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Abstract

Abstract

We present a new process for the verification of numerical programs with
tight functional specifications that feature exact arithmetic including selected
transcendental functions. The process, which simplifies, derives bounds, and
safely eliminates floating-point operations from Verification Conditions (VCs)
produced by Why3, is capable of automatically verifying such specifications
and is implemented in our new open source tool named PropaFP. We
evaluate PropaFP alongside the state-of-the-art in formal verification of
floating-point programs where we find that the process is able to verify
specifications that current tools are unable to verify.

We also present novel branch-and-prune contractions based on linear-
isations of conjunctions that consist of nonlinear real inequalities with
differentiable expressions. These linearisations and contractions are imple-
mented in our new open source numerical prover named LPPaver. The
contractions we have discovered are used to significantly improve the
‘pruning’ step of our branch-and-prune algorithm. We evaluate LPPaver
alongside state-of-the-art automated solvers for problems involving nonlinear
real arithmetic. LPPaver performs comparably and, in some cases, better
than these solvers.

Together, PropaFP and LPPaver yield the first fully automatically verified
implementations of the sine and square root functions with tight functional
specifications.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

In this thesis, we describe the theory underling two new tools, PropaFP and
LPPaver. PropaFP implements a novel process for automatic verification
of floating-point (FP) programs. LPPaver is an automated numerical prover
that implements novel contractors based on linearisations of nonlinear real
functions and is useful for automatic verification of FP programs when used
alongside PropaFP. In some cases, LPPaver is able to outperform other
state-of-the-art numerical provers. The outline of the thesis is given below.

• Chapter 1 - Introduction - Give some context for what the problem is
and outline contributions.

• Chapter 2 - Background - Describe preliminaries as well as state-
of-the-art FP software verification tools and automated provers for
nonlinear real arithmetic.

• Chapter 3 - LPPaver - Describe the algorithms in our new tool, LPPaver,
including the novel contractors that it implements.

• Chapter 4 - PropaFP - Describe our novel proving process for verif-
ication of FP programs. We also present several new benchmarks for
evaluating formal verification tools for FP programs.

• Chapter 5 - Evaluation - Evaluate PropaFP and LPPaver alongside
state-of-the-art formal verification tools and solvers.

J. A. Rasheed, PhD Thesis, Aston University 2022 1



CHAPTER 1. INTRODUCTION

• Chapter 6 - Conclusion - An overview of what we have contributed and
potential avenues for future work.

1.1 Context

1.1.1 Verification of FP Programs

When writing programs that require some sort of numerical computations,
FP numbers are commonly used. Most CPUs include a dedicated FP unit,
improving the speed of FP computations which makes the choice of using FP
numbers more attractive. However, an issue with FP arithmetic is rounding
errors: if some number cannot be represented in FP form, the number is
rounded to the nearest FP number. This causes unintuitive behaviour, for
example, in FP arithmetic, 0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1+0.1 ̸=
0.1 ∗ 10 = 1.

Rounding errors may propagate in further FP operations and this can
lead to catastrophic results, particularly with safety critical applications.
For example, on 25 February 1991, during the Gulf War, propagation of
rounding errors lead to a missile defence system incorrectly approximating
the trajectory of a missile. The defence system failed to stop the missile,
contributing to the death of 28 people [50]. Alternative numerical repre-
sentations, however, tend to be slower than FP operations (e.g. rational and
interval arithmetic). There is a need to ‘prove’ that a safety critical program
written with FP arithmetic will behave as expected.

Formal verification is a technique used to prove or disprove that a
program is correct with respect to some specification. This is done by
deriving a mathematical model of the program and then using ‘automated
solvers’ to attempt to prove/disprove said model. For example, consider a FP
approximation of the sine function named sinfp. A functional specification
can be given, specifying that sinfp is a sufficiently close approximation of
the exact sine function.

| sinfp(x)− sin(x)| ≤ 0.0001 (1.1)

J. A. Rasheed, PhD Thesis, Aston University 2022 2



CHAPTER 1. INTRODUCTION

If sinfp(x) is a single precision Taylor series approximation of the sine
function, current automated provers are not able to automatically verify the
specification shown in (1.1). This is due to the use of FP operations: provers
that support FP operations are typically not powerful enough to prove these
sorts of specifications and provers that would be able to prove a specification
like this tend to not support FP operations.

Proposal - New Proving Process for Specifications of FP Programs

We propose a new process for proving Verification Conditions (VCs) derived
from specifications of FP programs. The core idea behind the process
is to safely eliminate FP operations using overapproximations of rounding
errors. The processed VC, that now contain only exact operations, can then
be passed to more powerful automated solvers. The process we propose
is implemented in a new tool that we have named PropaFP. PropaFP is
available under the open source MPL licence. Both the process and the
tool are described in Chapter 4. The process itself is evaluated alongside
the state-of-the-art tool for automatic formal verification of FP programs in
Section 5.1.

1.1.2 Automated Solving

As mentioned above, automated solving can be used to prove or disprove
VCs. Automated approaches to numerical solving are more popular than
manual approaches due to the ease of use of automated solvers; one just
needs to understand how to call an automated solver on a VC whereas
for manual solvers, one would need to have the knowledge to write formal
proofs for complex mathematical propositions.

However, when evaluating PropaFP, we discovered that current auto-
mated solvers are either unable to, or take a significant amount of time to,
decide some of the more ‘difficult’ VCs (e.g., VCs that are true but become
false if some numbers within them change a little bit). This may be due to the
difficult VCs containing conjunctions consisting of nonlinear real inequalities

J. A. Rasheed, PhD Thesis, Aston University 2022 3



CHAPTER 1. INTRODUCTION

including uses of transcendental functions.

Proposal - Numerical Solving with Linearisations for Conjunctions of
Inequalities

To deal with this, we have developed a numerical prover that uses novel
ways to utilise linearisations of conjunctions of nonlinear inequalities. There
are linearisations available for both attempting to prove that the conjunction
holds or attempting to find a value for variables where the conjunction is
violated. The prover we have developed is named LPPaver and, with these
linearisations, LPPaver is able to verify the ‘difficult’ VCs mentioned earlier
faster than the other provers in our tests. LPPaver and the linearisations
are described in Chapter 3. LPPaver is evaluated alongside state-of-the-art
solvers for problems involving nonlinear real arithmetic in Section 5.2.

1.1.3 Overview of Contributions

A new proving process for formal verification of FP programs

We have introduced a proving process for FP arithmetic. The proving
process is able to simplify VCs, derive bounds for variables, and safely
eliminate FP operations using overapproximations of rounding errors from a
given VC. The process is described in Chapter 4. The process has been
evaluated and found to improve upon the state-of-the-art in formal verification
of FP programs. This evaluation is presented in Section 5.1.

A set of benchmarks for evaluating techniques for verification of FP
programs

When attempting to evaluate PropaFP, we discovered that there exists no
standard set of benchmarks that consist of VCs arising from functional
specifications of real-world FP programs, so we designed our own set of
benchmarks. This set consists of:

J. A. Rasheed, PhD Thesis, Aston University 2022 4
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• A functional specification of a single and double precision FP imple-
mentation of a Taylor series approximation of the sine function.

• A functional specification where the single-precision approximation of
the sine function is called twice.

• A functional specification of Heron’s method for approximating the
square-root function which includes loop invariants.

• A functionally specified FP implementation of the sine function written
by AdaCore for a high-integrity mathematics library. This implementa-
tion was modified to make it conducive for formal verification by
rewriting functions that make use of features unsupported by verif-
ication tools and by limiting the input domain to avoid loops.

• A set of incorrectly specified functions to evaluate the effectiveness
of a process at producing counter-examples that would be useful for
users.

The FP programs that produce these benchmarks are described in detail in
Chapter 4.

Two-Phase Exact Simplex Method Library in Haskell

The tools we describe in this thesis are implemented in Haskell. One of the
tools implements an algorithm that relies on the two-phase simplex method.
We could not find an existing Haskell library that implemented the two-phase
simplex method that fit our criteria: the library must be implemented using
exact arithmetic, the library must be open source, and the library must be
well tested or trusted.

Thus, we have written a new implementation of the two-phase simplex
method in Haskell [52] in exact rational arithmetic. The implementation
well documented, well tested, and is available under the open source and
permissive BSD 3-Clause licence. The implementation is integrated with
popular Haskell development tools, giving the Haskell community easy
access to an exact implementation of the two-phase simplex method.

J. A. Rasheed, PhD Thesis, Aston University 2022 5



CHAPTER 1. INTRODUCTION

New Uses of Linearisations in Branch-and-prune Methods for Proving
and Disproving Systems of Nonlinear Real Inequalities

We describe linearisations for deciding conjunctions of nonlinear real in-
equalities over some box. There are two linearisations.

A novel contractor has been implemented with a novel use of an opti-
misation algorithm. The box and a linearisation that weakens the conjunction
is used to build a system of linear real inequalities. This system is used as a
contractor to remove areas from the box where the conjunction is certain to
be false by optimising each variable in the system using our implementation
of the simplex method. If this contraction results in the new box being empty,
then the linearisation of the conjunction is false over the whole box and
since this linearisation is a weakening of the original conjunction, the original
conjunction must also be false.

The other linearisation strengthens the conjunction, which is used to find
a value for variables where the linearisation of the conjunction is certain
to be true. If the resulting system is feasible (which is determined using
our implementation of the simplex method), we have values for variables
where the linearisation is true, i.e., a model. Since the linearisation is
a strengthening of the conjunction, the model for the linearisation of the
conjunction is also a model for the original conjunction.

This is all implemented in a new numerical prover named LPPaver
[53]. LPPaver is written in Haskell and is available under the open source
MPL licence. LPPaver, the novel contractor, and these linearisations are
discussed in detail in Chapter 3 and evaluated in Section 5.2.

Formally Verified FP Implementations of the Sine and Square Root
Functions

With the use of LPPaver and PropaFP, we fully verified our set of benchmarks,
thus yielding the first automatically verified FP SPARK1 implementations of
the sine and square root functions with tight functional specifications, albeit

1A subset of the Ada programming language designed for Formal Verification.
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over a reduced domain.

Papers

PropaFP Content from a published paper regarding PropaFP [55] (along
with the extended preprint [57]) was used to write most of Chapter 4 as well
as part of Chapters 1, 2, 5, 6.

LPPaver A paper regarding LPPaver based mainly on content from Chapter
3 as well as some content from Chapters 5 and 6 is planned.
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Chapter 2

Background

We set notations and describe existing concepts which the rest of this thesis
builds on, as well as discuss relevant work. In Section 2.1, we describe
some preliminaries, particularly floating-point and interval arithmetic. In
Section 2.2, we present some interval variations of a selection of numerical
algorithms. In Section 2.3, we introduce constraint satisfaction problems
and a selection of methods to solve them. In Section 2.4, we introduce
Optimisation Problems and a method to solve them. In Section 2.5, we
describe systems of linear equalities and a selection of methods to solve
them. In Section 2.6, we introduce some Haskell syntax that is used in
later chapters. In Section 2.7, we introduce numerical constraint satisfaction
problems and a selection of methods to solve them. Finally, in Section 2.8
we discuss available techniques used for verifying floating-point programs.

2.1 Preliminaries

2.1.1 Floating-point Arithmetic

A floating-point (FP) number is a number represented with some fixed
number of significant digits, called a significand, multiplied with some fixed
base that has been scaled with some exponent. So, FP numbers have the
form:
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baseexponent × significand (2.1)

For example, the real number 1.2 can be represented in a base 10 FP
form as 12× 10−1. The set of all floating-point numbers is denoted F. For
programs that need to perform some non-integer operations, base 2 FP
numbers are commonly used as FP arithmetic is supported by hardware
and thus much faster than exact (rational) arithmetic and other types of
arithmetic used to approximate real arithmetic in computer programs such
as high-accuracy interval arithmetic.

The IEEE-754 Standard

The IEEE-754 Standard [40] is the widely established standard for FP
arithmetic. The standard defines multiple formats for representing FP
numbers with a base of 2 and differing precisions, i.e. the number of
bits used to represent a FP number. A higher precision results in more
accurate FP operations but at a (slight) cost to memory and speed and vice
versa. The two most commonly used formats defined in this standard are:

• Single precision - 32 bits are used to represent a FP number in a
binary format; 23 bits for the significand, 8 bits for the exponent, and 1
bit for the sign, i.e. whether the number is positive or negative.

• Double precision - 64 bits are used to represent a FP number in a
binary format; 52 bits for the significand, 11 bits for the exponent, and
1 bit for the sign.

So, an IEEE-754 FP number is represented as:

sign × 2exponent × significand (2.2)

For a single-precision IEEE-754 FP number, bits 1-23 represent the
significand. An "invisible" bit, i.e. one that is not actually stored is placed in
front of the significand with value 1.0. The most significant "visible" bit in the
significand has a value of 1/2, the next bit has a value of 1/4 and so on. Thus,
the value of the significand is 1.0 ≤ significand < 2.0.
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The standard defines some special values: positive infinity (+∞), nega-
tive infinity (−∞), negative zero (which is distinct from the ‘normal’ positive
zero), and NaN (not a number). The value of the exponent is the standard
integer value of the 8 bits used to represent the exponent subtracted by 127.
If all 8 bits of the exponent are set to 1 and the significand is not 0, we get
one of the special values ±∞ depending on the sign bit. If all 8 bits of the
exponent are set to 1 and the significand is 0, we get NaN.

Comparisons are mostly intuitive with a few exceptions: negative zero is
equal to positive zero, NaN is not equal to anything (including itself), and any
finite FP number is strictly greater than −∞ and strictly smaller than +∞.

Floating-point overflow occurs when one tries to represent a number that
requires more bits to represent than the format one is converting to. For
example, let maxFloat be equal to the largest single precision FP number. If
the result of an operation is larger than maxFloat , the result turns into +∞,
and if the result is smaller than −maxFloat , the result turns into −∞.

IEEE-754 Rounding

The IEEE-754 standard requires that basic FP operations are correctly
rounded. This means that if the result of a FP operation cannot be repre-
sented in the format required, the result is rounded to one of the nearest
FP numbers depending on the specified rounding mode. The IEEE-754
specifies the following rounding modes. The abbreviations below are not
standard but are commonly used.

• RNE - Round to the nearest FP number, with ties rounding to the
number that ends with even digit. This is most common.

• RNA - Round to the nearest FP number, with ties rounding away from
zero.

• RTP - Round towards +∞.

• RTN - Round towards −∞.

• RTZ - Round towards 0.
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Rounding Real Numbers

A real number can be rounded upwards or downwards to the nearest
(arbitrarily precise) FP number (denoted Fp).

↓ (·) : r ∈ R → max{f ∈ Fp | f ≤ r} (2.3)

↑ (·) : r ∈ R → min{f ∈ Fp | f ≥ r} (2.4)

Underflow and Subnormal Numbers

The smallest normalized IEEE-754 single precision FP number is 2−126,
which is the result of having a significand of 1 (by setting the visible bits of
the significand to 0) and an exponent of -126 (which occurs when the binary
representation of the exponent is 00000001). So, when converting a number
smaller than 2−126 to float, it will convert to either 0 or 2−126 depending on
the rounding-mode used. This situation is mirrored when the sign bit is set
to 1. Such a distinct jump between values is undesirable.

To reduce this abrupt underflow we can use subnormal numbers (also
known as denormalized numbers). If the bits used to represent the exponent
are all set to -126, special rules for subnormal numbers apply; the exponent
is set to 0 and the significand no longer has an invisible leading bit, meaning
the possible values for the significand are now 0.0 ≤ significand < 1.0. The
smallest non-zero value for the significand is 2−23 which is achieved by
setting only the least significant bit to 1. Subnormal numbers support a
‘gradual underflow’ from 2−126 to the smallest non-zero subnormal number
which is 2−126 × 2−23 = 2−149 before underflowing to 0.

2.1.2 Matrices

A matrix is a rectangular array where each element has some value. In this
thesis, we mainly discuss matrices where each element is a real number.
These elements are also known as the entries of a matrix. Below is an
example of a 3× 2 real number matrix.
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A =

[︄
1.2 50.2 2

1.2 50.2 2

]︄
(2.5)

The size of a matrix with m rows and n columns is mn, thus the size of
A is 2 · 3 = 6.

Basic Operations

Addition. The sum of two matrices with the same number of row and
columns is achieved by summing each entry in an entrywise order.[︄

1 2

3 4

]︄
+

[︄
10 20

30 40

]︄
=

[︄
1 + 10 2 + 20

3 + 30 4 + 40

]︄
=

[︄
11 22

33 44

]︄
(2.6)

Scalar multiplication. To multiply some matrix A with some scalar value
c, multiply each entry in A with c.[︄

1 2

3 4

]︄
· 2 =

[︄
1 · 2 2 · 2
3 · 2 4 · 2

]︄
=

[︄
2 4

6 8

]︄
(2.7)

Multiplication. Let A be a matrix with m rows and n columns. This matrix
may be multiplied by another matrix, B, with n columns and o rows. The
matrix AB is thus an m× o matrix, where each entry is the dot product (2.8)
of the corresponding row in A and column in B.

1 ≤ i ≤ m

1 ≤ j ≤ o

[AB]i,j = ai,1b1,j + ai,2b2,j + · · ·+ ai,nbn,j

(2.8)

[︄
1 2 3

4 5 6

]︄[︄
0 4 0

2 5 7

]︄
=

[︄
8 33

10 75

]︄
(2.9)

Row operations. In some matrix algorithms, one may add one row to
another, multiply a row with a non-zero constant, and swap two rows in a
matrix.
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Square matrix. A square matrix is an n × n matrix, that is a matrix with
an equal number of rows and columns.

Identity matrix. An identity matrix is a square matrix where all entries in
the main diagonal are 1 and all other entries are zero. For example:

I4 =

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (2.10)

Matrix inversion. A square matrix A is invertible if there exists a matrix B

such that AB = BA = In where In is an n× n identity matrix. B is known
as the inverse of A.

Transpose. The transpose of a matrix flips a matrix by reflecting the matrix
over its main diagonal. Transposing the resulting matrix again will give you
the original matrix. For example:[︄

1 2

3 4

]︄T
=

[︄
1 3

2 4

]︄
(2.11)

⎡⎢⎣1 2

3 4

5 6

⎤⎥⎦
T

=

[︄
1 3 5

2 4 6

]︄
(2.12)

Submatrix Say we have the following matrix:

A =

⎡⎢⎣1 2 3

4 5 6

7 8 9

⎤⎥⎦ (2.13)

A submatrix of A is constructed by removing any number of rows or
columns. For example, removing the 2nd column and the 2nd row of A gives
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us the following submatrix: [︄
1 3

7 9

]︄
(2.14)

Triangular matrices. Triangular matrices are special cases of square
matrices. A lower triangular matrix is a square matrix where all entries
above (not including) the main diagonal are zero. An upper triangular matrix
is a square matrix where all entries below the main diagonal are zero. A
strict upper/lower triangular matrix is an upper/lower triangular matrix where
all entries above/below and including the main diagonal are zero.

LU decomposition. A matrix A may be factorised into the product of some
lower triangular matrix L and an upper triangular matrix U . This is known as
LU Decomposition.

Row and Column Vectors

Matrices with one row or one column are known as row or column vectors
respectively. For example, in the following equations, x and y are row and
column vectors respectively.

x =
[︂
x1 x2 . . . xn

]︂
(2.15)

y =

⎡⎢⎢⎢⎢⎣
y1

y2
...
yn

⎤⎥⎥⎥⎥⎦ (2.16)
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Transpose. The transpose of a column vector is an equivalent row vector
and vice versa. For example, the transposes of x and y are:

xT =

⎡⎢⎢⎢⎢⎣
x1

x2
...
xn

⎤⎥⎥⎥⎥⎦ (2.17)

yT =
[︂
y1 y2 . . . yn

]︂
(2.18)

Mapping A ‘map’ is an entrywise application of a function, for example:

f : a → b

A =
[︂
a1 a2 a3 a4

]︂
map(f ,A) :=

[︂
f(a1) f(a2) f(a3) f(a4)

]︂ (2.19)

f : a → b

A =

⎡⎢⎢⎢⎢⎣
a1

a2

a3

a4

⎤⎥⎥⎥⎥⎦map(f ,A) :=

⎡⎢⎢⎢⎢⎣
f(a1)

f(a2)

f(a3)

f(a4)

⎤⎥⎥⎥⎥⎦
(2.20)

p-norm Let p ≥ 1 be a natural number. The p-norm of some vector
x = (x1, . . . , xn) is defined as follows:

∥x∥p :=

(︄
n∑︂

i=1

|xi|p
)︄1/p

(2.21)

The 1-norm and 2-norm are also called the taxicab norm and Euclidean
norm, respectively. As p approaches ∞, the p-norm approaches the infinity
norm, also known as the max norm.
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2.1.3 Intervals

Definition

Consider the set R of real numbers and the set IR of closed intervals
bounded by these numbers. Every closed interval X ∈ IR is denoted as
[a, b], where a ≤ b are real numbers. An interval X = [a, b] is the set of real
numbers {r ∈ R | a ≤ r ≤ b}.

Consider the set IR∗ of intervals with potentially unbounded endpoints.
Every interval X ∈ IR∗ has endpoints a and b. a can be either a real number
or −∞. b can be a real number such that a ≤ b or +∞. If a = −∞, the
left endpoint is open. If b = ∞, the right endpoint is open. Otherwise,
all endpoints are closed. Unless specified otherwise, all intervals in the
following are bounded and closed.

Upper and Lower Bounds of Intervals

The upper and lower bounds of intervals are the largest and smallest
numbers within the intervals respectively. These are also known as the
right and left endpoints of an interval. When the endpoints do not have
names, we can obtain them using the following notation:

· : X ∈ IR ↦→ max{x ∈ X} (2.22)

· : X ∈ IR ↦→ min{x ∈ X} (2.23)

Centre and Radius

The centre (midpoint) of some interval is average of the endpoints.

c(·) : X ∈ IR ↦→ X +X

2
(2.24)

The radius of an interval is the distance from the centre of an interval to
its endpoints.

r(·) : X ∈ IR ↦→ c(X)−X = X − c(X) (2.25)

J. A. Rasheed, PhD Thesis, Aston University 2022 16



CHAPTER 2. BACKGROUND

Widths and Boxes

The width(·) of an interval is the number X − X. An n-dimensional box
b : IRn where n ∈ N>0 is a vector consisting of the intervals X1 × · · · ×Xn.
The maxWidth(·) of some box b is the maximum of the width of each interval
in b. The taxicabWidth(·) of some box b is the sum of the width of each
interval in b.

Centre and Boxes

Let b : IRn be an n-dimensional box consisting of intervals. The centre of
the box is a new n-dimensional box of real numbers where each entry is the
centre of the respective interval, formally:

c(·) : IRn → Rn

c(b) := map(c,b)
(2.26)

where map(c,b) applies the function c on each interval component of the
box b.

Note that sometimes, we use a set of variables vars instead of n and, in
this case, denote by bv the component of b ∈ IRvars corresponding to the
variable v ∈ vars.

2.1.4 Interval Arithmetic

Interval arithmetic is an extension of real arithmetic made to work with
intervals. Given a binary operation ♢ ∈ {+,−, ∗, /}, some elementary
function ϕ : R → R, and intervals X,Y ∈ IR, the following definitions apply:

X♢Y := hull{x♢ y | (x, y) ∈ X × Y }

ϕ(X) := hull{ϕ(x) | x ∈ X}
(2.27)

The hull of some set of real numbers A ⊂ R is the smallest interval enclosing
A.

hull(A) :=[min(A),max(A)] (2.28)
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Generalising to n-dimensions, the hull of a closed bounded set A ⊂ Rn

is the smallest box enclosing A.

hull(A) :=
[︂
[l1, r1], . . . , [ln, rn]

]︂
(2.29)

where for each i = 1, . . . , n, we have li := minx∈Axi, ri := maxx∈Axi

Interval Extension of a Function and the Inclusion Property

Say we have a function f : Df ⊆ Rn → R. F is an interval extension of f as
long as the inclusion property (2.30) holds.

∀b ∈ IRn with b ⊆ Df

b ∈ dom(F ) ∧ (∀x ∈ b)(f(x) ∈ F (b))
(2.30)

Interval extensions of functions may be used to approximate the range of
a real function as the range of a real function with some domain is a subset
of the output of the interval extension of said function with the same domain
given as the (box) input. Therefore, range(f) ⊆ F (Df ). Note that F (Df ) is
often a bad approximation of range(f)

Intervals with FP Endpoints

It is common for an implementation of interval arithmetic to use FP endpoints,
for example: [↓ (a), ↑ (b)] where a ∈ R ≤ b ∈ R. The results of basic
operations are similarly rounded.

Operations on intervals are typically implemented using FP computations.
For example, interval addition is defined as:

∀x1, x2, y1, y2 ∈Fp

[x1, x2] + [y1, y2] =[↓ (x1 + y1), ↑ (x2 + y2)]
(2.31)

Note that the above is an interval extension of addition. For less basic
operations, the implementations often introduce further errors in addition to
the rounding errors, but still maintain the inclusion property.
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Implementations

There are many implementations of interval arithmetic. An implementation
of interval arithmetic is safe as long as the inclusion property (2.30) holds
for all of the implemented interval extensions. For details on various
implementations of interval arithmetic, see e.g. [48, 13, 38, 58]

2.1.5 Automatic Differentiation

Automatic differentiation (AD) is a set of techniques used to evaluate the
derivative of a differentiable function. AD works by applying the chain rule
to the operations performed by a differentiable function. AD avoids the
inefficiency of both symbolic and numerical differentiation: AD can efficiently
work with functions with many inputs and can evaluate higher derivatives.
Refer to [36] for more information on AD.

2.1.6 S-expressions

S-expressions (or symbolic expressions) is an expression represented using
a tree data structure. S-expressions were created for (and popularized) by
the Lisp programming language. S-expressions are classically defined as
one of the following (using standard lisp prefix notation):

1. an atom

2. (⋄ x y) where ⋄ is a binary operator.

1 + 2× 3 is equivalent to the s-expression (+ 1 (× 2 3)). Refer to [47] for
more information on S-expressions.

2.2 Interval Methods

2.2.1 Branch-and-prune

Say we have a box x ∈ IRn, some constraint C, and some termination
condition T : IR → B which takes a box and returns a Boolean value. T , for
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example, may be a function that returns true when x has a very small width.
A branch-and-prune algorithm is a standard algorithm that can be used to
approximate the set JCK := {x ∈ x | C(x)} with a tolerance depending on T

[35]. A generic branch-and-prune algorithm is shown in Algorithm 1. The
algorithm uses three variables holding sets of boxes: I, O, and L. I only
contains boxes that are guaranteed to be solutions, i.e. entirely in JCK. O
contains boxes, which should not be split according to T , that may or may
not be solutions. These are typically found around the boundary of JCK. In
other words, I and I ∪O are inner and outer approximations respectively of
a model that satisfies C. L stores boxes that need to be processed by the
algorithm and initially contains only x.

Algorithm 1 Generic branch-and-prune algorithm [35]
Input: (x : IRn, C : Rn → B, T : IRn → B)
Output: Set of boxes

1: I := ∅ # Set of boxes guaranteed to be solutions

2: O := ∅ # Set of boxes guaranteed to may be solutions

3: initialise L with x # Set of boxes that require processing

4: while L ̸= ∅ do
5: y := prune(pick(L), C) # Here, we pick (and remove) a box from L and prune it,

removing values that violate C

6: if y ̸= ∅ then
7: if y satisfies C then
8: add y to I
9: else if T (y) then # Check if we should stop splitting y

10: add y to O
11: else
12: split y and add to L # Split y into a union of smaller boxes; add to L

13: end if
14: end if
15: end while
16: return I ∪O

As shown in Algorithm 1, we loop on L while it is not empty. We pick
and remove a box from L and then contract/reduce it using some pruning
algorithm, i.e. an algorithm that removes values in the box that do not satisfy
the constraint C. The contracted box is assigned to y. If y is empty (i.e. the
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chosen box has reduced to ∅), the chosen box had no solutions that satisfy
C. If we are certain that y satisfies C, then we can add the box to I. If T
returns true for y, we cannot split any further and are have not determined
whether y satisfies or violates C, so we add y to O. Finally, we have the
case where T returns false for y and we are not certain that y satisfies C,
so we split y into a union of smaller boxes and add this union to L. These
steps are repeated until L is empty, and we return the union of the set of
guaranteed solutions (I) and the set of possible solutions (O), i.e. an outer
approximation of JCK.

2.2.2 Interval Constraint Checking

Given some constraint C, some box b, and some interval function F with
b ∈ dom(F ), interval evaluation can be used to test whether F (b) either
satisfies or contradicts C. To demonstrate this, say C ∼ f ▷◁ 0 where
▷◁∈ {≥,=,≤}. This is equivalent to f(x) ∈ A where A = [0, 0] for f(x) = 0,
A = [0, +∞] for f(x) ≥ 0, and A = [−∞, 0] for f(x) ≤ 0. Let F be an interval
extension of f . C is certainly satisfied on the whole box b if F (b) ⊆ A. C is
certainly contradicted on the whole box b if F (b) ∩A = ∅.

2.2.3 Newton’s Method

Newton’s method (2.32) is an iterative root-finding algorithm. Let f : R → R
be a differentiable function with one root. Starting from some initial guess
x0 ∈ R, Newton’s method can iteratively produce better approximations of
the root of f , eventually converging to the root. With a good initial guess,
the rate of convergence of this method is at least quadratic.

xk+1 = xk −
f(xk)

f ′(xk)
(2.32)

Intuitively, one would start at some guess x0 and draw the tangent of f
from the point f(x0). The root of this tangent line becomes x1. Repeat these
steps until one converges to an acceptable approximation of the root of f .
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Limitations

Newton’s method is proven to converge at (at least) a quadratic rate as long
as some assumptions are met. Without these assumptions, the method may
fail to converge.

Bad starting point. Newton’s method will eventually converge to the roots
as long as the initial guess is close enough to the root and the derivative of
the function at the initial guess is not zero. It is important to have a heuristic
that chooses a starting point for the Newton Method that increases the
likelihood of convergence.

Bad point. The method may reach a point where the derivative is zero.
We cannot continue from this point due to division by zero.

Infinite cycles. Some functions, combined with certain starting points,
may lead to infinite cycles. For example, consider the function f(x) =

x3 − 2x+ 2. With an initial guess of x0 := 0, Newton’s method gives x1 = 1,
x2 = 0, x3 = 1, and so on.

Discontinuous derivative. If the derivative of the function is discontinuous
around the root, the method will fail to converge (unless the initial guess is
the root).

These issues may be worked around in implementations of the method
by, for example, placing limits on the number of iterations, detecting diver-
gence and stopping further iterations, or reattempting the method with
another initial guess.

Interval Newton’s Method

Newton’s method can be combined with interval arithmetic [37]. This gives
us a more reliable stopping condition. Sometimes, the method may diverge
due to having too small of a precision for the FP numbers used to represent
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the intervals, though this can easily be resolved by using a higher-precision
FP type.

The interval newton method works on a square system of equations. We
first discuss the one dimensional case. The (non-interval) Newton method
is also often generalised to multiple dimensions.

One Dimension Let f : R → R be a differentiable function over the one-
dimensional box b with at least one root. Let F ′(·) be an interval extension
of the derivative of f . Assuming 0 /∈ F ′(b), the interval Newton method for
one dimensional cases is defined in (2.34).

b0 = b

bk+1 = c(bk)−
f(c(bk))

F ′(bk)
∩ bk

(2.33)

Arbitrary Dimension Say we have a function f : Rn → Rn, an n-dimen-
sional box b and JF which is the interval version of the Jacobian1 of F .
Assuming JF (bk) is invertible, the interval Newton method is defined in
(2.34).

b0 = b

bk+1 = c(bk)− JF (bk)
−1f(c(bk)) ∩ bk

(2.34)

Note that if bk becomes empty, then the method has determined that
there are no roots.

Alternatively, one may attempt to solve the following linear system2 which
avoids the need to invert JF :

b0 = b

JF (bk)(bk+1 − bk) = −F (bk) ∩ bk

(2.35)

The non-interval Newton method can also use a similar iterator.
1The Jacobian of a vector-valued function is a matrix of said function’s first-order partial

derivatives.
2Linear systems are discussed in Section 2.5
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2.3 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a problem where one has some
finite collection of constraints over some set of variables. These problems
are solved using constraint satisfaction techniques.

A solution for a CSP is an assignment of values to variables that do
not violate any constraint. A CSP may have more than one solution. A
single solution is called a feasible point. The set of all solutions is called the
feasible region. If a CSP has no solutions, it is infeasible.

2.3.1 SAT

A common form of a CSP is the Boolean satisfiability problem, commonly
called SAT. A SAT problem is a collection of Boolean formulas with some
Boolean variables. The SAT problem is satisfiable if there exists an assign-
ment of Boolean values to variables that result in the formula evaluating to
true. For example:

• a ∧ ¬b is satisfiable, the solution is a = true, b = false.

• a ∧ ¬a is unsatisfiable.

SAT Solvers

A SAT solver is a tool that attempts to decide SAT problems, telling us
whether the formula is ‘satisfiable’ (‘sat’) or ‘unsatisfiable’ (‘unsat’). SAT
solvers are also able to produce ‘models’ for satisfiable SAT formulas, that
is, assignments for variables that lead to a ‘sat’ result. SAT solvers often
translate formulas to CNF (Conjunctive Normal Form) before calling their
core solving algorithm.

Davis-Putnam-Logemann-Loveland (DPLL) Algorithm

The DPLL algorithm [22] is an algorithm commonly used to solve SAT
formulas in CNF (commonly called CNF-SAT).
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The DPLL algorithm is based on a ‘backtracking’ algorithm: an algorithm
that incrementally assigns values to variables, abandoning assignments as
soon as they are determined to violate the SAT problem by ‘backtracking’ to
a set of assignments that do not violate the problem. After each assignment,
the formula is simplified by removing disjunctions that become true and
removing variables from disjunctions that must consequently be false. Thus,
if the CNF becomes empty, the CNF is satisfiable. If a disjunction in the
CNF becomes empty, every variable in each disjunction was false, thus the
disjunction and the CNF are both false.

If the formula after the above simplifications is satisfiable, then the original
formula is also satisfiable. If the simplified formula is not satisfiable (but not
necessarily unsatisfiable), assign the opposite boolean value to the same
variable and repeat the checks. This assignment of opposite boolean values
is commonly referred to as the ‘splitting’ rule.

The DPLL algorithm builds on these two rules with the following:

Unit propagation. If a clause (disjunction) in the CNF contains only a
single variable, then that variable must be true, there is no choice to make.
Set the variable to true and propagate this assignment throughout the CNF,
simplifying clauses where appropriate. For example, if a CNF contains a
clause with only the variable a, a must be true. If the same CNF contains
clauses such as a ∨ b, they can be removed as they are trivially true. If the
CNF contains clauses such as ¬a ∨ c, these can be simplified to c (and thus
the unit propagation rule may be applied on this simplified clause).

Pure literal elimination. A variable is pure if it has an assignment that
causes all clauses containing the variable to become true. After this
assignment, we can remove clauses that become true. For example, a
is pure in (2.36); setting a to true causes both clauses containing a to
become true. Thus, with the pure literal elimination rule, set a to true and
remove the two clauses containing a (as they are now trivially true).

(a ∨ c) ∧ (b ∨ ¬c) ∧ (a ∨ b ∨ d) (2.36)
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Algorithm 2 DPLL Algorithm
Input: A set of clauses C in CNF and set of variable assignments A
Output: Satisfiability of C with a set of variable assignments.

# In the initial call to this algorithm, A is normally empty.

1: while there exists some unit clause l in C do
2: C := apply unit propagation rule on C with unit clause l
3: end while
4: while there exists a pure variable p in C do
5: C := apply pure literal elimination rule on C with pure variable p
6: end while
7: if C is empty then
8: return satisfiable with assignments A
9: else if C contains an empty clause then

10: return unsatisfiable with assignments A
11: else
12: v := choose some variable in C
13: return (DPLL(C where v is set to true, A ∪ {v = true}) ∨
14: DPLL(C where v is set to false, A ∪ {v = false})) # This recursive

call performs ‘backtracking’ and ‘splitting’.

15: end if

Conflict Driven Clause Learning (CDCL) Algorithm

The CDCL algorithm [45] is an alternative algorithm inspired by the DPLL
algorithm. The main benefit of the CDCL algorithm is its use of non-
chronological backtracking which reduces the search space. Let S be
a SAT formula in CNF. The algorithm can be summarised as follows:

1. Select a variable in S and give it an arbitrary boolean value. Remember
this assignment.

2. Apply the unit propagation rule after this assignment and build an
implication graph3.

3. If the assignment and propagation has led to a conflict, use the
implication graph to find a conflicting assignment of variables. Derive

3An implication graph keeps track of forced assignments due to the unit propagation rule
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a clause which is the negation of the conflicting assignments, add
the clause to S, then non-chronologically backtrack to the conflicting
variable that was assigned first.

4. If there is no conflict, continue again from step 1 until all variables are
assigned.

2.3.2 SMT

Satisfiability modulo theories [3] (SMT) are a generalization of the Boolean
satisfiability problem (SAT). SMT extend SAT formulas and allows one to
express more complex problems involving real numbers, data structures,
and so on. Typically, SMT can be used to check the satisfiability of some
quantifier-free formula which is defined with some decidable theory, e.g.
linear arithmetic, the theory of real closed fields with quantifier eliminations,
etc..

The SMT-LIB standard [2] is an international effort that provides a
common input language and interfaces for SMT solvers. SMT-LIB also
provides an extensive set of benchmarks.

SMT Solvers

SMT solvers are tools used to decide SMT problems. SMT solvers are
typically used to aid program verification4 and are often the main tool used
to make decisions in verification frameworks. Typically, SMT solvers are
integrated in a black-box manner with verification frameworks either via files
or with some solver-specific API.

One method of solving SMT formulas is to translate them into SAT
formulas. For example, an 8-bit integer variable could be translated to 8
variables in a SAT formula, with each variable representing a single bit.
Basic operations such as plus and minus could be translated into lower
level bit-wise operations. This gives us the benefit of using existing SAT
solvers, however translating the formula to SAT causes a loss of semantics,

4Verification is discussed in detail in Section 2.8.
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meaning that the SAT solver has to work ‘harder’, even for ‘easy’ problems.
For example, the commutative property for integer addition may be lost when
translating formula such as 1 + 2 = 2 + 1 to SAT.

DPLL(T) DPLL(T) [30] is an extension of the DPLL algorithm (see Algo-
rithm 2) that allows reasoning on some arbitrary theory T. The algorithm
works by transforming some SMT formula in CNF that includes theory T to
a SAT formula and running the DPLL algorithm on the SAT formula. If the
DPLL algorithm says the SAT formula is unsatisfiable, then the original SMT
formula is also unsatisfiable. If the algorithm returns a satisfiable formula,
translate the assigned variables back to their original form and check if there
is a contradiction when using theory T. If this assignment is also satisfiable
with T (denoted T-satisfiable), the original SMT formula is also satisfiable. If
there is a contradiction, add the (transformed) contradiction to the SAT CNF
clauses and repeat the algorithm.

2.3.3 Linear Programming

Another type of CSPs involve constraints over variables with nonlinear real
inequalities. For example:

3x+ 2y ≤ 15

x+ 2y ≤ 7

y ≤ 4

−x+ 2y ≤ 6

(2.37)

(2.37) is a system of linear inequalities. These systems can be solved
using techniques used in Linear Programming, also known as Linear Optimi-
sation. For example, phase I of the two-phase simplex algorithm [18] can
find a feasible point for systems of non-strict real linear inequalities.

2.3.4 Interval Constraint Propagation

For CSPs involving a set of real, potentially nonlinear, constraints over real
variables, interval constraint propagation (ICP) [21] may be used to contract
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Algorithm 3 Basic DPLL(T) Algorithm. A real world implementation would
also return a model for satisfiable results.
Input: An SMT formula S in CNF which uses theory T and a set of clauses

C
Output: Satisfiability of S

1: (F , M ) := Translate S to a SAT formula F , keep a map M of variables
created during this translation.

2: result R and assignments A := DPLL(F , C)
3: if R is unsatisfiable then
4: return S is unsatisfiable
5: else
6: Ao := Translate variables in A back to their original form using M
7: if Ao is satisfiable using theory T then
8: return M is T-satisfiable # A model would also be returned here.

9: else
10: Ab := Minimum conjunction of assignments in Ao that leads to a

contradiction. # E.g. If Ao = {x > 0, y > 0, x < 0}, Ab = x > 0 ∧ x < 0

11: Am := Translate Ab into SAT form using M
12: Add to C the clause/disjunction arising from the negation of Am

13: return DPLL(T)(S, C)
14: end if
15: end if
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the domains of the variables, removing values from the domain without
removing any value that satisfies the set of constraints. Intuitively, ICP is
used to contract the domains of variables so that they contain all values that
satisfy the CSP. This helps interval CSP solving algorithms as the search
space is (sometimes greatly) reduced.

Rules

Atomic contractors. An atomic contractor is able to reduce domains
when they come across a supported constraint. The contractor will reduce
the domain of each variable without removing any value that satisfies the
constraint. Contractors can be written for many functions and types of
constraints. For example, a very simple contractor can be written for
constraints of the form y = sin(x); it is clear here that the only values
for y that satisfy this constraint must be in the interval [−1, 1]. Consider the
following equation:

x = y + z (2.38)

The domain of each variable may be contracted using the domains of the
other variables as shown in (2.39). In essence, these are atomic contractors
for addition and subtraction.

dom(x) := dom(x) ∩ (dom(y) + dom(z))

dom(y) := dom(y) ∩ (dom(x)− dom(z))

dom(z) := dom(z) ∩ (dom(x)− dom(y))

(2.39)

Thus, if x := [0,∞], y := [3, 5], and z := [2, 10], we may use the
contractors in (2.39) to contract the domains as shown in (2.40). The
atomic contractor shown in (2.39) reduces the domain of x to [5, 15].
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x = y + z =⇒ x ∈[0,∞] ∩ ([3, 5] + [2, 10]) =

[0,∞] ∩ [5, 15] = [5, 15]

y = x− z =⇒ y ∈[3, 5] ∩ ([5, 15]− [2, 10]) =

[3, 5] ∩ [−5, 13] = [3, 5]

z = x− y =⇒ z ∈[2, 10] ∩ ([5, 15]− [3, 5]) =

[2, 10] ∩ [0, 12] = [2, 10]

(2.40)

Decomposition. If an atomic contractor cannot be applied to a constraint,
one can attempt to ‘decompose’ the constraint by replacing terms with
variables until we have a constraint for which an atomic contractor exists.
For example,

√
x+ sin(xy) ≥ 0 can be decomposed as shown in (2.41).

a = xy

b = sin(a)

c = sqrt(x)

d = c+ b

(2.41)

After this decomposition, we can propagate constraints over the new
variables using atomic contractors.

a ∈ [−∞,∞]

b ∈ [−1, 1]

c ∈ [0,∞]

d ∈ [−1,∞]

(2.42)

Propagation. These rules may be repeatedly applied until no more con-
traction can occur. ICP will enclose all feasible values for each variable in
an interval CSP.

Use in branch-and-prune

ICP may be used as part of a branch-and-prune algorithm as the ‘pruning’
function. ICP can be used to remove values in a box that are guaranteed to
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not be in the solution set. When no further ‘pruning’ can occur, branch on
the ‘pruned’ interval and repeat these steps until either a solution is found
or the termination condition is met. If the ‘pruning’ results in an empty box,
then the CSP was unsatisfiable.

2.4 Optimisation Problem

An optimisation problem is the problem of finding the "best" or optimal
solution with respect to some constraints. Say we have some function
f : A → R where A is an arbitrary set, an optimisation problem is finding
some input for f that minimises or maximises the output. More formally:

• If the objective is to minimise f , find some value x0 ∈ A such that
∀x ∈ A.f(x0) ≤ f(x)

• If the objective is to maximise f , find some value x0 ∈ A such that
∀x ∈ A.f(x0) ≥ f(x)

Since f(x0) ≥ f(x) ⇐⇒ −f(x0) ≤ −f(x), it is sufficient for an algorithm
to only be able to minimise (or maximise) optimisation problems.

2.4.1 Linear Programming

Linear Programming techniques may also be used to solve optimisation
problems. The canonical form of a linear program is:

maximise(cTx)

Ax ≤ b

x ≥ 0

(2.43)

where x is a vector whose components are variables whose values are
to be determined, c and b are given vectors of real numbers5, and A is a
given matrix of real numbers. The function to be optimised (maximised or

5Recall that cT is the transpose of c.
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minimised) is called the objective function which, in this case, is cTx. The
two inequalities in (2.43) restrict possible values for the components of x.

Therefore, if one can express an optimisation problem in the form shown
in (2.43), one is able to use established linear programming techniques to
optimise the problem.

Simplex Method

The simplex method [18], also known as the simplex algorithm, is a popular
Linear Programming algorithm. The method has two phases. In Phase I,
one finds a feasible point for a set of constraints in the form shown in (2.43).
The objective function is not required for the first phase. In Phase II, one
starts with a feasible point, and optimises it according to some objective
function. Thus, Phase I is a CSP solver, and Phase II is an optimisation
algorithm.

An Example Using Phase I of the simplex method, we can find a feasible
point for (2.37) (Note that the simplex method assumes that all variables
are non-negative). Phase I gives us a feasible point where x = y = 0. For
Phase II, let the objective function be maximise(3x+ 5y). Phase II gives a
value of 29 for the objective function, with x = 3 and y = 4. If we minimise
instead of maximise here, Phase II gives a value of 0 for the objective with
x = y = 0.

2.5 Solving Systems of Linear Equations

A system of linear equations, also called a linear system, is a collection of
one or more linear equalities that involve the same variable. The following is
an example of a linear system:

3x+ 2y + z = 10

−2x+ z = 5

y/2 + z = 14/5

(2.44)

J. A. Rasheed, PhD Thesis, Aston University 2022 33



CHAPTER 2. BACKGROUND

A linear system may have a ’solution’; assigning values to variables that
satisfy all equalities. For example, the assignments x = −23/5, y = 14, and
z = −21/5 is valid for all equations in 2.44.

A linear system may have infinitely many solutions, a unique solution,
or no solutions. The set of all possible solutions is called the solution set.
If a solution exists for some linear system, the system is feasible. A linear
system with no solutions is infeasible.

2.5.1 General Forms

Let m,n ∈ N>0, and say we have m equations with n variables. This is
written generally as:

c11x1 + c12x2 + · · ·+ c1nxn+ b1 = 0

c21x1 + c22x2 + · · ·+ c2nxn+ b2 = 0

...

cm1x1 + cm2x2 + · · ·+ cmnxn+ bm = 0

(2.45)

In (2.45), c11, c12, . . . , cmn are coefficients of the system. b1, b2, . . . , bm

are constants. Both the coefficients and constants are real numbers. At
least one of the coefficients must be non-zero.

2.5.2 Vector Equation

A linear system may also be written as a vector equation:

x1

⎡⎢⎢⎢⎢⎣
c11

c21
...

cm1

⎤⎥⎥⎥⎥⎦+ x2

⎡⎢⎢⎢⎢⎣
c12

c22
...

cm2

⎤⎥⎥⎥⎥⎦+ · · ·+ xn

⎡⎢⎢⎢⎢⎣
c1n

c2n
...

cmn

⎤⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎣
b1

b2
...
bm

⎤⎥⎥⎥⎥⎦ (2.46)
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2.5.3 Matrix Equation

(2.46) is equivalent to the equation Ax = b where A is an m× n matrix and
both x and b are column vectors, as follows:

A =

⎡⎢⎢⎢⎢⎣
c11 c12 . . . c1n

c21 c22 . . . c2n
...

...
. . .

...
cm1 cm2 . . . cmn

⎤⎥⎥⎥⎥⎦x =

⎡⎢⎢⎢⎢⎣
x1

x2
...
xn

⎤⎥⎥⎥⎥⎦b =

⎡⎢⎢⎢⎢⎣
b1

b2
...
bm

⎤⎥⎥⎥⎥⎦ (2.47)

2.5.4 Gauss-Seidel Method

Let n ∈ N>0. The Gauss-Seidel method is an iterative method that can be
used to solve a square linear system6 of n equations. The Gauss-Seidel
method may be used to solve square systems of linear equations arising
from a variant of the Newton method that avoids inverting the Jacobian
matrix (i.e. the non-interval version of (2.35)).

Let x and b be column vectors with n entries. So A, x, and b have the
form shown in (2.47) where n = m.

We consider a square linear system: Ax = b. The Gauss-Seidel method
is defined recursively:

Lk+1 = b−U∗x
k. (2.48)

L and U∗ are lower triangular and strictly upper triangular matrices
6A square linear system is one where the matrix, denoted as A in (2.47), is square.
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derived from A, thus:

A = L+U∗

L =

⎡⎢⎢⎢⎢⎣
c11 0 . . . 0

c21 c22 . . . 0
...

...
. . .

...
cn1 cn2 . . . cnn

⎤⎥⎥⎥⎥⎦

U∗ =

⎡⎢⎢⎢⎢⎣
0 c12 . . . c1n

0 0 . . . c2n
...

...
. . .

...
0 0 . . . 0

⎤⎥⎥⎥⎥⎦
Using these definitions, we can rewrite the linear system:

Ax = b

Lx+U∗x = b

Lx = b−U∗x.

The method now solves for x on the left-hand side using the previous
value for x on the right-hand side:

xk+1 =
b−U∗x

L
.

Matrix equations of the form LUx = b where L and U are lower and
upper triangular matrices, respectively, and x and b are column vectors can
be solved using an iterative process called forward substitution. Thus, we
can compute each element of xk+1 as follows:

xk+1
i =

bi −
∑︁i−1

j=1 cijx
k+1
j −

∑︁n
j=1+1 cijx

k
j

cii
. (2.49)
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2.6 Haskell Basics

In Chapter 3, we describe some concepts using Haskell syntax. The syntax
used is quite intuitive, but to help readers unfamiliar with Haskell, we briefly
introduce them here.

In listing 2.6, we use the data keyword to define a custom data type Tree.
Tree has two constructors, Leaf which constructs a one-node tree holding
the given integer value, and Branch which takes two Trees as parameters
and returns another Tree. One may use this data type to construct a binary
tree that stores integers.

data Tree = Leaf Integer | Branch Tree Tree

Listing 2.6 shows the syntax used to define lists or arrays. Here, x is a
list that has three entries. y is a list of lists that contains two ‘inner’ lists.

x = [1, 2, 3]
y = [[1, 2], [3]]

2.7 Solving Numerical CSPs

When proving problems made up of numerical constraints, it is common for
a prover to make use of symbolical or numerical techniques. For example,
consider the following trivial equation:

1 + 2 + 3 = 3 + 2 + 1 (2.50)

A prover using symbolical techniques would most likely have a rule
regarding the commutative property of addition and easily deduce that 2.50
is true. A prover using numerical techniques would evaluate the program and
understand that both 1 + 2 + 3 and 3 + 2 + 1 are equal to 6, trivially verifying
the example with 6 = 6. Note that some provers employ both numerical and
symbolical techniques.

Numerical CSPs may consist of (quantifier-free) nonlinear real arithmetic.
These problems can be difficult to solve, though various automated solvers
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exist, including SMT solvers. We now discuss various commonly used
provers for nonlinear real arithmetic.

2.7.1 MetiTarski

MetiTarski [1] is an automated theorem prover that supports the theory of
real closed fields. It is designed to prove universally quantified inequalities
involving nonlinear real functions. MetiTarski supports using the Z3 [49]
SMT solver as a backend solver which implements the DPLL(T) algorithms
alongside simplex-based linear arithmetic solving techniques.

2.7.2 dReal

dReal [32] is an automated SMT solver for nonlinear real formulas. dReal
supports nonlinear arithmetic and transcendental functions. Floating-point
numbers can be used as constants.

Formulas containing nonlinear real functions and trigonometric are
typically difficult to solve and are, in general, undecidable. dReal implements
a δ-complete decision procedure [31] which aims to ease the solving of
nonlinear real formulas. For some positive δ ∈ Q, a decision procedure is
δ-complete for some SMT formula φ ∈ S where S is the set of SMT formulas
if the procedure returns either:

• ‘unsat’ which means φ is unsatisfiable

• ‘’δ-sat’ which means φδ is satisfiable.

Where φδ is essentially a weakening of φ by numerically relaxing all
equalities and inequalities in the formula by δ. For example, if φ ∼ sin(0) = 0,
then φδ ∼ | sin(0)| ≤ δ.

dReal uses both numerical (RealPaver) and symbolical (OpenSMT)
methods in its decision algorithm.
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OpenSMT

OpenSMT [12] is an open-source incremental SMT Solver that implements
the DPLL(T) algorithm. dReal uses OpenSMT to combine symbolical
methods with numerical methods by using DPLL(T) with ICP, thus dReal
implements DPLL(ICP).

RealPaver

RealPaver [35] is a tool used to model and solve nonlinear real systems
using interval methods. Systems are expressed as sets of equations or
inequalities with integer or real variables, i.e. a CSP with nonlinear real and
integer arithmetic. dReal uses RealPaver as an ICP solver in it’s DPLL(ICP)
algorithm.

Solving techniques. RealPaver implements a branch-and-prune algo-
rithm and combines several techniques in its pruning step. Constraint
satisfaction techniques and ICP are used to reduce domains of variables
by removing values in the domain that violate the constraints. If the CSP
contains a square system of equations, a variant of the interval Newton
method is used to attempt to solve the system or show that it has no solution
on the current box.

Branch-and-prune with ICP. RealPaver combines a branch-and-prune
algorithm with ICP techniques. ICP is used to reduce the domains of
variables where possible by using constraints given by the system of interest.
If ICP cannot be (further) applied on a constraint, RealPaver will branch
by splitting on a single variable. RealPaver will then use interval tests to
eliminate subdomains where every value violates the constraint. The result
of this procedure is a union of the non-eliminated subdomains. This union
contains possible solutions for the constraint.
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Reduction with an interval Newton method. The pruning method above
is combined with a reduction method using a variant of the interval Newton
method to process square systems of equations such as f(x) = 0. Real-
Paver uses the interval Newton method to construct a linearisation of the
square system. The resulting linear system is then solved sequentially using
an interval extension of the Gauss-Seidel method. For more details, refer to
[35].

Strategies. We now discuss the branch-and-prune algorithm used in
RealPaver and how RealPaver applies the rules we’ve discussed.

• In it’s branch-and-prune algorithm, RealPaver processes boxes in a
last-in-first-out manner.

• A box is split by choosing and subdividing one domain. RealPaver
has two strategies to pick the domain to subdivide; ‘largest first’, i.e.
choosing the dimension with the largest domain and ‘round robin’,
choosing dimensions in a fixed order. By default, ‘round robin’ is used.

• If a constraint contains one variable that occurs once, perform ICP.

• If a constraint contains variables which occur more than once, perform
the branch-and-prune algorithm.

• If a square system of equation is encountered, perform the described
variant of the interval Newton method.

Processing Systems of Linear Inequalities. The authors of RealPaver
[35] suggest that systems of inequality constraints can be processed by the
simplex method by replacing each nonlinear term with a variable lying in
its interval evaluation and using the simplex method to derive an enclosure
of the solution set. This is not implemented in RealPaver but has been
implemented in LPPaver. Refer to Chapter 3 for more details.
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2.7.3 ksmt

ksmt [10] is an automated SMT solver that is able to solve existentially
quantified nonlinear constraints in CNF over real numbers, including con-
straints involving polynomials and certain transcendental functions. ksmt
combines symbolical and numerical methods, more specifically combining
reliable real computations and resolutions with a CDCL-style algorithm.

ksmt transforms a CNF C into equisatisfiable separated linear form
L ∧ N where L is a set of clauses containing only linear terms such as
c1x1 + · · · + cnxn + c0♢0 where ci ∈ Q and N is a set of unit clauses
containing only nonlinear literals of the form x♢f(t) where f is a nonlinear
function, and ♢ ∈ {≤, <,>,≥}.

The Algorithm

ksmt attempts to find assignments for a chosen variable that keeps L conflict-
free. ksmt keeps a list of these assignments. If an assignment causes a
conflict in N , the assignments that caused the conflict is linearised and this
linearisation is added to L. ksmt then derives clauses to add to L to resolve
the conflict and ‘backjumps’ to the maximal prefix of the list of assignments
that avoids the conflict. ksmt will also do this ‘resolution’ and ‘backjumping’
if a variable cannot be assigned in a way that keeps L conflict-free. These
rules repeat until ksmt can determine the satisfiability of L∧N . Refer to [10,
11], for more details on ksmt, particularly the algorithm and its linearisations.

2.7.4 Colibri

Colibri [46] is an automated SMT solver that uses constraint programming
techniques and specialises in the verification of quantifier-free FP SMT-
LIB problems. Colibri uses Constraint Programming (CP) and Propagation
techniques including linearisations and the simplex method.
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Novelties

Colibri uses CP to attribute several domain representations (i.e. integer
intervals, FP intervals, known bits) to variables. This representation of the
domain is an over approximation of the set of values that the variable can
take.

Difference logic [26], a form of domain propagation for difference con-
straints7, is used to associate relational attributes to variables by recording
an FP ‘tailor-made distance’ between variables. With the monotonicity
property of FP rounding, one can propagate information from one edge of
the difference logic global constraints to another

Colibri transforms relations between FP operations into relations on
linear rational formulas using relaxations and linearisations. Each operation
with (FP) finite arguments is linearised by adding a constraint that bounds
the relative error between the FP operation and an analogous operation on
reals using the (current) domain of the arguments. The resulting system is
solved using the simplex method.

Colibri understands the bit-vector (BV) domain8, allowing type casts
between FP, BV, and Real.

Colibri does not perform bit-blasting9 on FP variables, allowing the high-
level structure of the problem to be preserved. Thus, Colibri can intertwine
constraint propagation with simplifications and factorisations that rely on the
preserved high-level properties of FP arithmetic. Most SMT solvers cannot
do this after a preprocessing step as they typically perform bit-blasting and
thus lose this high-level information.

For more information on Colibri, refer to [46]. For more information on
linearisations of FP operations, refer to [5].

7Difference constraints are constraints of the form x− y ≤ d.
8A data structure that holds only bits. Can be used to store the bit value of some FP

number, for example.
9A popular approach to deal with FP problems; bit-blasting transforms an FP problem to

the bit-vector domain.
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Figure 2.1: Overview of Automated Verification via GNATprove (adapted
from [28])

2.8 Formal Verification of FP Programs

As stated in the introduction, formal verification of safety-critical FP programs
is important to ensure the program behaves in a precisely specified way. This
is important as unnoticed errors in safety-critical programs, particularly those
arising from propagation of rounding errors, can lead to catastrophic results.
SPARK technology [39] represents the state-of-the-art in industry-standard
formal FP software verification[28].

As a language, SPARK is a subset of Ada with a focus on program
verification. SPARK technology includes GNATprove, a tool that manages
interactions between SPARK, Why3 [7] (described in Section 2.8.1), and
a selection of bundled SMT solvers (Alt-Ergo [14], Colibri [46], CVC4 [4],
Z3 [49]) as shown in Figure 2.1. If desired, one may use more powerful
interactive provers such as Coq [6] and Isabelle [51].

2.8.1 Why3

Why3 is a program verification tool that provides a rich language, WhyML,
for writing and specifying programs.

Why3 derives Verification Conditions (VCs) from these programs using
the standard weakest-precondition calculus [23] and uses external provers
to discharge VCs. WhyML can both be used as a primary programming
language but is more commonly used as an intermediary for verification of
C, Java, or Ada programs: Why3 can translate derived VCs into a supported
input for external provers. This translation may include transformation that
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eliminate features unsupported in the chosen prover. Users may also apply
transformations using Why3 to simplify VCs.

GNATprove integrates with Why3 by translating SPARK programs into
WhyML programs. Why3 then derives VCs and then uses the provers
bundled with SPARK to discharge them. Why3 plays a key role in SPARK as
well as other toolchains, effectively harnessing available solvers and provers
for software verification.

2.8.2 Writing and Specifying FP Programs in SPARK

Consider the functional specification of a sine approximation given in the
introduction and restated here:

| sinfp(x)− sin(x)| ≤ 0.0001 (2.51)

Let sinfp be a Taylor series approximation of sine to the 3rd degree. With
some bound on the input, one could verify the following:

x ∈ [−0.5, 0.5] =⇒ | sinfp(x)− sin(x)| ≤ 0.00025889 (2.52)

Verifying this is an example of auto-active verification [43], i.e. automated
proving of inline specifications such as post-conditions and loop invariants.
A SPARK implementation of sinfp is shown in Listing 2.1 and a SPARK
specification equivalent to 2.52 is shown in Listing 2.2

2.8.3 Verifying a Sine Approximation in SPARK

With the specification shown in Listing 2.1, the SPARK toolchain automatic-
ally verifies absence of overflow in the Taylor_Sin function. This is not
difficult since the input X is restricted to the small domain [−0.5, 0.5]. However,
the current SPARK toolchain and other frameworks we know of are unable
to automatically verify that the result of Taylor_Sin(X) is close to the exact
sin(X). Part of the problem is that the VCs feature a mixture of exact real
and FP operations. For example, in the VCs derived from Listing 2.1, the
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Listing 2.1: Sine approximation in Ada
function Taylor_Sin (X : Float) return Float is

(X - ((X * X * X) / 6.0));

Listing 2.2: SPARK formal specification of Taylor_Sin
function Taylor_Sin (X : Float) return Float with

Pre => X >= -0.5 and X <= 0.5,
Post =>

−− Real_Sin is a non-implemented function with an axiomatic specification
abs(Real_Sin(Rf(X)) - Rf(Taylor_Sin ’Result ))

<= Ri (25889) / Ri (100000000);
−− 0.00025889

result of the Taylor_Sin function is encoded as

X ⊖ ((X ⊗X ⊗X)⊘ 6.0);

where ⊖, ⊗, and ⊘ are FP subtraction, multiplication, and division, respect-
ively. Although SPARK has some support for FP verification [28, 24],
automatically verifying (2.52) requires further work.

We briefly discuss various approaches to automatically verify specifica-
tion of FP programs and why they are not able to verify our Taylor_Sin

function.

Why3 Axiomatization

Why3 includes a formalization of the FP IEEE-754 standard [40]. For SMT
solvers that natively support FP operations, this formalization is mapped
to the SMT-LIB FP theory, and for SMT solvers that do not support FP
operations, an axiomatization of the formalization is given [28]. This appro-
ach is currently unable to verify our Taylor_Sin function, as SMT solvers
and their FP theories are not yet sufficiently powerful to decide problems
with mixed nonlinear real expressions and FP operations.
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Thorough Auto-active approach

One possible method to verify specifications of problems that include FP
operations is a more thorough auto-active approach through ghost code10.
This method has previously been used to verify absence of overflow errors
and functional specifications on basic FP functions such as computing a
weighted average [24], though it requires more manual work; 59 lines of
code required ‘a bit less than 400 lines of ghost code’ [24] to verify.

Colibri

We ran Colibri on all VCs produced by the Taylor_Sin example and it tends
to outperform the SMT solvers included in SPARK in both verification speed
and the number of problems it can verify.

Colibri was not able to verify the final post-condition in Listing 2.2.

2.8.4 Alternatives to SPARK

While SPARK is a state-of-the-art tool for FP software verification tried and
tested in industry. There exist other, similar, frameworks for other languages,
namely Frama-C [16] for C programs and Krakatoa [27] for Java programs.

Both Frama-C and Java allow for writing specifications of C and Java
programs, respectively. Both frameworks support Jessie [44], a tool which is
able to integrate with Why3 (in a similar manner to GNATprove) by translating
Java or C programs into WhyML programs. Why3 will then derive verification
conditions and use various solvers to discharge them as shown in Figure
2.2.

10Ghost code is code that does not affect any implementation, i.e. code that is only used
in specifications.
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Figure 2.2: Overview of Automated Verification via Frama-
C/SPARK/Krakatoa (adapted from [44])
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Chapter 3

LPPaver

LPPaver is an automatic numerical prover for nonlinear mixed real/integer
formulas. LPPaver uses interval methods along with modified branch-and-
prune algorithms. Currently, there is one branch-and-prune algorithm that
focuses on proving that some constraint is unsatisfiable over some box and
another branch-and-prune algorithm that focuses on finding a model for
some constraint over some box.

3.1 Input

LPPaver reads a subset of the standard SMT-LIB language. Here, we
describe the abstract syntax of the supported expressions used internally in
LPPaver. We use a small subset of Haskell syntax in these definitions.

data BinOp = Add | Sub | Mul | Div | Pow | Mod | Min | Max
data UnOp = Negate | Sqrt | Sin | Cos | Abs

LPPaver can encode the following rounding modes:

data RoundingMode = RNE | RTP | RTN | RTZ | RNA
−− RNE - Round to nearest, with ties rounding to the nearest even digit
−− RTP - Round up towards +∞
−− RTN - Round down towards −∞
−− RTZ - Round towards zero
−− RNA - Round to nearest, with ties rounding away from zero
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With these data types, we can describe the symbolic expressions used
within LPPaver:

data E =
EBinOp BinOp E E |
EUnOp UnOp E |
PowI E Integer | −− EInteger

Float32 RoundingMode E | −− rnd32(RoundingMode, E)

Float64 RoundingMode E | −− rnd64(RoundingMode, E)

RoundToInteger RoundingMode E | −− to_int(RoundingMode, E)

Lit Rational |
Var String

Now, we can encode certain expressions for LPPaver using Haskell
expressions with data type E. For example, 2 sin(x) can be encoded as
EBinOp Mul (Lit 2.0) (EUnOp Sin (Var "x")).

We now define data type F which is used to encode formulas featuring
comparisons of E expressions.

data Comp = Gt | Ge | Lt | Le | Eq
data Conn = And | Or | Impl

data F =
FComp Comp E E |
FConn Conn F F |
FNot F |
FTrue |
FFalse

For example, with data type F, we can encode false ∨ 2 sin(x) ≥ sin(x)

as:

FConn Or
FFalse
(FComp Ge

(EBinOp Mul (Lit 2.0) (EUnOp Sin (Var "x")))
(EUnOp Sin (Var "x")))
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When LPPaver reads some SMT-LIB input, it parses the input into data
type F. LPPaver then transforms the input into disjunctive normal form
(DNF)1, a standard tactic used when attempting to find a model for a formula.
In Haskell, we represent a DNF as a list of lists. For example, [[F]], which
we call fDNF, is a DNF type where each term is constructed using data type
F. The inner lists have an implicit And between the terms, and the outer list
has an implicit Or between the inner lists.

3.2 Symbolic Simplifications

More specifically, when given a formula with data type F, LPPaver first
transforms this formula into an fDNF in a standard manner. To simplify
reasoning within the algorithm, the fDNF is then transformed into an eDNF.
An eDNF is a DNF where all terms are the inequalities > 0 or ≥ 0 with
an expression of type E on the left-hand side. These inequalities are
represented using the following data type:

data EConstraint =
EStrict E −− E > 0
ENonStrict E −− E >= 0

Thus, an eDNF is represented as an element of type [[EConstraint]] in
Haskell.

3.3 Variable Domains and Boxes

Variable domains are encoded in LPPaver as boxes with rational endpoints
for each variable. There is also a variation of boxes that allows one to specify
each variable as a real or integer variable, though endpoints are still rational.

For example, we encode the box x ∈ [0, 5], y ∈ [−5, 2.4] as follows:

[x ∈ [0.0, 5.0], y ∈ [−5.0, 2.4]]. (3.1)

1Note that in some cases, conversion to DNF can cause an exponential growth of the
formula. For example, converting (x1∨y1)∧· · ·∧(xn∨yn) to DNF will lead to 2n conjunctions.
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If x is an integer variable and y is a real variable, we can encode it as
follows:

[x ∈ Z ∩ [0.0, 5.0], y ∈ [−5.0, 2.4]] (3.2)

Typically, when splitting a box, LPPaver splits the domain of a chosen in
the middle. For example, if splitting (3.1), we get the following two boxes:

{[x ∈ [0.0, 2.5], y ∈ [−5.0, 2.4]], [x ∈ [2.5, 5.0], y ∈ [−5.0, 2.4]]} (3.3)

When splitting a box using an integer variable, LPPaver safely rounds
the endpoints of the new boxes. For example, if we split (3.2), we get the
following boxes:

{[x ∈ Z ∩ [0.0, 2.0], y ∈ [−5.0, 2.4]],

[x ∈ Z ∩ [3.0, 5.0], y ∈ [−5.0, 2.4]]}
(3.4)

3.4 eDNF Local Simplifications and Bound Deriva-
tions

LPPaver’s proving algorithms work on each conjunction within the eDNF
separately. The outer disjunction is checked in a standard manner, stopping
as soon as a conjunction is determined to be true.

When checking each conjunction, in some cases, it may be worth
analysing the conjunction to see if the bounds on the variables in the box can
be improved. This is done using a bounds derivation algorithm interleaved
with some simplification rules, both of which are also implemented in
PropaFP and described in Sections 4.1.2 and 4.2. The bounds derivation
algorithm may reduce the domains for variables and even remove a variable
from the box if, for example, the variable only appears in other conjunctions in
the DNF. The bounds derivation algorithm may have led to some tautologies
so the conjunction is then simplified. This bounds derivation and simplification
is interleaved until there are no more changes in the box or the conjunction.
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3.5 Contracting a Box Using Linearisations

We now describe how we create a system of linear inequalities from a
conjunction of nonlinear differentiable terms to contract a box. The contractor
will remove areas from the box whose values are guaranteed to be false
over the given conjunction. First, we describe the creation of a nonlinear
system using a box with two variables. Then, we generalise to an arbitrary
number of variables. At the end of this subsection, we describe how the
two-phase simplex method is used with a system of linear inequalities to
contract a box.

3.5.1 System with Two Variables

Let b be a box with two variables:

b := [x ∈ [xL, xR], y ∈ [yL, yR]] (3.5)

Since the simplex method assumes each variable is ≥ 0, we transform
each variable to account for this, giving us the new box:

b′ := [x′ ∈ [0, xR − xL], y
′ ∈ [0, yR − yL]] (3.6)

Let x′R := xR − xL and y′R := yR − yL. We can now define a system
that encloses these constraints (note that the teletype font variables are the
formal variables of the system):

x′, y′ ≥ 0

x′ ≤ x′R

y′ ≤ y′R

(3.7)

Let C be a conjunction of constraints with differentiable terms. Let t be a
term from C. When linearising t, we need to compute the range of t at both
the ‘extreme left corner’ and ‘extreme right corner’ of b. We define these
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corners as:
bL := [x ∈ [xL, xL], y ∈ [yL, yL]]

bR := [x ∈ [xR, xR], y ∈ [yR, yR]]
(3.8)

Now, we compute the interval approximations of the values of t at both
corners using interval arithmetic. For the linearisations, we also require
partial derivatives of t for each variable which we compute using automatic
differentiation and an interval version of the Jacobian matrix. Note that since
t has one output, the resulting matrix has one row.

lt := JtK(bL)

rt := JtK(bR)

Jt := J(t,b)

(3.9)

When creating a linear system of inequalities using t, we linearise from
both bL and bR. The resulting system, when combined with (3.7), represents
a weakening of t ≥ 0 over the domain b. The following inequalities are
derived from linearisations of t.

0 ≤ lt + Jt ·

[︄
x′ − 0

y′ − 0

]︄

0 ≤ rt − Jt ·

[︄
x′R − x′

y′R − y′

]︄ (3.10)

The first inequality binds t from the left corner of b′ where x′ = y′ = 0.
The right-hand side of the inequality is a linearisation of t. To justify this
linearisation, let us examine the left corner of b′. Here, the actual value of
JtK(bL) is ∈ lt, and we weaken 0 ≤ t by specifying 0 ≤ lt. As we move away
from the left corner, we multiply the point where we are at with the upper
bound of the partial derivative for each variable and add the result to lt. This
is achieved by multiplying Jt with a vector of all variables being subtracted
by the left corner of b′, which is always 0. Visually, one may imagine this
linearisation as binding t from ‘above’.

Similarly, the second inequality binds t from the right and from ‘above’.
We start from the right corner of b′, safely weakening the formula t ≥ 0 at
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this point with rt. Now, as we move away from the right corner, we multiply
the point we are at with the lower bound of the negated partial derivatives
and add the result to rt. As the lower bounds of the derivatives are negated,
we are still bounding t from ‘above’.

The linearisation (3.10) is repeated for every term in C. All of these
linearisations are compiled in one system along with the box reformulation
(3.7). The system, which is a weakening of the original nonlinear conjunction,
is solved and optimised by the two phase simplex method as described at
the end of Section 3.5.

3.5.2 System with an Arbitrary Number of Variables

It is simple to extend (or shrink) the system described in the previous section
to work with an arbitrary number of variables. To simplify the presentation of
this system, we use variables x1, x2, etc. instead of x, y, etc. Similarly, xL
and yL from (3.5) become x1L and x2L.

Let C be a conjunction of differentiable EConstraint terms and b be a
box with an arbitrary number of variables:

b := [x1 ∈ [x1L, x1R], x2 ∈ [x2L, x2R], . . . , xn ∈ [xnL, xnR]] (3.11)

As in (3.6), we transform the box so that all variable domains are ≥ 0:

b′ := [x′1 ∈ [0, x1R−x1L], x
′
2 ∈ [0, x2R−x2L], . . . , x

′
n ∈ [0, xnR−xnL]] (3.12)

We define a system to enclose these constraints as in (3.7). In this
system, we have x′1R := x1R − x1L, and similarly for x′2R, x′nR, etc.

x′1, x
′
2, . . . , x

′
n ≥ 0

x′1 ≤ x′1R

x′2 ≤ x′2R
...

x′n ≤ x′nR

(3.13)
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We now linearise each term in C. First, we require the ‘extreme’ left and
right corners of b:

bL := [x1 ∈ [x1L, x1L], x2 ∈ [x2L, x2L], . . . , xn ∈ [xnL, xnL]]

bR := [x1 ∈ [x1R, x1R], x2 ∈ [x2R, x2R], . . . , xn ∈ [xnR, xnR]]
(3.14)

Now we compute the interval value of each term at bL, the interval value
of each term at bR, and partial derivatives for each term over b as shown
in (3.9). As in (3.10), we linearise each term, weakening it with the goal of
contracting b. This linearisation is shown in (3.15).

0 ≤ lt + Jt ·

⎡⎢⎢⎢⎢⎣
x1

′ − 0

x2
′ − 0
...

xn
′ − 0

⎤⎥⎥⎥⎥⎦

0 ≤ rt − Jt ·

⎡⎢⎢⎢⎢⎣
x′1R − x1

′

x′2R − x2
′

...
x′nR − xn

′

⎤⎥⎥⎥⎥⎦
(3.15)

We combine the linearisations from (3.15) done for each term with
the reformulation of the box shown in (3.12) to create a system of linear
inequalities which is a weakening of C with respect to b. A one-dimensional
example of this linearisation for a single term is shown in Figure 3.1 The
system is solved using the two-phase simplex method as described below.

3.5.3 Calling the Simplex Method

Let s be a system of linear inequalities as described above. We optimise
s using the two-phase simplex method. We first perform phase 1, finding
a feasible point for the system. If phase 1 determines that the system is
infeasible, we return the empty box. Otherwise, we optimise each variable.
This is done by calling phase 2 of the simplex method twice for each variable,
using the objective function to minimise and maximise each variable. The
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Figure 3.1: Linearisations that weaken a term whose function graph is f
over the 1-dimensional box b. The lines labelled wL(f) and wR(f) are the
linearisations made from the left and right ‘extreme’ corners of b, respectively.
This linearisation allows one to safely contract b by a small amount from the
left, giving us the new box b′.

results from phase 2 are used to create an optimised box, cutting off areas
which are definitely unsatisfiable for the given box and conjunction. The
resulting box is called r′.

Since a transformed box where all variables have a lower bound of 0 was
used to create the constraints on variable domains, we need to transform
r′ appropriately. For example, in (3.12), b′ was created by subtracting the
lower endpoint of each variable in b in (3.11) from both endpoints of each
variable. We ‘undo’ this subtraction in r′ by adding x1L, x2L, . . . , xnL to each
variable x1, x2, . . . , xn in r′. The resulting box, named r, is a contraction of
the original box using the conjunction used to create s.

3.5.4 Soundness

We now proceed by proving that the linearisations described in this section
soundly weakens a conjunction over some box. We must first prove that the
linearisations soundly weaken a differentiable term over some box.

Lemma 3.5.1 (Soundness of using linearisations). For every differentiable
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term within an EConstraint t and for every box b, let s be the system of
linear inequalities produced by linearisation of t over b using the (3.15)
linearisations. The system consists of two inequalities. Let e(W,1) and
e(W,2) be the first and second inequalities in s, respectively. The following
statements hold:

1. ∀x ∈ b.t(x) ≥ 0 =⇒ (e(W,1)(x) ∧ e(W,2)).

2. ∀x ∈ b.t(x) > 0 =⇒ (e(W,1)(x) ∧ e(W,2)).

Proof outline. Assume that the EConstraint we have is t ≥ 0. From Section
3.5.2, we know that both e(W,1) and e(W,2) is a weakening of t ≥ 0 over b,
so ∀x ∈ b.t(x) ≥ 0 =⇒ (e(W,1)(x) ∧ e(W,2)). Thus, using the (3.15)
linearisations as described in Section 3.5.2 soundly weakens some t ≥ 0

over some box where t is differentiable.
For the case where t > 0, first weaken this to t ≥ 0. The rest of the proof

is the same as above.

Now that we know that the linearisations in Section 3.5.2 soundly weaken
a differentiable term over some box, we discuss how the same linearisations
can be used to create a system of linear inequalities which represents a
weakening of a conjunction of terms over some box.

Corollary 3.5.1.1 (Soundness of using linearisations to weaken a conjunction
of EConstraints). For every conjunction C : [EConstraint] and for every
box b, let s be the system of linear inequalities produced by the linearisation
of every term in C over b using the (3.15) linearisations as described in
Section 3.5.2. Let CW be the [EConstraint]s equivalent to s. The following
statement holds:

∀x ∈ b.C(x) =⇒ CW (x) (3.16)

Proof outline. Linearise each differentiable term in C as done in (3.15).
These linearisations soundly weaken each differentiable term as proven in
Lemma 3.5.1. Discard the non-differentiable terms. Since C is a conjunction,
we combine each system of linear inequalities into one system. Let CW be
an [EConstraint] version of the system. Let x be an arbitrary value from
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b. Since each term in C was either discarded or soundly weakened with
respect to b, C(x) =⇒ CW (x).

Now that we know that the Section 3.5.2 produces a system of linear
inequalities which soundly weakens a conjunction of terms over some box,
we discuss how the optimisations we perform over this system is a sound
pruning of said box where only values which violate the conjunction are
removed.

Lemma 3.5.2 (Soundness of pruning a box for some conjunction using
linearisations). For every conjunction C : [EConstraint], and for every box
b, let bP be the box resulting from optimising over the linearisation of C as
described in Section 3.5.3. The following statements hold:

bP ⊆ b

∀x ∈ b \ bP.¬C(x)
(3.17)

Proof outline. Let CW be the weakening of C over b from Corollary 3.8.1.1,
The system of linear inequalities which represents CW is combined with
a system which represents b, (3.12). The system is then solved and
optimised as described in Section 3.5.3. Let bP be the box resulting from
this optimisation.

Since the system was created using b, the bounds for the optimised
variables must be within b, so bP ⊆ b.

If the system is infeasible, CW is false for all values in b, and bP := ∅.
Since ∀x ∈ b.C(x) =⇒ CW (x), C must be false for all values in b and
∀x ∈ b \ bP.¬C(x) is trivial.

If the system is feasible and optimised, bP ⊆ b in such a way that
∀x ∈ bP.CW (x) and ∀x ∈ b \ bP.¬CW (x). Let x be an arbitrary value in
b\bP. Since CW is a weakening of C over b, and CW (x) is false, C(x) must
also be false.

Thus, the linearisations and optimisations described in Sections 3.5.2
and 3.5.3, respectively, soundly prune away areas in a box which violate
some conjunction.
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3.6 Pruning via Interval Methods and Linearisations

We now discuss Algorithm 4 which is our pruning algorithm which uses
interval methods and the novel contractors described in Section 3.5. Let bI

be a box and CI be a conjunction of inequalities represented using data type
EConstraint. The algorithm aims to contract bI by removing ‘unsatisfiable’
areas, i.e. removing values in bI where CI does not hold.

Algorithm 4 Prune: contract a box using interval methods and linearisations
Input: (bI : box, CI : [EConstraint])
Output: a box bP ⊆ bI and a conjunction CF : [EConstraint]

1: CF := CI without terms that interval evaluate to true over bI

2: CW := weaken CF by transforming f > 0 into f ≥ 0
3: if CF is empty then
4: return (bI, true) # An empty conjunction implies CI holds over bI

5: else if any term in CF is false for all values in bI then
6: return (∅, CF ) # An empty box implies at least one term in CI was false for all values in

bI

7: end if
8: C∆

W := filter out non-differentiable terms from CW

9: bP := contract bI using a linearisation of C∆
W described in Section 3.5.

10: if bP = ∅ then # This means that CW is false over bP

11: return (∅, CF )
12: else if |bI|

|bP| ≥ 1 + εR ∧ |bI| − |bP| ≥ εA then # Has bP reduced significantly?

13: return Prune(bP, CF ) # Recursive step

14: else
15: return (bP, CF )
16: end if

As we are removing unsatisfiable areas, we safely weaken each term in
the disjunction by transforming > 0 into ≥ 0 and name this conjunction CF .
We evaluate each term in CF using interval arithmetic and remove any term
in CF that evaluates to true over the whole box bI, i.e. remove any t ∈ CF

where JtK(c) = true. We name the filtered conjunction CF . If CF is empty,
then all terms in the conjunction evaluate to true over bI. We return bI along
with the trivial ‘conjunction’ true. This implies that CI is true over bI. If any
term in CF is false over the whole box bI, we return the empty box.
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If the algorithm has not yet returned anything, we contract bI by linearising
differentiable terms in CW and solving the resulting system of linear inequal-
ities using the simplex method as explained in Section 3.5. The contracted
box is called bP. If bP is empty, the contractor has determined that CW is
false for all values in bI so we return the empty box. If bP is significantly
smaller than bI, i.e., if |bI|/|bP| is greater than or equal to εR+1 for some global
εR > 0 and if |bI| − |bP| is larger than some global εA > 0, we recursively
call the pruning algorithm with parameters bP and CF . By default, LPPaver
uses εR = 0.2 and εA = 2−100. If bP is not significantly smaller than bI, we
stop pruning, returning the box bP and CF which is the conjunction of terms
which are neither completely true nor completely false for all values in bP.

3.6.1 Termination

Lemma 3.6.1 (Termination of Prune). For any box bI, for any conjunction
CI , for any εR ∈ Q>0, for any εA ∈ Q>0, Algorithm 4 terminates.

Proof outline. Assume that the algorithm recurses. This means that box we
are recursing with has shrunk by at least εA against the input box. With
each recursive call, the box we are recursing with must shrink by at least εA.
Since the boxes have finite endpoints, eventually, the width of the box will be
less than εA When this occurs, it is impossible for the box to shrink by, at
least, εA, as the width of the box cannot become negative, so the algorithm
terminates.

3.6.2 Soundness

Building on the soundness of the linearisations and optimisations discussed
in Section 3.5, we now discuss soundness of Prune (Algorithm 4).

Lemma 3.6.2 (Soundness of Prune). For any box bI and for any conjunction
of EConstraints CI , The following holds for the outputs bP and CF of
Algorithm 4

1. bP ⊆ bI
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2. ∀x ∈ bP.CI(x) ⇐⇒ CF (x)

3. ∀x ∈ bI.CI(x) =⇒ x ∈ bP

4. ∀x ∈ bI \ bP.¬CF (y)

Proof outline. The conjunction, CF , is equivalent to CI where terms which
interval evaluate to true over bI are removed (note that empty conjunctions
are trivially true). Let CF,1 be the value of CF after execution of line 1.
Clearly, ∀x ∈ bI.CI(x) ⇐⇒ CF,1(x).

If CF,1 is empty, then CI was true for all values in bI, so let bP := bI and
CF := true. Clearly, bP ⊆ bI. Since bI = bP, ∀x ∈ bI.CI(x) =⇒ x ∈ bP

is trivial. ∀x ∈ bP.CI(x) ⇐⇒ CF,1(x) is trivial. Since bI \ bP := ∅,
∀x ∈ bI \ bP¬CF,1(x) is vacuously true. Thus, this branch is sound.

If CF,1 is not empty and any term in CF,1 is false for all values in bI,
let bP := ∅. Clearly, bP ⊆ bI. ∀x ∈ bP.CI(x) ⇐⇒ CF (x) is vacuously
true. Since there exists a term in CF,1 which is false for all values in bI, and
CF,1 is CI without terms which are true for all values in bI, the falsifying
term in CF,1 must also be in CI . Since CI is false for all values in bI,
∀x ∈ bI.CI(x) =⇒ x ∈ bP is vacuously true. ∀x ∈ bI \ bP¬CF,1(x) is trivial.
Thus, this branch is sound.

If neither of these cases occur, let C∆
W be a conjunction consisting of all

differentiable terms in CW as shown in line 8 of the algorithm. C∆
W is a clear

weakening of CW . If we cannot determine that a term in CF,1 is false for all
values in bI, we contract bI using linearisations of C∆

W and optimisations
of the resulting system as described in Section 3.5. On line 9, we use this
contraction step to produce the box, bP,9. From Lemma 3.5.2, bP,9 ⊆ bI

and ∀x ∈ bI \ bP,9.¬C∆
W (x).

If bP,9 is empty, then all values in bI violate C∆
W . Let bP := bP,9. bP ⊆ bI

is trivial. ∀x ∈ bP.CI(x) ⇐⇒ CF (x) is vacuously true. Let x be an arbitrary
value from bI. Since C∆

W is a weakening of CF over bI (i.e. CF (x) =⇒
C∆
W (x)), all values in bI must also violate CF,1. As CF,1(x) ⇐⇒ CI(x), and

CF,1(x) is false, it must be true that CI(x) is false. Thus, CI(x) =⇒ x ∈ bP

is vacuously true. Since bP is empty, ∀x ∈ bI \ bP.¬CI(x) is trivial. Thus,
this branch is sound.
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If, after the contraction step, bP,9 is not significantly smaller than bI,
the algorithm gives bP,9 as the contracted box. Let bP := bP,9. Since
∀x ∈ bI \ bP.¬C∆

W (x), ∀x ∈ bI.CI(x) =⇒ C∆
W (x), and bP ⊆ bI, it is clear

that ∀x ∈ bI.CI(x) =⇒ x ∈ bP. Let x be an arbitrary value from the box
bI \ bP,9. Since C∆

W is a weakening of CF over bI ⊇ bP,9, and C∆
W (x) is

false, CF,1(x) must be false. Since CF,1(x) ⇐⇒ CI(x), CI(x) is false. This
branch is sound.

If bP,9 is significantly smaller than bI, we recurse with inputs bP,9 and
CF,1. Since bP,9 is a contraction of bI where only values which violate
CF,1 are removed, and all other branches in the algorithm soundly removes
values from a given box which violate a given conjunction, it is sound to
recurse with bP,9. Since CF,1 ⇐⇒ CI for all values in bP,9, and bP,9 ⊆ bI,
both conjunctions have the same truth value over bP,9 so it is sound to
recurse with CF,1 (it is also sound to recurse with CI but this is inefficient).
From Lemma 3.6.1, we know that this recursion must eventually terminate.
Let bP,13 and CF,13 be the values of the box and conjunction returned
from this recursive call, respectively. Since the soundness statements
hold in all other branches in prune, it must be true bP,13 ⊆ bP,9 ⊆ bI,
∀x ∈ bP,13.CF,13(x) ⇐⇒ CF,1(x) ⇐⇒ CI(x),

∀x ∈ bI.CI(x) =⇒ x ∈ bP,13, and ∀x ∈ bI \ bP,13.¬CF,13(x). This branch
is sound.

Since all branches are sound, Algorithm 4 is sound.

3.7 Showing Unsatisfiability via Depth-First Splitting
& Pruning

We now describe our branch-and-prune algorithm which focuses on showing
unsatisfiability of a conjunction of terms over some box using depth-first
paving and pruning using Algorithm 4. Depth-first algorithms are well suited
for this task due to their simplicity, low memory usage, and the fact that
showing unsatisfiability requires an exhaustive search over the box we are
examining. The algorithm is a variation of the branch-and-prune method
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described in Algorithm 1. The pseudocode for this algorithm can be found in
Algorithm 5.

Algorithm 5 Proving with depth-first branching + pruning
Input: (bI : box, CI : [EConstraint], dMax : N)
Output: satisfiability of CI over bI, model m ⊆ bI if CI is satisfiable

1: initialise stack L with (bI, CI , 0)
2: while L is not empty do
3: (b, C, d) := pick(L) # retrieve a box with a constraint and depth from L

4: (bP, CF ) := Prune(b, C) # JCK ∩ b ⊆ JCK ∩ bP

5: if bP ̸= ∅ then
6: if CF is trivially true then # If CF is true, bP satisfies CI

7: m := bP

8: return CI is satisfied over m ⊆ bI

9: else if d > dMax then # the termination condition depends on the depth

10: return satisfiability of CI undecided, gave up at box bP ⊆ bI

11: else
12: (bL

P, bR
P) := split(bP) # Bisect the variable with the largest width

13: add (bL
P, CF , d+ 1) and (bR

P , CF , d+ 1) to L
14: end if
15: end if
16: end while
17: return CI is unsatisfiable over bI

In Algorithm 5, we first take a box bI. Then, a conjunction of inequalities
CI represented using data type [EConstraint], so all inequalities are either
> 0 or ≥ 0. The algorithm attempts to check whether or not the conjunction
holds over bI. Finally, we have a number, dMax , which specifies the
maximum number of times a box will be split.

Now we describe the main body of the algorithm. We have the stack L

which stores triples. Each triple contains a box, a constraint, and a depth.
Initially, L is set to a triple which stores bI, the initial conjunction CI , and
depth 0. We then loop until L is empty.

In the loop, we take a triple (a box named b, a conjunction to consider
named C, and the depth of b which we call d) from L. We pass b and C

to our pruning function, which is described in Algorithm 4. The pruning
functions returns a new box, bP and a new, ‘filtered’ conjunction, CF , where
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we have removed terms that have been determined to be true for all values
in bP.

After the pruning if bP becomes empty, our pruning has determined that
the terms in the conjunction are unsatisfiable over b, so we stop considering
b and start the next iteration of the loop. Otherwise, if CF is empty, the
pruning method has decided that all terms in C are satisfied by any value in
bP, and we can return a satisfiable result with bP as a set of models for C.
If CF is not empty and the current depth of the box, d, is greater than dMax ,
we return an ‘unknown’ result, meaning LPPaver could not decide CI over
bI with the given parameters (i.e. the value of dMax , precision of interval
arithmetic, splitting methods, etc.). bP, the box where the algorithm gave
up, is also returned, which is useful for users as it shows an area where
the algorithm found it difficult to decide satisfiability of C. If d is less than or
equal to dMax , we split bP into two smaller boxes by bisecting the domain of
a variable with the largest width, rounding endpoints for interval variables as
appropriate. The two new boxes, along with CF and an incremented depth,
are added to L.

If the while loop reaches its termination condition, all boxes in L have
been processed and none returned a satisfiable/unknown result. Thus, CI

is unsatisfiable on all boxes in L, so CI is unsatisfiable on bI.

3.7.1 Termination

Lemma 3.7.1 (Termination of the Depth-First Proving Algorithm). For any
box bI, for any conjunction CI , for any dMax ∈ N, Algorithm 5 terminates.

Proof outline. The algorithm will loop while L, a stack which contains triples
consisting of a box, a conjunction, and a natural number, is not empty. Within
the loop, the algorithm picks a triple (b, C, d) from L, where b is a box, C is
a conjunction, and d is a natural number. The algorithm calls Prune which
terminates (Lemma 3.6.1). All branches other than the one beginning on
line 11 clearly terminate. For the remaining branch, the box b is split into
two and added to L (with a conjunction equivalent to C over b and d+ 1).
Note that dMax is a depth bound, i.e., dMax specifies the maximum number
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of times a box can be split, as seen in line 9 of the algorithm. Since we split
boxes using a depth bound of dMax , and dMax is a finite natural number,
the maximum number of boxes that can be added to L is 2dMax . Since every
other branch terminates, Algorithm 5 must terminate.

3.7.2 Soundness

Having established that Algorithm 4 is sound and terminates, and Algorithm
5 terminates we now show soundness of Algorithm 5.

Lemma 3.7.2 (Soundness of the Depth-First Proving Algorithm). For any
box bI, for any conjunction of EConstraints CI , for any dMax ∈ N, the
following statements regarding the output of Algorithm 5 hold:

1. If the output is “CI is satisfied over m ⊆ bI” then m ⊆ bI and ∀x ∈
m.CI(x)

2. If the output is “satisfiability of CI undecided, gave up at box bP ⊆ bI”
then bP ⊆ bI

3. If the output is “CI is unsatisfiable over bI” then ∀x ∈ bI.¬CI(x)

Proof outline. The algorithm starts by creating a stack of triples, named L,
which initially contains only the triple (bI, CI , and 0). The algorithm loops
while the stack is not empty. Let bU be the union of all boxes in L. The loop
has the following invariants:

1. bU ⊆ bI.

2. ∀x ∈ bI \ bU.¬CI(x)

3. For every (b, C, d) in L, ∀x ∈ b.C(x) ⇐⇒ CI(x).

We first prove that these loop invariants hold in the first iteration of the
loop. In the first iteration, L = [(bI, CI , 0)]. Clearly, bU = bI, bU ⊆ bI is
trivial. ∀x ∈ bI \ bU.¬CI(x) is vacuously true as bI \ bU = ∅. Since there is
only one entry in L, for invariant 3, C = CI , so ∀x ∈ b.C(x) ⇐⇒ CI(x) is
trivial.
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We now prove that these invariants hold for any iteration of the loop. Let
LN be the stack in an arbitrary iteration of the loop. Assume that in the
iteration leading to LN , all invariants hold. Let bU be the union of all boxes
in LN . Pick (b, C, d) from the top of LN . Since we have assumed that all
loop invariants hold, the following statements must be true:

1. b ⊆ bI

2. ∀x ∈ b.C(x) ⇐⇒ CI(x).

Within the loop, we call the prune algorithm with arguments b and C.
This gives us a new box, bP, and a conjunction, CF . From Lemma 3.6.2,
bP ⊆ b, ∀x ∈ b \ bP.¬C(x) and ∀x ∈ b.C(x) ⇐⇒ CF (x).

If bP is empty, we continue with the next iteration of the loop. Let LM

be the name for the stack in said iteration. Note that LM = LN without
the picked triple (b, C, d). Let bM

U be the union of all boxes in LM . Clearly,
bM
U ⊆ bU, so bM

U ⊆ bI. Since ∀x ∈ bI \ bU.¬CI(x), ∀x ∈ bI \ bM
U .¬CI(x)

is trivial. Since LM is LN with one entry removed, the final loop invariant
is trivial. Thus, in this branch, all invariants in the next iteration of the loop
hold.

If bP is not empty, we do the following. If CF is trivially true, prune has
decided that C is true for all values in b, so we stop the algorithm. Similarly,
if d > dMax , we stop the algorithm. In both cases, there is no further loop.

In the final branch, we split bP into two smaller boxes, bL
P and bR

P such
that the union of bL

P and bR
P is equal to bP. Clearly, bL

P ⊆ bP ⊆ b ⊆ bI

and similar for bR
P . Since both bL

P and bR
P are subboxes of bP, and ∀x ∈

b \ bP.¬C(x), it must be true that ∀x ∈ b \ bL
P.¬C(x) and similar for bR

P .
These subboxes are added to LN along with CF and an incremented depth
counter. Recall that CF has the same truth value as C over b (Lemma
3.6.2).

Let bM
U := bU ∪bL

P ∪bR
P Since we know that bU ⊆ bI, and bL

P ∪bR
P ⊆ bI,

it must be true that bM
U ⊆ bI, thus loop invariant 1 holds. Since we know

that ∀x ∈ bI \ bU.¬CI(x) from our assumption that the loop invariants from
the previous iteration hold, ∀x ∈ b \ bP.¬C(x) from Lemma 3.6.2, and from
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our assumption that C has the same truth value as CI over b ⊇ bP, and
b ⊆ bU, it must be true that ∀x ∈ bI \ bM

U .¬CI(x). With the fact that CF has
the same truth value as C and CI with respect to bP, bL

P ⊆ bP ∧ bR
P ⊆ bP,

and the fact that all loop invariants were true for the previous iteration of the
loop, the final loop invariant is trivial.

Now that the loop invariants have been proven to hold, we continue
with proving soundness of Algorithm 5. If the output is “CI satisfiability
undecided, gave up at box bP ⊆ bI”, then we are in an iteration of the
loop where the d picked from L is bigger than dMax and prune could not
decide the satisfiability of C over b. With loop invariant 1, we know that
b ⊆ bI. Prune guarantees that bP ⊆ b (Lemma 3.6.2), so it must be true
that bP ⊆ bI.

If the output is “CI is satisfied over m ⊆ bI”, then we are in an iteration
of the loop where prune has decided that C is satisfiable for all values in
m and m ⊆ b (Lemma 3.6.2). Since loop invariant 1 holds, we know that
b ⊆ bI. Clearly, m ⊆ bI. Let x be an arbitrary value in m. From Lemma
3.6.2, CI(x) must be true.

Finally, If the output is “CI is unsatisfiable over bI”, then we have exited
the loop. Since we have exited the loop, L must be empty. The union of
all boxes in L is clearly empty. Let x be an arbitrary value in bI. Since the
union of all boxes in L is empty, from loop invariant 2, we have the following
fact: ∀x ∈ bI \ ∅.¬CI(x). CI(x) must be false.

Thus, Algorithm 5 is sound.

3.8 Searching for a Model using Linearisations

We now describe how a conjunction can be strengthened via linearisations
in order to create a system to find a model which satisfies said conjunction.
We first show a system with two variables, then show a system with an
arbitrary amount of variables, and finally describe how we call the simplex
method.
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3.8.1 System with Two Variables

Let C be a conjunction of differentiable EConstraint terms and b be a box
as shown in (3.5). We use this box to create b′, a box that has been
transformed such that the lower bound of each variable is 0, as shown in
(3.6). Let x′R := xR−xL and y′R := yR−yL. The constraints on the variables
are exactly the same as those shown in (3.7).

(3.18) and (3.19) show how we linearise each term in C from the ‘extreme’
left and ‘extreme’ right corners of b′ respectively. In these equations, lt,
rt, and Jt are defined in (3.9). We have two versions because it is not
uncommon for these linearisations to not be able to find a model from one
‘extreme’ corner but be able to find a model from the opposite ‘extreme’
corner.

0 ≤ lt + Jt ·

[︄
x′ − 0

y′ − 0

]︄
(3.18)

0 ≤ rt − Jt ·

[︄
x′R − x′

y′R − y′

]︄
(3.19)

In (3.18), the first inequality binds t from the ‘extreme’ left corner of
b′ where x = y = 0. The right-hand side of the first inequality is a
linearisation of t. Since we are looking for a model, this linearisation must
be a strengthening of t ≥ 0. Starting from the left corner of b′, the actual
value of JtK(bL) is ∈ lt. We strengthen this by starting the linearisation at lt.
As we move away from the left corner, we multiply the point where we are at
with the lower bound of the partial derivative for each variable and add the
result to lt. The resulting linearisation strengthens t ≥ 0. One may visualise
this as guaranteeing that t is ‘above’ or equal to the linearisation.

Similarly, (3.19) strengthens t ≥ 0 from the extreme right corner of b′.
Here, JtK(bR) is ∈ rt and we strengthen this by starting the linearisation
at rt. As we move away from the right corner, we multiply the point where
we are at with the upper bound of the negated partial derivatives for each
variable. As the upper bound is negated, we are still strengthening t ≥ 0,
guaranteeing that t is ‘above’ or equal to the linearisation. Note that the
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two-phase simplex method only supports non-strict inequalities, linearising
t > 0 with the above systems will cause a weakening due to the loss of
strictness of the inequality.

A complete system of linear inequalities is made by combing the reform-
ulation of the box shown in (3.7) with either one of the linearisations (3.18)
and (3.19) for each term in the conjunction. In LPPaver, the corner chosen
for the linearisation is alternated each time the linearisation is performed
over a given box and conjunction.

3.8.2 System with an Arbitrary Number of Variables

As explained previously, it is easy to extend (or shrink) the system described
above. As before, we simplify the presentation of this system by using x1,
x2, etc. instead of x, y, etc. and x1L, x2L, etc. instead of xL, yL, etc.

Let C be a conjunction of differentiable EConstraint terms and b be a
box with an arbitrary amount of variables as shown in (3.11). We transform b

into b′ where the lower bound of the domain of each variable is 0 as shown
in (3.12).

0 ≤ lt + Jt ·

⎡⎢⎢⎢⎢⎣
x′1 − 0

x′2 − 0
...

x′n − 0

⎤⎥⎥⎥⎥⎦ (3.20)

0 ≤ rt − Jt ·

⎡⎢⎢⎢⎢⎣
x′1R − x′1
x′2R − x′2

...
x′nR − x′n

⎤⎥⎥⎥⎥⎦ (3.21)

We now linearise both extreme corners of the box in a similar manner as
shown in (3.18) and (3.19). Let x′1R := xR − xL and similarly for x′2R, x′nR,
etc. The linearisation of a conjunction and box with an arbitrary number of
variables from the left and right ‘extreme’ corners are shown in (3.20) and
(3.21) respectively. These linearisations strengthen t ≥ 0.
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f

sL(f)

b

f

s
R
(f)

b

model

Figure 3.2: A linearisation that strengthens a term whose function graph is
f over the 1-dimensional box b. The lines labelled sL(f) and sR(f) are the
linearisations made from the left and right ‘extreme’ corners of b, respectively.
Only the sR(f) linearisation would succeed in finding a model over the box
and the set of models that can be found with this linearisation is represented
by the dotted line.

The complete system of linear inequalities is constructed by combining
the reformulation of the box shown in (3.7) with either one of (3.20) and
(3.21). A 1-dimensional example of these linearisations for both the left and
right ‘extreme’ corners is given in Figure 3.8.2

3.8.3 Calling the Simplex Method

Let s be a system of linear inequalities as described above. Since the goal
of this system is to find a model of some C : [EConstraint] with respect to
some box b, and the system is (mostly) a strengthening of C, we only need
to perform the first phase of the two-phase simplex method.

If the first phase determines that the system is infeasible, we return the
fact that we could not find a model. If the first phase gives a feasible result,
we have a feasible point which is a potential model for C. As explained
previously, it is a potential model due to the weakening of the strictness of
the inequalities in C. The potential model is stored as a box named m′

Since we transformed b when creating the system, we must ‘undo’ this by
transforming m′ appropriately. We transform m′ by adding x1L, x2L, . . . , xnL

from (3.11) to each variable x1, x2, . . . , xn in m. The resulting box is called
m and is a potential model for C within b.
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3.8.4 Soundness

To prove that the linearisations described in this section soundly strengthens
a conjunction of non-strict differentiable terms over some box, we must first
prove that the linearisations soundly strengthen a non-strict differentiable
term over some box.

Lemma 3.8.1 (Soundness of using linearisations). For every differentiable
term within a non-strict EConstraint t, and for every box b, let e(S,1) and
e(S,2) be the EConstraint equivalent of the linearisation of t over b using the
(3.20) and (3.21) linearisations as described in Section 3.8.2, respectively.
The following statements hold:

1. ∀x ∈ b.(e(S,1)(x) =⇒ t(x) ≥ 0)

2. ∀x ∈ b.(e(S,2)(x) =⇒ t(x) ≥ 0)

Proof outline. From Section 3.8.2, we know that both e(S,1) and e(S,2) is a
strengthening of t ≥ 0 over b. Note that we do not consider t > 0 since
the linear system only supports nonlinear inequalities, t > 0 cannot be
represented in the system without at least weakening the statement to
t ≥ 0. Let x be an arbitrary value from b. (e(S,1)(x) =⇒ t(x) ≥ 0) and
(e(S,2)(x) =⇒ t(x) ≥ 0)

Now that we know that the system of inequalities from Section 3.8.2
soundly strengthens a non-strict differentiable term over some box, we
discuss how the same linearisations can be used to create a system of
linear inequalities which represents a strengthening of a conjunction of
non-strict differentiable terms over some box.

Corollary 3.8.1.1 (Soundness of using linearisations which strengthen a
conjunction of EConstraints). For every conjunction C : [EConstraint]

consisting of non-strict differentiable terms, and for every box b, let s1 and
s2 be the system of linear inequalities produced by linearising every term in
C using the (3.20) and (3.21) linearisations as described in Section 3.8.2,
respectively. Let C(S,1) and C(S,2) be the [EConstraint] equivalent to s1 and
s2, respectively. The following statements hold:
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1. ∀x ∈ b.C(S,1)(x) =⇒ C(x)

2. ∀x ∈ b.C(S,2)(x) =⇒ C(x)

Proof outline. We consider the first statement. Since each term in C is
differentiable and non-strict, C(S,1) is a version of C where every term has
been soundly strengthened over b as proven in Lemma 3.8.1. Let x be
an arbitrary value from b. Since C(S,1) is a strengthening of C over b,
C(S,1)(x) =⇒ C(x). The case for the second statement is similar.

Now that we know that the Section 3.8.2 produces a system of linear
inequalities which soundly strengthens a conjunction of non-strict differentiable
terms over some box, we discuss how the optimisations we perform over
this system can soundly find a model within the box which satisfies the
conjunction if the system is feasible.

Lemma 3.8.2 (Soundness of searching for a model for some conjunction
within a box using linearisations). For every conjunction C : [EConstraint]
consisting of non-strict differentiable terms, and for every box b, let m be
the box resulting from optimising over the linearisation of C as described in
Sections 3.8.3. The following statement holds:

m ⊆ b

∀x ∈ m.C(x)
(3.22)

Proof outline. Let CS be either strengthening of C over b from Lemma
3.8.1.1. The exact strengthening is not relevant for this proof outline, the
justification is the same for both. Combine the system with the linearisation
of b shown in (3.12). The resulting system is optimised as described in
Section 3.8.3, producing the box m.

Since the system was created using b, the bounds for the optimised
variables must be within b, so m ⊆ b.

If the system is infeasible, m := and ∀x ∈ m.C(x) is vacuously true.
If a feasible system is optimised, we will have a new box, m, such that
∀x ∈ m.CS(x). Let x be an arbitrary value in m. Since ∀x ∈ b.CS(x) =⇒
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C(x) and CS(x) is true, C(x) must also be true. Thus, the linearisations
and optimisations described in Sections 3.8 and 3.8.3, respectively, will
soundly find a model in a box which satisfies some conjunction consisting of
non-strict differentiable terms.

3.9 Pruning and Searching for Models via Interval
Methods and Linearisations

In this section, we present the ‘PruneAndSearch’ algorithm which is identical
to the ‘prune’ algorithm up to the contraction step of the given box. If the
contracted box is not empty, and all non-true terms in the conjunction we
are checking are differentiable, we look for a model for the given conjunction
in the contracted box using the linearisations and optimisations described in
Section 3.8.

If a model is found, it is first ‘verified’ by testing if the given conjunction
interval evaluates to true over the given model. If the model is verified, we
return the contracted box, the filtered conjunction, and the model. This
‘model verification’ step is necessary as the linearisations used to find a
model do not distinguish between strict and non-strict inequalities. The
verification of the model using interval methods often avoids ‘touching’ cases
as the model is typically a point where the conjunction is very clearly true. If
the ‘model verification’ step returns false, then the given model was either
incorrect (due to the weakening of the strictness of the inequalities in the
conjunction) or was indeterminate due to ‘touching’. In either case, the rest
of the algorithm is (more-or-less) identical to Algorithm 4.

3.9.1 Termination

Lemma 3.9.1 (Termination of PruneAndSearch). For any box bI, for any
conjunction of EConstraints CI , Algorithm 6 terminates.

Proof outline. The proof outline for this is the same as the proof outline for
Lemma 3.6.1.
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Algorithm 6 PruneAndSearch: contract a box and search for a model using
interval methods and linearisations
Input: (bI : box, CI : [EConstraint])
Output: a pruned box bP, a filtered conjunction CF , and maybe a model m

1: CF := CI without terms that interval evaluate to true over bI

2: CW := weaken CF by transforming f > 0 into f ≥ 0
3: if CF is empty then
4: m := bI

5: return (bI, true, m) # An empty conjunction implies CI holds over bI

6: else if any term in CF is false for all values in bI then
7: return (∅, CF , ∅) # An empty box implies at least one term in CI was false for all values

in bI

8: end if
9: C∆

W := filter out non-differentiable terms from CW

10: bP := contract bI using a linearisation of C∆
W described in Section 3.5

11: if bP = ∅ then # This means that CW is false over bP

12: return (∅, CF , ∅)
13: else if all terms in CW are differentiable then
14: m := find a model in bP using a linearisation of CW described in

Section 3.8
15: if m ̸= ∅ and CF interval evaluates to true over m then
16: return (bP, CF , m)
17: end if
18: else if |bI|

|bP| ≥ εR + 1 ∧ |bI| − |bP| ≥ εA then # Has bP reduced significantly?

19: PruneAndSearch(bP, CF ) # Recursive step

20: else
21: return (bP, CF , ∅)
22: end if
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3.9.2 Soundness

Building on the soundness of the linearisations and optimisations discussed
in Section 3.5 we now discuss soundness of PruneAndSearch (Algorithm
4).

Lemma 3.9.2 (Soundness of PruneAndSearch). For any box bI and for any
conjunction of EConstraints CI the following statements about the output
box bP, the conjunction CF , and model m from Algorithm 6, hold:

1. bP ⊆ bI

2. m ⊆ bP

3. ∀x ∈ bPCI(x) ⇐⇒ CF (x)

4. ∀x ∈ bI.CI(x) =⇒ x ∈ bP

5. ∀x ∈ bI \ bP.¬CF (x)

6. ∀x ∈ m.CF (x)

Proof outline. Let bI be an arbitrary box. Let CI be an arbitrary conjunction
of EConstraints.

The proof for statements 1, 3, 4, and 5 is similar to Lemma 3.6.2 as
the ‘prune’ part of the Algorithm 6 is more-or-less the same as Algorithm 4.
Where Algorithm 6 differs is when it tries to find a model.

Recall that CF,1 is CI without terms that interval evaluate to true over
bI, CW is a weakening of CF,1 where all inequalities are non-strict, C∆

W is
a weakening of CW where all non-differentiable terms have been removed,
and bP is a box resulting from an attempted contraction of bI using a
linearisation of C∆

W as described in Section 3.5. From Lemma 3.6.2, we
know that bP ⊆ bI, ∀x ∈ bI.CI(x) ⇐⇒ CF (x), ∀x ∈ bI.CI(x) =⇒ x ∈ bP,
and ∀x ∈ bI \ bP.¬CF (x).

Now, if all terms in CW are differentiable, let m be the box representing
a model for CW from Lemma 3.8.2. If m is empty, statement 2 is trivial and
statement 6 is vacuously true.
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If m is not empty, from Lemma 3.8.2, we know that m ⊆ bP and m

satisfies CW . Let x be an arbitrary value in m. We know that CW (x) is
true. Since CW is a weakening of CF,1 where all strict inequalities become
non-strict, it may be true that CF,1(x) is false due to this weakening, so we
use interval evaluations to verify if CF,1 is satisfied by m. If so, CF,1(x) is
clearly true.

If interval evaluations show that CF,1 is not satisfied by m, we ignore the
model given by the optimisations, i.e., let m := ∅. Now statement 2 is trivial
and statement 6 is vacuously true.

Since Lemma 3.6.2 shows that the first statements 1, 3, 4, and 5 hold,
and we have shown that statements 2 and 6 regarding m hold, Algorithm
3.9.2 is sound.

3.10 Finding Models via Best-First Searching and
Pruning

The algorithm described in Section 3.6 works well when given a constraint
that is unsatisfiable over the given box. Due to the nature of a depth-
first search, the algorithm may struggle to find a solution if the model is
quite close to 0. This problem is exacerbated due to ‘touching’ which
interval methods are known to struggle with. When branching in a depth-first
algorithm, if the algorithm is examining a box that is an actual model but
very close to the ‘boundary’ (which is always 0 in LPPaver), interval methods
would not be able to verify this as a model due to ‘touching’ because of
overapproximations made when computing intervals. The algorithm would
bisect the box. The bisected boxes would be processed and the model
may still not be verifiable with interval methods. The bisecting and checking
repeats until we get a box that is small enough to verify with interval methods
or we reach the termination condition.

To remedy this, we introduce another algorithm better suited to finding
models. Algorithm 8 shows a ‘best-first’ branch-and-prune algorithm. The
algorithm is very similar to Algorithm 5, but L is a priority queue instead
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of a stack, hence the name ‘best-first’. We sort the priority queue using
a heuristic with the goal of placing boxes and conjunctions that are more
likely to produce models at the front of the queue. This heuristic is defined
in Algorithm 7. The algorithm also depends on Algorithm 6 rather than
Algorithm 4. In the best-first algorithm, the termination predicate depends
on the number of boxes processed rather than the depth of the box being
examined.

Algorithm 7 priority: calculate a priority number for some box and
conjunction of EConstraints, a higher priority value should be prioritised
over lower values.
Input: (bI : box, CI : [EConstraint])
Output: a number representing the priority for CI with bI

1: ranges := compute interval ranges of each term in CI over bI

2: average := compute interval average of ranges
3: return centre of average

3.10.1 Termination

Remark 1 (Termination of the Priority Algorithm). For any box bI, for any
conjunction of EConstraints CI , Algorithm 7 terminates.

Lemma 3.10.1 (Termination of the Best-First Proving Algorithm). For any
box bI, for any conjunction of EConstraints CI , for any bMax ∈ N, Algorithm
8 terminates.

Proof outline. Let bI be an arbitrary box. Let CI be an arbitrary conjunction
of EConstraints. Let bMax be an arbitrary natural number.

The algorithm initialises a variable i with the natural number 0. The
algorithm then loops. Within the loop, the algorithm calls Algorithms 6 and 7
which both terminate according to Lemma 3.6.1 and Remark 1, respectively.
The loop terminates when either something is returned or i ≥ bMax . At
the end of the loop, i is incremented by 1. Since bMax is finite, after bMax

iterations, i = bMax . Clearly, i ≥ bMax , so the number of iterations of the
loop before the algorithm must terminate is bMax .
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Algorithm 8 Searching for a model with best-first branching + pruning
Input: (bI : box, CI : [EConstraint], bMax : N)
Output: satisfiability of CI over bI, model m ⊆ bI if CI is satisfiable

1: initialise priority queue L with (priority(bI,CI ), bI, CI )
2: i = 0 # This variable tracks the number of boxes that have been processed

3: while L ̸= ∅ do
4: (b, C) := pick(L) # retrieve the box and conjunction with the highest priority from L

5: (bP, CF , m) := PruneAndSearch(b, C) # m is a box that stores a model for CI

(if
found)

6: if bP ̸= ∅ then
7: if CF is trivially true then # If CF is true, bP satisfies CI

8: return CI is satisfied over m ⊆ bI # Note that here, m = bP

9: else if m ̸= ∅ then
10: return CI is satisfied over m ⊆ bI
11: else if i ≥ t then # The termination condition depends on the number of boxes

processed

12: return satisfiability of CI undecided, gave up at box bP

13: else
14: (bL

P, bR
P) := split(bP) # Bisect the variable with the largest width

15: add (priority(bL
P,CI ), bL

P, CF ) & (priority(bR
P ,CI ), bR

P , CF ) to L
16: end if
17: end if
18: i = i + 1
19: end while
20: return CI is unsatisfiable over bI
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3.10.2 Soundness

Having established that Algorithm 6 is sound and Algorithm 8 terminates,
we now show the soundness of Algorithm 8.

Lemma 3.10.2 (Soundness of the Best-First Proving). For any box bI, for
any conjunction of EConstraints CI , for any bMax ∈ N, the following
statements regarding the output of Algorithm 8 hold:

• If the output is “CI is satisfied over m ⊆ bI” then
∀x ∈ m.CI(x) and m ⊆ bI

• If the output is “CI satisfiability undecided, gave up at box bP ⊆ bI”
then bP ⊆ bI

• If the output is “CI is unsatisfiable over bI” then ∀x ∈ bI.¬CI(x)

Proof outline. The proof for every statement apart from ‘If the output is “CI

is satisfied over m ⊆ bI” then ∀x ∈ bP.CI(x) and bP ⊆ bI’ is similar to
Lemma 3.7.2, with the only major difference being a priority queue being
used rather than a stack.

For the remaining statement, let b and C be the box and [EConstraint]

picked from the priority queue, respectively. Since the priority queue in
this algorithm is populated in a very similar way to the stack in Algorithm
5, we know from Lemma 3.7.2 that b ⊆ bI and ∀x ∈ b.C(x) ⇐⇒ CI(x).
PruneAndSearch is called with arguments b and C, producing the triple (bP,
CF , m). From Lemma 3.9.2, we have the following:

1. bP ⊆ b

2. m ⊆ bP

3. ∀x ∈ b.C(x) =⇒ x ∈ bP

4. ∀x ∈ bP.C(x) ⇐⇒ CF (x)

5. ∀y ∈ b \ bP.¬CF (y)

6. ∀x ∈ m.CF (x)
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Clearly, m ⊆ bI. Let x be an arbitrary value from m.
If CF is trivially true, the algorithm returns “CI is satisfied over m ⊆ bI”.

Since ∀x ∈ bP.C(x) ⇐⇒ CF (x) and m ⊆ bP, C(x) is true. Since
∀x ∈ b.C(x) ⇐⇒ CI(x), and bP ⊆ b, CI(x) is true. Thus, this branch is
sound

If CF is not trivially true and m is non-empty, the algorithm returns “CI

is satisfied over m ⊆ bI”. From ∀x ∈ m.CF (x), we know that CF (x) is true.
The remaining proof outline for this branch is the same as above.

All other branches are similar to the branches in Algorithm 5 and have
been shown to be sound in Lemma 3.7.2. Thus, Algorithm 8 is sound.
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Chapter 4

PropaFP

Consider the approximation of the sine function shown in Listing 4.1 which
we previously discussed in Chapter 2. The current state-of-the-art in
automated formal verification is unable to verify functional specifications like
those shown in (4.1).

X ∈ [−0.5, 0.5] =⇒ |Taylor_Sin’Result − sin(X)| ≤ 0.00025889 (4.1)

We would like a tool to automatically verify this specification or obtain a
counter-example if it is not valid.

Problem. As mentioned in Chapter 2, with a SPARK version of the speci-
fication (4.1), the SPARK toolchain automatically verifies absence of overflow
in the Taylor_Sin function which is not difficult since the input X is restricted
to the small domain [−0.5, 0.5].

We would like to be able to verify that the result of Taylor_Sin(X) is close
to the exact sin(X). We would also like this verification step to be done
automatically, that is, with a specification for Taylor_Sin which specifies

Listing 4.1: Approximation of the sine function in Ada
function Taylor_Sin (X : Float) return Float is

(X - ((X * X * X) / 6.0));
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restrictions on the input and behaviour regarding the output, we would
like a user to be able to call a process which will, without any interaction
required from the user, attempt to decide whether or not the specification is
correct. If the specification is incorrect, we would like the user to receive a
counter-example.

There are some other processes in literature that aim to achieve a similar
goal. For example, in [8], the authors make use of Gappa [31] and various
SMT solvers in order to (attempt to) decide specifications such as the one
we describe. In some cases, particularly when trigonometric operations are
present, their process requires some manual steps such as adding lemmas
to the program in order to aid solvers.

The current SPARK toolchain and other frameworks we know of are
unable to verify that the result of Taylor_Sin(X) is close to the exact sin(X)
with the only interaction from the user required being to call some prover
and with only the specification present in (4.1). We suspect that this is
because it is typically difficult to reason about FP operations, particularly
when combined with non-linear real functions, due to the difficulty of soundly
considering the possible rounding errors as well as their consequences.

Solution. To automatically verify functional specifications analogous to
the one in equation (4.1), we have designed and implemented PropaFP, an
extension of the SPARK proving process. The following steps are applied to
quantifier-free VCs that contain real inequalities:

1. Derive bounds for variables and simplify the VC.

2. Safely replace FP operations with the corresponding exact operations.

3. Again simplify the VC.

4. Attempt to decide the resulting VCs with provers for nonlinear real
theorems.

PolyPaver [25] is a nonlinear real theorem prover that integrates with an
earlier version of SPARK in a similar way, but lacks the simplification steps
and has a much less powerful method of replacing FP operations.
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Listing 4.2: SPARK formal specification of Taylor_Sin
function Taylor_Sin (X : Float) return Float with

Pre => X >= -0.5 and X <= 0.5,
Post =>

abs(Real_Sin(Rf(X)) - Rf(Taylor_Sin ’Result ))
<= Ri (25889) / Ri (100000000);
−− 0.00025889

4.1 Our Proving Process Steps

We will illustrate the steps using the program Taylor_Sin from Listing 4.1.
Let us first consider its SPARK formal specification shown in Listing 4.2.

To write more intuitive specifications, we use the Ada Big_Real and
Big_Integer libraries to get exact rational arithmetic in specifications. Alth-
ough in Ada the type Big_Real contains only rationals, Why3 treats Big_Real

as the type of reals. We added non-rational functions such as Real_Sin

as ghost functions: functions with no implementation, only a specification.
Their specifications give a collection of basic axioms for solvers that do not
understand the function natively. For example, the specification of Real_Sin
declares the range of sine and its values at selected points.

The listings in this thesis use shortened versions of some functions to
aid readability. Functions FC.To_Big_Real, FLC.To_Big_Real, and To_Real

respectively embed Floats, Long_Floats (doubles), and Integers to the
Big_Reals type. We have shortened these to Rf, Rlf, and Ri, respectively.
The post-condition specifies a bound on the total error, i.e., the difference
between this Taylor series approximation of sine and the exact sine of X.

4.1.1 Generating and processing verification conditions

We use GNATprove/Why3 to generate VCs. In principle, we could use other
programming and specification languages, as long as we can obtain VCs of
a similar nature.

If a VC is not decided by the included SMT solvers, we use the Manual
Proof feature in GNAT Studio to invoke PropaFP via a custom Why3 driver
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PropaFP
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Figure 4.1: Overview of Automated Verification via GNATprove with PropaFP

based on the driver for CVC4. This driver applies selected Why3 trans-
formations and saves the VC in SMT format. Since in this format the VC is
a negation of the specification from which it was produced, we shall refer
to it as ‘the negated VC’ (NVC). The VC contextAsConjunction =⇒ goal

becomes the NVC contextAsConjunction ∧ ¬goal. During further process-
ing, we may weaken this conjunction of assertions by, for example, dropping
assertions. A model that satisfies the weakened NVC will not necessarily be
a counter-example to the original VC or the original specification. However, if
the weakened NVC has no model, then both the original VC and the original
specification are correct.

When parsing the SMT files, we ignore the definitions of basic arithmetic
operations and transcendental functions. Instead of using these definitions,
we use each prover’s built-in interpretations of such operations and functions.
In more detail, the parsing stage comprises the following steps:

• Parse the SMT file as a list of Lisp S-expressions. Drop everything
except assertions and variable and function type declarations.

• Scan the assertions and drop any that contain unsupported functions.

• Functions are interpreted using their names.

– We rely on each prover’s built-in understanding of the supported
functions, currently −,+,×,÷, sin, cos,

√
·,mod, abs,min,max.
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Listing 4.3: NVC corresponding to the post-condition from Listing 4.2
−− assertions regarding axioms for sin and pi omitted
assert to_float(RNA , 1) = 1.0
assert isFiniteFloat(x)
assert ( -0.5) ≤ x ∧ x ≤ 0.5
assert isFiniteFloat(x⊙x)
assert isFiniteFloat ((x⊙x)⊙x)
assert isFiniteFloat(x ⊖ (((x⊙x)⊙x)⊘6.0))
assert
¬((

sin(x) + (-1·(x ⊖ (((x⊙x)⊙x)⊘6.0))) ≥ 0.0
=⇒
sin(x) + (-1·(x ⊖ (((x⊙x)⊙x)⊘6.0))) ≤

25889/100000000
)∧(
¬(sin(x) + (-1·(x ⊖ (((x⊙x)⊙x)⊘6.0))) ≥ 0.0)
=⇒
-1⊙(sin(x) + (-1·(x ⊖ (((x⊙x)⊙x)⊘6.0)))) ≤

25889/100000000
))

– To increase the safety of this interpretation, we check the return
type of some ‘ambiguous’ functions.

* For example, the output of a function named of_int depends
on the return type, i.e. If the return type of of_int(x) is a
single-precision float, interpret this as Float32(x).

* For functions such as fp.add, the return type is clear from
the name of the function. Also, for these functions a type
declaration is normally not included in the SMT file.

• Determine the precision of FP operations by a bottom-up type deriva-
tion. The precision of literals is clear since they are given as bit vectors
and the precision of variables is given in their declarations.

Dealing with π. Similar to Real_Sin, we have added a ghost parameterless
function, Real_Pi, whose specification contains selected axioms for the exact
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π. Why3 turns this into the function real_pi with no input. To help provers
understand that this is the exact π, all calls to real_pi are substituted
with π. For Taylor_Sin, the only VC that the SMT solvers included with
GNAT Studio cannot solve is the post-condition VC. The NVC for this post-
condition is in Listing 4.3. It has been reformatted for better readability
by removing redundant brackets, using circled symbols for FP operations,
and omitting some irrelevant statements regarding axioms for trigonometric
functions like sine as well as π, e.g. sinπ = 0, cosπ = 1, etc. The predicate
isFiniteFloat(X) is short for the inequalities MinFloat <= X, X <= MaxFloat.

4.1.2 Simplifications

As some of the tools used by PropaFP require bounds on all variables, we
attempt to derive bounds from the assertions in the NVC. But first, we make
the following symbolic simplifications to help derive better bounds:

• Reduce vacuous propositions and obvious tautologies, such as:

– (NOT φ OR true) AND (φ OR false) −→ φ

– φ = φ −→ true

• Eliminate variables by substitution as follows:

– Find variable-defining equations in the NVC, except circular defi-
nitions.

– Pick a variable definition and make substitutions accordingly.

* E.g., pick i=i1+1, and replace all occurrences of i with i1+1.

– If the variable has multiple definitions, pick the shortest one.

* E.g., if we have both x=1 and x=0+1, all occurrences of x will
be replaced with 1, including x=0+1 −→ 1=0+1.

• Perform simple arithmetic simplifications, such as:

– φ / 1 −→ φ

– 0 + 1 −→ 1

J. A. Rasheed, PhD Thesis, Aston University 2022 86



CHAPTER 4. PROPAFP

– MIN (e, e) −→ e.

• Repeat the above steps until no further simplification can be made.

These steps are performed automatically and are defined more rigorously
in Algorithm 11, which depends on Algorithm 10, which depends on Algorithm
9. We first turn to Algorithm 9, which applies a series of symbolic rules to
simplify some input of type E.

Algorithm 9 SimplifyE: simplify an expression with symbolic rules
Input: (tI : E)
Output: (tS : E)

1: E := tI
2: ES := E
3: ES := in ES , transform each t/1 into t # t can be any expression

4: ES := in ES , transform each 0/t into 0
5: ES := in ES , transform each −1× t into −t
6: ES := in ES , transform each 0× t into 0 # also its commutative version

7: ES := in ES , transform each 1× t into t # also its commutative version

8: ES := in ES , transform each 0 + t into t # also its commutative version

9: ES := in ES , transform each 0− t into t # also its commutative version

10: ES := in ES , transform each t− t into 0
11: ES := in ES , transform each t0 into 1
12: ES := in ES , transform each t1 into t
13: ES := in ES , transform each −1×−1× t into t # also its commutative version

14: ES := in ES , transform each −0 into 0
15: ES := in ES , transform each −(−t) into t
16: ES := in ES , transform each

√
0 into 0

17: ES := in ES , transform each
√
1 into 1

18: ES := in ES , if we have |t| and t is a literal, replace |t| with the absolute
value of t

19: ES := in ES , transform each min(t, t) into t
20: ES := in ES , transform each max (t, t) into x
21: if E = ES then # If none of the simplification rules were applied, stop simplifying

22: return ES

23: else
24: return SimplifyE(ES) # Keep simplifying until simplification rules do not apply

25: end if

Let sizeo be a function which returns the number of operations within
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any input of either type E or type F. Let sizel be a function which returns the
number of logical operators (And, Or, Impl, and Not) within any input of type
F. We use sizeo and sizel in our proof outline for various lemmas that appear
in this chapter.

Lemma 4.1.1 (Termination of SimplifyE). For any input tI : E, Algorithm 9
terminates.

Proof outline. The algorithm executes a number of simplification rules on
ES and terminates when none of these rules apply.

Let tS,k be the value of ES after k successful applications of the rules in
the algorithm. Successful application of any rule in the algorithm reduces
the size of the expression being simplified by at least 1. Thus, if k rules were
applied, we have sizeo(t) > sizeo(tS,1) > · · · > sizeo(tS,k). This sequence
cannot be infinite. Thus, the algorithm will, at some point, stop changing ES

and terminate.

Remark 2. For any input tI : E and corresponding output tS : E of Algorithm
9, if tI ̸= tS , then sizeo(tI) > sizeo(tS).

We now discuss soundness of Algorithm 9. For this and future algorithms
and lemmas, we define vars , a function which takes some formula or term as
input and returns the set of variables within the formula, e.g., vars(x−1) = x,
vars(x > y ∧ x < 0) = x, y.

Lemma 4.1.2 (Soundness of SimplifyE). For any input tI : E and corresponding
output tS : E of Algorithm 9, the following statement holds:

∀x ∈ vars(tI).tI(x) = tS(x) (4.2)

Proof outline. The algorithm starts by defining ES := tI . The algorithm then
applies a number of simplification rules on ES . All rules in SimplifyE clearly
preserve the value of the term being simplified. No matter how many times
it recurses, when the algorithm stops, we still have: ∀x ∈ vars(tI).tI(x) ⇐⇒
ES(x). Therefore, this holds for the output value tS
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We now define Algorithm 10 which simplifies any input of type F. Algorithm
10 relies on Algorithm 9 to simplify any t : E within the formula.

Lemma 4.1.3 (Termination of SimplifyF). For any input φ : F, Algorithm 10
terminates.

Proof outline. The algorithm executes a number of simplification rules on
φ and terminates when none of these rules apply. Note that sizeo treats
implications as equivalent disjunctions, i.e., sizeo(φ1 =⇒ φ2 ) = sizeo(¬φ1∨
φ2).

Let φS,k be the value of FS after k successful applications of the rules in
the algorithm. Successful application of any rule in the algorithm reduces
the size of the expression being simplified by at least 1. Thus, we have
sizeo(φI) > sizeo(φS,1) > · · · > sizeo(φS,k). This sequence cannot be infinite.
Thus, the algorithm will, at some point, stop changing FS and terminate.

Remark 3. For any input φ : F and corresponding output φS : F of Algorithm
10, if φ ̸= φS , then sizeo(φ) > sizeo(φS).

Building on the discussion of termination and soundness of Algorithm 9,
and the termination of Algorithm 10, we now discuss soundness of Algorithm
10.

Lemma 4.1.4 (Soundness of SimplifyF). For any input φ : F and corresponding
output φS : F of Algorithm 10, the following statement holds:

∀x ∈ vars(φ).φ(x) ⇐⇒ φS(x) (4.3)

Proof outline. The algorithm starts by defining FS := φ. The algorithm then
applies a number of simplification rules on FS . All rules in SimplifyF clearly
preserve the truth value of the formula being simplified, including the call to
SimplifyE for expressions within it (Lemma 4.1.2).

The algorithm now has two branches. Let x be an arbitrary point in
vars(φ). If φ = FS , the algorithm returns FS . Here, φ(x) ⇐⇒ φS(x)

is trivial. If φ ̸= FS , the algorithm then recurses with FS . Since all other
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Algorithm 10 SimplifyF: simplify a VC with symbolic rules
Input: (φ : F)
Output: (φS : F)
1: FS := φ
2: FS := in FS , transform each (t1 < t2) ∨ (t1 = t2) into t1 ≤ t2 # t1, t2 can be any

expression, commutative version also applies
3: FS := in FS , transform each (t1 > t2) ∨ (t1 = t2) into t1 ≥ t2 # also its commutative

version
4: FS := in FS , transform each (t1 ≥ t2) ∧ (t1 ≤ t2) into t1 = t2 # also its commutative

version
5: FS := in FS , transform each (φ1 =⇒ φ2) ∧ (¬φ1 =⇒ φ2) into φ2 # also its

commutative version
6: FS := in FS , transform each (φ1 =⇒ φ2) ∧ (¬φ1 =⇒ φ3) into φ2 ∧ φ3 # also its

commutative version
7: FS := in FS , transform each φ1 ∧ (φ1 =⇒ φ2) into φ1 ∧ φ2 # also its commutative

version
8: FS := in FS , transform each φ1 ∧ (¬φ1 ∨ φ2) into φ1 ∧ φ2 # also its commutative

version
9: FS := in FS , transform each ¬φ1 ∧ (φ1 ∨ φ2) into ¬φ1 ∧ φ2 # also its commutative

version
10: FS := in FS , replace each φ1 ∧ ¬φ1 with false # also its commutative version
11: FS := in FS , transform each φ1 ∨ true into true # also its commutative version
12: FS := in FS , transform each φ1 ∨ false into φ1 # also its commutative version
13: FS := in FS , replace each (φ1 ∨ ¬φ1) with true # also its commutative version
14: FS := in FS , transform each false =⇒ φ1 into true
15: FS := in FS , transform each φ1 =⇒ true into true
16: FS := in FS , transform each φ1 =⇒ false into ¬φ1

17: FS := in FS , transform each true =⇒ φ1 into φ1

18: FS := in FS , transform each φ1 =⇒ ¬φ1 into ¬φ1

19: FS := in FS , transform each ¬φ1 =⇒ φ1 into φ1

20: FS := in FS , replace each φ1 =⇒ φ1 with true
21: FS := in FS , evaluate all comparisons of literals and replace the comparison

with the evaluated truth value
22: FS := in FS , transform each ¬(¬φ1) into φ1

23: FS := in FS , transform each ¬false into true
24: FS := in FS , transform each ¬true into false
25: FS := apply SimplifyE on each expression in FS

26: if φ = FS then # If none of the simplification rules were applied, stop simplifying
27: return FS

28: else # Keep simplifying until simplification rules do not apply
29: return SimplifyF(FS)
30: end if
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simplification rules preserve the truth value of the formula being simplified,
this recursion is safe. Thus, φ(x) ⇐⇒ φS(x)

We can now define Algorithm 11 which performs further simplifications
on any input of type F in addition to the simplification rules discussed in
Algorithm 10.

Algorithm 11 Simplify: simplify a VC with symbolic rules
Input: (φ : F)
Output: (φS : F)

1: FS := SimplifyF(φ)
2: repeat
3: FI := FS

4: if FS contains an equality of the form v = t where v is a variable, t : E,
and t does not contain v then

5: FS := in FS , replace each occurrence of v with t.
6: end if
7: FS := SimplifyF(FS)
8: until FI = FS

9: repeat
10: FI := FS

11: if a variable x represents π as described in Section 4.1.1 then
12: FS := in FS , replace each occurrence of x with π.
13: end if
14: until FI = FS

15: return FS

Lemma 4.1.5 (Termination of Simplify). For any input φ : F, Algorithm 11
terminates.

Proof outline. The algorithm calls Algorithm 10 on lines 1 and 7 which,
by Lemma 4.1.3, terminates. From Remark 3, we know that successful
application of the rules on lines 2 and 8 reduces the number of operations
within the formula being simplified. Successful application of the rule on
lines 6 and 13 clearly reduces the number of variables within the formula. It
is clear that successful application of any of the rules do not increase the
number of variables within the formula.
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Now, we discuss the first loop. Successful application of the rule on line
6 reduces the number of variables within the formula. Since there are a
finite number of variables, eventually, this rule cannot be applied. Similarly,
successful application of the rule on line 8 reduces the number of operations
within the formula. Since there are a finite number of operations, eventually,
this rule cannot be applied. So, this loop must terminate.

Now we discuss the second loop. Successful application of the rule on
line 13 reduces the number of variables within the formula. Since there are
a finite number of variables, eventually, this rule cannot be applied. So, this
loop must terminate.

Since both loops terminate, Algorithm 11 terminates.

Building on the discussion of termination and soundness of Algorithm 10,
and the termination of Algorithm 11, we now discuss soundness of Algorithm
11.

Lemma 4.1.6 (Soundness of Simplify). The PropaFP simplification steps
as defined in Algorithm 11 soundly simplify any constraint φ of type F. The
algorithm outputs φS of type F. The following statement holds:

∀x ∈ vars(φ).φ(x) ⇐⇒ φS(x) (4.4)

Proof outline. The algorithm assigns F := φ and then calls SimplifyF with
input F as defined in 10, producing FS . From Lemma 4.1.4, we know that F
and FS have the same truth value for any point.

Now, the algorithm loops. Within the loop, the algorithm substitutes
variables defined as an equality v = t, where t does not contain v, in FS

with the value of the variable. This step preserves the truth value of F )S.
SimplifyF is then called on FS which preserves the truth value. These two
steps are repeated until no further variable substitutions can occur.

Finally, if a variable can be assumed to semantically mean π as defined
in Section 4.1.2, replace the variable with π. This step preserves the truth
value, semantically, of FS .

The algorithm outputs FS . Since all steps in the algorithm preserve the
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truth value of F , and F = φ, ∀x ∈ vars(φ).φ(x) ⇐⇒ φS(x). Algorithm 11
is sound.

4.2 Bounds Derivations

Deriving bounds for variables proceeds as follows:

• Identify inequalities which contain only a single variable on either side.

• Iteratively improve bounds by interval-evaluating the expressions given
by these inequalities.

– For our interval evaluations, we use intervals with floating-point
endpoints with a precision of 60

– Initially the bounds for each variable are −∞ and ∞.

– For FP rounding rnd(x), we overestimate the rounding error by
the interval expression x · (1 ± ϵ) ± ζ where ϵ is the machine
epsilon, and ζ is the machine epsilon for denormalized numbers
for the precision of the rounded operation.

• Variables are assumed to be real unless they are declared integer.

• For integer variables, trim their bounds by rounding the lower bounds
upwards towards the nearest integer and by rounding the upper
bounds downwards towards the nearest the integer.

Next, use the derived bounds to potentially further simplify the NVC:

• Evaluate all formulas in the NVC using interval arithmetic.

• If an inequality is decided by this evaluation, replace it with true or
false.

Finally, repeat the symbolic simplification steps, e.g., to remove any
tautologies that have arisen from the interval evaluation. These steps are
shown more formally in Algorithm 16. We first define several auxiliary
algorithms.
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Algorithm 12 EContainsVars : Check if an expression contains at least one
variable from a list of variables
Input: (t : E, vars : [String])
Output: (b : B)

1: switch t do
2: case Var v return true if v ∈ vars
3: case Lit l return false

4: case EBinOp op t1 t2 return EContainsVars(t1, vars) ∨
EContainsVars(t2, vars)

5: case EUnOp op t1 return EContainsVars(t1, vars)
6: case PowI t1 i return EContainsVars(t1, vars)
7: case Float32 roundingMode t1 return EContainsVars(t1, vars)
8: case Float64 roundingMode t1 return EContainsVars(t1, vars)
9: case Float roundingMode t1 return EContainsVars(t1, vars)

10: case RoundToInteger roundingMode t1 return EContainsVars(t1,
vars)

Lemma 4.2.1 (Termination of EContainsVars). For any inputs t of type E,
vars : [String], Algorithm 12 terminates.

Proof outline. The algorithm traverses over every operation in t at most once.
Thus, the algorithm cannot recurse more than sizeo(t) times. Algorithm 12
terminates.

Lemma 4.2.2 (Soundness of EContainsVars). For any inputs t : E, vars
: [String], and corresponding output b : B for Algorithm 12, the following
statements hold:

• If any variable in t is in the list vars, b = true.

• If all variables in t are not in the list vars, b = false.

Proof outline. The algorithm traverses the syntax tree of the expression,
visiting each variable within. If any of the variables we visit is in the vars, we
propagate a true result all the way back to the root. Since results of sibling
branches are combined using a conjunction, b = true.
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Conversely, if none of the variables we visit are in the vars list, no true
result is ever propagated back to the root. b = false. Algorithm 12 is
sound.

Lemma 4.2.3 (Termination of FilterVarsF). For any inputs φ of type F, vars :
[String], isNegated ∈ B, Algorithm 13 terminates.

Proof outline. The algorithm traverses over every operation in φ at most
once. Thus, the algorithm cannot recurse more than sizeo(φ) times. The
algorithm calls Algorithm 12 which, according to Lemma 4.2.1, terminates.
Thus, Algorithm 13 terminates.

Lemma 4.2.4 (Soundness of FilterVarsF). For any inputs φ of type F, vars :
[String], isNegated ∈ B, and corresponding output φO : F for Algorithm 13,
the following statement holds:

• If isNegated = true then ∀x ∈ vars(φ).φ(x) =⇒ φO(x
′)

• If isNegated = false then ∀x ∈ vars(φ).¬φ(x) =⇒ ¬φO(x
′)

• φO does not contain any variable from vars

where n is the number of variables in φ and x′ is the projection of x to the
variables in φO.

Proof outline. We first discuss the case where isNegated = false. The
algorithm makes use of recursion. Within the proof outline, if a formula takes
x′ instead of some universally quantified x, x′ is the projection of x to the
variables in the formula. We first discuss soundness of the non-recursive
branches,

The algorithm switches based on the value of φ. If φ is equal to t1♢t2

where ♢ ∈ {<,≤, >,≥,=}, the algorithm calls Algorithm 12 for both t1 and
t2 along with the vars list. From Lemma 4.2.2, we know that Algorithm 12
will output true if the given term contains a variable which is in the vars list.
If EContainsVars outputs false for both cases, from Lemma 4.2.2, we know
that both t1 and t2 do not contain any variables in vars. In this case, φO = φ
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Algorithm 13 FilterVarsF : Attempts to filter out given variables from the
given formula by weakening the formula
Input: (φ : F, vars : [String], isNegated : B)
Output: Potentially φO : F
1: F , isN := φ, isNegated
2: switch (F , isN) do
3: case (FNot f , any) return FNot (FilterVarsF(f , vars, ¬ isN))
4: case (FComp op E1 E2, any)
5: switch (EContainsVars(E1, vars, isN), EContainsVars(E2, vars, isN)) do
6: case (false, false) return FComp op E1 E2

7: case otherwise return Could not weaken F by filtering out vars
8: case (FConn And F1 F2, false)
9: switch (FilterVarsF(F1, vars, isN), FilterVarsF(F2, vars, isN)) do

10: case (F ′
1, F ′

2) return FConn And F ′
1 F ′

2

11: case (F ′
1, no result) return F ′

1

12: case (no result, F ′
2) return F ′

2

13: case otherwise return Could not weaken F by filtering out vars
14: case (FConn Or F1 F2, false)
15: switch (FilterVarsF(F1, vars, isN), FilterVarsF(F2, vars, isN)) do
16: case (F ′

1, F ′
2) return FConn Or F ′

1 F ′
2

17: case otherwise return Could not weaken F by filtering out vars
18: case (FConn Impl F1 F2, false)
19: switch (FilterVarsF(F1, vars, ¬ isN), FilterVarsF(F2, vars, isN)) do
20: case (F ′

1, F ′
2) return FConn Impl F ′

1 F ′
2

21: case otherwise return Could not weaken F by filtering out vars
22: case (FConn And F1 F2, true)
23: switch (FilterVarsF(F1, vars, isN), FilterVarsF(F2, vars, isN)) do
24: case (F ′

1, F ′
2) return FConn And F ′

1 F ′
2

25: case otherwise return Could not weaken F by filtering out vars
26: case (FConn Or F1 F2, true)
27: switch (FilterVarsF(F1, vars, isN), FilterVarsF(F2, vars, isN)) do
28: case (F ′

1, F ′
2) return FConn Or F ′

1 F ′
2

29: Remaining cases are identical to the cases in lines 11–13
30: case (FConn Impl F1 F2, true)
31: switch (FilterVarsF(F1, vars, ¬ isN), FilterVarsF(F2, vars, isN)) do
32: case (F ′

1, F ′
2) return FConn Impl F ′

1 F ′
2

33: case (F ′
1, no result) return FNot F ′

1

34: case (no result, F ′
2) return F ′

2

35: case otherwise return Could not weaken F by filtering out vars
36: case (FTrue, any) return FTrue
37: case (FFalse, any) return FFalse
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which is trivially sound. If EContainsVars outputs true for either t1 or t2 (or
both), from Lemma 4.2.2, we know that t1 or t2 (or both) contain at least one
variable from the vars list, so the algorithm gives up.

If φ is equal to either FTrue or FFalse, again we have φO = φ which is
trivially sound. Thus, all non-recursive branches are sound. We now discuss
the recursive branches.

If φ is equal to ¬φ1, the algorithm recurses with inputs φ1, vars, and
¬isNegated , soundly propagating the negation. Let the output of the recursive
call be φ1,O. Assume that the result is sound, i.e., ∀x ∈ vars(φ1).¬φ1(x) =⇒
¬φ1,O(x

′). Since φO := ¬φ1,O, clearly, ∀x ∈ vars(φ).φ(x) =⇒ φO(x
′).

If φ is equal to φ1 ∧ φ2, the algorithm recursively calls FilterVarsF
with inputs φ1, vars, isNegated and φ2, vars, isNegated . Let the results
of these recursive calls be φ1,O and φ2,O, respectively. If both recursive
calls completed successfully, let φO := φ1,O ∧ φ2,O. Assuming that ∀x ∈
vars(φ1).φ1(x) =⇒ φ1,O(x

′) and ∀x ∈ vars(φ2).φ2(x) =⇒ φ2,O(x
′), it

must be true that ∀x ∈ vars(φ).φ(x) =⇒ φO(x
′). If the recursive call for

φ1 completed successfully but not for φ2, we have φO = φ1,O. Recall that
removing a term from a conjunction weakens the conjunction. Assuming that
∀x ∈ vars(φ1).φ1(x) =⇒ φ1,O(x

′), clearly ∀x ∈ vars(φ).φ(x) =⇒ φO(x
′).

There is a similar case if the recursive call for φ2 completed successfully but
not for φ1. If both recursive calls fail, the algorithm gives up.

If φ is equal to φ1 ∨ φ2, the algorithm recursively calls FilterVarsF inputs
φ1, vars, isNegated and φ2, vars, isNegated . Let the results of these recursive
calls be φ1,O and φ2,O, respectively. If both recursive calls completed
successfully, let φO := φ1,O ∨ φ2,O. Assuming that ∀x ∈ vars(φ1).φ1(x) =⇒
φ1,O(x

′) and ∀x ∈ vars(φ2).φ2(x) =⇒ φ2,O(x
′), it must be true that

∀x ∈ vars(φ).φ(x) =⇒ φO(x
′). If either of the recursive calls fail, the

algorithm gives up.
If φ is equal to φ1 =⇒ φ2, the algorithm treats φ as its equivalent

disjunction, i.e., ¬φ1 ∨ φ2. So, the algorithm recursively calls FilterVarsF
with inputs φ1, vars, ¬isNegated and φ2, vars, isNegated . If both recursive
calls completed successfully, let φO := φ1,O =⇒ φ2,O which is equivalent
to ¬φ1,O ∨ φ2,O. Because ¬isNegated is true, we can assume that ∀x ∈
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vars(φ1).¬φ1(x) =⇒ ¬φ1,O(x
′) and ∀x ∈ vars(φ2).φ2(x) =⇒ φ2,O(x

′). It
must be true that ∀x ∈ vars(φ).φ(x) =⇒ φO(x

′). If either of the recursive
calls fail, the algorithm gives up.

We have now discussed every possible case where isNegated = false.
The cases where isNegated = true are shown analogously.

Since we have proven that every branch soundly deals with the result of
any recursive call, and all non-recursive branches are sound, Algorithm 13
is sound.

Lemma 4.2.5 (Termination of ScanAndDerive). For any φ : F, b : IR∗vars(φ),
isNegated : B, Algorithm 14 terminates.

Proof outline. The algorithm traverses over every non FComp operation in
φ at most once. Thus, if φ does not contain any FComp operations, the
algorithm cannot recurse more than sizeo(φ) times.

If φ does contain an FComp operator, but the operator does not have only
a variable on the LHS or RHS, the algorithm will return B once reaching the
FComp operator.

If φ does contain an FComp operator and the operator has only a variable
on the LHS or RHS, the algorithm branches depending on isNegated . We
first discuss the case where isNegated is true. Let the FComp operator we
are discussing be described as v♢t where v is a variable, t is an expression,
and ♢ ∈ {<,≤, >,≥,=}. If ♢ is =, the algorithm returns b. Otherwise, the
algorithm recurses with a negation of v♢t, b, and with isNegated := false.
Since we set isNegated to false, this recursion can only happen once.

Now, we discuss the case where isNegated is false. Here, we start a
loop. Within the loop, we attempt to improve the bounds described for v by
interval evaluating v♢t using floating-point interval arithmetic with a fixed
precision of 60. If the interval evaluation shows that v♢t describes a better
bound for v, improve the bound and loop, repeating the above steps. This
repetition is useful because better bounds for B can result in a better interval
evaluation for v♢t which can, again, result in better bounds for B and so on.
Because we use floating-point interval arithmetic with a fixed precision, this
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Algorithm 14 ScanAndDerive: Scan through a formula, deriving bounds
where possible
Input: (φ : F, b : IR∗vars(φ), isNegated : B)
Output: bS : IR∗vars(φ)

1: F , B, isN := φ, b, isNegated
2: switch F do
3: case FNot F1 return (ScanAndDerive(F1, B, ¬ isN))
4: case FConn And F1 F2

5: if isN then
6: return ScanAndDerive(FConn Or (FNot F1) (FNot F2), B, ¬ isN)
7: else
8: B2 = ScanAndDerive(F2, B, isN)
9: return ScanAndDerive(F1, B2, isN)

10: end if
11: case FConn Or F1 F2

12: if isN then
13: return ScanAndDerive(FConn And (FNot F1) (FNot F2), B, ¬ isN)
14: else
15: B1 = ScanAndDerive(F1, B, isN)
16: B2 = ScanAndDerive(F1, B, isN)
17: return hull(B1 ∪B2)
18: end if
19: case FConn Impl F1 F2

20: return ScanAndDerive(FConn Or (FNot F1) F2, B, isN)
21: case FComp op (Var v) t # also its commutative version
22: if isN then
23: switch op do
24: case Eq return B # v ̸= t does not give useful information

25: case Ge return ScanAndDerive(FComp Lt (Var v) t, B, ¬ isN)
26: case Gt return ScanAndDerive(FComp Le (Var v) t, B, ¬ isN)
27: case Le return ScanAndDerive(FComp Gt (Var v) t, B, ¬ isN)
28: case Lt return ScanAndDerive(FComp Ge (Var v) t, B, ¬ isN)
29: else
30: repeat
31: BL := B
32: tR := evaluate t over B using floating-point interval arithmetic with

precision 60
33: if x op tR describes a larger lower or smaller upper bound for x than

the one in B then B := improve the bound of v in B with v op tR
34: end if
35: until BL = B
36: return B
37: end if
38: case any return B
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cycle of improving B by getting a better interval evaluation for v♢t must be
finite. Thus, the loop terminates. Once the loop terminates, the algorithm
returns B.

Since the algorithm always returns B when it comes across an FComp

operation with only a variable on one side, and traverses through all other
operations at most once, Algorithm 14 terminates.

Lemma 4.2.6 (Soundness of ScanAndDerive). For any inputs φ : F, b

: IR∗vars(φ), isNegated : B, and corresponding output bS : IR∗vars(φ) for
Algorithm 14, the following statements hold:

• bS ⊆ b

• If isNegated = false then ∀x ∈ b.φ(x) =⇒ x ∈ bS

• If isNegated = true then ∀x ∈ b.¬φ(x) =⇒ x ∈ bS

Proof outline. The algorithm traverses through φ, looking for comparisons
where there is only a variable on one side and any term on the other. We
first discuss the branches where the value of isNegated is not important.

If φ is equal to ¬φ1, the algorithm recurses with inputs φ1, b, and
¬isNegated , soundly propagating the negation. Let the output of the recursive
call be bS . Assuming that the result of the recursive call is sound, then
bS ⊆ b and ∀x ∈ b.φ(x) =⇒ x ∈ bS

If φ is equal to φ1 =⇒ φ2, the algorithm treats the implication as its
equivalent disjunction, recursing with inputs ¬φ1 ∨ φ2, b, and isNegated .
Let the output of the recursive call be bS . Assuming that the result of the
recursive call is sound, then bS ⊆ b and ∀x ∈ b.φ(x) =⇒ x ∈ bS We now
discuss the cases where isNegated is false.

Let B := b. If φ is a comparison of the form v♢t where v is a variable, t
is any term, and ♢ ∈ {<,≤, >,≥,=}, the algorithm attempts to improve the
bound for v by interval evaluating v♢t using floating-point interval arithmetic
with a precision of 60. This is repeated until the bound for v stops improving,
at which point, the algorithm outputs B. After this operation, clearly, bS ⊆ b.
Since the algorithm improves the bounds for v using φ, clearly ∀x ∈ b \
bS .¬φ, so ∀x ∈ b.φ(x) =⇒ x ∈ bS . This branch is sound.
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If φ is true, false, or any comparison other than the one described above,
the algorithm outputs b which is trivially sound. Every non-recursive branch
is sound. We now discuss the recursive branches.

First, we discuss the branches where isNegated is false. If φ is φ1∧φ2, the
algorithm recurses twice. First, the algorithm recurses with inputs φ2, b, and
isNegated . Let the output of this recursive call be b2. Assuming that the result
of the recursive call is sound, then b2 ⊆ b and ∀x ∈ b.φ(x) =⇒ x ∈ b2.
Since b2 soundly describes bounds for φ2, and φ = φ1 ∧ φ2, we recurse
with inputs φ1, b2, and isNegated . The output of this recursive call bS .
Assuming that the result of the recursive call is sound, then bS ⊆ b1 and
∀x ∈ b1.φ(x) =⇒ x ∈ bS . Since b1 ⊆ b, this is sound.

If φ is φ1 ∨φ2, the algorithm recurses twice. First, the algorithm recurses
with inputs φ1, b, and isNegated . Let the output of this recursive call be b1.
Assuming that the result of the recursive call is sound, then b1 ⊆ b and ∀x ∈
b.φ(x) =⇒ x ∈ b1. Then, the algorithm recurses with inputs φ2, b, and
isNegated . Let the output of this recursive call be b2. Assuming that the result
of the recursive call is sound, then b2 ⊆ b and ∀x ∈ b.φ(x) =⇒ x ∈ b2.
Since φ = φ1 ∨ φ2, b1 soundly describes bounds for φ1, and likewise for b2

and φ2, the algorithm outputs the hull of inputs b1 and b2. Clearly, b1 ⊆ bS

and b2 ⊆ b2. Since bS is the box hull of b1 and b2, bS will never leave the
boundaries of either b1 or b2, and since both b1 and b2 are subboxes of b,
bS ⊆ b. Since b1 ⊆ bS ⊆ b and similar for b2, ∀x ∈ b.φ(x) =⇒ x ∈ bS .

Now, we discuss the branches where isNegated is true. If φ is φ1 ∨ φ2,
the algorithm applies the negation and recurses with inputs ¬φ1 ∧ ¬φ2,
b, ¬isNegated , outputting bS . Assuming that the result of the recursive
call is sound, since we soundly apply the negation, then bS ⊆ b and
∀x ∈ b.¬φ(x) =⇒ x ∈ bS .

If φ is φ1 ∧ φ2, the algorithm applies the negation and recurses with
inputs ¬φ1 ∨ ¬φ2, b, ¬isNegated , outputting bS . Assuming that the result
of the recursive call is sound, since we soundly apply the negation, then
bS ⊆ b and ∀x ∈ b.¬φ(x) =⇒ x ∈ bS .

Since we have proven that every branch soundly deals with the result of
any recursive call, and all non-recursive branches are sound, Algorithm 14
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is sound.

Algorithm 15 DeriveBounds: Iteratively derive bounds for variables
Input: (φ : F, intVars : [String])
Output: bS : IR∗vars(φ) and a formula φS

1: FS := SimplifyF(φ)
2: B := a box for all variables in FS with initial bounds set to ±∞
3: repeat
4: BL = B
5: B := ScanAndDerive(FS , B, false)
6: FI := replace in FS comparisons with the appropriate truth value if

they can be decided using interval arithmetic over B
7: FS := SimplifyF(FI )
8: until BL = B
9: for all variables v ∈ intVars do

10: B = ceil the lower bound and floor the upper bound of v ∈ B to the
nearest integer

11: end for
12: return B, FS

Lemma 4.2.7 (Termination of DeriveBounds). For any inputs φ : F, intVars :
[String], Algorithm 15 terminates.

Proof outline. The algorithm calls Algorithm 10 with input φ, which terminates
(Lemma 4.1.3), outputting FS . Let B be a box describing all variables in FS

with initial bounds set to ±∞
The algorithm loops. Let BL := B. The loop terminates when, after any

iteration, BL = B. Overwrite B with the output of Algorithm 14 with inputs
FS , B, false. From Lemma 4.2.5, we know that B ⊆ BL. Let FI be the result
of attempting to replacing comparisons in FS with the appropriate truth value
after interval evaluating the comparison over B. If any comparisons were
successfully replaced, then sizeo(FI) < sizeo(FS). Overwrite FS with the
output of Algorithm 10 with input FI . If any of the rules in Algorithm 10 were
successfully applied, then clearly sizeo(FS) < sizeo(FI). Thus, the rule on
line 7 along with the rules in Algorithm 10 can be applied, at most, sizeo(FS)
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times. Clearly, if Algorithm 14 is called with the same inputs, it will produce
the same output. Thus, the first loop must terminate.

In the second loop, we iterate through every integer variable in B once.
There are a finite number of variables in B. This loop terminates. Algorithm
15 terminates.

Lemma 4.2.8 (Soundness of DeriveBounds). For any inputs φ : F, intVars :
[String], and corresponding outputs bS : IR∗n, φS : F for Algorithm 15, the
following statement holds:

• ∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).φS(x) =⇒ x ∈ bS

• ∀x ∈ bS .φ(x) ⇐⇒ φS(x)

Proof outline. The algorithm calls Algorithm 10 with input φ, storing the
output in FS From Lemma 4.1.4, ∀x ∈ vars(φ).φ(x) ⇐⇒ FS . Let B be a
box of type IR∗vars(φ) defined for all variables in φ with initial endpoints set
to ±∞.

The algorithm loops. Let BL := B. Let BO be the output of Algorithm
14 with inputs FS , B, and false. From Lemma 4.2.6, we know that BO ⊆ B

and ∀x ∈ B.FS(x) =⇒ x ∈ BO. Clearly, ∀x ∈ IR∗vars(φ).FS(x) =⇒
x ∈ BO. Let FI be FS where we evaluate comparisons over BO and, if
possible, replace the comparison with the evaluated truth value. Clearly,
∀x ∈ BO.FS(x) ⇐⇒ FI(x). Let F ′

S be the output of Algorithm 10 with input
FI . From Lemma 4.1.4, ∀x ∈ vars(FI).FI(x) ⇐⇒ F ′

S(x). If b6 ̸= b5, then it
must be true that b6 ⊆ b5. The algorithm loops where, in the next iteration,
φS,2 := F ′

S and b5 := b6. So, we have the following invariants.

1. BO ⊆ B

2. ∀x ∈ IR∗vars(φ).F ′
S(x) =⇒ x ∈ BO

3. ∀x ∈ BO.φ(x) ⇐⇒ F ′
S(x)

Let BE and FE be the value of BO and F ′
S , respectively, after the loop has

finished. Since, in the first iteration, we call Algorithm 14 with inputs BO, and
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in the first iteration, BO = B, it must be true that ∀x ∈ IR∗vars(φ).φ(x) =⇒
x ∈ BE . Since FE is a version of φ where SimplifyF has been called
repeatedly and comparisons have been replaced with their evaluated truth
value over BE , it must be true that ∀x ∈ BE .φ(x) ⇐⇒ FE(x).

The second loop rounds interval variables in BE by rounding lower
bounds upwards to the nearest integer and upper bounds downwards
towards the nearest integer which is clearly sound. The algorithm outputs FE

and BE after this loop has completed. Due to rounding of integer variables,
we now have ∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).φS(x) =⇒ x ∈ bS .
Clearly, ∀x ∈ bS .φ(x) ⇐⇒ φS(x). Algorithm 15 is sound.

We now define DeriveBoundsAndFilter, an algorithm which calls Derive-
Bounds for a given formula and then attempts to filter out variables with
at least one unbounded endpoint in such a way that the given formula is
weakened.

Algorithm 16 DeriveBoundsAndFilter: Derive bounds for variables and
attempt to filter out variables with at least one unbounded endpoint.
Input: (φ : F, intVars : [String])
Output: b : IRvars(φ) and a formula φD

1: vars := list of all variables in φ
2: (BS , FS) := DeriveBounds(φ, intVars)
3: unboundedVars := vars in BS with at least one unbounded endpoint
4: FW := FilterVarsF(FS , unboundedVars) # Removes statements referring to any

variable in unboundedVars

5: if FW is defined then
6: B := remove unboundedVars from BS

7: FW := if a variable in B has the same upper and lower bound, remove
the variable from B and replace the variable with its value in FW

8: F I
W := interval evaluate comparisons in FW over b and replace

comparisons with their truth value if possible # Note that this step will replace

comparisons which state the bounds for derived variables with FTrue

9: FD := SimplifyF(F I
W )

10: return B, FD

11: else
12: return Failed to derive bounds for the variables in φ
13: end if
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Lemma 4.2.9 (Termination of DeriveBoundsAndFilter). For any inputs φ : F,
intVars : [String], Algorithm 16 terminates.

Proof outline. The algorithm calls Algorithms 15, 13, and 11, all of which
terminate according to Lemmas 4.2.7, 4.2.3, and 4.1.5, respectively. The
rest of the algorithm clearly terminates.

Building on the discussion of soundness and termination for Algorithms
15, 13, and 11, we now discuss the soundness of Algorithm 16.

Lemma 4.2.10 (Soundness of DeriveBoundsAndFilter). For any inputs φ :
F, intVars : [String], and corresponding outputs b, φD for Algorithm 16, the
following statements hold:

∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).φ(x) =⇒ φD(x
′) ∧ x′ ∈ b (4.5)

Where x′ is the projection of x to the variables in φD.

Proof outline. The algorithm calls DeriveBounds with inputs φ and intVars,
storing the output in BS and FS . From Lemma 4.2.8, we know ∀x ∈
IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).FS(x) =⇒ x ∈ BS and ∀x ∈ BS .φ(x) ⇐⇒
FS(x) Let vars be a list of variables in BS with at least one unbounded
endpoint. If any variable in BS has an unbounded endpoint, the algorithm
attempts to weaken FS by calling Algorithm 13 with inputs FS and vars,
outputting FW . There are two cases.

If Algorithm 13 failed to weaken F , Algorithm 4.2.10 gives up. Otherwise,
proceed by removing variables with unbounded endpoints from BS . From
Lemma 4.2.4, we know that ∀x ∈ BS .FS(x) =⇒ FW (x′) where x′ is
the projection of x to the variables in FW . The algorithm then interval
evaluates comparisons in FW over BS , replacing the comparisons with
the resulting truth value if possible. The new constraint is named F I

W .
Clearly, ∀x ∈ BS .FW (x) ⇐⇒ F I

W (x). Algorithm 10 is then called with
input F I

W , outputting the constraint FD. From Lemma 4.1.4, we know that
∀x ∈ vars(F I

W ).F I
W (x) ⇐⇒ FD(x).

Let x be an arbitrary value from IR∗vars(φ). Let xW be the projection
of x to the variables in FW . Let x′ be the projection of x to the variables
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Listing 4.4: Taylor_Sin NVC after simplification and bounds derivation
Bounds on variables:
x (real) ∈ [-0.5, 0.5]

NVC:
assert to_float(RNA , 1) = 1.0
−− The last assertion is unchanged from Listing 4.3 except
−− turning ≥s into equivalent ≤s.

in FD. Let x′ be the projection of x to the variables in FD. Since (∀v ∈
intVars.xv ∈ Z).FS(x) =⇒ x ∈ BS and ∀x ∈ BS .FS(x) =⇒ FW (xW ) ⇐⇒
F I
W (xW ) ⇐⇒ FD(x

′), ∀x ∈ vars(φ).φ(x) =⇒ FD(x
′) ∧ x′ ∈ BS . Thus,

Algorithm 16 is sound.

Similarities with Abstract Interpretation. The iterative process in Algo-
rithm 15 can be thought of as a simple form of Abstract Interpretation (AI)
over the interval domain [15], but instead of scanning program steps along
paths in loops, we scan a set of mutually recursive variable definitions within
a formula φ.

The NVC arising from Taylor_Sin, shown in Listing 4.3, is already almost
in its simplest form. The symbolic steps described in this section applied on
this NVC cause real_pi (which is present in the omitted assertions) to be
replaced with π and also lead to the removal of assertions bounding X and
real_pi. The resulting bounded NVC is outlined in Listing 4.4.

4.2.1 Eliminating floating-point operations

VCs arising from FP programs are likely to contain FP operations. As most
provers for real inequalities do not natively support FP operations, we need
to eliminate the FP operations before passing the NVCs to a numerical
prover. We propose computing an upper bound on the size of the absolute
rounding error in expressions using a tool specialised in this task, replacing
FP operations with the corresponding real operations, and compensating for
the loss of rounding by adding/subtracting the computed error bound. Note
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that this action weakens the NVCs. Recall that weakening is safe for proving
correctness but may lead to incorrect counter-examples. These steps are
defined more formally in Algorithm 17

Algorithm 17 EliminateFloats: eliminate floating-point operations within a
formula over some box
Input: (φ : F, b : IRvars(φ))
Output: φE : F

1: FI , B := φ, b
2: F := determine type of FP operations in FI using a bottom-up type

derivation
3: FE := F
4: for all cf = l♢r := comparisons in FE containing FP operations do
5: el := an upper bound of the absolute rounding error in l over b
6: er := an upper bound of the absolute rounding error in r over b
7: c′e := replace FP operations in cf with exact operations
8: ce := weaken the LHS and RHS in c′e using el and er
9: FE := weaken FE by replacing cf with ce

10: end for
11: return FE

Lemma 4.2.11 (Termination of EliminateFloats). For any φ : F and any b :
IRn where n is the number of variables in φ, Algorithm 17 terminates.

Proof outline. Let sizef be a function which counts the number of floating-
point operations within some input of type F. The algorithm loops while there
are floating-point operations in φ. Let φE,k be the value of φ after k iterations
of the loop which removes floating-point operations. sizef(φ) = sizef(φE,0) >

sizef(φE,1) > · · · > sizef(φE,k). Since there are a finite number of floating-
point operations, and the loop always removes at least one floating-point
operation from the formula, eventually the number of floating-point operations
in the formula will become zero. Thus, Algorithm 17 terminates.

We now discuss the soundness of EliminateFloats.

Lemma 4.2.12 (Soundness of EliminateFloats). For any inputs φ : F, b
: IRvarsφ and corresponding output φE : F for Algorithm 17, the following
statements hold:
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• φE does not contain any floating-point operations

• ∀x ∈ b.φ(x) =⇒ φE(x)

Proof outline. Let FI := φ The algorithm loops over all comparisons con-
tain-ing floating-point operations in FI . The loop has the invariant ∀x ∈
bφ(x) =⇒ FI(x). Let x be an arbitrary value in b. We now discuss why this
invariant holds. Let cf be the floating-point containing comparison we are
currently looping on. We compute upper bounds on the absolute rounding
error for both the LHS and RHS of cf . The loop then defines ce, a version
of cf with only exact operations where both the LHS and RHS have been
weakened using the computed upper bounds on the absolute error. Within
FI , we replace cf with ce. Clearly, cf is in φ. Since ce is a weakening of cf ,
and FI contains ce instead of cf , clearly ∀x ∈ φ(x) =⇒ FI(x). This logic
applies for any iteration of the loop. Thus, the loop invariant holds.

Let FE be the value of FI after the loop has ended. Since we loop on all
floating-point containing comparisons, replacing the floating-point operations
with exact operations, FE does not contain any floating-point operations.
Since the loop invariant holds, clearly ∀x ∈ bφ(x) =⇒ FE(x). Thus,
Algorithm 17 is sound.

Currently, in our implementation of EliminateFloats, we use FPTaylor
[60] which supports most of the operations we need. In principle, we can
use any tool that gives reliable absolute bounds on the rounding error of our
FP expressions, such as Gappa [20], Rosa [19] or PRECiSA [61], perhaps
enhanced by FPRoCK [59].

There are expressions containing FP operations in the Taylor_Sin NVC.
The top-level expressions with FP operators are automatically passed to
FPTaylor. Listing 4.5 shows an example of how the expressions are specified
to FPTaylor. The error bounds computed by FPTaylor for the Taylor_Sin

NVC expressions that contain FP operators are summarised in Table 4.1.
We can now use these error bounds to safely replace FP operations with

exact real operations. Listing 4.6 shows the resulting NVC for Taylor_Sin.
There may be statements which can be further simplified thanks to the

elimination of FP operations. For example, in Listing 4.6, we have the trivial
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rnd32(1.0) 0
sin(x) + (-1 * rnd32((x - rnd32((rnd32((rnd32((x * x)) * x)) / 6))))) 1.769513e-8
-1 * (sin(x) + (-1 * rnd32((x - rnd32((rnd32((rnd32((x * x)) * x)) / 6)))))) 1.769513e-8

Table 4.1: Error bounds computed by FPTaylor

Listing 4.5: FPTaylor file to compute an error bound of the Taylor_Sin VC
Variables

real x in [-0.5, 0.5];

Expressions
sin(x) + (-1 *

rnd32((x - rnd32 ((rnd32(( rnd32 ((x*x))*x)) / 6)))));
/ / Computed absolute error bound: 1.769513e-8

tautology 1± 0.0 = 1.0. To capitalise on such occurrences, we could once
again interval-evaluate each statement in the NVC. Instead, we invoke the
steps from Section 4.1.2 again, which not only include interval evaluation,
but also make any consequent simplifications.

We now have derived bounds for variables and a weakened and simplif-
ied NVC with no FP operations, ready for provers. We will call this the
‘simplified exact NVC’1.

The entire process of simplifying, deriving bounds for variables, and
eliminating floating-point operations in a VC is described in algorithmic form
in Algorithm 18.

Lemma 4.2.13 (Termination of PropaFP). For any φ : F, Algorithm 18
terminates.

Proof outline. The algorithm relies on Algorithms 11, 16, and 17, all of
which have been shown to terminate in Lemmas 4.1.5, 4.2.9, and 4.2.11,
respectively. The rest of the algorithm clearly terminates.

Finally, we discuss the soundness of the PropaFP algorithm.
1In Table 5.1, this NVC is referred to as Taylor_Sin.
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Listing 4.6: Taylor_Sin NVC after removal of FP operations
Bounds on variables:
x (real) ∈ [-0.5, 0.5]

NVC:
assert 1 ± 0.0 = 1.0
assert
¬((
0.0 ≤ (sin(x) + (-1·(x − ((x·x)·x/6.0))) + 1.769513e−8)
=⇒
(sin(x) + (-1·(x − ((x·x)·x/6.0))) + 1.769513e−8) ≤

(25889/100000000)
)∧(
¬ (0.0 ≤ (sin(x) + (-1·(x − ((x·x)·x/6.0)))) − 1.769513e−8)
=⇒
(-1·(sin(x) + (-1·(x − ((x·x)·x/6.0)))) + 1.769513e−8)≤

(25889/100000000)
))

Listing 4.7: Taylor_Sin simplified exact NVC, ready for provers
Bounds on variables:
x (real) ∈ [-0.5, 0.5]

NVC:
−− The last assertion is the same as in Listing 4.6

Lemma 4.2.14 (Soundness of PropaFP). For any inputs φ : F, intVars :
[String] and corresponding outputs bP : box, φP : F for Algorithm 18, the
following statement holds:

1. ∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).φ(x) =⇒ φP (x
′) ∧ x′ ∈ b

where x′ is the projection of x to the variables in φP .

2. φP does not contain any floating-point operations.

Proof outline. The algorithm first calls Simplify on φ, producing FS . From
Lemma 4.1.6, ∀x ∈ vars(φ).φ(x) ⇐⇒ FS(x). The algorithm then calls
DeriveBoundsAndFilter with inputs FS , intVars. If DeriveBoundsAndFilter
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Algorithm 18 PropaFP: simplify, derive bounds for variables, and eliminate
floats within a VC
Input: (φ : F, intVars : [String])
Output: Potentially bP : IR∗vars(φ) and a formula φP

1: FS := Simplify(φ)
2: if DeriveBoundsAndFilter(FS , intVars) succeeds then
3: BT , FT := DeriveBoundsAndFilter(FS , intVars)
4: FE := EliminateFloats(FT , BT )
5: FBT

:= convert BT to F
6: bP, FP := DeriveBoundsAndFilter(FE ∧ FBT

, intVars) # This call never fails

7: return bP, FP

8: else
9: return failed to derive bounds for F

10: end if

cannot successfully derive bounds for variables in FS , the algorithm gives
up.

If DeriveBoundsAndFilter does successfully derive bounds for variables
in FS , the algorithm stores the outputs in BT and FT . From Lemma 4.2.10,
we know that ∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).φ(x) =⇒ FT (x

′) ∧ x′ ∈
BT where x′ is the projection of x to the variables in FT

The algorithm then calls EliminateFloats with arguments FT and BT ,
outputting FE . From Lemma 4.2.12, we know that ∀x ∈ BT .FT (x) =⇒
FE(x) and FE does not contain floating-point operations. Let FBT

be the F

equivalent of BT . Clearly, ∀x ∈ BT .FT (x) =⇒ (FE(x) ∧ FBT
(x)).

The algorithm now calls DeriveBoundsAndFilter on FE(x) ∧ FBT
(x),

outputting FP and bP. Since we derived bounds on FE ∧ FBT
, and FBT

is the F equivalent of BT , bP = BT . From Lemma 4.2.10, we know that
∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).FE ∧ FBT

=⇒ FP (x
′) ∧ x′ ∈ bP

where x′ is the projection of x to the variables in FP .
We have the following facts:

1. ∀x ∈ vars(φ).φ(x) ⇐⇒ φS(x).

2. ∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).φ(x) =⇒ FT (x
′) ∧ x′ ∈ BT

where x′ is the projection of x to the variables in FT .
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3. FE does not contain floating-point operations.

4. ∀x ∈ BT .FT (x) =⇒ FE(x)

5. ∀x ∈ BT .FT (x) =⇒ (FE(x) ∧ FBT
(x)).

6. bP = BT .

7. ∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).FE(x) ∧ FBT
(x) =⇒ FP (x

′) ∧
x′ ∈ bP where x′ is the projection of x to the variables in FP .

8. Since FBT
is the F equivalent of bP, we know that ∀x ∈ IR∗vars(φ).(∀v ∈

intVars.xv ∈ Z).FE(x) =⇒ FP (x
′)∧x′ ∈ bP where x′ is the projection

of x to the variables in FP

Thus, ∀x ∈ IR∗vars(φ).(∀v ∈ intVars.xv ∈ Z).φ(x) =⇒ FP (x
′) ∧ x′ ∈ b

where x′ is the projection of x to the variables in FD. Since FE does not
contain floating-point operations, and DeriveBoundsAndFilter does not add
any floating-point operations, we know that FP does not contain any floating-
point operations. Thus, PropaFP is sound.

4.3 Deriving Provable Error Bounds

We now describe how we derived the bound for the post-condition in the
specification in Listing 4.2. The bound specifies the difference between
Taylor_Sin(X) and the exact sine function. Note that the process we
describe here is not part of the proving process and is not necessary
for writing a specification such as the one in Listing 4.2. Rather, we present
this process in order to aid the reader in understanding how such a bound
can be broken down into its components and why it is difficult to reason
about specifications with such bounds. The fact that this process described
in this section is not precise nor fully automated does not affect the reliability
and automation of the PropaFP proving process.

So, such a bound can be broken down as follows:
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• The subprogram specification error, i.e. the error inherited from the
specification of any subprograms that the implementation relies on.

– If an implementation relies on some subprogram, the specification,
not the implementation, of that subprogram would be used in the
Why3 VC.

– For Taylor_Sin this component is 0 as it does not call any sub-
programs.

• The maximum model error [9], i.e. the maximum difference between
the model used in the computation and the exact intended result.

– For Taylor_Sin this is the difference between the degree 3 Taylor
polynomial for the sine function and the sine function.

• The maximum rounding error [9], i.e. the maximum difference
between the exact model and the rounded model computed with
FP arithmetic.

• A rounding analysis cushion arising when eliminating FP operations.
This is the difference between the actual maximum rounding error
and the bound on the rounding error calculated by a tool such as
FPTaylor as well as over-approximations made when deriving bounds
for variables.

– The derived bounds are imperfect due to the accuracy loss
of interval arithmetic as well as the over-approximation of FP
operations.

– Imperfect bounds on variables inflate the computed rounding
error bound, as more values have to be considered.

• A proving cushion is added so that the specification can be decided
by the approximation methods in the provers. Without this cushion, the
provers could not decide the given specification within certain bounds
on resources, such as a timeout.
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single precision double precision

Subprogram Specification Error 0 0
Maximum Model Error ∼ 2.59E−4 ∼ 2.59E−4
Maximum Rounding Error ∼ 1.61E−8 ∼ 2.89E−17
Rounding Analysis Cushion ∼ 1.57E−9 ∼ 4.04E−18
Proving Cushion ∼ 2.11E−9 ∼ 1.80E−9

Table 4.2: Error bound components for Taylor_Sin

To justify our specification in Listing 4.2, we estimated the values of all
five components. Our estimates can be seen in Table 4.2. The maximum
model error and the maximum rounding error were calculated using the
Monte-Carlo method. We ran a simulation comparing the Taylor series
approximation of degree 3 of the sine function and an exact sine function.
This simulation was ran for one million with pseudo-random inputs, giving us
an approximate model error. To estimate the maximum rounding error, we
compared a single precision and a quadruple precision FP implementation
of the model for one hundred million pseudo-random inputs. (FP operations
are much faster than exact real operations.) We estimate the rounding
analysis cushion as the difference between the rounding error and the
bound given by FPTaylor (∼ 1.77E−8). Note that the actual rounding
analysis cushion may be larger due to over approximations made when
deriving bounds.

The sum of the maximum model error, the maximum rounding error,
and the rounding analysis cushion is around 0.0002588878950. Raising
the specification bound to 0.00025889 enables provers LPPaver and dReal
to verify the specification, using a proving cushion of around 2.11E−9.

In this case, most of the error in the program comes from the maximum
model error. If we increased the number of Taylor terms, the maximum
model error would become smaller and the maximum rounding error
would become larger. Increasing the input domain would make both the
maximum model error and the maximum rounding error larger.

Increasing the precision of the FP numbers used is a simple way to
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reduce both the maximum rounding error and the rounding analysis
cushion. Table 4.2 on the right shows estimates for the components in a
double-precision version of Taylor_Sin2.

To demonstrate how the subprogram specification error affects prov-
able error bounds, consider function SinSin given in Listings 4.8 and 4.9.

Listing 4.8: SinSin function definition in SPARK
procedure Taylor_Sin_P (X : Float; R : out Float) is
begin

R := X - ((X * X * X) / 6.0);
end Taylor_Sin_P;

function SinSin (X : Float) return Float is
OneSin , TwoSin : Float;

begin
Taylor_Sin_P(X, OneSin );
Taylor_Sin_P(OneSin , TwoSin );
return TwoSin;

end SinSin;

Listing 4.9: SinSin function specification in SPARK
procedure Taylor_Sin_P (X : Float; R : out Float) with

Pre => X >= -0.5 and X <= 0.5,
Post =>

Rf(R) >= Ri(-48) / Ri(100) and −− Helps verification of
−− calling functions

Rf(R) <= Ri(48) / Ri(100) and
abs(Real_Sin(Rf(X)) - Rf(R)) <=

Ri (25889) / Ri (100000000);

function SinSin ( X : Float) return Float with
Pre => X >= -0.5 and X <= 0.5,
Post =>

abs(Real_Sin(Real_Sin(Rf(X))) - Rf(SinSin ’Result ))
<= Ri (51778) / Ri (100000000);

Taylor_Sin_P is the procedure version of the Taylor_Sin function. Our
implementation currently does not support function calls, but it does support

2The simplified exact NVC resulting from this example is referred to as Taylor_Sin_Double
in Table 5.1.
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procedure calls. (This limitation is not conceptually significant.) The speci-
fication for Taylor_Sin_P has two additional inequalities, bounding the output
value R to allow us to derive tight bounds for R when proving VCs involving
calls of this procedure. Verifying this procedure in GNATprove gives one
NVC for our proving process, corresponding to the final post-condition. The
exact NVC is in folder examples/taylor_sine/txt in the PropaFP code
repository [54]3.

Function SinSin calls Taylor_Sin_P with the parameter X, storing the
result in variable OneSin. Taylor_Sin_P is then called again with the param-
eter OneSin, storing the result in TwoSin, which is then returned. The post-
condition for the SinSin function specifies the difference between its result
and calling the exact sin(sin(X))4.

Since the steps of SinSin involve only subprogram calls, there is no
model error or rounding error, and thus no rounding analysis cushion.
As the value of SinSin comes from Taylor_Sin_P applied twice, and the
derivative of sin has the maximum value 1, the subprogram specification
error is a little below 0.00025889 + 0.00025889 = 0.00051778. Experimenting
with different bounds, we estimate the LPPaver proving cushion is around
10−13.

There is a delicate trade-off between the five components that a program-
mer would need to manage by a careful choice of the model used, FP
arithmetic tricks, and proof tools used to obtain a specification for a program
that is both accurate and does not require large cushions or specification
errors. It is not our goal to make this type of optimisation for the example
programs, rather we have calculated these values to help improve the
understanding of how difficult it is to estimate them in practice. In simple
cases, it would be sufficient to tighten and loosen the ‘bound’ in the specifica-
tion until the proving process fails and succeeds, respectively.

3This NVC is referred to as Taylor_Sin_P in Table 5.1.
4The NVC resulting from this post-condition is referred to as SinSin in Table 5.1.
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Listing 4.10: Heron’s Method Specification
function Certified_Heron (X : Float; N : Integer) Return Float with

Pre => X >= 0.5 and X <= 2.0 and N >= 1 and N <= 5,
Post =>

abs(Real_Square_Root(Rf(X)) - Rf(Certified_Heron ’Result ))
<= (Ri(1) / (Ri(2 ** (2 ** N)))) −− 1/22

N model error
+ Ri(3*N)*(Ri(1)/Ri (8388608)); −− 3 · N · ε, rounding error bound

Listing 4.11: Heron’s Method Implementation
function Certified_Heron (X : Float; N : Integer) return Float is

Y : Float := 1.0;
begin

for i in 1 .. N loop
Y := (Y + X/Y) / 2.0;

pragma Loop_Invariant (Y >= 0.7);
pragma Loop_Invariant (Y <= 1.8);
pragma Loop_Invariant

(abs (Real_Square_Root (Rf(X)) - Rf(Y))
<= (Ri(1) / (Ri(2 ** (2 ** i)))) −− 1/22

i

+ Ri(3*i)*(Ri(1)/Ri (8388608))); −− 3 · i · ε
end loop;
return Y;

end Certified_Heron;

4.4 Verifying Heron’s Method for Approximating the
Square Root Function

We used PropaFP to verify an implementation of Heron’s method. This
is an interesting case study because it requires the use of loops and loop
invariants.

In Listing 4.10, the term 3 · N · ε is a heuristic bound for the compound
rounding error, guessed by counting the number of operations. Note that
five iterations are more than enough to get an accurate approximation of the
square root function for X in the range [0.5, 2].

The implementation in Listing 4.11 contains loop invariants. The bounds
on Y here help generate easier VCs for the loop iterations and post-loop
behaviour. The main loop invariant is very similar to the post-condition in the
specification, except substituting i for N, essentially specifying the difference
between the exact square root and Heron’s method for each iteration of the
loop.
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Why3 produces 74 NVCs from our implementation of Heron’s method.
72 of these NVCs are either trivial or verified by SMT solvers. PropaFP
is required for 2 NVCs that come from the main loop invariant. One NVC
specifies that the loop invariant holds in the initial iteration of the loop, where
i is equal to 1. Another VC specifies that the loop invariant is preserved from
one iteration to the next, where i ranges from 1 to N5. Note that the third NVC
derived from the invariant, i.e., that the invariant on the last iteration implies
the postcondition, is trivial here. The corresponding simplified exact NVCs
can be found in folder examples/heron/txt in the PropaFP repository.

4.5 Verifying AdaCore’s Sine Implementation

With the help of PropaFP, we have developed a verified version of an Ada
sine implementation written by AdaCore for their high-integrity mathematics
library6. First, we removed SPARK-violating code such as generic FP types,
fixing the type to the single-precision Float. We then translated functions
into procedures since PropaFP currently does not support function calls.

The code consists of several dependent subprograms. There are func-
tions for computing sin(x) and cos(x) for x close to 0 and functions that
extend the domain to x ∈ [−802, 802] by translating x into one of the four
basic quadrants near 0. There is also a loop that extends the domain
further. We have focused on the code for x ∈ [−802, 802] and postponed the
verification of the loop.

We have translated functions into procedures since PropaFP currently
does not support function calls. Next, we discuss all six procedures that we
needed to specify and verify.

J. A. Rasheed, PhD Thesis, Aston University 2022 118

https://github.com/rasheedja/PropaFP/tree/SEFM2022/examples/heron/txt


CHAPTER 4. PROPAFP

Listing 4.12: Multiply_Add Implementation
procedure Multiply_Add

(X, Y, Z : Float; Result : out Float) is
begin

Result := (X * Y + Z);
end Multiply_Add;

Listing 4.13: Multiply_Add Specification
procedure Multiply_Add

(X, Y, Z : Float; Result : out Float) with
Pre =>

(-3.0 <= X and X <= 3.0) and
(-3.0 <= Y and Y <= 3.0) and
(-3.0 <= Z and Z <= 3.0),

Post =>
(-12.0 <= Result and Result <= 12.0) and
Result = X * Y + Z;

4.5.1 Multiply_Add

The specification in Listing 4.13 restricts the ranges of the input and output
to rule out overflows. We used very small bounds based on how the function
is used locally by the other procedures.

4.5.2 My_Machine_Rounding

This is a custom procedure that is used to round a FP number to the nearest
integer. In the original version of this code, this was done using the SPARK-
violating Ada function, Float’Machine_Rounding.

Again, we specify the ranges of the variables based on the local use of
this procedure, to make it easier for our provers to verify the resulting VCs.

The other post-conditions state that the difference between X and Y

(which is X rounded to the nearest integer) is, at most, 0.5000000017. We
5We refer to these NVCs as Heron_Init and Heron_Pres in Table 5.1.
6We obtained the original code from file src/ada/hie/s-libsin.adb in archive

gnat-2021-20210519-19A70-src.tar.gz downloaded from “More packages, platforms,
versions and sources” at https://www.adacore.com/download.

7The NVCs resulting from the last two post-conditions are referred to as
My_Machine_Rounding≥ and My_Machine_Rounding≤ in Table 5.1.
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Listing 4.14: My_Machine_Rounding Implementation
procedure My_Machine_Rounding

(X : Float; Y : out Integer) is
begin

Y := Integer(X); −− rounding to nearest
end My_Machine_Rounding;

Listing 4.15: My_Machine_Rounding Specification
procedure My_Machine_Rounding

(X : Float; Y : out Integer) with
Pre =>

(0.0 <= X and X <= 511.0) ,
Post =>

(0 <= Y and Y <= 511) and
Rf(X) - Ri(Y) >= Ri ( -500000001) / Ri (1000000000) and

−− -0.500000001
Rf(X) - Ri(Y) <= Ri (500000001) / Ri (1000000000);

−− 0.500000001

chose this number to avoid any “touching” VCs (such as x > 0 =⇒ x > 0),
which solvers using interval methods usually cannot prove. While SMT
solvers can usually verify simple touching VCs, here they fail, probably due
to the rounding function.

4.5.3 Reduce_Half_Pi

This procedure takes some input value, X, and subtracts a multiple of π
2 to

translate it into the interval [−0.26⊗ πfp , 0.26⊗ πfp ].
The implementation, seen in Listing 4.16, has some significant differen-

ces to the original implementation. First, we limited this procedure to X within
[0, 802] and removed a loop that catered for larger values, as mentioned
earlier. Also, we inlined calls to Float’Leading_Part, a SPARK-violating
function which removes a specified number of bits from a FP number. This
function was used to define the variables C1, C2, and C3, in effect, giving a
higher precision version of π/2 using single-precision FP variables.

The specification in Listing 4.17 includes a new out parameter R, which
was just a local variable in the original implementation. R holds the integer
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Listing 4.16: Reduce_Half_Pi Implementation
procedure Reduce_Half_Pi

(X : in out Float; Q : out Quadrant; R : out Integer)
is

K : constant := Pi / 2.0;
−− Bits_N : constant := 9;
−− Bits_C : constant := Float’Machine_Mantissa - Bits_N;
C1 : constant Float := 1.57073974609375;

−− Float’Leading_Part (K, Bits_C);
C2 : constant Float := 0.0000565797090530395508;

−− Float’Leading_Part (K - C1, Bits_C);
C3 : constant Float := 0.000000000992088189377682284;

−− Float’Leading_Part (K - C1 - C2, Bits_C);
C4 : constant Float := K - C1 - C2 - C3;
N : Float := (X / K);

begin
My_Machine_Rounding(N, R); −− R is returned for use in the specification

X :=
(((X - Float(R)*C1) - Float(R)*C2) - Float(R)*C3) - Float(R)*C4;

−− The above is roughly equivalent to X := (X - Float(R)*K);
Q := R mod 4;

end Reduce_Half_Pi;

Listing 4.17: Reduce_Half_Pi Specification
subtype Quadrant is Integer range 0 .. 3;

Max_Red_Trig_Arg : constant := 0.26 * Ada.Numerics.Pi;
Half_Pi : constant := Ada.Numerics.Pi / 2.0;

procedure Reduce_Half_Pi
(X : in out Float; Q : out Quadrant; R : out Integer)
with Pre => X >= 0.0 and X <= 802.0 ,
Post =>

R >= 0 and R <= 511 and
Rf(X’Old / (Pi /2.0)) - Ri(R) >= Ri ( -500000001)/ Ri (1000000000)
and
Rf(X’Old / (Pi /2.0)) - Ri(R) <= Ri (500000001)/ Ri (1000000000)
and
Q = R mod 4 and
X >= -Max_Red_Trig_Arg and X <= Max_Red_Trig_Arg and
(Rf(X) - (Rf(X’Old) - (Ri(R)* Real_Pi/Rf (2.0)))) >=

Ri( -18)/Ri (100000)
and
(Rf(X) - (Rf(X’Old) - (Ri(R)* Real_Pi/Rf (2.0)))) <=

Ri(18)/ Ri (100000);
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multiple of π
2 used to shift the input value close to 0. The final two post-

conditions bound the difference between the computed new value of X and
the ideal model result. Our proving process is needed for the NVCs derived
from the last four post-conditions in Listing 4.178.

4.5.4 Approx_Sin and Approx_Cos

Approx_Sin and Approx_Cos in Listing 4.18 compute Taylor series approx-
imations of sine and cosine, respectively, using the Horner scheme. In the
original AdaCore implementation, variable X has a generic type, but we have
fixed the type to Float. The original implementation uses arrays and loops
to adapt the order of the Taylor series to the precision of the float type. Since
we have fixed the type of X, we perform these computations directly without
arrays and loops.

The specifications in Listing 4.19 are quite simple. The preconditions
restrict the value of X to be within the interval [−0.26⊗πfp , 0.26⊗πfp ]. The first
two post-conditions in both procedures restrict the Result to be within the
interval [−1, 1]. The last two post-conditions in both procedures specify the
difference between the exact Sine/Cosine and Approx_Sin/Approx_Cos9.

4.5.5 Sin

Finally, procedure Sin in Listing 4.20 approximates the sine function for
inputs from [−802, 802]. Compared to the original function, we have replaced
uses of the SPARK-violating function Float’Copy_Sign with code that has
the same effect. Our proving process is needed to verify NVCs arising from
the final two post-conditions in Listing 4.2110

8The resulting NVCs are referred to in Table 5.1 as Reduce_Half_Pi_X{≥,≤} and
Reduce_Half_Pi{≥,≤}, respectively.

9The NVCs corresponding to the last two postconditions in both procedures are called
Approx_Sin{≥,≤} and Approx_Cos{≥,≤} in Table 5.1.

10The resulting NVCs are referred to as Sin{≥,≤} in Table 5.1.
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Listing 4.18: Approx_Sin and Approx_Cos Implementation
procedure Approx_Sin (X : Float; Result : out Float) is

Sqrt_Epsilon_LF : constant Long_Float :=
Sqrt_2 ** (1 - Long_Float ’Machine_Mantissa );

G : constant Float := X * X;

−− Horner Scheme
H0 : constant Float := ( -0.19501 _81843E -3);
H1 : Float;
H2 : Float;

begin
Multiply_Add(H0 , G, (0.83320 _16396E -2), H1);
Multiply_Add(H1 , G, ( -0.16666 _65022), H2);
if abs X <= Float(Long_Float (Sqrt_Epsilon_LF )) then

Result := X;
else

Result := (X * (H2 * G) + X);
end if;

end Approx_Sin;

procedure Approx_Cos (X : Float; Result : out Float) is
G : constant Float := X * X;

−− Horner Scheme
H0 : constant Float := (0.24372 _67909E -4);
H1 : Float;
H2 : Float;
H3 : Float;
H4 : Float;

begin
Multiply_Add(H0 , G, ( -0.13888 _52915E -2), H1);
Multiply_Add(H1 , G, (0.41666 _61323E -1), H2);
Multiply_Add(H2 , G, ( -0.49999 _99957), H3);
Multiply_Add(H3 , G, (0.99999 _99999), H4);
Result := H4;

end Approx_Cos;

Listing 4.19: Approx_Sin and Approx_Cos Specification
Max_Red_Trig_Arg : constant := 0.26 * Ada.Numerics.Pi;
Sqrt_2 : constant :=

1.41421 _35623_73095_04880_16887_24209_69807_85696;

procedure Approx_Sin (X : Float; Result : out Float) with
Pre =>

X >= -Max_Red_Trig_Arg and X <= Max_Red_Trig_Arg ,
Post =>

Result >= -1.0 and Result <= 1.0 and
(Rf(Result) - Real_Sin(Rf(X))) >= Ri(-58) / Ri (1000000000) and
(Rf(Result) - Real_Sin(Rf(X))) <= Ri(58) / Ri (1000000000);

procedure Approx_Cos (X : Float; Result : out Float) with
Pre =>

X >= -Max_Red_Trig_Arg and X <= Max_Red_Trig_Arg ,
Post =>

Result >= -1.0 and Result <= 1.0 and
(Rf(Result) - Real_Cos(Rf(X))) >= Ri(-14) / Ri (100000000) and
(Rf(Result) - Real_Cos(Rf(X))) <= Ri(14) / Ri (100000000);
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Listing 4.20: Sin Implementation
procedure Sin (X : Float; FinalResult : out Float) is

Y : Float := (if X < 0.0 then -X else X);
Q : Quadrant;
R : Integer;
Result : Float;

begin
Reduce_Half_Pi (Y, Q, R);

if Q = 0 or Q = 2 then
Approx_Sin (Y, Result );

else −− Q = 1 or Q = 3
Approx_Cos (Y, Result );

end if;

if X < 0.0 then
FinalResult := ( -1.0) * (if Q >= 2 then -Result else Result );

else
FinalResult := (1.0) * (if Q >= 2 then -Result else Result );

end if;
end Sin;

Listing 4.21: Sin Specification
procedure Sin (X : Float; FinalResult : out Float)

with Pre =>
X >= -802.0 and X <= 802.0,

Post =>
(Rf(FinalResult) - Real_Sin(Rf(X))) >= Ri(-19) / Ri (100000) and
(Rf(FinalResult) - Real_Sin(Rf(X))) <= Ri(19) / Ri (100000);
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Table 4.3: Why3 NVCs Generated for each Procedure from our Modified
AdaCore Sine Implementation

Procedure Generated NVCs Trivial/SMT Proving Process

Multiply_Add 4 4 0
My_Machine_Rounding 16 14 2
Reduce_Half_Pi 44 40 4
Approx_Sin 33 31 2
Approx_Cos 41 39 2
Sin 20 18 2

4.5.6 Generated Why3 NVCs

In total, Why3 derived 158 NVCs from the six procedures we have described.
SMT solvers verified 146 NVCs. The 12 remaining NVCs were verified using
our proving process. This is broken down by procedure in Table 4.3.

We discuss only a few of the more interesting NVCs here. All NVCs can
be found in folder examples/hie_sine/txt in the PropaFP code repository.

Listing 4.22 shows two of the simplified exact NVCs arising from the
post-conditions in Reduce_Half_Pi. In both NVCs, the second and third
assertions come from the third and fourth post-conditions and define how
the x and r1 variables are dependent on each other. In both NVCs, the final
assertion comes from the post-condition used to derive the NVC. The final
assertion in the first NVC asserts an upper bound on the new value of X
after calling Reduce_Half_Pi. The final assertion in the second NVC asserts
that the difference between the new value of X after calling Reduce_Half_Pi
and performing the same number of π/2 reductions on the original value of X
using the exact π is not smaller than or equal to 18/100000.

The exact NVC in Listing 4.23 comes from the final post-condition from
the Approx_Sin procedure in Listing 4.19. The first two assertions specify
a dependency on x and result__1. There are two assertions here due to
the two if-then-else branches in the implementation of Approx_Sin in Listing
4.18. The final assertion specifies that the difference between the result of
Approx_Sin for x and the value of the exact sine function for x is not smaller
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than or equal to 58/1000000000.
Finally, the NVC in Listing 4.24 comes from the first post-condition in the

procedure Sin in Listing 4.20.
This NVC is interesting since the implementation of the Sin procedure

depends on the other procedures we have discussed, which results in
the derived NVC including assertions derived from specifications of these
other procedures. Assertions 1–2 come from the if statement defining
Y. Assertions 3–6 come from the Reduce_Half_Pi post-conditions as a
consequence of calling Reduce_Half_Pi in Listing 4.20. Assertion 7 comes
from the Quadrant subtype defined in Listing 4.17 Assertions 8–9 contain the
final two Approx_Sin/Approx_Cos post-conditions as well as corresponding
to one of the if-then-else branches after the call to Reduce_Half_Pi. Asser-
tions 10–11 correspond to the different paths from the final if-then-else. The
final assertion comes from the first post-condition in Listing 4.20.
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Listing 4.22: Selected Reduce_Half_Pi Simplified Exact NVCs
Reduce_Half_Pi_X_≤

Bounds on variables:
r1 (int) ∈ [0, 511]
x (real) ∈ [0, 802]

assert
-500000001 / 1000000000 <=

(((x / (13176795/8388608)) - r1) +
(433681/2000000000000000000000000))

assert
(((x / (13176795/8388608)) - r1) -

(433681/2000000000000000000000000)) <=
500000001 / 1000000000

assert
¬(

((((x - (r1 * (25735/16384))) - (r1 * (3797/67108864)))
- (r1 * (17453/17592186044416)))

- (r1 * (12727493/2361183241434822606848)))
+ (1765573/10000000000)
<= 6851933/8388608

)

Reduce_Half_Pi≤

Bounds on variables:
r1 (int) ∈ [0, 511]
x (real) ∈ [0, 802]

assert
-500000001 / 1000000000 <=

(((x / (13176795/8388608)) - r1) +
(433681/2000000000000000000000000))

assert
(((x / (13176795/8388608)) - r1) -

(433681/2000000000000000000000000)) <=
500000001 / 1000000000

assert
¬(

((((((x - (r1 * (25735/16384))) - (r1 * (3797/67108864)))
- (r1 * (17453 / 17592186044416)))

- (r1 * (12727493 / 2361183241434822606848)))
- (x - ((r1 * π) / 2)))

+ (/ 1765573 10000000000))
<= 18 / 100000

)
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Listing 4.23: Selected Approx_Sin NVC
Approx_Sin≤

Bounds on variables:
result__1 (real) ∈ [ -7639663/8388608 , 3819831/4194304]

−−∼ [−0.91072, 0.91072]
x (real) ∈ [ -6851933/8388608 , 6851933/8388608]

−−∼ [−0.81681, 0.81681]

NVC:
assert

(abs(x) <= 1 / 67108864 =⇒ (x = result__1 ))

assert
¬ (abs(x) <= 1 / 67108864) =⇒

(((x*(((((( -3350387 / 17179869184)*(x*x)) +
(4473217 / 536870912))*(x*x)) -

(349525 / 2097152))*(x*x))) + x) -
(4498891 / 100000000000000))
<= result__1
∧
result__1 <=
(((x*(((((( -3350387 / 17179869184)*(x*x)) +

(4473217 / 536870912))*(x*x)) -
(349525 / 2097152))*(x*x))) + x) +

(4498891 / 100000000000000))

assert
¬( result__1 - sin(x) <= 58 / 1000000000 )
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Listing 4.24: Selected Sin NVC
Sin≥

Bounds on variables:
finalresult1 (real) ∈ [-1, 1]
o (real) ∈ [-802, 802]
r1 (int) ∈ [0, 511]
result__1 (real) ∈ [-1, 1]
x (real) ∈ [-802, 802]
y (real) ∈ [ -6851933/8388608 , 6851933/8388608]

−− 6851933/8388608 = Max_Red_Trig_Arg− 0.26 ∗ pi

NVC:
assert -1 x < 0.0 -> o = -x
assert -2 ¬(x < 0.0) -> o = x
assert -3 -500000001 / 1000000000 <=

((o / (13176795 / 8388608)) - r1) +
(433681 / 2000000000000000000000000)

assert -4 ((o / (13176795 / 8388608)) - r1) -
(433681 / 2000000000000000000000000) <=

500000001 / 1000000000
assert -5 -18.0 / 100000.0 <= (y + (o + (r1 * Pi / 2.0)))
assert -6 (y + (o + (r1 * Pi / 2.0))) <= 18.0 / 100000.0
assert -7 mod r1 4 <= 3.0
assert -8

(mod r1 4 <= 0.0) ∨ (¬(mod r1 4 <= 0.0) ∧ (mod r1 4 == 2.0)) ->
-58.0 / 1000000000 <= result__1 - (sin y) ∧
result__1 - (sin y) <= 58.0 / 1000000000

assert -9
¬(¬(mod r1 4 <= 0.0) -> mod r1 4 = 2.0) ->

-14.0 / 100000000 <= result__1 - (cos y) ∧
result__1 - (cos y) <= 14.0 / 100000000

assert -10
x < 0 ->

mod r1 4 <= 2 -> finalresult1 = result__1 ∧
¬(mod r1 4 <= 2) -> finalresult1 = -result__1

assert -11
¬(x < 0) ->

mod r1 4 <= 2 -> finalresult1 = -result__1 ∧
¬(mod r1 4 <= 2) -> finalresult1 = result__1

assert -12 ¬(-19 / 100000 <= (finalresult1 - (sin x)))
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Chapter 5

Evaluation

In this chapter, we evaluate both PropaFP and LPPaver. We start by
evaluating the PropaFP proving process in Section 5.1. We then evaluate
LPPaver in Section 5.2

Hardware All benchmarks in this chapter were ran on the same machine
which is using Ubuntu 20.04. The machine has a Ryzen 5 3600 CPU, 16GB
of RAM running at 3600MHz/CL16, and a 1TB NVME SSD.

5.1 Evaluation of PropaFP

In this section, we evaluate PropaFP using the examples we described in
Chapter 4.

5.1.1 Benchmarking the PropaFP Proving Process

Tables 5.1 shows the performance of our implementation of the proving
process on the verification examples described earlier. “VC processing”
is the time it takes PropaFP v0.1.2.0 to process the NVCs generated by
GNATprove for Why3 v1.4.0, including calls to FPTaylor. The remaining
columns in Table 5.1 show the performance on the following provers applied
to the resulting simplified exact NVCs:
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Table 5.1: Proving Process on Described Examples
VC VC Processing dReal MetiTarski LPPaver

My_Machine_Rounding≥ 0.05s n/s n/s 0.55s
My_Machine_Rounding≤ 0.06s n/s n/s 0.47s
Reduce_Half_Pi_X≥ 0.10s n/s 0.12s 0.36s
Reduce_Half_Pi_X≤ 0.10s n/s 0.07s 0.34s
Reduce_Half_Pi≥ 0.10s n/s g/u 0.02s
Reduce_Half_Pi≤ 0.10s n/s g/u 0.02s
Approx_Sin≥ 0.14s 1m03s 0.30s 5.67s
Approx_Sin≤ 0.12s 1m04s 0.26s 5.65s
Approx_Cos≥ 0.09s 3.24s 0.05s 1.83s
Approx_Cos≤ 0.11s 1.48s 0.05s 1.52s
Sin≥ 0.10s n/s n/s 6m01s
Sin≤ 0.11s n/s n/s 6m03s
Taylor_Sin 0.11s 0.01s 0.17s 0.06s
Taylor_Sin_Double 0.15s n/s 0.16s 0.06s
Taylor_Sin_P 0.10s 0.01s 0.17s 0.07s
SinSin 0.07s 3m20s g/u 8.30s
Heron_Init 0.16s 0.00s 0.09s 0.02s
Heron_Pres 0.16s 5m05s g/u 1m20s

• dReal v4.21.06.2 [32] (see Sections 2.7 and 5.2 for more details).

• MetiTarski v2.4 [1] (see Sections 2.7 and 5.2 for more details).

• LPPaver v0.0.5.0 [53] – our prover described in Chapter 3.

These provers were chosen because most of the problems in this set of
benchmarks contain transcendental operations which these provers support.

In Table 5.1, n/s means the NVC contains some operation or number
that is not supported by the prover (e.g., dReal does not support very large
integers) while g/u means that the prover gave up.

All of the NVCs were solved by at least one of the provers in a reasonable
time frame. VC processing takes only a fraction of a second for all of the
NVCs.

Some of the NVCs could be decided by only LPPaver due to the following:
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• The My_Machine_Rounding NVC contains integer rounding with ties
going away from zero.

– dReal does not support integer rounding.

– MetiTarski does not support the rounding mode specified in this
NVC.

• After our proving process, the bound on the maximum rounding
error computed by FPTaylor in both the Reduce_Half_Pi and the
Taylor_Sin_Double NVCs are very small.

– This number is represented as a rational number in the exact NVC,
and the denominator is outside the range of integers supported
by dReal.

• The Reduce_Half_Pi{≥,≤} NVCs have a tight bound.

– Slightly loosening the bound from 0.00018 to 0.0002 allows
MetiTarski to verify this.

* After this loosening, the Sin{≥,≤} would need to be loosened
from 0.00019 to 0.00021 due to the increased subprogram
specification error (see Section 4.3).

• The Sin NVCs contain integer rounding with ties going to the nearest
even integer and uses the modulus operator.

– dReal does not support integer rounding.

– MetiTarski does not support the modulus operator.

Effect of Specification Bounds on Proving Times

For numerical provers, the tightness of the specification bound is often
correlated with the time it takes for a prover to decide a VC arising from said
specification. This is not normally the case for symbolic solvers, however, a
VC arising from a specification that a symbolic solver could not decide may
become decidable with a looser bound on the specification. We illustrate
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Table 5.2: Effect of Specification Bound on Proving Time
VC Bound VC Processing dReal MetiTarski LPPaver

Approx_Sin≥ -0.000000058 0.14s 1m03s 0.30s 5.67s
Approx_Sin≥ -0.000000075 0.15s 26.74s 0.28s 3.78s
Approx_Sin≥ -0.0000001 0.13s 14.74s 0.29s 2.80s
Approx_Sin≥ -0.00001 0.14s 0.09s 0.28s 0.25s

Approx_Sin≤ 0.000000058 0.15s 1m04s 0.26s 5.65s
Approx_Sin≤ 0.000000075 0.12s 27.56s 0.27s 3.79s
Approx_Sin≤ 0.0000001 0.15s 15.04s 0.26s 2.76s
Approx_Sin≤ 0.00001 0.14s 0.09s 0.26s 0.27s

Approx_Cos≥ -0.00000014 0.09s 3.24s 0.05s 1.83s
Approx_Cos≥ -0.0000005 0.08s 0.31s 0.05s 0.62s
Approx_Cos≥ -0.000001 0.08s 0.14s 0.05s 0.52s
Approx_Cos≥ -0.0001 0.11s 0.00s 0.05s 0.09s

Approx_Cos≤ 0.00000014 0.09s 1.48s 0.05s 1.52s
Approx_Cos≤ 0.0000005 0.07s 0.29s 0.05s 0.61s
Approx_Cos≤ 0.000001 0.07s 0.13s 0.04s 0.49s
Approx_Cos≤ 0.0001 0.10s 0.00s 0.04s 0.07s

SinSin 0.00051778 0.07s 3m20s g/u 8.30s
SinSin 0.00052 0.07s 0.13s g/u 5.36s
SinSin 0.001 0.07s 0.02s g/u 1.36s
SinSin 0.01 0.06s 0.00s g/u 0.33s

this in Table 5.2. The ‘Bound’ column states the specification bound for the
NVC.

Table 5.2 shows how, in all of our examples, a looser bound results in
quicker proving times for the tested numerical provers. In some cases, this
improvement can be significant, as seen with the ‘SinSin’ NVCs. The proving
time for symbolic provers does not improve with looser bounds. However,
MetiTarski failed to decide Reduce_Half_Pi{≥,≤}, but it could decide these
NVCs when the specification bounds were loosened from 1.8E−4 to 2.0E−4.
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Counter-examples

When writing specifications, it is not uncommon for a programmer to make
a mistake in the specification by, for example, using wrong mathematical
operations, setting too tight a bound for a specification, and so on. When this
occurs, it would be useful for a programmer to receive a counter-example
for their specification.

Our proving process supports producing counter-examples and, with a
custom Why3 driver, these counter-examples can be reported back to Why3,
which will send the counter-examples to the programmer’s IDE. It should
be understood that counter-examples produced by PropaFP are potential
counter-examples [17], since ‘simplified exact’ NVCs are weakened versions
of original NVCs. Nevertheless, these potential counter-examples can still
be actual counter-examples and would be useful for a programmer to have.

To demonstrate how the proving process can produce counter-examples,
we modify our Taylor_Sin example, introducing three different mistakes
which a programmer may feasibly make:

1. Replace the - with + in the Taylor_Sin implementation in Listing 4.1.

2. Invert the inequality in the Taylor_Sin post-condition in Listing 4.2.

3. Make our specification bound slightly tighter than the maximum model
error + maximum rounding error + rounding analysis cushion in
the post-condition from Listing 4.2, changing the value of the right-
hand side of the inequality in the post-condition from 0.00025889 to
0.00025887.

These three ‘mistakes’ are referred to as Taylor_Sin_Plus, Taylor_Sin_Swap,
and Taylor_Sin_Tight, respectively, in Table 5.3.

If a specification is incorrect, the resulting NVC must be true or ‘sat’.
Recall that dReal would report a ‘δ-sat’ result, which means the δ-weakening
of the NVC was ‘sat’. In all of our examples, δ is equal to 1× 10−100. This
makes models produced by dReal a potential model for the NVC. Models
produced by LPPaver are actual models for the given NVC, but for files
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Table 5.3: Proving Process on Described Counter-examples
VC VC Processing dReal CE LPPaver CE

Taylor_Sin_Plus 0.12s 0.00s x = −0.166 . . . 0.02s x = −0.5
Taylor_Sin_Swap 0.10s 0.00s x = 0.333 . . . 0.03s x = 0.499 . . .
Taylor_Sin_Tight 0.12s 0.00s x = 0.499 . . . 0.03s x = 0.499 . . .

produced by the proving process, these should still be thought of as potential
counter-examples due to the weakening of the NVC. The computed potential
counter-examples shown in Table 5.3 are all actual counter-examples except
those for Taylor_Sin_Tight.

Reflections

The evaluation we present in this Section demonstrates how PropaFP
coupled with LPPaver builds on the state-of-the-art techniques used to
formally verify specifications of FP programs. Current techniques were not
able to prove or disprove any of the (Why3) NVCs shown in Tables 5.1, 5.2,
and 5.3.

Using techniques described in Chapter 4, we simplified, derived bounds
for variables, and removed FP operations from the Why3 NVCs. The
resulting NVCs, which we call ‘exact real NVCs’, are weakened versions of
the NVCs they are based on.

The ‘exact real NVCs’ are passed to powerful automated provers for
nonlinear real formulas. At least one of the provers are able to verify all of
the problems we present in a reasonable time frame.

Three of the ‘exact real NVCs’ are incorrect and PropaFP with LPPaver
produce for the original program ‘potential counter-examples’. Two of these
‘potential counter-examples’ are also valid counter-examples; that is, the
produced counter-example gives us input for which the original specification
is falsified. The third ‘potential counter-example’ was not a valid counter-
example, though this makes sense as the specification was very close
to the ‘boundary’ where it would become true and the weakening of the
NVC in these cases makes it more likely for the potential counter-examples
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produced by PropaFP to not be ‘actual’ counter-examples.

5.2 Evaluation of LPPaver

We evaluate the strength and efficiency of LPPaver v0.0.5.0 alongside the
following selected automated solvers for nonlinear real formulas:

• dReal v4.21.06.2 - An automated numerical prover with good support
for nonlinear real functions. dReal combines SMT methods with
interval methods including interval constraint propagation and a branch-
and-prune algorithm.

• ksmt v0.1.7 - An automated SMT solver for quantifier-free nonlinear
real arithmetic. ksmt combines a CDCL-style algorithm with linearisa-
tions of nonlinear real terms.

• MetiTarski v2.4 - An automatic theorem prover with support for non-
linear real arithmetic. MetiTarski supports the theory of real closed
fields and uses the Z3 solver as a backend which implements the
DPLL(T) algorithms alongside simplex-based linear arithmetic solving
techniques.

• Colibri v0.3.3 - An automatic solver for nonlinear real and FP arithmetic.
Colibri uses Constraint Programming techniques including linearisa-
tions and the simplex method.

More detail on each of these solvers can be found in Section 2.7.
In our evaluation, we use two sets of benchmarks. The first set of

benchmarks is based on the exact real NVCs (negated verification conditions)
produced by PropaFP from specifications of FP programs as described in
Section 5.1. The second set is a variation of the sphere packing problem, a
type of optimisation problem, and is described in Section 5.2.2.
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5.2.1 Performance of Provers on PropaFP Examples

We now discuss the performance of the provers, particularly LPPaver, for
the examples in Table 5.1. We may ignore the ‘VC Processing’ column as
that relates to PropaFP. All problems in this table are unsatisfiable. n/s in this
table means that the prover did not support some function or feature that
was present in the problem. The unsupported functions used may include
integer rounding or use of extremely large numbers, and is explained in
detail in Section 5.1.1. g/u means that the prover gave up.

ksmt does not support any of the problems here, either due to use of
division or transcendental functions such as the sine or square root functions
which ksmt does not support. Colibri similarly does not support most of the
problems we present here, but Colibri does support division and thus can
be ran on Reduce_Half_Pi{≥,≤} where it performed better than the other
provers, giving an ‘unsat’ result in 0.02 seconds.

LPPaver performed well on these examples and proved that all of them
are unsatisfiable within a reasonable time frame. LPPaver performed
better than dReal here in all but one example, namely Heron_Init, where
the difference between dReal and LPPaver is negligible. In some cases,
MetiTarski performed better than LPPaver; for example, MetiTarski decided
that Approx_Sin_≥ is unsatisfiable in 0.3 seconds, better than the 5.67
seconds it took LPPaver. This is much better than the 1 minute and 3
seconds it took dReal to prove that the same problem is unsatisfiable. There
is a similar pattern in some of the other problems in this table, where dReal
took significantly longer to produce a result than LPPaver and MetiTarski.

How the Numerical Difficulty of a Problem affects Provers

The problems with a ≥/≤ suffix specify the difference between the implem-
entation of the named function and the exact function that the implementation
is attempting to approximate. For example Approx_Sin{≥,≤} specify the
difference between the approximation of the sine function implemented
by Approx_Sin and the exact sine function. The ‘bound’ here, that is the
maximum difference between the approximation and the exact sine function,
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is very ‘tight’ or very small. This makes the problem numerically challenging.
‘Loosening’ the bound would make the problem numerically easier, which

should theoretically help the proving times of the numerical solvers, but
it should not significantly help the proving times of solvers that mainly
use symbolical methods. However, if a symbolical solver is not able to
prove some problem with a tight bound, the solver may be able to prove
the same VC if the bound is loosened. This is demonstrated with the
Reduce_Half_Pi{≥,≤} problems where loosening the bound by 0.00002
allowed MetiTarski to verify these problems.

Table 5.2 shows how loosening the bounds impacted our solvers. As
expected, loosening the bound helped the performance of dReal and LP-
Paver but did not speed up proving times for MetiTarski. As the bound
loosened, proving times for both dReal and LPPaver improves. With very
loose bounds, dReal was able to prove the problems (slightly) faster than
LPPaver.

Table 5.3 show models produced by dReal and LPPaver for satisfiable
VCs. Both provers produce the models more-or-less instantly, and models
produced by both provers are correct for all three problems.

Reflections

LPPaver performed extremely well on the problems presented in 5.1. This
implies that the ‘proving’ algorithm (i.e. Algorithm 5) is very efficient for these
types of problems, especially in comparison to dReal which uses similar
methods to LPPaver. The performance of the ‘model search’ algorithm (i.e.
Algorithm 8) has also been found to be comparable with other solvers.

Table 5.2 shows how the performance of LPPaver improves when the
problem becomes easier numerically. dReal had a similar performance
increase and performed slightly better than other solvers with some of
the looser bounds that we tested. This may be due to LPPaver being
implemented in a higher-level language (Haskell) than dReal (C++).

Table 5.3 shows how LPPaver can quickly produce models useful for
satisfiable problems. Both dReal and LPPaver produced models very quickly.
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5.2.2 Placing Spheres of an Equal Size in a Cube

We further evaluate LPPaver and other solvers on a set of problems where
the solver must determine a valid placement for a fixed number of spheres
of radius 1 inside a cube of height 4. The spheres are allowed to ‘touch’
the faces of the cube but cannot be outside the cube. The spheres are
not allowed to ‘touch’ each other. We also generalise this into two and four
dimensions, where the problem becomes placing circles in a square and
3-spheres in a 3-cube respectively.1 For a dimension d ≥ 2 and for n number
of (d− 1)-spheres where n > 0, we can generalise the problem as follows:

∃c(1), . . . , c(n) ∈ Rd :⋀︂
1≤i≤n

∥c(i)∥∞ ≤ 1 ∧

⋀︂
1≤i<j≤n

∥c(i) − c(j)∥2 > 2

(5.1)

In (5.1), the variables c(i) are used to represent the centres of the
generalised spheres. Each variable in c(i) is first restricted to be between
±1. The last line in (5.1) states that the Euclidean distance between any two
centre points is above 2.

Intuitively, if one visualises circles with a radius of 1, and a square of
width 4, (5.1) specifies an arrangement of the (centres of the) circles where
all circles are completely within the square and not touching each other. For
example, one may place 3 circles in a square as shown in Figure 5.1.

Instances

We present instances of (5.1) that we created to test LPPaver and the
chosen provers in Table 5.4. Each instance has the name ‘PlaceDC’, where
D and C represent the dimension and the number of circles of the instance
respectively. All instances can be found in the LPPaver code repository [53]

13-spheres and 3-cubes are four dimensional equivalents of spheres and cubes
respectively.
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Figure 5.1: An arrangement of 3 equally sized circles in a square that
satisfies (5.1).

under folder benchmarks/place/txt/. Note that these instances are similar
(but not identical) to benchmarks described in the ksmt paper [11].

Increasing the number of circles increases the number of variables in the
problem. Increasing the dimension also increases the number of variables
but makes the problem conceptually easier at the same time. For example,
there is no arrangement of circles in ‘Place24’ that satisfies (5.1): placing
the centres of the four circles at each of the ‘extreme’ corners would result in
all four circles being within the square, but they would be touching, as shown
in Figure 5.2. This means Place2n where n ≥ 4 violates (5.1). Increasing
the dimension to 3 allows one to place up to 7 spheres in a cube before
they would be touching. Thus, Place24, Place25, Place26, and Place27
are unsatisfiable, and all other instances are satisfiable. In summary, more
circles increase the difficulty and higher dimensions decrease the difficulty
of the problem.

In the files generated to instantiate (5.1), a variable is used as a constant
to represent the value ∥c(i) − c(j)∥2, to both aid readability and to model the
way a human would typically specify this problem. Constants are internally
substituted wherever it is used in LPPaver and presumably other provers
do the same, therefore we differentiate these constants from the more
interesting variables: the constants should only have a negligible effect on
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Table 5.4: Generated Instances of (5.1)
Problem Dimension #a of Circles # of Variables # of Constants

Place22 2 2 4 2
Place23 2 3 6 6
Place24 2 4 8 12
Place25 2 5 10 20
Place26 2 6 12 30
Place27 2 7 14 42

Place32 3 2 6 3
Place33 3 3 9 9
Place34 3 4 12 18
Place35 3 5 15 30
Place36 3 6 18 45
Place37 3 7 21 63

Place42 4 2 8 4
Place43 4 3 12 12
Place44 4 4 16 24
Place45 4 5 20 40
Place46 4 6 24 60
Place47 4 7 28 84

a# means number and is used to save space.

the performance of each prover. The variables mentioned in the table are
specifically used to represent the values of each element of the vectors used
to represent the centre of a circle. For example, Place22 would have the
centre of one of the circles represented with vector c(1), which is modelled
using two distinct variables for both coordinates of c1.

Timings

We ran each prover on the instances described in Table 5.4. We allowed
each prover 30 minutes to attempt to decide each problem. If a prover took
longer than 30 minutes, we stopped the prover and recorded the result as
a timeout (t/o). If a prover returned a satisfiable/unsatisfiable result, we
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Figure 5.2: Packing of 4 equally sized circles in a square. This does not
satisfy (5.1) as the circles are touching; the distances between the centres
of the touching circles is exactly 2 · radius.

recorded this as ‘sat’/‘unsat’ and recorded the time taken for the prover to
make this decision. As mentioned in Section 2.7.2, dReal returns either
‘unsat’ or ‘δ-sat’.2 The δ used here is 10−100. When running LPPaver, we ran
the prover using the ‘proving’ algorithm (i.e. Algorithm 5) for the unsatisfiable
problems, and the ‘model finding’ algorithm (i.e. Algorithm 8) for problems
which should be satisfiable. The results are presented in Table 5.5.

Models

LPPaver and Colibri are able to produce models for problems that they
decide are satisfiable. dReal produces δ-satisfiable models which are
models that satisfy the δ-weakening of the problem but may not satisfy
the original problem. This is why dReal gives a ‘δ-sat’ result for Place24.
(5.2) is the δ-satisfiable model, and this model is approximated in Figure 5.3.
As one can see, this model does not satisfy Place24 (but does satisfy the
δ-weakening of Place24) as there will be a very slight overlap between the
neighbouring circles and some circles will protrude outside the square.

2Recall that δ-sat means that some formula φ is satisfiable when weakened by numerically
relaxing equalities and inequalities in φ by δ, e.g. sin(0) = 0 would be weakened into
| sin(0)| ≤ δ.

J. A. Rasheed, PhD Thesis, Aston University 2022 142



CHAPTER 5. EVALUATION

Table 5.5: Results and timings of solvers on (5.1) instances
Problem LPPaver dReal ksmt Colibri

Place22 sat 0.03s δ-sat 0.01s sat 0.00s sat 0.05s
Place23 sat 0.08s δ-sat 0.01s sat 0.02s sat 1.69s
Place24 t/o - δ-sat 0.02s t/o - t/o -
Place25 unsat 0.41s unsat 18.05s unsat 2.88s t/o -
Place26 unsat 0.91s t/o - unsat 13.16s t/o -
Place27 unsat 1.58s t/o - unsat 53.83s t/o -

Place32 sat 0.03s δ-sat 0.00s sat 0.00s sat 0.06s
Place33 sat 0.23s δ-sat 0.02s sat 0.01s sat 0.21s
Place34 sat 1.65s δ-sat 0.04s sat 0.03s sat 0.74s
Place35 sat 2.08s δ-sat 0.14s sat 0.59s t/o -
Place36 sat 9.44s t/o - t/o - t/o -
Place37 sat 2m42s t/o - t/o - t/o -

Place42 sat 0.03s δ-sat 0.01s sat 0.00s sat 0.07s
Place43 sat 0.56s δ-sat 0.03s sat 0.01s sat 0.28s
Place44 sat 1m40s t/o - sat 0.04s sat 1.03s
Place45 sat 1m57s t/o - sat 0.14s sat 29.53s
Place46 t/o - t/o - sat 0.3s t/o -
Place47 t/o - t/o - sat 1s t/o -

c(1) =

[︄
−1

1

]︄

c(2) =

[︄
−1

−0.99999999999999978

]︄

c(3) =

[︄
0.99999999999999978

1

]︄

c(4) =

[︄
0.99999999999999978

−0.99999999999999978

]︄
(5.2)

Table 5.6 shows models given by the three solvers for the Place23
instance. In this case, the δ-model given by dReal is a valid model for both
the δ-weakening of Place23 and Place23 itself.

Table 5.7 shows models given by the solvers for each problem presented
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C(1)

C(2)

C(3)

C(4)

Figure 5.3: Approximation of the δ-model shown in (5.2) given by dReal.
This does not satisfy (5.1) as some of the circles are overlapping.

in Table 5.4 that at least one of the model-producing solvers decided is
satisfiable. If a given model is correct, we label this appropriately. For dReal,
if a model is correct for the δ-weakening of the problem but not the problem
itself, we label this as δ-correct.

Reflections

The timings for MetiTarski are not present in Table 5.5 as MetiTarski timed
out on every problem. This is not surprising as MetiTarski uses mainly
symbolical methods, and the problem we present here is very numerical in
nature.

LPPaver performed better than the other provers for the unsatisfiable
problems, returning an ‘unsat’ result very quickly. LPPaver also performed
well for the satisfiable problems. For the 2-dimensional satisfiable problems,
LPPaver and the other provers returned ‘sat’ or ‘δ-sat’ results almost instantly.

LPPaver also outperformed other solvers for the 3-dimensional problems,
being able to verify satisfiability of all problems. This is particularly impressive
for Place36 and Place37 due to both the number of variables and the
difficulty of finding an arrangement of spheres that satisfies (5.1). The next
best-performing prover for this section was ksmt which was able to prove
satisfiability for Place32–Place35. As we increase the number of spheres
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Table 5.6: Models for Place23
LPPaver dReal Colibri

Model for c(1)
[︃
0.5 . . .
0.959...

]︃ [︃
−0.993 . . .
−0.372 . . .

]︃ [︃
1
1

]︃
Model for c(2)

[︃
−1.0

−0.789 . . .

]︃ [︃
0.976 . . .

1

]︃ [︃
0.5
−1

]︃
Model for c(3)

[︃
1

−1.0

]︃ [︃
0.983 . . .
−0.999 . . .

]︃ [︃
−1
0.5

]︃

Approx. Figures

C(1)
C(3)

C(2)
C(1)

C(3)

C(2) C(1)

C(3)

C(2)

for the 3-dimensional problems, LPPaver takes longer to prove satisfiability.
This implies that the ‘model finding’ algorithm is affected by the number of
variables. Note that the ‘showing unsatisfiability’ algorithm is also affected by
the number of variables as can be seen in the results for Place25, Place26,
and Place27: these problems become conceptually easier as the number
of circles increase but they become harder to solve when using algorithms
affected by the number of variables. This is typical for branch-and-prune
based algorithms.

LPPaver performed quite well for the 4-dimensional problems, returning
satisfiable results in a reasonable time frame. LPPaver took 1m57s to find
a model for Place45 however, further implying that LPPaver’s algorithms is
more affected by the number of variables when compared to approaches
used in other solvers.

dReal performed well for the satisfiable problems and gave a ‘δ-sat’ result
for Place33 and Place34. dReal also decided that Place24 is δ-satisfiable,
though clearly the model given does not satisfy (5.1). This occurs because
the δ-weakening of (5.1) allows a small (δ sized) overlap between circles
and also allows circles to have a small (δ sized) overlap with the faces of the
cube. dReal struggled with the remaining unsatisfiable problems where it
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Table 5.7: Checking models given by provers for (5.1) instances
Problem LPPaver dReal Colibri

Place22 correct correct correct
Place23 correct correct correct
Place24 N/A δ-correct N/A

Place32 correct δ-correct correct
Place33 correct δ-correct correct
Place34 correct δ-correct correct
Place35 correct δ-correct N/A
Place36 correct N/A N/A
Place37 correct N/A N/A

Place42 correct correct correct
Place43 correct δ-correct correct
Place44 correct N/A correct
Place45 correct N/A correct

decided ‘unsat’ in 18.05 seconds for Place25 and timed out for Place26 and
Place27. dReal also struggled with the 4-dimensional problems, most likely
due to the number of variables.

ksmt gave results for all of the problems except Place24, which is
exceptionally difficult due to touching, Place36, and Place37. The number
of variables may also increase the difficulty of the problem, however ksmt
seems to be less affected by the number of variables when compared to
other solvers. For example, ksmt decided Place35 with 15 variables in 0.59
seconds and Place45 with 20 variables in 0.04 seconds. One drawback of
ksmt is that it does not give a model for problems that it decided is satisfiable.

Colibri performed fairly well on the satisfiable problems, but timed out on
all of the unsatisfiable problems. Colibri is more affected by the conceptual
difficulty of the problem rather than the number of variables. For example,
Colibri timed out on Place35 which has 15 variables, but verified Place45
which has 20 variables in 29.53s.

To summarise, LPPaver performed the best on the unsatisfiable problems.
In comparison with the other provers, LPPaver performed well for the
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satisfiable problems, and was the only solver able to verify Place36 and
Place37. Both LPPaver and ksmt were able to solve 15 of the Place
problems, more than the other solvers we tested. LPPaver was able to
make decisions faster than ksmt for the unsatisfiable problems. ksmt was
able to make decisions faster than LPPaver for the satisfiable problems, but
ksmt does not produce a model. The results also show how the LPPaver
algorithms can slow down the number of variables increases.
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Chapter 6

Conclusion

We now conclude the thesis, stating our main contributions and potential
avenues for future work. This is done separately for the ideas implemented
in both LPPaver and PropaFP.

6.1 LPPaver

We have developed a numerical solver, LPPaver, that targets problems
involving nonlinear real arithmetic. LPPaver uses interval methods and
implements a variant of a branch-and-prune algorithm. LPPaver also uses a
form of interval constraint propagation to help ‘prune’ boxes by using interval
methods to decide the truth value of terms over a given box.

LPPaver implements novel contractions based on linearisations of conj-
unctions of nonlinear inequalities that are used to weaken the conjunctions.
These linearisations are used to produce a system of linear inequalities
which are analysed using the simplex method. The weakening linearisation
is used to contract a box by removing areas from the box containing values
which violate the linearised conjunction. The removed area is guaranteed
to also violate the original nonlinear conjunction. Similarly, a strengthening
linearisation is used to find a model for the linearised conjunction within a
box. The same model is also valid for the original nonlinear conjunction.

During our evaluation, we found that LPPaver performed comparably
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with, and in some cases better than, other automated state-of-the-art solvers
for problems involving nonlinear real arithmetic, as shown in Tables 5.5 and
5.1. Tables 5.6 and 5.3 show how LPPaver produced useful models for
satisfiable problems in a reasonable time-frame. We also discovered how
LPPaver is affected by the number of variables in a problem, with a high
number of variables causing slowdowns in the time it takes LPPaver to make
a decision.

We now discuss potential avenues for future work regarding LPPaver
and these novel contractors.

6.1.1 Future Work

Run both algorithms at once. LPPaver has two algorithms, one that
focuses on finding models and one that focuses on proving the absence of
a model. If a problem has a model, then LPPaver will perform better when
using the model-finding algorithm and vice-versa, however, a user may not
know whether or not a problem they are giving to LPPaver contains a model.
So, we propose a mode where LPPaver runs both algorithms simultaneously,
terminating both algorithms as soon as one gives a decisive (i.e. satisfiable
or unsatisfiable) result.

Remove variables from the box where possible. As LPPaver is some-
times significantly affected by the number of variables, it would be beneficial
to remove variables from a box whenever it is safe to do so. This could be
done when filtering out terms in a conjunction: if a variable only occurred in
terms that have been filtered out, we can safely remove said variable from
the box.

Alternative heuristic for choosing a variable to split. Currently, when
choosing a variable to split, LPPaver always chooses to split a variable
corresponding to some box dimension with the largest width. This may not
be desirable. For example, if one variable has a much larger domain than
the others, LPPaver may choose to split this multiple times when it may be
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more beneficial to split other variables. It would be beneficial to implement
alternative heuristics for choosing the variable to split, for example, a ‘round
robin’ method where each variable is split in a predetermined order.

Rotations. In some cases, rotating a box may lead to a better contraction,
increasing the efficiency of LPPaver’s algorithms. See Figure 6.1 for an
example.

Figure 6.1: On the left, we have a contraction of a box using a system of
inequalities. On the right, we rotate the box while contracting, reducing to a
much smaller box.

Implement DPLL(T) or similar. One could combine LPPaver with Open-
SMT, an open source implementation of the DPLL(T) algorithm that is used
in dReal. Alternatively, we could integrate LPPaver’s methods with other
solvers that implement DPLL(T), e.g. Z3. This would give users access
to powerful symbolic proving methods combined with LPPaver’s powerful
numerical proving methods.

Return system used to find a model. It may be beneficial for users for
LPPaver to return the system of linear inequalities that was used to produce
a model for a given problem. Users would be able to use the system to find
an alternative model if desirable, e.g., when searching for a counter-example
to the original specification of an FP program.

Implement novel contractors in other solvers. The novel contractors
we describe for conjunctions of linear inequalities can be implemented in
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other numerical solvers that uses similar methods. It would be feasible to
implement these contractors in dReal (via RealPaver) which may lead to an
increase in performance. The systems produced by our linearisations could
be solved by a tool like SoPlex [29] which implements an exact (rational)
simplex in C++ [33, 34], the language that both RealPaver and dReal are
implemented in. SoPlex is licenced under the ZIB Academic Licence, making
it free for academic use.

Verified implementation. LPPaver is implemented in Haskell with the
AERN2 library. There is a tool to develop verified AERN2 programs in Coq
named coq-aern [42]. To improve a user’s trust in LPPaver, it may be worth
rewriting and verifying LPPaver in Coq using coq-aern.

6.2 PropaFP

We have also presented an automated proving process for deciding VCs that
arise in the verification of FP programs with a strong functional specification.
Our implementation of the process builds on SPARK, GNATprove, and Why3,
and utilises FPTaylor and the nonlinear real provers dReal, MetiTarski, and
LPPaver. This process could be adapted for other tools and languages, as
long as one can generate NVCs similar to those generated by GNATprove.

The process can be summarised as follows:

1. Why3 reads a program with its specification and produces NVCs
(Negated VCs).

2. PropaFP processes the NVCs as follows:

(a) Simplify the NVC using simple symbolic rules and interval eval-
uation.

(b) Derive bounds for all variables in the NVC, interleaving with (a).

(c) Derive bounds for rounding errors in expressions with FP operat-
ions.

J. A. Rasheed, PhD Thesis, Aston University 2022 151



CHAPTER 6. CONCLUSION

(d) Using these bounds, safely replace FP operations with exact
operations.

(e) Repeat the simplification steps (a–b).

3. Apply nonlinear real provers on the processed NVCs to either prove
them or get potential counter-examples.

This proving process should, in principle, work with tools and languages
other than Why3 and SPARK, as long as one can generate NVCs similar to
those generated by GNATprove.

We demonstrated our proving process on three examples of increasing
complexity, featuring loops, real-integer interactions, and subprogram calls.
Notably, we have contributed the first fully automatically verified SPARK
implementations of the sine and square root functions. The examples
demonstrate an improvement on the state-of-the-art in the power of auto-
mated FP software verification.

Table 5.1 indicates that our proving process can automatically and fairly
quickly decide certain VCs that are currently considered difficult. Table 5.2
demonstrates how the process speeds up when using looser bounds in
specifications. Table 5.3 shows that our proving process can quickly find
potential, and often even actual, counter-examples for a range of common
incorrect specifications.

Our examples may be used as a suite for benchmarking future FP
verification approaches, The NVCs resulting from these examples can be
used as benchmarks for nonlinear real provers and were used in this thesis
to evaluate LPPaver.

Future work

We conclude with thoughts on how our process could be further improved.

Executable exact real specifications. We plan to make specifications
containing functions such as

√
· executable via high-accuracy interval arith-
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metic, allowing the developer or IDE to check whether the suggested counter-
examples are valid.

Adapting the provers. We would like the provers we used in this paper to
be improved in some ways. Ideally, the provers will be able to decide all of
our examples. Support for integer rounding could be added to dReal, using
methods similar to those used in LPPaver. It should also not be difficult to
add support for larger integers in dReal. Support for both integer rounding
and the modulus operator could be added to MetiTarski. Adding these
features will allow both dReal and MetiTarski to have an attempt at deciding
all of our examples.

Why3 integration. Our VC processing steps could be integrated into
Why3. This would include simplifications, bound derivation, and FP elim-
ination. As Why3 transformations, the VC processing steps would be more
accessible for users who are familiar with Why3. Also, the proving process
would thus become easily available to the many tools that support Why3.

Support function calls. Having to manually translate functions into pro-
cedures is undesirable. Support for function calls could be added, e.g., by a
Why3 transformation that translates functions into procedures.

Use Abstract Interpretation. We currently derive bounds for variables
using our own iterative process similar to Abstract Interpretation over the
interval domain. It would be interesting to see if the proving process would
improve if we use an established Abstract Interpretation implementation to
derive bounds. If nothing else, such a change would reduce the amount of
new code that a user would need to trust.

More Tools and Solvers. Connect PropaFP to other tools and solvers,
notably alternative FP analysers such as Rosa, Gappa, and PRECiSA. We
could connect PropaFP to other solvers. Colibri, for example, would give
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PropaFP access to a solver that uses constraint programming methods. We
could also connect PropaFP to Frama-C and Krakatoa which would allow
the use of PropaFP’s methods when verifying FP C and Java programs,
respectively.

Verified implementation. We would like to formally verify some elements
of our process to ensure that the transformation steps are performed
correctly. Like LPPaver, PropaFP is implemented in Haskell and utilises
AERN2, so a rewrite in Coq with coq-aern may be a feasible verification
route.
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