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Abstract. It has been observed that regular exposure to hateful content online 

can reduce levels of empathy in individuals, as well as affect the mental health 

of targeted groups. Research shows that a significant number of young people 

fall victim to hateful speech online. Unfortunately, such content is often poorly 

controlled by online platforms, leaving users to mitigate the problem by them-

selves. It’s possible that Machine Learning and browser extensions could be 

used to identify hateful content and assist users in reducing their exposure to 

hate speech online. A proof-of-concept extension was developed for the Google 

Chrome web browser, using both a local word blocker and a cloud-based mod-

el, to explore how effective browser extensions could be in identifying and 

managing exposure to hateful speech online. The extension was evaluated by 

124 participants regarding the usability and functionality of the extension, to 

gauge the feasibility of this approach. Users responded positively on the usabil-

ity of the extension, as well as giving feedback regarding where the proof-of-

concept could be improved. The research demonstrates the potential for a 

browser extension aimed at average users to reduce individuals’ exposure to 

hateful speech online, using both word blocking and cloud-based Machine 

Learning techniques. 
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1 Introduction 

‘Hate speech’ is a form of targeted abuse, aimed towards an individual or group with 

the intent to offend or threaten [1, 2]. In online spaces, hate speech has long been an 

issue due to the anonymity and perceived lack of consequences of online speech, 

along with the ability for hateful groups to easily congregate. 

It has been observed that exposure to hateful speech and sentiment towards mar-

ginalized groups can reduce levels of empathy in the wider population, with a Finnish 

survey reporting 67% of respondents aged between 15-18 years old had been exposed 

to hateful speech online, and 21% having fallen victim to such material [3]. The effect 

of hate speech on members of marginalized groups online is self-evident, as “From 

the perspective of members of the targeted groups, hate speech ‘sets out to make the 

establishment and upholding of their dignity’ much harder” [4]. 
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Several different techniques have been attempted to reduce the amount of hateful 

speech online, with Google funding the ‘Jigsaw’ research wing, focused on fighting 

online toxicity using Machine Learning (ML). This process involves training a com-

puter algorithm to learn and improve over time. The research involved gathering large 

datasets of comments and categorizing toxic sentiment, offering the ability to auto-

matically block hateful comments from sites such as The New York Times for their 

comment section [5]. 

Even though most major social media companies have the data, resources, and ex-

perience to reduce the hate on their platforms using advanced techniques such as ML, 

the issue is politically sensitive, with the companies cautious to ban accounts or hide 

posts after accusations of political censorship [6]. In March 2019, CEO Mark Zucker-

berg detailed Facebook’s shift towards a more ‘privacy-focused’ platform, motivated 

by the public response to the Cambridge Analytica privacy scandal and spread of 

offensive content [7]. This move also reduces the scope of their responsibility to 

moderate content on the platform, with end-to-end encryption and private groups 

making moderation more difficult. These reasons are part of the reason why work is 

being done to give individuals control over what they see online, with Google’s Jig-

saw developing the experimental ‘Tune’ browser extension, allowing users to deter-

mine the intensity of speech they’re exposed to. 

The aim of this research is to investigate how a browser extension can be used to 

assist users in reducing their exposure to hate speech online, by researching existing 

solutions and surveying members of the public on a proof-of-concept prototype solu-

tion. Extensions can be an effective place to do this detection as they’re relatively 

accessible to users, usually installed as an add-on through an online store to extend 

the functionality of the browser, as well as being positioned in the web browser where 

most social interactions on PCs are carried out. Extensions have been used to give 

users control over their exposure to hate speech, with open-source solutions such as 

the Negator tool [8] using a locally trained Natural Language Processing (NLP) mod-

el, a type of ML that can be used to detect hateful sentiment by considering the con-

text of the comment and comparing it to the comments it has seen and been trained on 

in the past. This research is primarily focused on the acceptability and usability of 

such an approach. 

This paper proceeds as follows. Section 2 presents a literature review into defini-

tions of hate speech, as well as existing technologies available to manage hate speech. 

Machine learning, and how it can be used to detect sentiment, is also explored. Sec-

tion 3 describes the development of a proof-of-concept browser extension and server. 

Section 4 describes the design of an evaluation survey that was conducted with partic-

ipants from the public, as well as the results of the survey. Section 5 discusses and 

reflects on the design and technical aspects of the proof-of-concept extension. Lastly, 

Section 6 summarizes the research contribution and discusses limitations and sugges-

tions for future work. 
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2 Background 

This section will review how browser extensions as well as different technologies 

such as ML can assist in accurately detecting instances of hate speech online. It will 

also discuss how this effectiveness can be measured, how to notify users of this 

speech, and issues regarding building datasets. This area of research has been of sig-

nificant interest recently due to the rapid improvement of ML and language recogni-

tion, as well as public discussion about censorship and how much or little social me-

dia companies should censor content on the platforms. 

2.1 Defining Hate Speech 

The term ‘hate speech’ does not have a universal definition, and the scope of the term 

can depend on which definition is used. The majority of developed democratic coun-

tries have laws defining and restricting the use of it to differing extents [9], with the 

United Kingdom defining Hate Speech as an expression of hatred towards someone 

on account of that person’s “colour, race, disability, nationality, ethnic or national 

origin, religion, gender identity, or sexual orientation”. Additionally, “Any communi-

cation which is threatening or abusive, and is intended to harass, alarm, or distress 

someone” is illegal as of the 1994 Criminal Justice and Public Order Act [2].  

Although the United States doesn’t have hate speech written into law due to Su-

preme Court rulings around the First Amendment [10], most major social media plat-

forms define hate speech in similar terms as the United Kingdom. Facebook, the larg-

est social media platform globally, defines hate speech as a direct attack on some-

one’s protected characteristics, including “race, ethnicity, national origin, religious 

affiliation, sexual orientation, sex, gender or gender identity, or serious disabilities or 

diseases” [1].  

It has been found that regular exposure to this content can be harmful to the indi-

vidual or groups that are directly targeted. For example, the effects of anti-Semitic 

and homophobic hate speech can cause heightened stress, anxiety, depression, and 

desensitization [11]. This conclusion is supported by a study run by the Economist 

Intelligence Unit which finds that 65% of women experience hate speech online [12]. 

Unfortunately, it is difficult to define a profile for cyberhate targets, which can pro-

vide a starting point to identify at-risk individuals [13]. Therefore, any technology to 

manage hate speech needs to be broadly accessible and usable.  

2.2 Technology to Manage Hate Speech 

As online hate speech has moved to the forefront of public discussion, in part thanks 

to public campaigning and the growing unanimity of social media, tools have been 

developed to try and mitigate this. Research has been carried out in using techniques 

such as keyword detection, account blacklisting, and ML based approaches. There are 

numerous different proposed methods to alert the user of hateful content, ranging 

from blocking the post from view completely to just giving the user a notice that the 

account has a history of hateful conduct. 
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The Negator tool [8] makes use of NLP with an Aspect-based Sentiment Analysis 

(ABSA) model. The extension uses server-side processing to detect the intensity of 

the speech from 0 to 100%, taking into consideration the topic and who/what the 

speech is aimed at, then categorizing the speech into topics including “Abuse, Person-

al Attacks, Cyberbullying, Sexual Advances, Bigotry, Criminal Activity” and “Death 

Threats”, and will block the post with a visual indicator notifying the user which cate-

gory the speech falls under if the intensity is more than 60%. The tool takes a harsh 

stance on hiding hateful content and entirely hides posts that meet its own criteria 

with an interface notifying the user that the content has been blocked, giving the cate-

gory the post falls into, with an option to view the post anyway. 

The Shinigami Eyes tool [14] takes a different approach in notifying users of harm-

ful content. The extension focuses on transphobic social media accounts and websites, 

with users submitting links as being ‘anti-trans’ or ‘trans-friendly’ that are manually 

reviewed before being added to the list, implemented using a bloom filter. Shinigami 

Eyes uses colour coded warnings marking hyperlinks and profiles as red (anti-trans) 

or green (trans-friendly). This approach is less harsh in that it still shows users the 

offending user’s posts but can give extra context that might increase the likelihood of 

users not interacting with ‘anti-trans’ accounts. Users may submit reports via the ex-

tension interface by right clicking on a link to a profile or website. 

Modha et al. [15] proposes a browser extension that implements the TRAC dataset, 

which classifies training data into sentiment categories of ‘overtly aggressive’, ‘cov-

ertly aggressive’, and ‘non-aggressive’, showing users the levels of each category 

embedded in the web page. The extension uses a similar method of colour coding as 

the Shinigami Eyes extension, with posts that pass a high threshold of confidence 

displayed completely in red, with medium displayed in yellow and non-hateful posts 

in green. Along with this, the levels detected by the model are shown directly above 

the comment as a number. The decision was justified in the paper by the distrust that 

the public has regarding algorithms and ML, partly due to the fact they are seen as a 

black box. 

2.3 Machine Learning 

Client-side and cloud models. As ML has gained popularity in business applications, 

commercial services are now common where users can rent computing power and 

take advantage of mature pre-existing models. Robust libraries and frameworks exist 

for a multitude of languages for building a model locally, with Python offering librar-

ies such as scikit-learn, mlxtend and Shogun that can be configured with most ML 

algorithms involving transformation, decision trees, classification and more [16]. 

Datasets. A significant factor in training an accurate ML model is to ensure there is a 

well annotated dataset that is relevant to the topic being worked on. In the area of 

linguistics, the term ‘corpus’ refers to a collection of texts, especially regarding a 

particular subject. In the field of NLP, a corpus similarly refers to a structured set of 
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text or data, commonly used for training a model. However, classifying hate speech 

has proven to be a challenge, principally due to the loose definition of the term.  

Ross et al. [17] discusses this in the context of training a dataset from the online 

discourse surrounding the European Refugee Crisis, with data gathered from 13,766 

Tweets including a selection of offensive hashtags. The Tweets were categorized by 

annotators who were also given Twitter’s official definition of hate speech, but the 

rate of agreement was still low with a Krippendorff's alpha of (α) = 0.38 (with 0 being 

complete disagreement and 1 being complete agreement). They conclude that there 

needs to be a stronger and more consistent definition of hate speech. Additionally, 

when annotating datasets, finding common characteristics of content users find hate-

ful will be useful in building a more automated detection model.  

MacAvaney et al. [18] focuses more broadly on the challenges and possible solu-

tions of hate speech detection. An issue brought up is the data usage and distribution 

policies of major social media companies who want to restrict users scraping their 

platform for various reasons including legitimate user privacy concerns. This creates 

an issue on Facebook, the biggest social platform and location for a significant 

amount of online discourse, not allowing for scraping of content. Therefore, a useful 

stream of data is restricted – for example discussion in comments underneath a con-

troversial news article. A related issue is the disproportionate language representation 

in hate speech datasets, with English making up the vast majority due to being the go-

to language for online discussion. 

Assessing accuracy. There are various methods to assess the accuracy of natural 

language models, and the appropriate measurement can vary depending on what the 

NLP model is intended to be used for. A reliable method available with certain da-

tasets is making use of ‘Dev set’ data. This was implemented as part of the First 

Workshop on Trolling, Aggression and Cyberbullying (TRAC-1) where 130 teams 

helped annotate 15,000 Facebook comments and posts [19]. This large data pool 

meant a second non-overlapping corpus could be created, which came from similar 

sources to the intended training data making it a good testing environment. Once test 

data is acquired, a popular metric to describe the performance of ML models is a Con-

fusion matrix [20]. 

2.4 Summary  

The literature shows the potential applications a browser extension could have in the 

real world, with different methods effective at helping users control their exposure to 

hateful content and be informed of who they are interacting with. The papers re-

viewed include detailed discussion of the different natural language models for detec-

tion but conclude that each method has its drawbacks and can all perform well with 

high quality training data. The research also provided valuable insights into datasets, 

highlighting the value of properly sanitized and annotated data to help train and test 

language models. 
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3 Prototype Development 

This section describes the development of a proof-of-concept browser extension and a 

Python application (nicknamed HateBlocker), with the browser extension used to scan 

webpages for elements, and a Python server to receive these elements and process 

them, sending back the results. The browser extension was developed for the Google 

Chrome browser. This decision was made as Chrome is currently the market leader in 

desktop web browsers. As browser extensions are developed primarily using cross 

platform web technologies like JavaScript, it would be trivial to port over to a non-

Chromium browser such as Mozilla Firefox. 

An iterative development approach was adopted. Originally the browser extension 

was designed to deal with both detecting and processing webpage data. However, 

during the development process it was found that this increases the complexity of the 

code significantly, also making it more difficult to swap out the processing algorithm 

at a later stage. To allow future changes to the processing algorithm, the decision was 

made to split the application into two distinct parts as shown in Fig. 1. A Chrome web 

extension parses the webpage elements and sends and receive this data, while a sepa-

rate Python-based server retrieves the data, processes it, and sends it back to the web 

extension. 

 

Fig. 1. Flow diagram of prototype 

3.1 Text Detection 

For the browser extension to detect and block hateful content on webpages, it needs to 

be able to read elements on the page, as well as filter which elements would be rele-

vant to the search. To inject scripts into webpages, content_scripts must be 

declared through manifest.json. This file is required for the extension to run, as 

it holds the extension’s metadata and other configuration. After fetching the relevant 

elements, the innerText of these elements was added to an array. This removed 

parts of the element object that were unnecessary for processing the text. 

The technique used for fetching relevant elements depends on which site the 

HateBlocker is being aimed at. For the proof-of-concept the classic interface of the 



7 

popular Reddit social media platform was chosen (old.reddit.com). Reddit is a decen-

tralized platform relying on voluntary moderators to manage communities. However, 

it’s been widely reported that some communities don’t strictly enforce Reddit’s code 

of conduct and leave hateful content on the site [21], which makes it applicable to this 

research. 

The classic interface was chosen as it doesn’t rely extensively on JavaScript to 

draw interface elements, and therefore the Document Object Model (DOM) is rela-

tively static and easy to parse. This method could easily be adapted to forums and 

imageboards such as 4chan. However, a different method would be needed for mod-

ern social media platforms such as Twitter, Facebook, and the most recent design of 

Reddit, as they use the popular ReactJS library. This library increases the complexity 

of detecting elements on a webpage because it virtualizes the DOM and only periodi-

cally updates the real version. 

3.2 API  

The development of the project was split into two parts, with the extension sending 

webpage elements via POST request as JSON data, a standardized format for serializ-

ing data, in real time to a remote server. This is done asynchronously using the fetch 

API available in JavaScript ES6. This data is then received by a Python Flask [22] 

application located at app.py. Flask was chosen as it’s a lightweight web framework 

that allowed for a POST endpoint to be configured in a few lines of code. As shown 

in Fig. 2, two methods were added to the server, to receive POST requests and send 

this data to the analyser, and to send a response if a GET request is mistakenly sent to 

the server.  

 

Fig. 2. Flask endpoints 

Once data was passed into the Flask application and processed by the analyser, it 

was returned to the extension via the POST response, formatted as JSON data, with 

an extra property of either True, meaning the text was detected to be hateful, or False 

meaning the text didn’t trigger the analyser. Fig. 3 illustrates how the endpoints com-

municate with the extension. This API based method of communication between the 

extension and server makes it easy for future work in to be carried out in implement-

ing different extensions or servers. 
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Fig. 3. API flow visualization 

3.3 Text Processing  

Text processing functionality was developed with the goal of being interchangeable, 

allowing for different hate speech detection techniques and algorithms to be added in 

the future. A local version of text processing was implemented in JavaScript in the 

Chrome extension earlier in the development stage. Different avenues were explored 

in this area, such as using a server-side wordlist and sentiment analysis using 

Google’s Cloud Language and Perspective APIs. 

Local wordlist. A local wordlist was the first step in detecting overtly hateful text 

online. This method misses out on the context in which the term was used - for exam-

ple, if the word is offensive only in the context of a particular discussion. Although 

relatively easy to implement technically, a wordlist had to be found or generated for 

the Python application to use. Hatebase [23] provides a comprehensive and regularly 

updated list of hateful words in use in multiple languages globally and was considered 

for use in the application. The site requires use of an API to access their dataset which 

could considerably slow down the runtime of the application. An alternative dataset is 

made available by Carnegie Mellon University [24] listing 1,300+ English terms that 

could be found offensive. This dataset was downloaded as a TXT file and converted 

to CSV using Microsoft Excel, before being used in the prototype. 

Cloud based sentiment analysis. After implementing word detection using a local 

Python server, cloud-based sentiment analysis was integrated into the application as a 

demo of the extensibility of a server-based approach. This was done using Google’s 

Perspective AI. This is a limited access API developed by Jigsaw, a research unit 

within Google and Google’s Counter Abuse Technology teams, to enable better con-

versations online by creating ML models targeted at online toxicity and harassment 

[25]. As shown in Fig. 4, the JSON response was parsed to get the toxicity score for 

the paragraph, measured between 0 (no toxicity) and 1 (extremely toxic), with any 

value over 0.5 returning True and resulting in the element being marked as hateful. 
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Fig. 4. Perspective API implementation 

3.4 Notifying the User  

Due to how elements are sent to a server and returned, limitations were found regard-

ing how the elements could be modified, to notify the user that they had been blocked. 

Initially, elements were checked to see if they included the blocked word, and if they 

did, the innerHTML was appended to remove the phrase and replace it with “Post 

blocked by HateBlocker”. The appearance of blocked elements is illustrated in Fig. 5. 

It uses a minimal notification, blending in with the page background. This method 

also allowed for users to view the content if they wished by selecting the dropdown 

(as shown in the bottom section of the figure).  

 

Fig. 5. Appearance of blocked elements 

As well as notifying the user by covering offending elements, the extension’s pop-

up was configured to show the number of instances on a given page. This was done 

by adding a temporary counter to Chrome’s local storage API after instances are re-

turned, which is fetched when the pop-up is opened. This result was cleared on page 

change, as well as when the extension was disabled using the pop-up interface. 

4 Evaluation 

A user acceptance survey was conducted to gather opinions on the proposed hate 

speech blocker browser extension. Due to COVID-19 restrictions, participants were 

unable to test the browser extension in person. Although options were considered with 

regards to allowing users to install the extension on their personal machines, the deci-

sion was made that this would be too awkward for novice users as well as being a 

security risk. 
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Due to the complicated nature of walking participants through installing a browser 

extension manually, it was decided that a video would be created to simulate what the 

browser extension’s experience was like. This involved recording an in-development 

version of the extension on Reddit, a site the extension was intended for. The demon-

stration recording involved using the extension in a way that was as easy as possible 

to understand, which involved planning which areas of the extension to show and 

when. As shown in Fig. 6, a linear diagram was used to assist in visualizing the order 

to carry out the demonstration. 

 

Fig. 6. Demonstration video visualization 

Once the video was recorded, it was edited to slow down the clip and make it easi-

er to follow. Annotations were added to explaining what was happening. The video 

was uploaded to YouTube from where it was embedded into the survey. 

Participants were recruited using a combination of social media and email. A sur-

vey link was posted publicly to personal social media platforms (Facebook, Twitter, 

Instagram, and LinkedIn) and sharing was encouraged. The link was also sent out via 

email to personal contacts. Prior to data collection the survey was reviewed and ap-

proved by the School of Design and Informatics Ethics Committee at Abertay Univer-

sity. 

4.1 Survey Items 

Quantitative Items. This included demographic questions, as well as questions to 

assess the perceived usability of the extension. The System Usability Scale was used 

to assess participants’ subjective rating on the usability of the extension. This scale 

was chosen as it’s an established metric, proven to be highly robust and versatile [26]. 

It consists of 10 standard questions aimed at measuring the effectiveness, efficiency, 

and satisfaction of a system/piece of software, scored on a Likert scale from Strongly 

Disagree to Strongly Agree. These questions were adapted for the browser extension 

and are shown in Table 1. One additional Likert scale question was added, presenting 

the assertion that “I’m comfortable with my amount of exposure to hateful content 

online”. This question was added as a factor to determine how useful the extension 

would be for the user. 
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Table 1. System usability scale questions adapted for survey 

Number Question 

Q1 I think I would use this extension frequently. 

Q2 The extension looked unnecessarily complex. 

Q3 The extension looked easy to use. 

Q4 I think I’d need the support of a technical person to be able to use this extension. 

Q5 I found the functionality of this extension well integrated with the site. 

Q6 The extension was designed in an aesthetically pleasing way. 

Q7 I would imagine that most people would learn to use this extension very quickly. 

Q8 The extension looked very cumbersome to use. 

Q9 I think I would feel very confident using the extension. 

Q10 I would need to learn a lot of things before I could get going with this extension. 

Qualitative Feedback. Three open-ended questions were added to gather more de-

tailed perceptions. Firstly, “Is there any other ways the browser extension could be 

improved, based on the video viewed?” This question was used as general feedback 

for participants to voice their opinion and suggestions on how the extension itself 

should be executed. After this, the question “Which websites would you see this ex-

tension being useful on?” was asked to allow the user to add site suggestions they 

would find it useful on. Finally, the question “If uncomfortable using this extension, 

what would make you more comfortable using an extension to limit your exposure to 

hate speech?” was asked. This question is aimed at any participants that aren’t com-

fortable with the concept of such an extension and gives an opportunity to explain 

what their reasons are. 

4.2 Survey Results 

In total 124 participants completed the survey. Slightly over half of participants 

(50.8%) were aged 18-24. Most participants identified as either male (44.4%) or fe-

male (42.7%). The highest level of education is University (50%), followed by high-

er/further education (30%), and a post-graduate degree (9.7%).  

Participants were asked which social media platforms they use, to determine which 

platforms would be most useful to extend functionality to in the future. The major 

platforms identified were Facebook (76.6%), Instagram (71.8%), Twitter (71.8%), 

Snapchat (47.6%), Reddit (41.1%), and TikTok (27.4%).  

Concerning the statement “I’m comfortable with my amount of exposure to hateful 

content online” (hereafter referred to as ‘comfort with exposure’) the participants 

generally held a neutral position (M = 2.99, SD = 1.334). Spearman’s correlation was 

computed to assess the relationship between comfort with exposure and the demo-

graphic variables. There is a significant correlation between gender and comfort with 

exposure, with participants identifying as female and non-binary being less comforta-

ble (r = -.38, 95% BCa CI [-.523, -.199], p < .001). This relationship is illustrated by 

the histogram in Fig. 7. This result supports prior research findings [12] and helps to 

identify at-risk individuals. No significant correlation was found between comfort 

with exposure and age, or level of education. 
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Fig. 7. Relationship between comfort with exposure and gender 

The responses were analyzed to see which areas of the System Usability Scale 

stood out as strengths and weaknesses. The final score was found to be 77.3 out of 

100, resulting in an above average score. Previous research has shown that scoring 

upwards of 71.4 would rank the result as ‘good’, with results of over 85.5 ranked as 

‘excellent’ [27]. Fig. 8 shows the total responses for each question, keeping in mind 

that odd numbered questions are phrased positively (meaning Strongly Agree indi-

cates better usability), and even numbered questions phrased negatively (and therefore 

Strongly Disagree indicating better usability). 

 

Fig. 8. Stacked bar graph showing System Usability Scale responses 

Normalized scores for the questions are shown on the vertical axis, which takes ac-

count of the different phrasing and scores the questions on how positive the results 

were. 
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5 Discussion 

5.1 Design 

A high priority when designing the browser extension was ensuring it was accessible 

to users of all levels of technical proficiency. This was done by making the purpose of 

the extension clear through making the interface as simple as possible as well as 

providing materials to assist users in understanding how the extension works via a 

demonstration video.  

The extension was developed through multiple iterations, with the first version 

demonstrated to survey participants in a Demonstration Video. The majority of the 

feedback regarding this version involved the fact that the text was too intrusive, as 

well as users being able to “fill in the blanks” of the blocked word since the rest of 

the sentence was visible, with over 30 responses mentioning this. For example: “Per-

haps find a way to block out sentences after the blocked word as you will know the 

word you have blocked out but an Excellent first step.” This feedback was addressed 

with the final version of the extension, as shown in Fig. 5. 

In the initial design of the extension, it was proposed to show the user the specific 

type of hate speech the extension was hiding, but due to the method of word detection 

used, the extension could only tell whether an element was hateful or not, and not the 

specific reason it was. Therefore, the number of instances on the page were displayed 

to inform the user. This functionality could be implemented in the future by using a 

local ML model. The decision was made not to include a local ML model for the 

proof-of-concept due to the Perspective API being perceived as more accurate and 

being easier to implement, but after testing was found to be unusably slow when used 

with complex webpages. Sentiment analysis could be integrated to achieve a similar 

level of responsiveness as word-detection if implemented locally, while also opening 

the possibility of giving context-dependent warnings. 

Survey participants praised the overall ease of use of the extension, with Q2, Q3, 

and Q4 related to the level of knowledge required to use it, with Q4. “I think I’d need 

the support of a technical person to be able to use this extension” being the highest 

scoring answer with an average response of 1.2 and the majority of participants 

choosing Strongly Disagree which is a sign that users understand the purpose and 

usage of the extension, leaving responses such as: “It looks clean and easy to use as 

is.”  

5.2 Technical Implementation 

A core objective of this research was to develop a browser extension that would be 

able to detect and block hateful content on webpages. The extension was successful in 

this regard in that it effectively detected relevant elements of the target page, sending 

these using an API to communicate with the server that processed these results. It was 

also used to inform users of the status of the extension, and the number of instances of 

hate speech on any page.  



14 

A common point of feedback found in survey results regarding the technical func-

tionality of the extension had to do with integrating a ‘wordlist’ or ‘machine learn-

ing’. For example, “I think the proposed method of adding words to a block list or 

using machine learning would be a good method to block words however I would like 

to see a user manageable list as some people have different qualifiers as what is hate 

to them.” This functionality (a wordlist and cloud-based sentiment analysis powered 

by the Perspective API) was implemented in the final version of the extension. 

A targeted approach was used when building the detection functionality of this ex-

tension, and this significantly simplified the process of detecting elements on the cho-

sen site, where the Paragraph tag was used. A downside of this method of element 

detection was that a lot of irrelevant elements were captured and processed such as 

page headings and navigation/side bars. This didn’t cause issues when carrying out 

local word detection, as the API traffic stayed on the local machine, however if this 

server was moved to a remote location, it’s possible the network connection would be 

a bottleneck.  

Along with this extension, a server was implemented to carry out the processing 

function of the browser extension, enabling the two systems to exist independently. 

This would allow the browser extension to be modified and configured with different 

detection models, and the server to be used with any application that wishes to inte-

grate with the HTTP API. Python was the language of choice for this server, due both 

to the simplicity of configuring an API using Flask and the wide range of libraries 

available for text processing and Machine Learning. The extension was built with an 

intent to make the process of integrating new detection algorithms simple, with a 

standard JSON input format of sentence:true/false and each method con-

tained within a function inside the analyser. The server-side approach was successful 

in that it integrated well with the extension and performed well when working with a 

local word detection model.  

Problems were experienced however when working with the remote Perspective 

API, where due to every paragraph element of the page being individually processed, 

often the rate limit of 60 requests per minute was reached before classifying all the 

elements on the page. Although the same rate limits were not experienced with the 

similar Google Cloud Language, this API was less catered towards toxicity and simi-

larly to Perspective API, the time spent waiting for a response made these methods 

unusably slow on websites that were more complex. 

6 Conclusion 

The aim of this research was to investigate how a browser extension can be used to 

reduce exposure to hate speech online. It found, through investigation of existing 

literature, that NLP can play a valuable role in hate speech detection due to its ability 

to recognize the context in speech, and how browser extensions can be an effective 

method of managing what users are exposed to online. Through the development and 

evaluation of a proof-of-concept extension, it was found that users were receptive to 

this method of reducing their exposure to hate speech online.  
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This research was mainly focused on the acceptability and usability of the ap-

proach for users. It was found that the extension was highly usable, with an overall 

System Usability Score of 77.3 (good). In addition, survey results suggest that the 

public are open to using browser extensions or similar solutions to reduce their expo-

sure to hate speech online, with most of the negative feedback related to the fact that 

the demonstration was based on an early version of the extension. Due to COVID-19 

restrictions, the extension could only be demonstrated to participants using a video 

recording of its functionality. Although it is believed that this still presents a sufficient 

basis for evaluation, additional in-person evaluations would be beneficial. 

It was found that sentiment analysis and NLP, in general, could greatly assist in re-

ducing the amount of hateful speech online, especially when online platforms inte-

grate it to deal with toxic accounts directly. Browser extensions, however, have the 

potential to play an important role for individuals that wish to cater their online expe-

rience separate from what online platforms deem as acceptable. The survey results 

indicate that gender could be an important indicator of at-risk individuals, with those 

identifying as female and non-binary being significantly less comfortable with the 

amount of exposure to hateful content online. Future research could investigate the 

impact on these groups in more detail, and what they would prioritize in a technical 

solution. 

The extension was designed to be simple for the end user, whilst maintaining a 

level of interoperability and extensibility to add functionality in the future. For this 

purpose, it was designed as two parts, and using a standard API allows for the server 

or extension to be modified without having to make major changes to the protocol. 

While the proof-of-concept only targeted the classic interface of Reddit, the survey 

results showed this to be one of the top five platforms in use and thus relevant in the 

context of this research. The survey results confirmed several other platforms for 

future targeting. 

A limitation present in the current version of the extension was the choice made 

between having a less accurate and context unaware word detection model that pro-

cesses quickly, or a more accurate context aware sentiment analysis model that hin-

ders performance. This limitation could be addressed by using a local ML model. 

However, a larger challenge would be bringing this technology to increasingly popu-

lar mobile platforms where content injection is impossible in most instances. How 

best to manage these constraints presents an opportunity for further research. 
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