
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

Characterizing Sequencing Artifacts Characterizing Sequencing Artifacts

Kathy Thanh Lam
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

Recommended Citation Recommended Citation
Lam, Kathy Thanh, "Characterizing Sequencing Artifacts" (2023). Master's Projects. 1282.
DOI: https://doi.org/10.31979/etd.4wdn-prkq
https://scholarworks.sjsu.edu/etd_projects/1282

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1282&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1282?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1282&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Characterizing Sequencing Artifacts

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Kathy Thanh Lam

May 2023

© 2023

Kathy Thanh Lam

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Characterizing Sequencing Artifacts

by

Kathy Thanh Lam

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2023

Dr. Wendy Lee Department of Computer Science

Dr. Philip Heller Department of Computer Science

Dr. William Andreopoulos Department of Computer Science

ABSTRACT

Characterizing Sequencing Artifacts

by Kathy Thanh Lam

Next Generation Sequencing (NGS) introduces artifactual variants from library

preparation methods and errors, which affects the accuracy of variant calling. Whole

Exome Sequencing (WES) data from the National Center for Biotechnology Informa-

tion (NCBI) Sequence Read Archive (SRA) database is processed. Comparison of

single nucleotide polymorphism (SNP) calls to Genome In a Bottle (GIAB) provides

labels that are used to build machine learning (ML) models. The left and right flanking

region (LSEQ and RSEQ) of each SNP is extracted. Nucleotide frequency, kmers of

size 4 and their counts, largest homopolymer size, largest palindrome size, and largest

hairpin loop size were computed and used as features in model building. The Random

Forest model had a precision of 98.8%, recall of 87.3%, and accuracy of 90.2%. High

scores show the model’s ability to correctly identify artifacts from non-artifacts and

that the results are exceptionally accurate.

ACKNOWLEDGMENTS

I want to thank my advisor Dr. Wendy Lee for her tremendous support and

guidance throughout my graduate journey and the development of this project. I

would also like to thank Dr. Philip Heller and Dr. William Andreopoulos for being a

part of my committee and providing invaluable advice and feedback. Finally, I would

like to thank my mom, dad, and brother for their continued support and for always

believing in me.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

1.1 Next Generation Sequencing . 2

1.2 Variants and Artifacts . 3

2 Materials and Methods . 4

2.1 Bioinformatics Pipeline . 4

2.1.1 Downloading Data from SRA Repository 4

2.1.2 Quality Control . 5

2.1.3 Adapter Trimming . 6

2.1.4 Map Reads to Reference Genome 6

2.1.5 Remove Duplicates . 6

2.1.6 Variant Calling . 7

2.1.7 Variant Filtering . 7

2.2 Determine Flanking Region Metrics 9

2.2.1 get_metrics.py . 9

2.2.1.1 vcf_to_df . 9

2.2.1.2 snp_freq_not1 10

2.2.1.3 filter_for_snvs 10

2.2.1.4 join_datasets . 10

vi

vii

2.2.1.5 extract_artifacts_column 10

2.2.1.6 content . 11

2.2.1.7 find_kmer . 11

2.2.1.8 homopolymer . 11

2.2.1.9 palindrome . 11

2.2.1.10 hairpin . 12

2.2.1.11 main . 12

2.3 Artifact Identification . 13

2.4 Machine Learning Pipeline . 14

2.4.1 Data Exploration . 14

2.4.2 Feature Selection . 15

2.4.3 Data Pre-Processing . 15

2.4.4 Model Building . 16

2.4.5 Performance Evaluation of Model Building 17

3 Results . 19

3.1 Quality Control . 21

3.2 Data Exploration . 24

3.3 Feature Importance . 30

3.4 Predictive Power . 32

3.5 Performance Evaluation of Model Building 32

3.5.1 ROC Curves and Precision-Recall Curves 32

3.5.2 Random Forest Classifier 34

3.5.3 Extra Trees Classifier . 35

viii

3.5.4 XGBoost Classifier . 36

3.5.5 Summary . 37

3.5.6 Experiments . 37

3.5.6.1 Remove features with less than 60% predictive power 38

3.5.6.2 Clustering Features 38

3.5.6.3 Hyperparameter Tuning 39

4 Discussion . 42

4.1 SNP Flanking Sequence Metrics 42

4.2 Case 3 can be considered in the future 44

LIST OF REFERENCES . 45

APPENDIX

Exonic Region Statistics . 49

LIST OF TABLES

1 SRA accession numbers and target exome regions 8

2 Case Count . 19

3 Feature Removal Statistics . 33

4 Random Forest Classification Results 36

5 Extra Trees Classification Results 37

6 XGBoost Classification Results 38

7 Classification Statistics Summary 38

8 Random Forest Classification Results Pre and Post
Hyperparameter Tuning . 41

ix

LIST OF FIGURES

1 NGS workflow [1] . 3

2 Overview of Bioinformatics Pipeline 5

3 SRA VCF file intersection with target exome region BED file . . 9

4 Example of palindromic sequence [2] 12

5 Example of formation of hairpin loop 13

6 Example of the 4 possible variant call cases 14

7 Overview of Machine Learning Pipeline 15

8 Model Rankings from Lazypredict 20

9 Per base sequence content of raw SRR14724493 reverse read . . . 21

10 Adapter content of raw SRR14724493 reverse read 22

11 Per base sequence content of trimmed SRR14724493 reverse read 23

12 Adapter content of trimmed SRR14724493 reverse read 24

13 Frequencies of Sequencing Artifact SNPs 25

14 Percent of Flanking Region Nucleotides 25

15 Frequencies of Flanking Region Kmers of size 4 27

16 Frequencies of Nucleotide Combination Flanking Each SNP . . . 28

17 Frequencies of Flanking Region Homopolymer Sizes 28

18 Frequencies of Flanking Region Palindrome Sizes 29

19 Frequencies of Flanking Region Hairpin Loop Sizes 30

20 Relative Importance of Model Features 31

21 Comparison of ML models Precision-Recall Curve 34

x

xi

22 Comparison of ML models ROC Curve and AUC scores 35

23 Random Forest Classifier Confusion Matrix 35

24 Extra Trees Classifier Confusion Matrix 36

25 XGBoost Classifier Confusion Matrix 37

26 Comparison of ML models with LSEQ/RSEQ features greater than
60% predictive power . 39

27 Comparison of ML models after LSEQ/RSEQ features clustered
with VarClusHi . 40

A.28 Percent of Exonic Region Nucleotides 49

A.29 Frequencies of Exonic Region Kmers of size 4 50

A.30 Frequencies of Exonic Region Homopolymer Sizes 50

A.31 Frequencies of Exonic Region Palindrome Sizes 51

A.32 Frequencies of Exonic Region Hairpin Loop Sizes 51

CHAPTER 1

Introduction

Cancer is the most common genetic disease. Each year millions of people are

diagnosed with a type of this disease. This disease continues to evolve and progress

through genetic alterations from germline cells and somatic cells [3]. Germline cell

mutations are inherited from parents to offspring while somatic cell mutations are

acquired throughout one’s lifetime from exposure to carcinogens, chemicals, radiation,

alcohol, food, or any other environmental factors [4]. The DNA sequence variations

that arise from these mutations can lead to the development of cancer. Cancer can go

undetected for years, making diagnosis and treatment difficult. Typically, once it is

diagnosed, there is the option of surgery, chemotherapy, or radiation, all of which can

be expensive, invasive, and have distressing side effects.

To detect and monitor cancer, a biopsy needs to be done. This allows collected

tissue samples to be used for molecular testing. A typical biopsy takes tissue samples

from cancer cells, which can be invasive and difficult to obtain. Some examples are

brain or lung tissue samples. Alternatively, a liquid biopsy collects blood samples to

detect cancer cells from pieces of a tumor that is circulating in the blood [5]. Liquid

biopsies paired with Next-generation sequencing (NGS) are non-invasive approaches to

cancer detection and monitoring since they can be repeated without any risks or side

effects [5]. The limitations of NGS are the artifactual variants that are introduced by

library preparation and errors from NGS platforms. These artifacts can be mistaken

as true variants, thus affecting the accuracy of variant calling.

DNA consists of exons, introns, coding regions, and non-coding regions. In

protein production and gene expression, introns are spliced out while the exons bond

together to create mRNA that is then translated to protein. This project will focus on

whole exome sequencing (WES), which allows for the sequencing of only the coding

1

regions of a genome. WES is the main sequencing technique used in cancer genome

sequencing [6].

The goal of this project is to use the DNA sequences flanking the single-nucleotide

artifact to identify and classify true variants from artifactual variants. With the final

variant call format (VCF) file, the left flanking regions (LSEQ) and the right flanking

regions (RSEQ) of the variants will be extracted. The LSEQ is the 20 base pairs

(bp) neighboring the variant at the 5’ end, while the RSEQ is the 20 bp neighboring

the variant at the 3’ end [7]. Metrics will be computed from the LSEQ and RSEQ,

including: the content of each base, each kmer of size 4 and their counts, if there are

homopolymers of size 3 or more of each base, if it contains a palindrome and forms

complementary with itself, and if it forms a hairpin loop. Using machine learning

(ML) models on the LSEQ and RSEQ metrics, potential sequencing platform-specific

and molecular technique-specific artifactual variants can be characterized.

1.1 Next Generation Sequencing

NGS allows for massive parallel sequencing of whole genomes. NGS can be

used to diagnose different diseases and viruses. This technology has the ability to

provide genetic information about an individual and determine what diseases that

individual is more susceptible to. It is becoming increasingly popular to use NGS in

cancer therapeutics because of its speed and ability to detect rare variants due to its

sequencing depth.

The NGS workflow contains several parts: nucleic acid extraction, library prepa-

ration, sequencing, and data analysis (Fig. 1). The library is created by randomly

fragmenting the DNA extraction, adding NGS platform-specific adapter sequences, and

amplifying by Polymerase Chain Reaction (PCR) or some alternative technique [5, 6].

Some common NGS platforms include Illumina, Ion Torrent, PacBio single-molecule

2

real-time (SMRT), and Oxford Nanopore [5, 6].

Fig. 1: NGS workflow [1]

1.2 Variants and Artifacts

Library preparation has physical steps such as DNA shearing, and chemical steps

such as PCR, which can introduce artifactual variants in the DNA. The sequencing

errors that arise from the NGS workflow make detecting true variants difficult.

Variants are naturally occurring mutations in the genome that can affect how an

individual responds to certain drugs or pathogens. Artifacts are artificial mutations

that arise from various steps in the NGS workflow, such as sample handling, library

preparation, PCR enrichment, and sequencing. If artifacts are not properly identified,

they will mislead downstream analysis and can hinder the applications of precision

medicine. Sequencing errors are key confounding factors for detecting low-frequency

genetic variants that are important for cancer diagnosis and treatment [8].

3

CHAPTER 2

Materials and Methods

The bioinformatics pipeline, flanking region metrics, machine learning pipeline,

and resources are described. Data from the National Center for Biotechnology Infor-

mation (NCBI) Sequence Read Archive (SRA) and Genome in a Bottle Consortium

(GIAB) were used [9, 10]. The NCBI SRA was used because it includes sequencing

read datasets from different sequencing platforms and library preparation methods.

This project focuses on WES paired-end data. The GIAB will be the “Gold-standard”

that we will compare our variant calls with. GIAB was chosen because of its extensive

research and high confidence (HC) variants used in benchmarking, which reliably

identify false-positive and false-negative variant calls [10]. HC calls were developed

using 11 whole-genome and three exome data sets from five sequencing platforms and

seven mappers [11].

2.1 Bioinformatics Pipeline

The bioinformatics pipeline was built using Snakemake, a workflow management

tool. This allows for the pipeline to be reproducible and scalable [12]. This project

was scaled on a high-performance compute cluster using SLURM. An overview of the

bioinformatics pipeline is shown in Fig. 2.

2.1.1 Downloading Data from SRA Repository

Twenty-one WES paired-end datasets from eight different samples with SRA acces-

sion numbers ERR1831349, ERR1831346, ERR1831347, ERR1831348, ERR1831350,

ERR1831351, ERR1831352, ERR1831353, ERR1905889, ERR1905890, SRR14724463,

SRR14724473, SRR14724483, SRR14724493, SRR14724503, SRR14724513,

SRR2106342, SRR2106344, DRR189730, DRR189731, and DRR189732 were down-

loaded from the NCBI SRA repository using the SRA Toolkit [13]. This is a command-

line tool that extracts the data into FASTQ format. The data are from BGISEQ-500,

4

Fig. 2: Overview of Bioinformatics Pipeline

NovaSeq 600, HiSeq 4000, and HiSeq 2500 sequencers, using Agilent V5 sure select,

Agilent V7 sure select, Truseq, IDT, Illumina Nextera Rapid Capture, Agilent SureSe-

lectv5+UTR, Agilent SureSelect XT HS, Agilent SureSelect XT, and Kapa HyperPrep

exome capture kit of NA12878/HG001 cell line DNA. The NA12878/HG001 cell line

was chosen because GIAB already characterized it as a pilot genome to be used in

benchmarking and validating variant calling pipelines.

2.1.2 Quality Control

Quality control of the raw read data will ensure that the data is clean and of

high quality, so it will not negatively impact downstream analysis. FastQC, a quality

control tool for high throughput sequence data was used for visualization [14]. This

allows the raw reads to be evaluated and generates a report that can be viewed in

any web browser.

5

2.1.3 Adapter Trimming

From the FastQC results, we can determine if sequencing reads need to be

trimmed due to the presence of low-quality bases and/or sequencing adapter sequences.

Trimmomatic was the command-line tool used to trim FASTQ data and remove adapter

sequences [15]. When the DNA library is prepared for NGS, adapter sequences are

ligated to the DNA fragments to allow them to attach to the flow cell for sequencing [16].

Adapter sequences should be removed from reads because they are not part of the

original DNA we are trying to sequence and interfere with downstream analysis, such

as the alignment of reads to a reference genome [16].

2.1.4 Map Reads to Reference Genome

The trimmed reads were aligned to Genome Reference Consortium Human Build

38 (hg38), the reference genome, using the Burrows-Wheeler Alignment Tool. Specif-

ically, the Burrows-Wheeler Alignment-Maximal Exact Matches (BWA-MEM) al-

gorithm was used. The BWA software package is used for mapping low-divergent

sequences against a large reference genome [17]. The tool outputs a sequence alignment

map (SAM) file that was converted to its compressed binary counterpart, known as

a BAM file, for easier handling and saving disk space. This was accomplished using

SAMtools. SAMtools provide a set of utilities for manipulating alignments in SAM

and BAM formats [18]. This SAM/BAM file stores alignment information for each

sequencing read against the reference genome.

2.1.5 Remove Duplicates

The BAM file created from mapping reads to the reference genome was sorted

by query name using Picard. Picard contains command-line tools for manipulating

high-throughput sequencing (HTS) data and formats [19]. Reads must be query-

sorted prior to removing duplicates so that unmapped mates of mapped records and

6

supplementary alignments can be marked as duplicates; coordinate-sorted does not

achieve the same results [19].

Picard was then used to mark and remove duplicate reads. Duplicate reads are

reads that originate from a single fragment of DNA. Duplicates can arise during library

preparation of the NGS workflow where PCR is involved, which are known as PCR

duplicates [19]. Duplicate reads can also arise from a single amplification cluster,

incorrectly detected as multiple clusters by the optical sensor of the sequencer, which

are known as optical duplicates [19]. An index was created for the deduplicated BAM

file to be used in variant calling.

2.1.6 Variant Calling

VarDictJava was used for variant calling because it provides the LSEQ and

RSEQ of the called variants. The VarDictJava inputs were hg38 reference genome in

FASTA format, deduplicated aligned reads in BAM format, and GIAB target regions

in Browser Extensible Data (BED) format. Providing the GIAB BED file as the target

region means that the resulting VCF file will filter out any variant calls that are not

present in GIAB, and therefore not of HC. An allele frequency (AF) of 0.01 was used

during variant calling. Normal AF is typically 0.5 or 1 since the mother has the allele,

the father has the allele, or they both have the allele. It is easy to determine germline

variants by looking at AF because it will either be 50% or 100% when looking at the

depth. Cancer variants have a low AF, typically 0.01 or 1%, making them harder to

identify and why 0.01 is used for this parameter.

2.1.7 Variant Filtering

The SRA accession numbers and their target exome capture kits are listed in

Table 1. Each sequencing platform varies in its exome capture methods, which

influences sequencing. It is important to do an intersection/filtering step where the

7

VarDictJava VCF output is intersected with the sequencing platform’s target exome

BED file. This ensures that the final VCF file used to generate metrics and build

the machine learning model will contain only the variant calls that are present in

the GIAB HC regions and the sequencing platform’s target exome regions, as seen in

Fig. 3. The GIAB HC VCF file was also intersected with the sequencing platform’s

target exome BED file for the same reason. This final GIAB VCF file will be the

truth set in which we compare the final SRA VCF file. Both intersection steps were

done using BEDtools, since the BEDTools suite provides a set of utilities for genomic

analysis tasks [20].

Table 1: SRA accession numbers and target exome regions

SRA accession number Exome capture kit type Platform
ERR1831349 Agilent SureSelect v5 BGI
ERR1831346 Agilent SureSelect v5 BGI
ERR1831347 Agilent SureSelect v5 BGI
ERR1831348 Agilent SureSelect v5 BGI
ERR1831350 Agilent SureSelect v5 BGI
ERR1831351 Agilent SureSelect v5 BGI
ERR1831352 Agilent SureSelect v5 BGI
ERR1831353 Agilent SureSelect v5 BGI
SRR14724463 TruSeq Illumina
SRR14724473 IDT Illumina
SRR14724483 Agilent SureSelect v7 Illumina
SRR14724493 TruSeq Illumina
SRR14724503 IDT Illumina
SRR14724513 Agilent SureSelect v7 Illumina
ERR1905889 Agilent SureSelect v5 Illumina
ERR1905890 Agilent SureSelect v5 Illumina
SRR2106344 Illumina Nextera Rapid Capture Illumina
SRR2106342 Agilent SureSelectv5+UTR Illumina
DRR189730 Agilent SureSelect XT HS Illumina
DRR189731 Agilent SureSelect XT Illumina
DRR189732 Kapa HyperPrep Illumina

8

Fig. 3: SRA VCF file intersection with target exome region BED file

2.2 Determine Flanking Region Metrics

After completion of the bioinformatics pipeline, we are left with the final SRA

VCF file and the final GIAB VCF file. A Jupyter notebook called final.ipynb was

developed to import the get_metrics.py module built for this project. All of the

SRA VCF files were converted into individual Pandas data frames with the LSEQs

and RSEQs. The flanking region metrics were computed and populated into the data

frames.

2.2.1 get_metrics.py

The python module get_metrics.py was created to store all the functions that

will be imported and used in the Jupyter notebook final.ipnyb. It determines

artifacts and computes flanking region metrics, using the functions described below.

2.2.1.1 vcf_to_df

This function takes any VCF file and extracts CHROM, POS, REF, and ALT

columns. This information is converted into a Pandas data frame. There is also a

default argument extract_flank_seqs=False that can be set to True if a VarDict

9

VCF file is used and the LSEQ and RSEQ information is desired. The allele frequency

(AF), allele frequency using only high-quality bases (HIAF), high quality variant reads

(HICNT), variant depth (VD), signal to noise (SN), adjusted AF for indels due to local

realignment (ADJAF), and variant depth by strand (VARBIAS) are also extracted

because these features have a high percent accuracy for model training [21]. This

function parses the appropriate information for the final GIAB VCF file and the final

SRA VCF file.

2.2.1.2 snp_freq_not1

This function takes a data frame and finds positions where the ALT has multiple

variant calls (e.g. C, CAA). If any of the calls for that position are single nucleotides,

then this is considered to be a SNP. This is used for the GIAB VCF files where this

situation is present. When vardict encounters this situation, it automatically reports

the variant with the highest frequency, so we do not see multiple calls in the VCF file.

2.2.1.3 filter_for_snvs

This function filters for single nucleotide variants (SNVs) by ensuring the string

length of the REF column and ALT column is 1. SNVs are sequence variations that

occur when a single nucleotide is altered.

2.2.1.4 join_datasets

This function is used to merge the SRA and GIAB Pandas data frame on the

CHROM and POS columns. In final.ipnyb CHROM and POS were used as the

indexes for each data frame to make each index unique.

2.2.1.5 extract_artifacts_column

This function extracts artifacts and differentiates between the 4 different variant

calling cases, explained further in the Machine Learning Pipeline section, Chapter 2.4.

10

2.2.1.6 content

This function calculates the content of each base: A, T, C, G, in the sequence.

With the content of each individual base, it is easy to calculate the AT and GC

contents. A list of dictionaries storing the content of A, T, C, and G is returned,

where each dictionary represents each sequence passed to this function.

2.2.1.7 find_kmer

This function finds all kmers of a given size using a sliding window along the

sequence. It calls the helper function, kmer_count, to find the count of each unique

kmer. A kmer size of 4 was used as the default value but can be changed by editing

the kmer_size parameter. A list of dictionaries is returned where each dictionary

contains all kmers and their counts for each sequence passed to this function.

2.2.1.8 homopolymer

This function calls on the find_kmer function to take advantage of the sliding

window to determine if the kmers are homopolymers. A homopolymer is repeated

copies of a single base (e.g. AAAA). This is done for a homopolymer size of 3 up

to the length of the sequence. A list of dictionaries is returned showing the largest

homopolymer size for each base. Each dictionary in the list represents each sequence

passed to this function.

2.2.1.9 palindrome

A palindrome is a word that reads the same backward as forward. In DNA, a

palindrome is a sequence that when read backward is the complement of the sequence

read forward [2]. When a palindromic sequence is split in half, the two halves

complement each other as seen in Fig. 4.

This function calls on the find_kmer function to take advantage of the sliding

window to determine if the kmers are palindromes. This is done for a palindrome size

11

of 3 up to the length of the sequence. If the reverse complement is identical to the

original kmer sequence, then it is a palindrome. The helper function, complement,

assists in computing the sequence’s complement strand. A list is returned with the

largest palindrome size for each sequence passed to this function.

Fig. 4: Example of palindromic sequence [2]

2.2.1.10 hairpin

This function calls on the find_kmer function to take advantage of the sliding

window to determine if the kmers form hairpin loops. A hairpin loop consists of the

first part of the stem, the loop, and the second part of the stem that folds back on

itself to pair with the first part of the stem. If the flanking regions of the loop are the

reverse complement of each other, the sequence folds back on itself to form a hairpin,

as seen in Fig. 5. The optimal loop length is between 4 and 8 bases [22]. This function

is called by the main function to try all permutations of loop length of 4 to 8 bases

and stem length of 4 to 8 bases. The largest loop size for each sequence is stored in a

list.

2.2.1.11 main

This function calls all previous functions to return a complete data frame con-

taining all metrics.

12

Fig. 5: Example of formation of hairpin loop

2.3 Artifact Identification

All of the GIAB VCF files were also converted into individual Pandas data frames.

Artifacts are determined by comparing the GIAB VCF data frame to the SRA VCF

data frame. This project focuses on SNVs, all other variants are dropped from their

respective data frames before comparison.

There are 4 possible cases when looking at a variant call. In Case 1, GIAB and

SRA contain the same variant at the same locus. These are considered true variants

and assumed to not be artifacts. In Case 2, GIAB contains a variant and SRA contains

a different variant at the same locus. These are assumed to be artifacts. In Case

3, GIAB contains a variant, but SRA does not contain a variant in the same locus.

There are two possible scenarios for this case: Case 3.1 the SRA does not contain a

call due to lack of read coverage and is not an artifact; Case 3.2 the SRA does not

contain a call because the SRA read matches the reference genome and is an artifact.

In Case 4, SRA contains a variant, but GIAB does not contain a variant in the same

locus. These are also assumed to be artifacts. Fig. 6 shows the different cases and

13

whether they are an artifact. This project focuses on Case 2 and Case 4 because the

more difficult Case 3 has not been modeled yet.

Fig. 6: Example of the 4 possible variant call cases

2.4 Machine Learning Pipeline

After artifacts were identified for each SRA, the data frames were combined into

a single master data frame to be explored. A ML pipeline was developed and ML

models were built to classify true variants from artifacts. An overview of the ML

pipeline is shown in Fig. 7.

2.4.1 Data Exploration

A heat map was generated to determine which SNV was the most prevalent.

The count of each nucleotide combination flanking each SNP was generated on a

heat map to visualize which nucleotide combinations are most prevalent immediately

on the left and right of SNPs. For example, if there is a CCG, where the middle

C represents the SNP, the nucleotide combination flanking this SNP would be CG.

14

Fig. 7: Overview of Machine Learning Pipeline

There are 12 possible SNPs and 16 possible flanking combinations. Heat maps were

also generated to visualize the flanking region frequencies of each nucleotide, kmers of

size 4, homopolymers, palindromes, and hairpin loops. For kmers, only the 20 most

prevalent were visualized. Plots were created using Matplotlib, Seaborn, and Pandas.

2.4.2 Feature Selection

VCF files contain a lot of information in the INFO column that could be used

as features. Selecting good features is vital when it comes to modeling data. AF,

HIAF, HICNT, VD, SN, and ADJAF were chosen because they were the top 6 most

important features for model accuracy [21]. All flanking region metrics, REF, and

ALT were also used as features.

2.4.3 Data Pre-Processing

The LSEQ and RSEQ columns are dropped before modeling since these were only

needed to determine flanking region metrics. VARBIAS was also dropped because it

is a categorical feature that resulted in approximately 38,000 additional columns after

one-hot encoding. There are 540 features in total. The categorical ones are REF and

ALT, while the numerical ones are everything else, with IS_ARTIFACT being the

15

label.

This data does not contain any missing values, however, it is common for missing

values to be present in real-world datasets. To guarantee that future datasets won’t

have missing values, it is best to apply an imputer to all numerical attributes. The

strategy used was to fill missing values with median values since the median is less

affected by outliers. Feature scaling on numerical values was done since ML algorithms

do not perform well when the input numerical attributes have very different scales.

For this, standardization was used because it is much less affected by outliers than

normalization (min-max scaling). In standardization, the mean is subtracted from

each value and then divided by the standard deviation. The resulting distribution

then has unit variance and a mean of 0 [23].

One-hot encoding was used for the categorical attributes in order to convert these

text-based columns to numerical outputs to work with ML algorithms. This works by

creating one binary attribute per category, where 1 attribute will be equal to 1 and

the others will be 0. This type of encoding is needed for feeding categorical data into

many Scikit-learn estimators [24].

The numerical and categorical transformation pipelines were then joined to create

a full transformation pipeline that can be used on the dataset to create the features.

2.4.4 Model Building

This project utilizes supervised ML. The model is trained using a labeled dataset,

IS_ARTIFACT, and based on the training, the model predicts the output, True or

False. The type of supervised ML used will be binary classification. The lazypredict

package was used to build a lot of basic models without any parameter tuning to

identify which top models will be used for additional ML tasks [25]. The default list

of models that lazypredict uses contains 2 very computationally heavy models that

16

were removed. These models were Support Vector Classifier and Nu-Support Vector

Classifier. These models created a bottleneck in the pipeline and would not run to

completion after 48 hours.

The top 3 models are Extra Trees Classifier, Random Forest Classifier,

and XGB Classifier. These algorithms will be used to model the data. For

Extra Trees and Random Forest class_weights="balance", while for XGB

scale_pos_weight=sum(negative instances)/sum(positive instances) [26, 27,

28]. Since artifacts are much more present in the data than non-artifacts, it is critical

to train models with balanced datasets to avoid bias when predicting one class over

another [29].

2.4.5 Performance Evaluation of Model Building

K-fold cross-validation with a K of 3 was used to evaluate each model’s per-

formance. This technique randomly splits the training set into distinct K subsets,

called folds. It trains and evaluates the model K times, picking a different fold for

evaluation each time and training on the other K-1 folds. A higher number of folds

was initially tested but the computation time was unmanageable and created memory

issues. Cross-validation was used to detect overfitting, which is a result of the model

failing to extrapolate a pattern.

Confusion matrices were built for the test set of each model, where metrics such

as accuracy, precision, and recall can be calculated [30]. Precision measures the

proportion of positive identifications that were actually correct, while recall measures

correctly identifying true positives. The equations for precision and recall are:

Precision =
True Positive

True Positive + False Positive

Recall =
True Positive

True Positive + False Negatives

17

For this specific problem, precision tells us the measure of correctly identifying

artifacts out of all positive instances, while recall tells us how many are correctly

identified as being an artifact out of all artifacts. The Precision-Recall curve shows the

trade-off between these two measurements. A high area under the curve represents

both high precision and high recall, with 1 being a perfect score [31].

The Receiver Operating Characteristic (ROC) curve and the Area Under the

Curve (AUC) is a plot that shows the performance of a classification model and its

ability to distinguish between classes [32, 33]. It plots the True Positive Rate (TPR)

against the False Positive Rate (FPR) and can be defined as:

TPR =
True Positive

True Positive + False Negatives

FPR =
False Positives

True Negatives + False Positives

The higher the AUC score, the better the model is at differentiation between

artifacts and non-artifacts, with 1 being a perfect score. An AUC score of 0.5 means

that the classifier will randomly predict a class and is unable to distinguish between

artifacts and non-artifacts.

18

CHAPTER 3

Results

In the following sections, results from quality control, data exploration, feature

importance, predictive power, and performance evaluation of model building are

shown. Table 2 shows the case counts for each SRA accession number during Artifact

Investigation, Chapter 2.3. The ranking of lazypredict models from Model Building,

Chapter 2.4.4, can be seen in Fig. 8.

Table 2: Case Count

SRA accession number Case 1 Case 2 Case 3 Case 4 Total No. of Artifacts
ERR1831349 31052 1 1764 9381 9382
ERR1831346 31218 0 1599 28157 28157
ERR1831347 31163 0 1654 20005 20005
ERR1831348 31183 0 1634 23751 23751
ERR1831350 31150 0 1667 18249 18249
ERR1831351 31159 2 1656 21227 21229
ERR1831352 31200 1 1616 27328 27329
ERR1831353 31167 1 1649 21628 21629
ERR1905889 31204 1 1612 67932 67933
ERR1905890 31227 3 1587 59447 59450
SRR14724463 24232 0 1641 93208 93208
SRR14724473 16130 0 1300 53557 53557
SRR14724483 18053 0 1022 64341 64341
SRR14724493 24105 1 1767 86657 86658
SRR14724503 16086 0 1344 55561 55561
SRR14724513 17928 0 1147 55983 55983
SRR2106342 49195 0 2535 93890 93890
SRR2106344 24309 1 1563 227400 227401
DRR189730 9621 14 8533 29687 29701
DRR189731 9568 45 8555 106551 106596
DRR189732 12233 46 12403 137042 137088

19

Fig. 8: Model Rankings from Lazypredict

20

3.1 Quality Control

Looking at SRR14724493 FastQC results show that ‘Per base sequence content’

and ‘Adapter content’ modules failed, as shown Fig. 9 and Fig. 10. This was the case

for all other SRA accession numbers used, therefore the quality control and trimming

were the same throughout this project.

Fig. 9: Per base sequence content of raw SRR14724493 reverse read

After trimming the raw sequencing reads, the ‘Per base sequence content’ module

still failed, while the ‘Adapter content’ module passed, as seen in Fig. 11 and Fig. 12.

The raw ‘Per base sequence content’ in Fig. 9 shows the first 9 bases have a

lot of noise in the graph. There is also a horizontal line that diverges toward the

right end. This graph plots the proportion of each nucleotide at each position across

21

Fig. 10: Adapter content of raw SRR14724493 reverse read

all reads in the sequence file. In a random library, we expect little to no difference

between the four bases. The proportion of each of the four bases should remain

relatively constant over the length of the read, with A=T and G=C, and the lines

in this plot should run parallel with each other [14]. It is common to produce biased

sequence composition at the start of the read which typically does not negatively

affect downstream analysis, therefore no trimming was done in this aspect. Libraries

produced where fragmentation uses transposases will have an intrinsic bias in the

positions at the start of the reads. Capture kits such as Nextera, Truseq rapid exome,

and Kapa HyperPrep use transposase as their fragmentation method. This bias

enriches the number of different kmers at the 5’ end of the reads. It is not something

that can be corrected by trimming, however, it will still produce a warning or failed

module [14]. Since kmers are of interest in this project, trimming the first 5 bases may

be helpful to see if this changes the kmer counts. The trimmed ‘Per base sequence

content’ in Fig. 11 shows some improvement in the horizontal line, with essentially no

22

Fig. 11: Per base sequence content of trimmed SRR14724493 reverse read

divergence towards the right end. This slight improvement is a byproduct of adapter

trimming.

The ‘Adapter content’ of the raw reads in Fig. 10 shows the presence of illumina

universal adapter read-through building up on the end of the sequences. It is common

for libraries that have insert sizes shorter than the read length to have adapter

read-through [14]. The abundance of adapter read-through caused the module to

fail. Adapter trimming needs to be done before proceeding with any downstream

analysis [14]. Trimmomatic was used to remove these adapters from the reads. This

was accomplished by providing Trimmomatic with the nucleotide sequence of the

illumina universal adapter using the ILLUMINACLIP option.

23

Fig. 12: Adapter content of trimmed SRR14724493 reverse read

3.2 Data Exploration

From a total of 1,834,281 variant calls 1,301,098 were artifacts, making up 70.94%.

The heat map in Fig. 13 shows the number of each type of SNP. The base C being

switched with the base A is the most prevalent, while a G being switched with an

A is the second most prevalent. Purines are nucleotides A and G, which contain

two-rings, while pyrimidines are nucleotides C and T, which contain one ring. The

heat map shows transitions (purine to purine or pyrimidine to pyrimidine) being more

common than transversions (purine to pyrimidine or pyrimidine to purine). Although

there are twice as many possible transversions, transitions are more likely to occur in

SNPs [34, 35]. Studies have shown that an excess of G to T transversion and C to A

transversions are prevalent in sequencing errors due to DNA damage from the most

commonly used DNA shearing technique, acoustic shearing, which can be visualized

in the heat map. [8]

A heatmap of the percentage of each nucleotide in the flanking regions is shown

24

Fig. 13: Frequencies of Sequencing Artifact SNPs

in Fig. 14. There is a slightly higher percentage of C’s and G’s in these regions as

opposed to A’s and T’s.

Fig. 14: Percent of Flanking Region Nucleotides

25

A heat map of the 20 most prevalent kmers of size 4 for LSEQ and RSEQ is

shown in Fig. 15. Of these, 17 are shared among them, which include: CCAG, CTGG,

GCTG, CAGC, CCTG, CAGG, CTGC, GCAG, CTCC, GGAG, CTTC, TCCT,

CCTC, GGCC, GAAG, AGGA, and GAGG. Almost all of these kmers contain 3 C’s

and/or G’s, with only 4 kmers containing 2 of these nucleotides and 1 kmer containing

4. There are some difficult regions to sequence DNA, with GC-rich regions being one

of them [36]. There is no standard definition of what the lower bound of a GC-rich

threshold is, but it cannot be lower than 50%. All of these kmers contain between

50-100% GC content. With difficult to sequence regions, DNA polymerase can make

a mistake and slip a base, creating the sequencing errors present in these sequencing

artifact flanking regions.

The count of each nucleotide combination flanking each SNP variation was

generated on a heat map and shown in Fig. 16. Recall that for example, if there is a

CCG, where the middle C represents the SNP, the nucleotide combination flanking

this SNP would be CG. The image shows that CG and GC are the most prevalent.

This is in line with GC-rich regions being hard to sequence areas, resulting in a slipped

base.

A heat map of different homopolymer sizes and their counts are shown in Fig. 17.

It is no surprise that smaller homopolymers are more prevalent, what is interesting

though is that longer homopolymer sizes are particular to A’s and T’s. DNA sequences

that contain long homopolymer stretches of A’s or T’s are difficult to sequence because

they can hinder DNA polymerases during sequencing reactions and cause slippage and

deterioration, thus creating sequencing errors [36, 37].

A heat map of different palindrome sizes and their counts are shown in Fig. 18.

Smaller palindromic sequences are more prevalent than longer palindromic sequences.

Palindromic sequences cause genomic instability and are susceptible to DNA breakage

26

(a) LSEQ 4mers

(b) RSEQ 4mers

Fig. 15: Frequencies of Flanking Region Kmers of size 4

27

Fig. 16: Frequencies of Nucleotide Combination Flanking Each SNP

Fig. 17: Frequencies of Flanking Region Homopolymer Sizes

28

and mutations [2]. Because these regions are fragile and can break, the cell employs

repair mechanisms that can result in genetic rearrangements, such as SNPs [38].

Palindromes are abundant in the human genome and are frequently found in cancers,

which have low allele frequency. This can be an explanation as to why palindromes are

present in the flanking regions and labeled as artifacts, they are low allelic mutations

that do not qualify as variants.

Fig. 18: Frequencies of Flanking Region Palindrome Sizes

A heat map of the different hairpin loop sizes and their counts are shown in

Fig. 19. With palindromic regions present in the flanking regions, it is only natural

to also see hairpin loops present since palindromes have the ability to fold back on

themselves and form hairpin loops. A loop size of 4 or 5 nucleotides is the most stable,

and a loop size of 7 is energetically the most favorable [22, 39]. Since these hairpin

loop sizes are the most stable, they stick around and accumulate, which is precisely

what the heat map shows.

29

Fig. 19: Frequencies of Flanking Region Hairpin Loop Sizes

3.3 Feature Importance

After the top 3 models were determined through lazypredict, features were ex-

plored to determine feature importance. Random Forest was used for this experimental

stage since it chooses the optimum split at each tree node as opposed to Extra Trees

which chooses it randomly [40].

This was accomplished by randomly selecting 5 features and training 10000 models

since the data frame has 540 features. This included the L features and R features

representing the left and right flanking regions. Another experiment was conducted

where the L and R features were combined in order to reduce the number of features.

For nucleotide content and kmers, the L and R features were added together since

these represented the counts or percentages of each. For homopolymer, palindrome,

and hairpin, the max of the L and R features were taken since these represented

the largest size of each. This data frame now has 274 features. Three features were

30

randomly selected and 10000 models were trained to get the same coverage.

Feature importance is calculated by taking the average accuracy score for models

trained on that feature. The combined L and R features performed slightly better so

it was used for predictive power, training, and testing models. The Random Forest

Classifier has the option to use bootstrap samples when building trees. Experiments

were conducted with bootstrap samples and without, where the whole dataset is used

to build each tree. Using bootstrap samples yielded better performance so bootstrap

samples will be used for Random Forest on the training and testing of models. The

top 33 important features are reported in Fig. 20.

Fig. 20: Relative Importance of Model Features

31

3.4 Predictive Power

Each feature was removed sequentially in order of calculated feature importance.

The top 33 feature removal statistics are shown in Table 3. The model drops in

accuracy and recall substantially, scoring less than 70% when removing the top 6

features, which are features given in the VarDict VCF file. Precision, however, stays

relatively high, scoring greater than 75%.

3.5 Performance Evaluation of Model Building

The overall accuracy, precision, and recall will be described in the next section

for models built with all features and models built with only calculated LSEQ/RSEQ

features. In the subsequent sections for each individual model and in the ’Experiments’

section, confusion matrices and summaries will be provided using only models built

with LSEQ/RSEQ features, as that is the focus of this project. With a robust enough

model, Case 3 can be trained and tested. There is no variant call in the VarDict VCF

for this tough case, but the LSEQ/RSEQ features can be extracted and calculated

from the reference genome.

3.5.1 ROC Curves and Precision-Recall Curves

Though high accuracy, precision, and recall are important for a good model,

precision is especially important in this case because we want to correctly identify all

artifacts in the dataset. The Precision-Recall Curve for each model with all features

and only the calculated LSEQ/RSEQ features are shown in Fig. 21. The average

precision value for recall values from 0 to 1 (AP), is 1 for all features. This shows

the results are highly accurate, while the AP value for only LSEQ/RSEQ features

is between 0.87 and 0.93, which is still highly accurate. The Dummy Classifier is a

no-skill classifier that predicts all cases as artifacts. Since the data is made up of 71%

artifacts, the AP value is 0.71 here. The AP value being greater than the Dummy

32

Table 3: Feature Removal Statistics

Number Feature Set Accuracy Precision Recall
All Features 97.7% 99.9% 96.8%

Previous Row Minus ‘AF’ 97.5% 99.7% 96.7%
Previous Row Minus ‘HIAF’ 97.2% 99.6% 96.4%

Previous Row Minus ‘HICNT’ 97.1% 99.5% 96.5%
Previous Row Minus ‘VD’ 96.0% 98.8% 95.9%
Previous Row Minus ‘SN’ 81.8% 92.2% 86.7%

Previous Row Minus ‘ADJAF’ 66.6% 83.4% 64.7%
Previous Row Minus ‘TTAA’ 66.9% 81.8% 69.4%
Previous Row Minus ‘TTTA’ 65.8% 81.4% 69.4%
Previous Row Minus ‘AAAA’ 65.7% 81.8% 68.4%
Previous Row Minus ‘TAAA’ 65.5% 81.3% 69.6%
Previous Row Minus ‘TATT’ 65.2% 81.8% 68.6%
Previous Row Minus ‘TTAT’ 64.1% 82.5% 66.5%
Previous Row Minus ‘ATAA’ 65.7% 81.5% 68.2%
Previous Row Minus ‘TATA’ 66.1% 81.9% 68.6%
Previous Row Minus ‘AAAT’ 66.4% 82.3% 67.8%
Previous Row Minus ‘TAAC’ 65.2% 81.2% 69.8%
Previous Row Minus ‘TTTT’ 65.1% 82.6% 66.5%
Previous Row Minus ‘AATA’ 66.5% 81.0% 70.6%
Previous Row Minus ‘ATTT’ 65.7% 81.5% 68.7%
Previous Row Minus ‘TAAT’ 66.7% 81.4% 69.1%
Previous Row Minus ‘REF’ 63.0% 82.5% 64.7%

Previous Row Minus ‘ATTA’ 62.6% 83.6% 60.1%
Previous Row Minus ‘ALT’ 59.2% 75.4% 63.3%

Previous Row Minus ‘TTTC’ 59.1% 75.5% 63.3%
Previous Row Minus ‘TTAG’ 58.7% 75.5% 63.1%

Previous Row Minus ‘HOMO_POLY_T’ 59.0% 75.6% 62.9%
Previous Row Minus ‘AATT’ 58.7% 75.5% 62.4%
Previous Row Minus ‘GAAA’ 58.9% 75.6% 63.0%
Previous Row Minus ‘CCCC’ 58.6% 75.7% 62.4%
Previous Row Minus ‘TTAC’ 58.9% 75.5% 62.5%
Previous Row Minus ‘GGGG’ 58.9% 75.9% 63.1%
Previous Row Minus ‘AGGG’ 58.8% 75.7% 62.1%

Previous Row Minus ‘HOMO_POLY_A’ 58.6% 75.7% 62.4%

33

Classifier means that those classifiers are able to distinguish between artifacts and

non-artifacts.

(a) All features (b) LSEQ/RSEQ features

Fig. 21: Comparison of ML models Precision-Recall Curve

The ROC curve and AUC scores for each model with all features and only the

calculated LSEQ/RSEQ features are shown in Fig. 22. The AUC scores for all features

is between 0.99 and 1, indicating that all 3 models accurately predicted whether a

call was an artifact or a non-artifact, while the AUC scores for only LSEQ/RSEQ

features is between 0.72 and 0.85, which is still relatively accurate. Since the AUC

scores are greater than 0.5, the classifiers can distinguish between the two classes and

will detect more True Positives and True Negatives than False Positives and False

Negatives [33].

It is expected that the ROC and Precision-Recall curves for all features is better

than the curves for only LSEQ/RSEQ features since all features include the top 6

features from the VarDict VCF file with the most predictive power.

3.5.2 Random Forest Classifier

The Random Forest Classifier is made up of many Decision Tree Classifiers on

sub-samples of the dataset and takes the average to improve predictive accuracy in

34

(a) All features (b) LSEQ/RSEQ features

Fig. 22: Comparison of ML models ROC Curve and AUC scores

classification [27]. The Random Forest model had a mean cross-validation score for

accuracy of 66.9%. For the test set, it had an accuracy of 67.1%, precision of 81.2%,

and recall of 69.8%. The confusion matrix and reported metrics are shown in Fig. 23

and Table 4.

Fig. 23: Random Forest Classifier Confusion Matrix

3.5.3 Extra Trees Classifier

The Extra Trees Classifier is very similar to the Random Forest Classifier,

except it fits randomized trees [26, 40]. This model is computationally faster since

it randomly chooses the split points instead of calculating the optimal one, giving it

35

Table 4: Random Forest Classification Results

Metric Score
Cross-validation Accuracy Scores 66.9%

66.9%
66.9%

Mean cross-validation score 66.9%
Test Accuracy 67.1%
Test Precision 81.2%
Test Recall 69.8%

the name ’Extremely Randomized Trees’ [40]. The Extra Trees model had a mean

cross-validation score for accuracy of 67.6%. For the test set, it had an accuracy of

67%, precision of 80.6%, and recall of 71.5%. The confusion matrix and reported

metrics are shown in Fig. 24 and Table 5.

Fig. 24: Extra Trees Classifier Confusion Matrix

3.5.4 XGBoost Classifier

The XGBoost Classifier uses an optimized gradient boosting framework for

parallel decision tree boosting [28]. Boosting is a method to reduce errors in predictive

data analysis which improves the model’s predictive accuracy and performance; this

is accomplished by converting several weak learners into a single strong learning

model [41]. This model is known for improving on other methods like Random Forest,

36

Table 5: Extra Trees Classification Results

Metric Score
Cross-validation Scores 66.7%

67.2%
67.2%

Mean cross-validation score 67.0%
Test Accuracy 67.6%
Test Precision 80.6%
Test Recall 71.5%

and works well with large datasets due to its optimization techniques [42]. The

XGBoost model had a mean cross-validation score for accuracy of 73.1%. For the test

set, it had an accuracy of 73%, precision of 72.6%, and recall of 99.6%. The confusion

matrix and reported metrics are shown in Fig. 25 and Table 6.

Fig. 25: XGBoost Classifier Confusion Matrix

3.5.5 Summary

A summary of each model’s results is illustrated in Table 7.

3.5.6 Experiments

To try and improve the accuracy, precision, and recall of models containing only

LSEQ/RSEQ features, several experiments were conducted.

37

Table 6: XGBoost Classification Results

Metric Score
Cross-validation Scores 73.1%

73.0%
73.1%

Mean cross-validation score 73.1%
Test Accuracy 73.0%
Test Precision 72.6%
Test Recall 99.6%

Table 7: Classification Statistics Summary

Model Precision Recall Accuracy Cross-validation Accuracy
Random Forest 81.2% 69.8% 67.1% 66.9%

Extra Trees 80.6% 71.5% 67.6% 67.0%
XGBoost 72.6% 99.6% 73.0% 73.1%

3.5.6.1 Remove features with less than 60% predictive power

The same 3 models were trained on only features with greater than 60% predictive

power. The ROC and Precision-Recall curves are illustrated in Fig. 26. The AUC

score improved by 0.1 for Extra Trees and decreased by 0.9 for XGB, while the

Precision-Recall decreased by 0.4 for XGB.

3.5.6.2 Clustering Features

Originally there were 540 features that made model building computationally

expensive. ML is an iterative process that can take hours or even days to train a single

model. This is dependent on factors such as hyperparameters, the number of features,

and cross-validation folds. Previously the LSEQ and RSEQ features were combined,

bringing the total features from 540 down to 274. The Python package VarClusHi

performs variable clustering with a hierarchical structure, which allows similar features

38

(a) ROC Curve and AUC scores (b) Precision-Recall Curve

Fig. 26: Comparison of ML models with LSEQ/RSEQ features greater than 60%
predictive power

to be grouped [43]. Using this clustering information, the high dimension of features

was further reduced to 163. This was accomplished by using 3/4 of the top predictive

features from each cluster. Clustering features took roughly 2 hours, but with this

shortened list of features, the downstream analysis will be sped up significantly.

This allows tweaking of hyperparameters and experimenting with other models that

previously were unavailable due to high dimensions.

The ROC and Precision-Recall curves are illustrated in Fig. 27. The AUC

score improved by 0.1 for Extra Trees and decreased by 0.2 for XGB, while the

Precision-Recall decreased by 0.1 for XGB.

Since this shortened feature list did not greatly affect model performance, it will

be used for downstream experiments.

3.5.6.3 Hyperparameter Tuning

With the shortened feature list, fine-tuning the Random Forest model was

conducted with Randomized Search and Grid Search [44, 45]. Random Forest was

chosen because it had the best precision score.

39

(a) ROC Curve and AUC scores (b) Precision-Recall Curve

Fig. 27: Comparison of ML models after LSEQ/RSEQ features clustered with
VarClusHi

With both of these hyperparameter tuning techniques, optimization is done

by cross-validated search over parameter settings. The scoring metric used was

precision and cross-validation with k=5. Two hyperparameters were experimented

with, max_features, which is the number of features to consider when looking for the

best split, and n_estimators, which is the number of trees in the forest.

Randomized Search was conducted first as it randomly chooses a combina-

tion of parameters from lists of given parameters. Initially, 10 iterations were

specified with max_features being a random number chosen between 1 and 200;

while n_estimators was a random number between 1 and 8. This resulted

in the best parameters being max_features=5 and n_estimators=2. To ensure

these were actually the "best" parameters, Grid Search was conducted to in-

clude even more combinations of parameters, with these numbers included. With

Grid Search, every combination of parameters is tested. There were 33 total

combinations tested, with max_features=[2,4,5,7,9,20,50,100,"sqrt",None]

and n_estimators=[2,10,20]. This resulted in the best parameters being

40

max_features=None and n_estimators=2. The max_features=None means that

max_features=n_features, in this case, 163 after feature clustering with VarClusHi.

The Random Forest classification results before and after hyperparameter tuning are

illustrated in Table 8. All metrics are improved significantly after fine-tuning the

model. The mean cross-validation score for accuracy is 87.7%, a 20.8% improvement.

For the test set, we see a precision of 98.8%, recall of 87.3%, and accuracy of 90.2%.

These are 17.6%, 17.5%, and 23.1% improvements. The cross-validation accuracy is

similar to the test set accuracy, showing that the model is not overfitting.

Table 8: Random Forest Classification Results Pre and Post Hyperparameter Tuning

Hyperparameter Tuning Precision Recall Accuracy Cross-validation Accuracy
Before 81.2% 69.8% 67.1% 66.9%
After 98.8% 87.3% 90.2% 87.7%

41

CHAPTER 4

Discussion

This section will cover the work done thus far and future work to be done. All

files discussed in this paper are available on Github, as well as additional scripts

created in the development of this project [46].

4.1 SNP Flanking Sequence Metrics

WES pair-end reads from SRA were mapped to a reference genome and variants

were called. The variants were compared with GIAB NA12878 gold standard to

determine if the calls were true variants or artifactual variants. This project focused

on SNPs of Case 2 and Case 4. The LSEQ and RSEQ metrics such as base content,

homopolymer sizes, kmers, palindrome sizes, and hairpin loop sizes were determined

so that they can be used to train models.

The relative abundance of base content, homopolymer sizes, kmers, palindrome

sizes, and hairpin loop sizes in the human exonic regions was calculated. The counts

in the flanking regions are compared to the observed frequencies in the exonic regions.

Seqtk is a command line tool used to process sequences in FASTA or FASTQ

formats [47]. This tool was used to extract the nucleotide sequences of the exonic

regions of the human genome. Since a majority of the exome capture kits from this

project were from Agilent SureSelect v5, that was the BED file used.

The percent of nucleotides in the exonic regions is shown in Appendix Fig. A.28.

The exonic regions show a slightly lower percentage of G and C but the flanking

regions show a higher percentage of G and C, Fig. 14. This higher percentage of G and

C in the flanking region nucleotides could be a characteristic of sequencing artifacts.

A heat map of the 20 most prevalent kmers of size 4 in the exonic region is

shown in Appendix Fig. A.29. Previously, we saw in Fig. 15 that the flanking regions

share 17 kmers, which were GC-rich. The exonic region shares 14 kmers with the

42

flanking regions, which include: CTGG, CCAG, CCTG, CAGG, CAGC, GCTG,

CTGC, GCAG, CTCC, GGAG, TCCT, AGGA, CTTC, and GAAG. All of these

kmers are GC-rich as well, but since the flanking region and exonic region share so

many of the same kmers, the distribution we see in the flanking regions could just be

because it is a subsample of the exonic region.

A heat map of different homopolymer sizes and their counts in the exonic region is

shown in Appendix Fig. A.30. Previously, we saw in Fig. 17 that longer homopolymer

sizes in the flanking regions are particular to A’s and T’s. In the exonic regions there

is a huge abundance of long homopolymer A’s and T’s, so the distribution we see in

the flanking regions could just be because it is a subsample of the exonic region.

A heat map of different palindrome sizes and their counts in the exonic region is

shown in Appendix Fig. A.31. Previously, we saw in Fig. 18 that shorter palindromic

sequences are more prevalent than longer palindromic sequences. This is the same

trend we see in the exonic regions, which could just be because the flanking region is

a subsample of the exonic region.

A heat map of different hairpin loop sizes and their counts in the exonic region

is shown in Appendix Fig. A.32. Previously, we saw in Fig. 19 that loop sizes of 4,

5, and 7 are the most stable or favorable, so they were the most prevalent. In the

exonic regions, loop sizes 8 and 4 are the most prevalent. A loop size of 4 is the most

common class, while a loop size of 8 is the second most common class [22]. We did

not see this trend in the flanking region, but we do see it in the exonic regions. A

hairpin loop size of 5 and 7 may be characteristics of sequencing artifacts.

The counts in the flanking sequences metrics were compared to the observed

frequencies in the exonic regions of the human genome and inferences were made.

However, a statistical test such as T-test or KS-test can be used to determine if the

LSEQ metrics are significantly different from the RSEQ metrics, or if the flanking

43

metrics as a whole are significantly different than the exonic region metrics.

Extra Trees, Random Forest, and XGBoost Classifiers were built since they were

the top 3 models from lazypredict. For precision, Random Forest and Extra Trees

performed similarly, with a score of 81.2% and 80.6%, while XGBoost had a score of

72.6%. Likewise, for recall, Random Forest had 69.8%, Extra Trees had 71.5%, while

XGBoost had 99.6%. For accuracy, all 3 models performed within 67.1% and 73%.

To get the final list of features, LSEQ and RSEQ features were joined together

to reduce the number of features from 540 to 274. VarClusHi was used to cluster

similar features, which reduced the dimensions to 163. Hyperparameter tuning on

the Random Forest model lead to improved model performance for all metrics. The

mean cross-validation score for accuracy is 87.7%, a 20.8% improvement. The test set

precision of 98.8%, recall of 87.3%, and accuracy of 90.2% showed 17.6%, 17.5%, and

23.1% improvements.

4.2 Case 3 can be considered in the future

The Support Vector Machine (SVM) Classifier is robust but took a long time to

model because of the high dimensions. After feature reduction with VarClusHi, this

model may be tested. Some other techniques to try are Principal Component Analysis

(PCA) for dimensionality reduction prior to classification or K-means clustering prior

to classification.

The Random Forest classifier performed very well. The next step would be

to model Case 3 and calculate performance metrics. Steps were already taken to

differentiate Case 3.1 (non-artifacts) from Case 3.2 (artifacts). The LSEQ and RSEQ

sequences need to be extracted from the reference genome so that metrics can be

calculated. Then training and testing the Random Forest model on these cases can be

done.

44

LIST OF REFERENCES

[1] iRepertoire, ‘‘Ngs overview: from sample to sequencer to results,’’ https://
irepertoire.com/ngs-overview-from-sample-to-sequencer-to-results/, (Accessed
on 10/24/2022).

[2] M. K. Ganapathiraju, S. Subramanian, S. Chaparala, and K. B. Karunakaran, ‘‘A
reference catalog of dna palindromes in the human genome and their variations
in 1000 genomes,’’ Human genome variation, vol. 7, no. 1, p. 40, 2020.

[3] H. Nakagawa and M. Fujita, ‘‘Whole genome sequencing analysis for cancer
genomics and precision medicine,’’ Cancer science, vol. 109, no. 3, pp. 513--522,
2018.

[4] S.-K. Low, H. Zembutsu, and Y. Nakamura, ‘‘Breast cancer: The translation of
big genomic data to cancer precision medicine,’’ Cancer science, vol. 109, no. 3,
pp. 497--506, 2018.

[5] S. Morganti, P. Tarantino, E. Ferraro, P. D’Amico, G. Viale, D. Trapani, B. A.
Duso, and G. Curigliano, ‘‘Complexity of genome sequencing and reporting:
next generation sequencing (ngs) technologies and implementation of precision
medicine in real life,’’ Critical reviews in oncology/hematology, vol. 133, pp.
171--182, 2019.

[6] S. Yohe and B. Thyagarajan, ‘‘Review of clinical next-generation sequencing,’’
Archives of pathology & laboratory medicine, vol. 141, no. 11, pp. 1544--1557,
2017.

[7] Z. Lai, A. Markovets, M. Ahdesmaki, B. Chapman, O. Hofmann, R. McEwen,
J. Johnson, B. Dougherty, J. C. Barrett, and J. R. Dry, ‘‘Vardict: a novel and
versatile variant caller for next-generation sequencing in cancer research,’’ Nucleic
acids research, vol. 44, no. 11, pp. e108--e108, 2016.

[8] L. Chen, P. Liu, T. C. Evans Jr, and L. M. Ettwiller, ‘‘Dna damage is a pervasive
cause of sequencing errors, directly confounding variant identification,’’ Science,
vol. 355, no. 6326, pp. 752--756, 2017.

[9] N. C. f. B. I. National Library of Medicine (US), ‘‘Home - sra - ncbi,’’ https:
//www.ncbi.nlm.nih.gov/sra/, (Accessed on 05/15/2022).

[10] J. M. Zook, J. McDaniel, N. D. Olson, J. Wagner, H. Parikh, H. Heaton, S. A.
Irvine, L. Trigg, R. Truty, C. Y. McLean, et al., ‘‘An open resource for accurately
benchmarking small variant and reference calls,’’ Nature biotechnology, vol. 37,
no. 5, pp. 561--566, 2019.

45

https://irepertoire.com/ngs-overview-from-sample-to-sequencer-to-results/
https://irepertoire.com/ngs-overview-from-sample-to-sequencer-to-results/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/

[11] J. M. Zook, B. Chapman, J. Wang, D. Mittelman, O. Hofmann, W. Hide, and
M. Salit, ‘‘Integrating human sequence data sets provides a resource of benchmark
snp and indel genotype calls,’’ Nature biotechnology, vol. 32, no. 3, pp. 246--251,
2014.

[12] F. Mölder, K. P. Jablonski, B. Letcher, M. B. Hall, C. H. Tomkins-Tinch,
V. Sochat, J. Forster, S. Lee, S. O. Twardziok, A. Kanitz, et al., ‘‘Sustainable
data analysis with snakemake,’’ F1000Research, vol. 10, 2021.

[13] B. H. P. C. at the NIH, ‘‘Sra-toolkit,’’ https://hpc.nih.gov/apps/sratoolkit.html,
(Accessed on 05/15/2022).

[14] B. Bioinformatics, ‘‘Fastqc,’’ https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/, (Accessed on 05/15/2022).

[15] A. M. Bolger, M. Lohse, and B. Usadel, ‘‘Trimmomatic: a flexible trimmer for
illumina sequence data,’’ Bioinformatics, vol. 30, no. 15, pp. 2114--2120, 2014.

[16] Illumina, ‘‘Adapter trimming: Why are adapter sequences trimmed from only
the 3’ ends of reads?’’ https://support.illumina.com/bulletins/2016/04/adapter-
trimming-why-are-adapter-sequences-trimmed-from-only-the--ends-of-
reads.html, (Accessed on 10/24/2022).

[17] H. Li and R. Durbin, ‘‘Fast and accurate long-read alignment with burrows--
wheeler transform,’’ Bioinformatics, vol. 26, no. 5, pp. 589--595, 2010.

[18] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth,
G. Abecasis, and R. Durbin, ‘‘The sequence alignment/map format and samtools,’’
bioinformatics, vol. 25, no. 16, pp. 2078--2079, 2009.

[19] B. Institute, ‘‘Picard toolkit,’’ https://broadinstitute.github.io/picard/, (Accessed
on 02/28/2023).

[20] A. R. Quinlan and N. Kindlon, ‘‘bedtools: a powerful toolset for genome
arithmetic,’’ https://bedtools.readthedocs.io/en/latest/index.html, (Accessed
on 10/24/2022).

[21] Y. Leong, ‘‘Modeling sequencing artifacts for next generation sequencing,’’ 2022.

[22] D. R. Groebe and O. C. Uhlenbeck, ‘‘Characterization of rna hairpin loop stabil-
ity,’’ Nucleic Acids Research, vol. 16, no. 24, pp. 11 725--11 735, 1988.

[23] Scikit-learn, ‘‘sklearn.preprocessing.standardscaler,’’ https://scikit-
learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.
html?highlight=standardscaler#sklearn.preprocessing.StandardScaler, (Accessed
on 03/27/2023).

46

https://hpc.nih.gov/apps/sratoolkit.html
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-trimmed-from-only-the--ends-of-reads.html
https://support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-trimmed-from-only-the--ends-of-reads.html
https://support.illumina.com/bulletins/2016/04/adapter-trimming-why-are-adapter-sequences-trimmed-from-only-the--ends-of-reads.html
https://broadinstitute.github.io/picard/
https://bedtools.readthedocs.io/en/latest/index.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standardscaler#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standardscaler#sklearn.preprocessing.StandardScaler
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html?highlight=standardscaler#sklearn.preprocessing.StandardScaler

[24] Scikit-learn, ‘‘sklearn.preprocessing.onehotencoder,’’ https://scikit-learn.org/
stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html, (Accessed
on 03/27/2023).

[25] S. Pandala, ‘‘lazypredict,’’ https://github.com/shankarpandala/lazypredict, (Ac-
cessed on 04/13/2023).

[26] Scikit-learn, ‘‘sklearn.ensemble.extratreesclassifier,’’ https://scikit-learn.org/
stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html, (Accessed
on 04/13/2023).

[27] Scikit-learn, ‘‘sklearn.ensemble.randomforestclassifier,’’ https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html#sklearn.ensemble.RandomForestClassifier, (Accessed on 04/13/2023).

[28] dmlc XGBoost, ‘‘Xgboost parameters,’’ https://xgboost.readthedocs.io/en/stable/
parameter.html, (Accessed on 04/13/2023).

[29] T. D. Science, ‘‘Why weight? the importance of training on bal-
anced datasets,’’ https://towardsdatascience.com/why-weight-the-importance-of-
training-on-balanced-datasets-f1e54688e7df, (Accessed on 03/27/2023).

[30] Scikit-learn, ‘‘sklearn.metrics.confusion_matrix,’’ https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.confusion_matrix.html, (Accessed on
04/13/2023).

[31] Scikit-learn, ‘‘sklearn.metrics.precisionrecalldisplay,’’ https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.PrecisionRecallDisplay.html, (Ac-
cessed on 04/13/2023).

[32] Scikit-learn, ‘‘sklearn.metrics.roc_auc_score,’’ https://scikit-learn.org/
stable/modules/generated/sklearn.metrics.roc_auc_score.html, (Accessed on
04/13/2023).

[33] A. Vidhya, ‘‘Guide to auc roc curve in machine learning: What is speci-
ficity?’’ https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-
learning/, (Accessed on 04/13/2023).

[34] D. M. Lyons and A. S. Lauring, ‘‘Evidence for the selective basis of transition-
to-transversion substitution bias in two rna viruses,’’ Molecular biology and
evolution, vol. 34, no. 12, pp. 3205--3215, 2017.

[35] S. M. Carr, ‘‘Transition versus transversion mutations,’’ https://www.mun.ca/
biology/scarr/Transitions_vs_Transversions.html, (Accessed on 03/27/2023).

[36] J. Kieleczawa, ‘‘Fundamentals of sequencing of difficult templates—an overview,’’
Journal of biomolecular techniques: JBT, vol. 17, no. 3, p. 207, 2006.

47

https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://github.com/shankarpandala/lazypredict
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html
https://towardsdatascience.com/why-weight-the-importance-of-training-on-balanced-datasets-f1e54688e7df
https://towardsdatascience.com/why-weight-the-importance-of-training-on-balanced-datasets-f1e54688e7df
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.PrecisionRecallDisplay.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.PrecisionRecallDisplay.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machine-learning/
https://www.mun.ca/biology/scarr/Transitions_vs_Transversions.html
https://www.mun.ca/biology/scarr/Transitions_vs_Transversions.html

[37] J. Langan, L. Rowbottom, T. Liloglou, J. Field, and J. Risk, ‘‘Sequencing
of difficult templates containing poly (a/t) tracts: Closure of sequence gaps,’’
BioTechniques, vol. 33, no. 2, pp. 276--280, 2002.

[38] M. Svetec Miklenić and I. K. Svetec, ‘‘Palindromes in dna—a risk for genome
stability and implications in cancer,’’ International Journal of Molecular Sciences,
vol. 22, no. 6, p. 2840, 2021.

[39] C. Hilbers, M. Blommers, C. Haasnoot, G. Van der Marel, and J. Van Boom,
‘‘Struktur und faltung von dna und rna hairpins,’’ Fresenius’ Zeitschrift für
analytische Chemie, vol. 327, pp. 70--70, 1987.

[40] P. Aznar, ‘‘What is the difference between extra trees and random for-
est?’’ https://quantdare.com/what-is-the-difference-between-extra-trees-and-
random-forest/, (Accessed on 04/13/2023).

[41] aws, ‘‘What is boosting?’’ https://aws.amazon.com/what-is/boosting/, (Accessed
on 04/13/2023).

[42] esri, ‘‘How xgboost algorithm works,’’ https://pro.arcgis.com/en/pro-app/latest/
tool-reference/geoai/how-xgboost-works.htm, (Accessed on 04/13/2023).

[43] X. Jing, ‘‘Varclushi,’’ https://github.com/jingtt/varclushi, (Accessed on
04/13/2023).

[44] Scikit-learn, ‘‘sklearn.model_selection.randomizedsearchvc,’’ https:
//scikit-learn.org/stable/modules/generated/sklearn.model_selection.
RandomizedSearchCV.html, (Accessed on 04/13/2023).

[45] Scikit-learn, ‘‘sklearn.model_selection.gridsearchcv,’’ https://scikit-learn.org/
stable/modules/generated/sklearn.model_selection.GridSearchCV.html, (Ac-
cessed on 04/13/2023).

[46] K. Lam, ‘‘sequencing_artifacts,’’ https://github.com/kathylambchops/
sequencing_artifacts, (Accessed on 05/23/2023).

[47] H. Li, ‘‘seqtk,’’ https://github.com/lh3/seqtk, (Accessed on 04/13/2023).

48

https://quantdare.com/what-is-the-difference-between-extra-trees-and-random-forest/
https://quantdare.com/what-is-the-difference-between-extra-trees-and-random-forest/
https://aws.amazon.com/what-is/boosting/
https://pro.arcgis.com/en/pro-app/latest/tool-reference/geoai/how-xgboost-works.htm
https://pro.arcgis.com/en/pro-app/latest/tool-reference/geoai/how-xgboost-works.htm
https://github.com/jingtt/varclushi
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.RandomizedSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://github.com/kathylambchops/sequencing_artifacts
https://github.com/kathylambchops/sequencing_artifacts
https://github.com/lh3/seqtk

APPENDIX

Exonic Region Statistics

Fig. A.28: Percent of Exonic Region Nucleotides

49

Fig. A.29: Frequencies of Exonic Region Kmers of size 4

Fig. A.30: Frequencies of Exonic Region Homopolymer Sizes

50

Fig. A.31: Frequencies of Exonic Region Palindrome Sizes

Fig. A.32: Frequencies of Exonic Region Hairpin Loop Sizes

51

	Characterizing Sequencing Artifacts
	Recommended Citation

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Next Generation Sequencing
	Variants and Artifacts

	Materials and Methods
	Bioinformatics Pipeline
	Downloading Data from SRA Repository
	Quality Control
	Adapter Trimming
	Map Reads to Reference Genome
	Remove Duplicates
	Variant Calling
	Variant Filtering

	Determine Flanking Region Metrics
	get_metrics.py
	vcf_to_df
	snp_freq_not1
	filter_for_snvs
	join_datasets
	extract_artifacts_column
	content
	find_kmer
	homopolymer
	palindrome
	hairpin
	main

	Artifact Identification
	Machine Learning Pipeline
	Data Exploration
	Feature Selection
	Data Pre-Processing
	Model Building
	Performance Evaluation of Model Building

	Results
	Quality Control
	Data Exploration
	Feature Importance
	Predictive Power
	Performance Evaluation of Model Building
	ROC Curves and Precision-Recall Curves
	Random Forest Classifier
	Extra Trees Classifier
	XGBoost Classifier
	Summary
	Experiments
	Remove features with less than 60% predictive power
	Clustering Features
	Hyperparameter Tuning

	Discussion
	SNP Flanking Sequence Metrics
	Case 3 can be considered in the future

	LIST OF REFERENCES
	Exonic Region Statistics

