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ABSTRACT

Vehicle-based Disconnected Data Distribution

by Aditya Singhania

The world today is highly connected and there is an immense dependency on

this connectivity to accomplish basic everyday tasks. However much of the world

lacks connectivity. Even in well-connected locations, natural disasters can cause

infrastructure disruption. To combat these situations, Delay Tolerant Networks

(DTNs) employ to store and forward techniques along with intermittently connected

transports to provide data connectivity. DTNs focus on intermittently connected

networks however what if the regions are never connected? For example, Region A -

is never connected to the internet, and Region B – has internet connectivity. Using

a vehicle that travels between the two regions it is possible to transport the data

from A to B and vice versa. Current vehicular-based DTN approaches make use

of dedicated hardware infrastructures mounted on vehicles. Our research focuses to

shift all this computing to personal smartphone devices. The users in disconnected

areas will install the Disconnect Data Distribution(DDD Android application on their

phones. This application will receive data from various applications on their phone via

inter-process communication(IPC) and package the data into bundles using a DDD

library. Vendors, transportation operators, delivery people, and others that regularly

travel between connected and dis-connected areas can download the Bundle Transport

Application on their Android phones. These devices will then communicate with each

other using short-range wireless technology like WiFi-Direct in the disconnected region.

The device on the transport can communicate with the Servers over the internet. For

this project, we should assume that the Client and Server can provide data as desired

and our focus is on the Transport.
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CHAPTER 1

Introduction

The world today is highly connected and there is an immense dependency on

this connectivity to accomplish basic everyday tasks. People can easily connect

with each other over instant messaging, There is no need to carry multiple physical

sources of information for example maps, videos, and information can be all streamed

and downloaded as required. Digital connectivity fulfills social, economic, and even

emotional needs. It has become the primary form of information dissemination. As

such society has integrated connectivity into daily life and those who lack it are at a

disadvantage. An article by International Monetary Fund talks about low internet

connectivity leading to widening income inequality both within and between countries

and less than half the population in developing countries has internet access [1].

Another report by United Nations International Children’s Emergency Fund claimed

that two-thirds of the world’s children lack internet access and this negatively impacts

their learning capability and access to education [2]. Over 15% of household lack

access even in the United States [3].

There has been much research in trying to bring network connectivity to dis-

connected areas. Some of the approaches are using unmanned aerial vehicles (UAV),

altitude platforms (AP), and low-Earth orbit (LEO) satellites [4]. However, all these

involve technical capability, are costly to maintain, and are not feasible in all areas.

Another approach, Delay Tolerant Networking(DTN) [5] has shown promise [6] by

employing employ store and forward techniques along with intermittently connected

transports to provide data connectivity. When we think about disconnected areas

they are usually remote villages and areas with poor infrastructure.

Current approaches for DTN-based remote village networks involve transferring

data to some customized hardware like a USB drive[7] or WiFi Radio transceivers[6]
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Figure 1: Overall System Architecture

and then carrying the data on a physical transport to a connected region where it

can upload and download data to and from the internet or a central hub. Based on

these approaches our infrastructure Disconnected Data Distribution (DDD) will use

existing transportation infrastructure like delivery people, vendors, etc. that regularly

travel between connected and disconnected regions. We want our infrastructure to

be cheap, and simple to deploy therefore we aim to make our solution a software-

focused approach that eliminates the need for customized hardware on transports. For

this purpose, we make use of Android phones without any modifications. Although

DDD is a form of Delay Tolerant Networking (DTN), we show how our internet

data distribution approach simplifies the DTN architecture while providing stronger

security guarantees compared to standard DTN approaches.

We call units of data as Bundles. Transport users can install a Bundle Transport

Android application for the Play Store and require no further technical knowledge.

They may need to acquire a micro SD card to enable their device to handle the extra

storage requirements. The transport application users might have incentives in the

form of attracting people to use their DDD-enabled services for example a bus driver

attracting more riders. The users in the disconnected areas will require to download a

Bundle Client Android application from the Play Store. The Bundle Server is fixed

and on the internet. This infrastructure leverages the client-server architecture that
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most modern applications use today. A few desirable properties of the infrastructure

are

1. Software only Approach - This avoids the deployment of customized hardware

and thus there are no specialized maintenance issues.

2. Ease of integration with existing internet services -Existing applications like

messaging, videos, etc. Should be able to integrate without the need for a lot of

changes

3. Untrusted infrastructure - The transport infrastructure is untrusted and is unable

to see the source and destination of the data. It is assumed that the data can

be altered, intercepted, and collected by malicious agents. Anyone can act as

the transport without affecting the security of the network.

As the Bundle Transport needs to communicate with the Bundle Clients without

using the internet we look at short-range wireless methods using built-in WiFi Direct

functionality. We prefer WiFi-Direct as multiple clients can connect wirelessly and

transfer data simultaneously.
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CHAPTER 2

Related Work

Initial research in the area of connecting rural and less connected areas aimed to

increase the coverage of existing services without the need for new terrestrial towers.

These options, therefore, provided highly reliable data rate services. Stratospheric

Communication Platforms [8] [9] is a high-altitude platform approach that makes

use of large high-altitude balloons to float platforms above the earth’s weather and

commercial air traffic. These platforms are equipped with necessary hardware like

antennas that can beam signals to large areas below. The balloons can remain in the

air for several months at a time. Another alternative to this approach is low-Earth

orbit(LEO) satellites [10] which are smaller satellites that orbit much closer to the

Earth when compared to traditional geostationary satellites. These satellites can

communicate with ground-based terminals such as antennas placed in rural areas.

These satellites are usually deployed in constellations consisting of a few hundred to

a few thousand satellites. Starlink [11] is one of the recent satellite constellations in

use to provide broadband internet access. However, a major limitation with these

satellites is that the antenna should be pointing towards the satellite without any

obstructions, Starlink tries to overcome this issue by introducing self-aligning antennas

which align automatically based on satellite orientation [12]. However, these could

never become popular because they demanded special maintenance and high setup

costs. This prompted a shift towards a cheaper solution at the cost of increased delay

and more delay-tolerant infrastructure.

In [6] A. Pentland, R. Fletcher, and A. Hasson, introduce DakNet which enables

low-cost digital communication by transmitting data over short distances between

kiosks located across villages using portable storage devices called Mobile Access

Points(MAPs). These MAPs are powered by and mounted on buses, motorcycles,
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bicycles, etc., and make use of cheap WiFi radio transceivers for data transfer. The

MAP, when in range, automatically connects to the kiosk and internet access points

and performs a high bandwidth data synchronization thereby providing a high data

throughput using a store and forward delay tolerant infrastructure. While the authors

claim that MAPs are low-cost however they do involve customization and effort to

set up the network. DDD aims to eliminate this customization by making using of

already available Android Phones and shifting the focus to a software-based solution

for village networks.

In [13] S. Guo et al introduce the KioskNet system which builds on the ideas

of DakNet. In KioskNet common access points using shared terminals at kiosks in

rural areas are the entry points for users. The kiosk is equipped with customized

kiosk controller hardware and terminals which are made up of reused computer parts.

While kiosks can communicate via a variety of connectivity options like long-range

WiFi, towers, satellites, etc. KioskNet focuses on ferries that like MAPs in DakNet

also require customized hardware in the form of a single-board computer with around

20-40GB of storage. The authors noted that they were able to rapidly deploy the

system in 2 days in a rural area. The authors also note in the paper that it was a

problem for them to convince drivers to have these single-board computers mounted

below their dashboard which was one of the major motivations for transitioning to

V-link [14]. The authors also note that the individual components of the network

are cheap. However, the collective cost of setting up the network while cheaper is

still high. All of these issues can be tackled by leveraging advancements in mobile

technology which already has storage available and onboard hardware for creating

access points. Since almost everyone travels with a smartphone these days there will

be no convincing required.

The Wizzy Digital Courier project[7] a simple delay-tolerant approach to provide
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internet access to schools in Africa with no telephone lines involves using a USB

stick to physically transport the data. The school composes an email message with

topics for an internet search which is loaded onto a USB stick and is then carried

by someone to a central computer that could be miles away. This person uploads

the batch of queries and downloads the results of the previous queries and travels

back. Thus the school now has access to data on the internet with a one-day delay.

The project uses software that automates the process of reading queries off the USB

Stick and transferring results to the USB. V-link [14] like the Wizzy Project also

added USB stick functionality known as Key-Link and SMS functionality known as

SMS-Link. V-link focused more on a software approach by reducing the dependence

on customized hardware a problem faced by KioskNet. In V-link users just need to

install the software and plugging in the USB stick is all that is required, the emails

are automatically picked up and once this USB is connected to the central terminal it

automatically sends the emails as intended. It can be noted that the USB may travel

to multiple user terminals before connecting to the central terminal and the network

is also tolerant of it. For small urgent messages, a mobile device connected to the

central computer can instantly communicate with a mobile device connected to the

user terminal and enable fast communication.

In [15] J.Burges et al shift focus towards a more software-focused approach to

vehicle-based disruption-tolerant networks. They propose a new routing algorithm,

MaxProp which aims to provide efficient and reliable communication in scenarios

where the infrastructure is unreliable. The algorithm uses probabilistic techniques

to determine the most efficient route for data transmission. The authors created the

DieselNet test bed in order to demonstrate the efficacy of the algorithm. The test

bed comprises of a network of 40 public transportation buses equipped with a Linux

“brick” computer; USB 802.11b adapter, 802.11b AP, GPS receiver, and 40GB hard
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drive. All of this hardware is now available in Android phones in one way or another.

Buses transfer data as they pass by each other and via available hot spots. MaxProp

involves each node calculating the probability of its neighbors being the next hop

in the network. It then selects the node with the highest probability, in a way it

involves probabilistic flooding of data in the network. The authors go on to show

that customized hardware is not necessary and that we can create disruption-based

networks on the hardware of similar capabilities.

Based on the literature above [6, 13, 15] we need hardware capable of forming

peer-to-peer connections and for intercommunication of data and around 30-40GB of

storage to employ store and forward techniques all these requirements are satisfied by

smartphones specifically Android phones using WiFi-Direct [16] and micro-SD cards.

2.1 Short-Range Wireless Technologies

Some commonly used short-range wireless technologies are Bluetooth [17], WiFi

[18], and near-field communication(NFC) [19] implemented by RF circuit chips. NFC

works on the principles of radio-frequency identification(RF-ID) technology and

standards. It enables 2 electronic devices to communicate provided the distance is

within 4 centimeters. NFC is bi-directional depending on the hardware and provides

a low-frequency low-speed connection. NFC has been successfully deployed to mobile

devices and current NFC applications include contactless transactions and initial

data transfer for setting up more complex communication systems. One of the

major advantages of NFC is that it provides for communication with unpowered

equipment like cards, fobs, etc. by setting up an RF field that can power the passive

devices. It also enables peer-to-peer communication in the case of powered-up devices.

These properties make NFC a viable but less suitable solution for mobile devices to

communicate in a disconnected setting. Bluetooth employs ultra-high frequency radio
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waves and is used for data transfer over short distances, with low bandwidth and low

energy consumption. Bluetooth works on the data packet model and is best suited to

transfer small quantities of data. Apple Inc.[20] has been doing some great research in

Bluetooth low latency however it s hardware-specific and Apple hardware is expensive.

Unlike NFC, Bluetooth does not require devices to be in the line of sight of each

other. Bluetooth is still not suitable for transferring large files as it is slow and better

alternatives exist if it is just the bi-directional packet transfer that we desire.

2.2 WiFi-Direct

WiFi-Direct technology makes use of the same WiFi radio frequencies and pro-

tocols used in traditional WiFi, however, it bypasses the need for access points and

enables direct device-to-device communication. In traditional WiFi, a connection

means a link between the source point and the destination point which is centrally

controlled. Devices make use of access point terminals for example a WiFi router as a

data exchange hub. In this case, each access point is also limited in the number of

clients. Unlike this WiFi-Direct relies on peer-to-peer communication, which can be

established when two devices need to discover each other which is a similar process

to Bluetooth communication. The process is called Service Discovery and devices

exchange Service Discovery request and response packets which help the devices deter-

mine if they can communicate directly with each other. After discovery, the devices

establish a connection using WiFi Protected Setup (WPS) which is a standard method

for connecting wireless devices. The two devices then exchange WPS Information

Elements (IEs), which contain information about the network settings and security

parameters. This information is used to establish a WiFi Direct connection allowing

the devices to communicate using standard WiFi protocols without the need for access

points. All Android devices support WiFi Direct starting version 4.0. Android provides
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a P2P framework [21] for managing WiFi Direct connections using APIs that can be

used for service discovery, making connections, and building applications. Some added

advantages are support for WPA2 encryption, a Service broadcasting mechanism for

service discovery by potential peers, and dynamic group owner allocation based on

device power management. WiFi Direct networks classify devices as Groups Owners

or Peers. Group Owners are devices that create the network and Peers are other

devices that connect to the network. The Group owner is responsible for managing

the network. It assigns the IP address to each of the peers and acts as the central hub

for communication. This means that if two peers want to exchange packets they must

do so via the group owner. WiFi-Direct would be highly suitable for communication

between Android devices in a disconnected setting because of its security feature,

range, and speed. As seen in Fig. 2 the Transport applications will act as the group

owners ensuring that no two peer devices can communicate directly and multiple peer

devices can connect to the transport device and exchange data bundles.

Figure 2: WiFi-Direct Infrastructure

Table 1 shows a quick performance comparison of different short-range wireless
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communication techniques [22]. As we can see WiFi-Direct provides the best speeds

and range and is best suitable for less frequent data transfers as it consumes higher

energy. This is ideal in case of delayed settings where we are expecting a large volume

of data and longer intervals.

NFC Bluetooth WiFi Direct
Speed 424 kbps 1-3 Mbps < 250 Mbps
Range <10cm <30m 46-100 m

Frequency 13.56 MHz 2.4 GHz 2.4 or 5.0 GHz
Energy Consumption <200 mW <1.0 W 2 - 20 W

Table 1: Performance comparison of different short-range wireless techniques [22]

2.3 gRPC

gRPC [23] is an open-source Remote Procedure Call (RPC) framework developed

by Google. RPCs are a way of allowing machines to call subroutines on a remote

machine while abstracting the details of how it is called and behaving as if they were

executing a sub-routine call on the local machine. gRPC is a platform-agnostic and

language-agnostic binary protocol. gRPC uses Protocol Buffers for defining the RPCs

interface and serializing data between clients and servers. The clients and servers

can be written in different languages. Several languages are supported including

Java, C++, Go, Ruby, JavaScript, etc. gRPC supports four different kinds of RPC

[] Unary RPCs where the client sends a single request and the server has a single

response, Server Streaming RPCs where the client sends a single request and the

server responds with a stream of messages, Client Streaming where the clients send a

stream of messages to the server and lastly Bidirectional Streaming where streams of

messages are exchanged between both client and server. Each type has different use

cases. To stream data packets we will require to divide the data into chunks and we

can use client-side streaming and server-side streaming for uploading and downloading

10



files respectively. Fig. 3 shows a logical representation of what a file download or

upload would look like.

Figure 3: gRPC Streaming Example

For downloading a file in chunks the client would send a single request for a file

and the server would respond with a stream of file chunks. Similarly for uploading a

file, the client would stream multiple chunks and the server would respond with a

single response.
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CHAPTER 3

System Design

Figure 4: Overall System Architecture

The users in disconnected areas will install the DDD Android application on their

phones. This application will receive data from various applications on their phone

via inter-process communication(IPC) and package the data into bundles using the

DDD library. Vendors, transportation operators, delivery people, and others that

regularly travel between connected and dis-connected areas can download the Bundle

Transport Application on their Android phones.

As we want the whole infrastructure easy to deploy and sustainable. All of it is

built on a normal Android phone with no modifications to its operating system.

Fig. 4 shows the Bundle Client application which will be running on the phones

of users in the disconnected region and will be responsible for communication between

various applications which involves collecting data through the Android inter-process

communication and packaging it into bundles. The Bundle Client application is also

responsible for unpacking the bundles received via transport from the server and

sending the data back to the application.

Fig. 4 shows the Bundle Transport application which resides on the data transport
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and physically moves the bundle between the connected and disconnected regions. It

leverages WiFi-Direct to exchange data in the disconnected region.

Fig. 4 shows that in the connected region, a Bundle Server receives the bundles

from the Bundle Transport over an internet connection such as mobile data or WiFi,

unpacks them, and then forwards the application-specific data to the corresponding

application servers. The Bundle server also packages data into bundles from the

various applications and is responsible for routing the bundles through the correct

transport to the clients.

For this project, we should assume that the Bundle Client and Bundle Server

can provide bundles as desired and our focus is on the Bundle Transport. The Bundle

transport is untrusted and works under the assumption that the data it carries can be

altered, fabricated, replayed, and intercepted by malicious actors. The data transport

cannot identify the source or destination of the data they are transporting to. Similarly,

Bundle Clients do not need to authenticate data transports because data bundles

themselves are opaque to the transport i.e. transports cannot differentiate valid

bundles from random data as a result of end-to-end encryption using signatures and

public keys by the Bundle Client and Bundle Server. Bundles are also incremental

units of data and will grow in size until an acknowledgment is received from the

server via the transport. We will see later that this property influences how Bundle

Transport interacts with the Bundle Client and the Bundle Server. The identifier for

a bundle or the Bundle Id is a pseudo-random unique combination of the client Id

and the bundle counter. It is unique across all clients.

The Bundle transport has limited storage, and the bundle will also have some

imposed maximum size to prevent the bundle from growing infinitely. We can expect

the application to use at least 20GB of phone storage or an SD card storage chosen by

the application user. The application will also use scoped storage [24] introduced in
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Android 11 which prevents other applications from accessing application-specific data.

The Bundle Transport also generates a public/private key pair which will serve

as a self-certified identifier when communicating with the Bundle Server. This id is

also required for the Bundle Server to maintain a routing table and route bundles

efficiently. While a malicious Bundle Transport may use this to delay data delivery,

it will not cause the Bundle Client or Server to accept modified data.

Android devices have constrained storage when compared to dedicated hardware

and it is crucial to delete inessential and redundant bundles for optimal space usage.

The Bundle Transport deletes bundles received from a Bundle Client once they have

been delivered to the Bundle Server. The bundles destined for the Clients are not

deleted unless instructed by the Server. This is because the Transport does not know

the destination Clients for the bundles and any Client can request bundles provided

they know the Bundle Id for the request. If the transport deletes the bundle right

after delivery then a malicious Bundle Client could consume all the bundles and deny

service. However, a malicious Bundle Client is unable to decrypt the data without

the private key for the destined Bundle Client.

A user with the DDD android application (Bundle Client App) will always first

request bundles from a Bundle Transport it connects to. This enables the Bundle Client

to process acknowledgments (ACKSs) to any previous bundles that the transport may

have brought from the server and exclude those application data units which have

been ACKed. This prevents the Bundles from growing infinitely. Once the ACKs are

processed the Bundle client is now ready to create new bundles that must be sent to

the server. Therefore the Bundle Client app now initiates a sending to the transport.

A Bundle Transport will never initiate any requests to any Bundle Client, this is

again because the Transport is an untrusted entity in the network and any malicious

transport could deny the client services.
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Figure 5: Client Bundle Delivery Agent

Fig. 5 above explains the interaction between a Bundle Client and Bundle

Transport in a disconnected region. For Receiving

1. when a user is close to a Bundle Transport we expect the user to initiate a

connection for example, by pressing a button on the Bundle Client App. The

Bundle Transport will already have an open WiFi Direct group that the user’s

DDD application will be able to connect to.

2. Once the connection is established the bundle delivery agent on the Bundle

Client app will internally place a request for the bundle Ids that it should request

from the transport.

3. The bundle delivery agent will then use a gRPC call to send a list of bundles

over to the Bundle Transport.

4. The Bundle Transport will start streaming those bundles to the bundle delivery

agent. In case the Bundle Transport is not able to find any bundle with the
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requested Ids it will send no bundles found as a response to the agent.

5. Once streaming is complete the bundle delivery agent will internally initiate the

unpacking of bundles.

6. The Bundle Delivery Agent waits until the bundle unpacking is finished.

After this Sending

1. Sending is initiated by the bundle delivery agent by internally requesting bundles

for upload.

2. This prompts the Bundle Client to create new bundles, the bundle delivery agent

waits for new bundles to be created and then starts streaming those bundles up

to the Bundle Transport via a gRPC call.

3. Once the streaming is finished the bundle delivery agent notifies the Bundle

Client.

Once a Bundle Transport reaches a connected region it will upload bundles it

carries from the Bundle Clients to the Bundle Server, i.e. the Bundle Server will first

receive bundles. This serves a dual purpose, firstly as the Bundle Server is reliable the

transport can go ahead and delete the bundles it carried from the Clients, therefore,

freeing up some space for the new bundles. Secondly, any ACKs that the Client

must have sent over can be processed by the Bundle Server and this again prevents

the sever bundles from growing infinitely. Once the ACKs are processed the Bundle

Server can create bundles to be sent over to the Bundle Clients.

Fig. 6 explains the interaction between Bundle Server and Bundle Transport in

the connected region. For Receiving, the Bundle Server is always ready.
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Figure 6: Server Bundle Delivery Agent

1. When the Bundle Transport is able to connect to the internet, it sends a list of

Server Bundles that it has to the Bundle Server

2. It also starts streaming the client bundles to the Server Bundle Delivery Agent

via a gRPC call.

3. The Bundle Server delivery agent forwards the list of bundles to the bundle

server which it uses to decide which bundles must be deleted and also initiates

bundle unpacking.

4. The Bundle Server ACKs bundle unpacking to the bundle delivery agent.

5. The bundle delivery agent ACKs this to the Bundle Transport.

6. Once the Bundle Transport receives the ACK it deletes the corresponding Client
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Bundle.

For Sending

1. The Bundle Transport requests Server bundles by providing a transport Id.

2. The Server Bundle Delivery Agent requests the Bundle Server for bundles to be

deleted list and the Server Bundles (if any) for the transport.

3. The Server Bundle Delivery agent receives these and initiates the streaming

process.

4. The Bundle Delivery Agent streams the list of bundles to delete and the server

bundles to the Bundle Transport over gRPC.

5. The Bundle Transport will receive the list of bundles to be deleted first and

start bundle deletion in the background.

As discussed in the previous section, all bundles on the transport are deleted while

interacting with the Bundle Server. First, the Client Bundles are deleted after they

are uploaded to the Bundle Server to make more space for Server Bundles. Second,

before the Transport starts receiving from the DDD Server it will delete the Server

Bundles based on entries provided by the DDD Server. These bundles comprise

Bundles that have been ACKed as well as bundles that have become redundant due

to the incremental nature of bundles.
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CHAPTER 4

Implementation

The implementations are currently written using Android SDK in Java for the

Bundle Client and Transport applications and Java for Bundle Server. While we try

to abstract and automate the process as much as possible, there are a few limitations

with WiFi-Direct that will require the user to interact with our applications.

4.1 User Interaction

The bundle transport application must rename their devices to “ddd_transport”.

This ensures identity is protected and bundle clients can find transports. We are

currently unable to automate this step because device renaming in Android requires

user intervention. One possible alternative we tried to explore is to overload the

WiFi-Direct name via code but currently, there was no API exposed to do this. The

Bundle transport application users are expected to manually start/stop the server

from time to time using a button in the app. The Bundle Client application users will

have to initiate the transfer to the transport application by pressing a button once

they are in the range of the transport application.

19



Figure 7: Bundle Transport UI

Figure 8: Bundle Client UI
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4.2 Making connections

Clients will connect to the transport over WiFi-Direct using the Simple WiFi-

Direct library[25].

Figure 9: Making WiFi-Direct Connections Flow

Fig. 9 shows the flow in which devices will connect using WiFi-Direct on the

Android platform. The create group method creates a WiFi-Direct peer-to-peer group

for devices to join. This step is only required if legacy devices need to connect to the

transport application for Android devices it is not required as all Android devices

support WiFi Direct out of the box and the group is automatically created.

Once the Users manually initiate a connection the Bundle Client application

will call DiscoverPeers() this will allow for service discovery for other devices. If
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successful we GetPeers() and check if the transport is present in the returned list.

This can be done by looking for a specific device name in the list of peers. In our

Case this name is "ddd_transport". Finally, if we find the desired group owner we

ConnectToHost(). The group name is automatically created and handled by Android.

4.3 Managing connections

The Bundle transport is always the group owner so that clients cannot interact

with each other. WiFi-Direct broadcasts intents [26] and we use a broadcast receiver in

the Simple WiFi-Direct library to manage connections. An Intent is a message object

that can be used to ask another app component on the same device to do a task. A

broadcast is a message that can be received by any app. For example, in system events

like system startup or device charging, the system sends out a variety of broadcasts.

By supplying an Intent to SendBroadcast() or sendOrderedBroadcast(), you can

send a broadcast to other apps. We implement a broadcast receiver that captures the

following intents that are broadcasted by WiFi-Direct.

1. WIFI_P2P_CONNECTION_CHANGED_ACTION: report the state of the

device’s WiFi.

2. WIFI_P2P_PEERS_CHANGED_ACTION: when a client tries to discover

peers this intent will be fired and used for making sure that the gRPC server is

running on the transport.

3. WIFI_P2P_STATE_CHANGED_ACTION: This intent will let the applica-

tions know if WiFi is enabled on disabled on the device. WiFi should be enabled

to use WiFi-Direct.

4. WIFI_P2P_THIS_DEVICE_CHANGED_ACTION: can be used to track if

any changes happen in the device’s details. This intent will be used to verify
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that the transport application is named ddd_transport.

4.4 Storage Management

The bundles follow a store and forward scheme and are stored in the file system.

We make use of Android Scoped storage [24] which was introduced for improved

security since Android 11. getExternalFilesDir() [27] is an Android file system

API that returns the path to an application directory created on the SD card if it

exists. If the SD card does not exist it emulates SD card storage on the in-built

storage of the device. Applications with Write permission can access the storage space

but it is not visible to the user as media. Once the application is deleted its data is

also deleted. This can be prevented by using the getExternalStorageDirectory()

method which will return the root of the path to the SD card or emulated storage

and the data will not be deleted when the application is deleted. Even though the

data can be accessed by different applications on the transport the bundles by nature

are opaque which means they are encrypted and immune to alterations by malicious

agents. However, on the client applications, the data will be stored in scoped storage

using the data directory of the application.

4.4.1 Client Storage

Fig. 10 show how the data is stored on the client device. Data is stored in

internal storage and not an SD card because the data will be decrypted at some point

while the bundle is being created and opened. "com.ddd.bundleclient" directory is

created and managed by android. Only the to-send and received-bundles directories

are exposed to the Bundle Transport Application. to-send is where the bundles to

be sent to the Bundle Server are created and received-bundled is where the bundles

which arrive from the Bundle Server are placed.
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Figure 10: Client Storage

4.4.2 Transport Storage

On the transport since the bundles have been encrypted and are opaque we place

them in the SD card directory.We can see this in Fig. 11. We are not concerned

with any malicious agents altering the bundle. The directory names client and server

denote the destination of the bundles stored there. The bundle are just stored directly

without any organisation as this is not required.

On the transport, the users may want to free up storage space manually. The

users have the ability to do so as well. This will have no effect on the service as we

assume the transport to be unreliable.
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Figure 11: Transport Storage

4.4.3 Server Storage

As shown in Fig. 12 the server the storage directories are created basis the

transportID. The bundleTransmission directory is managed by the Bundle module

which packs and unpacks bundles. The Shared directory will be accessed by both the

transport and the Bundle module. However the Bundle Transmission directory will

only be accessed by the Bundle Module.There are more directories that exist that the

transport is not concerned with on the server. For example a staging area for the

ADUs.
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Figure 12: Server Storage

4.5 Streaming

We use gRPC on top of WiFi-Direct on the Bundle client to transport side and

gRPC over the internet on transport to the Bundle Server side for communication.

The Bundle Client will first download the bundles that the transport is carrying.

Refer to Listing 4.1, the Bundle Client to Bundle Transport Proto File the Bundle

client will first call the DownloadFile method on the Bundle Transport once a WiFi-

Direct connection is established on a background thread. The ReqFilePath message

will be the Bundle Id that the client is expecting. The Bundle transport checks if the

bundle exists and responds by streaming the bundle in chunks if found. Otherwise,

the transport responds with an "UNAVAILABLE" status message. The calls for
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downloading bundles are made simultaneously and are independent of each other,

which means we have a server streaming call for each bundle. However, the call

for Uploading bundles is only made in the postExecute() method of the Download

call thread, only once all the bundles are finished downloading and the thread has

completed execution. This will allow the Bundle Client to factor in the newly received

data while creating bundles for the upstream to the Bundle Server.

UploadFile() call works similarly to the DownloadFile() call except the roles

are reversed and we have simultaneous client streaming calls. The Bundle Client will

stream the MetaData and file chunks first and expect a single status response from

the Bundle Client.

One might argue that gRPC provides bi-directional streaming to achieve the

above functionality. However, using the bidirectional streaming approach introduces

complexity to the solution. If the bundle were small enough to be transferred in a

single call we could stream the requests but in our case, we would need a stream

of streams because the bundle is also being split into chunks and we need multiple

calls to transfer a single bundle. One major advantage of this approach is that we

decouple the multiple bundle transfer for upload and download which makes the

transfer opportunistic. While the bundle transfer is asynchronous and simultaneous

the upload and download flow is sequential. This is because there are other modules

that need to perform tasks that involve optimizing Bundle creation based on the data

received from the transport. These modules will be discussed in a later section. The

client is well aware of what bundles it is uploading and downloading which makes it

possible to implement bi-directional streaming as the bundle Ids are known by the

Bundle Client where the calls originate. However, the uni-directional approach makes

it easier to manage transfer when the originator does not know what o expect i.e. in

the case of the interaction between the Bundle Transport and the Bundle Server.
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1 syntax = "proto3";
2 package protobuf;
3 option java_multiple_files = true;
4 option java_package = "com.ddd.bundletransport.service";
5 option java_outer_classname = "FileServiceEntry";
6 message ReqFilePath { string value = 1; }
7 message RespFileInfo {
8 string name = 1;
9 int64 size = 2;

10 }
11 enum Status {
12 PENDING = 0;
13 IN_PROGRESS = 1;
14 SUCCESS = 2;
15 FAILED = 3;
16 UNAVAILABLE = 4;
17 }
18 message MetaData {
19 string name = 1;
20 string type = 2;
21 }
22 message File {
23 bytes content = 1;
24 }
25 message FileUploadRequest {
26 oneof request {
27 MetaData metadata = 1;
28 File file = 2;
29 }
30 }
31 message FileUploadResponse {
32 string name = 1;
33 Status status = 2;
34 }
35 message Bytes { bytes value = 1; }
36 service FileService {
37 rpc UploadFile(stream FileUploadRequest) returns (

FileUploadResponse) {}
38 rpc DownloadFile(ReqFilePath) returns (stream Bytes) {}
39 }

Listing 4.1: Bundle Client to Bundle Transport Proto File

The interaction between the Bundle Server and the Bundle Transport is very

similar in the case of uploading and downloading files. Refer to Listing 4.2,The only

difference is that the Metadata now also transmits the Transport Id which is used by

the Bundle server for routing purposes. Additionally, the DownloadBundle() call first
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sends a list of downstream bundles that are already present on the Bundle Transport,

the Bundle Server uses this list to generate a list of bundles to be deleted, generate

new bundles, and keep track of the bundles already present on the Transport. When

the Bundle Transport is downloading bundles it does not know the Bundle Ids of the

bundles that are being downloaded. Hence this Id needs to be provided as a metadata

field by the Bundle Server. This also means that in cases of failures the Bundle

Transport, (where the calls originate) is incapable of keeping track of which bundle

was lost or incomplete. In this case, the decoupling of bundle transfer ensures that this

will not interfere with the other bundles and the failed bundle can be re-transmitted

in its onError() implementation.
1 syntax = "proto3";
2 package protobuf;
3 option go_package = "./ protobuf";
4 option java_multiple_files = true;
5 option java_package = "com.ddd.bundletransport.service";
6 option java_outer_classname = "BundleServerService";
7 option objc_class_prefix = "BSS";
8 import "FileService.proto";
9 message BundleMetaData {

10 string bid = 1;
11 string transportId = 2;
12 }
13 message BundleList{
14 string transportId = 1;
15 string bundleList = 2;
16 }
17 message BundleUploadRequest {
18 oneof request {
19 BundleMetaData metadata = 1;
20 File file = 2;
21 }
22 }
23 message BundleUploadResponse {
24 string bid = 1;
25 Status status = 2;
26 }
27 message BundleDownloadRequest {
28 string bundleList = 1;
29 string transportId = 2;
30 }
31 message BundleDownloadResponse{
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32 oneof request{
33 BundleMetaData metadata = 1;
34 BundleList bundleList = 2;
35 File file = 3;
36 Status status = 4;
37 }
38 }
39 service BundleService {
40 rpc UploadBundle(stream BundleUploadRequest) returns (

BundleUploadResponse) {}
41 rpc DownloadBundle(BundleDownloadRequest) returns (stream

BundleDownloadResponse) {}
42 }

Listing 4.2: Bundle Transport to Bundle Server Proto File

4.6 Transport Identification

The transport Id is generated by generating a public-private key pair. The public

part is Base64 encoded and stored on the transport as transportIdentity.pub. In order

to get the transport Id the encoded key is then retrieved from the file decoded and

hashed using SHA-1 after which it is encoded again to Base64 format. The Base64

encoding is performed for readability and also to reduce the length of the ID as it is

being used for directory generation. Decreasing the length also makes it efficient to

stream it over gRPC.

4.7 Bundle Client Integration

The Bundle Delivery Agent interacts with multiple Modules present in the Bundle

Client Android application. These modules are considered a black box for this project

and we assume that they are working as expected. Fig. 13 shows the sequence in

which a bundle is converted to data and vice versa.

1. The Bundle Transmission module in the central module communicates with all

other modules. Its primary purpose is to generate a Bundle from data provided

by the Application Data manager.

2. The Application Data Manager modules will communicate with all other appli-
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Figure 13: Bundle Client Modules Interaction Flow

cations on the device that have subscribed to the DDD service using Android

inter-process communication (IPC). It will pull and push data from these ap-

plications and provides these Application Data Units (ADUs) to the Bundle

Transmission module. The Application Data Manager also has a State Manager

and Datastore which work together.

3. The Bundle Transmission module will use the Bundle Security module to perform

encryption and decryption on the bundles. This module makes use of the

Extended Triple Diffie-Hellman [28] algorithm to perform a key exchange and

generate a shared secret which is used for encryption and decryption.

4. The Bundle Routing module generates the bundle and client Id. It also maintains

a window of bundle counters which is in sync with the windows on the Server.

This window enables the client to know which bundle ids are expected from a
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transport. This module will make use of the Ratchet algorithm[29] to keep the

windows in sync.

4.8 Bundle Server Integration

The Bundle server are similar to the counterparts on the Client and perform

similar functions. A major difference is that the Application Data Manager must push

and pull data from an Application Server Service. This service will interface between

the actual application server and the Bundle Server. The Service will be registered

with the DDD Bundle server which will provide a DDD Id to be used by the DDD

network. Fig. 14 shows the sequence in which a bundle is converted to and from data

and pushed to and from the service adapter.

Figure 14: Bundle Server Modules Interaction Flow
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CHAPTER 5

Experimentation

We will run experiments to check if file type, Phone hardware, and Message size

will affect gRPC throughput. We use two different devices as clients: P1 – Samsung

Galaxy S9 and P2 – Google Pixel 4A The server is running on a One Plus 6T device.

P1 is a 2018 model, P2 is a 2020 model and the server device is a 2018 model. P1

is running Android 10, P2 is running Android 11 and the server phone is running

Android 11. There is no internet connection on any of the devices. This setup will

also help us demonstrate the effect on performance with different hardware.

5.1 gRPC throughput numbers over WiFi-Direct

gRPC loads all incoming messages in memory irrespective of if it is on the

client or server. Therefore to prevent excessive resource consumption gRPC has

message size limits set to 4 MB by default. There is no limit on outgoing mes-

sages. When I tried to send over a chunk of size 4MB got the following error:

Errorio.grpc.StatusRuntimeException: CANCELLED: client cancelled this is because

the server would not accept a message of size bigger than 4MB. The recommended

chunk size for streamed messages appears to be 16-64KB.

5.1.1 Observations - SINGLE CLIENT

First, we connected a single client to the server device over WiFi-Direct and used

gRPC to send a .flac file in chunks. The file is of size 70.2 MB. The chunk size is

varied.

We observe from the plot 15 of throughput values vs Chunk sizes from table 2

that the throughput is affected by changes in chunk size as the chunk size increases

the throughput improves. This is probably because with larger chunks the number of

times that gRPC has to serialize and de-serialize messages is decreased.

Next, we change the file type to .zip which is a 75MB file consisting of (.flac, .txt,
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Phone Chunk Size Time (seconds) Rate (MB/sec)
P1 16 KB 2.83 24.8
P1 32 KB 2.46 28.5
P1 64 KB 2.54 2.76
P1 1 MB 2.07 33.9
P1 3 MB 2.11 33.2

Table 2: gRPC Throughput numbers over WiFi-Direct

Figure 15: gRPC throughput for single client connection

.jpg) multiple file types. This is more in line with what our DDD network will be

dealing with. This time we connect to devices one after the other.

Phone Chunk Size Time (seconds) Rate (MB/sec)
P1 512 KB 2.85 26.3
P1 1 MB 2.52 29.7
P1 4 MB 2.19 34.25
P2 4 MB 1.6 46.8
P2 4 MB 1.43 52.44

Table 3: gRPC Throughput numbers over WiFi-Direct: single device connection

We observe from the throughput values in 3 that file type has no effect on
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throughput probably because we are streaming bytes. The device with newer hardware

(P2) performs better probably due to a better WiFi chipset installed on it.

5.1.2 Observations - MULTIPLE CLIENTS

Phone Chunk Size Time (seconds) Rate (MB/sec)
P1 512 KB 3.67 20.4
P2 512 KB 2.47 30.3
P1 1 MB 3.87 19.37
P2 1 MB 2.47 30.3
P2 4 MB 3.59 20.8
P2 4 MB 2.64 28.4

Table 4: gRPC Throughput numbers over WiFi-Direct: multiple device connection

Figure 16: gRPC throughput for multiple connections

In this test, we connect both devices P1 and P2 simultaneously to the client. We

send the same .zip file used in the previous run at the same time from both devices.

We see from the plot 16 based on throughput values and chunk sizes in table 4 that

the trend of P2 performing better than P1 is still observed. However, the overall

throughput of both devices is lower.
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5.1.3 Conclusion

As more and more devices will connect to the network the throughput will go

down. We can expect around 25 devices to perform transfers simultaneously. Devices

with the latest hardware seem to give better performance and we observe the best

performance with larger chunks as it decreases the overhead involved with serializing

and deserializing messages.

5.2 Execution

We will run experiments to show how the system architecture translates into

implementation. The Bundle Client Application is running on Phone P1. The Bundle

Transport application is running on phone P2 and finally, the Bundle Server is

running on a MacBook Pro Device with an M1 chipset. To simulate the connected

and disconnected regions, P1 is never connected to the internet. P2 is not connected

to the internet while interacting with P1 but is connected to the same WiFi access

point as the Bundle Server device when interacting with the Bundle Server. Below

we show the exchange of bundles between a Bundle Client and a Bundle Transport.

There will be no deletion operations on the transport data. Once the Bundle Client

connects to a Transport application via WiFi-Direct. The Client will first request for

Bundles download. The Client uses a window and initiates a series of requests for all

bundles expected from its window. The transport will fail bundle requests for bundles

that are not available on the transport but stream the bundles that are present. We

can see this behavior in the Fig. 17 wherein before receiving we see that in the first

picture of client storage, the received-bundles directory is empty and the transport

has a bundle "client0-0.jar". We can see that after the request is completed in Fig.

18 the client storage now has the bundle in its received-bundles directory.

Similar to the previous example, the Client application will create a single
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Figure 17: Before Receiving

Figure 18: After Receiving

incremental bundle to be streamed to Transport. We can see this behavior in the

fig. 19 where the client storage has a bundle "client0-0.jar" in its to-send directory

while the transport storage does not have any bundles for the server. After the call is

complete we can observe in Fig. 20 that the bundle "client0-0.jar" is now present on

the transport storage in the server directory.

Figure 19: Before Sending

Figure 20: After Sending

Once the Transport initiates a connection to the server using the Internet. Each
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file streaming has a deletion step associated with it. The Bundles from the Clients

are uploaded to the server and deleted immediately once the streaming is finished.

The behavior can be observed in Fig. 21 where we can see that the Transport has a

bundle "client0-0.jar" for the server and the server storage is empty. After the call,

we can see in Fig. 22 that the Server receive directory now has the bundle with the

respective transport ID as the parent directory and the bundle has been deleted from

the transport.

Figure 21: Before Sending

Figure 22: After Sending

For each received request the transport sends a list of bundles already on the

transport. This list enables the server to decide which bundles are redundant and

should be deleted and which bundles to stream. The deletion steps occur before the

streaming step to ensure we free up some space for bundles that are actually to be

transported. We can observe in Fig 23 that the transport does not have any bundles

for the clients in storage and there are no bundles to send to the Bundle Server.

However, after the call, we can observe in Fig 24 that a bundle "client0#0.jar" was
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created on the server and sent over to the transport as seen in the client directory of

the transport device.

Figure 23: Before Receiving

Figure 24: After Receiving
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CHAPTER 6

Future Work
6.1 Multi-Hop Transport

The current implementation assumes that every transport will commute from

a disconnected region to a connected one. However, it is also possible that some

disconnected regions are unreachable by a single transport. In this case, we will require

multiple hops for the bundle to reach the connected region. The transports will also

have to talk to each other however with multiple hops there is no way of knowing how

many hops will be required. One approach could be flooding the network with bundles

but a major disadvantage is un-optimized storage management and denial of service.

Another approach could be to introduce a routing table on the transports which would

introduce complexity in terms of identity management, and denial of service attacks.

The transport would have to necessarily generate and exchange metadata to update

the routing tables and these changes could take very long to propagate through the

network.

6.2 Transport Meta Data collection

The Transport application can collect metadata using GPS which may be used

to identify areas without connectivity. This data can also be used to optimize routing.

For example, if a transport follows a periodic route we may use that information to

notify users, and we may use it to optimize bundle generation. This can also be used

to score and optimize routes for bundles in the network. Meta-Data collection will

still assume the transport as untrusted entities in the network and at the same time

can help prioritize clients reachable from a particular transport.

6.3 Device coverage and Compatibility

Currently, our infrastructure only supports Android devices. The transport will

continue to work primarily with Android devices however we can expand the client
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implementation to cover more devices. This is possible because the Group Owner

in a WiFi-Direct network acts as a wireless access point and any device with WiFi

capabilities can connect to it. This means that only Bundle Client implementation

will be required to expand to IOS and PC devices. This will involve using the Proto

file to build gRPC on different clients. We will also require the implementations to be

rewritten in device-supported language, which should be possible and gRPC supports

a wide variety of languages.

6.4 Transport Authentication

The transports have a public private key pair for identification. The transport

Id is the public part of this pair.The transports are untrusted entities however if a

malicious agent steals a transport’s public key it can act as the transport. This is will

have no effect on the end users as the data is opaque but it could still lead to a bad

name for the transport and somewhere down the line deny service to its users.We need

to implement preventive measures for this which can be done by taking advantage of

gRPCs built-in auth mechanisms [30]. The transport can authenticate the channel or

calls using gRPC and exchanging SSL data. Another approach could be to have a

shared secret using the private key of the server or client and the public key of the

transport. These can be used to generate a challenge for the transport which can be

authenticated if it responds accurately to the challenge.
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CHAPTER 7

Conclusion

There have been multiple attempts to bring connectivity to disconnected areas.

Most approaches that work are geared towards emergencies where it is acceptable to

bear set-up costs over delays. Very few approaches focus on cheaper solutions where

delays in packet transmission are acceptable however most of them are built on top

of customized hardware requirements. One of the major reasons why delay-tolerant

networks were not widely adopted is the need to maintain and customize hardware in

such networks. This project showcases how advances in mobile device technologies

can be leveraged to eliminate the need for costly and highly customized software. We

have demonstrated that Android mobile devices which are cheaply and easily available

can be used as a carrier of data bundles from disconnected to connected areas. We

have leveraged the use of technologies like gRPC and WiFi-Direct which are both

platform-independent. The clients can be implemented on any device as gRPC uses

proto files which are language-independent. Any device with WiFi capabilities can

connect using WiFi-Direct to the Bundle Transport device. Multiple difficulties were

faced in order to achieve this platform’s independence. There has been no recorded

use of gRPC over WiFi-Direct and running a gRPC server on Android devices is not

officially supported.

Most approaches before have left aside the aspect of security and the user data

is easily exposed to malicious agents which is unacceptable today. Our approach

of propagating data as opaque bundles making the Bundle Transport an untrusted

entity in the networks protects data privacy and security. This builds on top of the

assumptions of existing solutions that at least some transport will reach the server.
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