
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

Ubiquitous Application Data Collection in a Disconnected Ubiquitous Application Data Collection in a Disconnected

Distributed System Distributed System

Deepak Munagala
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the OS and Networks Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Munagala, Deepak, "Ubiquitous Application Data Collection in a Disconnected Distributed System" (2023).
Master's Projects. 1223.
DOI: https://doi.org/10.31979/etd.k4zz-vmku
https://scholarworks.sjsu.edu/etd_projects/1223

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/149?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1223?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Ubiquitous Application Data Collection in a Disconnected Distributed System

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Deepak Munagala

May 2023

© 2023

Deepak Munagala

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Ubiquitous Application Data Collection in a Disconnected Distributed System

by

Deepak Munagala

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2023

Dr. Ben Reed Department of Computer Science

Dr. Genya Ishigaki Department of Computer Science

Dr. Navrati Saxena Department of Computer Science

ABSTRACT

Ubiquitous Application Data Collection in a Disconnected Distributed System

by Deepak Munagala

Despite some incredible advancements in technology, a significant population of

the world does not have internet connectivity. These people lack access to crucial

information that is easily available to the rest of the world. To solve this problem,

we implement a Delay Tolerant Network (DTN) that allows users in disconnected

regions access to the internet. This is enabled by collecting all data requests on the

users’ phones and passing them to a device that can carry them to a connected region.

This device can then collect the necessary information and give it back to the users in

the disconnected region. This work will focus on how modern applications on Android

phones in disconnected areas can make use of this DTN architecture to send and

receive data with their respective destinations.

ACKNOWLEDGMENTS

I would like to thank Dr. Ben Reed for his knowledge on the topic and enthusiasm

in discussing this problem. The weekly meetings for the CS systems group motivated

me to think about the problem in detail and come up with several approaches. I

would also like to thank the members of the group, Shashank, Aditya, Anirudh, and

Abhishek for the discussions regarding methods for different parts of this problem and

for setting the scope for this project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

1.1 Using Signal Android application 4

1.2 Other components . 4

2 Related Works . 6

2.1 Data Storage . 6

2.2 Communication between Bundle Client and user applications . . . 7

2.3 Application data format . 9

3 System design . 11

3.1 Background . 11

3.2 Data delivery Assumptions . 12

3.3 Acknowledgments . 13

3.4 Data handling at Bundle Client 14

3.4.1 Push versus Pull . 14

3.4.2 Sending Data to transport 14

3.4.3 Receiving Data from transport 15

3.5 Application data handling at bundle server 16

3.5.1 Receiving messages from transport 17

3.5.2 Sending messages to transport 18

3.6 Application data Storage . 18

4 Implementation Details . 22

vi

vii

4.1 Content Provider . 22

4.2 Android Intents . 23

4.3 Client Application . 24

4.4 Bundle Client Application . 24

4.5 Bundle Server . 26

4.5.1 DTNCommunicationService 27

4.6 Application Adapter Server . 28

4.6.1 Data synchronization between adapter and bundle server . 30

4.7 Integration with Signal Application 31

4.7.1 Registration of a new user on to Signal 31

4.8 Integration with other modules 32

4.8.1 Bundle Client . 33

4.8.2 Bundle Server . 33

5 Experiments . 36

5.1 Modifications on client device . 36

5.1.1 Bundle Client . 36

5.1.2 A sample client application 36

5.1.3 Signal Implementation . 38

5.2 Integration of data store module with Bundle Client 38

5.2.1 Bundle Client . 38

5.2.2 Bundle Server . 39

5.3 DTNCommunication Service . 40

5.4 Application adapter server . 40

viii

6 Future Work . 41

6.1 Intermittent connectivity on client device 41

6.2 Data fragmentation . 41

6.3 Improving security . 42

7 Conclusion . 43

LIST OF REFERENCES . 44

APPENDIX

CHAPTER 1

Introduction

Over the past few decades, the Internet has become increasingly essential in our

day-to-day tasks. The Internet is heavily used to connect with other people and get

information in different formats like text, audio, and video. Even with wide internet

access around the world, around 32.1 percent of the world is still not connected to

the internet [1]. Lack of internet means that people do not have access to important

information which puts them at a severe disadvantage.

We also lose access to the internet during natural disasters. This results in severe

difficulty in executing relief and rescue operations. An efficient way to solve this

problem is to form a network that connects people in danger with those at relief centers

so that they can find the number of people affected by the disaster and accordingly

carry out operations [2].

These problems we see so far can be solved with a type of resilient network known

as a Delay Tolerant Network (DTN) [3]. It allows devices in disconnected regions

to connect to the internet and gain access to information. This is a store carry and

forward approach that makes use of intermediate devices, known as transports, that

are responsible for carrying and passing messages between the client device and the

source containing information. This source can be the internet or another computer

that holds information. In this kind of network, communication between clients and

transport devices can happen when they are in proximity to each other via wireless

communication options like WiFi, NFC, or Bluetooth.

In modern applications, the users of the DTN can be an application on the

user’s smartphone, which has to talk to a server on the cloud, usually called an

application server, to upload or download data for the client. In the absence of

network connectivity, this communication between the application on the user’s

1

smartphone and the application server needs to be handled by the DTN. Figure 1

below shows a typical system of the entities in a DTN and how data flows among

them.

Figure 1: DTN architecture

The types of applications that can make use of this type of network include those

that can tolerate a relatively high delay between the sender and receiver of data. For

example, messaging, document sharing, and video downloading/uploading, which

generally do not have strict requirements on round trip times, are well suited to this

type of network. Some applications that can work with this network include texting

applications, web browser applications, and video viewing/uploading applications.

Any application that requires real-time communication between two users will not

work with this type of network. Some of these examples include calling applications

and live-streaming applications.

As shown in figure 1, an important part of this architecture is the transport. It is

responsible for moving between different regions of the city, and communicating with

multiple clients in disconnected regions to store user data. The transport eventually

reaches a destination, which can be an internet-connected region. Here, the transport

can upload user data and store any data that has to be sent back to the users. In this

2

type of network, a transport can be a device on some mode of transport such as a bus,

train, or a ship.

Since the mode of communication between the transport and the users is unreliable,

previous solutions make use of special hardware so that data can be moved easily

between the transport and the user’s device. As these types of DTN systems require

special hardware, which is not scalable. To handle this problem, we need to make use

of existing hardware that is already being used in these environments.

In this paper, we will describe an architecture built on top of Android-based

smartphones that acts as a bridge between applications on client phones and their

servers. Here, transport will be smartphones on public transport vehicles, which might

include buses and trains. Our system will require a custom application on the user’s

phone that needs to be responsible for storing data that other applications on the

phone want to send across to the internet. This custom application should also be

able to deliver data to the transport device in the proximity of the user’s device. For

these reasons, we introduce an application, called Bundle Client, which has to be

installed on the user’s phone so that it can collect data from applications on the phone

and send them to their destinations via the transport device. Each application on the

user’s phone has a server hosted on the internet that it communicates with, which is

referred to as an application server.

When this data reaches the internet via transport, we will send them to our

server, called Bundle Server, which is a part of the DTN architecture. The Bundle

Server will forward them to the respective application’s server. Here, each application

will have a corresponding application server adapter which will be responsible for

handling data it receives from the client via the Bundle Server. This adapter will also

recognize that the client is making use of the DTN system and prepare any data that

needs to be sent to the client via this system.

3

1.1 Using Signal Android application

Making a DTN system accessible in devices with the Android operating system

means that it should be able to execute an application’s interactions with the internet

seamlessly. This includes:

1. application receiving notifications for data it receives over the internet

2. application sending data to the internet

3. application or server getting notified if the send operation was successful

Implementing a DTN architecture with these features on a widely used Android

application will demonstrate its effectiveness. In this paper, we will demonstrate the

working of our DTN implementation by using the Signal Android application, a highly

popular application, with over 100 million downloads as of December 2022 [4]. Signal

is an open-source multi-platform instant messaging service that strongly emphasizes

end-to-end encryption.

The scope of this paper will be to implement an application that interacts with

Signal Android to handle the operations mentioned above for Signal when the device

is in a disconnected setting. Here, the data considered is primarily text messages and

additional options of voice and video messages.

1.2 Other components

The focus of this paper will be to address issues in client application - bundle client

communication, and Bundle Server - Application Server Adapter communication.

Some other potential challenges in a DTN system, which will not be addressed here,

include:

• registration of users with our DTN system

• preparation of data on the client device for send operation,

4

• encryption to protect application data,

• coordination and communication between client and transport device,

• maintaining the order in which data are sent and received

This project will assume that the above components work and focus on the issues

mentioned in section 1.1.

5

CHAPTER 2

Related Works

This chapter discusses previous work on designs and implementations of DTNs

that we will build upon. Specifically, we will go over works on the design of the data

collection application on the users’ phones, which we name the Bundle Client. We

will first take a look at the considerations of how data is managed on a user’s phone

in a disconnected region. In section 2.3, we will then focus on how previous works

process the data they receive from other applications.

2.1 Data Storage

The Bundle Client application on the user’s device is responsible for storing

data it receives from different applications on the phone and from the transport

device. Before sending this data to their respective destination, the data needs to be

organized so that the maximum amount of data can be delivered. A lot of existing

implementations make use of custom implementations to showcase the working of

their DTN architecture. [3] implemented the data storage of the Bundle Client by

making use of a priority queue on client devices to decide which messages should be

given priority in the case of lower data limits for transmission. High priority was given

to smaller-sized messages with a low lifetime. On the other hand, [5] implemented

the Quality of Service/Quality of experience feature on data being sent over DTN,

which included giving priority to data that had an early deadline and dropping them

if they can not be delivered before a specified timeline. In addition to this, [6] and [7]

used a set of policies to decide which data to keep and which to drop from the queue

of data messages, such as Drop Last (DL) to drop the most recently added message,

Drop First (DF) to drop the oldest message in the queue, drop oldest (DO) to drop a

message with the shortest TTL.

An important problem that a DTN architecture generally faces is the long duration

6

of round trip time. When an application generates some data and sends it to the

Bundle Client, it can take a long time for Bundle Client to be in contact with a

transport device that can send data to the server. Before the client device waits to

receive confirmation from the transport device that the data was delivered successfully,

which can be several hours or even days, there might be a lot of cached data that

is waiting to be sent. To handle this problem, [8] maintained an upper limit on the

data that can be stored for transmission via DTN. This was done by storing them in

volatile memory, and if the data store application receives some data that crosses the

memory limit, it will be discarded. When a transport arrives, this data can be written

into file storage, where it can be prepared to be transmitted. To store in the file

system, it makes use of a matchbox file system [9], which focuses on data corruption

detection, low memory consumption, and low write overhead. Some problems with

this approach are that volatile memory (RAM) can get overflowed and that the data

can be lost if the data store application crashes before it is stored in the file system.

Another approach to solving this large round trip time is to always store applica-

tion data in the file system without depending on the cache. On top of this, the Bundle

Client application can allow users to specify an order of preference for a different type

of action in applications [10]. In this approach, a resource management module can

be used with the Bundle Client, which calculates a priority based on the cost-benefit

analysis using user preference and device resources consumed, like battery power,

bandwidth, and data size. Based on these calculations, the transmission module can

decide which data needs to be prioritized.

2.2 Communication between Bundle Client and user applications

A device in a disconnected region can have limited battery life and restricted

connection with the transport device. To ensure that the DTN architecture can make

7

the best use of these limited opportunities, the Bundle Client application on the user’s

phone needs an efficient protocol for moving data between the applications on the

user’s device and the transport devices. Looking at implementations of communication

protocols in DTNs, [11] used file storage to store bundle data as it allows us to

store large amounts of data and SQLite to store metadata so that we can easily

query information about bundles. To ensure that the probability of these files being

delivered is high, [12] split files into smaller chunks and gradually made the chunk

size larger if the smaller chunks were delivered successfully. This was done to consider

the variable connection times between the client and transport devices. Similarly,

[13] collected knowledge of contact durations between these two types of devices to

calculate how much data can be transferred between them and used this information

to fragment the data. If it finds that the client and transport remain connected only

for short durations, smaller fragments will be created so that they can be transferred

in this small duration. A problem with this approach is that the receiver of these

fragments needs to handle the merging of these fragments before sending them to

their destination.

In contrast, [14] used the concept of a publisher-subscriber system for the imple-

mentation of DTN in natural disaster recovery operations, where clients are publishers

of data and transport devices are subscribers. The transport devices collect information

from a limited set of clients and delivered them to their destinations.

To communicate between client applications and the DTN application, [15] made

use of an android binder, a low-level mechanism for inter-process communication.

Since this is a low-level feature, it requires a lot of configuration to set up and allow

applications to communicate with each other but gives a good design that can be

followed while creating the Bundle Client application. In the future chapters, we will

discuss another feature on the Android platform called the Content Provider, which

8

builds on top of Android Binder and is easy to set up and use. On the other hand, [16]

implemented a web server in the DTN application on the client device that accepts

app data from both web applications and mobile applications. The web server is able

to cater to different types of applications because it introduces the Service-Adaptation

Middleware module. This module is responsible for receiving data from applications

written in different programming languages and storing their data in a form that

can be used by the DTN to package and send to other devices. A problem that this

research identified with the web server approach is that web applications need some

manual deployment for connecting this application with the DTN architecture.

Another research, [17] found from experiments that a pushing mechanism to

synchronize data between mobile devices and servers is an energy-efficient approach.

This can be used in this research to communicate between client applications and

the Bundle Client to notify each other about new data. Most of the implementations

seen so far make use of a simplified version of the client application or run clients

over a computer terminal. Since smartphone technology is rapidly evolving and a

wide variety of communication protocols are used by many Android applications, we

need to test the DTN on the latest Android OS devices with large-scale applications.

Designing a DTN that can communicate with these different types of applications

will provide a general standard that all applications can use to enable the Internet in

disconnected areas.

2.3 Application data format

Application Data Unit (ADU) is the smallest unit of data generated by an

application that is used by DTN protocol [18]. One major approach to sending ADUs

within a DTN is to consider each ADU as an individual object (or bundle) that can be

sent between nodes [10]. This follows the design principle of application layer framing

9

[19], where we do not depend on communication protocols such as HTTP, SMTP,

POP, FTP, or IMAP for allocating identifiers to ADUs. With this in mind, [10]

added additional information to ADUs such as keywords for describing the data, data

management information (application identifier, creation date, modification date),

and security-related information (encryption method and key, user and application

access permissions). When this ADU passes through several intermediate nodes before

reaching the destination, more data like a list of nodes it has passed through, a list of

forwarding hints, and priority level as mentioned by the original sender of the ADU.

To ensure that this data was not modified before it reaches the destination, the sender

adds a hash of the ADU as a parameter [20].

On a different note, [21] made use of the HTTP standard to design the format

of blob that can be used to send data between devices in the DTN. Since a lot

of applications make use of HTTP to communicate with their server, these HTTP

requests can be modified to add additional data for communicating between devices.

To add additional metadata for the receiver, headers can be used. These headers can

be removed by the bundle server or the application server adapter before sending the

ADU to the application server.

10

CHAPTER 3

System design

This chapter describes the different components of the delay-tolerant network

and how they communicate with each other. Section 3.4 and later will focus mainly

on the inner workings of the Data Store Module and Application Data Management

module.

3.1 Background

In a client smartphone, we have a bundle client application that receives data

from several applications and sends data across to the transport’s smartphone as a

blob containing a list of messages, called a bundle. As this transport goes through

several remote villages collecting data from different clients, the transport stores them

and then sends collected data to the DTN server once reaching the connected region.

The bundle server sends these messages to the respective destinations for further

processing. When the transport is ready to collect data for a client, the bundle server

will ask all the applications for data pertaining to this client, group the received data,

and send it back to the transport.

In our delay-tolerant network system, we will discuss three crucial modules, as

described in figure 2. These modules include:

Data Store Module (DSM): This module is responsible for receiving ADUs

from the application and preparing them for delivery to transport and vice versa.

Application Data Manager (ADM): This module resides in the Bundle

Client. In the client application, this is responsible for sending messages that the

client application wants to send across the internet to the application data manager

module in the bundle client application. This module also generates and stores the

client identifier, which is used by the server to identify the client device.

Application Server Adapter (ASA): This module is implemented as part

11

Figure 2: System Diagram

of the application’s server. This module is an adapter [22], which is responsible for

passing data between Bundle Server and the application server.

Another component is the Application Server, which is a component imple-

mented by the Application. This module gets data from clients, processes it, and may

send data back to the client. This component may also push data for a specific client.

3.2 Data delivery Assumptions

Let’s consider a smartphone in a disconnected area that has ADUs from a DTN

application A with data IDs A1, A2, and A3 when the transport arrives in its vicinity.

After we send these ADUs as a bundle to this transport, two more ADUs with ID A4

and A5 are received from application A. When any new transport arrives at this point,

we will send ADUs A1 to A5. When we receive an acknowledgment that previous data

have been delivered successfully, we will discard them from phone storage and send

the remaining unacknowledged ADUs. For example, if we receive acknowledgment

for ADUs with IDs A1, A2, and A3, we will remove them from storage and send A4

12

and A5 to subsequent transports.

Both the bundle client application and the bundle server place additional con-

straints. (1) ADUs can not be fragmented, i.e., either the entire ADU is sent or none

at all. (2) The limit on the total size of data that can be placed per application in a

bundle. If we receive any data unit from an application or application server adapter

having a size greater than the set limit, we will discard the data. This ensures that

each application can send some data without hitting the storage limit on the transport

device. Applications will hold the responsibility of specifying the sequence in which

data should send data based on some priority.

3.3 Acknowledgments

With the large-scale deployment of this DTN, it is possible that multiple applica-

tions on a user’s phone might send data to the data collection application, which we

call the Bundle Client. Since storage on the user’s phone is a limited resource, the

Bundle Client should minimize the use of phone storage as much as possible. One way

to do this is to make sure that the phone does not store any data that is not required.

In this DTN, storage can be optimally used by keeping track of application data

received in Bundle Client and deleting them when they are no longer required. The

ADUs in the Bundle Client application that were sent by applications on the device

are deleted when the Bundle Client receives a confirmation that the ADUs were sent

successfully to their destination. This is done with the help of acknowledgments

that is sent by the receiver of data so that the sender can stop sending the same data

again and clear up its memory. This is applicable in both cases where data is sent

from Bundle Client to Bundle Server and vice versa. The upcoming sections will show

how acknowledgments are handled at both Bundle Client and Bundle Server.

13

3.4 Data handling at Bundle Client

As shown in figure 2, the Bundle Client application is an interface between

applications on the device and the transport. The Data Store Module component of

this application exposes a service to the applications on the device so that they can

send data to the Bundle Client. To forward this data to the application servers, this

application regularly monitors for nearby transport devices and connects to them, if

available.

The first step in the flow of data is that the bundle client should receive data

from the transport, and then generate a bundle that can be sent to the transport

device. The following sections will describe how the Bundle Client handles data from

applications and from transport.

3.4.1 Push versus Pull

The communication between the Bundle Client and other applications should

occur in a quick and energy-efficient manner. This is necessary because mobile devices

have limited resources like battery life. Previous research [17] has shown that a push-

based mechanism is more energy efficient as compared to a pull-based mechanism.

Another reason why a push-based mechanism is preferable is that the sender can send

data in real time, without waiting for the receiver to ask for data. This also helps

save time when the Bundle Client wants to send data to the transport device because

it does not have to spend time pulling data from all DTN-enabled applications on the

device.

3.4.2 Sending Data to transport

When a DTN-enabled application wants to send some data to its server and it

detects that there is no internet connection, it will send the data to the Bundle Client.

The Bundle Client makes sure that any data that applications send does not cross

14

the size limit. This check allows the Bundle Client to allocate equal memory to all

applications that want to send data. If any application’s data does cross the limit, the

application will be responsible for splitting it into smaller chunks and ensuring that

the Bundle Client has received the data. The Bundle Client then assigns an identifier

to each piece of data it receives, which is called an Application Data Unit Identifier,

or ADU_ID, in short. The ADU also has an application ID linked to it, which

is unique for each application on the Android OS. This ADU is then stored in the

Bundle Client’s storage.

When a transport device is ready to receive data from the client device, all the

data stored in the Bundle Client application is grouped to form a bundle. Based

on the size limit configured for the entire bundle, ADUs are added to the bundle

until the size limit is reached. If some of the ADUs could not be sent, the Bundle

Client waits until existing ADUs have been successfully delivered (which we know via

acknowledgments), after which the rest of the ADUs can be sent. Figure 3 summarizes

the actions for sending ADUs to the transport.

3.4.3 Receiving Data from transport

Upon the start of the bundle client service, the application on this client device

regularly checks for transport devices in proximity. After connecting with a transport,

this application first asks the transport to send any bundle it has for this client

device. After the bundle is unpacked, the ADM gets the acknowledgments and a

list of Application Data Units (ADUs). When DSM receives these acknowledgments

and ADUs from the ADM, the DSM will inform the respective applications that the

data was delivered successfully to the servers. Similar to the previous section, this

communication with the application is done with the help of the Application ID that

is present for each ADU. The acknowledgments extracted from the bundle mean that

15

Figure 3: Flow of data for bundle client sending data to transport

the DSM will not have to send the same data again to this or any later transport

device and that the data can be deleted from the Bundle Client’s local storage.

After acknowledgments are processed, the ADM will share the ADUs with

the Data Store Module (DSM), which will then store the ADUs in the file system,

and asynchronously deliver the ADUs to the respective applications. Once the

Bundle Client knows that the ADUs have been successfully delivered to the respective

applications, the ADUs will be deleted from the storage. Figure 4 summarizes the

actions for receiving ADUs from the transport.

3.5 Application data handling at bundle server

The way ADUs are handled at the bundle server is different compared to its

handling at client devices seen in section 3.4. This is mainly because the server needs

to handle data for many clients and should connect to different application servers to

16

Figure 4: Flow of data for Bundle Client receiving data from transport

send and receive application data on behalf of clients.

3.5.1 Receiving messages from transport

The transport sends all bundles it has collected from clients to the bundle server

when it gets network connectivity. For each ADU in the bundle, the ADM discards

the ADU if it has already been received from an earlier transport. The ADM sends the

remaining messages to DSM, which forwards them to the respective application server

adapter for further processing. The application server adapters send these ADUs to

the Application Servers and receive a response for each ADU, which will be sent back

to the DSM. The DSM will store the ADUs in its’ file storage until a transport arrives

that can successfully deliver the data to the client. Figure 5 summarizes the actions

for receiving ADUs from the transport.

17

Figure 5: Flow of data for bundle server receiving data from transport

3.5.2 Sending messages to transport

A transport that is ready to receive client data will ask the bundle server for

bundles. The BTM, which keeps track of the clients for which this transport has

successfully delivered messages, will ask ADM if there is application data that needs

to be sent to these selected clients. If there is additional data to be sent, BTM will

initiate the process of creating a new bundle by generating a new bundle ID and

asking ADM for all the data that has to be bundled. Once BTM finishes the creation

and delivery of the bundle, it will store data in its file system so that they can be used

later when another transport arrives. Figure 6 summarizes the actions for sending

ADUs from the server to the transport.

3.6 Application data Storage

Several applications like Facebook, Whatsapp, Youtube, and Signal allow users to

upload files whose size can range from a few KBs to a few GBs. To efficiently access

18

Figure 6: Flow of data for bundle server receiving data from transport

this data, the system makes use of the file storage system [23]. On the client device, a

common storage system is required where applications can push their data, and the

Bundle Client can read that data and send it to transport devices, whenever required.

Also, before applications push their data, the Bundle Client should be able to add

additional data like the ADU_ID, and Application ID. For these reasons, we store

application data in the Bundle Client application’s file storage. Here, we maintain

two separate folders, one for the application to store ADUs that should be sent to

the server, and another for the application to receive ADUs that the server has sent

for the application. Each application will store some metadata such as the largest

ADU_ID that has been used till now. Figure 7 shows the file structure in the Bundle

Client application containing ADUs for multiple application IDs.

On the server, the storage structure is slightly different as the server has to

take into account client information as well. Here, we have two folders based on

the destination of the ADUs, which can go to either the client (’Send’ folder) or the

application adapter server (’Receive’ folder). These folders contain a separate sub-

19

Figure 7: File structure for ADUs in client device

folder for each client, which in turn store application data grouped by the application

identifier. Figure 8 shows the file structure in the bundle server containing ADUs for

multiple clients and application IDs.

20

Figure 8: File structure for ADUs in bundle server

21

CHAPTER 4

Implementation Details

This chapter will describe the implementation details of a sample application,

that acts as a client for our DTN system, and the way this application communicates

with the Bundle Client application. This chapter will also describe how the bundle

server handles this data and communicates with the application adapter server to

send and receive client-specific application data. To show the efficacy of the DTN

system, we will take a look at two kinds of client applications. First is a simple

Android application that tests send and receive operations on simple plain text data,

and the other is the open-source Android OS project for Signal [24]. Second, is the

modification to the open-source Signal Android project to show how it can make use

of this DTN to send and receive messages.

4.1 Content Provider

A content provider is an essential component of the Android OS that is used to

manage access to a repository of data in an application. An application can expose a

content provider by implementing a Java class that extends from the ContentProvider

class. In this class, methods for main operations like Insert, Query, Update, and

Delete have to be implemented. The data source on which these operations will be

performed can be either a SQL database or the host application’s file storage.

Any application can access data hosted on a content provider as long as they have

read and write permissions for the content provider in their Manifest file. This means

that any application that wants to make use of this DTN should have the permissions

for the Bundle Client’s content provider. This also means that the user does not have

to do manual registration to allow applications to make use of Content Provider. To

ensure that applications do not access data that is not meant for them, the content

provider should implement the necessary validation in the methods for the operations

22

Figure 9: Manifest file for the client application to send data

discussed earlier. This is done by checking the Application ID of the application

requesting data and only operating on the data for the specified Application ID.

Since content providers are used for sending large amounts of data between

applications, it is favorable to use it in Bundle Client to host other applications’ data.

Figure 9 shows the Manifest file configuration for hosting the content provider on the

Bundle Client.

4.2 Android Intents

When the Bundle Client receives data from transport, it should be able to push

the data to applications rather than waiting for applications to request data. This can

be done on the Android OS with the help of intents. Intents are an inter-application

communication technique in the Android platform. They are used by an application

to send data to other applications or ask other applications to perform some action.

In this DTN, we send data from the Bundle Client to other applications by specifying

the Application ID. Since this ID is unique on the Android platform, the data will be

sent to the intended destination and not another malicious application.

For an application to be able to process intents sent by other applications, it

needs to implement an Intent Service. The class that is responsible for receiving

intent-specific data from other applications should be specified in the application’s

Manifest file.

23

Figure 10: Manifest file for the client application to receive data

4.3 Client Application

In a simple scenario, if a client application wants to send data to its server in

the absence of network connectivity, it can choose to send data to the Bundle Client

application which is installed on the same phone.

On the Android platform, the Bundle Client application hosts a content provider

named ’com.ddd.datastore.providers.MessageProvider’. Client applications can use

this name to push data to the Bundle Client.

On the other hand, for the client application to receive data, it should implement

an intent service that accepts data from the Bundle Client application by specifying

the action ’android.intent.dtn.SEND_DATA’. Figure 10 shows the configuration in

the manifest file for a client application to be able to receive intents from the Bundle

Client.

4.4 Bundle Client Application

This application is the entry point for client applications to communicate with

the DTN architecture. It exposes a content provider to the Android system which can

be accessed by any other application as long they have the read and write permissions

for it. The content provider exposes a few endpoints to view or modify data such as

24

’query’, ’insert’, ’update’, and ’delete’. In this implementation, a file system is used to

store application data, as described in 3.6.

Any data received by this application is associated with an application identifier.

For this, the client application’s package name is used because it has to be globally

unique on the google play store. The content provider gives the Application ID of the

calling application, which helps rule out any phishing attacks.

Any piece of data received by the Bundle Client is assigned a unique ID, known

as ADU_ID, which helps keep track of the sequence of data that has been sent to

transport or has been acknowledged by the server. When Bundle Client receives an

acknowledgment from the bundle server that the data with an ADU_ID has been

received by the server, we can delete it from the Bundle Client application storage.

Once this application receives data from the transport and stores it in the file

system, it pushes data to the application using intents. By specifying the application

ID, Android OS allows the Bundle Client to send data to the specific application.

Once data is sent successfully, it is deleted from its local storage.

The Bundle Client keeps track of all operations on the ADUs with the help of

a metadata file. This file maintains (1) the ADUs that have been deleted, (2) the

latest ADU ID added, (3) the most recent ADU ID that has been processed by the

application, and (4) the latest ADU ID that was delivered successfully to the server.

Figure 11 below shows the structure of the metadata object.

It is possible that the client application might not be able to receive data from

the Bundle Client. In such a case, the client can query the content provider for unseen

data.

25

Figure 11: Metadata file in each folder in Bundle Client storage

4.5 Bundle Server

The main role of the Bundle Server is to receive data from the transport device

and send it to the respective application’s server adapter. Since the communication for

the Bundle Server with both the transport device and the application server adapters

is done over the internet, we can use gRPC, which is an open-source high-performance

remote procedure call framework. The Bundle Server implements two gRPC services,

with one exposed to the transport, called BundleService, allowing transport devices to

send and receive bundles of data. Another gRPC service, called DTNCommunication

service, is exposed to the application adapter services, allowing them to register the

server with the application ID.

When a transport connects with Bundle Server and asks for data, the server

should be able to quickly find the client data that can be sent to it. Here, we do

this by monitoring all ADUs it has received so far from the application adapters and

storing their information in a MySQL database. As shown in the schema below, we

26

only store metadata related to the ADUs in the database. The actual data is stored

in the file system, as described in figure 8.

Column Name Type Length Is Null

app_id varchar 100 not null
client_id varchar 100 not null
adu_id int unsigned 4 not null

direction_id varchar 6 not null
Table 1: Structure for app_data_table

4.5.1 DTNCommunicationService

When a new application server wants to connect to DTN Bundle Server, it will

send a registerAdapter request, passing in the network address and the application ID.

The bundle server will store this mapping in the registered_app_adapter_table. To

make sure that a malicious agent does not attempt to act as another application to

get unauthorized data from the Bundle Server, the registration step should be done

manually. Next time, whenever we receive client data from transport, we will look at

the network address registered for the application and forward data to that server.

Figure 12 below shows the design of the service running in the bundle server.

Column Name Type Length Is Null

app_id varchar 100 not null
address varchar 200 not null

Table 2: Structure for registered_app_adapter_table

When transport brings some client data to the bundle server, the data store

module (DSM) will first be notified that it should prepare data for the clientId. Once

this bundle has been decrypted, DSM will store it as described in figure 8, in the

“Receive” directory before forwarding them to the registered adapter via its gRPC.

Based on the network address registered for an application, all data for the client will

27

Figure 12: GRPC service for application adapter server to register with bundle server

be sent to their adapter and their responses will be collected and stored in the “Send”

directory.

4.6 Application Adapter Server

This adapter server is responsible for collecting data from the bundle server and

forwarding them to the application’s server. This server is hosted separately by each

application. It is also responsible for storing any additional information regarding the

client so that it can successfully connect to the application server and get data on

behalf of the client.

The definition for this service is shown in figure 13. Here, PrepareData RPC is used

by the bundle server to notify the application adapter that it needs to collect data for

the specific client IDs and store them locally. We need this method because the process

of fetching data from the application’s server may be time-consuming. By calling this

method as soon as the bundle server receives data from transport, the PreparaData

method can run in parallel with bundle decryption and other computations done by

ADM and Bundle Security module.

28

Figure 13: GRPC service for application adapter server to receive data from bundle
server

After the bundle is decrypted and stored in the file system, the bundle server

asks for data by calling saveData RPC. The adapter will send data to the application

server and collect their response. The response and the data generated during the

PrepareData method call will be returned to the bundle server.

If there is no data to be sent in the SaveData call, it can just send the client ID

list and get the data to be sent to the client. Figure 14 summarizes the sequence of

steps performed at the bundle server when it receives a bundle from the transport

29

Figure 14: Flow at Bundle Server when it receives bundle from transport device

device.

4.6.1 Data synchronization between adapter and bundle server

When data is sent between the adapter server and the bundle server, there is a

possibility that the channel between them might go down due to network failure or

an error in code. If this happens, the sender does not know if the data was delivered

successfully or not. To prevent this, the sender of data will assign an ADU ID to each

unit of data. The receiver of data keeps track of ADU IDs that have been received

so far and should provide this information to the sender. This allows the sender to

resend ADUs that were not received in a previous communication. Once the sender

receives confirmation that the data was sent successfully, it can delete the data from

the local storage.

For example, after the adapter gets client-specific data from the application

server, it will store the data in the local file system until they are successfully sent to

the application server. The adapter knows of this when the bundle server includes the

30

latest ADU ID it has for the client in the input for prepareData RPC.

4.7 Integration with Signal Application

The Signal application communicates with the Signal server for three main reasons;

registering the user with the server, sending or receiving messages, and sending or

receiving availability statuses. To send data to Signal Server, the Android application

first checks if the device has network access, then encrypts data and sends data to

the server over a web socket.

To allow the application to send data over DTN, we additionally set the network

connectivity parameter to true if the Bundle Client application is installed (by checking

if the content provider in it is available). In this case, we serialize the encrypted data

and send it to Bundle Client using the content provider.

Until now, ADUs are considered to be an array of bytes. But, it is possible that

some applications might want to send additional parameters, such as the type of

request, user metadata, or data type. To send these types of data, the application

can encapsulate it into the JSON format, which can then be converted into an array

of bytes and sent to the DTN service.

4.7.1 Registration of a new user on to Signal

The first step of integration with Signal is to start with the registration process.

When a user first opens the application, they press the "Get Started" button to

proceed with registration by entering the phone number. Since the registration process

requires verification of the phone number by using a One Time Password which is not

possible in a disconnected setting, this process is being modified.

To register a new user on the signal application, the application should generate

some public and private key pairs, and send the public part of the keys to the server

so that it can keep track of clients and their keys.

31

Figure 15: Data flow for Signal application

To send this data over DTN, we encapsulate this key data in a JSON object

under the key ’Data’. We also include the request type as ’registration’ so that the

application adapter server will know which type of request should be called on the

application server for the given data. When Signal Adapter Server sends this data

to the Signal server, it will receive additional parameters like E164, ACI, and PNI,

which will be used by the Signal application to encrypt any message that it wants to

send. This flow of data is summarized in figure 15 below.

4.8 Integration with other modules

The implementation details described so far are part of the Data Store Module,

as described in section 3.1. This section will describe how this module is placed within

32

the rest of the system.

4.8.1 Bundle Client

After the Bundle Client receives data from several applications, several steps

need to be performed before they can be sent to the transport. The ADUs need to be

placed in a bundle, and any ADUs that cross the size limit for a bundle should be

kept aside at the moment. If we have previously received any other data from the

server (via transport), we should also include a metadata file listing the ADUs that

we have received so far. Once we have all the necessary data, they can be grouped

into a bundle and sent to the transport.

Another thing to note is that the bundle generation process is triggered in the

Bundle Client when it gets in contact with a transport device. It then asks for ADM

for a bundle that should be sent to the transport. Here, ADM interfaces with Data

Store Module to get the necessary ADUs for the bundle.

Similarly, receiving bundles is initiated with the connection of the transport device

with the bundle server. When a bundle is unpacked by the ADM in the bundle server,

the server receives acknowledgments along with new data. Based on acknowledgments

for the data that the server has sent, ADM tells DSM to delete all ADUs up till a

specific ID. The ADM module should only ask for a starting ADU ID because it keeps

track of ADUs that have already been delivered successfully and the ADUs that have

been sent previously but not acknowledged. All the APIs that we have discussed so

far are described in figure 16.

4.8.2 Bundle Server

The integration on the server is similar to that in the Bundle Client as it too

requires handling acknowledgments, and exchanging data with the transport device,

and with the application. One additional factor that has to be handled here is the

33

Figure 16: Design for DataStoreModule in Bundle Client

Client ID. For any interaction with the data, the ADM module has to specify the

client ID.

Another step that needs to be taken by ADM is to call the PrepareData RPC

(as described in section 13) on all application adapters by passing in the client IDs for

which it would like to collect data. This call needs to be made as soon as receiving

a bundle from the transport device. The information regarding the list of client IDs

whose data can be sent via this transport is stored with the Bundle Security module.

The security module does this by keeping track of the transport device and the number

of times it has successfully delivered to the client or received data from the client. All

the APIs that we have discussed so far are described in figure 17.

34

Figure 17: Design for DataStoreModule in bundle server

35

CHAPTER 5

Experiments

This chapter will describe the tests performed on the Bundle Client, Bundle

Server, and application adapter server.

5.1 Modifications on client device

In this section, we will describe the experiments done on an Android device

containing the Bundle Client and a sample client application.

5.1.1 Bundle Client

To make sure that the Bundle Client is able to receive data and push data to

applications, we create a sample application that can take in user input, and send this

input to the Bundle Client using its content provider. We also check that the sample

application is also able to receive data from the Bundle Client using the intent service.

To simulate the Bundle Client receiving data for an application, we create a

simple UI where the user can enter a message and specify the application ID to which

the message should go. We can then see this message being sent to the application

and stored in its file system.

By entering a message, specifying the application ID, and clicking on send, we

were able to store a simple message and send it to the application. If the send operation

is successful, the data is deleted from the Bundle Client file storage. To check if the

file is present or not, Android Studio’s Device Manager can be used for checking the

file system on the phone.

5.1.2 A sample client application

Before we test the DTN architecture on the Signal application, we test it with

a sample application, which we call MySignal. Here, we simulated an Android

application that wants to make use of the DTN architecture to send and receive data

from its application server. When it wants to send some data, it checks if the Bundle

36

Figure 18: UI for Bundle Client application

Client is installed, and then decides to send data to it. If MySignal sends data of size

crossing a configured limit, the Bundle Client will return an error message. When

the Bundle Client receives the first message from this application, the file structure

described in earlier sections is generated and a file named "1.txt" is created. We also

create an entry in ’REGISTERED_APP_IDS.txt’, which is used later by the ADM to

fetch ADUs for creating the bundle. Any subsequent messages sent by MySignal are

stored in sequential order in the same directory. We can also see that the metadata

file too reflects the correct values based on these insert operations.

This application also implements a Receive Intent Service, which receives all data

generated by the application server from the Bundle Client. To test this, we go to

Bundle Client and enter a message and the package name of the MySignal application.

When we click on the ’Send’ button, the data is sent to the Receive Intent Service of

MySignal, which then stores the file in its storage.

37

Figure 19: UI for a sample client application

5.1.3 Signal Implementation

The first step of integration with Signal is to start with the registration process.

When a user first opens the application, they click on the "Get Started" button to

proceed with registration. On this button press, all necessary keys are generated and

stored in a file. The generated data is sent to the Bundle Client and stored as an

ADU file.

5.2 Integration of data store module with Bundle Client

All experiments explained so far are done only with the Data Store Module, as

described in 3.1. This section will detail the experiments on the integration with the

other parts of the application.

5.2.1 Bundle Client

As seen earlier, the process of generating and sending a bundle starts when the

Bundle Client detects the presence of a transport device and connects with it. The

first step is to receive any bundles that the transport has for this client’s device.

When the ADM module receives the bundle, it will unpack the bundle and check

38

for acknowledgments. It shares this information with the Data Store module, which

deletes these ADUs and informs the respective applications that the specified ADUs

have been delivered successfully. Now, the Data Store module processes the ADUs in

the received bundle. The processing is successful because we can see in the application

the ADUs that were sent from the transport device.

After all the ADUs have been processed, the Bundle Client starts the bundle

generation process that needs to be sent to the transport device. the ADM module

collects ADUs from the Data Store module and starts generating a bundle. To test

if the operation was successful, we store the generated bundle on the Bundle Client

storage to see the contents of the bundle that was delivered by the Bundle Client to

the transport device. Here, we can see that the messages sent by the MySignal client

application were correctly present inside the bundle folder.

5.2.2 Bundle Server

Similar to the Bundle Client, when a transport device connects with the Bundle

Server, the transport should first send any bundles it has in its storage. After the

ADM module unpacks the bundle and sends the ADUs to DSM, the DSM sends these

ADUs to the respective application adapter servers. As an experiment, when we

generate a sample bundle and send it from transport, we can see that the ADUs were

received successfully by the application adapter server because they were found in its

file storage.

Now, we need to test if the Bundle Server generated the bundle and was able to

send it to the transport device. To test this, we create some sample client data in the

application adapter server (to simulate receiving of data from the actual application

server). Here too, we store the generated bundle in the Bundle Server file system so

that we can clearly see the bundle contents. After the bundle is delivered successfully

39

to the transport device, we can see that the bundle contains the sample data that was

generated in the application adapter server.

5.3 DTNCommunication Service

As described in section 4.5, this service is responsible for maintaining the location

of application servers. To test the working of this service, a new application adapter

needs to register to this DTN by calling the registerAdapter RPC. After execution of

this RPC, a new entry is created in the registered_app_adapter_table table. If the

same method is called again on the same application ID, an error is returned saying

that an adapter for the specified application is already registered.

5.4 Application adapter server

The central part of this server is to receive and send data to the Bundle Server.

This is done when the Bundle Server calls the SaveData RPC on the application

adapter service. We test this by creating a GRPC client for this service and passing

some simple plain text data, a client ID, and an application ID. After execution, we

can see that the adapter server has processed this message by writing it to a file and

sending an acknowledgment message back to the Bundle Server.

40

CHAPTER 6

Future Work

In this chapter, we will take a look at how this project can be extended.

6.1 Intermittent connectivity on client device

People in disconnected regions might experience intermittent connectivity while

traveling within disconnected regions. During this brief period of connectivity, the

data that could not be sent previously will be sent to the respective application server.

Since the application has already sent this data to the Bundle Client, this application

will need to inform Bundle Client that the data has already been sent the data via the

internet and that the Bundle Client can discard this data. The Bundle Client should

also share this information with Bundle Server so that the server can discard this data

when it arrives from the transport devices. Figure 20 shows this scenario in detail.

6.2 Data fragmentation

A lot of modern applications such as Youtube, Facebook, and Netflix transfer

large amounts of data over the internet. Since there are data limit constraints on

how much the Bundle Client and the transport device can store, additional policies

are required for sending these vast amounts of data over this DTN. A simple option

would be to fragment a large piece of data into several ADUs before sending it to

the transport device. Once all fragments are received on the other side, they can be

merged to form the whole data and then processed.

Another option might include setting lower priority and higher data limits on

data-heavy applications. A user interface can also be created on the Bundle Client

to allow the user to set a higher priority on some applications so that data for these

applications are delivered first.

41

Figure 20: Scenario in case of intermittent connectivity

6.3 Improving security

In this entire DTN, the communication between the Bundle Server and the

Application Adapter Servers is the only channel that is not encrypted. Even though

applications ensure that the data is encrypted before sending from the user’s phone or

the servers, some additional information like sender, receiver, and type of data remains

exposed. This allows malicious agents to eavesdrop on the gRPC communication

between Bundle Server and Application Adapter Server. Encryption of data before

sending can improve the overall security of the DTN.

42

CHAPTER 7

Conclusion

Several research has shown that a large percentage of the population is still

disconnected from the internet. We took a look at this problem and designed an

architecture that builds on existing tools, without depending on any additional

hardware. By using the Android platform, we show that it is feasible to connect a

user in a disconnected setting with the internet. This is made possible with the use

of "transport" devices that act as carriers of data between a user in a disconnected

region and the internet. We have also shown that it is possible to collect application

data on the users’ phones so that they can be sent to transport devices. We have also

shown that the data that the users’ phones receive from the transport can be sent

back to the respective applications.

In the connected region, we show how the Bundle Server can take the application

data from users’ phones, and send them to their respective destinations. We then

show how the Bundle Server collects new data for the users and send them back to

the transport devices.

We also show that the open-source Signal application can make use of this DTN

architecture to perform user registration and pass messages between the user and the

Signal server. This demonstrates the feasibility of this DTN with modern applications

and provides a design that other applications can follow to enable connectivity in

disconnected regions.

43

LIST OF REFERENCES

[1] I. W. Stats, ‘‘https://internetworldstats.com/stats.htm,’’ 2022.

[2] L. Zhen, K. Wang, and H.-C. Liu, ‘‘Disaster relief facility network design in
metropolises,’’ IEEE Transactions on Systems, Man, and Cybernetics: Systems,
vol. 45, no. 5, pp. 751--761, 2015.

[3] K. Fall, ‘‘A delay-tolerant network architecture for challenged internets,’’ in
Proceedings of the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, 2003, pp. 27--34.

[4] Google, ‘‘play.google.com/store/apps/details?id=org.thoughtcrime.securesms,’’
2022.

[5] M. Li, P. Si, and Y. Zhang, ‘‘Delay-tolerant data traffic to software-defined
vehicular networks with mobile edge computing in smart city,’’ IEEE Transactions
on Vehicular Technology, vol. 67, no. 10, pp. 9073--9086, 2018.

[6] A. Krifa, C. Barakat, and T. Spyropoulos, ‘‘Optimal buffer management policies
for delay tolerant networks,’’ in 2008 5th annual IEEE communications society
conference on sensor, mesh and ad hoc communications and networks. IEEE,
2008, pp. 260--268.

[7] A. Lindgren and K. S. Phanse, ‘‘Evaluation of queueing policies and forwarding
strategies for routing in intermittently connected networks,’’ in 2006 1st Inter-
national Conference on Communication Systems Software & Middleware. Ieee,
2006, pp. 1--10.

[8] R. Patra and S. Nedevschi, ‘‘Dtnlite: A reliable data transfer architecture for
sensor networks,’’ CS294-1: Deeply Embedded Networks (Fall 2003), 2003.

[9] D. Gay, ‘‘Design of matchbox, the simple filing system for motes,’’ 2003.

[10] J. Scott, J. Crowcroft, P. Hui, and C. Diot, ‘‘Haggle: a Networking
Architecture Designed Around Mobile Users,’’ in WONS 2006 : Third
Annual Conference on Wireless On-demand Network Systems and Services.
Les Ménuires (France): INRIA, INSA Lyon, Alcatel, IFIP, Jan. 2006,
pp. 78--86, http://citi.insa-lyon.fr/wons2006/index.html. [Online]. Available:
https://hal.inria.fr/inria-00001012

[11] S. Schildt, J. Morgenroth, W.-B. Pöttner, and L. Wolf, ‘‘Ibr-dtn: A lightweight,
modular and highly portable bundle protocol implementation,’’ Electronic Com-
munications of the EASST, vol. 37, 2011.

44

https://hal.inria.fr/inria-00001012

[12] C. E. Palazzi and A. Bujari, ‘‘Social-aware delay tolerant networking for mobile-
to-mobile file sharing,’’ International Journal of Communication Systems, vol. 25,
no. 10, pp. 1281--1299, 2012.

[13] C. Caini, P. Cornice, R. Firrincieli, M. Livini, and D. Lacamera, ‘‘Dtn meets
smartphones: Future prospects and tests,’’ in IEEE 5th International Symposium
on Wireless Pervasive Computing 2010. IEEE, 2010, pp. 355--360.

[14] P. Jiang, J. Bigham, E. Bodanese, and E. Claudel, ‘‘Publish/subscribe delay-
tolerant message-oriented middleware for resilient communication,’’ IEEE Com-
munications Magazine, vol. 49, no. 9, pp. 124--130, 2011.

[15] H. Ntareme, M. Zennaro, and B. Pehrson, ‘‘Delay tolerant network on smart-
phones: Applications for communication challenged areas,’’ in Proceedings of the
3rd Extreme Conference on Communication: The Amazon Expedition, 2011, pp.
1--6.

[16] K. Sankaran, A. L. Ananda, M. C. Chan, and L.-S. Peh, ‘‘Dynamic framework
for building highly-localized mobile web dtn applications,’’ in Proceedings of the
9th ACM MobiCom workshop on Challenged networks, 2014, pp. 43--48.

[17] S. Carvalho, R. N. de Lima, and A. G. da Silva-Filho, ‘‘A pushing approach for
data synchronization in cloud to reduce energy consumption in mobile devices,’’
in 2014 Brazilian Symposium on Computing Systems Engineering. IEEE, 2014,
pp. 31--36.

[18] K. Scott and S. C. Burleigh, ‘‘Bundle Protocol Specification,’’ RFC 5050, Nov.
2007. [Online]. Available: https://www.rfc-editor.org/info/rfc5050

[19] D. D. Clark and D. L. Tennenhouse, ‘‘Architectural considerations for a
new generation of protocols,’’ in Proceedings of the ACM Symposium on
Communications Architectures Protocols, ser. SIGCOMM ’90. New York,
NY, USA: Association for Computing Machinery, 1990, p. 200–208. [Online].
Available: https://doi.org/10.1145/99508.99553

[20] M. Skjegstad, F. T. Johnsen, T. H. Bloebaum, and T. Maseng, ‘‘Mist: A reliable
and delay-tolerant publish/subscribe solution for dynamic networks,’’ in 2012 5th
International Conference on New Technologies, Mobility and Security (NTMS),
2012, pp. 1--8.

[21] L. Wood, P. Holliday, D. Floreani, and I. Psaras, ‘‘Moving data in dtns with
http and mime,’’ in 2009 International Conference on Ultra Modern Telecommu-
nications Workshops, 2009, pp. 1--4.

[22] V. Alves and P. Borba, ‘‘Distributed adapters pattern: A design pattern for
object-oriented distributed applications.’’

45

https://www.rfc-editor.org/info/rfc5050
https://doi.org/10.1145/99508.99553

[23] R. Sears, C. Van Ingen, and J. Gray, ‘‘To blob or not to blob: Large object
storage in a database or a filesystem?’’ arXiv preprint cs/0701168, 2007.

[24] S. Ronglong and C. Arpnikanondt, ‘‘Signal: An open-source cross-platform
universal messaging system with feedback support,’’ Journal of Systems and
Software, vol. 117, pp. 30--54, 2016.

46

	Ubiquitous Application Data Collection in a Disconnected Distributed System
	Recommended Citation

	Introduction
	Using Signal Android application
	Other components

	Related Works
	Data Storage
	Communication between Bundle Client and user applications
	Application data format

	System design
	Background
	Data delivery Assumptions
	Acknowledgments
	Data handling at Bundle Client
	Push versus Pull
	Sending Data to transport
	Receiving Data from transport

	Application data handling at bundle server
	Receiving messages from transport
	Sending messages to transport

	Application data Storage

	Implementation Details
	Content Provider
	Android Intents
	Client Application
	Bundle Client Application
	Bundle Server
	DTNCommunicationService

	Application Adapter Server
	Data synchronization between adapter and bundle server

	Integration with Signal Application
	Registration of a new user on to Signal

	Integration with other modules
	Bundle Client
	Bundle Server

	Experiments
	Modifications on client device
	Bundle Client
	A sample client application
	Signal Implementation

	Integration of data store module with Bundle Client
	Bundle Client
	Bundle Server

	DTNCommunication Service
	Application adapter server

	Future Work
	Intermittent connectivity on client device
	Data fragmentation
	Improving security

	Conclusion
	LIST OF REFERENCES

