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ABSTRACT

Enhancing Facial Emotion Recognition Using Image Processing with CNN

by Sourabh Deokar

Facial expression recognition (FER) has been a challenging task in computer

vision for decades. With recent advancements in deep learning, convolutional neural

networks (CNNs) have shown promising results in this field. However, the accuracy

of FER using CNNs heavily relies on the quality of the input images and the size of

the dataset. Moreover, even in pictures of the same person with the same expression,

brightness, backdrop, and stance might change. These variations are emphasized

when comparing pictures of individuals with varying ethnic backgrounds and facial

features, which makes it challenging for deep-learning models to classify. In this paper,

we provide a simple yet efficient way for recognizing facial expressions that combines

a CNN with certain image pre-processing techniques. We conducted our experiments

on a combination of MUG, JAFFE, and CK+ datasets. To improve the performance

of CNN, we experimented with various image pre-processing techniques such as face

detection and cropping, image sharpening using Unsharp Mask, and normalization

techniques like Global Contrast Normalization, Histogram Equalization, and Adaptive

Histogram Equalization. Furthermore, we also examined data augmentation techniques

such as image translations and adding noise to images to enhance performance of

the deep learning model. Our custom CNN-based FER model achieved a maximum

average accuracy of 93.3% (6 classes) and 91% (7 classes) after cross-validation. Our

experimental results show that our proposed method can effectively enhance the

accuracy of facial expression recognition.

Keywords: Convolutional Neural Network, Data Augmentation, Deep

Learning, Facial expression recognition, Image Processing, Normalization
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CHAPTER 1

Introduction

Emotions are a significant factor in human communication. Basic emotions

include disgust, anger, happy, fear sadness, contempt and surprise [7]. Facial Expres-

sions are used for the identification of an individual’s emotion. It may be defined,

in accordance with Li and Jain [8], as facial changes made in reaction to an indi-

vidual’s internal emotional state, objectives, or social communication. Numerous

tasks, including security monitoring, multimodal human-computer interface (HCI),

intelligent environments, lie detection, customer satisfaction identification, e-learning,

emotion and paralinguistic communication, and smart card applications, benefit from

facial expression recognition (FER) [9] [10] [11]. The three primary components of

the conventional emotion recognition system, according to Tian et al. [11], are the

identification of faces, the extraction of facial features, and the classifier construction.

After the identification of faces, the facial features caused by facial changes need to be

extracted. The most common traditional feature extraction methods include Principal

component analysis [12], Bezier curves [13], Independent Component analysis [14],

Local binary patterns [15], two-directional 2D Fisher principal component analysis

[16], clustering techniques [17] and facial landmarks [2]. The extracted features need to

maximize inter-class variance while minimizing the intra-class variation of expressions

[15]. Because images of various people with the same expression are spread out in

the pixel’s space, it is difficult to minimize the intra-class variance of expressions.

Also, since images of the same individual with various emotions may be quite close

to one another in the pixel’s space, maximizing the inter-class variation is similarly

challenging [18].

Following feature extraction, classifiers such as Naive Bayes and Decision trees

[19], Support vector machines [10], k-nearest neighbors [20], Hidden Markov models
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[12], etc. are used to infer facial emotion. The disadvantage of the typical machine

learning approach is that increasing system performance is difficult because of the

separation between feature extraction and classification phases. Deep neural networks

employ end-to-end learning, which combines the feature extraction and classification

steps into a single phase to address the problems with traditional methods [21] [22]

[23] [24] [25] [26]. The most effective algorithms for image classification problems

are convolution neural networks (CNN). The automatic feature extraction offered by

this CNN is one of its main advantages. However, the amount of data affects how

well it performs. Facial expression dataset sizes are still limited for deep learning

to be used. Moreover, images in highly controlled settings in the existing available

FER datasets exhibit acted expressions rather than spontaneous ones. Consequently,

an additional challenge associated with facial expression recognition is the model

might not perform well if the training photos differ greatly from testing images in

terms of the setting and subject ethnicity. Combining several datasets with potential

subjects from various ethnic groups to train and test models is one way to assess facial

expression recognition in these settings, which we follow in our study. Additionally,

noisy and deviated images in the dataset also hamper the performance of CNNs. These

drawbacks motivate the use of image pre-processing and data augmentation methods

to enhance deep learning performance.

By combining image pre-processing techniques like region of interest selection,

image sharpening, normalizations, and data augmentation by synthetic training-

sample generation with deep learning, we attempt to address the aforementioned

limitations in our study while maintaining a straightforward solution. By merging

three separate datasets (CK+, JAFFEE, and MUG) [27] [1] [28] and conducting

cross-validation, we carry out a thorough validation. The four primary contributions

of this paper are, in brief: a real-time, simple, and effective method for recognizing

2



facial expressions; a research on how image pre-processing techniques influence face

expression recognition; a series of specific pre-processing steps that help deal with the

lack of data and minimize the requirement for controlled environments; a study of the

effectiveness of a FER system trained on subjects from various racial and cultural

backgrounds and samples from varying settings (multi-database evaluation).
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CHAPTER 2

Project Roadmap

We observed how pre-processing methods including the region of interest extrac-

tion, global contrast normalization, histogram equalization, and data augmentation

by introducing salt and pepper noise enhanced the performance of CNN in earlier

research by Pitloka et al [23]. Pitloka et al. findings serve as a motivation for our

research. The objective is to evaluate other image pre-processing techniques, such as

image sharpening using Unsharp Mask and normalization using Adaptive Histogram

Equalization along with the techniques from [23]. Sharpening an image improves the

borders of important features like the lips and eyes, which are crucial for identifying

emotion. We’ll try out a different noise addition technique called Gaussian noise

to generate synthetic images. In contrast to [23], where the generated images were

present in both training and test datasets, causing data overlap, we will only generate

the synthetic images for the training the model. Additionally, image translations like

rotation, zoom, height shift, width shift, shear, and flip will be employed for data

augmentation. Unlike [23], cross-validation will be used for each model to produce

precise results. Finally, we will establish the ideal pre-processing pipeline for enhancing

the performance of FER models.
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CHAPTER 3

Related Work

Over the past few decades, several facial expression recognition (FER) techniques

have been developed, with growing performance [19] [26]. Both machine learning

and deep learning methods have been used to build FER approaches. SVM and

Logistic Regression models were used by Raut [2] to classify the face images in the

CK+ dataset into seven categories: contempt, anger, happiness, sadness, disgust,

fear, and surprise. The 68 facial landmark detector, which provides the positions

of 68 landmarks on the face, was used to extract the features from the face and

create the feature vectors. For the Logistic Regression model and the Linear SVM

model, this method’s accuracy was 88.2% and 83.23%, respectively. Applying image

pre-processing and Recursive Feature Elimination to eliminate any low-weighted

features has the potential to increase accuracy. On the CK+ dataset, Dewi et al

[29], suggested an Active Appearance Model (AAM) and a semi-supervised Fuzzy

C-Means for facial expression recognition. AAM is a feature extraction method that

uses template matching and is applied during training. 68 spots were used to analyze

the shape of the face. Their model’s accuracy was 80.71%. Salmam et al. [19] used a

decision tree to create a FER system with seven potential classes on two datasets:

COHEN and JAFEE. In order to assess the portions of the face that best depict a

facial expression, this model uses the six distances that were previously computed

(using the Minkowski, Manhattan, or Euclidian distance) for each face as input to

the classifier. In the JAFFE and COHEN datasets, the accuracies achieved were

89.20% and 90.61%, respectively. Other studies have employed machine learning

algorithms like Hidden Markov model [30] and k-nearest neighbors [20] for facial

expression recognition. Since the processes of feature extraction and classification are

isolated in the traditional machine learning approaches, it is challenging to improve

5



the model performance.

To overcome the issues with conventional machine learning techniques, deep

learning networks integrate feature extraction and classification procedures into a

single phase. CNN is the most commonly used deep learning technique for image

classification. Although CNNs function effectively on their own, preprocessing images

and using them as input rather than supplying the CNN with raw input images has

demonstrated a considerable boost in accuracy [23]. The earlier versions of CNN

architectures were less resistant to deviated and inconsistent facial images because they

did not use image data augmentation and preprocessing approaches [31] [32]. A CNN

model was created by Wang et al. [21] and trained on the FER-2013 dataset [33] to

classify a collection of static images into 7 fundamental emotions. The outcome of the

softmax activation function was stacked using SVM. In order to improve performance,

they also employed data augmentation and histogram equalization as pre-processing

techniques. Their findings show that preprocessing techniques enhance the CNN

model’s accuracy. Based on earlier research [21], Vepuri [24] was able to show that,

although using a relatively simple CNN model, performance can be improved by

using a sharpening technique (Unsharp Mask) to preprocess images for a FER model.

For the FER13 dataset, they measured a 2% improvement in accuracy following the

use of Unsharp Mask. In order to improve FER, Lopes et al. [22] investigated the

effects of data pre-processing prior to network training. Before CNN, processes such

as data augmentation, cropping, rotation correction, downsampling, and intensity

normalization were used. The CNN had two layers of convolution-pooling and two

layers of fully linked layers with 256 and 7 neurons, respectively. Three databases

CK+, JAFFE, and BU-3DF [34] were used to analyze this approach. According to

the results, applying each of these pre-processing processes together was more efficient

in improving the model performance than doing it separately.

6



Influenced by the research in [22], Pitloka et al. [23] improved their 2-layer CNN

by implementing data pre-processing techniques such as face detection and cropping,

resizing, data normalization (global contrast normalization, local normalization, and

histogram equalization), and noise addition (for data augmentation). They used a

combination of JAFFE, CK+, and MUG datasets to train the CNN. When compared to

other pre-processing steps face detection and cropping as a single pre-processing phase

produced a substantial increase in the model accuracy from 62.35% to 87.06% accuracy.

The histogram equalization step improves accuracy more than other normalizing

methods, although not as much as face detection and cropping. The CNN was able to

attain 97.06% accuracy by adding salt and pepper noise to images and augmenting the

noisy images to the original dataset. Nevertheless, since there are two versions of the

data—the original and noisy data—the likelihood of data overlap between the training

set and the testing set is significant. We believe that this is not a fair evaluation of

the FER model and that an accurate analysis of the FER model may be attained by

only utilizing the training dataset for data augmentation. Without data augmentation

by adding noise Pitloka et al. obtained a max accuracy of 90.59% using face detection

and histogram equalization as the pre-processing techniques. This study, as well as

several other works, did not include any cross-validation procedures. As a result, the

accuracy of the results obtained remains unclear. The absence of cross-validation in

these studies raises concerns about the reliability and generalizability of their findings.

In the absence of cross-validation, it is important to interpret the findings of these

studies with caution and to consider the potential limitations of their methodologies.

Borgalli and Surve [25], in their work, implemented 10-fold cross-validation on

CNN-based FER models, which were trained separately on FER13, CK+, and JAFFE

datasets. The accuracy rates for the FER2013, CK+, and JAFFE datasets on the

seven types of emotions— happiness, anger, disgust, sadness, fear, contempt, and

7



surprise—were 86.78%, 92.27%, and 91.58%, respectively. Some other works on

FER used transfer learning to tackle the problem of limited datasets. For example,

Chowdary, Nguyen, and Hemanth [26] use pre-trained CNNs of MobileNet, VGG19,

Inception V3, and Resnet50 to recognize emotions in facial images from the CK+

database. New fully connected layers were introduced that could only be trained to

update the weights, removing the existing fully connected layers of the pre-trained

models. On the CK+ database, their experiment’s accuracy was on average 96%.

Most of the studied works in our literature review have either trained models on a

single dataset or independently on multiple datasets, but very few like Pitloka et al.

[23] have performed a multi-database evaluation. Training models on a single dataset

can limit their generalizability to other settings. For example, if the training images

are vastly different from the testing images in terms of environment setting or subject

ethnicity, the FER model may not perform as well. To address this issue, in our study,

we combine several datasets and include potential subjects from various ethnic groups

to train and test our FER model. This allows us to evaluate the model’s performance

in a more realistic and diverse setting.
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CHAPTER 4

Dataset

To include participants from different ethnic groups and samples with varied

environmental conditions, we combine the three datasets below, similar to [23].

4.1 CK+

In computer vision and affective computing, the Extended Cohn-Kanade Dataset

(CK+) is a facial expression dataset that is often utilized. It was created by including

more people and a larger variety of facial expressions in the original Cohn-Kanade

dataset. The 593 image sequences in the CK+ dataset, which includes 123 participants,

each depict a participant’s expression as they carry out a particular job. The dataset

includes neutral expressions in addition to the six fundamental emotions of anger,

disgust, sadness, fear, happiness, and surprise. The facial muscle movements that

underpin face emotions, known as action units (AUs), are labeled for the facial

expressions in the CK+ dataset. 35 AUs are annotated in the dataset, enabling

researchers to investigate the connection between particular AUs and various emotional

expressions. In this investigation, two Panasonic AG-7500 cameras were used to record

the facial expressions of 210 adults. Subjects were aged 18 to 50, 69% female, 81%

European American, 13% African American, and 6% from other groups. Participants’

ages ranged from 18 to 50. Both frontal and 30-degree perspectives were used to

record the facial expressions, which were then digitally converted into either 640x480

or 640x490 images of either 24-bit color values or 8-bit grayscale. The dataset offers

a thorough collection of facial expressions for a wide range of people, making it an

important tool for research into facial expression and emotion identification.
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Figure 1: Sample images from CK+ dataset [1]

4.2 MUG

The Multimedia Understanding Group developed the MUG Facial Expression

Database to address shortcomings of earlier comparable datasets and support research

in the area of expression recognition. The collection includes image sequences of

86 subjects, 51 males and 35 women, aged 20 to 35, who are of Caucasian descent.

Two 300W light sources were put on supports to distribute the light and prevent

shadows while the subjects were being recorded in front of a camera with a blue screen

background. The camera took pictures at a rate of 19 frames per second, saving

each one as a jpg file with a resolution of 896 x 896 pixels and a size of between 240

and 340 KB. The database is divided into two sections, the first of which contains

the seven fundamental emotions—anger, disgust, sadness, fear, happiness, contempt,

and surprise—and the second of which comprises emotions that have been artificially

created in a lab. The sequences follow the onset, apex, offset temporal pattern, are

categorically labeled, and begin and conclude at a neutral state. A brief picture

sequence illustrating the neutral condition was captured for each subject. A total of

1462 image sequences that were chosen as the best were made available. Also, other

photos had landmark facial points manually and automatically labeled. The second

section of the database includes approximately 1000 photos in one image sequence for
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each subject that was taken at 19 frames per second with a resolution of 896 x 896

with the intention of eliciting natural reactions in a lab setting. These sequences have

not yet been tagged.

Figure 2: Sample images from MUG dataset

4.3 JAFFE

A collection of facial expressions of Japanese women called the Japanese Female

Facial Expression (JAFFE) Dataset has been extensively used in studies on facial

recognition and emotion recognition. The collection consists of 213 photos representing

each of the seven face expressions: neutral, fear, happiness, sadness, anger, disgust,

and surprise. Images of Japanese women of various ages, without makeup, and with

their hair pinned back to reveal their faces were taken with a digital camera under

controlled lighting settings. Ten distinct people each play a different expression. The

JAFFE dataset has been used to train and test emotion recognition models, facial

expression recognition algorithms, and other computer vision and artificial intelligence

applications. Computer vision and emotion recognition researchers have benefited

greatly from the JAFFE dataset. It has helped to improve the reliability and accuracy

of face expression detection systems. The JAFFE dataset has also been used by
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researchers to examine cultural variations in facial expression, revealing that Japanese

people typically exhibit softer expressions than Westerners. The JAFFE dataset does,

however, have certain drawbacks, including the small number of people represented

and the uniformity of facial characteristics and head postures. The JAFFE dataset

continues to be a valuable tool for researchers in the area despite these drawbacks

and has paved the path for additional developments in facial recognition and emotion

detection technology.

Figure 3: Sample images from JAFFE dataset
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Table 1: Comparison between CK+, JAFFE, and MUG datasets

MUG CK+ JAFFE

# of emotions 7 Emotions 7 Emotions 7 Emotions
# of subjects 86 (35 females

& 51 males)
123 (male and fe-
male)

10 females

# of samples 328 593 (327 labeled,
266 unlabeled)

213

Ethnicities of
subjects

Caucasian 13% African
American, 81%
European Amer-
ican, and 6%
from other
groups

Japanese

Resolution 896x896 640x490 or
640x480

256x256

Format .jpg .png .tiff

Figure 4: Slass distribution of samples from all 3 datasets
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CHAPTER 5

Facial Image Pre-Processing

The performance of CNNs can be impacted by a variety of elements, including

limited datasets, crowded backgrounds, lighting, and posture deviation. The use of

the following preprocessing filters may enhance the classification accuracy of facial

expressions.

5.1 Face detection and cropping

Face detection and cropping is a crucial image preprocessing technique that

involves detecting the face region in the image and extracting it for further processing.

In this study, we used the Haar Cascade Classifier in the OpenCV library to detect

faces in the input image. The classifier is trained to recognize the patterns of facial

features such as eyes, nose, and mouth in an image. Once the faces are detected,

we cropped the image to only include the face region. The implementation involved

setting the scaleFactor which governs the amount of image size that is shrunk at each

image scale, and the minNeighbors parameter, which controls the number of rectangles

that are retained after the detection [35]. After face detection, we extracted the region

of interest (ROI) by using the (x, y) coordinates of the detected face and its width

and height (w, h). This ROI can then be further preprocessed with other techniques

such as normalization or histogram equalization to enhance the facial features and

improve the accuracy of the facial emotion recognition model.

Figure 5: Face detection and region of interest selection
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5.2 Unsharp Mask

In this study, one of the image preprocessing techniques used to improve facial

emotion recognition is the “Unsharp Mask.” The Unsharp Mask is a sharpening filter

that enhances edges and fine details in an image. It works by subtracting a blurred

version of the image from the original image, which enhances the contrast and details

of the edges in the image. The Unsharp Mask is particularly useful for improving

the clarity of low-resolution images or images with low contrast. We implemented

the Unsharp Mask using the OpenCV library in Python. Specifically, we used the

cv2.GaussianBlur() function to apply a Gaussian blur to the input image before

subtracting it from the original image [36]. The size of the Gaussian blur kernel

was set to (0, 0) to automatically calculate the kernel size based on the input image

size. We also set the standard deviation of the Gaussian kernel to 1.0 to control the

amount of blur applied to the image. After applying the Gaussian blur, we used the

cv2.addWeighted() function to subtract the blurred image from the original image

and add the result to the original image [33]. The parameters of the function were

set to add twice the original image to the blurred image with a weight of -1.0. This

resulted in an output image with enhanced edges and fine details that were better

suited for facial expression recognition using a convolutional neural network.

5.3 Normalization

Normalization is a technique that scales the pixel values of an image to a fixed

range to remove the effects of different lighting conditions and contrast levels in the

input images. This technique is particularly useful for facial expression recognition as

it helps to remove variations in image brightness and contrast, which can affect the

performance of the model. We experimented with the following three normalization

techniques.
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Figure 6: Applying unsharp mask on a sample image

5.3.1 Global Contrast Normalization

Global Contrast Normalization (GCN) is a technique that normalizes the pixel

values of an image to have zero mean and unit variance to remove the effects of

variations in lighting and contrast in the input images. In this study, we implemented

the GCN technique by subtracting the mean intensity of the image from each pixel

and dividing the result by the standard deviation of the image intensities. This helps

to normalize the image contrast across different images and makes it easier for the

CNN model to learn meaningful features.

5.3.2 Histogram Equalization

Histogram Equalization (HE) is a commonly used technique in image processing for

enhancing the contrast and brightness of images. The technique works by redistributing

the intensity values of an image’s histogram to improve the overall contrast and

brightness. In this process, the intensity values are stretched over a wider range, which

results in a more balanced distribution of pixel intensities. Histogram Equalization

is particularly useful for images with low contrast, where details may be difficult to

distinguish. In our implementation, we used the OpenCV library’s cv2.equalizeHist()

function to apply the Histogram Equalization technique to the input image [37]. The
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function takes the input image as an argument and returns the equalized image with

improved contrast and brightness. By enhancing the contrast and brightness of the

input images using Histogram Equalization, we were able to improve the accuracy of

the Facial Emotion Recognition CNN model. However, it is important to note that

Histogram Equalization may also amplify the noise present in an image, which can

negatively affect the performance of the model.

Figure 7: Histogram before and after histogram equalization

5.4 Adaptive Histogram Equalization

Adaptive Histogram Equalization (AHE) is a variation of the Histogram Equal-

ization technique that is designed to address some of the limitations of traditional

Histogram Equalization. Unlike traditional Histogram Equalization, which applies a

global transformation to the entire image, AHE applies the transformation locally to

small regions of the image. This allows the technique to better handle images with

varying levels of contrast and brightness across different regions. Specifically, AHE di-

vides the image into small tiles and applies Histogram Equalization separately to each

tile, using the cumulative distribution function of the pixel intensity values within that

tile. This local adaptation prevents the over-enhancement of noise and artifacts seen

with Histogram Equalization, while still improving the contrast of the image. In our
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implementation of AHE we used the OpenCV library’s cv2.createCLAHE() function

to create a Contrast Limited Adaptive Histogram Equalization object [38]. We set

the clipLimit parameter to 2.0 and the tileGridSize parameter to (8,8) to control the

level of contrast enhancement and the size of the local regions, respectively. We then

applied this object to the input image using the apply() function, which returns the

enhanced image, with the transformation applied locally to different regions of the

image.

Figure 8: Histogram before and after adaptive histogram equalization
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Figure 9: Applying image normalizations on a sample image

5.5 Image Augmentation/ Synthetic Image Generation
5.5.1 Image Augmentation by image translations

Image augmentation is a powerful technique used to increase the diversity and

amount of data available for training deep learning models. One way to augment

images is by performing image translations. This involves randomly shifting an

image in the horizontal and/or vertical direction by a certain number of pixels. In

this project, we have implemented image augmentation by image translations using

the ImageDataGenerator class from the Keras library [39]. This class allows us to

generate new images by applying various transformations to the original images. The
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transformations applied in this project include rotation, zoom, width and height shift,

shear, and horizontal flip. The datagen object created by the ImageDataGenerator

class is then used to generate augmented images during the training process. We

also calculated class weights based on the integer labels to balance the distribution

of samples across different classes. The class_weights parameter in the model.fit()

function is used to assign higher weights to underrepresented classes, helping to

address class imbalance issues. The use of image augmentation techniques such as

translations can help to improve the performance of deep neural networks, especially

when working with limited amounts of training data.

Figure 10: Data augmentation

5.5.2 Image Augmentation by adding noise

Another way to achieve data augmentation is to generate synthetic images by

adding noise to the original dataset. In our study, we have implemented this technique

by adding Gaussian noise to the facial images in the dataset. The Gaussian noise

added to the images is random and helps to increase the variability of the data,

making the neural network more robust to variations in the input. By adding these
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synthetic images to the original dataset during training, we were able to significantly

increase the number of samples of our facial emotion recognition model. In our

implementation, we generate random Gaussian noise with a normal distribution using

‘numpy.random.normal(mean, std, img.shape)’. The noise generated will have the

same dimensions as the input image, and its values will be randomly distributed

around the mean with a standard deviation of 0.5. We then calculated class weights

based on the training data to ensure that the synthetic images were added in a

balanced way. We then selected a subset of the images and labels for each expression

based on the class weight and generated the required number of images with noise.

We randomly selected images from the dataset and added Gaussian noise to generate

synthetic images. However, we have taken a different approach from [23] by only

utilizing the generated images for training the model, rather than including them in

both the training and testing datasets. We believe this will prevent data overlap

between the two sets and provide a more accurate evaluation of the FER model.

Figure 11: Applying gaussian noise on a sample image
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CHAPTER 6

Facial Emotion Recognition
6.1 FER using Machine Learning

In the conventional Machine Learning process for FER, region of interest selection

is done first by detecting the face in the input image. Haar Cascade Classifier is

one of the commonly used techniques for face detection. Following face recognition,

it’s necessary to extract the facial characteristics brought on by facial expressions.

Traditional feature extraction approaches most frequently used include local binary

patterns, clustering algorithms, and face landmarks. Face landmarks are discovered

within the bounding box using feature detection techniques, as shown in the figure

below.

Figure 12: Face landmarks [2]

The emotion class is then identified using these features as input to classification
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models like KNN, HMM, and SVM, as illustrated in Figure 13.

Figure 13: Machine Learning based FER approach [2]

6.2 FER using Deep Learning
6.2.1 FER using CNN

Facial features are automatically extracted by CNN, as opposed to traditional

machine learning, where facial features need to be manually extracted from an input

image to complete emotion categorization. End-to-end learning, used by deep learning

networks, condenses the feature extraction and classification processes into a single

stage. CNN is one such variant of neural networks that can collect spatial data and

gather valuable characteristics from an image. A typical CNN architecture for FER

consists of several layers including convolutional layers, dropout layers, pooling layers,

and fully connected layers.
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Figure 14: CNN architecture [3]

Figure 15: 3x3 kernel operation on 5x5 image [3]

6.2.1.1 Convolutional Layer

A kernel or filter is applied to the input picture with some stride in a convolutional

layer to produce the convolved feature. A kernel is essentially a collection of weights

that the network backpropagates using the loss function after they are originally

allocated randomly. A dot product between the kernel weights and the region being

operated on is computed when the kernel is applied to an input image. The output is

a feature map that results from a dot product operation applied to the input image as

the kernel moves across it.
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Figure 16: Kernel movement [3]

The kernel is applied at the same depth as the input. For instance, the depth of

the kernel for a grayscale picture is 1, but the depth of the kernel for an RGB (Red,

Green, and Blue) color image has three channels. As a result, three distinct channels

would each get a different kernel. To get the feature output, the dot products of the

three channels are added together.
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Figure 17: 3 kernels applied on RGB channels [3]

A CNN may have many convolutional layers. Color, edge, and gradient direction

are just a few examples of the low-level properties that the first convolutional layers

of an image extract. The more complicated high-level information, such as objects,

and shapes, is extracted by the deeper convolutional layers. Convolutions also allow

us to select the kind of padding to use. Padding is a technique used to maintain the

spatial dimensions of the input image after convolution. By adding zeros around the

image, the spatial dimensions can be preserved. Padding also helps to increase the

receptive field of the convolutional layer. The "same padding" operation, which pads

the image’s edges with zeroes, might be used if we do not want to diminish the input’s

size. On the other hand, "valid padding" might be used if we do not want to decrease

the input’s dimension.

6.2.1.2 Pooling layer

After the convolutional layer, a pooling layer is used to minimize dimensionality

and collect the most important data. Max Pooling and Average Pooling are the two
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most often employed forms of pooling. Max pooling only chooses the region’s highest

value when the kernel is applied to it. The average of all the data in the area where

the kernel is applied is calculated using average pooling. Max pooling is widely used

because it reduces dimensions while simultaneously removing noise and discarding less

important data. Figure 18 displays the outcome of applying a 2x2 average pooling

and 2x2 max pooling with a 2 stride to an input feature map.

Figure 18: Pooling types [3]

6.2.1.3 Dropout layer

Dropout is a regularization technique that helps to prevent overfitting. It ran-

domly drops out units (neurons) in the layer during training. As a result, the network

is forced to learn redundant representations and becomes more noise-resistant. Each

convolutional or fully connected layer in a CNN can have dropout added after it, and

the dropout rate controls the proportion of neurons that will be randomly removed

during training. Dropout is useful in enhancing the generalization performance of the

network, particularly in tasks with little training data, even though it can lengthen

the training time of a CNN.
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Figure 19: Dropout layers [4]

6.2.1.4 Fully Connected layer

These layers are in charge of applying a weight matrix to the output of the

preceding layer to create a fresh set of activations. Each neuron in a fully connected

layer is linked to every neuron in the layer below, enabling them to learn intricate

non-linear connections. To enable the network to learn more complex information

and make predictions, these layers are often added near the conclusion of a CNN.

Fully connected layers may significantly increase the amount of trainable parameters

in a network, which makes them vulnerable to overfitting. Techniques like dropout,

weight decay, and early halting are frequently used on fully linked layers to avoid

overfitting. We commonly utilize a Softmax layer immediately following the fully

connected layers to conduct classification. In this study, we implemented a custom

CNN model to classify facial images into six different expressions. Further details on

the architecture and the implementation of our model are provided in next chapter.

6.2.2 FER using Transfer Learning

A pre-trained model is utilized as the foundation for another task when using

the deep learning approach known as transfer learning. Usually trained on a big
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dataset, the pre-trained model has acquired specific features that may be used for

a new task. The idea behind transfer learning is to use the knowledge learned by

the pre-trained model to improve the performance of the new task, especially when

the new dataset is small or lacks diversity. Transfer learning has been widely used

in FER, and it has shown promising results in improving the performance of FER

models. Feature extraction and fine-tuning are the two basic methods of applying

transfer learning in FER. In the feature extraction approach, the pre-trained model

is used to extract features from the images, and then a classifier is trained on these

features to predict the emotions. Typically, deep CNNs that have been pre-trained on

huge image datasets like ImageNet are the pre-trained models employed in FER. The

features extracted by these pre-trained models are effective in FER tasks, even when

the FER dataset is small. In the fine-tuning approach, the weights of the model are

adjusted on the fresh dataset using the pre-trained model as a starting point. This

approach is especially useful when the pre-trained model is similar to the new task.

For example, a pre-trained model on a large face recognition dataset can be fine-tuned

on a smaller FER dataset to improve the performance of the FER model. Several

commonly used transfer learning models are effective in a variety of computer vision

tasks, including FER [26]. Some of the most popular transfer learning models include

VGG16, ResNet50, FaceNet, and SeNet50.
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Figure 20: VGG architecture[5]
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CHAPTER 7

Proposed Models

We implemented a 3-layer CNN, details of which are explained in the following

section. Our CNN architecture was employed to create 15 different facial emotion

recognition (FER) models with diverse image pre-processing techniques. Similar to

[23], we initially trained and validated our models on 6 classes (surprise, disgust, fear,

anger, sadness, and happiness) comprising 767 samples. Prior to the application of any

image processing or training, the images were first converted to grayscale and resized

to 64x64 pixels. A test train split of 90:10 was utilized for all models, and to ensure a

fair comparison, we maintained the same random_state while performing the split.

Furthermore, to obtain more reliable outcomes, we employed a 5-fold cross-validation

for all the models. After identifying the pre-processing pipeline that yielded the best

FER model, we trained and tested it using 868 samples from 7 classes, namely surprise,

disgust, fear, anger, sadness, happiness, and contempt.

7.1 Custom 3-layer CNN

This is a simple 3-layer CNN model built using the Keras framework in Python.

The model consists of three convolutional layers, two fully connected layers and one

dropout layer. The input to this model is a grayscale image with dimensions of 64x64

pixels. The model consists of several layers that extract features from the input image.

The first layer is a convolutional layer with 6 filters of size 5x5, which means

that each filter scans a patch of 5x5 pixels across the input image and produces a

new feature map. The ’padding’ argument is set to ’same’, which means that the

output feature map will have the same dimensions as the input image. The activation

function used in this layer is ReLU, which introduces nonlinearity to the model and

helps to improve its performance. After that, a max pooling layer with a pool size of

2x2 is applied to the convolutional layer’s output. By taking the largest value within
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each 2x2 block, this layer shrinks the feature map’s spatial dimensions, reducing

overfitting and speeding up computation.

The second and third layers are similar to the first layer, but with more filters and

smaller kernel sizes. The second convolutional layer has 16 filters of size 5x5, followed

by a ReLU activation function and a max pooling layer. The third convolutional layer

has 64 filters of size 3x3, again followed by a ReLU activation function and a max

pooling layer. The output of the third max pooling layer is a feature vector that is

flattened into a one-dimensional array using the ’Flatten’ layer. This vector is then

passed through two fully connected layers. The first fully connected layer has 128

units and uses the ReLU activation function, which helps to introduce nonlinearity

and capture complex relationships between the features. The dropout layer is added

to prevent overfitting by randomly dropping out 50% of the neurons in the layer

during training. The second fully connected layer utilizes the softmax activation

function, which generates a probability distribution over the 6 or 7 classes, and has 6

or 7 neurons, depending on the number of classes in the dataset.

The categorical cross-entropy loss function, which calculates the discrepancy

between the predicted and actual class probabilities, is used to train the model. This

loss function is minimized using the Adam optimizer, with a learning rate of 0.001.

The accuracy metric, which measures the percentage of correctly categorized images,

is used to assess the model’s performance during training and validation. In total, the

model has 414,291 trainable parameters.
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Figure 21: CNN architecture

7.2 K-fold Cross Validation

We implemented 5-fold cross-validation for evaluating the performance of all FER

models. The KFold function from the scikit-learn library is defined with ’n_splits’

set to 5, indicating that the dataset is divided into 5 equally sized folds. During each

iteration, one fold is used for testing, and the remaining four folds are used for training

the CNN model. The history of the training is recorded, and the maximum validation

accuracy and corresponding loss are recorded for each fold. Finally, the mean of the

losses and accuracies are calculated as the final evaluation metric for the model. This

technique is useful for obtaining a more reliable estimate of the CNN’s performance
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on unseen data by evaluating the model on multiple, non-overlapping subsets of the

data.

Figure 22: K-fold cross validation [6]

7.3 CNN without Image Pre-processing

Initially, we trained the CNN on the grayscale 64x64 input images without

applying any image pre-processing. The model was trained for 50 epochs and this

resulted in a maximum accuracy of 68.8% and a corresponding validation loss of 1.62.

Figure 23 depicts the validation/training accuracy and loss of this CNN. Average

precision and recall were 0.68 and 0.65 respectively. On performing 5-fold cross-

validation the mean accuracy observed was 66.2%.
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Figure 23: Training/validation loss and accuracy for FER model without pre-processing

From the above graphs, we can see that the gap between the validation loss and

training loss keeps on increasing which indicates that the model is performing well

on the training data but not on the validation data. This implies that the model

is memorizing the training data instead of learning its underlying patterns, leading

to overfitting. This is mainly due to the limited dataset. To address this issue, we

implemented several data preprocessing techniques discussed below.

By applying these techniques, we improved the generalization of the model,

reduced overfitting, and obtained better performance on unseen data.

Table 2: Precision and recall values for FER model without pre-processing

Emotion Precision Recall
surprise 0.777778 0.823529
happy 0.722222 0.764706
sadness 0.8 0.5
anger 0.555556 0.555556
disgust 0.666667 0.705882
fear 0.555556 0.555556
Average 0.68 0.65
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Figure 24: ROC curve for FER model without pre-processing

Figure 25: PR curve for FER model without pre-processing
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7.4 CNN with Image Pre-processing
7.4.1 CNN with Face Detection

The first image pre-processing technique that we experimented with was face

detection and region of interest selection. After converting the input images to

grayscale and resizing them, Haar Cascade Classifier was used to detect and crop

the region consisting only of the face in the images. Using these images as input to

our CNN model resulted in an accuracy of 87% without cross-validation and a mean

accuracy of 82% after cross-validation. This is a 15.8% increase in mean accuracy

from the FER model without any image processing. The validation loss also reduced

from 1.628 to 0.475. From the below figures we can see the gap between training loss

and validation loss is significantly reduced, decreasing the amount of overfitting.

Figure 26: Training/validation loss and accuracy for FER model with face detection

The mean precision and mean recall, both, for this model were 0.83. Face

detection is used as the base image pre-processing technique in all the further models.
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Table 3: Precision and recall values for FER model with face detection

Emotion Precision Recall
surprise 0.888889 0.941176
happy 1 1
sadness 0.625 0.625
anger 0.666667 0.666667
disgust 0.9375 0.882353
fear 0.888889 0.888889
Average 0.83 0.83

Figure 27: ROC curve for FER model with face detection
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Figure 28: PR curve for FER model with face detection

7.4.2 CNN with Image Sharpening

For image sharpening, we implemented unsharp mask technique in which, a blurry

image is subtracted from the original image to obtain just its edges, and the resulting

addition to the original image creates an improved version. Unsharp mask is applied

along with face detection and cropping. This CNN resulted in an accuracy of 88.3%

without any cross-validation and a mean accuracy of 87.5% after cross-validation.

This is a 5.5% increase in the mean accuracy from that of the CNN model with just

face detection. The mean precision and mean recall observed were 0.86 and 0.88

respectively.
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Figure 29: Training/validation loss and accuracy for FER model with face detection
+ unsharp mask

Table 4: Precision and recall values for FER model with face detection + unsharp
mask

Emotion Precision Recall
surprise 1 0.823529
happy 0.941176 0.941176
sadness 0.75 0.75
anger 0.75 1
disgust 1 0.882353
fear 0.727273 0.888889
Average 0.86 0.88
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Figure 30: ROC curve for FER model with face detection + unsharp mask

Figure 31: PR curve for FER model with face detection + unsharp mask

7.4.3 CNN with Image Normalization

We experimented with 3 different normalization techniques: Global contrast

normalization (GCN), Histogram Equalization, and Adaptive Histogram Equalization
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(AHE). Image normalization is nothing but the adjustment of the pixel values of an

image so that they fall within a specific range or distribution. It is mainly done to

correct variations in lighting conditions across different images. When images are

captured under different lighting conditions, such as different times of the day or in

different weather conditions, the resulting images can have very different brightness

and contrast levels. Normalizing the images can help to correct these variations, making

it easier to compare and analyze them. Another reason for image normalization is to

improve the performance of CNN as machine learning algorithms including CNN are

sensitive to the scale and distribution of the input data, and normalizing the images

can help to ensure that the algorithm performs optimally.

We evaluated the performance of the models without any cross-validation and then

again after performing 5-fold cross-validation. The results without cross-validation

showed that the CNN with AHE technique gave the best accuracy of 90.9%, with

a loss of 0.476, mean precision of 0.90, and mean recall of 0.91. The Histogram

Equalization technique gave an accuracy of 88.3%, with a loss of 0.389, mean precision

of 0.85, and mean recall of 0.86. Lastly, the GCN pre-processing technique gave an

accuracy of 89.6%, with a loss of 0.417, mean precision of 0.89, and mean recall of

0.89. Also, when we performed 5-fold cross-validation, we observed similar results.

The CNN with GCN pre-processing technique had a mean accuracy of 87.4%. The

Histogram Equalization technique had a mean accuracy of 86.7%. Lastly, the AHE

had the highest mean accuracy of 87.9%.

The results suggest that CNN with AHE pre-processing technique is the most

effective normalization method, as it provided a higher accuracy with better precision

and recall scores. We believe that this could be because AHE provides more local

adaptivity and better preservation of image features while avoiding over-enhancement

of noise and artifacts.
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Figure 32: Training/validation loss and accuracy for FER model with face detection
+ histogram equalization

Figure 33: Training/validation loss and accuracy for FER model with face detection
+ GCN

Figure 34: Training/validation loss and accuracy for FER model with face detection
+ AHE
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Table 5: Precision and recall scores. face detection + normalizations

Face detection + His-
togram Equalization

Face detection + GCN Face detection + AHE

Emotion Precision Recall Precision Recall Precision Recall
surprise 0.941176 0.941176 0.944444 1 0.842105 0.941176
happy 1 1 0.9375 0.882353 0.941176 0.941176
sadness 0.6 0.75 0.666667 1 0.888889 1
anger 0.777778 0.777778 0.8 0.888889 0.9 1
disgust 1 0.823529 1 0.882353 1 0.882353
fear 0.8 0.888889 1 0.666667 0.857143 0.666667
Average 0.85 0.86 0.89 0.89 0.9 0.91

Figure 35: ROC curve for FER model with face detection + histogram equalization

44



Figure 36: ROC curve for FER model with face detection + GCN

Figure 37: ROC curve for FER model with face detection + AHE
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7.4.4 CNN with Image Sharpening and Image Normalization

We further experimented by combining unsharp mask with the image normaliza-

tion techniques. By combining unsharp masking with image normalization, it may be

possible to enhance the fine-grained details and edges in the images while also reducing

the effects of illumination and contrast variations. This could improve the accuracy

of the CNN in FER image classification task. We saw an increase in mean accuracy

(with cross-validation) from 87.4% to 89.4% when we combined unsharp mask with

GCN. Similar to this, after combining with unsharp mask, the mean accuracies for

histogram equalization and AHE rose by 0.9% (86.7% to 87.6%) and 0.6% (87.9%

to 88.5%), respectively. Without cross validation the accuracies were 88.3%, 90.9%,

92.2% for unsharp mask with histogram equalization, unsharp mask with GCN, and

unsharp mask with AHE respectively.

Figure 38: Training/validation loss and accuracy graphs of FER models with image
sharpening + image normalization
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Table 6: Precision and recall scores. face detection + unsharp mask + normalizations

Face detection + Un-
sharp Mask + His-
togram Equalization

Face detection +Un-
sharp Mask + GCN

Face detection + Un-
sharp Mask +AHE

Emotion Precision Recall Precision Recall Precision Recall
surprise 0.941176 0.941176 0.85 1 0.894737 1
happy 0.941176 0.941176 0.944444 1 1 0.941176
sadness 0.714286 0.625 0.857143 0.75 0.777778 0.875
anger 0.75 1 0.888889 0.88889 0.818182 1
disgust 1 0.882353 1 0.94118 1 0.941176
fear 0.777778 0.777778 0.857143 0.66667 1 0.666667
Average 0.85 0.86 0.9 0.87 0.92 0.9

Figure 39: ROC curves. face detection + unsharp mask + HE vs face detection +
unsharp mask + GCN vs face detection + unsharp mask + AHE

Figure 40: PR curves. face detection + unsharp mask + HE vs face detection +
unsharp mask + GCN vs face detection + unsharp mask + AHE

7.4.5 CNN with Image Pre-processing and Data Augmentation

To experiment with Data Augmentation (DA) techniques, we selected the best

2 performing models: Face detection + Unsharp Mask + AHE with CNN and Face

47



detection + Unsharp Mask + GCN with CNN. Data augmentation using image

translations and data augmentation by adding noise were performed on these models

and compared.

7.4.5.1 Data Augmentation by image translation

Image translations were achieved using the ImageDataGenerator function of the

Keras library. We applied various image transformations, including rotation, width

and height shift, zoom, shear, and horizontal flip, to increase the variability of the

training data and improve the robustness of the models. The results showed that

data augmentation improved the performance of the models significantly. Without

using cross-validation, the accuracy of the CNN with face detection and cropping

+ unsharp mask + AHE pre-processing pipeline increased by 1.3% after applying

image translations. The accuracy of CNN with face detection and cropping + unsharp

mask + GCN pre-processing pipeline increased by 5.2%. With cross-validation, face

detection and cropping + unsharp mask + GCN pre-processing pipeline CNN had

an increase in mean accuracy from 89.4% to 92.3%, and a reduction in mean loss

from 0.572 to 0.441 after data augmentation. In a similar vein, when we used data

augmentation, the model with face recognition and cropping + unsharp mask + AHE

pre-processing pipeline saw an increase in mean accuracy from 88.5% to 93.3%, and a

decrease in mean loss from 0.434 to 0.313. This is our best-performing model with the

highest mean accuracy. We also trained this model on 7 classes (including contempt)

and achieved a mean accuracy of 91%.

48



Figure 41: Training/validation loss and accuracy graphs. Face detection + unsharp
mask + GCN + image augmentation vs Face detection + unsharp mask + AHE +
image augmentation

Table 7: Precision and recall scores. face detection + unsharp mask + normalization
+ image augmentation

Face detection + Unsharp Mask +
GCN + Image Normalization

Face detection + Unsharp Mask +
AHE + Image Normalization

Emotion Precision Recall Precision Recall
surprise 0.941176 0.941176 0.941176 0.941176
happy 1 1 1 1
sadness 1 0.875 0.875 0.875
anger 0.9 1 1 0.888889
disgust 1 1 1 1
fear 0.888889 0.888889 0.8 0.888889
Average 0.96 0.95 0.94 0.93
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Figure 42: ROC curves. face detection + unsharp mask + HE vs face detection +
unsharp mask + GCN + image augmentation vs face detection + unsharp mask +
AHE + image augmentation

Figure 43: PR curves. face detection + unsharp mask + HE vs face detection +
unsharp mask + GCN + image augmentation vs face detection + unsharp mask +
AHE + image augmentation

The results suggest that data augmentation is a powerful technique to improve

the performance of CNN based FER. It helps to increase the variability of the training

data and improve the robustness of the models to changes in lighting, contrast, and

other factors that may affect the appearance of the faces in the images.
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7.4.5.2 Data Augmentation by adding noise

To investigate the impact of data augmentation by adding noise we followed 2

approaches. First approach was similar to the one followed by [19], where the synthetic

images with added Gaussian noise were included in both the training and testing sets.

However, this could result in data overlap where there could be a clean version of an

image in the test set and a noisy version of the same image in the training set or vice

versa. This can lead to an overly optimistic evaluation of the model’s performance

and may not generalize well to real-world scenarios where noise is present. For a fair

and reasonable evaluation, in second approach, we implemented the CNN models in

which the generated noisy images were only present during training, without including

them in the testing datasets. This is done to prevent data overlap between the two

sets and provide a more accurate evaluation of the model’s performance.

The results (with cross-validation) showed that the accuracy of the CNN with

face detection and cropping + unsharp mask + GCN pre-processing pipeline was

96.4% (7% increase) and the accuracy of the CNN with face detection and cropping

+ unsharp mask + AHE pre-processing pipeline was 98% (9.5% increase) when the

synthetic images with added Gaussian noise were included in both the training and

testing sets. However, when we evaluated the impact of adding synthetic images with

noise only to the training set, we observed a slight decrease in the mean accuracy

of both models. Specifically, for CNN with face detection and cropping + unsharp

mask + GCN pre-processing pipeline, the mean accuracy decreased from 89.4% to

88.9%, while for CNN with face detection and cropping + unsharp mask + AHE

pre-processing pipeline, the mean accuracy decreased from 88.5% to 86.7%. These

results suggest that data augmentation by adding synthetic images with noise did not

improve the model’s performance. By looking at the below graphs we can interpret

that the added noise is making the model too specific to the training data which is
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leading to overfitting.

Figure 44: Training/validation loss and accuracy graphs. Face detection + unsharp
mask + GCN + noise image augmentation vs Face detection + unsharp mask + AHE
+ noise image augmentation

Table 8: Comparison between accuracy and loss. Noise DA on both train and test set
vs Noise DA on just train set

Pipeline Mean ac-
curacy

Mean
valida-
tion loss

Face detection + unsharp mask + GCN
+ noise DA (both training and test)

96.4% 0.178

Face detection + unsharp mask + AHE
+ noise DA (both training and test)

98% 0.117

Face detection + unsharp mask + GCN
+ noise DA (only training)

88.9% 0.764

Face detection + unsharp mask + AHE
+ noise DA (only training)

86.7% 0.546

52



CHAPTER 8

Results

The preprocessing pipeline that gave the highest mean accuracy of 93.3% was

face detection and cropping + unsharp mask + Adaptive Histogram Equalization +

data augmentation by image translations. The cross validation mean accuracy of each

pipeline is shown in the table below.

Table 9: Comparison of different pre-processing pipelines

Pre-processing pipeline Mean
Accu-
racy

Mean
Loss

no pre-processing 66.2% 1.352
face detection and cropping 82.0% 0.544
face detection and cropping + unsharp mask 87.5% 0.518
face detection and cropping + GCN 87.4% 0.540
face detection and cropping + Histogram Equalization 86.7% 0.567
face detection and cropping + AHE 87.9% 0.647
face detection and cropping + unsharp mask + GCN 89.4% 0.572
face detection and cropping + unsharp mask + Histogram Equal-
ization

87.6% 0.600

face detection and cropping + unsharp mask + AHE 88.5% 0.434
face detection and cropping + unsharp mask + AHE +
data augmentation by image transformations

93.3% 0.313

face detection and cropping + unsharp mask + AHE + data aug-
mentation by image transformations (7 classes)

91% 0.363

face detection and cropping + unsharp mask +GCN + data aug-
mentation by image transformations

92.3% 0.441

face detection and cropping + unsharp mask + AHE + noise data
augmentation (both train and test set)

98.0% 0.117

face detection and cropping + unsharp mask + GCN + noise data
augmentation (both train and test set)

96.4% 0.178

face detection and cropping + unsharp mask + AHE + noise data
augmentation (only training)

86.7% 0.546

face detection and cropping + unsharp mask + GCN + noise data
augmentation (only training)

88.9% 0.764

Our results show that applying face detection and ROI selection alone increased
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the accuracy of the model by 15.8% compared to the baseline model without any

preprocessing. Adding unsharp mask to the face detection and ROI selection pipeline

further improved the accuracy by 5.5%. Adaptive Histogram Equalization performed

the best with an accuracy of 87.9% among all image normalization techniques. When

Adaptive Histogram Equalization was combined with unsharp mask, accuracy increased

to 88.5%. Global contrast normalization performed slightly better than Adaptive

Histogram Equalization when combined with unsharp mask, giving an accuracy of

89.4%. However, when we incorporated data augmentation by image translations

while training the model, the face detection + unsharp mask + Adaptive Histogram

Equalization pipeline outperformed face detection + unsharp mask + Global Contrast

Normalization by 1% with an accuracy of 93.3%. Furthermore, the model with

Adaptive Histogram Equalization had a lower mean loss than the model with Global

Contrast Normalization. We believe that Adaptive Histogram Equalization performed

better than other normalization techniques because it can enhance the contrast of

images while preserving local details and avoiding the over-enhancement of noise

and artifacts. AHE achieves this by dividing the image into small regions and

applying histogram equalization independently to each region. Another thing to

note is that combining image normalization techniques with unsharp mask further

increased accuracy. This could be because combining both methods could enhance

the fine-grained details and edges in the images while also reducing the effects of

illumination and contrast variations. We trained and tested our best model on 7

classes by adding images of the contempt class and got an accuracy of 91%. The PR

curve area was computed for each class, and the results were compared between the

6-class and 7-class models.
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Figure 45: Confusion matrix of FER with no pre-processing

Figure 46: Confusion matrix of FER with face detection and cropping + unsharp
mask + AHE + data augmentation by image transformations (6 classes)
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Figure 47: Confusion matrix of FER with face detection and cropping + unsharp
mask + AHE + data augmentation by image transformations (7 classes)

Figure 48: PR curve of FER with face detection and cropping + unsharp mask +
AHE + data augmentation by image transformations (6 classes)
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Figure 49: PR curve of FER with face detection and cropping + unsharp mask +
AHE + data augmentation by image transformations (7 classes)

The 6-class model had the lowest PR curve area for fear (0.87), followed by

sadness (0.92) and surprise (0.96). The 7-class model also had the lowest PR curve

area for fear (0.85), followed by sadness (0.96) and contempt (0.92). These results

indicate that the model had difficulty differentiating between fear and other emotions,

especially sadness and surprise. It is important to note that some facial expressions

can have multiple interpretations, which makes it even harder for models to identify

differentiating patterns.

Data augmentation by adding Gaussian noise to training images did not increase

the performance of our models. In fact, it resulted in lower accuracies and higher

validation loss than models without data augmentation by adding noise. When

compared to another multi-database FER model by [23], our model outperformed, as

shown in the table below.
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Table 10: Comparison with Pitloka et al. FER models between accuracy and loss.

Pitloka et al. Pre-
processing pipeline

Pitloka
et al. ac-
curacies
(no cross-
validation)

Our Pre-processing
pipeline

Our accu-
racies (5
fold cross-
validation)

No pre-processing 62.35% No pre-processing 61.6%,
67.5%,
69.2%,
69.3%,
63.4%
Mean:
66.2%

Face detection 87.06% Face detection 84.4%,
87%, 83%,
79.7%,
75.8%
Mean:
82%

Face detection + GCN 89.41% Face detection + un-
sharp mask+ GCN +
DA

88.9%,
92.8%,
94.1%,
96.1%,
89.5%
Mean:
92.3%

Face detection + His-
togram Equalization

90.56% Face detection + un-
sharp mask+ AHE +
DA

93.5%,
94.8%,
92.1%,
92.1%,
94.1%
Mean:
93.3%

In addition, a comparison with other studies that did not use multi-database

validation was also performed [24] [25] [26]. The results showed that our model

achieved higher or comparable accuracy to most of the compared models, as shown in

the table below. This is significant considering that our model is trained on multiple
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datasets, exposing our model to a wider range of facial expressions, poses, lighting

conditions, and image quality compared to models trained on a single dataset. By

training on multiple datasets, our model is better able to generalize to new, unseen

data, and is less likely to overfit to the specific characteristics of a single dataset. In

contrast, models trained on a single dataset may perform well on that dataset but

may not generalize well to other datasets or real-world scenarios. This is because

the model has learned to recognize the specific characteristics of that dataset, and

may not be able to adapt to variations in facial expressions and image quality that

are present in other datasets or real-world scenarios. Therefore, our approach has

the potential to be more widely applicable and effective in real-world scenarios where

facial expression images may come from different sources with varying characteristics.
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Table 11: Performance of previous recent studies that did not use multi-database
validation

Previous
re-
search

Year Model Pre-
processing
techniques

Dataset Accuracy Cross-
valida-
tion

Vepuri 2021 Ensemble
(5-layer
CNN,
Resnet-50,
Senet-50,
FaceNet)

Data augmen-
tation, unsharp
mask, histogram
equalization

FER13 76.3% (6
classes)

no

Chowdary
et al.

2021 VGG 19 Image resizing CK+ 96% (7
classes)

no

Borgalli
et al.

2022 5-layer
CNN

Face detection,
data augmenta-
tion

FER13 86.71% (7
classes)

10 fold

Borgalli
et al.

2022 5-layer
CNN

Face detection,
data augmenta-
tion

CK+ 92.27% (7
classes)

10 fold

Borgalli
et al.

2022 5-layer
CNN

Face detection,
data augmenta-
tion

JAFFE 91.58% (7
classes)

10 fold
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CHAPTER 9

Conclusion and Future Work

Based on the results presented in the project report, we can conclude that

preprocessing techniques such as face detection and ROI selection, as well as the

addition of unsharp mask, image normalization and data augmentation by image

translations, can significantly improve the accuracy of facial expression recognition

models. The results indicate that Adaptive Histogram Equalization is the most effective

normalization technique for enhancing the contrast of facial expression images while

preserving local details, and combining it with unsharp mask can further improve

accuracy. Furthermore, our model achieved higher or comparable overall accuracy

than models trained on a single dataset and outperformed previous multi-database

FER model, indicating that our approach of training on multiple datasets has the

potential to be more widely applicable and effective in real-world scenarios.

In terms of future work, there are several areas that could be explored to further

improve the performance of the facial expression recognition model. Incorporating

more advanced deep learning architectures, such as attention mechanisms or multi-

modal fusion, could potentially improve the accuracy of the model. Enhancing

human emotion recognition can have a big impact on a lot of different areas, like

helping autistic children, making it easier for people who are blind to read facial

expressions, making it possible for robots to communicate with people more effectively,

and improving driver safety by keeping an eye on attention while driving. A better

customer experience may be achieved by applying emotion detection technology, which

can also increase the emotional intelligence of numerous apps. Overall, there are

several exciting avenues for future research in the field of facial expression recognition,

and we believe that our work has laid a strong foundation for further exploration in

this area.

61



LIST OF REFERENCES

[1] P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews,
‘‘The extended cohn-kanade dataset (ck+): A complete dataset for action unit
and emotion-specified expression,’’ in 2010 ieee computer society conference on
computer vision and pattern recognition-workshops. IEEE, 2010, pp. 94--101.

[2] N. Raut, ‘‘Facial emotion recognition using machine learning,’’ 2018.

[3] S. Saha, ‘‘A comprehensive guide to convolutional neural networks-the eli5 way,’’
Nov 2022. [Online]. Available: https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

[4] T. Koffi, ‘‘Introduction of dropout and ensemble model in the history of deep learn-
ing,’’ Feb 2021. [Online]. Available: https://medium.com/unpackai/introduction-
of-dropout-and-ensemble-model-in-the-history-of-deep-learning-a4c2a512dcca

[5] D. Frossard, ‘‘Vgg in tensorflow,’’ Jun 2016. [Online]. Available: https:
//www.cs.toronto.edu/~frossard/post/vgg16/

[6] A. D. Nishad, ‘‘K-fold cross validation with simple example,’’ Jul 2021. [Online].
Available: https://medium.com/@nishad009adi/k-fold-cross-validation-with-
simple-example-e023bb2e2d43

[7] P. Ekman, ‘‘An argument for basic emotions,’’ Cognition & emotion, vol. 6, no.
3-4, pp. 169--200, 1992.

[8] A. K. Jain and S. Z. Li, Handbook of face recognition. Springer, 2011, vol. 1.

[9] A. Kołakowska, A. Landowska, M. Szwoch, W. Szwoch, and M. R. Wrobel, ‘‘Emo-
tion recognition and its applications,’’ Human-Computer Systems Interaction:
Backgrounds and Applications 3, pp. 51--62, 2014.

[10] M. Dubey and L. Singh, ‘‘Automatic emotion recognition using facial expression: a
review,’’ International Research Journal of Engineering and Technology (IRJET),
vol. 3, no. 2, pp. 488--492, 2016.

[11] Y. Tian, T. Kanade, and J. F. Cohn, ‘‘Facial expression recognition,’’ Handbook
of face recognition, pp. 487--519, 2011.

[12] A. H. Mansour, G. Z. A. Salh, and A. S. Alhalemi, ‘‘Facial expressions recognition
based on principal component analysis (pca),’’ arXiv preprint arXiv:1506.01939,
2014.

62

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://medium.com/unpackai/introduction-of-dropout-and-ensemble-model-in-the-history-of-deep-learning-a4c2a512dcca
https://medium.com/unpackai/introduction-of-dropout-and-ensemble-model-in-the-history-of-deep-learning-a4c2a512dcca
https://www.cs.toronto.edu/~frossard/post/vgg16/
https://www.cs.toronto.edu/~frossard/post/vgg16/
https://medium.com/@nishad009adi/k-fold-cross-validation-with-simple-example-e023bb2e2d43
https://medium.com/@nishad009adi/k-fold-cross-validation-with-simple-example-e023bb2e2d43


[13] S. Bansal and P. Nagar, ‘‘Emotion recognition from facial expression based on
bezier curve,’’ Int J Adv Inf Technol, vol. 5, no. 4, p. 5, 2015.

[14] X. Guo, X. Zhang, C. Deng, and J. Wei, ‘‘Facial expression recognition based on
independent component analysis.’’ Journal of Multimedia, vol. 8, no. 4, 2013.

[15] C. Shan, S. Gong, and P. W. McOwan, ‘‘Facial expression recognition based on
local binary patterns: A comprehensive study,’’ Image and vision Computing,
vol. 27, no. 6, pp. 803--816, 2009.

[16] N. Wang, Q. Li, A. A. A. El-Latif, J. Peng, and X. Niu, ‘‘Two-directional two-
dimensional modified fisher principal component analysis: an efficient approach
for thermal face verification,’’ Journal of Electronic Imaging, vol. 22, no. 2, pp.
023 013--023 013, 2013.

[17] T. Senthilkumar, S. Rajalingam, S. Manimegalai, and V. G. Srinivasan, ‘‘Human
facial emotion recognition through automatic clustering based morphological
segmentation and shape/orientation feature analysis,’’ in 2016 IEEE International
Conference on Computational Intelligence and Computing Research (ICCIC).
IEEE, 2016, pp. 1--5.

[18] S. Rifai, Y. Bengio, A. Courville, P. Vincent, and M. Mirza, ‘‘Disentangling
factors of variation for facial expression recognition,’’ in Computer Vision--ECCV
2012: 12th European Conference on Computer Vision, Florence, Italy, October
7-13, 2012, Proceedings, Part VI 12. Springer, 2012, pp. 808--822.

[19] F. Z. Salmam, A. Madani, and M. Kissi, ‘‘Facial expression recognition using
decision trees,’’ in 2016 13th International Conference on Computer Graphics,
Imaging and Visualization (CGiV). IEEE, 2016, pp. 125--130.

[20] P. P. Thakare and P. S. Patil, ‘‘Facial expression recognition algorithm based on
knn classifier,’’ International Journal of Computer Science and Network, vol. 5,
no. 6, p. 941, 2016.

[21] X. Wang, J. Huang, J. Zhu, M. Yang, and F. Yang, ‘‘Facial expression recognition
with deep learning,’’ in Proceedings of the 10th international conference on
internet multimedia computing and service, 2018, pp. 1--4.

[22] A. T. Lopes, E. De Aguiar, A. F. De Souza, and T. Oliveira-Santos, ‘‘Facial
expression recognition with convolutional neural networks: coping with few data
and the training sample order,’’ Pattern recognition, vol. 61, pp. 610--628, 2017.

[23] D. A. Pitaloka, A. Wulandari, T. Basaruddin, and D. Y. Liliana, ‘‘Enhancing cnn
with preprocessing stage in automatic emotion recognition,’’ Procedia computer
science, vol. 116, pp. 523--529, 2017.

63



[24] K. S. Vepuri, ‘‘Improving facial emotion recognition with image processing and
deep learning,’’ 2021.

[25] M. K. Chowdary, T. N. Nguyen, and D. J. Hemanth, ‘‘Deep learning-based
facial emotion recognition for human--computer interaction applications,’’ Neural
Computing and Applications, pp. 1--18, 2021.

[26] M. R. A. Borgalli and S. Surve, ‘‘Deep learning for facial emotion recognition
using custom cnn architecture,’’ in Journal of Physics: Conference Series, vol.
2236, no. 1. IOP Publishing, 2022, p. 012004.

[27] M. Lyons, M. Kamachi, and J. Gyoba, ‘‘The japanese female facial expression
(jaffe) dataset,’’ The Images Are Provided at No Cost for Non-Commercial
Scientific Research Only. If You Agree to the Conditions Listed Below, You May
Request Access to Download, 1998.

[28] N. Aifanti, C. Papachristou, and A. Delopoulos, ‘‘The mug facial expression
database,’’ in 11th International Workshop on Image Analysis for Multimedia
Interactive Services WIAMIS 10. IEEE, 2010, pp. 1--4.

[29] N. Aifanti, C. Papachristou, and A. Delopoulos, ‘‘The mug facial expression
database,’’ in 11th International Workshop on Image Analysis for Multimedia
Interactive Services WIAMIS 10. IEEE, 2010, pp. 1--4.

[30] J. Wang, S. Wang, and Q. Ji, ‘‘Early facial expression recognition using hidden
markov models,’’ in 2014 22nd International conference on pattern recognition.
IEEE, 2014, pp. 4594--4599.

[31] S. Zhou, Y. Liang, J. Wan, and S. Li, ‘‘Facial expression recognition based on
multi-scale cnns,’’ 09 2016, pp. 503--510.

[32] M. Shin, M. Kim, and D.-S. Kwon, ‘‘Baseline cnn structure analysis for facial
expression recognition,’’ 2016.

[33] I. J. Goodfellow, D. Erhan, P. L. Carrier, A. Courville, M. Mirza, B. Hamner,
W. Cukierski, Y. Tang, D. Thaler, D.-H. Lee, et al., ‘‘Challenges in representation
learning: A report on three machine learning contests,’’ in Neural Informa-
tion Processing: 20th International Conference, ICONIP 2013, Daegu, Korea,
November 3-7, 2013. Proceedings, Part III 20. Springer, 2013, pp. 117--124.

[34] K. Ricanek and T. Tesafaye, ‘‘Morph: A longitudinal image database of normal
adult age-progression,’’ in 7th international conference on automatic face and
gesture recognition (FGR06). IEEE, 2006, pp. 341--345.

[35] ‘‘Face detection using haar cascades.’’ [Online]. Available: https://docs.opencv.
org/3.4/d2/d99/tutorial_js_face_detection.html

64

https://docs.opencv.org/3.4/d2/d99/tutorial_js_face_detection.html
https://docs.opencv.org/3.4/d2/d99/tutorial_js_face_detection.html


[36] ‘‘Smoothing images.’’ [Online]. Available: https://docs.opencv.org/4.x/d4/d13/
tutorial_py_filtering.html

[37] ‘‘Histogram equalization.’’ [Online]. Available: https://docs.opencv.org/3.4/d4/
d1b/tutorial_histogram_equalization.html

[38] ‘‘Histograms.’’ [Online]. Available: https://docs.opencv.org/4.x/d6/dc7/group_
_imgproc__hist.html

[39] ‘‘Tf.keras.preprocessing.image.imagedatagenerator nbsp;: nbsp; tensorflow
v2.12.0.’’ [Online]. Available: https://www.tensorflow.org/api_docs/python/tf/
keras/preprocessing/image/ImageDataGenerator

65

https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/4.x/d4/d13/tutorial_py_filtering.html
https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html
https://docs.opencv.org/3.4/d4/d1b/tutorial_histogram_equalization.html
https://docs.opencv.org/4.x/d6/dc7/group__imgproc__hist.html
https://docs.opencv.org/4.x/d6/dc7/group__imgproc__hist.html
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator
https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/image/ImageDataGenerator

	Enhancing Facial Emotion Recognition Using Image Processing with CNN
	Recommended Citation

	Introduction
	Project Roadmap
	Related Work
	Dataset
	CK+
	MUG
	JAFFE

	Facial Image Pre-Processing
	Face detection and cropping
	Unsharp Mask
	Normalization
	Global Contrast Normalization
	Histogram Equalization

	Adaptive Histogram Equalization
	Image Augmentation/ Synthetic Image Generation
	Image Augmentation by image translations
	Image Augmentation by adding noise


	Facial Emotion Recognition
	FER using Machine Learning
	FER using Deep Learning
	FER using CNN
	FER using Transfer Learning


	Proposed Models
	Custom 3-layer CNN
	K-fold Cross Validation
	CNN without Image Pre-processing
	CNN with Image Pre-processing
	CNN with Face Detection
	CNN with Image Sharpening
	CNN with Image Normalization
	CNN with Image Sharpening and Image Normalization
	CNN with Image Pre-processing and Data Augmentation


	Results
	Conclusion and Future Work
	LIST OF REFERENCES

