
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

Insecure Deserialization Detection in Python Insecure Deserialization Detection in Python

Aneesh Verma
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Verma, Aneesh, "Insecure Deserialization Detection in Python" (2023). Master's Projects. 1270.
DOI: https://doi.org/10.31979/etd.3yzt-6hxp
https://scholarworks.sjsu.edu/etd_projects/1270

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1270?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1270&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Insecure Deserialization Detection in Python

A Project Report

Presented to

Dr. Robert Chun

Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Class

CS 298

By

Aneesh Verma

May 2023

INSECURE DESERIALIZATION DETECTION IN PYTHON

The Designated Project Committee Approves the Project Titled

Insecure Deserialization Detection in Python

By

Aneesh Verma

Approved for the Department of Computer Science

San José State University

May 2023

Dr. Robert Chun Department of Computer Science

Dr. Thomas Austin Department of Computer Science

 Mr. Priyam Dhanuka Software Engineer, Google

INSECURE DESERIALIZATION DETECTION IN PYTHON

i

ABSTRACT

The importance of Cyber Security is increasing every single day. From the emergence of new

ransomware to major data breaches, the online world is getting dangerous. A multinational non-

profit group devoted to online application security is called OWASP, or the Open Web Application

Security Project. The OWASP Top 10 is a frequently updated report that highlights the ten most

important vulnerabilities to web application security. Among these 10 vulnerabilities, there exists

a vulnerability called Software and Data Integrity Failures. A subset of this vulnerability is

Insecure Deserialization. An object is transformed into a stream of bytes through the serialization

process in order to be stored in memory, a database, or a file. Deserialization is the procedure used

to transform bytes of serialized data into readable form. When a website deserializes user-

controllable data without any validation, it is known as Insecure Deserialization. An attacker may

be able to modify serialized objects in this way to introduce dangerous data into the application

code. In this research, we discuss thoroughly Insecure Deserialization in Python and attempt to

create an automated scanner for detecting it. We go into detail about the working of Insecure

Deserialization and study this vulnerability in different languages such as Java, Python, and PHP.

We also talk about various prevention techniques.

Keywords – Insecure Deserialization, Security, Vulnerability, OWASP Top 10, Python.

INSECURE DESERIALIZATION DETECTION IN PYTHON

ii

ACKNOWLEDGEMENTS

I would like to express my gratitude to my adviser, Dr. Robert Chun, and the members of my

master's project committee, Dr. Thomas Austin and Mr. Priyam Dhanuka, for their unwavering

support and assistance during the completion of my project. Their knowledge of several topics

helped me make judgments while also teaching me many business methods. The prospect of

completing this endeavor would never have been feasible without their direction and support.

INSECURE DESERIALIZATION DETECTION IN PYTHON

iii

TABLE OF CONTENTS

I. INTRODUCTION ...1

II. HISTORY ..5

III. RELATED WORK ..8

IV. CONCEPTS AND TECHNIQUES ...10
Serialization and Deserialization .. 10

Vulnerability Exploitation in PHP ... 11

Vulnerability Exploitation in Java ... 15

Vulnerability Exploitation in Python .. 18

Prevention Techniques ... 20

V. HYPOTHESIS ..21

VI. DEVELOPMENT ..22
Port Scanning ... 24

OS, Service, and Version Detection .. 27

Data Extraction ... 29

Data Decryption ... 31

Vulnerability Verification ... 33

VII. TESTING ...36
Non-Python servers .. 38

Python servers .. 39

Sandbox server ... 41

VIII. ANALYSIS ..46

IX. CONCLUSION AND FUTURE WORKS ..48

BIBLIOGRAPHY ...50

INSECURE DESERIALIZATION DETECTION IN PYTHON

iv

TABLE OF FIGURES

Figure 1. OWASP Top 10 transition from 2017 to 2021. ..2
Figure 2. Organization of the research ..4
Figure 3. Black Hat Asia 2002 conference ..6
Figure 4. Process of Serialization and Deserialization ..10
Figure 5. Serialization in PHP ...11
Figure 6. Deserialization in PHP ...11
Figure 7. Deserialization exploit in PHP ...12
Figure 8. Wakeup function ..13
Figure 9. Malicious code insertion point ...13
Figure 10. POP chain example in PHP ...15
Figure 11. Serializing malicious class in Java ...16
Figure 12. Deserializing malicious class in Java ...17
Figure 13. Gadget chains in Java ...18
Figure 14. Serialization and Deserialization in Python ...19
Figure 15. Client code ..19
Figure 16. Server code ...20
Figure 17. Python exploit script ...20
Figure 18. Example of pickle dump ...22
Figure 19. Flowchart denoting the process of our scanner ...24
Figure 20. Masscan scanning all open ports ..27
Figure 21. Passing open ports from Masscan to Nmap ...29
Figure 22. Extract ports running Python server ...29
Figure 23. Pie chart denoting cookie flags statistics ..31
Figure 24. Extracting cookies from the website ..32
Figure 25. Cryptographic Failure statistics ..33
Figure 26. Creation of an exploit in reduce function ...34
Figure 27. Error handling while unpickling ...36
Figure 28. Output of our scanner ...36
Figure 29. Flowchart denoting testing steps ..38
Figure 30. PHP server ..39
Figure 31. Node JS server ..39
Figure 32. Webfsd server ...39
Figure 33. Output of non-Python servers ...40
Figure 34. Setting cookies in Python servers ...40
Figure 35. Sandbox website homepage ...42
Figure 36. Output of our vulnerability scanner on sandbox website ...43
Figure 37. Cookies on the website ...43
Figure 38. Decoding and unpickling the cookie ...43
Figure 39. Attribute Error while unpickling ..44
Figure 40. Adding the attribute and then unpickling ...44
Figure 41. Attribute Error converted to TypeError ..44
Figure 42. Changing attribute type to class ...45
Figure 43. Errors resolved during unpickling ..45
Figure 44. Creation of an exploit for sandbox website ..45

INSECURE DESERIALIZATION DETECTION IN PYTHON

v

Figure 45. Base 64 encoding of the exploit ...46
Figure 46. Exploit displaying all server files to user ...46

INSECURE DESERIALIZATION DETECTION IN PYTHON

vi

LIST OF TABLES

Table 1 Encoded pickled data for different data types ..41

INSECURE DESERIALIZATION DETECTION IN PYTHON

1

I. INTRODUCTION

Nearly every industry, government, and financial company have moved its operations to a

cyberinfrastructure as a result of the growing trust and use of the Internet. An intentional attempt

to compromise another person's or organization's information system is known as a cyberattack.

Cyberattacks are becoming more and more common, as is our understanding of the technologies

involved. An estimated 98% of online apps evaluated were discovered to be prone to cyberattacks,

as per Trustwave's 2015 Global Security Report. According to another security study in 2015, 74%

of small organizations and 90% of large organizations suffered from security breaches [1].

Given that businesses don't always disclose all data to the world, it can be challenging, if

not unattainable, to estimate the precise expenses that organizations will incur to rebuild their

reputation, business, and customer trust. Nevertheless, the findings indicate that the effects of

cyberattacks most frequently involve data loss, financial harm, business loss, and damage to

equipment. The most frequent intrusions allowed unauthorized access to data including complete

names, dates of birth, Identification, personal address, hospital information, contact details,

account records, e-mail, passwords, and insurance details [2].

Numerous nonprofit initiatives and programs have indeed been implemented in recent

years with the goal of addressing security risks. Open Web Application Security Project

(OWASP), a global nonprofit charitable organization that concentrates on application security, is

the most well-known group [1].

The OWASP Top 10 lists the top 10 most significant web application security threats along

with recommendations for mitigating those risks. This list is based on a majority agreement among

INSECURE DESERIALIZATION DETECTION IN PYTHON

2

cybersecurity experts globally and draws on the considerable experience and expertise of

OWASP's open community contributors [3].

Fig. 1. OWASP Top 10 transition from 2017 to 2021

Since 2003, the OWASP has managed its Top 10 listing, changing it every two to three

years to reflect developments and shifts in the Application security industry. An overall

organizational dedication to industry standards for secure development is demonstrated by

incorporating the Top 10 within the software development life cycle [3].

One of the vulnerabilities in this list is Software and Data Integrity Failures (A08:2021).

Software and Data Integrity Failures is a brand-new category for 2021 that focuses on CI/CD

pipelines, important and sensitive data, and assumptions about software upgrades without

validating integrity [4]. CWE (Common Weakness Enumeration) is a classification of software

and hardware vulnerabilities created by the security community. It provides a consistent

vocabulary, a yardstick for security tools, and a starting point for attempts to identify, mitigate,

and avoid weaknesses [5]. Common Vulnerabilities and Exposures, or CVE, is the abbreviation

for a list of openly reported computer security issues. A security issue with a CVE ID number is

what is meant when someone mentions a CVE [6]. A well-defined collection of criteria and

straightforward formulae make up the Common Vulnerability Scoring System (CVSS), a public

endeavor that also includes documentation to help analysts rate vulnerabilities and businesses use

INSECURE DESERIALIZATION DETECTION IN PYTHON

3

the ratings [7]. 10 CWEs in Software and Data Integrity Failures have one of the largest weighted

impacts from (CVE/CVSS) statistics.

Insecure Deserialization is a subset of Software and Data Integrity Failures. A website can

have some data which is controlled by a user. When such data is deserialized by a website without

any validation, it is called Insecure Deserialization. This might give an attacker the ability to alter

serialized objects and inject malicious code into the website [8].

For certain languages such as Java and PHP, automated scanners to detect Insecure

Deserialization have been already developed. However, a scanner is nonexistent for a very widely

used language Python. In this research, we investigate extensively Insecure Deserialization,

particularly in Python, and aim to develop an automated scanner for it.

This research is organized as follows: Section II describes the history of Insecure

Deserialization and how it came into being. Section III illustrates the related work and the tools

that are already created for the detection of this vulnerability. Section IV expresses the concepts

and techniques of this vulnerability. It includes details of this attack and how it works in different

languages. It includes vulnerability identification, exploitation, and prevention. Section V focuses

on the hypothesis of the development of an automated scanner for detecting Insecure

Deserialization in Python. We talk about the actual development of this scanner in Section VI

followed by its testing in Section VII. We compare our scanner with another scanner called

Ysoserial in Section VIII. This organization is shown in Fig 2.

INSECURE DESERIALIZATION DETECTION IN PYTHON

4

Fig. 2. Organization of the research

INSECURE DESERIALIZATION DETECTION IN PYTHON

5

II. HISTORY

Tracking down the history of Insecure Deserialization seemed like an impossible task. No

research paper, no article, no YouTube video, nothing could be found that directly stated the

history of this vulnerability. Therefore, a search of Google results related to Insecure

Deserialization was done every year separately since 1960. The first attack based on Insecure

Deserialization was done in 2007 [9]. However, this means that in 2007, this information was made

publicly available. Only the actual hackers know when this vulnerability came into being and how

old it is.

In the 1990s, a lot of articles were written on serialization and deserialization, mostly in

Java. Some emphasis was given to PHP, however, nothing about Python’s serialization or

deserialization could be found. In addition, there was little to no mention of a security association

with serialization/deserialization.

Some important events that happened around that time were Black Hat was founded in

1997 [10] and OWASP was launched in 2001 by Mark Curphey and Dennis Groves [11].

On September 3rd, 2002, the Last Stage of Delirium Research Group presented an article

on Java and Java Virtual Memory security vulnerabilities and their exploitation techniques at Black

Hat Asia 2002 [12]. They had the foresight to see that deserialization can become a potential threat.

According to the Last Stage of Delirium Research Group [12], if a system class had the potential

to be deserialized then it was possible to deserialize some bytes into a system class’s instance.

They also stated the danger of this as the new objects can be constructed in a different state which

is arbitrary.

INSECURE DESERIALIZATION DETECTION IN PYTHON

6

Fig. 3. Black Hat Asia 2002 conference

In March 2003, David A. Wheeler [13] published the book Secure Programming for Linux

and Unix HOWTO. In his book, he clearly mentions that deserialization is a dangerous operation.

In the same month, Lujo Bauer, et al. [14] published a research paper that states that secure Java

applications require the prevention of certain processes including serialization and deserialization.

INSECURE DESERIALIZATION DETECTION IN PYTHON

7

In 2004, Bauer, Lujo, et al. [14] wrote an article titled “Nine reasons not to use

serialization”. He argued that one of the reasons to not use serialization was that it was not secure.

According to him, the use of XML serialization is by its very nature unsafe as it requires making

classes public. He also listed down other security concerns as a consequence of serialization such

as the production of temporary files.

Even though the vulnerability was not properly formulated, the above articles, papers, and

books indicate that it was well-established that serialization and deserialization processes were

unsafe. Consequently, the first attack relating to Insecure Deserialization occurred in 2007 [9].

This was a PHP attack that included the attack to happen when the deserialization of session data

took place. The attack included running malicious code on the system [15].

According to CVE Details [16], only 7 attacks related to Insecure Deserialization took

place from 2007 to 2013. This might be the reason for this vulnerability not being added to

OWASP TOP 10 in 2007,2010 and 2013 [11] even though it affected Google Chrome in 2010

severely [17]. However, Google Chrome was not that relevant compared to its popularity now. In

2010, it had only 9.95% of the browser market share across all device types [18]. In 2017, Insecure

Deserialization was added to OWASP's Top 10 list. From 2014 to 2017 there was a more than

1900% increase in attacks from 7 to 141 [16]. Therefore, the choice of adding Insecure

Deserialization to OWASP Top 10 made sense statistically. Between 2018 and 2021, there was a

further increase from 141 to 709 denoting upward of another 400% increase. This might be the

reason for Insecure Deserialization remaining in Owasp's top 10 for the year 2021 where it resides

in the vulnerability called Software and Data Integrity Failures [4].

INSECURE DESERIALIZATION DETECTION IN PYTHON

8

III. RELATED WORK

In this section, we discuss various detection tools related to Insecure Deserialization.

Several tools exist, however, most of them are limited to Java and PHP. There seems to be an

uneven balance of the number of Insecure Deserialization detection tools developed for Java and

other languages.

Sondre Fingann [19] talks about Ysoserial. Ysoserial was developed using a group of

property-oriented programming "gadget chains" that were found in popular Java packages.

Through unsafe object deserialization, these "gadget chains" can be leveraged to attack Java

programs. Imen Sayar et al. [20] agree with Sondre Fingann [19] in terms of Ysoserial being an

important detection tool. According to Imen Sayar et al. [20], we may develop payloads to utilize

on susceptible targets or search for Java deserializations using a variety of open-source tools with

tools such as Ysoserial, SerialBrute, Java serial killer, JMET, and Java Deserialization Scanner. In

addition, Nikolaos Koutroumpouchos et al. [21] also agree with Sondre Fingann [19] and Imen

Sayar et al. [20] about Ysoserial as a detection and exploitation tool. Sondre Fingann [19] further

explains the working of Ysoserial. Ysoserial encapsulates a command in a preset gadget chain and

after that does serialization of the object. Burp suite, which is a popular penetration testing tool,

also consists of a plugin corresponding to Ysoserial. Java serialization may be detected by the

plugin using any of the active or passive scanners of Burp Suite. A manual tester for finding

weaknesses in specific insertion locations is included. Ysoserial is a great tool for the detection of

this vulnerability in Java.

Imen Sayar et al. [20] and Nikolaos Koutroumpouchos et al. [21] focus more on Insecure

Deserialization detection in PHP unlike Sondre Fingann [19]. They talk about a command line tool

developed in Golang for the detection of Insecure Deserialization in PHP or Java web applications.

INSECURE DESERIALIZATION DETECTION IN PYTHON

9

This tool accepts a target and a range of alternatives as input, verifies and examines the input, and

then creates a bundle of requests with multiple insertion locations based on the input. Then it

injects malicious data into these insertion points, checks if the vulnerability is there, and presents

on which insertion point the vulnerability exists. However, Sondre Fingann [19] focuses on other

detection tools for Java applications. SerializationDumper is a tool that automates the laborious

process of interpreting raw serialization streams. To convert the byte stream toward a more

understandable form for humans, this tool can be used. Sondre Fingann [19] also talks about

Gadget Inspector and Freddy. Gadget inspector analyzes Java bytes of code that locates gadget

chains in packages or programs. Freddy is a burp suite plugin that allows burp suite to automate

the detection of deserialization problems in .NET and Java applications by observing network

traffic. Integration of plugins into the burp suite makes it very easy to detect vulnerability.

Nikolaos Koutroumpouchos et al. [21] discuss some other detection tools which are not for

Java but for PHP and Android. For Android deserialization detection a tool that is based on

Ysoserial is Android Java Deserialization Vulnerability Tester. PHPGGC (PHP Generic Gadget

Chains) is a tool that is used to detect PHP object injection which is a form of Insecure

Deserialization. It is a library consisting of payloads that are unserialized. As we can see, various

vulnerability scanners concerning Insecure Deserialization are available, however, none of them

works for Python.

INSECURE DESERIALIZATION DETECTION IN PYTHON

10

IV. CONCEPTS AND TECHNIQUES

A. Serialization and Deserialization

Serialization transforms complex data such as objects into a flatter structure so that the data

can be transferred back and forth as a sequential byte stream. Serialization helps in publishing

intricate data to a file, database, or inter-process memory. It also helps preserve the state of the

object i.e., the attributes and the values.

Deserialization turns the byte stream back into an identical clone of the original object that

is fully operational and maintains its serialized state. The logic of the website may then

communicate with this deserialized object.

Fig. 4. Process of Serialization and Deserialization

Serialization is natively supported by several programming languages. Serialization is known as

marshalling in ruby and pickling in Python [8].

INSECURE DESERIALIZATION DETECTION IN PYTHON

11

B. Vulnerability Exploitation in PHP

In the PHP language, Insecure Deserialization is sometimes referred to as PHP object

injection. PHP contains a function called serialize() which is used to serialize a PHP object when

needed to store it or transport it over the network.

Fig. 5. Serialization in PHP.

Similarly, it contains unserialize() function to unpack and retrieve the original object.

Fig. 6. Deserialization in PHP

INSECURE DESERIALIZATION DETECTION IN PYTHON

12

A reason for the occurrence of this vulnerability is developers think that serialization alone

will protect the data. They don’t encrypt the data or sign it, which results in anyone creating a user

object. An attacker can just make changes to this serialized string if not encrypted. As an example,

an attacker can just change his role from client to admin to gain admin access.

Fig. 7. Deserialization exploit in PHP

First, we will discuss vulnerability exploitation using magic methods. PHP magic methods

are names for methods that have unique characteristics. Magic qualities remain in magic methods,

for example automatically being performed during specific points of execution or when specific

circumstances are fulfilled, if the class of the serialized object implements any methods with magic

names. The magic functions wakeup() and destruct() are two of them.

When an object has to be reinitialized, the wakeup() function is often used to restore

whatever resources it may have, restore database connections broken during serialization, and

carry out additional reinitialization operations.

The program uses the destruct() method to destroy the deserialized object when there are

no references to its left. This method can be used for exploitation.

INSECURE DESERIALIZATION DETECTION IN PYTHON

13

Fig. 8. Wakeup function

Fig. 9. Malicious code insertion point

The images above represent a vulnerable code where Insecure Deserialization can take

place. A remote code execution which is an attack where an attacker can create a connection

between his host machine and the target machine is possible here. This is because we are passing

user-controlled cookie data to unserialize method without any encryption. As we are passing a new

object of class Foo into the serialize method, therefore a new Foo object will be created when

unserialize method receives the cookie data. Unserialize method will call wakeup() method as

INSECURE DESERIALIZATION DETECTION IN PYTHON

14

wakeup() is integrated in class Foo. The wakeup method will search for $hook variable and it will

evaluate it using eval($hook). The attacker sets $hook to his malicious code which sets off an RCE

attack resulting in a compromise of the system. Some more magic methods include toString() and

call() method invocation during the invocation of an undefined method [22].

Now we will talk about vulnerability exploitation using POP Chains. Property Oriented

Programming (POP) chain is where the attacker that the capability to control all the properties of

the deserialized object. It is used when magic methods do not contain exploitative code inside.

Gadgets are fragments of code that are lent from the codebase. These gadgets are pieced together

to exploit the vulnerability, which is the technique used by POP chains. Magic methods such as

wakeup and destruct are used as initial gadgets in the POP chain method. Some useful POP chain

methods include exec(), system(), file_put_contents(), file_get_contents() etc. The example below

shows the exploitation of a vulnerability using the POP chain:

Fig. 10. POP chain example in PHP

INSECURE DESERIALIZATION DETECTION IN PYTHON

15

The initial gadget is wakeup() method which is invoked on calling unserialize method in

which the value consists of the object of the class. The wakeup() method calls the save method

which puts data property to the file. The content of the file consists of malicious code. On loading

this file, the malicious code can be executed, and this is how the attack takes place [24].

C. Vulnerability Exploitation in Java

First, let's understand the working of serialization and deserialization in Java. Java classes

need to implement the interface Java.io.Serializable for making Java objects serializable.

Serialization and deserialization by methods writeObject() and readObject() respectively. Java

applications mostly use serializable objects to carry data in cookies, parameters, or headers. The

objects which are a result of serialization in Java are not humanly readable. Some characters are

even nonprintable. However, to identify serialization in Java there are certain hints. First, if the

object begins with rO0 (base64) or AC ED 00 05 (hex), it indicates serialization. Another hint is

if the HTTP message’s content-type header is application/x-Java-serialized-object, it also indicates

serialization. Similar to exploitation in PHP, we can change the role of the user and serialize again

and try to exploit the application. The application may occasionally be able to deserialize any class

which can be serialized and whose access is present. This happens when the code does not put any

restrictions on which class can be deserialized and which not, making the application prone to

RCEs.

INSECURE DESERIALIZATION DETECTION IN PYTHON

16

Fig. 11. Serializing malicious class in Java
Source: Adapted from [55]

Fig. 12. Deserializing malicious class in Java.

Source: Adapted from [55]

INSECURE DESERIALIZATION DETECTION IN PYTHON

17

You frequently need to employ a number of gadgets in order to achieve code execution in

the appropriate way. Gadgets can be found in the libraries that the application has loaded. This is

similar to that of POP Chain in PHP. We create a series of method calls employing gadgets inside

the application's scope that finally results in RCE. Exploit chains can be created by using the

gadgets residing in popular libraries which include Apache Groovy, Spring Framework, Apache

Commons File Upload, and Apache Commons Collections [22].

Here also magic methods are run automatically during deserialization. One of these magic

methods might be reading something off the input stream and execution happens. The execution

happens before the return of the object; therefore, typecasting is not an issue. Some of the major

magic methods are readObject(), readResolve(), finalize(), and Object.hashCode(),

Object.equals(), Comparator.compare(), Comparable.compareTo()

Fig. 13. Gadget chains in Java
Source: Adapted from [25]

INSECURE DESERIALIZATION DETECTION IN PYTHON

18

ReadObject() invokes hashCode(), which further invokes f1 and f2 functions. In f2

functions, runtime.exec(arg) happens, which results in the execution of our input. Some Java

libraries susceptible to this vulnerability are JDK(ObjectInputStream), XStream(XML, JSON),

Jackson(JSON), Genson(JSON), FlexSON(JSON). Vulnerability detection largely depends on the

existence of untrusted input. Ysoserial can be used to find these gadget chains and exploit them

[25].

D. Vulnerability Exploitation in Python

Serialization is called pickling and deserialization is called unpickling in Python. This

comes from a library pickle that Python consists of. Let’s understand Python's Insecure

Deserialization through an example. An object defined can be serialized using the pickle library.

The function used for serialization is pickle.dumps() and the function used for deserialization is

pickle.loads().

Fig. 14. Serialization and Deserialization in Python

Similar to Java and PHP, unvalidated user input results in the exploitation of this

vulnerability. Consider an example where a client sends some pickled data to the server, and the

server unpickles it.

INSECURE DESERIALIZATION DETECTION IN PYTHON

19

Fig. 15. Client code

Fig. 16. Server code

As we can see, the user input contains no validation whatsoever. Therefore, we can change

the input as follows:

INSECURE DESERIALIZATION DETECTION IN PYTHON

20

Fig. 17. Python exploit script

Here we introduce a new class Explt denoting the exploiting class which contains the

reduce function. When deserialization happens, the reduce function is called. In this function, we

are using the os library to create a reverse TCP connection. Consequently, this results in a

compromise of the system [26].

E. Prevention techniques

Some prevention techniques are as follows:

• User input must be validated, and it should not be untrusted [26].

• Utilize an allowlist to limit deserialization to a select few permitted classes if

deserialization is required [22].

• Putting in place integrity checks, such as digital signatures, on serialized objects to

stop malicious object creation or data modification is needed [27].

• Deserialization code should be given limited access permissions [27].

• Python documentation suggests using formats such as json which are safer if the

processing of untrusted data is being done [28].

• Add encryption/digital signature on top of serialization.

INSECURE DESERIALIZATION DETECTION IN PYTHON

21

V. HYPOTHESIS

In this section, we discuss solving the problem of automated scanning of an Insecure

Deserialization vulnerability in Python. As we discussed before, there are various tools already

available for scanning and exploiting this vulnerability in other languages such as Java and PHP.

We will utilize the design of these tools to develop our new scanner for Python.

A web application with this vulnerability will usually consist of dump data of pickle which

is a module in Python used for serialization and deserialization. This pickle dump is mostly user-

controlled. Thus, an attacker can modify this data, exploit the vulnerability and gain access to the

system. Internally, the “reduce” function of the pickle library causes this vulnerability to occur.

We will be experimenting with different ways of the pickle file being set up and if our scanner can

detect the vulnerability in all those different situations.

Fig. 18. Example of pickle dump

To verify our vulnerability scanner, we will be creating our own test cases and using a CTF

(capture the flag) sandbox on the platform HackTheBox.

INSECURE DESERIALIZATION DETECTION IN PYTHON

22

VI. DEVELOPMENT

This section focuses on the development of our vulnerability scanner. The practice of

testing and evaluating the status and circumstances of the network, hardware, and software

for known flaws and vulnerabilities is known as vulnerability scanning. Regular vulnerability

scans are necessary to make sure the security of your system is adequate. All vulnerability scans

have the same objective, which is to reduce the likelihood of data breaches that might put the

system at risk. However, the procedure and needed frequency differ based on the inspected system

[29].

As discussed in previous sections, we will focus this vulnerability scanner on scanning

Insecure Deserialization in Python. The development of this command line tool is done on an

x86_64 GNU/Linux system in the programming language Python. The input consists of the

website name and the output identifies if the website is vulnerable. The output can either indicate

three results:

(i) The website is susceptible to Insecure Deserialization

(ii) The website might be susceptible to Insecure Deserialization.

(iii) The website is not susceptible to Insecure Deserialization.

This reason for the second output is because in certain cases the website data can be

manually modified to induce the vulnerability. This scanner consists of the following modules:

i. Port Scanning

ii. OS, Service, and Version Detection

iii. Data Extraction

iv. Data Decryption

INSECURE DESERIALIZATION DETECTION IN PYTHON

23

v. Vulnerability Verification

Fig. 19. Flowchart denoting the process of our scanner

INSECURE DESERIALIZATION DETECTION IN PYTHON

24

A. Port Scanning

Hackers frequently employ a port scan approach to find gaps or weak spots in a network.

Cybercriminals can use this approach to identify open ports and determine if they are accepting or

rejecting data. Also, it can show whether a company uses firewalls or other active security

measures. The answer that hackers get from a port when they communicate with it tells them if the

port is in use and whether it has any vulnerabilities that may be exploited. With the port scanning

approach, businesses too can transmit data to particular ports and examine the answers for any

possible vulnerabilities. To make sure company networks are safe, they can utilize resources

such as IP scanning, netcat, and Nmap.

A port is a location on a system where data interchange occurs between various

applications, the internet, and hardware or other computers. Ports are given port numbers to

maintain uniformity and streamline programming procedures. Port numbers are sorted in order of

usefulness and span from 0 to 65,536. Well-known ports, which are normally set aside for internet

use, but may also have specific applications, are those with a port number between 0 and 1,023.

There are various port scanning techniques. Some of them are listed below:

i. The most basic port scanning method is a ping scan. These can also be referred to as

ICMP queries. Ping scans bombard several servers with ICMP queries in an effort to

elicit a response [30].

ii. A vanilla scan, another simple port scanning method, makes simultaneous connections

to all 65536 ports. It transmits a SYN flag (synchronize flag) and replies by sending an

ACK flag (acknowledgment flag) after receiving a SYN-ACK flag (connection

acknowledgment flag) [30].

INSECURE DESERIALIZATION DETECTION IN PYTHON

25

iii. Sending a SYN flag (synchronize flag) to the target and waiting for SYN-ACK

(acknowledgment flag) constitutes a SYN Scan, also known as a half-open scan. If the

scanner doesn't reply after receiving a response, the network connection (TCP) is not

successfully established. As a result, the communication is not recorded, but the sender

is still informed of the port's status. Hackers utilize this rapid method to identify holes

[30].

iv. XMAS scans, also known as Christmas tree scans, as well as FIN scans, seem to be

more subtle attack techniques. The collection of flags that are enabled within a packet

and which, when seen in Wireshark, seem to be twinkling like a Christmas tree give

XMAS scans their name. A series of flags are sent during this kind of scan, and

depending on how they are handled, they may provide information about the status of

the ports and firewall. In a FIN scan, an attacker sends a FIN flag to a particular port,

which is frequently utilized to terminate an established connection. An attacker can

learn more about the degree of activity and the company's firewall use through the

system's response to their assault [30].

v. A packet is bounced through an FTP server using a technique called an FTP bounce

scan. The transmitter can hide its location through this technique [30].

vi. This basic port scanning approach called sweep scan sends the communication to a port

throughout a network of computers to determine which ones are online. No data about

port activities are shared, although it does let the sender know if systems are active

[30].

A website can have multiple servers running on different ports. It is imperative to know

which ports are active. Most commonly, a network discovery software called Nmap is used for

INSECURE DESERIALIZATION DETECTION IN PYTHON

26

port scanning as well as OS, Service, and Version detection. We will discuss Nmap in the next

subsection. In our application, we use a software called Masscan for discovering open ports. The

reason for using Masscan is due to its speed. Masscan can scan the whole Internet in less than five

minutes. Using a single machine, Masscan can transfer 10 million packets per second [31].

Masscan uses a SYN scan for port discovery.

Fig. 20. Masscan scanning all open ports

As we can see in the image above, we use the Python module of Masscan in our application.

We are scanning all the TCP ports from 1 to 65535. An argument of “—max-rate” is also supplied

to the command to control the speed at which packets are sent. In the end, we format the output of

the command and return the list of open ports.

INSECURE DESERIALIZATION DETECTION IN PYTHON

27

B. OS, Service, and Version Detection

After identifying which ports are open, we want to find out which ports have a Python

server running on them. To achieve this, we perform OS, Service, and Version detection on the

list of open ports we received from Masscan, using Nmap.

Nmap is open-source and free software for the discovery of networks. Nmap helps in

identifying the host availability on the network, OS (Operating System) detection, firewall, packet

filter identification, etc. using IP packets through various techniques. Nmap can run on the majority

of operating systems including Windows, Mac, and Linux [32].

Nmap uses fingerprinting to detect the operating system. Nmap probes the remote host

with a sequence of both TCP and UDP packets, effectively inspecting every part of the reply.

Various tests including IP ID sampling, TCP ISN sampling, and initial window check, are

performed. The results of those tests are compared to a database called “Nmap-os-db” which

consists of greater than 2600 recognized OS fingerprints. Operating system details are obtained if

there is a match [33].

After the detection of the ports, Nmap uses its “Nmap-services” database to identify the

service being used. Examples of services are SMTP, HTTP, FTP, DNS, etc. However, this result

is not always accurate as users can run their services on different ports. Version detection probes

TCP & UDP ports to find out the services operating after discovering them using one of the

previous scan techniques. Nmap’s database “Nmap-service-probes” have queries for contacting

different services as well as match expressions for identifying and parsing their replies. Service

protocols (such as HTTP, HTTPS, Samba, FTP) and applications running on them (such as

OpenSSH, Apache HTTPD, Samba smbd) are discovered among other information [34].

INSECURE DESERIALIZATION DETECTION IN PYTHON

28

In our application, we perform this version detection using the Python module of Nmap. If

the version matches with Python, it means a Python server is running on that port. Furthermore, it

means that Insecure Deserialization can also be present. Therefore, we shortlist that port number

for further investigation. In the image below we perform a version detection scan using the Nmap

Python module and pass Masscan ports as input.

Fig. 21. Passing open ports from Masscan to Nmap

Next, the ports which are running Python services are extracted and returned.

Fig. 22. Extract ports running Python server

INSECURE DESERIALIZATION DETECTION IN PYTHON

29

C. Data Extraction

The next step is to extract the potentially vulnerable data present on the website. Human-

editable data needs to be focused on here. If some data on the website can be edited and then goes

back to the server to get processed, that data has the potential to be exploited.

Now, human-editable data can be anything. It can be a parameter of a submit action in a

webpage form, as it happened in CVE-2023-28667 [35]. Here, an action called

“tve_api_form_submit” of a PHP webpage form is present. A parameter called “tve_labels” is

forwarded to an unserialize() function. The issue is that the parameter is not sanitized, making the

form vulnerable [36]. Human-editable data can be data in a YAML file loaded in the application

[37]. Here, a file “saving.py” in a repository on Github known as “PyTorchLightning” calls an

unsafe yaml file which results in a code execution [38]. The data can be anywhere, in HTTP

requests, XML files, deserialization modules, etc.

According to M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan [50], among the primary

online attack destinations for authenticated users is session cookies. One of the most common

online security threats is cookie stealing. Because of the severity of this issue, contemporary web

browsers provide built-in security features predicated on certain flags such as HttpOnly and

Secure. These flags help to protect session cookies against unauthorized access by scripts inserted

into HTML and by sniffers intercepting HTTP connections. The chance of a script from the client

side acquiring a secured cookie is reduced by employing the HttpOnly setting when creating

cookies [51]. The secure flag, when set, will stop a cookie from being sent over HTTP which is

unencrypted [52]. Although the efficiency of these protections is generally acknowledged, their

ability to provide security assurances has not yet been formally shown. Nonetheless, it is obvious

that badly designed sites that fail to apply the essential flags yet subject their customers to

INSECURE DESERIALIZATION DETECTION IN PYTHON

30

substantial session hijacking dangers. M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan [50]

surveyed the top 1000 most popular sites according to Alexa. The survey demonstrated

unequivocally that such concerns are quite real, as web developers still seem to be mostly ignoring

the HttpOnly and Secure flags. They identified that 71.35% of session cookies did not have any

flags set.

Fig. 23. Pie chart denoting cookie flags statistics

Thus, in our application, we start scanning the vulnerability with one of the most dangerous

places where sensitive data could be present: cookies. We iterate through all those ports which

have a Python server running on them and extract the cookies of the website. We use the “requests”

module in Python to achieve this task.

INSECURE DESERIALIZATION DETECTION IN PYTHON

31

Fig. 24. Extracting cookies from the website

D. Data Decryption

Cryptology is the art of protecting and revealing secrets that are thousands of years old.

Cryptography focuses on the creation of these secrets and Cryptanalysis focuses on revealing them.

A key is essential in cryptology and is kept secret. A cipher is a system used to encrypt data.

Ciphers can be symmetric or asymmetric. In symmetric ciphers, the same keys are used to encrypt

and decrypt whereas in asymmetric ciphers different keys are used for encryption and decryption.

There are various popular algorithms present for encryption such as Triple-DES, Blowfish,

Twofish, AES-256, RSA, etc. A technique similar to cryptography is called hashing. Hashing is

using a function to map some data to a fixed-size value [39]. Some popular hashing algorithms are

md5, sha1, NTLM, etc.

Ideally, sensitive information should not be stored in a cookie, even if it is encrypted.

However, in the real world, sensitive information is stored in cookies all the time. If we encrypt

cookies with AES-256, the probability of breaking it is low, however, it is still possible. Again, in

the real-world best security practices are not always followed and some loopholes are left behind.

INSECURE DESERIALIZATION DETECTION IN PYTHON

32

Sensitive Data Exposure vulnerability resided in third place in the OWASP top 10 in 2017.

In 2021, this vulnerability moved from third place to second place and became “Cryptographic

Failures”. “Cryptographic Failures” has a much narrower scope. The incidence rate is the

proportion of applications from the audience subjected to an organization's testing during a year

that was susceptible to a CWE [53]. Cryptographic Failure recorded a maximum incidence rate of

46.44 % in 2021 [54].

Fig. 25. Cryptographic Failure statistics

Thus, it can be said that failing to do proper encryption is a major problem. There are

various tools and websites which can help in the decryption of these cryptographic and hashing

algorithms. Certain tools and websites which help in cracking the hashes are Hashcat, John the

ripper, and Crackstation.net. Similarly, for cryptography, we can use dcode.fr, ccrypt, burp suite,

etc [40].

In our application, we focus on base 64 decoding and use a basic base 64 decoder module

in Python. A list of encrypted cookies is sent to the decoder and decrypted data is returned.

INSECURE DESERIALIZATION DETECTION IN PYTHON

33

E. Vulnerability Verification

Our application has decrypted data from the Python server. Now, we want to verify if this

data can be exploited using Insecure Deserialization.

As discussed earlier, the Python object structure can be serialized and deserialized using

the pickle module. The Pickle module utilizes binary protocols to achieve the same. Pickling

means turning a Python object into a byte stream, while unpickling means turning a byte stream

into Python object. There are other modules such as marshal, however, pickle should be preferred

for serialization. The data streams that pickle generates can be analyzed by a module called

pickletools. Serialization can be done using a function called dumps() and deserialization can be

done using a function called loads() [41].

Let’s assume that we are the attacker and we have the pickle data. First, we will use the

function pickle.loads() to deserialize the data. If there is no error, then that means the code is

relatively simple and exploitable. All we need to do now is add the “__reduce__” function in the

Python code which will contain the exploit.

Fig. 26. Creation of an exploit in reduce function

INSECURE DESERIALIZATION DETECTION IN PYTHON

34

The code in the image above shows the working of the exploit. First, your IP address is

fetched, then a command is created inside “__reduce__” function which creates a reverse TCP

connection to our IP address. Finally, this class is serialized and base 64 encrypted using

pickle.dumps() function. The base 64 data can be placed in the cookie from where we fetched our

original serialized data. In the meantime, we will set up a listener on port 4242 using netcat.

Once our exploit is placed in the cookie, a reverse TCP connection will be placed from the

server to our machine. This means that we will be able to access the website’s server including its

files and processes.

Sometimes, when we use pickle.loads() to deserialize the data, it results in an error. Now,

before assuming that the data we have cannot be deserialized by Python, we must look at the errors.

In the case of “UnpicklingError”, it is certain that data cannot be deserialized. This means that the

vulnerability is absent here. However, it is a different story in other cases. The error can be as

simple as an attribute error, where a certain attribute of a certain type is necessary for the code.

Therefore, while creating our exploit, we just need to include that variable in the code. Another

possibility is that the server requires a particular class name. In that case, we can just rename our

“Exploit” class to the class name required which was displayed in the error message.

In our application, we focus on determining if the vulnerability is present and not on

creating exploits for the vulnerability. Creating an exploitation tool is possible, however, the

variables are too many when it comes to error predictions and creating exploits based on the errors.

As discussed earlier, the output of our application indicates the susceptibility to Insecure

Deserialization in a website. In the first output possibility, we are sure that the vulnerability is

present. We verify that using the function pickle.loads(). If pickle.loads() does not result in any

error or “UnpicklingError”, the application can be exploited. On the other hand, if pickle.loads()

INSECURE DESERIALIZATION DETECTION IN PYTHON

35

results in an error, the website might still be exploited. However, manual intervention is required

to see the errors and modify the code based on that.

Fig. 27. Error handling while unpickling

Fig. 28. Output of our scanner

Thus, our vulnerability scanner scans all the ports of a website, determines the ones running

a Python server, extracts the cookies, and checks if the extracted data is prone to Insecure

Deserialization.

INSECURE DESERIALIZATION DETECTION IN PYTHON

36

VII. TESTING

Testing our vulnerability scanner presents even more challenges than its development. This

is due to certain legal issues about the use of Nmap. As discussed, Nmap is a network scanner used

to search open ports and services used on them. According to Nmap.org [42], Nmap may assist in

defending your network from intrusions when utilized appropriately. Nevertheless, if Nmap is used

incorrectly, it may result in legal action, employment loss, expulsion, incarceration, or ISP bans.

Nmap.org [42] also states that the way to use Nmap is to get formal consent from the targeted

network's authorities before beginning any scan. This is the best approach to staying out of trouble.

Even when using this tool for your organization, the action which justifies the use of Nmap must

fall inside your job description. Therefore, we had to create our test cases to test the scanner.

The test cases are divided into 3 categories. The first category consists of web servers that

are not in Python. The expected outcome of tests in this category is that this website is not

susceptible to Insecure Deserialization. The second category consists of web servers that are in

Python and the data can be pickled. According to Python Software Foundation [43], there are only

certain data types that can be pickled such as Boolean values, integers, strings, floating-point

numbers, tuples, functions, classes, etc. We take a subset of these data types and test our

application with them. The expected outcome of tests in this category expresses the website being

susceptible to Insecure Deserialization. The third category consists of a web server that runs in a

sandbox on a cybersecurity platform Hack the Box. The expected outcome of tests in this category

expresses the website might be susceptible to Insecure Deserialization. This means that the web

server consists of a Python server, but the data received an error while unpickling. However, the

error was not “Unpickling Error”, indicating a possibility of the website being vulnerable to

INSECURE DESERIALIZATION DETECTION IN PYTHON

37

Insecure Deserialization. We will also describe how through manual intervention, these errors can

be resolved, and websites can be hacked.

Fig. 29. Flowchart denoting testing steps.

INSECURE DESERIALIZATION DETECTION IN PYTHON

38

A. Non-Python servers

To test our vulnerability scanner, we set up 4 non-Python servers. The first server we

established is in PHP language. The image below shows the simple command which is used to

achieve this task.

Fig. 30. PHP server

The second server we established is a Node JS server. The command used to start the server

after installing Node JS is shown in the image below.

Fig. 31. Node JS server

Then we moved on to a Webfsd server. The server runs as a service as shown below.

Fig. 32. Webfsd server

Lastly, we set up a Busybox server.

INSECURE DESERIALIZATION DETECTION IN PYTHON

39

We run our vulnerability scanner on all four servers. The results we achieved were as

expected. Our vulnerability scanner scanned all the ports of the website and found no ports running

a Python server. Therefore, we are safe from Insecure Deserialization.

Fig. 33. Output of non-Python servers

B. Python servers

Here we test multiple types of vulnerable data to see if our scanner can unpickle that data.

First, we created a simple Flask application that can set the cookie for a website. Python modules

such as make_response and request are used.

Fig. 34. Setting cookies in Python servers

We set the cookie with different data as follows:

INSECURE DESERIALIZATION DETECTION IN PYTHON

40

Table 1
Encoded pickled data for different data types

Data Type Data Base64 Encoding of pickled

data

List ['pickle', 'aneesh', 0, 0, 7] gASVHQAAAAAAAABdlC
iMBnBpY2tsZZSMBmFuZ
WVzaJRLAEsASwdlLg==

Boolean True gASILg==

Floating point 3.14 gASVCgAAAAAAAABHQ
AkeuFHrhR8u

Integer 769

gASVCQAAAAAAAABDB
QEDAAAAlC4=

Python Function def foo():
 return ("Something else")

gASVIQAAAAAAAABDH
YAElRIAAAAAAAAAjA5T
b21ldGhpbmcgZWxzZZQul
C4=

Python Class class Test():
 def foo():
 return ("Something else")

gASVJwAAAAAAAABDI4
AElRgAAAAAAAAAjAhfX
21haW5fX5SMBFRlc3SUk5
QpgZQulC4=

We also test with string data, however, the data and base 64 encoding of pickled data is too lengthy

to present here.

We run our scanner on this vulnerable data of different data types. Expected results were

attained. Our vulnerability scanner retrieved the ports running the Python server, unpickled the

data successfully, and verified that the website is susceptible to Insecure Deserialization. The

condition here persists that in the Python server, human-editable data should be unpickled by the

server for execution to take place. If the data present on the website is serialized, it's a very high

probability that the data will be deserialized by the server. Therefore, even basic data types like

integers or strings can pose a threat. Nevertheless, to test if the data present consists of a function

INSECURE DESERIALIZATION DETECTION IN PYTHON

41

or class, pickletools.dis(obj) can be used. This function disassembles the object and presents a

symbolic disassembly of it.

C. Sandbox server

Hack The Box is a top cybersecurity platform that enables people, organizations,

governmental agencies, and academic institutions to improve both defensive and offensive security

competence [44]. This platform consists of sandboxes also called “boxes” which involve a

webserver that needs to be hacked. It’s a gamification of Capture the Flag challenges. In this test,

we will use one of the boxes of this platform called “baby website rick” [45].

Fig. 35. Sandbox website homepage

On running our vulnerability scanner on this website, we get the result as expected stating

that this website might be susceptible to Insecure Deserialization.

INSECURE DESERIALIZATION DETECTION IN PYTHON

42

Fig. 36. Output of our vulnerability scanner on sandbox website

In this test, we will see how the errors can be resolved, and websites can be hacked. Let’s

manually see the cookies first.

Fig. 37. Cookies on the website

Let’s make a simple program that decodes this value and uses pickle.loads() to deserialize.

Fig. 38. Decoding and unpickling the cookie

However, we get an error while executing pickle.loads().

INSECURE DESERIALIZATION DETECTION IN PYTHON

43

Fig. 39. Attribute Error while unpickling

Now, we could have easily dismissed this data as non-unpickable. However, on close

investigation, we see that we are getting Attribute Error. An attribute called “anti_pickle_serum”

is required for unpickling.

Fig. 40. Adding the attribute and then unpickling

On adding this attribute, we get another error stating “anti_pickle_serum” needs to be a type object.

Fig. 41. Attribute Error converted to TypeError

Generally, a type object refers to a class. We change the type of attribute to a class [46].

INSECURE DESERIALIZATION DETECTION IN PYTHON

44

Fig. 42. Changing attribute type to class

We can see in the image below, that errors are resolved. In addition, we can see the exact

type of data required, which is of the format {‘serum’: pickle_object}

Fig. 43. Errors resolved during unpickling

Now, all we need to do is add the vulnerable reduce function to anti_pickle_serum class

and pickle that whole class. Inside the reduce function, we will add our exploit. In our exploit, we

are just listing the files of the directory using the command “ls -l”.

Fig. 44. Creation of an exploit for sandbox website

The output is a base 64 encoded string which we just simply need to replace in the cookies.

INSECURE DESERIALIZATION DETECTION IN PYTHON

45

Fig. 45. Base 64 encoding of the exploit

On replacing the cookies, we can see the files of the server.

Fig. 46. Exploit displaying all server files to user

Instead of just listing the files, we can create a reverse tcp connection using a command

such as “sh -i >& /dev/tcp/ machine_ip /port 0>&1". This will give us the shell of the server, and

we can do anything we want with the server.

Thus, our vulnerability scanner gave the correct output indicating this website might be

susceptible to Insecure Deserialization.

INSECURE DESERIALIZATION DETECTION IN PYTHON

46

VIII. ANALYSIS

In this section, we will examine in detail the working of Ysoserial and compare it with our

vulnerability scanner. As discussed in Section III, Ysoserial is an important detection and

exploitation tool for Insecure Deserialization in Java. There is a similar project to detect Insecure

Deserialization in .NET called Ysoserial.net [47]. Before talking about the working of Ysoserial,

let’s deep dive into the exploitation of Insecure Deserialization in Java using gadgets. We will take

an example of a vulnerability in a Java tool called Jackson fasterxml [48]. Jackson is a library in

Java that converts or serializes Plain Old Java Objects or POJO to JSON and deserializes or

converts back JSON to POJO. This is done with the help of a class Object Mapper. Object mapper

implements Polymorphic Type Handling which is the serialization and deserialization of complex

classes. During this implementation of Polymorphic Type Handling, a vulnerability is present

which enables the execution of a malicious JSON. As we reviewed in Section IV Subsection C,

various gadgets can be chained together to form a gadget chain where the invocation of functions

of different classes happens until a vulnerable function is reached. Ysoserial exploits the

vulnerability in Java using this concept. It generates various payloads such as

CommonsCollections4, Hibernate2, Spring1, etc. [49], which are the gadget chains that can be

used to exploit the vulnerability. Now, we will compare our vulnerability scanner with Ysoserial.

Ysoserial is an exploitation tool that scans Insecure Deserialization through exploitation in

Java. We have created a vulnerability scanner for detecting Insecure Deserialization in Python.

This scanner can help in the detection of vulnerabilities in two ways. First, it can be a dedicated

vulnerability scanner for Insecure Deserialization. Second, it can be integrated into various other

scanners such as burp suite to become a part of a common vulnerability scanner. No gadget chains

are used for detection in our scanner, unlike Ysoserial. We use the pickle module for detection

INSECURE DESERIALIZATION DETECTION IN PYTHON

47

here. Ysoserial was developed in Java whereas, the development of our scanner is done in Python.

One of the primary advantages of our scanner is that it scans all TCP ports of the website for

potential Python servers. This is particularly important where additional servers are present on the

same IP. Common Vulnerability scanners will just scan the default http/https port which is

commonly port 80. Insecure Deserialization in these hidden servers can be detected using our

scanner. Another advantage of our scanner is that it contains a decryption module which is absent

in Ysoserial. We can also use the idea of Ysoserial to extend our vulnerability scanner to software

that detects and exploits the vulnerability. This can result in the creation of a superior exploitation

tool for Insecure Deserialization.

INSECURE DESERIALIZATION DETECTION IN PYTHON

48

IX. CONCLUSION AND FUTURE WORKS

In this research project, a vulnerability scanner was created. This scanner specifically scans

for Insecure Deserialization in the programming language Python. Such a vulnerability scanner

can be utilized during penetration testing. We discuss the history of Insecure Deserialization, and

basic concepts such as serialization, deserialization, magic methods, gadgets, pickling, etc. We

also talk about how this vulnerability can be exploited in different programming languages. A

comparison between our scanner and Ysoserial is made. Currently, no scanner for this vulnerability

exists for Python. We attempted the first vulnerability scanner for Insecure Deserialization in this

programming language. Our scanner scans all the ports of a website, identifies the ones running a

Python server on it, extracts the cookies, decrypts them, and checks if the vulnerability is present

through the pickle module. However, there are certain limitations to this scanner. The first issue is

that human-editable data which goes back to the server for processing can be present anywhere on

the website, not just in cookies. Second, the encrypted data can be encrypted in any algorithm and

not just in base 64. Third, port scanning is time-consuming. Fourth, it is difficult to test this

vulnerability scanner due to the legal issues on the usage of Nmap and Masscan tools without

consent.

In the future, we can try to minimize the limitations of this scanner. The whole website can

be scanned for data including cookies, web pages, HTTP requests, local storage, session storage,

etc. Although creating a universal decrypting tool is extremely difficult, we can try and identify

the encryption or hashing algorithm and then send the encrypted data to the specific decrypting

tools. To shorten the port scanning time, we can just focus on the well-known ports (0 to 1023).

However, that will reduce the accuracy of the scanner. Testing is our biggest challenge. Based on

previous Python exploits, we can create large numbers of websites that have this vulnerability in

INSECURE DESERIALIZATION DETECTION IN PYTHON

49

them. Some secure websites in Python and otherwise can also be created. Using this we can see if

our scanner can identify the vulnerability. A new approach can also be taken to identify the

vulnerability. We can detect if a vulnerability exists by exploiting the vulnerability. Like Ysoserial,

we can pass certain payloads to the application and try to exploit the vulnerability.

INSECURE DESERIALIZATION DETECTION IN PYTHON

50

BIBLIOGRAPHY

[1] Saravanan A, Bama S. S. A Review on Cyber Security and the Fifth Generation
Cyberattacks. Orient. J. Comp. Sci. and Technol; 12(2).

[2] Andreea Bendovschi, "Cyber-Attacks – Trends, Patterns and Security
Countermeasures," presented at Procedia Economics and Finance, Oxford, United
Kingdom, 2015.

[3] “What Is the OWASP Top 10 2021 and How Does It Work?” Synopsys,

https://www.synopsys.com/glossary/what-is-owasp-top-10.html.

[4] OWASP. “OWASP Top 10:2021.” Owasp.org, 2021, owasp.org/Top10/.

[5] The MITRE Corporation. “CWE - Common Weakness Enumeration.”
Cwe.mitre.org, 12 Oct. 2022, cwe.mitre.org/.

[6] Red Hat. “What Is CVE?” Www.redhat.com, 25 Nov. 2020,

www.redhat.com/en/topics/security/what-is-cve.

[7] Mell, P., Kent, K. and Romanosky, S. (2006), Common Vulnerability
Scoring System, IEEE Security & Privacy, [online],
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=50899 (Accessed
November 26, 2022).

[8] PortSwigger. “Insecure Deserialization | Web Security Academy.”

Portswigger.net, portswigger.net/web-security/deserialization.

[9] The MITRE Corporation. “CVE-2007-1701 : PHP 4 before 4.4.5, and PHP 5
before 5.2.1, When Register_globals Is Enabled, Allows Context-Dependent
Attackers to Exec.” Www.cvedetails.com, 27 Mar. 2007,
www.cvedetails.com/cve/CVE-2007-1701/. Accessed 9 Oct. 2019.

[10] Black Hat. “Black Hat.” www.blackhat.com, www.blackhat.com/about.html.

[11] “CzWiki > OWASP.” CzWiki, czwiki.cz/Lexikon/OWASP. Accessed 14 Dec.

2022.

[12] Last Stage of Delirium Research Group. Java and Java Virtual Machine
Security Vulnerabilities and Their Exploitation Techniques by Last Stage of
Delirium Research Group Http://Lsd-Pl.net. 3 Sept. 2002.

[13] David A. Wheeler, "Language−Specific Issues," in Secure Programming for

Linux and Unix HOWTO, v3.010. pp. 116.

INSECURE DESERIALIZATION DETECTION IN PYTHON

51

[14] Bauer, Lujo, et al. “Mechanisms for Secure Modular Programming in Java.”
Department of Computer Science, Princeton University, 5 Mar. 2003,
users.ece.cmu.edu/~lbauer/papers/jms-spe03.pdf, 10.1002/spe.516. Accessed 14 Dec.
2022.

[15] IBM. “PHP Session_decode Code Execution CVE-2007-1701 Vulnerability

Report.” Exchange.xforce.ibmcloud.com,
exchange.xforce.ibmcloud.com/vulnerabilities/33658. Accessed 14 Dec. 2022.

[16] CVE Details. “CVE Security Vulnerability Database. Security Vulnerabilities,

Exploits, References and More.” Cvedetails.com, 2009, www.cvedetails.com/.

[17] CVE-2010-3258 : The Sandbox Implementation in Google Chrome Before
6.0.472.53 Does Not Properly Deserialize Parameters, Which Has Unspec.
www.cvedetails.com/cve/CVE-2010-3258.

[18] Dean, Brian. “Google Chrome Statistics for 2021.” Backlinko, 8 Mar. 2021,

backlinko.com/chrome-users.

[19] Fingann, Sondre. “Java Deserialization Vulnerabilities.”
Https://Www.duo.uio.no/Bitstream/Handle/10852/79730/Master-Thesis---Java-
Deserialization-Vulnerabilities---Sondre-Fingann.pdf, University of Oslo, 2020,
https://www.duo.uio.no/bitstream/handle/10852/79730/Master-Thesis---Java-
Deserialization-Vulnerabilities---Sondre-Fingann.pdf.

[20] Sayar, Imen, et al. “An In-Depth Study of Java Deserialization Remote-Code Execution

Exploits and Vulnerabilities.” ACM Transactions on Software Engineering and
Methodology, 5 Aug. 2022, 10.1145/3554732. Accessed 21 Sept. 2022.

[21] Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos

Ntantogian, and Christos Xenakis. 2019. ObjectMap: Detecting Insecure
Object Deserialization. In 23rd Pan-Hellenic Conference on Informatics (PCI
’19), November 28–30, 2019, Nicosia, Cyprus. ACM, New York, NY, USA,
6 pages. https://doi.org/10.1145/3368640.3368680.

[22] Allam (sl4x0), Abdelrhman. “All About: Insecure Deserialization.” Medium,

12 Nov. 2022, sl4x0.medium.com/all-about-insecure-deserialization-
6ac8defea078. Accessed 14 Dec. 2022.

[23] Li, Vickie. “Vickie Li’s Security Blog.” Vickie Li’s Security Blog, 3 Sept.

2020, vickieli.dev/insecure%20deserialization/pop-chains/.

[24] Jamieson, Brendan. Practical PHP Object Injection Practical PHP Object
Injection. 15 Dec. 2015.

INSECURE DESERIALIZATION DETECTION IN PYTHON

52

[25] Haken, Ian. “Automated Discovery of Deserialization Gadget Chains.”

Www.youtube.com, Aug. 2018,

www.youtube.com/watch?v=MTfE2OgUlKc&ab_channel=BlackHat. Accessed 14 Dec.

2022.

[26] Shaji, Shibin B. “Using Python’s Pickling to Explain Insecure
Deserialization.” Medium, 28 Apr. 2020,
medium.com/@shibinbshaji007/using-Pythons-pickling-to-explain-insecure-
deserialization-5837d2328466. Accessed 14 Dec. 2022.

[27] kumar. “SOUR PICKLE : Insecure Deserialization with Python Pickle

Module.” Medium, 19 Mar. 2020,
medium.com/@abhishek.dev.kumar.94/sour-pickle-insecure-deserialization-
with-Python-pickle-module-efa812c0d565.

[28] Python Software Foundation. “Pickle — Python Object Serialization —

Python 3.7.3 Documentation.” Python.org, 2019,
docs.Python.org/3/library/pickle.html.

[29] A. Ot, “Importance of Vulnerability Scanning & Why You Should Do It,”

Enterprise Storage Forum, Mar. 20, 2023.
https://www.enterprisestorageforum.com/security/importance-of-vulnerability-
scanning/.

[30] Fortinet, “What is a Port Scan and How does it work?,” Fortinet.

https://www.fortinet.com/resources/cyberglossary/what-is-port-scan.

[31] R. D. Graham, “robertdavidgraham/Masscan,” GitHub, Oct. 31, 2020.
https://github.com/robertdavidgraham/Masscan.

[32] Nmap.org, “Nmap,” Nmap.org, 2017. https://Nmap.org/.

[33] Nmap.org, “OS Detection | Nmap Network Scanning,” Nmap.org, 2019.

https://Nmap.org/book/man-os-detection.html.

[34] Nmap.org, “Service and Version Detection | Nmap Network
Scanning,” Nmap.org. https://Nmap.org/book/man-version-
detection.html.

[35] Cve.mitre.org, “CVE - CVE-2023-28667,” cve.mitre.org.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2023-28667 (accessed
Mar. 30, 2023).

INSECURE DESERIALIZATION DETECTION IN PYTHON

53

[36] Tenable, “Insecure Deserialization in Multiple WordPress Plugins,” Tenable®,
Feb. 22, 2023. https://www.tenable.com/security/research/tra-2023-7 (accessed
Mar. 30, 2023).

[37] Cve.mitre.org, “CVE - CVE-2021-4118,” cve.mitre.org.

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-4118 (accessed
Mar. 30, 2023).

[38] 418sec, “Deserialization of Untrusted Data in pytorch-lightning,” huntr.dev,

Dec. 21, 2021. https://huntr.dev/bounties/31832f0c-e5bb-4552-a12c-
542f81f111e6/ (accessed Mar. 30, 2023).

[39] Wikipedia Contributors, “Hash function,” Wikipedia, Sep. 08, 2019.

https://en.wikipedia.org/wiki/Hash_function.

[40] OffSec Services Limited, “Kali Tools | Kali Linux Tools,” Kali Linux.
https://www.kali.org/tools/.

[41] Python Software Foundation, “pickle — Python object serialization — Python

3.7.3 documentation,” Python.org, 2019.
https://docs.Python.org/3/library/pickle.html.

[42] Nmap.org, “Legal Issues | Nmap Network Scanning,” Nmap.org, 2020.

https://Nmap.org/book/legal-issues.html.

[43] Python Software Foundation, “pickle — Python object serialization,” Python
documentation. https://docs.Python.org/3/library/pickle.html#what-can-be-
pickled-and-unpickled (accessed Mar. 30, 2023).

[44] Hack The Box, “All About Hack The Box,” Hack The Box.

https://www.hackthebox.com/about-us.

[45] Hack The Box, “Hack The Box,” app.hackthebox.com, Nov. 18, 2020.
https://app.hackthebox.com/challenges/185 (accessed Mar. 30, 2023).

[46] A. L, “Baby Website Rick - HackTheBox,” Gitbook.io, 2021.

https://ir0nstone.gitbook.io/hackthebox/challenges/web/baby-website-rick
(accessed Mar. 30, 2023).

[47] A. Muñoz, “pwntester/ysoserial.net,” GitHub, Oct. 06, 2021.

https://github.com/pwntester/ysoserial.net.

[48] Lane, “vu1hub/jackson/CVE-2019-12384-RCE at master · 0xlane/vu1hub,” GitHub,
Aug. 17, 2017. https://github.com/0xlane/vu1hub/tree/master/jackson/CVE-2019-
12384-RCE (accessed Mar. 30, 2023).

INSECURE DESERIALIZATION DETECTION IN PYTHON

54

[49] C. Frohoff, “ysoserial,” GitHub, Jul. 16, 2022. https://github.com/frohoff/ysoserial
(accessed Mar. 30, 2023).

[50] M. Bugliesi, S. Calzavara, R. Focardi, and W. Khan, “Automatic and Robust Client-

Side Protection for Cookie-Based Sessions,” Feb. 2014. doi: 10.1007/978-3-319-04897-
0_11.

[51] OWASP Foundation, Inc., “HttpOnly - Set-Cookie HTTP response header | OWASP,”

owasp.org. https://owasp.org/www-community/HttpOnly.

[52] OWASP Foundation, Inc., “Secure Cookie Attribute | OWASP,” owasp.org.
https://owasp.org/www-community/controls/SecureCookieAttribute.

[53] Health Sector Cybersecurity Coordination Center, The OWASP Top 10. Health Sector

Cybersecurity Coordination Center, 2022. Available:
https://www.aha.org/system/files/media/file/2022/08/hhs-ocio-hc3-tlp-white-august-4-
threat-briefing-the-owasp-top-10-8-4-22.pdf.

[54] OWASP Top 10 team, “Next Steps - OWASP Top 10:2021,” owasp.org, 2021.

https://owasp.org/Top10/A11_2021-Next_Steps/ (accessed Apr. 04, 2023).

[55] S. K. Dash, “Understanding Java De-serialization,” Medium, Sep. 23, 2019.
https://swapneildash.medium.com/understanding-Java-de-serialization-ee96054da15d
(accessed Apr. 04, 2023).

[56] A. Verma, “snake_scanner,” GitHub, Mar. 03, 2023.

https://github.com/aneeshverma04/snake_scanner (accessed Apr. 04, 2023).

[57] J. Hammond, “All-Army Cyberstakes! Ysoserial EXPLOIT - Java Deserialization,”
www.youtube.com, May 08, 2020. https://www.youtube.com/watch?v=GjwduwSltNU
(accessed Apr. 04, 2023).

	Insecure Deserialization Detection in Python
	Recommended Citation

	tmp.1685083437.pdf.CNggi

