 40% to

67%. Moreover, Sweden seems to have the lowest partial rebound effect of 28%. On the other

hand, Denmark is the only country with a zero-rebound effect, suggesting that the economy

has managed to capitalize effectively on all the energy efficiency cost-effective actions that have

been implemented.

Interestingly, for Germany and the UK, the estimated rebound effect from the GMM-2

are -0.20 and -0.80, respectively, indicating that during the last decades, both economies ex-

hibited an energy “super-conservation” behaviour. In practical terms, this suggests that during

the last 40 years, both economies not only performed effective energy efficiency policies but

also substantially reduced their energy-intensive economic activities. However, here we need to

highlight that during the 1980s and 1990s, both economies underwent a series of significant eco-

nomic reforms. For instance, in the United Kingdom, the government implemented significant

economic reforms aiming at modernizing the economy and significantly increasing competition

and efficiency in the markets. Specifically, many state-owned firms were privatised, leading to

significantly higher financial performance and cost-effective actions (Cragg and Dyck (1999)).

Moreover, we believe that other reasons that contributed to the super-conservation effect are

behavioural changes related to environmental awareness, such as the increasing use of public

transportation and others.

Regarding Germany, we note that the rebound effect estimates can be affected due to

historical events that happened during the late 80s and early 90s, when West and East Germany

reunified, and consequently, we believe that part of the energy super-conservation effect should

be attributed to this period. Specifically, from the raw data, we can see a significant break

point of the aggregate energy use, where in 1990 the energy use was 16.80 BTU, and dropped

to 14.96 BTU in 1991, indicating a huge decline of approximately 11% in a single year.
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Figure 3.1: Energy Inefficiency density

For this reason, to assess the robustness of our analysis, in the next subsection, we present

some robustness exercises where we re-estimate the model and the rebound effects restricting

our sample period for the last decade of our sample (2008-2018). The reason why we picked

this time period is to match the time span with the study presented by Berner et al. (2022).

For the perid 2008-2018, our results indicate partial rebound effects for all economies, including

Germany and UK, indicating that the super-conservation effect is attributed to the arguments

explained above.

Next, once we have obtained the estimates of the rebound effects R̂i for i = 1, 2, . . . , N ,

we can derive the energy inefficiency scores by:

uit =
ũit

1− R̂i

for i = 1, 2, . . . , N

In Figure 3.1, we illustrate the energy inefficiency densities for the whole sample period and

the years 1980 and 2018, respectively. Overall, we see that the blue density line illustrating the

energy inefficiency during 2018 is shifted towards the zero inefficiency area, indicating a general

upward trend for most of the economies involved in this study. In particular, the average and

the median energy inefficiency for the year 2018 are both 0.169, respectively, suggesting that

despite the energy efficiency improvements that have been observed, there is still room for

further energy cost-effective savings. This is important in practice, especially during soaring

energy costs and when achieving energy savings seems paramount.

Furthermore, in Table 3.5, we report the estimated energy efficiencies for the years 1980

and 2018, and the corresponding percentage change throughout our study. Table 3.5 illustrates
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Table 3.5: Energy Efficiency Estimates by Country

Country 1980 2018 % Change Country 1980 2018 % Change

Australia 97.5% 75.6% -22.5% Japan 92.5% 90.2% -2.5%

Austria 59.8% 90.2% +50.8% Netherlands 69.8% 92.0% +31.7%

Belgium 77.9% 81.6% +4.7% New Zealand 93.3% 89.9% -3.6%

Canada 76.6% 70.5% -8.0% Norway 92.7% 79.8% -13.9%

Denmark 70.5% 98.2% +39.2% Portugal 93.9% 82.8% -11.8%

Finland 90.9% 79.0% -13.1% Spain 97.9% 77.9% -20.5%

France 76.4% 71.2% -6.8% Sweden 74.5% 97.1% +30.3%

Germany 72.1% 96.6% +33.9% Switzerland 70.1% 92.5% +31.9%

Ireland 72.0% 70.1% -2.7% UK 77.5% 98.9% +27.7%

Italy 55.0% 85.2% +54.9% USA 74.4% 76.7% +3.2%

Note: The table illustrates the posterior median of the estimated energy efficiencies. In addition, in Appendix A and

Figures 3.3 - 3.5, we illustrate the graphs of the intertemporal energy efficiency estimates.

that Austria, Denmark, Germany, Italy, Netherlands, Sweden, Switzerland, and the U.K. have

managed to increase their energy efficiency by more than 20%. In addition, Belgium and USA

seem to have improved their energy efficiency slightly, at a rate of 4.7% and 3.2%, respectively.

On the other hand, Australia, Canada, Finland, Norway, Portugal and Spain, although they

exhibited very high energy efficiency scores during the 80s, have not managed to maintain their

energy efficiency performance during the following decades, and, their energy efficiency level

has declined more than 10%. Last, Canada, France, Ireland, Japan and New Zealand exhibit a

slight decrease in their energy use performance ranging from -2.5% to -6.8%.

Next, we assess the relationship between economy-wide rebound effects and each country’s

overall energy efficiency intertemporal trend and address whether energy-efficiency policies can

be an effective long-run tool for achieving the green transition. In Figure 3.2, we present the

relationship between the efficiency change (%) and the rebound effects.

Overall, we can see that the energy rebound effects have a heterogeneous impact on en-

ergy efficiency improvements. From Figure 3.2, we can see that we can cluster the countries

into three groups. First, we see countries such as Austria, Belgium, Italy, Netherlands, Sweden,

Switzerland and the USA, although their economies exhibit large rebound effects, achieved in-

creased energy efficiency performance and benefit from cost-effective energy actions. Moreover,

as mentioned above, Denmark, Germany and UK comprise the second group, with high positive

energy efficiency change and super-conservation effect.

On the other hand, for the rest of the countries, viz. Australia, Canada, Finland, France,

Ireland, Japan, New Zealand, Norway, Spain and Portugal, we see high macroeconomic rebound

effects and declining intertemporal energy efficiency trends. One possible explanation is the fact

that increasing energy efficiency performance or maintaining energy efficiency at high levels is
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Figure 3.2: Efficiency Change and Rebound Effects (1980-2018)

costly (the third group of countries is characterized by high energy performance during the

initial period), and as a result, the promotion of high economic growth required to sacrifice part

of their energy performance. Moreover, for the majority of the period 1980 to 2018, energy prices

remained at low and affordable levels, with very short periods of exuberance, and therefore, the

boost of economic development using less energy-efficient technologies could be beneficial from

a cost-benefit analysis point of view.

3.4.2 Robustness Tests for the Rebound Effects

In this section, we present the estimated rebound effects for the period 2008-2018. Specifically,

we re-estimate the reduced form stochastic frontier model and re-estimate the rebound effects

using the proposed moment conditions.

Overall, we see that for this specific sub-period, all countries exhibit partial rebound effects

ranging from 27% to 70%. This result is consistent with most of the literature and re-confirms

the robustness of the proposed method. For Denmark, Germany and the UK, the estimated

rebound effects are 54%, 61% and 38%, respectively. This indicates that the zero-rebound effect

and the super-conservation effect obtained in the initial analysis using the whole sample (Table

3.6, column 1), are driven mainly by the general industrial and market transitions introduced

during the 80s and 90s. In addition, in line with the energy efficiency scores presented in Table

3.5, we observe that as energy efficiency improves, the economies are more willing to sacrifice

energy savings to boost their economic activity using energy-intensive products and services.
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Table 3.6: Rebound Estimates for the whole and restricted sample

Full Sample 2008-2018

Australia 54% 53%

Austria 40% 58%

Belgium 67% 45%

Canada 72% 36%

Denmark -4% 54%

Finland 79% 55%

France 92% 63%

Germany -20% 61%

Ireland 43% 42%

Italy 86% 63%

Japan 85% 57%

Netherlands 83% 70%

New Zealand 48% 58%

Norway 55% 36%

Portugal 47% 27%

Spain 65% 44%

Sweden 28% 55%

Switzerland 82% 35%

UK -81% 38%

USA 59% 62%

Moreover, our estimated magnitudes are lower but in line with the estimates obtained by

Berner et al. (2022), where the authors report economy-wide rebound effects of 78% to 101% for

France, Germany, Italy and the UK. We believe these differences should be mainly attributed

to the difference between annual panel data analysis and time series analysis using monthly or

quarterly data.

3.5 Conclusions and Policy Implications

This chapter provides a new method for estimating country-specific energy efficiency rebound

effects. The main advantage of our model is that it treats the country-specific rebound effects

as parameters to be estimated and does not impose any particular restriction regarding their

magnitude. In addition, the proposed specification is relatively easy to be implemented in any

standard statistical software.

Our empirical study reveals modest to considerable energy efficiency rebound effects for

most OECD economies. In particular, the partial rebound effects range approximately from

28% to 92%, which supports the argument that energy efficiency actions could have a limited

impact on achieving environmental objectives. Moreover, we provide evidence that the average
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energy efficiency for 2018 is approximately 84%, indicating that the OECD economies can

further reduce their energy use without disrupting their economic activity. In addition, we find

mixed evidence for the relationship between energy efficiency and the rebound effects.

In terms of current limitations and future extensions, we recognise that the assumption

of country-specific rebound effects could be restricted in practice. For this reason, it will be of

particular interest to allow the rebound effects to be time-varying and study the intertemporal

evolution throughout time. Moreover, we plan to extend our dataset and include developing

economies. This will enable us to conduct a comparative analysis regarding the energy efficiency

trends and the magnitude of the rebound effects.
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Appendix A

In this section, we illustrate the figures of the estimated energy efficiencies from 1980 to 2018.

Each point in time reflects the median of the posterior distribution.

Australia

Year

E
ne

rg
y 

E
ffi

ci
en

cy
 (

%
)

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Austria

Year

E
ne

rg
y 

E
ffi

ci
en

cy
 (

%
)

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Belgium

Year

E
ne

rg
y 

E
ffi

ci
en

cy
 (

%
)

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Canada

Year

E
ne

rg
y 

E
ffi

ci
en

cy
 (

%
)

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Denmark

Year

E
ne

rg
y 

E
ffi

ci
en

cy
 (

%
)

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Netherlands

Year

E
ne

rg
y 

E
ffi

ci
en

cy
 (

%
)

1980 1984 1988 1992 1996 2000 2004 2008 2012 2016

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Figure 3.3: Intertemporal Energy Efficiency (1980-2018)
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Figure 3.4: Intertemporal Energy Efficiency (1980-2018)
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Figure 3.5: Intertemporal Energy Efficiency (1980-2018)
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