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Abstract: Previous research has recognized the importance of edges to crime. Various scholars have
explored how one specific type of edges such as physical edges or social edges affect crime, but rarely
investigated the importance of the composite edge effect. To address this gap, this study introduces
nightlight data from the Visible Infrared Imaging Radiometer Suite sensor on the Suomi National
Polar-orbiting Partnership Satellite (NPP-VIIRS) to measure composite edges. This study defines
edges as nightlight gradients—the maximum change of nightlight from a pixel to its neighbors.
Using nightlight gradients and other control variables at the tract level, this study applies negative
binomial regression models to investigate the effects of edges on the street robbery rate and the
burglary rate in Cincinnati. The Akaike Information Criterion (AIC) of models show that nightlight
gradients improve the fitness of models of street robbery and burglary. Also, nightlight gradients
make a positive impact on the street robbery rate whilst a negative impact on the burglary rate,
both of which are statistically significant under the alpha level of 0.05. The different impacts on
these two types of crimes may be explained by the nature of crimes and the in-situ characteristics,
including nightlight.

Keywords: crime; edges; nightlight satellite data; NPP-VIIRS

1. Introduction

Previous studies have explored criminal opportunities in different geographical areas [1–11].
Crime rates are high in areas marked by a minimum of personal, intimate social interaction [12].
These areas, containing mixes of land use and physical spaces, tend to have more crime generators
and attractors [1,13–18]. A body of research has theorized the importance of boundaries of geographic
units in the location of crime [19–23]. These spatial boundaries, such as physical boundaries and
social boundaries, are defined as “edges” by Brantingham and Brantingham [14]. Areas with more
edges may motivate offenders to commit crimes [24]. Scholars have explored the relationship between
spatial boundaries and levels of crimes [20,21]. Though there are studies that measure different types
of edges using census variables and land use data, scholars mainly focus on one specific type of edges.
Relationship between areas with composite edges, representing a combined set of all edges related to
social and physical features, and crime remains untouched in the literature. Nightlight satellite data,
reflection of combined effect of socioeconomic developments [25–39] and urban constructions [40–51],
could be a suitable source to measure such composite edges. This study aims to explore the possible
impact of composite edges measured by nightlight gradients on street robbery and burglary.
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1.1. Edges and Crimes

Edges are key concepts in the crime pattern theory [3,14,52,53]. In this theory, the spatial
dimension of crime can be considered as the composition of activity nodes, paths, and edges. Activity
nodes are places where people sleep, work, and entertain or shop; paths are places between activity
nodes, for example, the road network and footpath; edges are boundaries where the noticeable
change is distinctive from one part to another [14]. This noticeable change can be defined by various
characteristics ranging from the sharp and well-defined area to the diffused and progressive area,
including physical, social or economic attributes [23]. Edges can be physically visible boundaries
between different areas, such as rivers, regional or local parks, transit systems like highways and major
roads [19,22,23]. Physically visible edges may increase crime by affecting the perceived likelihood of
detection such as reducing the sense of guardianship [20]. Research has investigated the relationship
between crimes and the proximity to parks and highways [20,54–56]. However, parks and highways
are not considered as edges since they are theorized as crime attractors in most studies [20].

Additionally, less physically visible edges also affect crime occurrence. Crimes occur in edges
between social neighborhoods and districts [52]. Brantingham and Brantingham found that burglary
rates are much higher in street blocks bordering on edges than in the interiors of neighborhoods [1,57].
They applied “fuzzy topology algorithm” to measure changes from one dissemination area (a census
unit in Canada, composed of block clusters) to another and found that street blocks on borders have
higher burglary levels than those in the interior of neighborhoods [19]. Brantingham et al. found
that gang violence strongly clusters on edges between gangs [58]. Song et al. defined edges as the
boundary between single-family zones and other types of land use classifications and found that edges
of single-family zones have more crime events since these edges perceptually reduce spatial ownership,
while increase potential conflicts and decrease the feeling of safety [23]. Similarly, Song et al. found that
rates of criminal victimization are high on edges where land use classifications change, but decrease
quickly as the distance to edges increase [22]. Hart recognized that bus stops on edges of mixed types
of land use such as commercial areas and residential areas can generate crimes [59]. Kim and Hipp
demonstrated that the crime level is higher in the administrative boundaries on city boundaries in
Southern California [20]. Legewie found that violent crimes are more likely to occur at neighborhood
boundaries than internal neighborhood characteristics [21].

To investigate the impact of edges on crimes, scholars use statistical models and define edges as
one main independent variable. They define physically visible edges (i.e., rivers, regional or local parks,
and highways or major roads) and administrative edges (i.e., city boundaries and school districts) as
the binary variable (Yes/No) or define these edges as the continuous variable (distance from these
boundaries). For example, Kim and Hipp found that street segments adjacent to administrative edges
and physically visible edges have higher levels of crime [20]. For social edges, previous research
focuses on where social edges exist and how sharp those edges are. Scholars measure social edges
by socio-spatial features instead of using the proximity to differently composed areas. For example,
Legewie used ethno-racial variables from the census data and detected the positive effect of racial
neighborhood edges on violent crimes [21]. Though scholars explored how one specific type of physical
edges or social edges affect crimes, they paid less attention to how areas with composite edges may
affect crime.

Areas with composite edges represent that areas involve different types of edges. For example,
both physical edges and social edges can exist in the same area. The importance of composite edges
in levels of crimes should be recognized for two reasons. First, generally, areas in a city are not
simply composed of only one specific type of edge. Since edges are defined as distinctive shifts from
one part to another by various characteristics [14,23], edges in a place can not only be the physical
change (i.e., boundaries between urban areas and non-urban areas) but also be the social change (i.e.,
boundaries between areas with high socioeconomic developments and areas with low socioeconomic
developments). Therefore, one specific type of edge cannot fully explain how areas with composite
edges are associated with crimes. Second, though previous studies explore how one specific type of
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edge is related to crimes conditional on other types of edges, the impact of composite edges cannot
be simply equaled to the combination of effects of different types of edges. For example, though the
importance of physical edges and social edges in crime occurrence has been recognized, it is hard to
measure how areas with less physical edges and more social edges or areas with more physical edges
and fewer social edges are associated with crimes. To research how sharp composite edges are and
their impact on crimes, a new data source is required. To fill this research gap, this study introduces
nightlight satellite data to measure composite edges in the city.

1.2. Edges Measured by Nightlight Satellite Data

Nightlight satellite data is relatively easy to access, and thus it can be used to measure variables
that are hard to observe. The burning of oil and gas, lights from fishing boats at sea, forest fires, and
volcanic eruptions can all be detected on nightlight images. In urban areas, nightlight sensors mainly
detect low-intensity lights at night emitted by street lights, lights of buildings in commercial areas and
residential areas, and traffic flows [60].

The nightlight satellite data can measure several aspects of the city. First, nightlight satellite
data can measure socioeconomic developments, such as gross domestic product [25–28], carbon
emission [25,29–31], electricity consumption [32–35], house vacancy [36], and population study [37–39].
Second, nightlight satellite data can measure urban areas in cities. For instance, nightlight satellite
data can be applied to investigate urban densities, urban land use, urban expansions, urban spatial
clusters, and urban boundaries [40–51]. Additionally, nightlight satellite data can measure urban areas
inside the city. Figure 1 shows that different types of urban areas in Cincinnati and their corresponding
nightlight satellite images in 2012. Except for the University of Cincinnati (UC) which is also bright
(UC does not turn off exterior lights at night), Central Business District (CBD) is much brighter than
residential areas, industrial areas, and other non-urban areas. It is because roads in CBD are denser
than other urban areas such as residential areas in the same city. With the denser and brighter street
lights, CBD is brighter, that is, values of nightlight satellite pixels in CBD are also higher than those of
other urban areas. Additionally, Figure 1 shows that nightlight satellite pixels in non-urban areas like
green areas have lower pixel values than urban areas. Typically, it is because the recorded radiance of
nightlight satellite pixels in green areas is far lower than that in urban areas. Since nightlight satellite
data can measure socioeconomic developments and urban constructions, this data is a suitable source
to measure composite edges that combine both physical edges (changes of urban constructions) and
social edges (changes of socioeconomic developments) in a city.

Since nightlight satellite data is the raster data like the pixel grid, the sharp level of composite
edges measured by this data is based on the level of changes from a nightlight cell to its neighbors.
Table 1 describes some examples of areas where the sharp level of composite edges is typically high
or low. The sharp level of composite edges can be low in areas where nightlight cells have the same
level of values, such as areas within CBD (or residential areas) where values are consistently high (or
moderate), or in the areas within parks or rivers where values are consistently low. In contrast, the
sharp level can be high (or moderate) in the areas along the edges of CBD (or residential areas) where
high or moderate values are surrounded by low values, or in the areas along the edges of parks or
rivers where low values are surrounded by moderate values.
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Figure 1. Nightlight Satellite Data of Cincinnati in 2012 from the band Day/Night Band (DNB) in the
Visible Infrared Imaging Radiometer Suite sensor on the Suomi National Polar-Orbiting Partnership
Satellite (NPP-VIIRS).

Table 1. Examples of areas and their corresponding composite edges measured by nightlight
satellite data.

Types of Areas Nightlight Pixel Values Sharp Level of Composite Edges

Areas within CBD or UC Super high surrounded by high Moderate
Areas within residential areas Moderate surrounded by moderate Low
Areas within parks or rivers Low surrounded by low Low

Areas along the edges of CBD or UC High surrounded by low High
Areas along the edges of residential areas Moderate surrounded by low Moderate
Areas along the edges of parks or rivers Low surrounded by moderate Moderate

2. Research Questions and Conceptual Framework

To assess the impact of composite edges measured by nightlight satellite data, this study focuses
on street robbery and burglary. These two types of crimes are considered for two reasons. First, both
street robbery and burglary belong to property crimes. Street robbery means the theft of property in an
outdoor, noncommercial location [61]. Burglary means trespassing and theft into residential settings
(i.e., a building or automobile) [62]. Thus, both street robbery and burglary are related to socioeconomic
developments that nightlight satellite data can capture. Second, street robbery occurs on the streets
while burglary occurs inside buildings, both of which are associated with urban infrastructures that
nightlight satellite data can capture.

How do composite edges measured by nightlight satellite data affect street robbery and burglary?
To answer the question effectively, this study applies the crime pattern theory and the social
disorganization theory as the theoretical foundation. The crime pattern theory is applied since edges
are key concepts in this theory. The social disorganization theory accounts for other characteristics in
addition to edges. The social disorganization theory is selected because it interprets the rate of offenders
at the neighborhood level [17], emphasizes the impact of socioeconomic characteristics of local social
neighborhoods [63], and focus on the geographical distribution of offender residence [64]. This theory
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focus on the social disorganization—the incapability of a social unit to keep effective social control,
realize common values, and solve long-term problems [65–67]. In the social disorganization theory,
residential mobility, ethnic heterogeneity, and socioeconomic disadvantage contribute to the increase
in the rate of delinquents [68–70]. Specifically, a socially disorganized geographic unit characterized by
high residential instability, high ethnic heterogeneity, and severe socioeconomic disadvantage (low
socioeconomic status) is preferred by street robbery and burglary.

This study estimates a series of negative binomial regression models to reveal the relationship
between the tract environment and street robbery/burglary (Figure 2). One scenario is considered in
the models: Composite edges can affect street robbery and burglary statistically significantly.
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Figure 2. The relationship between the tract environment and street robbery/burglary.

3. Study Area and Data

3.1. Study Area and Crime Data

The study area of this research is the City of Cincinnati (hereafter Cincinnati), a major city in Ohio
State, United States. Cincinnati is located in the southwest of Ohio and near the junction of Ohio,
Kentucky, and Indiana. According to the FBI report, Cincinnati ranked the 16th most dangerous city in
the United States [71] (F.B.I. 2010). The five-year American Community Survey in 2012 showed that there
were 324,732 residents in Cincinnati. Additionally, Cincinnati is a high ethnically-diverse city. White
occupied the largest number of residents, followed by African-American in 2012. The rental vacancy
rate had the largest decrease in 2012 after it peaked in 2006 (12.97%), fallen by 11.30% in 2011 to 6.92% in
2012. The household income was the lowest in 2012 since 2006 according to the Department of Number.
The boundary of Cincinnati is downloaded from the Cincinnati Area Geographic Information System
(CAGIS, http://cagis.org/Opendata/). Additionally, the 2012 tract-level census data are downloaded
from the United States Census Bureau TIGER/Line Shapefiles. This data includes the tract shapefile
and demographic information from the five-year ACS data such as population and household income.
The 2012 tract-level demographic and economic data released by census bureau are from 2008–2012
five-year ACS data. The typical census data in USA is not available for 2012 since it is collected in
every ten years (i.e., 2000 and 2010). Boundaries of census tracts are generally defined by permanent,
visible features, such as streets and roads according to the geographic areas reference manual by US
Census Bureau. Some of this demographic information is applied as control variables in this research.
Since some tracts extend beyond the boundary of Cincinnati, tracts which have caused large noticeable
discrepancies are erased. After removing these tracts, there are 114 tracts in Cincinnati in 2012.

Crime data in Cincinnati in 2012 is provided by the Cincinnati Police Department. There are 36770
geocoded crime incidents reported between January 2012 and December 2012. These crime records
include the type of crimes, address, report time, location code such as “street”, “residential facility”, etc.

http://cagis.org/Opendata/
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This study selects street robbery data by the type of crime “robbery” and the location code “street”, and
burglary data by the type of crime “burglary”. The crime data of this research includes 1050 incidents
for street robberies and 3384 incidents for burglaries (Figure 3). Crime data of both street robbery and
burglary are aggregated to the tract level. There are 14 tracts that did not witness any street robbery or
burglary in 2012.
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Previous studies investigated the patterns of crimes on spatial boundaries through the proximity
analysis [20,22,23]. They found that the curve of the crime density has the distance decay effect:
The crime density peaks on or near the edge but drops rapidly and then keeps stable when moving
away from the edge. This study applies the same approach to investigate whether the patterns of street
robbery or burglary on boundaries of tracts in Cincinnati have the same decay pattern as previous
research. The crime density is calculated by dividing the amount of street robbery or burglary by the
area of this region for every 50-m increment. Figure 4 shows that burglary and street robbery have a
similar crime pattern: As the distance from the tract boundary increases, the crime densities of both
street robbery and burglary decrease sharply, and then reach relatively stability. The crime density of
burglary is nearly three times the crime density of street robbery because incidents of burglary are
three times as many as incidents of street robbery. Both street robbery and burglary in this research
match the crime decay pattern in previous studies.
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3.2. Nightlight Satellite Data

In a city, nightlight satellite data hardly captures radiated emissions from the earth or the sun but
captures lights emitted by the urban constructions or human activities. Sensors on nightlight satellites
obtain the radiation intensity of the visible and near-infrared waves emitted by the night surface.
They detect the wavelengths at the range of 0.5 to 0.9 µm [72,73]. This range covers most waves in the
visible bands (0.38 to 0.74 µm) and a few waves in near-infrared bands (0.74 to 1.4 µm). According to
the black-body emission curves of the earth, the emission spectrum of the earth reaches the peak (nearly
17 w·cm−2

·sr−1
·um−1) in the wavelength of 10 µm and drops closed to 0 w·cm−2

·sr−1
·um−1 when the

wavelength is lower than 5 µm. Therefore, during the nighttime, there is no radiation emission from
the sun and the earth, and nightlight satellites capture only visible nightlights from humans.

Nightlight satellite data can be derived from three sources: Defense Meteorological Satellite
Program–Operational Linescan System (DMSP-OLS), the Visible Infrared Imaging Radiometer Suite
sensor on the Suomi National Polar-orbiting Partnership Satellite (NPP-VIIRS, hereafter VIIRS), and
Luojia 1-01. DMSP-OLS releases data from 1992 to 2013 while VIIRS launched in 2012 and Luojia 1-01
launched in June 2018 still work. Sensors on these satellites apply the low-light imaging ability to
capture the nightlight data at 7:30 pm (DMSP-OLS), 1:30 am (VIIRS), or 10:00 pm (Luojia 1-01). Luojia
1-01 has the highest spatial resolution (130m) compared with DMSP-OLS (30 arc seconds, nearly 1km)
and VIIRS (15 arc seconds, nearly 500m). However, Luojia 1-01 needs the ground control points to
make on-orbit geometric calibration whereas the other two satellites have produced products that do
not require the geometric calibration [74]. Additionally, unlike DMSP-OLS and VIIRS which have
established data that cover most countries in the world, so far Luojia 1-01 only releases data that
covers very few regions out of China with a limited time range. Hence, Luojia 1-01 is not considered
in this study. Moreover, DMSP-OLS also have limitations. Since DMSP-OLS only records radiance
from 10−10 to 10−8 w·cm−2

·sr−1
·um−1 above the earth’s surface, when the visible and the near-infrared

radiance on the earth’s surface such as the bright cores of urban centers and large gas flare is over 10−8
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w·cm−2
·sr−1

·um−1, DMSP-OLS data has saturation. Thus, when applying DMSP-OLS in the urban
study, researchers need several approaches to solve saturation, such as the EVI-based method [60].
Since However, VIIRS has a higher spatial resolution and no saturation compared with DMSP-OLS,
VIIRS is more superior in mapping nightlight data [75,76]. For example, VIIRS can detect intra-urban
variations in brightness in urban cores saturated in the DMSP-OLS imagery. VIIRS can also distinguish
small point sources of nightlight at scales approaching 1000 m where DMSP-OLS captures only low
luminance background light often indistinguishable from overglow [77]. Therefore, this study uses
VIIRS nightlight data.

Nightlight satellite data in this study is the suite of average radiance monthly composites in
2012 from the band Day/Night Band (DNB) in VIIRS. This data is available at National Centers for
Environmental Information (NCEI) of National Oceanic and Atmospheric Administration (NOAA) The
monthly data has screened out the impact of stray light, lightning, lunar illumination, and cloud-cover
before taking the average of the daily data to obtain the monthly data. However, this monthly nightlight
satellite data has not been filtered to exclude lights from the aurora, fires, boats, and other temporal
lights. Hence, nightlight satellite data in this study has undergone an outlier removal process to filter
out fires and other ephemeral lights [36]. Furthermore, since VIIRS nightlight data has a relatively
high radiance in winter due to the blocking effect of vegetation canopy [78,79], the nightlight satellite
image in December is clearer than other months to show street, industry, and business center. Hence,
this study applies VIIRS nightlight imagery in December 2012. We project this data as NAD 1983 State
Plane Ohio South coordinates system which is the projection of the study area, and then clip it to the
spatial extent of the city of Cincinnati at a spatial resolution of 500 m.

3.3. Edges Defined as Nightlight Gradients

Since edges are defined as the change from one part to another [14,23], this study applies nightlight
gradients—gradients of nightlight satellite pixels—to measure composite edges at the tract level in
Cincinnati. The nightlight gradients are assigned by the maximum change of values from one nightlight
cell to its neighbors measured as the degree level (0◦–90◦). A higher result value of a cell represents
a higher difference to its neighbors. This study applies the Slope function in ArcMap to calculate
the nightlight gradients. Figure 5 shows the result of nightlight gradients in Cincinnati. Cells which
have high nightlight gradient values (over 10 degrees) are all located in areas surrounding CBD in
downtown. The nightlight gradient value of the cell fully inside CBD is not far lower than values of
cells in the boundary of CBD because the nightlight value in the center of CBD is far higher than its
surrounding neighbor cells. Since the analysis unit in this study is tract, this study introduces a new
approach to back up the rationality to aggregate nightlight gradients at the tract level—calculating
between variance and within variance of nightlight gradients at the tract level (Table 2). Since between
variance is much larger than within variance, the difference of nightlights between tracts is larger
than that within tracts. Hence, it is reasonable to aggregate nightlight gradients into the tract level
in Cincinnati.
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Table 2. Nightlight Gradients in Cincinnati.

Analysis Unit Mean Area (km2)
Between (Variance

of Mean)
Within (Mean of

Variance) Unit Amount

Tract 1.80 3.91 0.81 114

3.4. Operationalization of Variables

In this study, the tract is chosen as the analysis unit. Data employed in this study include criminal
records, variables from census data, and nightlight gradients. Table 3 provides the operationalization of
variables, and Table 4 summarizes the descriptive statistic of these variables. The dependent variables
are rates of street robbery and burglary at the tract level. Crime rates can be defined as the number of
crime incidents by the residential population per 100,000 in a large unit like the county or per 1000 in a
small unit like the block group [80,81]. Since the population size of tracts is close to the size of block
groups and far smaller than the size of counties, this study defines street robbery rate and burglary rate
as the number of crime incidents by the residential population per 1000 at the tract level. The average
value of the crime rate of street robbery is 9.32, and the average value of the crime rate of burglary is
30.03. Figure 6 shows the distributions of street robbery rate and burglary rate in Cincinnati. The tracts
with high street robbery rates are mainly located in the southern part of Cincinnati, while the tracts
with high burglary rates are scattered throughout the city.
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The independent variables include Nightlight Gradient and the control variables. Derived from
VIIRS nightlight data, Nightlight Gradient is calculated by the average value of gradients of nightlight
satellite pixels at each tract. Since some nightlight gradient cells are not fully inside a tract, this study
assigns values of these cells at that tract by multiplying original values with the percentage of these
cells that overlap the tract. A tract with a higher value of Nightlight Gradient represents more edges in
this tract. Figure 7 shows the distribution of nightlight gradients at the tract level. Tracts with larger
values of Nightlight Gradient are located in the downtown and its surrounding areas and UC main
campus (the lower left of UC in Figure 7).
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To minimize the possibility of obtaining spurious results, the control variables are obtained from
the 2012 ACS data in 2012 to measure residential instability, ethnic heterogeneity, and socioeconomic
disadvantage in the social disorganization theory. First, the rental rate and the vacant rate are applied to
measure residential instability [82]. The rental rate is measured by the percentage of occupied housing
units that are renter-occupied at each tract, and the vacant rate is measured by the percentage of housing
units that are vacant at each tract. Second, the percentage of the African-American population is used
to measure ethnic heterogeneity since both robbery and burglary rates increase as it increases [83].
Third, the low median household income, fewer people with the advanced degree level, and the high
young male rate (aging 18–29) can represent socioeconomic disadvantage [68,84]. Since the range of
the median household income from the census data is far larger than ranges of the dependent variable
and other variables, the effect of this variable for the dependent variable can be weakened. Thus,
this study applies the natural logarithm of the median household income. The young male, aged
between 18 and 29, is a common variable in past research [85]. The advanced degree level is commonly
applied in previous research as well [68,86]. An increase in the percentage of the population with
a college degree significantly reduces the robbery rate [83]. This paper uses the percentage of the
population with a bachelor’s degree or above in population 25 years and over. Therefore, a tract is
expected to have more street robberies and more burglaries if it has higher residential instability (a
higher vacancy rate and a higher rental rate), higher ethnic heterogeneity (a higher African-American
rate), and higher socioeconomic disadvantage (a lower household income, fewer people with the high
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level of education, and a higher percentage of young males). Figure 2 summarizes how these control
variables are associated with factors in the social disorganization theory.

Table 3. All variables in negative binomial regression models (N = 114).

Variables Description

Dependent All variables are at Tract Level
Street Robbery Rate Counts of reported street robberies per 1000 people

Burglary Rate Counts of reported burglaries per 1000 people
Independent All variables are at Tract Level

Nightlight Gradient Mean of nightlight gradient values
Vacancy Rate Percentage of vacant buildings among all buildings

Rental Rate Percentage of rental buildings among occupied buildings

African-American Rate Percentage of the African-American population among total
population

Household Income (Log) The natural logarithm of the median household income

Advanced Degree Level Percentage of population with bachelor’s degree or higher
degree among population aged 25 or more

Young Male Rate Percentage of 18 to 29 male among total population

Table 4. Descriptive information of variables.

Variables Minimum Maximum Mean Standard
Deviation VIF

Dependent
Street Robbery Rate 0 50 9.32 9.68

Burglary Rate 0 158 30.03 24.61
Independent

Nightlight Gradient 0.32 11.48 1.75 1.98 1.78
Vacancy Rate 0.02 0.71 0.22 0.13 2.25

Rental Rate 0.10 1.00 0.59 0.21 4.03
African-American Rate 0.00 0.95 0.42 0.30 2.42

Household Income (Log) 8.92 11.60 10.37 0.55 5.80
Advanced Degree Level 0.03 0.83 0.30 0.21 2.42

Young Male Rate 0.01 0.50 0.11 0.09 1.76

3.5. Models

The negative binomial regression analysis is employed to investigate the relationship between
nightlight gradients and rates of street robbery/burglary. Since Street Robbery Rate and Burglary Rate
street robbery rate and burglary rate are both small, distributions of these crime rates do not follow
normal or even symmetrical error distributions [80,81]. Both Poisson regression models and negative
binomial regression models are appropriate for the count data, but negative binomial regression
models can also work for the overdispersed count outcomes [80,87–89]. To test whether these two
dependent variables are overdispersed, this study calculates the likelihood ratio test of alpha with the
negative binomial regression model using Stata 13.0. The alpha coefficients are greater than zero and
the likelihood ratio tests for alpha = 0 are significant (Prob > chi2 in Table 5 are all lower than 0.01),
which indicates that these two dependent variables are overdispersed. Therefore, this study applies
negative binomial regression models. The probability distribution of the negative binomial regression
model is shown in Equation (1) where y is the non-negative integer, λ is the mathematical expectation
of Y, and τ is a fuzzy parameter representing overdispersed. λ and τ are larger than 0.

Pr(Y = y) =
Γ(y + τ)

y!Γ(τ)

(
τ

λ+ τ

)τ( λ
λ+ τ

)y
(1)
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Additionally, to test how Nightlight Gradient improves the performance of models to fit street
robbery and burglary, this study also applies the negative binomial regression models that exclude
Nightlight Gradient. Hence, with the use of the same control variables, there are four negative binomial
regression models in this study. In Model 1, the dependent variable is Street Robbery Rate, and the
independent variables are only control variables. In Model 2, the dependent variable is Street Robbery
Rate, and the independent variables include Nightlight Gradient and control variables; In Model 3,
the dependent variable is Burglary Rate, and the independent variables are only control variables.
In Model 4, the dependent variable is Burglary Rate, and the independent variables include Nightlight
Gradient and control variables. Before running the model, this study applies IBM SPSS Statistic 25 to
calculate the variance inflation factors (VIF) of these independent variables to check the collinearity.
The VIF values of variables are far below 10 (Table 4), so there is no evidence of collinearity problem.
This study uses IBM SPSS Statistic 25 to estimate these four negative binomial regression models.

This study uses the Akaike Information Criterion (AIC) and Incident Rate Ratios (IRRs) to evaluate
the fitness of the models. The AIC is an estimator of the quality of each model relative to each of the other
models [87]. A smaller AIC value represents better fitness. The IRRs, calculated by exponentiating the
coefficient of a model, interpret the effects of independent variables on the dependent variable. An IRR
represents a percentage change in the dependent variable per one-unit increase in an independent
variable [90]. IRRs larger than 1 indicate positive effects whereas IRRs lower than 1 indicate negative
effects. Furthermore, this study applies the 2013 and 2014 data in Cincinnati to validate the impact of
composite edges by VIIRS nightlight data.

4. Results

Table 5 summarizes the results of the four negative binomial regression models. The fact that AIC
values in Model 2 and Model 4 are lower than those in Model 1 and Model 3 respectively suggests
that nightlight gradients consistently improve the negative binomial regression models for both the
street robbery rate and the burglary rate. The IRRs in Table 5 show that nightlight gradients in Model 2
and Model 4 make a positive impact on Street Robbery Rate and a negative impact on Burglary Rate,
both of which are statistically significant under the alpha level of 0.05. It means that a higher average
value of nightlight gradients in a tract increases the street robbery rate but decreases the burglary
rate. Since gradients of nightlight pixels represent composite edges—the change from areas with more
urban constructions and higher socioeconomic developments to areas with less urban constructions
and lower socioeconomic developments, this result also interprets that composite edges measured by
VIIRS nightlight data affect both street robbery and burglary statistically significantly.

In each model, at least half of the control variables are statistically significant under the alpha
level of 0.05. Vacancy Rate and Rental Rate make a positive impact on crime rates except for Rental
Rate in Model 3. It represents that a tract with higher residential instability has higher rates of street
robbery and burglary. African-American Rate makes a positive impact on crime rates in all models, so
a tract with higher ethnic heterogeneity is associated with a higher rate of street robbery and burglary.
The negative impact of Advanced Degree Level and the positive impact of Young Male Rate in all
models, and the negative impact of Household Income (Log) in Model 3 and Model 4, demonstrate the
contribution of socioeconomic disadvantage to occurrence of street robbery and burglary. In short,
except Rental Rate in Model 3 and Household Income (Log) in Model 1 and Model 2, the impact
of control variables on the street robbery and burglary replicate the results from previous research
that crimes prefer a tract with higher residential instability, higher ethnic heterogeneity, and higher
socioeconomic disadvantage [68–70].

For the validation of the model, the 2013 and 2014 nightlight data together with the corresponding
control variables are used to verify the fitness of the models. As is shown in Table 6, IRRs of Nightlight
Gradient are relatively stable and Nightlight Gradient consistently makes positive impacts (IRR > 1)
on models of street robbery and negative impacts (IRR < 1) on models of burglary. The AIC values
remain relatively stable for all three years. Additionally, in a parenthesis of Table 6, the first value is
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the AIC value before adding Nightlight Gradient, and the second value is the AIC value after adding
Nightlight Gradient for the same dependent variables in the same year. Results of AICs show that
Nightlight Gradient consistently improves the performance of models in all three years.

Table 5. Results of negative binomial regression models.

Variables
Incident Rate Ratios (IRRs)

Street Robbery Rate Burglary Rate

Model 1 Model 2 Model 3 Model 4

Nightlight Gradient 1.11 ** 0.90 ***
Vacancy Rate 55.85 *** 22.82 *** 1.05 2.20

Rental Rate 13.23 *** 5.02 * 0.74 1.16
African-American Rate 2.32 * 2.14 * 1.14 1.17

Household Income (Log) 1.39 1.04 0.53 ** 0.61 **
Advanced Degree Level 0.29 * 0.12 ** 0.38** 0.48 *

Young Male Rate 20.60 ** 21.21 ** 4.94* 5.92 **
(Constant) 0.00 0.19 9423.42 *** 1483.40 ***

Alpha 0.20 0.17 0.10 0.08
Prob > = chi2 0.00 0.00 0.00 0.00

AIC 450.10 445.77 667.33 657.93

Note: * p < 0.05, ** p < 0.01, *** p < 0.001.

Table 6. Results of IRR of Nightlight Gradient and AIC reduction in 2012–2014.

Variables
Street Robbery Rate Burglary Rate

2012 2013 2014 2012 2013 2014

IRR of
Nightlight
Gradient

1.11 ** 1.41 *** 1.24 *** 0.90 *** 0.88 ** 0.95 *

AIC
Reduction

Yes (450.10 >
445.77)

Yes (464.36 >
442.80)

Yes (435.96 >
421.99)

Yes (667.33 >
657.93)

Yes (709.73 >
707.21)

Yes (662.57 >
661.15)

Note: * p < 0.05, ** p < 0.01, *** p < 0.001. AIC values are shown in the parentheses.

5. Discussion

While this study has underscored the impact of composite edge effects derived VIIRS nightlight
data in modeling crime at the tract level, the relatively low spatial resolution of 500m makes it unsuitable
for smaller units such as census block groups. Fortunately Wuhan University has released Luojia
1-01 nightlight imageries with a high resolution of 130 m, which can be applied to block groups or
even blocks.

Although there are data sources such as census data and land use data that can also be applied
to measure edges, nightlight satellite data still represents an attractive option. First, compared with
census variables and land use data, nightlight satellite data can directly measure composite edges.
Though land use data and census variables can measure physical edges and social edges respectively,
it is hard to combine them to measure composite edges. It is because land use data are the category
variables and census variables are the continuous variables. Additionally, so far no research provides
the theoretical support for deciding the weights of each variable to measure composite edges. However,
nightlight satellite data can directly capture the combination of physical edges (changes of urban
constructions) and social edges (changes of socioeconomic developments). Second, nightlight satellite
data can apply the measure of edges to geographic units and statistical analysis. Since values of land
use data are category instead of continuous, scholars mainly used the proximity analysis to measure
the impact of edges where different types of land use adjoin on levels of crime [22,23]. However,
values of nightlight satellite data are countable, and thus nightlight satellite data can be aggregated to
geographic units and work as a continuous variable in statistical models. Third, nightlight satellite
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data has a higher time resolution than land use data which does not update frequently. For example,
the latest land use data in the United States that the public can access is established in 2011, while
nightlight satellite data updates yearly or monthly.

Previous studies have specified that more edges contribute to more crimes [1,20,24,57]. This is
recognized by the positive impact (IRR > 1) of nightlight gradients on the street robbery rate in this
study. Nevertheless, the negative impact (IRR < 1) of nightlight gradients on the burglary rate shows
a contradictive conclusion. The different impacts may be explained by the typical location of these
two crimes and the local characteristics of nightlights. Street robbery occurs on the streets, so areas
with denser streets tend to have more street robberies. Since street lights on streets still work at 1:30
am when the VIIRS satellite captures nightlight, nightlight satellite pixels covering more streets have
higher values than pixels with fewer or no streets. Therefore, nightlight gradient values of cells with
more streets surrounded by cells with fewer streets can be large, which represents that the sharp level
of composite edges is high. This means that composite edges measured by nightlight satellite data are
positively related to street robbery. Therefore, tracts with sharper composite edges should have more
street robberies. In contrast to street robbery, according to the locational code of the burglary data,
3340 out of 3384 burglary incidents occurred within family zones or residential facilities. Nightlight
gradients are low within residential areas but moderate along the edges (Table 1). Therefore, composite
edges measured by nightlight satellite data are negatively related to burglary. Therefore, tracts with
sharper composite edges should have less burglaries.

Besides the tract level, this study has also explored the effect of nightlight gradients on the street
robbery rate and the burglary rate at the neighborhood level in Cincinnati. The patterns of street
robbery and burglary also show the same distance decay pattern as the one in Figure 4 and as those
from previous studies [22,23], and between variance is also much larger than within variance. Using the
same control variables at the neighborhood level, we find consistent results as those of tract level.
We have also tested the 2013 and 2014 nightlight data, and they yielded consistent results like those of
the 2012 data. This confirms that the models are robust across both the neighborhood level and the
tract level and time periods.

6. Conclusions

This study represents the first attempt at introducing nightlight satellite data to measure composite
edges in the criminology and assesses the impact of edges on different types of crimes. This study
applies nightlight gradients—the maximum change from one nightlight satellite pixel to its neighbor
pixels—to represent composite edges. With the use of VIIRS nightlight data in December, crime
incidents, and the ACS data in 2012, this study demonstrates the effect of composite edges on street
robbery and burglary in Cincinnati after controlling residential mobility, ethnic heterogeneity, and
socioeconomic disadvantage. Results of AICs in the negative binomial regression models reveal that
nightlight gradients consistently improve the fitness of models of street robbery and burglary. Further,
nightlight gradients affect the street robbery rate positively (IRR > 1) and the burglary rate (IRR < 1)
negatively, both of which are statistically significant under the alpha level of 0.05. This study also
applies the 2013 and 2014 VIIRS nightlight data to validate the impact of composite edges. With the
corresponding control variables, the 2013 and 2014 nightlight data yielded consistent results like those
of the 2012 data based on AICs and IRRs. The different effects of nightlight gradients on street robbery
and burglary are attributed to their contrasting spatial distributions. According to the crime data in
this study, street robbery occurred on the streets whilst burglary incidents occurred within family
zones or residential facilities. The robust performance of models underscores that nightlight gradients
are a reasonable measure of composite edges. Since nightlight satellite data is relatively easy to access
globe wide, it can play a vital role in modeling crime, especially in areas where quality census data and
land use data are not available.
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