
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

Automated Evaluation for Distributed System Assignments Automated Evaluation for Distributed System Assignments

Nimesh Nischal
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Nischal, Nimesh, "Automated Evaluation for Distributed System Assignments" (2023). Master's Projects.
1213.
DOI: https://doi.org/10.31979/etd.gpew-2xbn
https://scholarworks.sjsu.edu/etd_projects/1213

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1213?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1213&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Automated Evaluation for Distributed System Assignments

A Project Report

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Nimesh Nischal

May 2023

© 2023

Nimesh Nischal

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Automated Evaluation for Distributed System Assignments

by

Nimesh Nischal

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2023

Dr. Ben Reed Department of Computer Science

Dr. Genya Ishigaki Department of Computer Science

Dr. Navrati Saxena Department of Computer Science

ABSTRACT

A distributed system can exist in numerous states, including many erroneous

permutations that could have been addressed in the code. As distributed systems

such as cloud computing and microservices gain popularity, involving distributed com-

puting assignments is becoming increasingly crucial in Computer Science and related

fields. However, designing such systems poses various challenges, such as considering

parallel executions, error-inducing edge cases, and interactions with external systems.

Typically, distributed assignments require students to implement a system and run

multiple instances of the same code to behave as distributed. However, such assign-

ments do not encourage students to consider the potential edge cases that external

systems may induce when interacting with their code. Assignments that execute a

combination of student submissions as a single system promote high-quality design

discussions before and during code writing and encourage students to consider how to

handle faults generated by other systems. Testing such assignments is labor-intensive

and involves repetitive tasks of setting up and destroying a virtual environment in

which to test the system. In some cases, inducing a specific type of fault may require

modifying the submitted source code, which is strongly discouraged. This research

project explores the necessity, design, and implementation of Distributed CodEval, a

tool that enables course instructors to define test cases for automating the evaluation

of distributed system assignments.

ACKNOWLEDGMENTS

I sincerely thank Dr. Ben Reed for his exceptional guidance, unwavering motiva-

tion, and unwavering support throughout this research undertaking. Working under

his supervision has taught me the importance of creating straightforward yet effective

tools to enhance user experience. His encouragement of critical thinking has been my

significant motivation and focus throughout this project.

In addition, I would like to extend my sincere gratitude to Aditi Agrawal and

Archit Jain, the creators of CodEval, whose work on the CodEval tool has inspired

and influenced my project.

Furthermore, I would like to acknowledge the invaluable support of my defense

committee members, Dr. Genya Ishigaki and Dr. Navrati Saxena, and all the faculty

members in the Computer Science department, who have provided me with crucial

guidance and encouragement throughout my degree program.

Lastly, I thank my family, friends, and colleagues for their unwavering support

and motivation during my academic journey.

v

TABLE OF CONTENTS

1 Introduction . 1

2 History and Background . 3

2.1 Distributed System Assignments Automation 3

2.2 Distributed System Testbeds . 7

2.3 Test Scenarios Specification . 11

2.4 CodEval . 15

3 Design Methodology . 18

3.1 Orchestration . 18

3.2 Division of Tests . 18

3.3 Heterogeneous Tests . 20

3.4 Heterogeneous Test Submissions Pool 22

3.5 Specification File . 23

3.5.1 Declaration Tags . 24

3.5.2 Action Tags . 26

3.5.3 Command Placeholders . 28

3.6 Configuration Changes . 29

4 Using Distributed CodEval . 31

4.1 Adding Configuration . 31

4.2 Preparing Checker Program and Supporting Files 31

4.3 Writing a Test Specification . 34

4.4 Running Distributed CodEval . 38

vi

vii

5 Difficulties and Challenges . 40

5.1 No Support for Maven Projects on CodEval 40

5.2 Stale Docker Containers . 40

5.3 Factorial Growth of Unique Student Submission Combinations . . 40

6 Future Work and Improvements 42

6.1 Optimize Test Duration for Complex Assignments 42

6.2 Optimizing Initial Heterogeneous Combinations 42

6.3 Support for Range in ICMD and ICMDT Commands 43

6.4 Configurable Heterogeneous Tests Timeout 43

6.5 No Orphan Docker Containers . 43

6.6 Network Faults Between Containers 44

6.7 Clearing Data From MongoDB 44

6.8 Configurable Wait Time for ECMDT ASYNC and ICMDT ASYNC
Tag Commands . 44

6.9 Parallel Execution of ICMD SYNC and ICMDT SYNC Tag
Commands . 45

7 Conclusion . 46

REFERENCES . 47

LIST OF TABLES

1 CodEval specification tags . 17

2 Declaration tags used in Distributed CodEval specifications . . . 24

3 Action tags used in Distributed CodEval specifications 27

viii

LIST OF FIGURES

1 Architecture of a remote distributed systems lab using Docker
containers . 4

2 A conceptual network of Docker containers running student
program on the left and the respective actual connectivity using a
router node on the right . 6

3 A breakdown of 198 random catastrophic failures analyzed by
Yuan et al. [1] in Cassandra, HBase, Hadoop Distributed File
System (HDFS), Hadoop MapReduce, and Redis 8

4 An example functional test in NESSEE checking two APIs of the
Software Under Test (SUT) . 10

5 Sample specification of a Docker network 12

6 Sample specification of dispatch actions to be sent to each listed
Docker container along with a delay in between 12

7 Example of TDL modules, such as NetworkCapabilities, Topology,
and a Server, used by a NESSEE server 14

8 Distributed CodEval architecture 19

9 A sample heterogeneous test submission pool document 22

10 Sample Distributed CodEval configuration 31

11 A sample checker program in Java using picocli library 33

12 Execution instructions provided by Java’s picocli library 34

13 Contents of a sample helper zip file 34

14 Contents of a sample Distributed CodEval specification file 35

15 Location of a Distributed CodEval specification file in a Canvas
course . 36

ix

x

16 Graph showing a growth rate of possible heterogeneous test
combinations of 4 submissions versus the number of submissions on
Canvas . 41

1. INTRODUCTION

A distributed system refers to a group of physical or logical machines that work

together to solve a computational problem as a single system [2]. Such systems

provide high reliability, scalability, availability, and cost-effectiveness [2]. Parallel and

Distributed Computing (PDC) are necessary topics for students in Computer Science

or a related field. M. Paprzycki [3], M. Gowanlock, and B. Gallet [4] emphasize the

importance of including such courses early in the university curriculum. E. Saule [5]

states the benefits of teaching parallel executions through assignments. He compares

teaching through assignments with the classical way of introducing the theories

and challenges of parallel and distributed computing. An important mindset while

developing distributed systems is to expect failures and faults as an integral part of

the system. Necessary checks must be present in the program to handle such faults.

There are multiple tools to auto-evaluate assignments, some of which are described

and compared in [6, 7]. Most of them are used to provide immediate feedback to the

student submissions. Some of these tools support testing programming assignments,

but none can test the complexities of distributed systems, like concurrency, consistency,

availability, and so forth [2, 8]. An auto-evaluator built specifically for distributed

algorithms [9] has the ability to orchestrate the execution and termination of instances

running such algorithms to generate fault scenarios.

Students may make assumptions about particular system behaviors that can

differ from other students’ assumptions. If so, even if the system works using a

single implementation, it may fail with different implementations. To emphasize

the importance of design discussions before and during writing the code, assignment

submissions must be evaluated both as a homogeneous system, running multiple

instances of a single submission, and a heterogeneous system of multiple submissions.

These heterogeneous systems can be translated into industrial software systems running

1

different versions of the same program. Typically distributed program auto-graders,

such as [9], and testing tools, as mentioned in [10, 11, 12], do not support deployment

and orchestration of multiple versions of the same program.

A new tool was needed to assist instructors in testing, auto-evaluation, and pro-

viding feedback for the distributed assignments by executing a combination of student

submissions as one system and introducing faults in a deterministic manner. This

research project aimed to develop an auto-evaluation tool for distributed assignments

that support interactions between a combination of submissions. Distributed CodEval

expands the functionalities of CodEval [13], a code evaluation tool, by executing stu-

dent submissions in isolation from other submission executions using Docker containers.

It reads a configuration of test cases in a format that supports orchestrating executions

of student submissions as a single distributed system, controlling interactions between

the submissions, and introducing possible faults in the system. Distributed CodEval

provides feedback to student submissions based on the test cases.

2

2. HISTORY AND BACKGROUND

A distributed system is an architecture where components run on different

machines and communicate with each other over a network. This architecture is

preferred over monolithic systems when scalability and high availability are prioritized

above lower latency. Such systems are more prone to faults caused by the developers’

negligence as it’s not intuitive to consider all the possible cases where the system can

enter an error state. The difficulty in covering edge cases increases more when the

system enters an inconsistent state without raising any red flags. Building instincts in

students through related assignments is necessary to create a habit of thinking about

such cases.

As discussed in this chapter, several tools are available to automate different

aspects of assignments. Some of them are used for distributed assignments as well.

This project, Distributed CodEval, gets inspiration from such tools and distributed

testbeds to provide a user-friendly interface by expanding the features provided by

CodEval.

2.1 Distributed System Assignments Automation

GitHub Classroom [14] provides an online interface for assignments where students

get a description of the task. The instructor can also upload a default template which

the student can clone in their local machine and start working. Templates help

the students as they do not have to start from scratch and help the instructor by

creating a similar architecture of the submissions, which can be evaluated using the

same tools. The instructors can also provide feedback as Pull Requests. GitHub

Classroom provides autograding [15] through input/output tests and command tests.

An input/output test provides a standard input to a test command and evaluates

the output against an expected result. A command test runs a test command and

checks the exit status of the command. Any exit code apart from 0 results in failure.

3

Command tests can be used by instructors to introduce scripts [16] that can run the

submissions and check particular scenarios. GitHub Classroom uses GitHub Actions

to run command tests which have an allocated limit of 3000 minutes per month,

which can be extended to 50k minutes per month by a free enrollment process. This

limitation can be a roadblock if the number of submissions and time needed to test

each submission increases.

Figure 1: Architecture of a remote distributed systems lab using Docker containers
Source: [17]

CodeGrade [18] provides an instant feedback mechanism for students submitting

their code. It can be integrated with a Learning Management System (LMS), a

GitHub account, or a GitLab account to fetch submissions and run tests for feedback.

Instructors can create an AutoTest [19] and start it on their online platform, which

will run on previously submitted submissions (if any) and run on each new submission.

4

An AutoTest can include Unit Tests, Program Tests that execute the submission and

check the return code or exit status, Capture Point Tests that run custom testing

scripts and utilizes the expected floating point number output between 0 and 1 for

grading, Code Quality Tests which run a static code analysis tool, such as linter,

using a config file or a custom program that create comments on the submission, and

Checkpoints that specify a minimum percentage of points needed to continue with

subsequent test categories [20]. CodeGrade cannot be used to test distributed systems

assignments because an AutoTest has the context of a single submission and cannot

execute a submission in a combination of other submissions. The categorization of

different types of tests, along with Checkpoints, were taken as an inspiration while

designing Distributed CodEval.

Kriještorac, Resende, and Marquez-Barja [17] introduce their method of conduct-

ing remote experiments for distributed systems lab work. They use Docker containers

[21] on the cloud and assign each container to a student to work on remotely, providing

Laboratory as a Service (LaaS) [22]. The architecture of this approach is shown in

Figure 1. The Docker containers replace the Raspberry Pi devices in the physical

laboratory. It includes a survey of 45 students to demonstrate the effectiveness of

such platforms. Providing a cloud laboratory to the students, which was accessible

24/7, proved to be a favorable practice. Inspired by such an architecture, Distributed

CodEval uses Docker containers to execute student submissions in isolation and

provide immediate feedback and part of logs in case of failure. This is beneficial for

the students to check the execution logs and modify their implementation for faster

testing.

Vivar and Magna [23] present the architecture and benefits of using a remote

network lab to teach computer networks. The platform consists of a server using

Java Communications API [24] and a web application using Java Applet on the

5

client side. The students can use the client-side application to interact remotely

with commercial network devices like switches, routers, and firewalls. The paper

mentions the availability of the lab to the students increased without the need for

instructor supervision, which is necessary for a physical lab. The paper evaluates the

effectiveness of the remote lab with a group of students and notes a great similarity

between face-to-face and remote lab assignments’ results. This architecture is an

inspiration to build an automated feedback system for distributed system assignments

so that users can get better access to testing infrastructure and prompt feedback with

minimal manual intervention by the course instructor.

Figure 2: A conceptual network of Docker containers running student program on the
left and the respective actual connectivity using a router node on the right

Source: [9]

Maicus et al. [9] present a platform to auto-grade distributed system assignments

using Docker containers. The authors emphasize the importance of fast and automated

feedback to student submissions. The tool provides a way to control network traffic

by delaying, dropping, and reordering filters. It does so with the help of a node

6

invisible to the user submissions, called a router. The router node intercepts and

logs all messages in the network and can delay, drop, and reorder messages. The

router can be instructed to do so through rules defined for each host-port pair in

the network. The author remarks that although such an approach is more intrusive

than other solutions [25, 26], it provides greater control over the ability to generate

deterministic network faults and other benefits, such as allowing students access

to a detailed message log. Figure 2 presents the structure of a conceptual network

containing Docker containers running a student submission on the left. The figure’s

right side contains the connectivity of the nodes with the router node. The router

node is responsible for routing the respective data to all the other nodes and, thus,

is able to control the flow of messages. The router is implemented in Python and

can be customized according to the test case. A test case can also run without a

network router node. The nodes get the knowledge of other host-ports in the network

by parsing the knownhosts.txt file, which is generated by a network configuration

discussed in Section 2.3.

2.2 Distributed System Testbeds

Distributed system failures are common, and handling every fault is difficult,

as faults can occur in numerous ways. Current large-scale systems like Cassandra,

HBase, Hadoop Distributed File System (HDFS), Hadoop MapReduce, and Redis

still fail periodically and sometimes catastrophically [1]. Yuan et al. [1] discuss the

severity of not properly handling exceptions and analyze 198 random unique failures

extracted from issue-tracking databases of some of the popular distributed systems.

They provide statistics of failures, such as 88% of failures occur where a specific order

of events is necessary, 98% occur in just three nodes, 74% are deterministic that can

be reproduced given the right input events, and 92% arise due to incorrect handling of

7

non-fatal errors mentioned explicitly in the software. Figure 3 presents a break-down

of 198 catastrophic failures analyzed by Yuan et al. [1] in Cassandra, HBase, Hadoop

Distributed File System (HDFS), Hadoop MapReduce, and Redis. These statistics

reinforce the need for Distributed CodEval to help the students get familiar with the

complexities of implementing a distributed system.

Figure 3: A breakdown of 198 random catastrophic failures analyzed by Yuan et al.
[1] in Cassandra, HBase, Hadoop Distributed File System (HDFS), Hadoop

MapReduce, and Redis
Source: [1]

Gunawi et al. [27] introduce a framework to test the recoverability of cloud

services: Failure Testing Service (FATE) and Declarative Testing Specifications

(DESTINI). FATE is used to push cloud systems into specific failure states. DESTINI

provides specifications of the system’s expected behavior under test in a faulty state.

The specifications are written in a relational logic language called Datalog [28]. The

introduction of faults requires the availability of the system’s source code and leverages

interposition technology like AspectJ [29] to force the system into specific states.

Similarly, Joshi et al. [30] present SETSUDO, a perturbation-based testing framework,

which leverages AspectJ to intercept execution points of interest. RemoteTest [10] uses

a Java Reflection [31] and Aspect Oriented Programming [32] to provide a distributed

testbed. Using AspectJ and similar frameworks to introduce faults did not fit the

8

requirements of this project as it required understanding individual source codes of

student submissions and implementing aspects that might be needed during testing.

The goal of Distributed CodEval is built to be highly decoupled from the source code

of user submissions.

NESSEE [33] introduces three types of testing supported by the platform:

1. Functional testing that tests implementations individually by providing inputs

and comparing outputs.

2. Scalability testing in which the system’s expected behavior is scripted under vary-

ing loads. The expected behavior is specified using XML-based Test Description

Language (TDL), explored briefly in Section 2.3

3. Network testing where testers can manually configure the behavior using

NESSEE’s web front end or automatically using test scripts.

Figure 4 gives an example of a functional test in the NESSEE platform. First,

the Software Under Test (SUT) functions are identified. Then the test creator creates

a test script and a helper object that calls the corresponding SUT functions. The test

script contains the expected output that is compared to the actual output during the

test execution. The test fails if the outputs do not match.

Distributed CodEval gets inspiration from this structure and uses checker func-

tions in an executable to test the correctness of the system’s state, as explained

in Section 4.2. It is a good idea to populate a specification file, Section 4.3, with

tests in increasing order of complexity, similar to NESSEE, so that the students get

incremental feedback on their implementation.

Jepsen-io [34] provides a tool to test large-scale distributed systems as a Clojure

library. A Jepsen test is written as a Clojure program. In a test, a distributed

9

system is initialized, a number of operations are executed against the system, and

then the history of the operations is verified. Jepsen has been used to analyze several

databases, coordination services, and queues [35]. The test runs on a control node

that coordinates all the other nodes of the system being tested. The control node uses

SSH [36] to log into a set of nodes and set up the distributed system to be tested.

After the system has been initialized, Jepsen uses multiple single-threaded processes

to execute test operations specified in the test program. A history of the start and end

of these operations is maintained by Jepsen to analyze for correctness and to generate

reports, graphs, etc.

Distributed CodEval uses a similar idea of a controller container, Section 3.1, to

initiate external services with which the student submissions interact.

Jepsen uses a special nemesis process [37] to generate faults in the system. The

nemesis is not bound to any node and acts as a special client. Jepsen uses iptables

[38] and qdisc [39] to create partitions between nodes and filter packets [40].

Figure 4: An example functional test in NESSEE checking two APIs of the Software
Under Test (SUT)

Source: [33]

ZooKeeper [41], a distributed and reliable coordination service, has been bench-

marked and tested using various tools [42], such as Jepsen and Byteman. Byteman

[43] is used to test the trace, monitor, and test the behavior of applications written

in Java. It does so by injecting Java code into the application methods or runtime

10

methods during JVM startup or even when the application is running. Using Byteman

does not require recompiling, repackaging, or redeploying the application.

2.3 Test Scenarios Specification

Lima [44] talks about the problem of test case explosion and the lack of integration

testing support for distributed systems. The paper describes the use of UML Sequence

Diagrams (SDs) [45] to create scenario-based models. These models describe the

interactions in key scenarios between the users and components of a distributed

system. The tester describes the participants and the behavior of the system with

UML SDs and maps the information between the model and implementation. The SDs

are automatically translated to a formal notation for generating test input efficiently

and checking conformance at runtime. The approach runs test cases without a global

clock, with and without local time constraints. The paper describes using VDM++

formal specification language [46], supported by the Overture tool [47], for checking

distributed conformance in the absence of time constraints.

Yu and Patil [48] describe using workflow management [49] UI to create a

collection of tests or a test session. The paper focuses on automating tests to save

time. Users can launch tests using a workflow-based test session and monitor their

status on the fly. All the test data is uploaded to a centralized database in real time.

Tests can be specified to run in a parallel manner to save time. The paper describes a

generic Workflow Manager and Workflow Agent implemented using .Net Remoting

Objects running [50] as Windows services [51].

Maicus et al. [9] present a way to define network configurations using JSON.

The reason behind this decision was to provide instructors with a simple network

configuration that should be short and human-readable. Figure 5 demonstrates a

specification of a Docker network. Similar configuration JSON objects are defined for

11

Figure 5: Sample specification of a Docker network
Source: [9]

Figure 6: Sample specification of dispatch actions to be sent to each listed Docker
container along with a delay in between

Source: [9]

each test case and presented as a JSON array to the system. Each test case creates

new docker containers, networks, and output files. A network configuration consists

12

of 5 parameters:

• use_router states if a router node, described in Section 2.1, needs to be inserted

in the network.

• container_name provides a name to the container. The container name is

used when defining the network connections and as a directory name to store

the student output.

• container_image describes the name of the Docker image to be used.

• outgoing_connections describes one-way connection channels between Docker

containers in the network. By default, the connection channel is open to all the

other containers. The values of outgoing_connections across all containers are

combined to generate "knownhosts.txt", which is used as described in Section 2.1.

• commands provide the commands that need to be executed sequentially in the

container.

The authors also present a configuration to dispatch actions to the containers in

a network. Figure 6 displays a sample actions list. The actions are executed by the

instructor node running in the network, discussed in Section 2.1. Using the current

implementation of the framework, an instructor can provide the input strings to the

standard input of Docker containers. The actions are performed sequentially without

any subsequent delay by default. The "action" key in the action object can have one

of the four possible values:

• delay: Used to introduce a delay between 2 actions in the list.

• stdin: Used to broadcast a string message to all one or more containers listed

under "containers". The message is broadcast in parallel to all the containers

within that action.

• start: Starts a specific container.

13

• stop: Stops a running container.

Figure 7: Example of TDL modules, such as NetworkCapabilities, Topology, and a
Server, used by a NESSEE server

Source: [52]

NESSEE [52] uses Test Description Language, an XML-based language for de-

scribing test cases to be executed by a NESSEE server. TDL provides a modular

design where the modules are independent of each other. A few of the components

supported by TDL are:

• NetworkTopology module: Used to define different sets of network parame-

14

ters and network topologies.

• Behavior module: Used to define actions that can be arranged in TDL flows.

• TestCaseDescription: Used to link other modules and represent all the

elements as a single test case.

A part of a sample TDL specification is shown in Figure 7, containing the

capability definition of networks. A client topology and a server component are also

defined using the defined network capabilities.

Distributed CodEval takes inspiration from the above specification formats and

presents simple and easy-to-use tags in specification files, Section 3.5 that do not

require familiarity with any particular programming language or testing tool.

2.4 CodEval

CodEval [13] is an automation tool to test student submissions on Canvas [53]. It

is executed by providing the name of a course and several optional flags as command

line arguments. CodEval searches for the course on Canvas and checks for assignments

that have a related CodEval specification file uploaded on Canvas. For each such

assignment, CodEval downloads the specification file and other prerequisite files if

specified in the specification file. Then it checks for student submissions that have not

been evaluated. CodEval then downloads each of such submissions and executes each

test in the specification within a docker container, supplying specified text inputs or

inputs from files to the student’s program. It then verifies the specified expected exit

code and output.

At the end of testing each submission, CodEval adds a comment to the student

submission. If the tests pass successfully, the comment contains a success message

with the number of test cases passed. If a test fails, the comment contains the failed

test case number, the executed test command, a part of the failure logs, or a related

15

message to help the student debug the issue. Table 1 lists the tags supported in a

CodEval specification file.

CodEval specification files are designed to be easy to write and read and flexible

enough to support simple as well as complex programming assignments. Distributed

CodEval expands the functionalities of CodEval to test distributed system assignments.

It also takes inspiration from the tags supported by CodEval to introduce new tags

pertaining to the complexities of distributed system assignments. The new tags are

listed and explained in Section 3.5.

CodEval is designed to be executed for a particular course in regular intervals, such

as 10 minutes or every hour, depending on the complexity of testing the assignments

and how quickly the students expect feedback on their submissions. CodEval runs tests

on a single docker container executing a student’s submission by comparing the output

of a program. This functionality is adequate to evaluate standalone programming

assignments but cannot test the complexities of distributed assignments. Distributed

assignments need to execute independently of each other, coordinated by an external

factor, and their correctness is verified by checking the system’s state. Coordination

is a critical factor in inducing faults in the system to check the guarantees the system

should provide. Distributed CodEval works on these principles to provide a distributed

system assignments evaluation platform.

16

Tag Meaning Function

RUN Run Script Specifies the script to evaluate the specifica-
tion file. Defaults to evaluate.sh.

Z Download Zip Will be followed by zip files to download from
Canvas to use when running the test cases.

CF Check Function Will be followed by a function name and a list
of files to check to ensure that the function
is used by one of those files.

CMD/TCMD
Run Command Will be followed by a command to run. The

TCMD will cause the evaluation to fail if the
command exits with an error.

CMP Compare Will be followed by two files to compare.
T/HT Test Case Will be followed by the command to run to

test the submission.

I/IF Supply Input Specifies the input for a test case. The IF
version will read the input from a file.

O/OF Check Output Specifies the expected output for a test case.
The OF version will read from a file.

E Check Error Specifies the expected error output for a test
case.

TO Timeout Specifies the time limit in seconds for a test
case to run. It defaults to 20 seconds.

X Exit Code Specifies the expected exit code for a test case.
It defaults to zero.

Table 1: CodEval specification tags
Source: [13]

17

3. DESIGN METHODOLOGY

Distributed CodEval expands the functionalities of CodEval [13] to support the

automatic evaluation of distributed system assignment submissions. It introduces

new tags in the specification file and coordinates the execution of submitted code in

multiple Docker containers [21].

3.1 Orchestration

Distributed CodEval executes student submissions in Docker containers [21] to

isolate the submission from the host machine and other submissions. CodEval interacts

with the submissions through ports exposed in each container. Student submissions

may need to interact with an external service, such as ZooKeeper [41] or a central

database. These external services, declared in the specification file as explained in

Section 3.5.2, run in a special container CodEval called the controller container. The

controller container is started at the beginning and terminated at the end of each

round of tests. Each round of tests is either Homogeneous or Heterogeneous, described

in the next section. In each round, a fixed number of containers containing student

submissions is started and terminated once or repeatedly, depending on the structure

of the tests, as described in Section 3.5.1. Each round of tests has an associated

timeout declared in the specification file, as explained in Section 3.5.1. Figure 8

displays a high-level architecture of Distributed CodEval.

3.2 Division of Tests

Distributed assignment tests can be divided into two parts:

1. Homogeneous tests: A student’s submitted program is executed in a number

of containers as the distributed system’s individual instances. CodEval executes

tests listed in the specification file on these containers running the program.

2. Heterogeneous tests: A student’s submission is executed in a container,

18

Figure 8: Distributed CodEval architecture

and a fixed number of other students’ submitted programs run in separate

containers. All the running programs behave as a single distributed system on

which CodEval runs tests from a specification file.

Statistically, homogeneous tests have a higher chance of succeeding than hetero-

19

geneous tests. A primary reason behind this axiom is that students make assumptions

when implementing distributed systems, and their program expects the system to

behave in a particular way. When the system consists of instances running the same

implementation, the assumptions remain valid, and the tests have a higher chance of

passing.

Heterogeneous tests execute different implementations in each of its instances,

with each implementation built on different assumptions by the students. When these

assumptions vary greatly, the same tests that passed in a homogeneous system tend

to fail in a heterogeneous system. This intended failure is a necessary part of these

assignments, as students are expected to get involved in quality discussions about the

possible edge cases in the distributed system. The architecture of heterogeneous tests

is explained in the next section.

Logically, CodEval first runs all the distributed tests from a specification file

in a homogeneous system. If all the tests pass, then the tests are evaluated in

a heterogeneous system. This is based on the reasoning that a failed test in a

homogeneous system implies that the student’s implementation has a bug and thus

has a high probability of failing in a heterogeneous system.

3.3 Heterogeneous Tests

Heterogeneous tests are essential to test the compatibility of student submissions

with other students’ implementations. A primary challenge is finding the right

combinations of student submissions that can pass the test conditions. To overcome

this challenge, CodEval uses standalone tests and homogeneous tests as screenings

before adding a student submission to a heterogeneous test pool. The implementation

of the pool is explained later in this section. On a high level, the tests are grouped

into three consecutive levels: standalone, homogeneous, and heterogeneous. Failure

20

on a level leads to the submission not being evaluated on the next level.

In the pool of submissions eligible for heterogeneous tests, CodEval assigns a

score to each submission. The score is used in creating a combination of student

submissions to give higher preference to the submissions that have proven to be more

resilient in other tests. This gives a new student submission a higher chance of passing

heterogeneous tests compared to getting a random combination of submissions from

the pool. As CodEval executes tests on each student submission, it is guaranteed

that the submission being evaluated will be included and evaluated in all possible

combinations.

CodEval generates a combination of n submissions using the current student’s

submission and n − 1 submissions from the pool. This n value is read from the

specification file, as described in Section 3.5.1. The first step in the process is to get

the data of all submissions from the pool, excluding the entry by the current student,

if present. If the number of submissions fetched from the pool is less than n − 1 , the

current student submission is added, or replaced if already present, to the pool, and

the student is notified of the same.

If at least n − 1 submissions are read from the pool, all the possible combinations

having n − 1 submissions are generated using the method combinations from

Python’s library itertools [54]. Then the combinations are sorted in descending

order of the sum of the constituent submissions’ scores. In the case where two or more

combinations have an equal sum of scores, the sum of epochs of submission times of

each submission is compared. A higher preference is given to the combination having

a lower sum of epochs, which translates to a higher preference for earlier submissions.

A primary reason behind this decision was to reward early submissions.

The decision to give higher preference to early submissions in case of equal scores

assists in the initial cases when the scores of all submissions in the pool are 0. This

21

prevents early submissions from starvation of getting evaluated in a combination when

new submissions are included by default in their own evaluation.

3.4 Heterogeneous Test Submissions Pool

The pool of submissions for heterogeneous tests is implemented in persistent

storage instead of in memory. This design helps CodEval to access and manage

the pool across multiple executions. The choice of storage used by CodEval is

MongoDB [55], as it provides the flexibility of modifying schema on the fly and

does not have the overhead of managing relations and transactions. CodEval uses

a well-maintained Python library with great community support, pymongo [56], to

interact with MongoDB.

Figure 9: A sample heterogeneous test submission pool document

The structure of each document in the pool is fairly simple. Each assignment

has its own collection, and each document in the collection represents a student’s

latest submission in the heterogeneous pool. Figure 9 shows a sample document in the

pool. The fields in a document are required to download the student submission, add

comments on the submission, and compare scores. The boolean field active is used to

denote the last eligibility status of student submission to be included in heterogeneous

test combinations.

22

If a student submission passes standalone and homogeneous tests, it gets added to

the heterogeneous test pool in MongoDB. If the student submits an updated program

that fails in either standalone or homogeneous tests, the respective entry of the student

in the heterogeneous test pool is marked as not active. This was preferred over deleting

the entry to prevent the loss of scores of past submissions. If a submission is marked

as not active in the pool, it does not get included when creating combinations. The

submission is marked active once it has passed all the standalone and homogeneous

tests again.

The value of scores is only incremented through CodEval. Once a combination of

submissions passes all the heterogeneous tests, 1 point is added to each submission in

the combination. This helps future submissions get a combination of past submissions

that have passed the tests, increasing their own chance of passing the tests. If a

student submits a program that passes all the heterogeneous tests and then submits

again with a change in the program that leads to failure in any of the tests, the

submission in the pool is marked as not active and the score remains the same. This

prevents the latest incorrect submission from getting involved in new combinations for

other user submissions. Once the bug is fixed and the new submission passes all the

tests, the entry in the pool is marked as active again. This lets the new submission

participate in future heterogeneous rounds of test. The new successful submission

inherits the score from the last successful submission, recovering its priority in the

combination pool. This design choice was based on the belief that students aim to

improve the functionalities with subsequent submissions.

3.5 Specification File

Distributed CodEval introduces new tags in the specification files. The new

tags were designed to keep specification files easy to understand and modify. The

23

new tags introduced by Distributed CodEval are flexible enough to support simple

tests as well as complex testing strategies. These new distributed test cases can be

appended to an existing specification file to add distributed test cases without the

need to create another file. The student submissions are expected to be in a specific

programming language or using a specific framework and should be specified in the

assignment description. The specification file contains commands to compile the

student submissions and needs to use specific commands related to the language or

framework used.

The new tags in Distributed CodEval are divided into two high-level groups:

declaration tags and action tags.

3.5.1 Declaration Tags

The declaration tags are used to group commands together, mark the beginning of

a section of commands, signal the start and end of distributed tests in the specification

file, and run commands to verify the state of the system. Unlike action tags, these tags

do not modify the state of the distributed system except by booting up or terminating

the system as a whole, as explained later. Table 2 lists the declaration tags.

Tag Meaning

--DT-- Distributed Tests Milestone

GTO Global Timeout

PORTS Exposed Ports Count

DTC <int> [HOM] [HET] Distributed Test Config Group

HINT Hint message

TESTCMD Test Command

--DTCLEAN-- Cleanup Commands

Table 2: Declaration tags used in Distributed CodEval specifications

A sample specification file with the usage of each of the declaration tags is

24

explained in Section 4.3.

The tag --DT-- marks the beginning of distributed tests in a specification file. It

is also used by CodEval to determine if the specification file has distributed tests. It

is interpreted by CodEval as a milestone to stop standalone tests and start running

distributed tests.

The GTO tag specifies a timeout in seconds for each round of distributed

tests. Each round consists of either one round of homogeneous tests or a round of

heterogeneous tests with one or more combinations of submissions until the tests

are successful or there are no more available submissions. Homogeneous tests get a

timeout equal to the GTO value. Heterogeneous tests get a timeout of 2×GTO value.

This is to let a student submission run with at least two combinations or more without

getting timed out.

The maximum number of ports to expose per docker container, specified using

the PORTS tag, should consider the maximum number of ports needed for each

submission container and the controller container. This value is used to expose the

ports when running the containers, even before the ports are assigned to each process

inside the containers.

The DTC tag Denotes the start of a new group of distributed tests. <int> is the

number of containers that need to be running for this test group. HOM denotes this

group has homogeneous tests. HET indicates heterogeneous tests. DTC tag groups

the tags in the subsequent lines together until the next "DTC" or "--DTCLEAN--"

is encountered. The group can contain a combination of Action Tags, described in

Section 3.5.2, and TESTCMD tags. On reading the "DTC" tag, CodEval starts a

new set of submission containers and stops any running containers belonging to the

previous group. This is used to provide a test group with a new state of the distributed

system to operate upon, preventing any changes from action tags of the previous group

25

from leaking into the current group. The optional tags "HOM" and "HET" indicate

that the test group will be run in homogeneous, heterogeneous, or both rounds of tests.

CodEval waits until the specified number of containers is running before executing

the commands in the test group.

The tag TESTCMD executes the provided command in the controller container

to test the correctness of the system. It expects the command to have an exit code of

0 if the test is successful or an exit code of more than 0 if the test fails. A suggested

architecture to design a command for checking the state of the system is explained in

Section 4.2. If the command fails, the executed command is shared with the student

to help them debug the issue.

If HINT is declared before TESTCMD, the provided hint message is shared with

the student instead of the test command. This can be used to define a hidden test

case.

The beginning of a section providing cleanup commands is denoted by --

DTCLEAN--. This section should be at the end of the specification file. Only

the "ECMD" and "ECMDT" action tags are supported in this section. These tags

modify the state of the controller container and can be used to clean up any effects

that might linger on the host machine. The cleanup section is executed after each

round of homogeneous or heterogeneous tests, independent of the success or failure of

the tests.

3.5.2 Action Tags

Action tags are used to modify the state of the system. These tags have additional

supportive tags to control the behavior and targets of the respective command. Table 3

lists the action tags.

A sample specification file with the usage of each of the action tags is explained

26

in Section 4.3.

Tag Extra Parameters Meaning

ECMD SYNC/ASYNC Non-critical External Command

ECMDT SYNC/ASYNC Critical External Command

ICMD SYNC/ASYNC */𝑛1, 𝑛2, 𝑛3... Non-critical Internal Command

ICMDT SYNC/ASYNC */𝑛1, 𝑛2, 𝑛3... Critical Internal Command

Table 3: Action tags used in Distributed CodEval specifications

All the action tags require an additional supportive tag of SYNC or ASYNC.

CodEval waits for a command marked with SYNC to execute and then proceeds to

the next step. For a command marked with the ASYNC tag, CodEval does not wait

for its execution to complete. ASYNC commands can be used to run commands that

normally do not terminate, such as starting a service.

The tag ECMD provides a command to be executed in the controller container.

CodEval does not fail the test if the provided command fails to execute or exits

with an error. With ASYNC, ECMD is used to execute a non-terminating command,

such as starting a service in the controller container that student submissions will

interact with. With SYNC, ECMD is used to execute a terminating command, such

as updating the state of a service running in the controller container. Section 4.3

provides an example of this command.

The tag ECMDT is similar to ECMD, except that CodEval fails the test if the

provided command is unable to execute or exits with an error. With SYNC, CodEval

waits for a successful termination of the command. With ASYNC, CodEval executes

the command and waits 3 seconds for any failures.

The tag ICMD provides a command to be executed in the submission containers.

Similar to ECMD, CodEval does not fail the test if the command fails. ICMD requires

27

an argument denoting the containers in which the command needs to be executed. The

value of this argument can be either "*", instructing CodEval to run the command in

all the submission containers, or comma-separated integers denoting the container

indexes to run the command in. The indexes start from 0 and should have a value

less than the number of containers specified with the "DTC" tag. In heterogeneous

tests, container index 0 represents the container running the student’s own submission.

Similar to ECMD, ICMD uses SYNC and ASYNC tags to denote a terminating or

non-terminating command, respectively. With SYNC, CodEval executes the command

linearly in each container. This can be optimized to run in parallel, as Section 6.9

describes in brief.

The tag ICMDT works similarly to ICMD, except it fails the test if the command

fails to execute or terminates with an error in any of the specified containers. With

the ASYNC tag, ICMDT instructs CodEval to wait 3 seconds after each execution in

the containers for any failure, similar to ECMDT ASYNC.

3.5.3 Command Placeholders

CodEval uses placeholders in the command used to run a docker container which

is read from a configuration file. The placeholders are used to inject the path to

a temporary directory containing student submission and downloaded helper files

and to inject a sub-command for executing tests. Using placeholders is beneficial as

CodEval is able to take advantage of the execution context and provide configurable

commands.

Distributed CodEval extends the usage of placeholders to the commands in

specification files. Following are the new placeholders currently used by Distributed

CodEval:

• TEMP_DIR is used in commands with ECMD and ECMDT tags. It is

28

replaced by the temporary directory generated by CodEval containing a student

submission and other related files.

• HOST_IP is used in commands with ECMD, ECMDT, ICMD, and ICMDT

tags. It is replaced by the IP address provided in the configuration file, explained

in Section 3.6. The IP address is generally that of the host machine where

CodEval is running.

• USERNAME is used in ICMD and ICMDT commands to be replaced with

the student’s username.

• PORT_<int> is used in ICMD and ICMDT commands. <int> is the index

of the assigned ports, which starts from 0 and should be less than the value

specified with the PORTS tag. This is used as a placeholder to use dynamically

assigned ports by CodEval in the submission containers.

• H_PORT_<int> is used with ECMD, ECMDT, ICMD, and ICMDT com-

mands to be replaced by a port, indexed at <int>, assigned to the controller

container. <int> starts from 0 and should be less than the value specified with

the PORTS tag.

• PEER_HP[<int>] is used with TESTCMD commands to be replaced by

<int> number of comma separated host-ports of submission containers. The

value of the host is the HOST_IP provided in the configuration file, as shown

in Section 3.6, and the port gets the value of the first port assigned to each

container.

3.6 Configuration Changes

Distributed CodEval requires two new keys under the RUN section, as shown in

Figure 10:

• dist_command: Provides a modified form of CodEval command to start a

29

docker container with exposed ports and without the execution of "evaluateṡh".

The command contains two new placeholders:

– NAME is replaced by the name of the container. This is used by CodEval

to provide the name "controller" to the controller container and "replica-

<int>" to submission containers. This helps to recognize the running

containers externally and to stop and remove any stale containers from

past tests.

– PORTS is replaced by a number of -p port:port sub-commands, depending

on the value provided with the PORTS tag of specification.

• host_ip: Provides host IP of the machine where CodEval is supposed to execute.

The value of host_ip is used by commands in the specification file, explained in

Section 3.5.3.

Distributed CodEval also introduces a new section MONGO to provide the

details to connect to a MongoDB database. This section expects two keys:

• url provides the URL of a running MongoDB instance.

• db states the database name CodEval should connect to.

An example of the updated configuration is presented in Section 4.1.

30

4. USING DISTRIBUTED CODEVAL

To use Distributed CodEval, the following steps need to be completed in sequence:

4.1 Adding Configuration

CodEval [13] requires a configuration file named "codeval.ini". The location of

this file depends on the OS of the machine on which CodEval is supposed to run. [57]

provides a command line tool to assist with the creation of a configuration file.

Distributed CodEval requires new keys within the configuration file, listed in

Section 3.6. The configuration file looks similar to Figure 10 on adding the required

keys.

Figure 10: Sample Distributed CodEval configuration

In the sample configuration, the key dist_command contains a sub-command

"-v /.m2:/root/.m2". This sub-command is added to optimize maven [58] builds.

4.2 Preparing Checker Program and Supporting Files

Distributed CodEval uses a checker command to test the expected state of the

system, specified with the TESTCMD tag explained in Section 3.5.1. Checking the

state of a system can be difficult to implement in a single standalone bash command

31

[59]. A program can be written to accomplish the task. The program’s executable file

and supporting files, if any, can be provided to CodEval. The process of providing

such files to CodEval is discussed later. The command to execute the executable file

can be specified with the TESTCMD tag, which Distributed CodEval will execute.

Printing logs and error messages to stdout [60] in the checker program is advised

as a good practice for using Distributed CodEval. Distributed CodEval reads stdout

and stderr [61] of the checker program execution and shares a part of the combined

logs in a comment to the student submission if the check fails. This helps students

debug the issues with their submissions.

Distributed CodEval expects the checker program to use exit codes [62] for

differentiating between a passed and a failed test. Section 4.2 presents a simple

checker program architecture that exits with code ’1’ if the test fails.

It is advised to provide multiple sub-commands in the checker program to check

different parts of the system. Multiple sub-commands can be used with different

TESTCMD tags in CodEval specification to help the students better understand

which part of the system failed the test. Java’s picocli [63] and Python’s click [64]

libraries provide a straightforward interface to expose command-line sub-commands

from a program. An example of test cases using Java’s picocli library is shown in

Figure 11. The library provides instructions to run the sub-commands on executing

the generated jar file without any parameters, as shown in Figure 12.

The executable file of the checker program and other files required to run tests on

Distributed CodEval can be bundled in a zip file [65] and uploaded to Canvas. The

structure of the zip file may look similar to Figure 13. The zip file can be uploaded

to Canvas under the related assignment’s course. The name of the zip file should be

included under the tag "Z" in the test specification file, similar to the sample shown

in Section 4.3. Distributed CodEval downloads the zip file and extracts the contents

32

Figure 11: A sample checker program in Java using picocli library

to the root of the temporary directory created for the student submission, where the

student submission is also available. The contents of the temporary directory can be

33

Figure 12: Execution instructions provided by Java’s picocli library

directly accessed in the action tag commands, as shown in Section 4.3.

Figure 13: Contents of a sample helper zip file

4.3 Writing a Test Specification

CodEval searches for a test specification file on Canvas for each assignment in a

course. The test specification file must be directly inside a folder named CodEval. The

name of the specification file must be <assignment name>.codeval. For example, if

the assignment name is "Distributed Hashtable" the respective CodEval specification

file must be named as "Distributed Hashtable.codeval". A sample specification file

used by Distributed CodEval is presented in Figure 14. The expected location of the

specification file is shown in Figure 15.

In the example specification file, lines 1 to 11 contain CodEval commands [13].

Line 1 instructs CodEval to download the file assignment_helper.zip and unzip it.

Line 3 creates a directory if not present in the student submission directory and copies

34

Figure 14: Contents of a sample Distributed CodEval specification file

a file from the unzipped helper file to the created directory. Lines 5 and 6 specify

a compile timeout and command to compile the student submission. Lines 8 to 11

35

Figure 15: Location of a Distributed CodEval specification file in a Canvas course

include a hidden test command that checks for the compilation output and prints a

message to the student submission if the test fails.

Line 14 marks the beginning of Distributed CodEval section of the specification

file. Line 15 provides a global timeout of 300 seconds for each round of tests, as

explained in Section 3.5.1. Line 16 declares only one port will be exposed in the

controller container and each submission container. Here, a controller container is

started with access to the unzipped files and an exposed port chosen by CodEval

during runtime.

Lines 18 to 22 contain ECMD and ECMDT commands before any DTC tag has

been defined. This section is used to initialize the controller container and can contain

only ECMD and ECMDT tags. Line 18 starts a ZooKeeper server in the controller

container asynchronously using one of the files provided in the zip file. The ZooKeeper

server listens on a port specified by the placeholder H_PORT_0, which is replaced

by the first port number assigned to the controller container during its initialization.

Line 19 instructs CodEval to sleep for 5 seconds to let the ASYNC command in line

18 accomplish its task. Line 20 synchronously creates a znode "/test" to be used for

tests. Line 21 verifies that the znode "/test" exists. CodEval fails the test due to

ECMDT if the znode is not present or the command fails for any other reason.

36

Line 23 declares a distributed test config group that needs five containers to

run, and the test group must be included in both homogeneous and heterogeneous

rounds of tests. CodEval starts five containers here and exposes a unique port on each

container. If the current round of tests is homogeneous, all five containers contain the

student’s program whose submission is being evaluated. If a heterogeneous round of

tests is running, the first container contains the current student’s submission, and

the other four containers contain four other students’ submissions, according to a

combination generated by Distributed CodEval, described in Section 3.3. Line 24 runs

the command synchronously in all the submission containers to compile the programs.

Line 25 contains the command to run asynchronously in all the submission containers.

The placeholders, described in Section 3.5.3, are replaced with the respective values.

ICMDT fails the test round if the command in any container exits with a failure. The

example command executes the submission programs inside their respective containers.

CodEval waits five seconds due to line 26, an adequate time to wait for the programs

started in line 25 to finish initializing. Line 27 specifies a test command, using the

sub-command "test1", that is executed in the controller container using the ".jar" file

obtained from the zip file.

Line 29 defines another distributed test config group that needs four containers

to run. Distributed CodEval stops, removes, and starts all the submission containers

again. This test group is marked as heterogeneous only. Line 30 is similar to line 24,

where it compiles the submission in all the containers. Line 31 specifies an example of

an ICMDT command running only on containers with indexes 0, 1, and 3, respectively.

This command is presented as an example of a selective ICMDT tag and does not

conduct any significant action. Lines 32 and 33 are similar to lines 26 and 27, where

CodEval sleeps for 5 seconds and then executes the sub-command "test2" to test the

system. If the checker program expects all four instances of the program to run, it

37

will fail the test.

Line 35 denotes the tests’ end and the clean-up zone’s start. This zone is optional

and supports only ECMD and ECMDT tags, as shown in line 36.

This specification file must be uploaded to Canvas under a folder with the name

"CodEval".

4.4 Running Distributed CodEval

Distributed CodEval is executed using the same command as CodEval [13]:

$ python3 codeva l . py grade−submiss ions "<course−name>"

The course name can also contain a part of it and should be able to identify

the course on Canvas uniquely. The above command can be run with the following

optional flags:

• --dry-run / --no-dry-run: The dry run flag prevents CodEval from making any

updates on Canvas and prevents Distributed CodEval from updating MongoDB

collections.

• --verbose / --no-verbose: The verbose flag enables CodEval to print additional

logs to the console, which can help debug any issues with CodEval or specification

files.

• --force / --no-force: The flag allows CodEval to evaluate a student’s already

evaluated submission.

• --copytmpdir / --no-copytmpdir: The "copytmpdir" flag copies the tem-

porary directory, containing the student submission and related files extracted

from the zip, to the current directory for debugging purposes after CodEval’s

execution.

CodEval is generally used with crontab [66] to execute in intervals for a Canvas

course. The cron job should be scheduled with an interval of at least CTO + 3×GTO

38

seconds. This provides CodEval enough time to execute a round of standalone tests,

a round of homogeneous tests, and at least two rounds of heterogeneous tests, after

which the tests timeout. This recommended interval prevents subsequent executions

of CodEval from interfering with each other’s progress.

39

5. DIFFICULTIES AND CHALLENGES

Designing and developing Distributed CodEval came with several challenges that

needed to be resolved to make progress and improve the user experience of the tool.

Some of the challenges are discussed here briefly.

5.1 No Support for Maven Projects on CodEval

CodEval [13] does not support testing maven projects as its Docker image does

not contain maven dependencies. Extra commands had to be added in the Dockerfile

[67] definition to install and use maven in the CodEval docker containers. CodEval

uses jdk version 17 [68] to evaluate Java projects. A specific version of maven (v3.8.6)

[69] was installed on the Docker image for compatibility with Java 17.

5.2 Stale Docker Containers

Docker containers kept running submission programs and/or controller logic when

the Distributed CodEval process got interrupted or crashed due to errors. These stale

Docker containers had to be manually stopped and removed as they were occupying

host machine resources and could have intervened with future executions of CodEval.

To solve this issue, running containers are given the name "replica-<int>" where

"int" is the container index, and before starting new containers, any running container

with the same name is killed and removed by Distributed CodEval. This also prevents

the unbounded growth of stale docker containers.

5.3 Factorial Growth of Unique Student Submission Combinations

In heterogeneous testing, the number of unique possible student submission

combinations has a factorial growth rate with respect to the submission count. For

example, selecting 4 out of 15 submissions will have 1365 unique possibilities, 4845

possibilities when selecting from 20 submissions, and 12650 possible combinations

with 25 submissions. Figure 16 shows this exponential rate of growth. Executing

heterogeneous tests on all the possible combinations will take a huge amount of time

40

and resources, and CodEval will not be able to provide immediate feedback to the

students.

Figure 16: Graph showing a growth rate of possible heterogeneous test combinations
of 4 submissions versus the number of submissions on Canvas

To overcome this problem, student submissions are ranked with the highest

possibility of passing heterogeneous tests on past tests performance by maintaining

a score. Combinations are formed by giving preference to high-scoring submissions

so that a new submission will have the highest chance of passing the tests. Also,

heterogeneous tests execute within a time bound within which at least two combinations

can be tested.

41

6. FUTURE WORK AND IMPROVEMENTS

Distributed CodEval is built to provide instructors with automatic evaluation

capabilities and faster student feedback. This tool can be optimized further to provide

faster feedback, use fewer computing resources, provide new ways to test submissions

and handle edge cases better, as discussed below.

6.1 Optimize Test Duration for Complex Assignments

Complex distributed system assignments can take a long time to run tests on

multiple submissions, particularly when there are numerous test cases and the timeouts

defined in the specification file are more than 5 minutes. This will affect the interval

between each execution of CodEval as a cron job. This results in students waiting

for extended periods of time between submissions and getting feedback on their

submissions.

This problem of extended execution time can be reduced by performing parallel

tests on each student submission, either using multiple threads or running tests on

different servers.

6.2 Optimizing Initial Heterogeneous Combinations

There can be a case when there are a large number of submissions in the hetero-

geneous test pool. One possible way this can happen is if all the submissions pass

the standalone and homogeneous tests but are unable to pass the heterogeneous tests.

A new submission will get a large number of submissions to form a heterogeneous

combination from where all the other submissions have the same score, i.e., 0. In

this case, the submissions that were uploaded earliest will be chosen. If the first

combination fails, Distributed CodEval will keep replacing one of the submissions

with a newer one until the tests pass or get timed out.

These initial combinations from a large pool can have a better chance of success

if the combinations vary by a greater degree after each round of failed tests. If the

42

oldest submission in the combination of size n has a fault due to which the tests are

failing, the current implementation of Distributed CodEval will not replace the oldest

submission until n rounds of tests have been executed. If instead of 1, 2 submissions

are replaced, then n/2 rounds will replace the oldest submission. This level of variation

can be optimized through further research.

6.3 Support for Range in ICMD and ICMDT Commands

ICMD and ICMDT tags require an argument providing the container indexes on

which the command needs to be executed. The current format of this argument is

either "*" or a comma-separated list of whole numbers, such as "0,2,4". If the list of

numbers is large and consecutive, the instruction looks bloated. Support for another

format can be added to provide a better user experience in defining specification files.

This format can take a range of whole numbers. Following is a comparison of the

existing and the new suggested instruction:

Current:

ICMD SYNC 2 ,3 , 4 , 5 , 6 , 7 , 8 , 9 java − j a r submiss ion . j a r

Suggested new format:

ICMD SYNC 2−9 java − j a r submiss ion . j a r

6.4 Configurable Heterogeneous Tests Timeout

Currently, heterogeneous tests have a fixed timeout of 2× GTO value. This can

be made configurable in the specification file to either a multiple of the GTO value or

a separate timeout value in seconds.

6.5 No Orphan Docker Containers

In the current implementation of Distributed CodEval, if the executing process

is interrupted between tests, the docker containers started by distributed tests may

remain in the running state. These orphan container processes will be stopped in

43

the subsequent execution of Distributed CodEval, but they use precious computing

resources until then. Distributed CodEval can be extended to handle interruptions by

killing spawned docker processes.

6.6 Network Faults Between Containers

Distributed CodEval can be extended by supporting the introduction and removal

of network faults in the system. A suggested way of doing so is by supporting new

tags in specification files. The tag and the respective command can control network

faults between pairs of submission containers and between a submission container

and the controller container. The network faults can be implemented using the Linux

iptables tool [38].

6.7 Clearing Data From MongoDB

New execution commands can be introduced in Distributed CodEval to list and

clear stale assignment data from MongoDB. A suggested way to achieve this is to store

the respective metadata for an assignment, such as assignment name and deadline

date-time, in a separate collection for each assignment present in the database. A

new command can print the assignment details present in MongoDB, and another

command can delete the related data for a given assignment name or id.

6.8 Configurable Wait Time for ECMDT ASYNC and ICMDT ASYNC
Tag Commands

The current implementation of Distributed CodEval waits 3 seconds after execut-

ing the command provided with ECMDT ASYNC or ICMDT ASYNC tags to check

for any failures. The wait time can be made configurable in the specification files to

provide more control to the instructor.

44

6.9 Parallel Execution of ICMD SYNC and ICMDT SYNC Tag Com-
mands

Distributed CodEval executed ICMD SYNC and ICMDT SYNC tag commands

linearly within each submission container, waiting for the execution to successfully

complete before starting the execution in the next container. This can be optimized

to improve the total test time by executing these commands in parallel.

This suggestion presents a set of challenges as it introduces non-determinism

in the state of the distributed system that depends on the order of execution of

such commands. Parallelism can be made configurable in the specification file, or

Distributed CodEval can provide a false sense of parallelism by introducing small

delays between each subsequent parallel execution.

45

7. CONCLUSION

In summary, understanding the challenges of distributed systems is a difficult task

and the best way to learn is by building a resilient distributed system that works with

other implementations. Bake-off styled assignments have been effective to introduce

students to such situations early.

Distributed CodEval reduces the instructor’s effort to evaluate bake-off style

assignments. The instructor needs to create a program to check the different states of

the system, create a test specification file, and upload all the supporting files to Canvas.

The instructor can automate the evaluation of distributed assignment submissions by

setting up Distributed CodEval to run at regular intervals for a course.

The student submissions are automatically evaluated based on the test cases

defined by the instructor. The results of the tests are notified to the students as a

comment on their submission on Canvas. Distributed CodEval also tries to find a

combination of submissions that can pass the test cases and notifies the involved

students of the result. This helps the students to get prompt feedback on their

submissions. Distributed systems is still a complex topic, but Distributed CodEval

makes understanding it a bit easier.

46

REFERENCES

[1] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao, Y. Zhang, P. U. Jain,
and M. Stumm, ‘‘Simple testing can prevent most critical failures: An analysis of
production failures in distributed data-intensive systems,’’ in Proceedings of the
11th USENIX Conference on Operating Systems Design and Implementation, ser.
OSDI’14. USA: USENIX Association, 2014, p. 249–265.

[2] J. S. Ng, W. Y. B. Lim, N. C. Luong, Z. Xiong, A. Asheralieva, D. Niyato,
C. Leung, and C. Miao, ‘‘A comprehensive survey on coded distributed computing:
Fundamentals, challenges, and networking applications,’’ IEEE Communications
Surveys & Tutorials, vol. 23, no. 3, pp. 1800--1837, 2021.

[3] M. Paprzycki, ‘‘Education: Integrating parallel and distributed computing in
computer science curricula,’’ IEEE Distributed Systems Online, vol. 7, no. 2, pp.
6--6, 2006.

[4] M. Gowanlock and B. Gallet, ‘‘Data-intensive computing modules for teaching
parallel and distributed computing,’’ in 2021 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), 2021, pp. 350--357.

[5] E. Saule, ‘‘Experiences on teaching parallel and distributed computing for un-
dergraduates,’’ in 2018 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), 2018, pp. 361--368.

[6] J. DeNero, S. Sridhara, M. Pérez-Quiñones, A. Nayak, and B. Leong, ‘‘Beyond
autograding: Advances in student feedback platforms,’’ in Proceedings of the
2017 ACM SIGCSE Technical Symposium on Computer Science Education, ser.
SIGCSE ’17. New York, NY, USA: Association for Computing Machinery, 2017,
p. 651–652. [Online]. Available: https://doi.org/10.1145/3017680.3017686

[7] C. Wilcox, ‘‘Testing strategies for the automated grading of student
programs,’’ in Proceedings of the 47th ACM Technical Symposium on
Computing Science Education, ser. SIGCSE ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 437–442. [Online]. Available:
https://doi-org.libaccess.sjlibrary.org/10.1145/2839509.2844616

[8] E. Brewer, ‘‘Cap twelve years later: How the "rules" have changed,’’ Computer,
vol. 45, no. 2, pp. 23--29, 2012.

[9] E. Maicus, M. Peveler, S. Patterson, and B. Cutler, ‘‘Autograding distributed
algorithms in networked containers,’’ in Proceedings of the 50th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’19. New York,

47

https://doi.org/10.1145/3017680.3017686
https://doi-org.libaccess.sjlibrary.org/10.1145/2839509.2844616

NY, USA: Association for Computing Machinery, 2019, p. 133–138. [Online].
Available: https://doi-org.libaccess.sjlibrary.org/10.1145/3287324.3287505

[10] C. Torens and L. Ebrecht, ‘‘Remotetest: A framework for testing distributed sys-
tems,’’ in 2010 Fifth International Conference on Software Engineering Advances,
2010, pp. 441--446.

[11] A. Marroquin, D. Gonzalez, and S. Maag, ‘‘Testing distributed systems with test
cases dependencies architecture,’’ in 2015 7th IEEE Latin-American Conference
on Communications (LATINCOM), 2015, pp. 1--6.

[12] I. Beschastnikh, P. Wang, Y. Brun, and M. D. Ernst, ‘‘Debugging
distributed systems: Challenges and options for validation and debugging,’’
Queue, vol. 14, no. 2, p. 91–110, mar 2016. [Online]. Available:
https://doi.org/10.1145/2927299.2940294

[13] A. Agrawal, A. Jain, and B. Reed, ‘‘Codeval: Improving student success in
programming assignments,’’ in EDULEARN Proceedings. IATED, jul 2022.
[Online]. Available: https://doi.org/10.21125%2Fedulearn.2022.1767

[14] ‘‘Manage coursework with github classroom - github docs,’’ https://docs.
github.com/en/education/manage-coursework-with-github-classroom, (Accessed
on 12/04/2022).

[15] ‘‘Use autograding - github docs,’’ https://docs.github.com/en/education/manage-
coursework-with-github-classroom/teach-with-github-classroom/use-
autograding, (Accessed on 12/04/2022).

[16] ‘‘Simple autograding with github classroom + github actions + cml container |
matsui-lab blog,’’ https://mti-lab.github.io/blog/2021/12/15/autograding.html,
(Accessed on 12/04/2022).

[17] N. Slamnik-Kriještorac, H. C. C. de Resende, and J. M. Marquez-Barja,
‘‘Practical teaching of distributed systems: A scalable environment for on-demand
remote experimentation,’’ in Proceedings of the 6th EAI International Conference
on Smart Objects and Technologies for Social Good, ser. GoodTechs ’20. New
York, NY, USA: Association for Computing Machinery, 2020, p. 120–125.
[Online]. Available: https://doi.org/10.1145/3411170.3411230

[18] ‘‘Codegrade - virtual assistant for your coding classroom,’’ https://www.codegrade.
com/, (Accessed on 12/04/2022).

[19] ‘‘Starting your autotest - codegrade help,’’ https://help.codegrade.com/faq/
starting-your-autotest, (Accessed on 12/04/2022).

48

https://doi-org.libaccess.sjlibrary.org/10.1145/3287324.3287505
https://doi.org/10.1145/2927299.2940294
https://doi.org/10.21125%2Fedulearn.2022.1767
https://docs.github.com/en/education/manage-coursework-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom
https://docs.github.com/en/education/manage-coursework-with-github-classroom/teach-with-github-classroom/use-autograding
https://docs.github.com/en/education/manage-coursework-with-github-classroom/teach-with-github-classroom/use-autograding
https://docs.github.com/en/education/manage-coursework-with-github-classroom/teach-with-github-classroom/use-autograding
https://mti-lab.github.io/blog/2021/12/15/autograding.html
https://doi.org/10.1145/3411170.3411230
https://www.codegrade.com/
https://www.codegrade.com/
https://help.codegrade.com/faq/starting-your-autotest
https://help.codegrade.com/faq/starting-your-autotest

[20] ‘‘Tests — codegrade quietstorm.1 documentation,’’ https://docs.codegra.de/user/
autotest/tests.html, (Accessed on 12/04/2022).

[21] ‘‘What is a container? - docker,’’ https://www.docker.com/resources/what-
container/, (Accessed on 12/04/2022).

[22] L. Tobarra, S. Ros, R. Hernández, A. Marcos-Barreiro, A. Robles-Gómez, A. C.
Caminero, R. Pastor, and M. Castro, ‘‘Creation of customized remote labora-
tories using deconstruction,’’ IEEE Revista Iberoamericana de Tecnologias del
Aprendizaje, vol. 10, no. 2, pp. 69--76, 2015.

[23] M. A. Vivar and A. R. Magna, ‘‘Design, implementation and use of a remote
network lab as an aid to support teaching computer network,’’ in 2008 Third
International Conference on Digital Information Management, 2008, pp. 905--909.

[24] ‘‘Java communications api,’’ https://www.oracle.com/java/technologies/java-
communications-api.html, (Accessed on 12/04/2022).

[25] K. Alnawasreh, P. Pelliccione, Z. Hao, M. Rånge, and A. Bertolino, ‘‘Online
robustness testing of distributed embedded systems: An industrial approach,’’
in 2017 IEEE/ACM 39th International Conference on Software Engineering:
Software Engineering in Practice Track (ICSE-SEIP), 2017, pp. 133--142.

[26] ‘‘Terra nullius,’’ https://alexei-led.github.io/post/pumba_docker_chaos_
testing/, (Accessed on 12/07/2022).

[27] H. S. Gunawi, T. Do, P. Joshi, P. Alvaro, J. M. Hellerstein, A. C. Arpaci-Dusseau,
R. H. Arpaci-Dusseau, K. Sen, and D. Borthakur, ‘‘Fate and destini: A framework
for cloud recovery testing,’’ in Proceedings of the 8th USENIX Conference on
Networked Systems Design and Implementation, ser. NSDI’11. USA: USENIX
Association, 2011, p. 238–252.

[28] ‘‘Datalog: Deductive database programming,’’ https://docs.racket-lang.org/
datalog/, (Accessed on 12/04/2022).

[29] ‘‘The aspectj project | the eclipse foundation,’’ https://www.eclipse.org/aspectj/,
(Accessed on 12/04/2022).

[30] P. Joshi, M. Ganai, G. Balakrishnan, A. Gupta, and N. Papakonstantinou,
‘‘Setsudo: Perturbation-based testing framework for scalable distributed
systems,’’ in Proceedings of the First ACM SIGOPS Conference on
Timely Results in Operating Systems, ser. TRIOS ’13. New York, NY,
USA: Association for Computing Machinery, 2013. [Online]. Available:
https://doi.org/10.1145/2524211.2524217

49

https://docs.codegra.de/user/autotest/tests.html
https://docs.codegra.de/user/autotest/tests.html
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.oracle.com/java/technologies/java-communications-api.html
https://www.oracle.com/java/technologies/java-communications-api.html
https://alexei-led.github.io/post/pumba_docker_chaos_testing/
https://alexei-led.github.io/post/pumba_docker_chaos_testing/
https://docs.racket-lang.org/datalog/
https://docs.racket-lang.org/datalog/
https://www.eclipse.org/aspectj/
https://doi.org/10.1145/2524211.2524217

[31] ‘‘Using java reflection,’’ https://www.oracle.com/technical-resources/articles/
java/javareflection.html, (Accessed on 12/04/2022).

[32] ‘‘Aspect-oriented programming - wikipedia,’’ https://en.wikipedia.org/wiki/
Aspect-oriented_programming, (Accessed on 12/04/2022).

[33] R. Lübke, D. Schuster, and A. Schill, ‘‘Nessee: An in-house test platform for large
scale tests of multimedia applications including network behavior,’’ in Testbeds
and Research Infrastructure: Development of Networks and Communities, V. C.
Leung, M. Chen, J. Wan, and Y. Zhang, Eds. Cham: Springer International
Publishing, 2014, pp. 229--238.

[34] ‘‘jepsen-io/jepsen: A framework for distributed systems verification, with fault
injection,’’ https://github.com/jepsen-io/jepsen, (Accessed on 12/10/2022).

[35] ‘‘Jepsen analyses,’’ https://jepsen.io/analyses, (Accessed on 12/10/2022).

[36] ‘‘ssh command usage, options, and configuration in linux/unix.’’ https://www.
ssh.com/academy/ssh/command, (Accessed on 12/10/2022).

[37] ‘‘jepsen/05-nemesis.md at main · jepsen-io/jepsen,’’ https://github.com/jepsen-
io/jepsen/blob/main/doc/tutorial/05-nemesis.md, (Accessed on 12/10/2022).

[38] ‘‘iptables(8) - linux man page,’’ https://linux.die.net/man/8/iptables, (Accessed
on 12/10/2022).

[39] ‘‘tc(8) - linux manual page,’’ https://man7.org/linux/man-pages/man8/tc.8.
html#QDISCS, (Accessed on 12/10/2022).

[40] ‘‘jepsen/net.clj at main · jepsen-io/jepsen,’’ https://github.com/jepsen-io/jepsen/
blob/main/jepsen/src/jepsen/net.clj, (Accessed on 12/10/2022).

[41] ‘‘Apache zookeeper,’’ https://zookeeper.apache.org/, (Accessed on 12/10/2022).

[42] ‘‘Zookeeper: Because coordinating distributed systems is a zoo,’’
https://zookeeper.apache.org/doc/current/zookeeperTools.html?fbclid=
IwAR0eAIQ7Yy-DyTcXT8B10oXlQ3t6v4_asJSqLaDqGfMrND0aekyW_
rC2pGQ, (Accessed on 12/10/2022).

[43] ‘‘Byteman homepage · jboss community,’’ https://byteman.jboss.org/, (Accessed
on 12/10/2022).

[44] B. Lima, ‘‘Automated scenario-based integration testing of time-constrained dis-
tributed systems,’’ in 2019 12th IEEE Conference on Software Testing, Validation
and Verification (ICST), 2019, pp. 486--488.

50

https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://www.oracle.com/technical-resources/articles/java/javareflection.html
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://en.wikipedia.org/wiki/Aspect-oriented_programming
https://github.com/jepsen-io/jepsen
https://jepsen.io/analyses
https://www.ssh.com/academy/ssh/command
https://www.ssh.com/academy/ssh/command
https://github.com/jepsen-io/jepsen/blob/main/doc/tutorial/05-nemesis.md
https://github.com/jepsen-io/jepsen/blob/main/doc/tutorial/05-nemesis.md
https://linux.die.net/man/8/iptables
https://man7.org/linux/man-pages/man8/tc.8.html#QDISCS
https://man7.org/linux/man-pages/man8/tc.8.html#QDISCS
https://github.com/jepsen-io/jepsen/blob/main/jepsen/src/jepsen/net.clj
https://github.com/jepsen-io/jepsen/blob/main/jepsen/src/jepsen/net.clj
https://zookeeper.apache.org/
https://zookeeper.apache.org/doc/current/zookeeperTools.html?fbclid=IwAR0eAIQ7Yy-DyTcXT8B10oXlQ3t6v4_asJSqLaDqGfMrND0aekyW_rC2pGQ
https://zookeeper.apache.org/doc/current/zookeeperTools.html?fbclid=IwAR0eAIQ7Yy-DyTcXT8B10oXlQ3t6v4_asJSqLaDqGfMrND0aekyW_rC2pGQ
https://zookeeper.apache.org/doc/current/zookeeperTools.html?fbclid=IwAR0eAIQ7Yy-DyTcXT8B10oXlQ3t6v4_asJSqLaDqGfMrND0aekyW_rC2pGQ
https://byteman.jboss.org/

[45] ‘‘Sequence diagram - wikipedia,’’ https://en.wikipedia.org/wiki/Sequence_
diagram, (Accessed on 12/05/2022).

[46] E. Durr and J. van Katwijk, ‘‘Vdm++, a formal specification language for
object-oriented designs,’’ in CompEuro 1992 Proceedings Computer Systems and
Software Engineering, 1992, pp. 214--219.

[47] ‘‘Overview,’’ https://www.overturetool.org/, (Accessed on 12/05/2022).

[48] W. D. Yu and G. Patil, ‘‘A workflow-based test automation framework for web
based systems,’’ in 2007 12th IEEE Symposium on Computers and Communica-
tions, 2007, pp. 333--339.

[49] ‘‘Workflow management system - wikipedia,’’ https://en.wikipedia.org/wiki/
Workflow_management_system, (Accessed on 12/05/2022).

[50] ‘‘.net remoting - wikipedia,’’ https://en.wikipedia.org/wiki/.NET_Remoting,
(Accessed on 12/05/2022).

[51] ‘‘Introduction to windows service applications - .net framework | microsoft
learn,’’ https://learn.microsoft.com/en-us/dotnet/framework/windows-services/
introduction-to-windows-service-applications, (Accessed on 12/05/2022).

[52] R. Lübke, R. Lungwitz, D. Schuster, and A. Schill, ‘‘Large-scale tests of dis-
tributed systems with integrated emulation of advanced network behavior,’’
IADIS International Journal on WWW/Internet, vol. 10, pp. 138--151, 01 2013.

[53] ‘‘Canvas by instructure | world’s #1 teaching and learning software,’’ https:
//www.instructure.com/canvas, (Accessed on 12/11/2022).

[54] ‘‘itertools — functions creating iterators for efficient looping — python 3.11.3
documentation,’’ https://docs.python.org/3/library/itertools.html, (Accessed on
04/25/2023).

[55] ‘‘Mongodb: The developer data platform,’’ https://www.mongodb.com/, (Ac-
cessed on 04/25/2023).

[56] ‘‘Pymongo 4.3.3 documentation — pymongo 4.3.3 documentation,’’ https://
pymongo.readthedocs.io/en/stable/, (Accessed on 04/25/2023).

[57] ‘‘Sjsu-cs-systems-group/canvas_tool: a command-line python based tool for
teachers who use canvas.’’ https://github.com/SJSU-CS-systems-group/canvas_
tool, (Accessed on 04/25/2023).

[58] ‘‘Maven – introduction,’’ https://maven.apache.org/what-is-maven.html, (Ac-
cessed on 12/11/2022).

51

https://en.wikipedia.org/wiki/Sequence_diagram
https://en.wikipedia.org/wiki/Sequence_diagram
https://www.overturetool.org/
https://en.wikipedia.org/wiki/Workflow_management_system
https://en.wikipedia.org/wiki/Workflow_management_system
https://en.wikipedia.org/wiki/.NET_Remoting
https://learn.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://learn.microsoft.com/en-us/dotnet/framework/windows-services/introduction-to-windows-service-applications
https://www.instructure.com/canvas
https://www.instructure.com/canvas
https://docs.python.org/3/library/itertools.html
https://www.mongodb.com/
https://pymongo.readthedocs.io/en/stable/
https://pymongo.readthedocs.io/en/stable/
https://github.com/SJSU-CS-systems-group/canvas_tool
https://github.com/SJSU-CS-systems-group/canvas_tool
https://maven.apache.org/what-is-maven.html

[59] ‘‘Bash - gnu project - free software foundation,’’ https://www.gnu.org/software/
bash/, (Accessed on 04/25/2023).

[60] ‘‘stdout(3): standard i/o streams - linux man page,’’ https://linux.die.net/man/
3/stdout, (Accessed on 04/25/2023).

[61] ‘‘stderr(3): standard i/o streams - linux man page,’’ https://linux.die.net/man/
3/stderr, (Accessed on 04/25/2023).

[62] ‘‘Exit status - wikipedia,’’ https://en.wikipedia.org/wiki/Exit_status, (Accessed
on 04/25/2023).

[63] ‘‘picocli - a mighty tiny command line interface,’’ https://picocli.info/, (Accessed
on 04/25/2023).

[64] ‘‘Click | the pallets projects,’’ https://palletsprojects.com/p/click/, (Accessed on
04/25/2023).

[65] ‘‘Zip (file format) - wikipedia,’’ https://en.wikipedia.org/wiki/ZIP_(file_format),
(Accessed on 04/25/2023).

[66] ‘‘crontab(5) - linux manual page,’’ https://man7.org/linux/man-pages/man5/
crontab.5.html, (Accessed on 04/25/2023).

[67] ‘‘Dockerfile reference | docker documentation,’’ https://docs.docker.com/engine/
reference/builder/, (Accessed on 04/25/2023).

[68] ‘‘Jdk 17,’’ https://openjdk.org/projects/jdk/17/, (Accessed on 04/25/2023).

[69] ‘‘Maven – release notes – maven 3.8.6,’’ https://maven.apache.org/docs/3.8.6/
release-notes.html, (Accessed on 04/25/2023).

52

https://www.gnu.org/software/bash/
https://www.gnu.org/software/bash/
https://linux.die.net/man/3/stdout
https://linux.die.net/man/3/stdout
https://linux.die.net/man/3/stderr
https://linux.die.net/man/3/stderr
https://en.wikipedia.org/wiki/Exit_status
https://picocli.info/
https://palletsprojects.com/p/click/
https://en.wikipedia.org/wiki/ZIP_(file_format)
https://man7.org/linux/man-pages/man5/crontab.5.html
https://man7.org/linux/man-pages/man5/crontab.5.html
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://openjdk.org/projects/jdk/17/
https://maven.apache.org/docs/3.8.6/release-notes.html
https://maven.apache.org/docs/3.8.6/release-notes.html

	Automated Evaluation for Distributed System Assignments
	Recommended Citation

	Introduction
	History and Background
	Distributed System Assignments Automation
	Distributed System Testbeds
	Test Scenarios Specification
	CodEval

	Design Methodology
	Orchestration
	Division of Tests
	Heterogeneous Tests
	Heterogeneous Test Submissions Pool
	Specification File
	Declaration Tags
	Action Tags
	Command Placeholders

	Configuration Changes

	Using Distributed CodEval
	Adding Configuration
	Preparing Checker Program and Supporting Files
	Writing a Test Specification
	Running Distributed CodEval

	Difficulties and Challenges
	No Support for Maven Projects on CodEval
	Stale Docker Containers
	Factorial Growth of Unique Student Submission Combinations

	Future Work and Improvements
	Optimize Test Duration for Complex Assignments
	Optimizing Initial Heterogeneous Combinations
	Support for Range in ICMD and ICMDT Commands
	Configurable Heterogeneous Tests Timeout
	No Orphan Docker Containers
	Network Faults Between Containers
	Clearing Data From MongoDB
	Configurable Wait Time for ECMDT ASYNC and ICMDT ASYNC Tag Commands
	Parallel Execution of ICMD SYNC and ICMDT SYNC Tag Commands

	Conclusion
	REFERENCES

