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ABSTRACT 

Proof-of-Stake for SpartanGold 

by Nimesh Ashok Doolani 

Consensus protocols are critical for any blockchain technology, and Proof-of- 

Stake (PoS) protocols have gained popularity due to their advantages over Proof-of- 

Work (PoW) protocols in terms of scalability and efficiency. However, existing PoS 

mechanisms, such as delegated and bonded PoS, suffer from security and usability 

issues. Pure PoS (PPoS) protocols provide a stronger decentralization and offer a 

potential solution to these problems. Algorand, a well-known cryptocurrency, employs a 

PPoS protocol that utilizes a new Byzantine Agreement (BA) mechanism for 

consensus and Verifiable Random Functions (VRFs) to securely scale the protocol to 

accommodate many participants, making it possible to handle a growing number of clients 

with ease. In this research, we explore, implement, and document all the essential steps of 

the algorithm for any given round that leads to publishing a block, and we evaluate the 

performance and stability of Algorand using various numbers of users, 

their stakes, and network settings. To simulate the protocol, we extend the Spar- 

tanGold blockchain framework, which currently uses a PoW protocol, and convert it 

into a PoS model. Our results show that the PPoS protocol developed by Algorand 

is highly scalable, achieving consensus quickly and efficiently, even in the presence of 

malicious users or network partitions and offers higher security and Byzantine fault 

tolerance compared to traditional PoW and other PoS-based protocols. 

KeyTerms: Blockchain consensus, Proof-of-Stake (PoS), Proof-of-Work (PoW), 

Algorand, Verifiable Random Functions (VRFs), Byzantine Agreement, 

SpartanGold.
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CHAPTER 1 

Introduction 

Blockchain and cryptocurrencies are currently among the most trending technologies. 

Almost everyone has heard of Bitcoin, Ethereum, or NFTs. These technologies and 

protocols utilize blockchain as their core infrastructure. However, the concept of 

blockchain may not be clear to those who are new to it. This research paper explores various 

blockchain protocols and delves into Algorand's algorithms for achieving consensus. 

Therefore, it is essential to cover the basic concepts that lead up to the main concept. 

1.1 What is a blockchain? 

A blockchain, as the name suggests, is precisely a series of blocks or records appended one 

after another to form a serial link. It is a ledger that stores irrefutable data. These blocks are 

special data structures designed to store transactions or data in a cryptographically secure 

manner using hash trees, allowing them to be verified by everyone. These blocks 

specifically store the timestamp, hash of their previous block and transactional data, as 

mentioned before. The timestamp acts as a proof of existence of data at the time of creation 

of the block. The data on the blockchain cannot be modified because the inherent design 

links all blocks to each other right up to the genesis block. And to forge transactions in a 

given block would require the attacker to recompute the entire blockchain, which 

statistically is close to impossible. 

Figure 1 describes a basic skeleton of a typical blockchain. Blocks are linked to each 

other, and each block contains relevant information about transactions, nonce, timestamp, 

proof, and the previous block hash. 
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Figure 1: A basic blockchain skeleton. Copied from [1] 

1. 2 Architecture 

A blockchain is a decentralized peer-to-peer distributed architecture that relies heavily 

on the network majority to reach consensus to publish blocks. The network is setup with 

users as clients or nodes who vote, verify, and certify these blocks. The rationale behind 

this decentralization is to avoid an all-powerful central authority managing every aspect of 

the network. The problems with having power concentrated in a small group or individual 

are: 

1. Security risks: It becomes easier to target and compromise a single entity that has sole 

control over everything. 

2. Lack of accountability: Centralized control reduces the level of transparency which 

can affect fairness and accountability. 

3. Censorship: The central authority may also have the power to censor or deny services 

to some users. 

Although the blockchains are designed to operate in primarily one specific setting, there 

are other types as well: 

1. Public: These are the main and the most sought-after types. There are no 

restrictions on their access. Any user is free to join and participate in the network. 
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The network is capable of handling bad actors and therefore does not require special 

guarding against them. 

2. Private: The participants and other users experience restrictions in the blockchain 

and there are access controls set up by owners or administrators.  

3. Hybrid: A flavor of blockchain that employs features of both public and private 

blockchain. 

 
Figure 2: Overview of blockchain architecture. Copied from [2] 

1.3 Consensus Protocols 

Every distributed or peer-to-peer (P2P) architecture requires agreement between 

nodes. A lot of applications like cloud computing, clock synchronization, etc. are 

designed in a P2P fashion, which must deal with consistency problems arising due to 

concurrency and replication. In blockchain, similarly, consensus protocols are used by 

the nodes to come to an agreement on the blocks that get published to the chain. These 

protocols have important requirements that need to be fulfilled: 
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1. Safety: the protocols should ensure that transactions written to the blockchain 

cannot be reversed. 

2. Liveness: the protocols ensure the network eventually progresses and publishes 

blocks. 

3. Fault tolerant: the protocols should be tolerant of faulty nodes without 

affecting the system performance too much.  

4. Scalability: the protocols should be able to scale to a large number of 

participating nodes. 

5. Security: the protocols should be resilient against attacks like denial of service 

(DoS) or Sybil attacks. 

6. Energy efficient: converging to an agreement should require efficient and 

sustainable use of energy. 

Ismail and Materwala  [3] divide consensus protocol into categories such as Compute-

Intensive Based, Capability-Based, and Voting-Based. There are a lot of consensus 

protocols used in blockchains and cryptocurrencies, but the main ones can be categorized 

into these types: 

1.3.1 Proof of Work 

Proof-of-Work (PoW) [4] is probably the oldest consensus mechanism used in 

blockchains to achieve consensus and mine cryptocurrencies. In PoW, miners or 

participating nodes compete to solve complex mathematical problems using their 

computational power. The miner who solves the problem first gets to publish the block and 

transactions and in return is awarded with new cryptocurrency. The solution to the problem 

is called the proof of work. 
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After solving the problem, the miners share the solution with other miners who can 

easily validate the proof to the problem. The rationale behind this is to ensure that miners 

publish only valid transitions to the blockchain, and this can only be achieved by 

successfully expending computational resources to solve the problem. This also ensures 

that any wrongdoing or forging would require miners to recompute every block in the 

blockchain to rewrite history. 

Advantage - This feature offers one prime advantage to the system - security. Mining a 

block is challenging and that makes it difficult for bad actors to cheat the network. This 

also prevents against Sybil attack [5] as creating multiple identities doesn’t provide any 

advantage unless they all can provide computational resources to solve the problem. The 

complexity of the problems increases per round as only a limited number of coins can be 

mined. However, the difficulty is also tweaked periodically based on the competition to 

ensure blocks are published at a steady pace.  

Disadvantage - Spending computational resources directly translates into high energy 

consumption and that is the biggest drawback of this protocol. The requirement increases 

substantially as the problem complexity increases. Another criticism of PoW is that miners 

pooling their resources together to achieve a high combined mining power can introduce a 

level of centralization into the network. Large mining pools can dominate the network and 

control the consensus. 

1.3.2 Proof of Stake 

This consensus protocol works differently than PoW protocols which uses 

computational power. As the name suggests, the participation depends on the individual 

stake of the users. PoS [6] systems have the concept of validators that are chosen randomly 

based on the amount of cryptocurrency they stake in the network.  Validator nodes validate 
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all transactions that appear in the blockchain, and any malpractice would result into them 

losing all the stake as penalty. 

Instead of solving complex mathematical problems or puzzles, validators are randomly 

elected based on their stake in the system. In exchange for honestly validating transactions 

to publish blocks, validators are rewarded with transaction fees proportional to the total 

cryptocurrency they have staked. 

Advantage - PoS is energy efficient. Since it requires less than a fraction of computational 

power of PoW, this protocol requires minimal energy consumption. This is quite possibly 

the biggest advantage PoS systems have over other protocols. Transaction processing and 

validation and publishing blocks is extremely fast since there is no puzzle-solving involved. 

Disadvantage - PoS systems are somtimes considered to be less secure than PoW systems 

due to greater potential for centralization resulting from the lower cost of acquiring a stake 

in the network. Additionally, PoS is theoretically susceptible to bad actors who could 

influence validators to vote in their favor. Wealthy actors who own a significant stake in 

the network may have greater decision-making power over blocks. 

One specific problem with PoS is the "nothing-at-stake" problem [7], where validators 

could potentially validate blocks on multiple branches of a fork without penalty. This could 

lead to a situation where the blockchain fails to progress in a single direction while 

validators continue to receive rewards. The solution involves imposing penalties for this 

behavior; some PoS systems require participants to set aside some cryptocurrency (the 

stake) as a surety bond. 

Figure 3 compares the leader election process to publish blocks in PoW and PoS system. 

PoW uses computational contribution from clients and PoS uses clients’ stake as a direct 

alternative. 
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Figure 3: Contrasting PoW and PoS Mechanisms. Copied from [8] 

 
1.3.3 Delegated Proof of Stake 

Delegated Proof of Stake (DPoS) [9] is a variant of PoS where validators vote for an 

election committee or delegates who they trust to act in the best interest of the network. 

The votes are proportional to their stake in the network. This committee is of a fixed size 

and is responsible for proposing and validating blocks. This way, validators delegate their 

duties to a special set of validators. After successfully publishing blocks, the committee 

members can distribute the block rewards among the clients who voted for them.  

Advantage - DPoS is a reputation-based model that allows clients to remove bad-actor 

delegates by voting for new delegates to join the committee. Since the number of nodes 

that participate in the actual consensus is limited, DPoS can achieve extremely fast block 

publishing times and requires minimal energy consumption. 

Disadvantage - Delegating the power to propose, validate, and publish blocks to a fixed 

set of clients does pose the potential for centralization. Power is concentrated and breaking 

the consensus would only require collusion among only a small number of nodes (delegate 

pool). 
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1.3.4 Pure Proof of Stake 

Algorand’s Pure Proof of Stake (PPoS) [10] protocol is an improved version of the 

traditional PoS model. Validators are selected to propose blocks based on the stake they 

have in the network, but unlike in traditional PoS, they do not have to set aside any 

cryptocurrency to participate in the consensus. The protocol uses the total wallet value of 

each validator to determine their influence in proposing blocks. Validators are 

deterministically and secretly selected to propose and validate blocks, and the protocol and 

supporting algorithms are designed to allow all nodes in the network to participate in this 

process. 

Tendermint [11] also employs a PPoS where consensus depends only on the stake, but 

validators are required to bond coins to gain right to produce blocks. 

Advantage - PPoS systems offer significantly more energy efficiency than PoW and 

provide more randomness, security, and decentralization than traditional PoS. 

1.4 Incentives 

Incentives play a huge role in keeping the blockchain network secure. In a distributed 

system like blockchain where every decision is taken by nodes in consensus, incentives act 

as motive for participants to contribute to the network by proposing and validating blocks 

and preventing against attacks. Incentives can be roughly classified into two groups: 

1. Monetary based: these incentives are designed to engage participants from an 

economic standpoint, with PoW rewarding users with block rewards for finding the 

proof in the form of cryptocurrency and PoS rewarding the validators with 

transaction fees. The ultimate goal of monetary-based incentives is to ensure total 

gains from rewards outweigh the cost to act selfishly and jeopardize the network. 
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2. Non-monetary based: these incentives affect the reputation and credibility of 

clients in the network. These appeal to the emotional state of the participants and 

rewards and encourages them for good behavior.   

Research in [12] proposed interesting requirements for an effective incentive 

mechanism and used them to evaluate existing blockchain versions. Some of the 

requirements include: 

1. Individual Rationality (IR): The system should reward rational behavior, as most 

users are not dishonest but are driven by rewards and benefits. Incentive 

mechanisms need to ensure that the benefits outweigh the cost of participating or 

any dishonest activity. 

2. Incentive Compatibility (IC): The system can function smoothly if the mechanism 

can ensure that individual interests are compatible with the general interests of the 

group or the whole network in general. 

3. Incentive Fairness (IF): This highlights that the mechanism should be fair in 

rewarding clients duly and that the rewards should be proportional to their 

contribution. 

1.5 Guide to Paper 

The rest of this paper is structured as follows: immediately following the blockchain 

basics, we present the problem statement that this paper aims to address, as well as the 

objectives and outcomes of this project. Chapter 2 provides the literature review for the 

background and related work. Chapter 3 is a comprehensive review of Algorand and its 

Byzantine consensus protocol. Chapters 4 and 5 cover the design and implementation of 

Algorand for SpartanGold. Chapter 6 evaluates various undesirable scenarios and discusses 
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how the algorithm handles them. Finally, Chapters 7 and 8 summarize the project and 

highlight areas for future work. 

1.6 Problem Statement 

SpartanGold currently uses a PoW consensus model, which suffers from scalability and 

high energy consumption. It also faces a 51% attack problem, where miners continue to 

mine in single-threaded mode before checking for any messages as long as their mining 

rounds or power. In SpartanGold semantics, mining power directly translates to miners’ 

computational power. Therefore, there is a need to implement a PoS protocol using 

SpartanGold as the base. 

Almost all PoS protocols have one major disadvantage: setting stake aside to participate 

in the network. Although the threat of losing assets works as a great incentive for 

participants to function honestly, it is undesirable for users to set aside a huge portion of 

their capital with no returns on investment just for the sake of the network and a slender 

chance of ever publishing a block. Algorand’s pure PoS protocol solves this issue by 

enabling users to utilize their total stake without actually staking. Their Byzantine 

Agreement consensus protocol can be scaled to many users in the network using Verifiable 

Random Functions (VRFs), where users can check privately if they are chosen in the 

lottery. It also shows how the system can handle partitions either on the network side or in 

the presence of an adversary. 

This research project aims to leverage the advantages of Algorand’s novel features 

while also maintaining SpartanGold’s cryptographic primitives and converting it into a PoS 

model. 
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1.7 Project Objectives 

This primary objective of this research project is to implement and simulate Algorand’s 

pure PoS model. There are some other specific objectives of this research and 

implementation:   

1. To develop a novel consensus protocol for SpartanGold replacing its PoW protocol 

with a pure PoS model based on Algorand’s Byzantine Agreement consensus 

protocol. 

2. Implement Algorand’s PoS model on top of SpartanGold by extending and 

overriding the clients, blocks and blockchain primitives while also preserving the 

base setup of SpartanGold.  

3. Execute and demonstrate the working of Algorand for multiple rounds, highlighting 

how the algorithm progresses at every stage and reaches tentative or final 

consensus.  

4. Provide a mechanism for publishing empty blocks in rounds where no block 

proposers can be obtained. 

5. Experiment with different number of users and account balances, delays in 

messages, and network partition to how the algorithm progresses and detects 

possible forks. 

6. Provide documentation and open-source code for the new consensus algorithm to 

enable others to replicate and extend the research. 
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CHAPTER 2 

Related Work 

2.1 Bitcoin 

Bitcoin was the first protocol to implement a decentralized blockchain or ledger. It was 

invented in 2008 by an anonymous user or group called Satoshi Nakamoto and was 

officially introduced to the public in their whitepaper [13]. The unit of this cryptocurrency 

is called "bitcoin." The term with the capitalized first letter "B" denotes the protocol, while 

the lowercase is reserved for the cryptocurrency. The smallest unit is called a satoshi. One 

bitcoin is equal to 100 million satoshis. Bitcoin served as an inspiration for the invention 

and development of all other blockchain-based cryptocurrencies. 

Bitcoin introduced a means of electronic transactions that does not require any trust-

based model. It is composed of currency developed from digital signatures of transactions 

chained together, and these transactions are publicly recorded in blocks. Any transfer of 

currency requires digitally signing the hash of the previous transaction and the public key 

of the receiver and appending it to the coin. These blocks or transactions are almost 

impossible to manipulate by attackers if a significant portion of the network is controlled 

by honest nodes. Bitcoin uses a peer-to-peer system that allows members to join and leave 

at will. Any mining or validation of blocks requires CPU computation that involves solving 

mathematical problems and validating their proofs. 

Figure 4 shows how the transactions are chained using the hash and signature of their 

previous transactions. 
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Figure 4: Chaining of transactions. Copied from [13] 

 

Proof-of-work - Bitcoin uses a PoW protocol for consensus in its distributed protocol. The 

miners search for a value that, when hashed, would generate a hash with several leading 

zeros. A nonce is incremented in the block to produce a hash until a value is found that is 

less than the required difficulty target or has the required number of zero bits. The value of 

the target is so low that most of the hashes produce many leading zeros. For example, a 

hash could be: 

0000000000000000000ecf87bf07dcd21dc0d 

The difficulty is adjusted so that it would require a considerable amount of computation 

to find the proof, but verification would be inexpensive. Once blocks are published, an 

attacker would need to expend the same amount of computation that was required in the 

first place. This is designed to thwart any attempts to modify the blocks or transactions. If 

anyone had to change any past blocks, they would need to recalculate that block and all 

blocks after it. The amount of computation and energy required to do this is exponential. 
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2.2 Ethereum 

Ethereum is a decentralized blockchain technology that became famous after Bitcoin. 

Currently it has the second highest market cap after Bitcoin. The cryptocurrency used on 

the Ethereum blockchain is called Ether. In 2013, Vitalik Buterin and other founders 

published a comprehensive whitepaper [14] describing Ethereum's design. 

Ethereum provides a smart-contract feature, which allows users to design and deploy 

programs that perform transactions based on an agreement on behalf of clients. It also 

allows for the development of decentralized applications (DApps) on top of it. Ethereum 

created a special standard for non-fungible tokens (NFTs) [15], which are tokens that can 

be tied to any digital media on the blockchain and are considered a unique artifact that 

exists at that moment in time. 

The intent behind Ethereum was to provide a blockchain technology that employs a 

Turing-complete programming language that enables users to create and deploy smart 

contracts on the fly to expand the use cases to DApps, digital assets, smart contracts, NFTs, 

etc. 

One of the key components of Ethereum is the Ethereum Virtual Machine (EVM), 

which is a runtime environment. It allows developers to write smart contracts in a high-

level language, mainly Solidity, and use Ethereum to execute them. EVM provides a stack, 

memory, gas, program counters, and more. 

Gas is the unit of measurement for the computation required to execute anything on the 

EVM. Transaction fees are calculated using gas. The operations that can be performed in 

smart contracts are pre-defined with a gas price. Every transaction requires the sender to 

include the gas price and the gas limit to have that transaction included in the blockchain. 
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The transaction fees paid to the block proposer are specified by the sender's gas. The excess 

gas acts as a tip or an incentive for the block proposers. 

Ethereum's mining under PoW works differently than Bitcoin's PoW. It involves 

random computation from the state, computing random transactions from the past N blocks, 

and calculating the hash. This is advantageous in two ways: first, smart contracts can 

require any level of computation, so there is no need for ASICs, and second, since mining 

requires every node to have access to the entire blockchain and validate transactions, there 

is no need for mining pools. 

Ethereum initially used a PoW consensus model, but the movement to a PoS model, 

called The Merge, occurred on September 15, 2022. This was a significant advancement in 

the blockchain technology space in terms of moving toward an energy-efficient and 

environmentally friendly green consensus mechanism. The energy consumption required 

to run Ethereum dropped by nearly 99.95%, which is a remarkable achievement. 

 
Figure 5: Ethereum’s The Merge. Copied from [16] 

Figure 5 pictures Ethereum’s official movement from its PoW, Mainnet, to its new PoS 

layer, Beacon Chain. The Merge also paved the way for future updates like sharding. 
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Figure 6: Annual energy utilization. Copied from [17] 

Figure 5 shows the comparison of energy consumption between Ethereum PoS and the 

other biggest technologies in the world. 

2.3 Proof of Activity 

Proof-of-Activity (PoA) is a newer consensus protocol developed by Iddo Bentov et al. 

[18]. It is a hybrid model that combines the PoW and PoS models and consolidates their 

security levels. PoW gives power to those who expend computational resources, while PoS 

gives power to those who have a stake in the network. However, PoW suffers from mining 

pools and dedicated data centers set up to outcompete other miners, and many PoS systems 

suffer from centralization and power concentration in a few validators. PoA addresses these 

issues by combining the critical aspects of both these protocols. 

In PoA, nodes are required to perform more complex mathematical computations than 

other PoW network nodes. One of the key principles in PoA is called "follow-the-satoshi." 
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This technique involves converting a pseudorandom value into a satoshi that is drawn from 

a pool of all the satoshis ever minted or generated. The basic idea is to choose a random 

value between zero and the total number of satoshis, find the block where this satoshi was 

generated, and then traverse all the transactions where this satoshi was transferred to 

ultimately find the current owner. 

Mining and validation in PoA combine the best of both worlds of PoW and PoS. The 

basic flow can be described as follows: 

1. Miners solve mathematical puzzles to find the proof that is smaller than the target. 

2. The proof is broadcasted to all the nodes for verification. 

3. All the nodes use follow-the-satoshi and the block hash to realize N stakeholders. 

4. Every online node checks if they belong to the N stakeholders. If they do, they sign 

the block with the private key that holds the drawn satoshi and broadcast their 

signature. 

5. After other nodes verify all N signatures, they add the block to the chain, and the 

rewards are distributed between the miner and the validators or stakeholders. 

The PoS in PoA helps reduce the centralization risk of PoW by mitigating the formation 

of mining pools. It also reduces the energy requirement associated with PoW. Some PoS 

systems faced the problem where even non-participating high-stake nodes continued to 

receive rewards. PoA tackles this by rewarding only active nodes in the system who 

maintain an online node and take active participation in the consensus. 

By transferring the power to validate transactions to the stakeholders, PoA addresses 

the centralization problem by not solely relying on miners' CPU power. It enables 

participants with stakes to make decisions in the interest of the network, promoting more 

decentralization and ensuring higher security. 
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2.4 Ouroborus 

Ouroboros is a blockchain protocol that employs proof-of-stake and is used by the 

Cardano public blockchain. Kiayias et al [19] claim in their research proposal titled "A 

Provably Secure Proof-of-Stake Blockchain Protocol" that Ouroboros is the first 

blockchain protocol that ensures rigorous security. The protocol is designed to be more 

energy-efficient than proof-of-work protocols and introduces a new incentive mechanism 

to prevent attacks like selfish mining. 

Ouroboros divides time into epochs and slots, with each slot corresponding to one 

block. A leader is elected for every slot, and to prevent adversarial attacks, each leader is 

required to consider the last few blocks in the received chain temporarily. The chain that is 

longer than the predetermined number of historical blocks is accepted. Participants have to 

synchronize with the global clock that manages the epochs for everyone in the network and 

register with the network and a global random oracle beacon that transmits random values 

to all nodes. 

To participate in the staking procedure, stakeholders use their secret key to calculate 

the Verifiable Random Function (VRF) to generate a hash and a proof. If the hash is below 

a threshold, the stakeholder is chosen as a block proposer for that slot. The proposer packs 

all the transactions, the VRF proof, generates a new secret key, and broadcasts the block to 

the network. The rewards are collected at the end of each epoch and distributed to all the 

stakeholders involved. 

Ouroboros requires clients to be online for the leader election process. Stakeholders 

who can't be online all the time can delegate their duties to stake pools, which can work on 

their behalf. At the end of each epoch, rewards are distributed to all stakeholders 

proportionally to their stake in the pool. The use of random oracles and VRFs provides 
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randomness and fairness. The hashes produced during each slot are stored in the blocks and 

are used later to generate the seed for a future round. 

To prevent centralization, Ouroboros employs a neat solution on staking pools. Staking 

pools can only work as delegates if they represent a minimum threshold of stake of the 

entire network. This thwarts a fragmentation attack where attackers might increase the 

number of staking pools and reduce the stake in each pool. If the staking pools exceed a 

certain threshold of the total stake, the mining rewards remain constant, making it less 

attractive to profit-maximizing miners. 

In conclusion, Ouroboros is a highly secure and efficient proof-of-stake protocol that 

uses innovative mechanisms to prevent attacks and centralization. It's a key component of 

the Cardano blockchain network. 

2.5 SpartanGold 

SpartanGold is a JavaScript implementation of a blockchain cryptocurrency developed 

and authored by Prof. Thomas Austin in his research [20], who also happens to be the 

project advisor of this research paper. SpartanGold is a blockchain cryptocurrency 

developed for research and academic purposes, as well as for rapid prototyping. It is 

inspired by Bitcoin and highlights the main features of the famous blockchain while 

simplifying or eliminating several complex features. 

It employs a proof-of-work consensus mechanism where miners are compensated with 

transaction fees for their work in mining and publishing blocks. Originally, it started with 

an unspent-transaction output (UTXO) model for all users but later moved to a simple 

account-based approach for simplicity and ease of understanding. In this model, every 

client and miner own coins and maintains a map of the account balance of all other clients 
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and miners. Any rewards or transactions are simply added or subtracted from the balance 

of the parties involved. 

Mining in SpartanGold is simplified for ease of understanding. It requires miners to 

calculate and increment the block hash value until it is just lower than the target set for the 

blockchain. At this point, a proof-of-work value is technically found, and miners broadcast 

this on the network. After verification, rewards are distributed, and a new mining round 

begins to find the next block. 

Some of the classes used in SpartanGold are: 

1. Transaction: stores the relevant information for any transaction like fees, sender 

and receiver addresses, signature and public keys of the sender, etc. 

2. Block: stores the balances and transactions. 

3. Client: manage the clients in the system who take care of storing the keys, managing 

transactions, and storing the blocks in the network. 

4. Miner: an extension of the Client that is responsible for mining and broadcasting 

the proof-of-work to all others. 

5. Blockchain: stores the general settings and constants required for the simulation. 

SpartanGold works in two modes:  

1. single-threaded: Due to JavaScript’s single threaded nature and its run-to-

completion configuration, only one miner can be active at a time. In reality, mining 

is strictly concurrent. To handle this, miners execute exclusively for the amount of 

mining power they own. Once that is exhausted, other miners are switched on the 

thread to start or continue their mining.  
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2. multi-process: This mode overcomes the shortcomings of the single-threaded 

mode because it involves miners running over separate processes or instances and 

they communicate with each other over TCP/IP. 

2.6 Verifiable Random Function 

A Verifiable Random Function (VRF) is a cryptographic primitive that combines hash 

functions and public-key infrastructure. It was introduced by Micali et al. [21] in their 

research. The VRF generates a hash and a proof value. The hash is a pseudorandom value 

generated on an input, while the proof binds the hash value to the identity of the user. By 

using the user's public key and the proof, anyone can verify that the hash was indeed 

generated by the same user. 

VRFs typically include these primitives: 

1. secret key of the user: sku 

2. public key of the user: pku  

3. cryptographic random value generated by the VRF: hash 

4. proof of the cryptographic hash generated using sku: 𝜋 

5. input data for the hash function: 𝛼 

A VRF can be demonstrated as: 

⟨hash, π⟩ ← VRFsk(𝛼) 

VRFs are deterministic algorithms, meaning that they produce the same hash value and 

proof for a given pair of (secret key, 𝛼). VRFs should fulfill some predefined requirements. 

Some of these include: 

1. Full uniqueness: for a given pair of (public key, 𝛼) there will exist only one hash 

value which can be proved successfully. There will never be 2 valid proofs for the 

same pair. 
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2. Full Collison Resistance: for a given secret key, it should be impossible to have 2 

different input values that generate the same hash value.  

3. Full Pseudorandomness: if an adversary observes an output hash without its proof, 

then the hash value should be indistinguishable from any other random value. 

VRFs have a wide range of applications in cryptography. They can be used to generate 

pseudorandom values in lotteries or choosing block proposers in various Proof of Stake 

(PoS) protocols like Ouroboros. VRFs are also heavily used in cryptographic sortition in 

multiple stages of the Algorand consensus protocol. They are also used to prevent certain 

attacks, as described previously. 
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CHAPTER 3 

Algorand 

3.1 Introduction 

As described in the previous section, the main objective of this research project is to 

implement Algorand. Therefore, this section provides a comprehensive review of the 

cryptocurrency. Y. Gilad et al. [22] claim that Algorand can confirm transactions with a 

latency as short as a minute while scaling to many users. Additionally, the possibility of a 

fork is negligible, even when the network is partitioned, whereas certain cryptocurrencies 

require significant time to recover to a safe state. Algorand proposes a novel Byzantine 

Agreement (BA) consensus protocol called BA⋆ that uses Verifiable Random Functions 

(VRFs), described in section 2.6, to cover a wide range of users. The users preserve only 

their secret keys and do not maintain any private state to prevent any attack attempts once 

their identity is known to the network. Section 3.6 covers the BA⋆ protocol in detail. Y. 

Gilad et al. [22] conclude with experimental results involving 500,000 clients, claiming 

that Algorand's throughput is around 125 times that of Bitcoin and that it faces minimal 

penalties while scaling to additional users. 

Algorand uses a pure proof-of-stake (PPoS) protocol [10]. PPoS was described in 

section 1.3.4. Compared to PoW, Algorand does not require any expensive computations 

for block creation, is highly decentralized, produces blocks within seconds, and never forks. 

Compared to delegated PoS, users don't have to delegate their power to other members to 

produce blocks, although there could be a version of this that allows participants to delegate 

their power to other individuals. However, this requires significant research to handle the 

centralization that comes with pooling and delegating. Every user is capable of participating 

- with odds proportional to their stake. Compared to other PoS protocols, Algorand users 
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reserve the right to spend their stake, as the protocol does not require them to set aside some 

for security. Users can participate in the consensus and enjoy financial freedom, which is a 

practical advantage compared to other PoS protocols like Tendermint [11]. 

3.2 Challenges and Solutions 

Algorand seeks to overcome the shortcomings of other cryptocurrencies. The research 

highlights three specific challenges and how Algorand plans to tackle them.  

1. The cryptocurrency must be resilient to Sybil attacks, where an attacker creates 

multiple identities to manipulate the Byzantine agreement protocol. To mitigate 

this, Algorand relies on clients' stakes as a measure of their contribution. A 

consensus can be reached as long as the majority of the total stake is honest, which 

is a constant somewhat greater than 2/3. Algorand can prevent double spending and 

forks as long as more than two-thirds of the total coins or money is owned by honest 

users. 

2. The BA⋆ algorithm should scale to millions of users. To achieve this, Algorand 

introduces a concept of committees that participate in the consensus. These 

committees consist of a fixed number of members chosen randomly from the entire 

network based on their stake. These committees are responsible for executing all 

stages of the BA⋆ protocol. Randomness governed by individual stake ensures a 

high honest fraction. Other users can simply observe the communication and find 

out proposed blocks, votes, membership proofs, etc. 

3. The network must prevent disruptive attacks and function even when attackers 

partition the network. When a committee member participates and shares their 

votes, their identity is revealed, and attackers could target them. To address this, 

Algorand replaces committee members in every stage of the protocol. As soon as 
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the members communicate, they are no longer required for the protocol. As 

mentioned before, BA⋆ does not require any clients to store any private state. For 

the next stage, the lottery is run again, which allows all users to participate and 

check if they are selected. 

3.3 Overview 

Algorand works similarly to other blockchains in terms of transactions, growing in 

multiple asynchronous rounds, and every block containing the hash of the previous block. 

Communication in Algorand occurs via a gossip protocol where new transactions are 

gossiped, and other users collect all transactions they receive through this gossip in case 

they are chosen as block proposers. Users choose a subset of other users to gossip to, and 

every message is signed by their private key, and its signature can be verified by all 

receivers. The same message is never forwarded twice. 

To propose blocks, Algorand uses cryptographic sortition, or a lottery, which every user 

executes privately to check if they are selected. Cryptographic sortition is described in 

section 3.4. It works like a weighted average of users’ stake, and there can be multiple 

winning tokens for a single user. There can be multiple block proposers in a round, but the 

priority of all those block values is compared to decide on a single value.  

Receiving block proposals does not guarantee safety since, as described above, there 

can be multiple proposals. Algorand uses BA⋆ to reach consensus. Committee members 

cast their votes in their respective steps and rounds, and BA⋆ would execute until a step is 

found where a predefined majority of users have reached consensus. 
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Figure 7: Basic message flow in BA⋆. Copied from [22] 

Figure 7 describes a simple flow of messages between clients in a single step of BA⋆. The 

colored arrow indicates the message from a specific client. 

Algorand works in steps to reach consensus before publishing a block. The BA⋆ results 

into two types of consensuses: 

1. FINAL: A user reaching final consensus would mean that any other user who 

reaches final or tentative consensus in the same round would do so on the same 

block hash. This ensures safety since future blocks will be linked to this final block. 

A transaction would be successfully confirmed if it belongs to a block that has 

reached final consensus. 

2. TENTATIVE: A tentative consensus means users have reached tentative 

consensus on different block values, and since no block hash has clear majority, a 

final consensus cannot be reached. A transaction belonging to a tentative block will 

only be confirmed once its successor blocks reach final consensus. A tentative 

consensus can be achieved in 2 cases: 

1. If the network is strongly synchronous, and an adversary has 

manipulated BA⋆ into reaching tentative consensus on a block. This 

does not reflect that BA⋆ ended up with two block values but only 
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its inability to reach majority consensus. Once following blocks are 

finalized, earlier blocks will be confirmed. 

2. If the network is weakly synchronous, and an adversary has 

succeeded in partitioning the network, it can now end up with two 

different blocks. This results in a fork which Algorand resolves by 

periodically executing BA⋆ under fork resolution parameters and 

then informing which fork the users should switch to. 

In a strongly synchronous network, Algorand [22] claims to reach consensus in a minimum 

of four steps and a maximum of 13 steps. 

3.4 Sortition 

The cryptographic sortition is the lottery mentioned in the previous section. It is an 

algorithm that outputs a subset of users randomly based on their weights. In this research, 

stakes and weights are used interchangeably. For a given user with weight wi and the total 

weight of all users in the system 𝑊 =	∑ 𝑤!! , the probability of selection of a user i is 

proportional to wi/W. The pseudorandomness is derived from the seed. Everyone in the 

network is aware of this seed value. The other prerequisite for executing sortition is a pair 

of public/private keys. Sortition uses verifiable random functions (VRFs), as described in 

section 2.6. To recap, a proof and a hash value are generated when a VRF is provided with 

an input. The hash remains indistinguishable from a random value if the secret key sk is 

unknown. The proof 𝜋 can help anyone determine if the hash is derived from an input x 

using the public key pk, without ever needing the secret key. 
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Figure 8: The cryptographic sortition algorithm. Copied from [22] 

The selection process: Figure 8 highlights the cryptographic sortition algorithm used 

by Algorand. sk is the secret key of the user executing the algorithm. τ is the threshold that 

indicates the expected number of users for the given role. The role parameter takes in the 

different roles used by the user, such as proposing a block or being a member of a 

committee of BA⋆. To prevent against Sybil attacks, Algorand outputs a parameter j that 

indicates the number of times user u was selected based on their weight. j denotes the total 

number of sub-users of user u. The hash determines the number of selected sub-users using 

a binomial distribution. The probability that exactly k sub-users were chosen out of wi, or 

simply w, follows the equation:  

B(k;w, p) 	= 3"#4	𝑝
# 	(1 − 𝑝)"$# where ∑ B(k;w, p) = 1"

#%&  

To determine the final number of winning sub-users for any w, the hash value is 

normalized to consecutive intervals in the interval [0, 1), where any consecutive interval 

range is denoted by: 

8∑ B(k;w, p)'
#%& , ∑ B(k;w, p)'()

#%& 4		where	j ∈ {0, 1, …, w}	

To find the winning number of sub-users, the interval in which ℎ𝑎𝑠ℎ/2*+,*-./ belongs 

is checked. To verify the number of winning sub-users, the proof is used, and the binomial 

interval retrieval process is executed again. 
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Figure 9: Intervals in the range [0, 1). Copied from [23] 

In [23], the author explains this pictographically as shown in Figure 9, where the total 

weight is assumed to be 2. The exercise is about randomly choosing a point on the line and 

selecting the interval it belongs to. The probability of finding the winning interval is given 

by B(k;w,p). It can be observed that the probability decreases with an increase in the 

number of winning sub-users k, and so users are more likely to realize k as 0 or a very small 

value. The verification algorithm which is run by all other users is described in Figure 10. 

 
Figure 10: Verify sortition for a user. Copied from [22] 

One of the key components of cryptographic sortition is the seed. Every block round 

requires a new seed that is known to everyone and should be chosen to prevent attackers 

from manipulating it. The seed for round n is determined in round n-1. Every block 

proposer chosen for round n-1 also calculates the seed for round n using the same VRF 

function, where the input is the concatenation of the seed of the current round and the next 

round number. The seed is included so that when consensus is reached, every user has the 

knowledge of the seed to be used. If an invalid seed is found, an empty block is published 
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for that round. The seed is also refreshed every R rounds to prevent any manipulation by 

the attacker. At round n, the sortition is passed seedn-1-(n % R). 

3.5 Block Proposal 

Algorand uses a threshold value τproposer in the sortition algorithm to ensure that a block 

is produced every round. Setting τproposer to 26 ensures that at least 1 and at most 70 block 

proposers are selected for a given round with a probability as high as 1 −	10$)). However, 

users may obtain multiple winning sub-users after running sortition, which can result in a 

lot of communication cost if all are gossiped. Therefore, the priority of each sub-user j 

needs to be determined by hashing the VRF output with all values of j and finding the 

highest priority hash value, which is then gossiped to every user. The other users only need 

to consider the highest priority blocks that they observe and discard all other irrelevant 

values. The priority block values and sortition proofs are one set of messages, while the 

block is sent separately as another message. 

Each user should wait for an appropriate amount of time to gather block proposals. A 

shorter wait time would mean no block proposals are received, and the user starts BA⋆ with 

an empty block, which may lead to an empty block being reached by consensus if all users 

do the same. On the other hand, a longer wait time would introduce unnecessary latency. 

Algorand identifies three types of timeouts with respect to users waiting: 

a. λblock: the time any user would wait for receiving the block after receiving the 

highest block hash and proof, after which it will choose an empty block instead. 

b. λstepvar: average time it takes the user to finish the last step of BA⋆. This is used 

usually when a user has already reached consensus and is waiting for other users who are 

still in the previous round. 

c. λpriority: time required to broadcast the block hash and its proof. 
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In case some of the block proposers are malicious, the network can be tricked into running 

BA⋆ with different block values, resulting in Algorand reaching consensus on empty 

blocks. This scenario is plausible but unlikely since an honest proposer with the highest 

priority block will broadcast the same block to all users, leading to a consensus being 

reached. 

3.6 BA⋆	

The most talked about protocol for Algorand is their BA⋆ protocol. It works in two 

phases: 

1. First phase: the consensus on a block needs to be reduced to one of two options. 

2. Second phase: BA⋆ agrees on either agreement on a proposed block or an empty 

block. 

The stages of the protocol are divided into steps. The first phase involves strictly two 

steps, while the second phase takes 2 steps in the best case or 11 in the worst case. In every 

step, committee members cast their vote on some block, and everyone receives and counts 

these votes. The value that receives a threshold number of votes will be used by the users 

in the next step, provided they are selected as committee members. If they don't receive 

enough votes, they have to TIMEOUT, and the current step number determines which value 

will be used next. 

If BA⋆ receives enough votes, it declares final consensus in its final step to confirm 

that there wouldn't be any other block value that also received enough votes. If this is not 

achieved, a tentative consensus is declared. An overview of the BA⋆ algorithm is described 

in Figure 11. 
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Figure 11: BA⋆ main algorithm. Copied from [22] 

The procedure inputs a context ctx which is the current state of the blockchain, a round 

number denoting the current round for which blocks are being proposed, and a highest-

priority block received. The context ctx stores specifically these values: 

a. seed for the round 

b. last confirmed block 

c. all user weights or stakes 

The consensus decision is also determined by BA⋆. All the components of this algorithm 

are covered in the following sections of this research report. 

3.7 Voting 

 
Figure 12: Algorithm for voting. Copied from [22] 
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The voting used by Algorand’s committee members is described in Figure 12. First, it 

checks if the user can vote in the given round and step. This is achieved by calling sortition, 

described in section 3.4. Second, if the user is selected, they broadcast the block hash value 

passed to the function. The message also contains the previous block hash, derived from 

the context ctx, and is signed with their secret key. τ is the threshold for sortition. 

3.8 Count Votes and Process Messages 

 
Figure 13: Algorithm for counting votes. Copied from [22] 

The votes cast by the committee members are counted by an algorithm depicted in 

Figure 13. The message buffer incomingMsgs collects votes for any round and step. Every 

vote is processed, described in Figure 14, which validates them. ProcessMsg() returns 0 
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votes if the vote is not valid. It runs the sortition verification, described in section 3.4, to 

determine the number of sub-users j linked to the vote. T is the committee size that acts as 

a threshold for BA⋆ and τ is the expected number of committee members in sortition. Once 

any block value receives more than T * τ votes, the CountVotes() algorithm immediately 

returns it. If not enough votes are received within λ time then the function returns a 

TIMEOUT. Note that ProcessMsg() ignores duplicate votes. 

 
Figure 14: Validate votes. Copied from [22] 

3.9 Reduction 

In the first phase of BA⋆, the agreement is reduced to one of two options: either a block 

hash or an empty hash. This is done by the Reduction algorithm presented in Figure 15. It 

ensures liveness and outputs either a block hash value or an empty block hash value. The 

first step is where committee members vote for the block hash provided by BA⋆. The 

second step requires committee members to vote for the block hash that received the 

required T * τ threshold votes or vote for an empty block hash. When the network is strongly 

synchronous and the highest priority block proposer is not malicious, almost all users will 

input the same hblock value to Reduction and Reduction will return the same hblock to the 
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next stage as well. In the opposite case, if the highest priority block user was indeed 

malicious, users will start Reduction with different hblock values and no particular hblock 

will win threshold amount of votes. Thus, Reduction will end with empty_hash. 

 
Figure 15: Reduction algorithm. Copied from [22] 

3.10 Binary BA⋆	

The Binary BA⋆ algorithm used in the second phase of BA⋆ is presented in Figure 16. 

It describes reaching agreement either on a block hash or an empty block hash. Algorand’s 

research [22] explains how the protocol achieves safety in strong and weak synchrony. 
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3.10.1 Strong synchrony 

In this scenario, it is assumed that the network is strongly connected, and a majority of 

users are honest. If a user who receives more than T * τ votes for any value, they vote for 

the same value in the following step. If no value has a majority, then the next vote should 

be selected in a way that should guarantee consensus in this strongly synchronous network 

state. If a user A observes enough votes for a value, they do not immediately return the 

value. It may so happen that an adversary has sent A votes that pushes its count past the 

threshold, but the other users do not see these votes and therefore, TIMEOUT. User A 

would return consensus on the block while others are still stuck. In this critical situation, 

the users returning from a timeout should continue to work on the value that could have 

potentially been returned by A. If more users returned consensus in the first step like A, 

there wouldn’t be enough users to CountVotes() for the next step. Therefore, if a user has 

reached consensus, they vote for the same value in the following 3 steps, namely step+1, 

step+2, and step+3. This is so that enough votes are pushed for the value so that users who 

are lagging do not miss out on them. These users can count these votes in their following 

three steps and then return consensus in the 4th step which would be the second iteration 

of the while loop.  

The common and ideal scenario is when the network is strongly synchronous. Most 

users will observe the same starting block_hash and reach consensus in the first step for the 

same block_hash value. This is where everyone votes again for the ‘final’ step before 

returning. The final step has a larger committee size and to decide the consensus on a block 

value, its votes for the ‘final’ step are counted. 
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Figure 16: BinaryBA⋆ algorithm. Copied from [22] 
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3.10.2 Weak synchrony 

This scenario arises when the network has a partition, and there is a risk that BinaryBA⋆ 

may end up with consensus on two block values. Let's consider a case where only user A 

receives votes for a block, but the messages are dropped for all others. In this case, A has 

enough votes to reach consensus, but other users move to the next step where they vote for 

the block hash again. These messages are dropped again, due to which the users now vote 

for empty hash, and this is when the messages are delivered. Seeing enough votes, a 

consensus will be reached for empty hash, but now BinaryBA⋆ has resolved to two separate 

block values, resulting in a fork. This is where the concepts of final and tentative consensus 

come into play. Final consensus is only decided when enough users have voted for the same 

value and no other value for that round. Tentative simply means that safety couldn't be 

ensured. The final consensus depends on the votes designated for the final step. This is a 

special vote indicating that a strong agreement is reached, and the block can be published. 

In the described scenario above, when A returns consensus, it will never achieve final 

consensus because it will never have enough users who voted final on that particular block 

value. 

The issue where users are divided into two groups remains unresolved. Assume a group of 

users is voting for empty hash and combined with adversary’s votes can cross the threshold. 

And there is another group who are voting for block hash. Locally, neither of the groups 

has enough votes. Since the procedure is known to the adversary, they can manipulate and 

control what everyone votes for in the next step. To ensure users vote for empty hash, the 

adversary sends its votes for empty hash, which gives them enough majority. To make users 

vote for block hash, the adversary simply lets their CountVotes() return a timeout, after 

which the users reset the block value to block hash for the next step, as described in the 
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algorithm depicted in Figure 16. This can be performed indefinitely and halt the progress 

forever. The solution to this is a simple algorithm called CommonCoin described in Figure 

17. 

 
Figure 17: Calculating a common coin. Copied from [22] 

CommonCoin acts like a coin flip between block hash or empty hash. If enough users 

realize the same coin bit without the adversary knowing it, consensus can be reached in 

50% of the cases since it's the probability that the adversary guessed it wrong. The 

implementation takes use of the VRF sortition hashes and calculates the lowest sortition 

hash users observe in the current step. If a committee member had multiple sub-users 

selected, the sortition hash is concatenated with all those sub-users’ values, and the 

minimum is found of those. The function returns with the least significant bit (LSB) of the 

minimum hash, which can either be 0 or 1. Since the VRF output was random, the hashes 

are random, and so will be their LSB. If the user with the lowest hash was honest, then all 

the users that received their message will also realize the same coin. If the adversary 

controls the lowest hash, they can send it only to certain users, again splitting the users who 

observe different coins. But given the fact that there are more than 2/3rd honest users who 

can control the lowest hash and with a 50% probability in the CommonCoin process, the 

consensus can be reached with more than 1/3 probability in a single iteration of the while 
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loop. Since the loop contains a sequence of 3 steps, and as per the calculation, consensus 

can be reached with probability (1/3), BinaryBA⋆ requires 2 + 3 * 3 = 11 steps to reach 

consensus in the worst case, where the 2 extra steps account for the Reduction steps that 

led to BinaryBA⋆.  

3.11 Fork resolution 

If the network is not synchronous, forks can occur, as explained in previous sections. 

The liveness property is still maintained because BA⋆ will result in tentative consensus, 

but it impacts safety because users on different forks will not consider each other's votes 

since their values for ctx.last_block will be different (see figure 14). One of the forks will 

grow longer, and the other will not have any users to put the votes past the threshold, 

causing BA⋆ to never reach consensus there. The solution is fork resolution. Algorand 

periodically executes fork resolution where a fork is proposed that everyone should agree 

to, and BA⋆ is used again to reach consensus. Users monitor even those votes that do not 

belong to their fork, for future use. The recovery protocol is similar to block proposal. They 

all run sortition to be selected as the "fork proposer" where they propose an empty block 

that belongs to the longest fork they have observed. Every user verifies the block and its 

previous hashes, and if it is the longest chain the user has seen. The fork should include all 

final blocks. In the end, they all execute BA⋆ to reach consensus on the block with the 

round number in it. 
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CHAPTER 4 

Design 

This section of the project report covers the design decisions and the general flow of 

the Algorand protocol in the implementation1. It also discusses the reasoning for reworking 

some of the SpartanGold components to enhance usability and understanding. Since this 

project is developed using the SpartanGold framework, it is also developed in JavaScript. 

 Section 2.5 briefly explains the classes used in SpartanGold. However, in our 

implementation, these classes were removed: 

1. Transaction: For simplicity, this class was not included in our initial 

implementation of the Algorand protocol, which focuses primarily on the Byzantine 

consensus protocol. It may be considered for future work. 

2. Miner: This class was an extension of the Client class and dealt specifically with 

initiating a new search and mining for proof. However, since this project uses a PoS 

approach on SpartanGold, mining is no longer necessary. 

4.1 Classes 

The key files of our implementation include: 

1. Driver: This serves as the entry point for the application and is similar to the setup 

in SpartanGold. The driver sets up the blockchain, clients, network, and the genesis 

block. Each client is initialized with a starting balance, which corresponds to its 

weight or stake in the cryptographic sortition process for all stages. The driver also 

defines a special genesis seed to be used for the genesis block before the blockchain 

 
1 For more information about our Pure Proof of Stake implementation, please see my GitHub repository: 
https://github.com/nimesh13/pure-proof-of-stake 
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begins adding blocks. The actual genesis seed used in our implementation is 

described as: 

let genesisSeed = "# THIS IS GENESIS BLOCK SEED FOR CS298 #" 

The driver initializes all clients using client.initialize() and they all begin execution for 

a designated period of time. After this period, their balances at their stage are printed, and 

the process terminates. 

2. StakeBlock: This the block class of SpartanGold-Algorand. It is an extension of the 

original Block class with a few added functionalities. The class declaration is 

described as: 

class StakeBlock extends Block 

StakeBlock sets the seed for block creation and initializes the parameters that deal 

with sortition proof, hash, number of sub-users or tokens, and the status of the block 

- whether final or tentative. The following methods are available within the 

StakeBlock class: 

a. getTotalCoins() - calculates the total number of coins in the system 

concerning a block. The result is represented as W, which is used in the 

cryptographic sortition process.  

b. getContext() - generates the context ctx that stores the current state of the 

blockchain. It consists mainly of these 4 values: 

1.  seed - of the current round 

2.  lastBlock - block hash of the previous block 

3.  w - balances of all the clients. 

4.  W - the total number of coins in the system, calculated using 

getTotalCoins() 
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c. serialize() - this represents the snapshot of a block. The StakeBlock is 

translated into a json object which is then serialized and returned. serialize() is 

mainly used to calculate the hash of a block. In SpartanGold, all the attributes are 

calculated in generating the hash but in our implementation, we use only a few 

attributes namely: 

1. prevBlockHash - hash of the previous block 

2. rewardAddr - the block proposer of the block 

3. seed - seed used to propose the block 

4. chainLength - the current length of the chain, also the round number 

in Algorand semantics. 

5. genesisBlockHash - the hash of the genesis block 

6. balances - an array of current balances of all the clients 

The reason for using these specific attributes is that when clients generate an 

empty block, they do so locally. No empty block is transmitted over the network 

that everyone uses in their chain. Thus, when they propose blocks in the next round, 

they will all have the same prevBlockHash value, and their votes will not be 

discarded. On the contrary, if they all generate an empty block that results in a 

different block hash for everyone, their prevBlockHash will be different in the next 

round. 

3. StakeBlockchain:  This is the blockchain class of SpartanGold-Algorand. It is an 

extension of the original Blockchain class described as: 

class StakeBlockchain extends Blockchain 

Like SpartanGold, this stores the various configurations of the blockchain, such 

as the sortition threshold for intermediate steps and the FINAL step, the committee 
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sizes for the sortition, and the timeout value for the different stages of the consensus 

protocol.  It also stores certain constants required during consensus. 

4. StakeClient: The main class of SpartanGold-Algorand is StakeClient. It is derived 

from the original Client class as: 

class StakeClient extends Client 

Algorand’s Byzantine consensus protocol is implemented in this class. 

StakeClient is responsible for keeping track of client keys, proposals, incoming 

messages, listeners for all emitted events, and participating in the protocol. Clients 

communicate with each other using broadcasting messages on certain channels that 

other clients listen to. The types of events used in our implementation include: 

1. PROPOSE_BLOCK: after clients are initialized, an event 

is triggered to allow them to start proposing blocks. 

2. ANNOUNCE_PROOF: this event is emitted when the 

clients are selected to propose blocks after executing the 

cryptographic sortition. 

3. GOSSIP_VOTE: when clients need to broadcast their vote 

at any step or stage of the consensus, this event is used. 

4. ANNOUNCE_BLOCK: this event is used by the block 

proposer to finally send their proposed blocks after a 

consensus is reached. 

findWinningProposal() - This function is used by the clients after waiting for the 

allocated time interval for receiving proposals. They calculate the minimum hash 

from all received proposals and store it in winningBlockhash. If no proposal is 

received, this function creates and empty block and moves on to the next round. 
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4.2 Algorand’s Byzantine consensus 

Algorand’s Byzantine consensus consists of two phases - reduction and binary 

agreement. Although the source code differs slightly in how these phases are constructed, 

we'll follow closely how they are presented in the Algorand whitepaper. 

4.2.1 Reduction Phase 

The methods that correspond to the REDUCTION phase are: 

a. reductionOne(...) - the first step of reduction, REDUCTION_ONE, where the clients 

vote for the block_hash passed to the function after finding the minimum hash. 

b. countReduceOne(...) - this method counts the votes accumulated for the 

REDUCTION_ONE step.  

c. reductionTwo(...) - the second step of reduction, REDUCTION_TWO, where the 

clients vote either for empty_hash or the block hash obtained from countReduceOne().  

d. countReduceTwo(...) - this method counts the votes accumulated for the 

REDUCTION_TWO step and decides to forward either empty_hash or the block hash 

obtained from the votes. 

4.2.2 BinaryBA⋆ Phase 

The methods that correspond to the BinaryBA⋆ phase are: 

a. binaryBAStarStageOne(...) - the first step of the algorithm where the clients vote 

for the hash passed on from the reduction phase. 

b. binaryBAStarCountStageOne(...) - this method counts the votes for the first step 

and returns if a non-empty hash is found otherwise the hash value is reset the original hash. 

c. binaryBAStarStageTwo(...) - clients vote for the block hash again. 
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d. binaryBAStarCountStageTwo(...) - this method counts the votes for the second step 

and returns the hash if enough votes are found. Otherwise, the hash is set to empty_hash 

value. 

e. binaryBAStarStageThree(...) - clients vote for the empty_hash in the third step. 

f. binaryBAStarCountStageThree(...) - this method counts the votes for the third step 

and calls the commonCoin() function to decide on a block_hash or an empty_hash. 

g. commonCoin(...) - this method implements the coin flip that returns the least 

significant bit (LSB) of the minimum hash for that given round. 

h. BAStar(...) - this method describes the BA⋆ algorithm described in section 3.6. 

When a block hash is returned from any step of the BinaryBA⋆, BAStar() calculates the 

votes for the FINAL step and compares with the value with which it is called. If they are 

equal, final consensus is reached else it announces only a tentative consensus. 

Figure 18 provides an easier understanding of the flow of control in our 

implementation. These are the methods that implement the other algorithms mentioned in 

the Algorand whitepaper: 

a. committeeVote(...) - implements the voting algorithm 

b. processMsg(...) - implements the checks and validations for received votes 

c. countVotes(...) - counts the votes for a given round and step 
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Figure 18: Overview of the entire flow. 

 
4.3 Network and Communication 

We reused SpartanGold’s network communication driver FakeNet which implements 

broadcasting and sending messages to other users. The gossip protocol in SpartanGold-

Algorand involves sending messages to every other client since this simulation requires 

only a few users. A more sophisticated gossip algorithm could be taken up as future work. 
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CHAPTER 5 

Implementation 

This section covers the actual simulation details in our implementation. Using screenshots, 

we demonstrate the different stages of the Algorand consensus protocol and document the 

configurations used for the simulation. In later sections of this chapter, we also cover the 

different Byzantine situations and discuss how the implementation progresses under them. 

We begin the demonstration by executing the protocol under normal conditions. The driver 

code executes for 3 minutes, after which it logs the final balances before terminating the 

process. The configurations used in the simulation are described in Table 1. 

Table 1: Implementation parameters 

Parameter Meaning Value 

clientArray The clients used in the simulation Alice, Bob, 
and Charlie 

balances The starting balances of all clients 15, 10, 20 
respectively 

chanceMessageFails Message drop percentage 0 

messageDelayMax Message delay in the network 0 

coinbaseReward Rewards for publishing a block 25 

COMMITTEE_SIZE Committee size for BA⋆ 2 

SORTITION_THRESHOLD Number of block proposers and 
committee members 

2 

SORTITION_THRESHOLD_STEP Threshold for SortitionThreshold 
step 

68.5% 

SORTITION_THRESHOLD_FINAL Threshold for SortitionThreshold 
final 

68.5% 

timeout Timeout range for all stages 3-6 seconds 
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5.1 FINAL Consensus 

The common scenario when the network is strongly synchronous will publish blocks in 

the very first step and reach FINAL consensus, since there are many participants, and the 

majority of the network is honest. Let’s look at how the application achieves this, covering 

all the stages of the consensus protocol: 

5.1.1 Block Proposal 

Figure 19 shows the block proposal stage where only Alice was able to publish blocks. 

Bob and Charlie can only wait for block proposal since they did not qualify in the block 

proposal selection stage. 

 
Figure 19: The block proposal stage. 

5.1.2 Receive Proof 

Figure 20 describes Alice’s proposal being broadcast to everyone in the network. A point 

to note here is that the broadcast in our implementation sends an event or message to the 

client who initiated it also. Since only Alice proposed a block, it automatically becomes the 

minimum block_hash the clients have observed. 

 
Figure 20: All clients receive block proposals. 
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5.1.3 Reduction-One Stage 

Figure 21 describes the first Reduction stage where clients vote and then count the votes 

received from all other clients. The hash value observed in the figure is the block_hash that 

crossed the threshold amount of votes. All the clients are able to reduce this stage hash to 

the same value. 

 
Figure 21: The Reduction One stage. 

5.1.4 Reduction-Two Stage 

Figure 22 describes the second Reduction phase where the block_hash is voted and 

votes counted for this stage again. The hash value observed in the figure amounts to the 

block_hash that crossed the majority threshold amount of votes. On close observation, the 

value in both the Reduction phases is the same. 

 
Figure 22: The Reduction Two stage. 

5.1.5 BinaryBA⋆ First Stage 

After the Reduction phases, the block_hash is passed on to the BinaryBA⋆ method. 

Figure 23 describes the first stage of BinaryBA⋆ where everyone votes for the block hash 

that was returned from Reduction. In the figure, the block hash earns the majority of votes, 

and every client reaches finality on it. They vote three times before voting for the same 

value in the FINAL step. 
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Figure 23: The BinaryBA⋆ first stage. 

5.1.6 BA⋆ 

After the value is returned from BinaryBA⋆, BA⋆ counts the votes again for the FINAL 

step before deciding the consensus - final or tentative. As observed in figure 24, a final 

consensus is observed and block proposer, Alice, announces the block to the whole 

network. When a final consensus is reached for any block, all prior tentative blocks are also 

finalized. 

 
Figure 24: BA⋆ signals consensus. 

5.1.7 Balance update 

The final balances after the end of the process reflects the new balances with Alice’s 

balance increased by the coinbaseReward which is 25 gold. Her initial balance was set to 

15. 

 
Figure 25: Final balances after first round. 

Safety is guaranteed as the block receives a clear majority even in the FINAL step, meaning 

it can never be reverted.  

Liveness is also clearly guaranteed as the blockchain is able to publish blocks. 
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5.2 TENTATIVE Consensus 

5.2.1 Consensus on a block 

There is also a possible scenario where everyone is the network achieves quorum and 

returns the block_hash but during BA⋆ vote counting for the FINAL step, they don’t receive 

a majority and simply time out. This leads to a tentative consensus because the clients were 

able to observe a lot of participation for the block_hash but not for the FINAL step.  Let’s 

look at how the application progresses in such a scenario. 

 
Figure 26: Tentative consensus on a block_hash. 

Figure 26 describes the scenario where the clients timeout during counting the votes for 

the FINAL step. A tentative consensus is declared for the block_hash and the block 

proposer, Alice, broadcasts the block. The block is added tentatively and can only be 

finalized when a future block generated from this block achieves final consensus.  

Safety and liveness are both provided here since a consensus was reached on a block and 

the blockchain can progress even without the block being finalized. Safety here is, however, 

weaker than final consensus. 
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5.2.2 Consensus on an empty block 

 
Figure 27: Tentative consensus on empty_hash. 

A weakly synchronized network can also lead to clients agreeing on an empty block. 

Figure 26 demonstrates that scenario. It can be observed that the second stage of 

BinaryBA⋆ deals with agreement on empty_hash and receives quorum for that value. Since 

BA⋆ cannot finalize this consensus, only a tentative consensus is declared, and the clients 

add an empty block to their blockchain. 

Safety and liveness both are provided here since consensus was obtained, even though it is 

an empty block, and cannot be reverted and the blockchain is able to progress through to 

the next round but they are weaker than final and tentative consensus on a block as the 

transactions are yet to be confirmed by the network. 
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CHAPTER 6 

Evaluation 

This section covers various undesirable scenarios that can befall a blockchain network 

and discusses how our implementation of the algorithm progresses. We also comment on 

the safety and liveness properties of those scenarios with respect to our implementation. 

6.1 No Consensus after MAXSTEPS 

As discussed in section 3.10.2, the algorithm runs for a combined 11 steps, with 2 in the 

reduction phase and 9 steps in the binary phase to reach consensus in the worst-case 

scenario. But to simulate a weak network where messages are dropped and no block value 

ever receives a majority of votes, we can increase the threshold required to count the votes 

for the FINAL step. This is equivalent to a weak network where clients cannot collect 

enough votes. For this, we set the SORTITION_THRESHOLD_FINAL to 74%. 

 
Figure 28: BinaryBA⋆ intermediate steps. 

Figure 28 displays the intermediate steps of the BinaryBA⋆ algorithm. Step 5 in the 

figure corresponds to the second stage of BinaryBA⋆ where the clients only return 

consensus if empty_hash receives a majority, which does not happen. Counting votes for 

step 6 or the third stage results in a timeout after which the clients implement the 

CommonCoin() functionality. 
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Figure 29: MAXSTEPS is reached. 

The other intermediate steps are skipped to focus on the issue at hand. Figure 29 shows 

clients reaching MAXSTEPS number of iterations without ever reaching consensus. In such 

a case, Algorand recovers liveness by implementing fork resolution, but since fork 

resolution is beyond the scope of this project, we display a warning and exit the execution.  

Security is ensured here since the network reaches a safe state.  

Liveness is not ensured as the blockchain is unable to proceed and halts all execution. 

6.2 Byzantine Client 

In this scenario, we introduce a Byzantine client, Trudy (intruder), into the network. 

let trudy = new StakeByzantineClient({ name: "Trudy", net: fakeNet }); 

We start Trudy off with an initial balance of 30 coins. Given that Alice owns 15 coins, Bob 

owns 10, and Charlie owns 20, Trudy owns exactly 2/3 of the total coins. There can be two 

further scenarios in the network involving Trudy: 

1. Trudy does not propose blocks. 

2. Trudy controls the minimum block hash. 

6.2.1 Byzantine Client is not a block proposer 

When Trudy receives block proposals, she chooses to suppress the minimum block hash 

and promote a different block. This obviously depends on whether Trudy gets selected in 

the committee to vote on blocks. We assume a scenario where Trudy is able to vote and 

generates a large number of sub-users or winning tokens. When she votes on a block, the 

total number of votes can cross the threshold, and she can reach consensus on that block. 
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To reiterate, the block that wins the consensus is not the best block that everyone has 

observed, but the one that Trudy promoted using her high-stake power.  

6.2.2 Byzantine Client is a block proposer 

In this scenario, Trudy has the ability to propose blocks with double spending and other 

malicious transactions, coupled with her voting and suppressing advantage described in the 

previous scenario.  This block can achieve consensus and can be added to the blockchain. 

Both scenarios are common to all PoS protocols where a dishonest party controls the 

majority of the stake. Although hypothetical, this is a plausible scenario that can affect the 

network and all other clients. 

Safety is seriously undermined in the second scenario. 

Liveness is guaranteed since blocks can be added to the blockchain in a timely manner.  

6.3 Network Partition 

A more common scenario where the network exhibits weak synchrony is when the 

system is partitioned into smaller groups. Communication happens only within the group 

and they are unable to reach to the other clients in the network. This reduces the 

participation and the voting power and as a result no block will ever receive true majority 

to add blocks. But for the sake of the simulation, let’s assume the parameters are set so as 

to allow at least empty blocks to be published as fallback. The network partition can be 

described as: 

let fakeNet1 = new FakeNet(); 

fakeNet1.register(alice, bob, charlie); 

Alice, Bob, and Charlie belong to a group which uses fakeNet1 as their communication 

medium. The messaging and broadcasts will only reach to these clients only. We start their 
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consensus for a short period where they are able to add one empty block. Figure 30 briefly 

describes this scenario. 

 
Figure 30: fakeNet1 participants start the round. 

We describe another group of clients as: 

let fakeNet2 = new FakeNet(); 

fakeNet2.register(minnie, mickie, trudy); 

Minnie, Mickie, and Trudy form a group which uses fakeNet2 as their communication 

channel. All messages will only be shared among these three clients. Similar to group 1, 

they are allowed to run for some time before terminating. A point to note here is that Trudy 

is not a Byzantine client. We have reused the client but in an honest setting now. 

 
Figure 31: fakeNet2 participants start the round. 
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Let’s say at this point, both these groups were only able to produce empty blocks since 

a clear majority could not be established and the network establishes full communication 

between them. That is, all 6 clients can now reach each other. We can describe this in terms 

of our implementation as: 

fakeNet1.register(minnie, mickie, trudy); 

fakeNet2.register(alice, bob, charlie); 

They all start producing blocks together now as described in figure 32. 

 
Figure 32: All clients start working. 

Alice, Bob, and Charlie have produced an empty block. Minnie, Mickey, and Trudy 

have also produced an empty block, but it resolves to a different block hash. Now, when 

they all start the next round together, their ctx.lastBlock values will be different from the 

other group members, and during voting, this mismatch is detected, which essentially 

means a fork. Figure 33 describes this in our implementation. The application throws an 

error for this case, which terminates the node process. Algorand’s implementation allows 

the clients to ignore the votes for a round for which the last blocks are different. It 
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implements a dedicated fork resolution that will solve this anomaly in the future. However, 

the current scope does not entail fork resolution. 

 
Figure 33: Different lastBlock values are detected. 

In this scenario, safety is undermined because the network can no longer guarantee that 

transactions are recorded in a single shared blockchain. Liveness is also affected since fork 

resolution can cause delays. In our implementation, if a fork is detected, the application 

crashes and prevents any further progress in the blockchain. 

Table 2 summarizes the safety and liveness of all different scenarios. 

Table 2: Analysing safety and liveness. 

Sr. No. Scenario Safety Liveness 

1 Final consensus on a block. Strongest Strongest 

2 Tentative consensus on a block. Strong Strong 

3 Tentative consensus on an empty block. Strong Weak 

4 No consensus after MAXSTEPS  Weak Weakest 

5 Byzantine Client Weakest Strong 

6 Network Partition Weak Weakest 
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CHAPTER 7 

Future Work 

This research project focused on mainly the implementation that included Algorand’s 

Byzantine agreement protocol and all its other subroutines and converting SpartanGold to 

a PoS model. There are however several problems that have been addressed and remain 

open for the scope of this project:   

1. Algorand's verifiable random function (VRF) outputs the exact number of block 

proposers or committee members on the input threshold and the key pairs, which is 

a critical requirement for scaling the cryptocurrency. The implementation of 

cryptographic sortition in our project utilizes a third-party VRF library [24], 

resulting in random number of selected users and their sub-users in every round. 

VRFs in Algorand enable the selection of a fixed number of clients every round. 

Since this is only a simulation project focused on the key components of the PoS 

mechanism, future work could include implementing VRF to target current design 

parameters that would provide more precise control over the selection lottery. 

2. In a real setting, any blockchain networks and cryptocurrencies would be dynamic, 

allowing clients to join or leave the network at their will. However, our research 

implementation does not account for clients joining in the middle of a round. This 

is because updating their copy of the blockchain to the latest state and downloading 

all finalized blocks would take time and identifying the waiting time before they 

can participate in the protocol is a complicated task.   

3. In our implementation, we utilize the setTimeout() function to ensure all clients can 

execute their part and occupy the main thread. When a setTimeout() is called on a 

client, the main thread becomes available for other miners to perform their own 
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computations.   While SpartanGold allows the execution in a multi-process mode, 

which is a more accurate simulation of a concurrent network, this is beyond the 

scope of this research. Future work could include exploring Algorand’s 

implementation in a different multi-threaded language or allowing clients to run 

independently on different processes and communicate over TCP/IP. 

4. As described in section 3.4, the seed used to propose blocks is refreshed every R 

rounds. This is beyond the scope of the project. In our implementation, every seed 

is derived from the seed of the previous block only.  

5. When the protocol cannot reach consensus under MAXSTEPS in the BinaryBA⋆ 

implementation, as described in section 3.10.1, the research [21] indicates that 

Algorand performs a fork resolution to recover the liveness. However, this recovery 

mechanism is not included in the implementation presented in this research, and the 

algorithm will halt once MAXSTEPS is reached.  

6. In the current implementation of the research project, if a fork is detected, the 

algorithm terminates the process with an error. However, in a realistic scenario, 

clients would ignore votes that do not pertain to the same last_block value, and one 

of the forks would eventually gather enough votes to continue adding blocks, 

making it longer. Future work could focus on ensuring liveness even with forks. 

7. Section 3.11 describes Algorand's periodic execution of fork resolution, which 

follows a procedure similar to block proposal. However, this aspect of Algorand's 

protocol is beyond the scope of the current project. As mentioned before, in the 

event of a fork, the application terminates the process with an error, but 

implementing Algorand’s fork resolution could be an area for future research. 
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8. The core of any cryptocurrency is processing transactions, which involves 

collecting and validating exchanges between clients. However, this project omits 

transactions to focus on how Algorand progresses through stages. Transactions can 

be taken up in the future to provide more realistic blockchain features.  

9. Since the number of calculations is relatively small and there are only a few clients, 

the timeout for all the different stages of our implementation is set the same to 

increase usability and focus on the algorithm. Future development could dictate 

increasing the load and utilizing different timeout values for multiple stages. 
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CHAPTER 8 

Conclusion 

In this paper, we implemented Algorand's Byzantine consensus protocol for 

SpartanGold framework. Our experiments have demonstrated how the algorithm behaves 

under different scenarios such as network partitions, tentative consensus on empty and non-

empty blocks, and the presence of Byzantine clients. We have also been able to understand 

why safety and liveness are affected differently in each scenario. 

In situations where the network is able to reach final consensus, safety and liveness 

guarantees are the strongest. On the contrary, safety and liveness only get weaker as the 

network establishes only a tentative consensus or no consensus at all. Moreover, the 

presence of Byzantine clients holding the majority stake in the network affects safety the 

worst while network partitions can weaken both safety and liveness. 

In summary, while this research and implementation have successfully documented 

a novel consensus protocol that can efficiently scale to many users and effectively deal with 

various scenarios, there is still a lot of room for future work and research in implementing 

Algorand's Byzantine consensus for SpartanGold. The SpartanGold framework already 

provides a starting point for academic research and rapid prototyping, and our 

implementation can serve as a base for future research and development of blockchain 

networks based on the Algorand consensus algorithm. 
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