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ABSTRACT

The Search for Metabolic Variants in Response to Climate Change in the American 
Pika

by Tyler Trader

Climate change and rising temperatures pose a serious threat to the long term 

survival of American pika (Ochotana princeps), emphasizing the interest in the 

adaptive capability of the pika. This project queried single nucleotide polymorphisms 

in a population of American pika in Yosemite National Park using Whole Genome 

Sequencing data, with a specific interest in metabolic variants. The sample data 

included temporally separated cohorts, comparing modern population data to 

historical data taken before rapid anthropogenic climate change. Statistically significant 

variants were identified under Approximate Bayesian Computation using a 

population decline model. Although population statistics indicated little change 

between the temporal cohorts, five intergenic SNPs were identified located about 

20,000 base pairs upstream from DECR1, a gene that plays a key role in the 

metabolism of polyunsaturated fatty acids. Further work is needed to investigate 

any link between these SNPs and DECR1.
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CHAPTER 1

Introduction

Climate change poses arguably the biggest contemporary threat to ecological

systems. Although there have been natural fluxes in temperature throughout global

history, it is well known that the Industrial Revolution of the 1800s produced a shift

to man-made climate change due to the entrapment of heat-trapping gases in the

atmosphere. This has led to a rate of change never before seen throughout history,

straining organism’s ability to adapt to their new surroundings and leading to the

increased likelihood of extinction for over 10,000 plant and animal species [1]. Scientists

and governments now are tasked to create legislation to not only mitigate the problem

at its source, but also to generate evidence-based conservation and preservation efforts.

The value of scientific studies that can provide insight into a species evolutionary

fitness level is critical to the success of these legislative protocols. California, one

of the most biodiverse areas in the world, has about thirty percent of its species in

danger of extinction, and as such protects almost fifty percent of its land [2]. One of

these protected areas is Yosemite National Park, a highly biodiverse preserve home to

over 400 vertebrate species. The average temperature of the park is projected to rise

up to ten degrees in the next century, highly impacting the park’s complex ecosystems

and highlighting the need for informed conservation decisions [3].

The American pika, or Ochotana princeps, is one such species located in Yosemite

that risks extinction due to climate change. The small mammal is closely related

to the rabbit and is found throughout North America, inhabiting rocky mountain

areas in alpine environments mostly above the tree line. Individuals have a very

high metabolic rate, estimated to be 7.5 times the basal metabolic rate of a human

adult male, and an average body temperature of 104 degrees Fahrenheit [4]. Because

metabolic rate increases as external temperature increases, pikas are extremely sensitive
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to high temperatures and can die from heat exposure at just under eighty degrees

Fahrenheit [5]. This characteristic is thought to put the species at risk of extinction

due to climate change as populations are pushed to higher elevations to escape the

rising average temperatures [5]. In other words, pika either must adapt to these rising

temperatures or shift their range to more hospitable locations. Unfortunately, pikas

exhibit low dispersal rates within a population and are therefore unlikely to shift

their range, meaning that as a population they must adapt to avoid extinction [6].

Although not listed on the Endangered Species Act, the overall pika species population

is decreasing as temperatures rise and their long-term survival is of great concern.

Further, pikas are thought to be a model species for understanding climate change in

relation to population genetics due to well documented range contraction that can be

linked to climate change [7].

This research therefore aims to understand the mechanisms for adaptive change

that pikas have exhibited over the last century by the identification of genetic variants

present in contemporary populations as compared to historic populations. Variations

that affect the animal’s metabolism are of specific interest due to the connectivity

between metabolic genes and a species ability to tolerate heat. Further, variations

that can predict the likelihood of increased fitness within the population in the future

are also of interest.
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CHAPTER 2

Background

This project is influenced by a study similar in both structure and goal, conducted

by researchers Bi et al in and around the Yosemite Valley. That study, published in

2019, employs both a temporal and a spatial approach to identify variants in proteins

affecting metabolism in a species of chipmunk experiencing severe range contraction as

temperatures rise, known as Neotamias alpinus, versus a chipmunk species that is stable

in environmental range and size of population, known as Neotamias speciosus. Bi et

al examined exome sequencing data and found that Alox15, a lipoxygenase, tripled in

expression between the two timepoints, which is theorized to be a physiologic response

to environmental warming. Their work highlighted both the ability to generate

high quality data from archived specimens as well as the importance of temporal

data in conservation work, particularly useful in informing potential evolutionary

trajectories for species and their individual populations through historical demographic

modeling [8].

Whole genome sequencing, made easily accessible by next-generation sequencing

(NGS), is a technique that allows for the analysis of whole genomes, rather than just

individual areas of interest [9]. This supports more thorough identification of genetic

variants, generating a better understanding of the complicated multidimensional

facets of living organisms as one can delve deeper into the interconnectedness of a

species inner biological workings. Specifically, we are interested in the identification of

single nucleotide polymorphisms (SNPs) in the germline. Whereas somatic mutations

accumulate throughout an organism’s lifetime in single cells or groups of cells, germline

mutations are variants that are heritable and thought to be present in all cells in

an organism’s body from birth [10]. These are therefore variants that are likely to

be present in the majority of a group of closely related individuals and can help to
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identify genomic changes of a population throughout time.

One crucial analysis in population genetics is demographic modeling. Because

achieving a comprehensive temporal sample set is almost impossible, population

genetics relies heavily on statistical methods to predict change in a species over time,

specifically through use of the Bayesian likelihood function. Real world population

data is large and complex with an abundance of nuisance parameters; therefore, the

probability of observing a specific variant given the true genotype is indeterminable,

highlighting the need for statistical inference. Approximate Bayesian Computation

(ABC) is a popular choice among bioinformaticians to bypass the need for the likelihood

function by using sample parameters to produce artificial datasets that can then be

analyzed to infer the evolutionary changes of a population over time [11]. For this

report, the called variants were used to generate a site frequency spectrum (SFS),

which describes the distribution of allele frequencies in a given genomic sample set [12].

This was then used to simulate data under several different demographic models,

which was then analyzed via ABC to determine the most likely evolutionary scenario

for the population. The called variants were then compared to the simulated statistical

models under the most likely demographic scenario to determine the most statistically

significant variants present in the sample data.
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CHAPTER 3

Methods

Whole genome sequencing data was collected from American pika in and around

Yosemite National Park. Ten samples were collected in 1915 from two locations,

Lyell Canyon in Tuolumne County (five samples) and Vogelsang Lake in Mariposa

County (five samples). These were stored as skeletal remains. Ten samples were

collected in the early 2000s (2003 to 2006) from three locations, Lyell Canyon (five

samples), Townsley Lake in Mariposa County (four samples), and Gardisky Trail in

Mono County (one sample). These will be referred to as the historic and modern

samples, respectively (see Figure 1 and Appendix B.1 Table). All twenty samples were

then sequenced without replicates using the Illumina NGS platform and produced raw

reads 151 base pairs long.

Figure 1: Sample Locations in Yosemite National Park

There were four locations where samples were collected: Lyell Canyon (5 historic, 5 modern),
Vogelsang Lake (5 historic, no modern), Townsley Lake (0 historic, 4 modern), and

Gardisky Trail (0 historic, 1 modern). Vogelsang Lake and Townsley Lake are the closest in
proximity, located about 1 mile apart. Lyell Canyon is about five miles from all the other

locations, and Gardisky Trail is about 12 miles from Vogelsang Lake.

3.1 Variant Calling

Each data processing tool was run iteratively using the Python-based workflow

management tool SnakeMake. All work was performed on the College of Science High
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Figure 2: Overall Workflow

Performance Computer (HPC), which uses the CentOS 7 package and has Slurm as

the resource manager and job scheduler. The raw reads from the Illumina sequencer,

in compressed fastq format, were quality checked using the Java based analytical tool

FastQC and then processed using the C++ based tool fastp to trim for the universal

Illumina adapter and correct for mean quality scores using the default settings [13, 14].

Results were then aggregated using the report generating tool multiQC [15]. The

resulting processed compressed fastq files were then aligned to a reference genome

using the software package Burrows-Wheeler Aligner, particularly the BWA-MEM

algorithm [16]. The reference genome, OchPri4.0, was taken from the liver of a

single male American pika organism from the Beaverhead-Deerlodge National Forest

in Montana. It was sequenced using Illumina HiSeq and assembled using Dovetail

HiRise version 2017 for a total genome size of 2.23 billion base pairs made up of

33 chromosomes, with a genome coverage level of 23.68x. The reference genome

was submitted to the National Center for Biotechnology Information (NCBI) by

the University of British Columbia Okanagan in 2020 (GenBank assembly accession

GCA014633375.1). There are 29,701 protein coding genes and 9,351 scaffolds, with a
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GC concentration of 44.21 percent [17].

After mapping, duplicate reads were marked using MarkDuplicates from the

Genome Analysis Toolkit (GATK) and resulting bam files were index and coordinate

sorted in preparation for variant calling. Variant calling pipeline followed the GATK

best practices pipeline. Variants were called separately for each cohort using the

GATK-based programs HaplotypeCaller and GenotypeGVCFs. HaplotypeCaller was

ran in emit reference confidence (ERC) mode using the compressed variant call format

(GVCF) option. Each sample was run iteratively to generate separate GVCF files.

These GVCFs were passed by cohort into GenomicsDBImport to generate a datastore,

which contained variant information for each chromosome for each sample in that

cohort. This datastore was then used as input for GenotypeGVCFs, which joint-called

the variants in the cohort. Joint calling generates a variant call format (VCF) file

with every SNP site where any individual in the cohort has evidence of variation.

The two resulting VCF files (one per cohort) were then filtered using the GATK tool

SelectVariants to select for the most statistically significant variants, with thresholds

outlined in Table 1 and explained in Appendix A.3 [10]. Filters were chosen via

graphical interpretation and applied using Java Expression Language (JEXL) (see

Appendix C.12 Figure). This produced a final vcf file for each cohort which was

then used in downstream analyses. For more in-depth explanations of each tool, see

Appendix A.1 Text.

3.2 Population Genetics Statistical Analyses

Cohorts were first analyzed for global and per-site nucleotide diversity and

Tajima’s D values (using a 10,000 base pair sliding window) using the Popgen Pipeline

Platform (PPP), a set of python-based scripts written to aid in the incorporation

of commonly used population genetic software packages into pipelines [18]. Intra-

7



Figure 3: Variant Call Workflow

population genetic structure was analyzed via PCA using SNPRelate, a module within

the R-based Bioconductor package, and inter-population global, per site, and per

chromosome Fst values were calculated for the two cohorts using the PPP [19]. The

chromosome with the highest weighted Fst value and the two 10,000 bp sections

on that chromosome with the highest Tajima’s D values were chosen for further

analysis. Joint-SFS matrices (2D-SFS) were calculated using the PPP and used to

model observed data in ABC analysis [20].

To determine the best demographic model for use in ABC analysis, five runs

of 100,000 simulations of SNP data were generated using fastsimcoal2, a coalescent

demographic modeling software, to model neutral molecular diversity under three

different demographic historical scenarios (see Appendix A.4 Text) [21]. The algorithm

then performed 40 maximum likelihood iterations per run to estimate parameters for

each scenario, and the demographic model with the highest estimated log likelihood

was chosen. Next, 5,000 2D-SFS matrices were simulated under the most likely

demographic scenario. In an ABC rejection framework, rejection sampling based on

Euclidean distance was performed on the simulated matrices using custom scripts with

an acceptance rate of 0.1. As described in Bi et al, custom bins in both the diagonal

and off-diagonal axes of the 2D-SFS were then computed and used as the summary
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statistic for a given matrix. These statistics were used to check the goodness of fit

of the chosen model onto the observed data. The five simulations with the best fit

to the observed data were chosen, with the acceptance rate of 0.01 similar to that

used in Bi et al (0.008). The simulations then were analyzed via analysis of molecular

variance (AMOVA) using Arlsumstat to generate the neutral Fst distribution in order

to build an approximation of the posterior distribution [22]. This distribution was

then plotted and compared to the observed Fst values to identify outliers.

9



CHAPTER 4

Results
4.1 Variant Calling

Initial quality control of the raw reads showed high per sequence quality scores.

The per sequence quality report allows for the identification of sequences or subsets of

sequences with low-quality values. Quality scores by position indicated 99.9 percent

accurate calls at all read positions after base correction. The statistics warrant the

assumption of high-quality imaging and read calls such that no further processing

was necessary and reads could be used in variant calling pipeline (see Appendix

C.10 Figure) [13]. Reads were then mapped to the reference genome in pairs using

BWA-MEM due to its usefulness in mapping high-quality sequences above 70 base

pairs in length. Most reads were properly paired to and mapped with their mate

(see Appendix C.11 Figure). On average, samples had 91 percent of reads properly

paired with a median of 96 percent. Further, 70 percent of samples had less than 2

percent of reads with mates mapped to a different chromosome. Two samples, both in

the modern cohort, had about 10 percent of reads with mates mapped to a different

chromosome. Supplementary alignments, occurring when different sections of a read

maps to completely distinct and separate sections of the genome, made up less than 4

percent of the total sample for almost 80 percent of samples. Finally, singletons, or

reads whose mate was unmapped, make up very little of the population, representing

less than 1 percent of total reads for any given sample. Using the Lander-Waterman

equation, total sequencing coverage (ie read depth) was 20x per individual on average

(𝑠 = 4), meaning that each base in the genome was sequenced about 20 times each [23].

Next, duplicate reads were marked using query-sorted mapped data which allowed

the MarkDuplicates tool to include both unmapped mates and supplementary reads in

analysis, which helped to account for those two samples in the modern cohort with a

10



large portion of reads with mates mapped to a different chromosome. MarkDuplicates

found an average of 950,355 optical duplicates per sample with a range of 45,796 to

6,556,847 optical duplicates. Overall, there was on average 38 percent duplication

with a standard deviation of 7 percent and ranging from 15 to 50 percent duplication.

The mapped bam files were then coordinate-sorted and indexed, and SNPs were called

using HaplotypeCaller. HaplotypeCaller produced 63 GB of data for the modern

cohort (with file sizes ranging from 2 GB to 9 GB) and 53 GB of data for the historic

cohort (with file sizes ranging from 5 GB to 6 GB). These files were used to create a 1

GB datastore for both the modern and historic cohorts. Each datastore was input

into GenotypeGVCFs to joint-call variants, which produced 4.2 GB of data and 7.1

GB of data, respectively. The modern cohort contained 35,066,905 SNPs while the

historic cohort contained 64,628,272 SNPs.

Variants were then filtered based on their various statistical measurements

including strand bias and quality score using SelectVariants and JEXL (see Appendix

A.3 Text). Variants were first filtered using the GATK recommended filters, which

are by design very lenient [24]. Remaining variants were then mapped using the

Python data visualization library seaborn to generate density curves and final filters

were chosen based on the proportion of variants above that statistical threshold (see

Table 1 and Appendix C.12 Figure). After filtering, the modern cohort contained

16,061,661 SNPs and the historic cohort contained 36,695,297 variants, a 54.2 percent

decrease and a 43.2 percent decrease, respectively.
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Threshold(Pass)
QD FS SOR MQ MQRankSum ReadPosRankSum

Custom Filter >2 <10 <3 >50 >-5 >-3
Table 1: Final Statistical Thresholds for Variant Calling

from [10]: ‘QD’ [QualByDepth]: Normalized variant quality score; ‘FS’ [FisherStrand]:
Phred-scaled strand bias probability; ‘SOR’ [StrandOddsRatio]: Strand bias probability

score by ratio of reads on both alleles; ‘MQ’ [RMSMappingQuality]: Square root of average
of squares of mapping quality at given site; ‘MQRankSum’ [MappingQualityRankSumTest]:
u-based z-approximation from Rank Sum Test for mapping qualities; ‘ReadPosRankSum’

[ReadPosRankSumTest]: u-based z-approximation from Rank Sum Test per base

4.2 Population Genetics Statistical Analyses

Filtered cohorts were analyzed for global and per site nucleotide diversity and

Tajima’s D values. Both are most accurately calculated in a sliding window to average

over several variants at a time; therefore, a sliding window of 10kb was chosen [25].

Nucleotide diversity, symbolized as 𝜋, measures genetic diversity. Global nucleotide

diversity for the modern cohort was 0.002 (standard deviation 0.0013) and for the

historic cohort was 0.003 (standard deviation 0.0017), showing a thirty-three percent

decrease in population diversity over time. Next, Tajima’s D is a summary statistic

of the SFS and is used to aid in the detection of areas of the genome that are under

selective pressures and are therefore not evolving neutrally [26]. Global Tajima’s D for

the modern cohort was -0.4844 (standard deviation 0.512) and for the historic cohort

was -1.5732 (standard deviation 0.377). In the modern cohort, there were 133 sections

of genome 10kb long that had evidence of a non-neutral Tajima’s D. This represented

9228 SNPs across 29 chromosomes, or 0.057 percent of the filtered variants. Of these

9228 SNPs, 3335 were indicative of balancing selection (TD>2). In the historic cohort,

there were 9736 sections of genome 10kb long that had evidence of a non-neutral

Tajima’s D, representing 1,865,733 SNPs or 5.08 percent of filtered variants. All of

these markers in the historic cohort showed evidence of positive selection (TD<-2).
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(a) Nucleotide Diversity by Cohort

(b) Tajima’s D by Cohort

Figure 4: Windowed Nucleotide Diversity and Tajima’s D

(a) Boxplots of the nucleotide diversity for the historic and modern cohort. Both
populations have low nucleotide diversity with similar tail lengths. (b) Histograms for

Tajima’s D in the historic and modern cohorts. Historic cohort shifts more toward positive
selection, whereas the modern cohort is centered closer to zero.

Transition and transversion frequency was analyzed to explore the possibility of

DNA degradation as seen in the Bi et al study (see Figure 5). The historic cohort shows

a 61 percent relative increase in both G to A as well as C to T conversions compared to

the modern cohort, which may suggest hydrolytic deamination, a sign of degradation

in ancient DNA samples [27]. SNPs that indicated a G to A conversion in the historic

cohort were then removed and principal component analysis was performed to analyze

intra-population genetic structure (see Figure 6). The modern cohort clustered tightly

while the historic cohort was slightly less genetically similar. However, there was

seemingly no distinguishable differences between cohorts.
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Figure 5: Allele Frequency per Cohort

G to A SNPs are seen 1.6 times more frequently and C to T SNPs are seen 1.2 times more
frequently in the historic cohort when compared to the conversion rate in the modern cohort.

Figure 6: Principal Component Analysis

Each data point represents an individual. The first two principal components comprise
17.08 percent of total genetic variance (9.05 percent and 8.03 percent, respectively).

Global, per-site, and per-chromosome Fst values were then calculated. The two

cohorts displayed a global weighted Fst of 0.0138 (unweighted 0.0092), per-site Fst

values were all less than 0.1, and per-chromosome weighted Fst values ranged from 0

to 0.0073 with a standard deviation of 0.00184 (see Figure 7). Chromosome 3 showed

the highest Fst value and was therefore chosen for further analysis. This chromosome

14



displayed 1,671,501 statistically filtered SNPs between the two cohorts and is 83 Mb in

length. This chromosome was then scanned for sections of DNA (10 kb sliding window)

above a Tajima’s D equal to 2 threshold value (as described above), which resulted

in two sections of genome (starting at base 3,230,000 and base 35,080,000). These

sections were identified as the DNA of interest in subsequent analysis. Finally, joint

2D-SFS matrices were generated for chromosome 3 and for the sections of interest for

use in posterior probability generation via ABC analysis (see Appendix C.13 Figure).

(a) Per-site Weighted Fst Values

(b) Per-Chromosome Weighted Fst Values

Figure 7: Weighted Fst Values

(a) Most per-site weighted Fst values show a Fst of 0, with 90.1 percent of values below 0.1.
(b)Highest chromosome Fst value was on chromosome 3 (Fst = 0.00729). Standard

deviation was 0.00184 and the average was 0.00429.
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As described previously, ABC analysis is centered toward estimating the posterior

probability function without use of the likelihood function. Rather, the ABC framework

consists of generating large amounts of data and culling by some rejection method

based on some summary statistic or statistics in order to use a subset of the simulations

closest to the observed data to estimate the posterior distribution. In other words,

accepted simulations under some tolerance can be thought of as a sample of the

approximate posterior distribution [28]. This project uses an ABC framework to

generate a neutral Fst distribution, or the expected distribution if no selecting factors

were occurring within the genome. Observed data can then be analyzed against this

distribution to identify outliers [29]. The ABC workflow employed in this project was

influenced heavily by the workflow outlined in Bi et al.

Under ABC analysis, three demographic models were chosen to investigate: a

constant population size, a declining population, and an expanding population. For

parameter estimation and model likelihood inquiry, five runs of 100,000 simulated

2D-SFS matrices were generated per model using fastsimcoal2, with 40 iterations per

run using likelihood maximization to estimate parameters. Parameters are drawn

from set priors and simulates data to build a likelihood function, which it then uses

to estimate parameters using the conditional maximization (ECM) algorithm [21]

(see Appendix A.4 Table). The fifteen runs were then compared, and the population

decline model had the highest log likelihood across all five runs (see Appendix C.14

Figure).This model suggests a current population size of 2,820 individuals on average

(range: 1045 – 4087) and a growth rate of 0.0816 (the growth rate is positive because

the algorithm moves backward in time, such that the population is growing as the

algorithm moves into the past and therefore shrinking forward in time).

Random DNA data (10 kb per chromosomal area of interest) was then simulated

under the population decline model and output as SNP data using the -s option of
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fastsimcoal. Five simulations were run for 10,000 randomly drawn sets of parameters

from the defined priors, generating 1,000,000 total bases. Rejection in an ABC

rejection framework was then performed, with simulated 2D-SFS matrices accepted

based on Euclidean distance to the observed matrix. An acceptance threshold of

0.1 was used for this step. As was performed in the Bi et al study, diagonal and

off-diagonal bins were then calculated as the summary statistics on the accepted

simulations with a bin width of 2 (for 12 total bins per 2D-SFS) (see Appendix C.15

Figure). Goodness-of-fit calculations were then performed on each bin, and the five

simulations with the highest overall goodness-of-fit scores were chosen to build the

neutral Fst distribution. The genetic site information for these simulations was ran

through AMOVA in the Arlequin population genetics software package to generate

the expected Fst distribution. AMOVA is modeled after ANOVA analysis (analysis

of variance) and allows for the use of ANOVA statistical analysis on population wide

molecular data [22]. The observed Fst outliers were finally identified based on their

probability under the neutral distribution (see Figure 8).
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Figure 8: Neutral Fst Distribution

(a) The neutral distribution displayed as a probability histogram with a kernel density
estimate overlay (alpha of 0.95). The p-value for the neutral Fst estimates was an average
of .645 with a confidence interval of .643 - .648, meaning the null hypothesis is accepted and
these Fst values occur by random chance (thus, a neutral distribution). Observed loci with
significant Fst values (values where the probability distribution is equal to 0) are labeled as
red stars on the graph (height of star stack is arbitrary and therefore not correlated to the

y-axis). (b) Various Fst statistics on both the expected Fst (the neutral Fst) and the
observed Fst as computed in JMP (a statistical analysis software). It is important to note
that differences in mean and standard deviation may likely be an artifact of dataset size (the

observed Fst dataset was much smaller than the expected Fst dataset).

Five observed loci on chromosome 3 were found to have significant Fst values:

positions 3237602, 3237603, 3237616, 3737623, and 3237640. These are sites where

the probability of observing these values under the neutral distribution was very low

(see Figure 8). These sites were then located on the reference genome using the NCBI

Genome Data Viewer application. All SNPs were found to be intergenic and about

20,000 base pairs upstream from the closest gene, known as DECR1 (see Figure 9).
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Figure 9: Identified Outliers on the Reference Genome

The location of the loci is denoted on the reference genome by an orange rectangle (loci all
within 38 bases). It is important to note that the orange rectangle is a general reference
point and therefore is not to scale. The gene upstream of the loci, XM012931070.2, is
thought to be a zinc finger protein, but no specific function was indicated by NCBI.
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CHAPTER 5

Discussion
5.1 Variant Calling

Initial quality metrics, including high per sequence quality scores and quality

scores by position, warrant the assumption of high-quality imaging and read calls such

that no further preprocessing was necessary and reads could be used in variant calling

pipeline (see Appendix C.10 Figure) [13]. Further, mapping quality was high and

read depth averaged 20x per sample. The recommended coverage for variant calling

in a non-clinical setting is about 20x; thus, no individuals needed to be filtered out on

the basis of extremely high or low coverage levels (see Appendix C.11 Figure) [30].

Overall, mapping and coverage was sufficient and mapped reads were able to be used

in further processing.

After duplicate reads were marked using MarkDuplicates, SNPs were called

using HaplotypeCaller. HaplotypeCaller generates haplotypes, which are possible

genotypes for a given section of DNA, from the existing mapped read information

and then employs de-novo reassembly of the haplotypes in each region that contains

evidence of variation. This means that the program generates possible sequences for a

given section of DNA from the mapped reads, and then ignores the existing mapped

read information to map the generated sequences to the reference genome. This

reassembly approach allows HaplotypeCaller to be more accurate than other callers.

HaplotypeCaller is very computationally expensive, however, and is a bottleneck

in most variant calling processes [10]. Due to the lack of large datasets of known

variants within the pika population, which exist for both human and model organism

data, HaplotypeCaller was chosen for this step for its accuracy despite the process

bottleneck.

Following GATK best practices after variant call, variants should be filtered by
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Variant Quality Score Recalibration (ApplyVQSR), which is a machine-learning based

approach to retain the most statistically significant variants. Unfortunately, this

requires a large known variant set (“truth set”) for the population, which is unavailable

for most non-model organisms. Instead, hard filters consisting of flat thresholds

were used to cull the datasets. One caveat of this approach is that each statistical

dimension is analyzed individually, such that the analysis of variant clustering among

multidimensional statistical variables is impossible. Because of this, false positives

will exist within the dataset to keep true positives along certain dimensions. Likewise,

a certain percentage of true positives will be culled out of the population because

of one statistically poor variable [10]. Further downstream statistical analysis will

ideally cull these false positives out from analysis, although any true positives culled

at this step would be lost.

5.2 Population Genetics Statistical Analyses

Nucleotide diversity in the modern cohort (𝜋 = 0.002) is similar to the nucleotide

diversity values estimated in other studies on the Yosemite Valley American pika

population. For example, Klinger et al placed the genetic diversity of this population

around 0.0019 [31]. Overall, nucleotide diversity in both cohorts was low, with a slight

decline in diversity over time. This may indicate a poor ability to adapt as well as a

low population fitness level. The summary statistic Tajima’s D was used to determine

any areas within the genome under selective pressures. A high positive Tajima’s

D value indicates balancing selection, which in turn indicates genetic variation and

possible adaptations in the population. In contrast, a low negative value indicates

positive selection, which reduces genetic variation [32]. A threshold of +/- 2 was

chosen as the cutoff for the Tajima’s D statistic due to a consensus that areas above

or below these values indicate genomic regions not evolving neutrally [33]. Global
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Tajima’s D relayed a 70 percent positive relative change between the two populations,

with the modern cohort shifting toward zero. This could indicate a shift toward

genomic equilibrium in the modern population, which would further corroborate the

idea of declining nucleotide diversity (see Figure 4). However, Tajima’s D is affected

by population size and tends to increase as population size decreases, such that this

change could also be due to a declining population [34].

Initial principal component analysis indicated high similarity between individuals

in the modern cohort (see Appendix C.16 Figure). The historic cluster, however,

showed considerably less similarity to itself, which could be indicative of DNA degra-

dation in the historic samples as was seen in the Bi et al study [8]. This prompted the

investigation into allele frequency per cohort, which further indicated DNA degrada-

tion. Historic G to A SNPs were then removed from analysis, which produced the final

PCA plot seen in Figure 6 above. This plot indicates high intra-population genetic

similarity for the modern cohort. The historic cohort clustered closer without the G

to A SNPs, but still had a few individuals that exhibited some variation. Overall,

there was very little distinction between the modern and historic cohort on the plot,

indicating genetic similarity between the two cohorts and a lack of significant genetic

change over the last century.

As described previously, Fst, or global fixation index, is a summary statistic of

the site frequency spectra (SFS) and helps to describe inter-population separation via

allele frequency variance [25, 35]. An Fst value of 0 indicates genetically identical

populations, whereas an Fst of 1 indicates genetically distinct populations. Global

weighted Fst between the two cohorts was low (Fst = 0.0318), indicating low genetic

change over the last century. Likewise, per-site weighted Fst average values were low,

with most Fst values less than 0.1. Chromosome 3 showed the highest Fst value and

is therefore thought to be the most genetically distinct chromosome between the two
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cohorts. This chromosome was then scanned for areas showing evidence of selective 

pressure, defined as having a Tajima’s D value above 2 or below -2, resulting in two 

areas of interest for further analysis.

ABC analysis is centered toward estimating the posterior probability function 

without use of the likelihood function. Rather, the ABC framework consists of 

generating large amounts of data and culling by some rejection method based on some 

summary statistic or statistics in order to use a subset of the simulations closest to 

the observed data to estimate the posterior distribution. In other words, accepted 

simulations under some tolerance can be thought of as a sample of the approximate 

posterior distribution [28]. This project uses an ABC framework to generate a neutral 

Fst distribution, or the expected distribution if no selecting factors were occurring 

within the genome. Observed data can then be analyzed against this distribution to 

identify outliers [29]. The ABC workflow employed in this project was influenced 

heavily by the workflow outlined in Bi et al. To perform ABC analysis, a demographic 

historical model must be chosen under which to generate large amount of simulated 

data. A population decline model was chosen due to the log likelihood of the model 

across five runs. This model choice is unsurprising, as the increase in Tajima’s D 

between the historic and modern population hinted at a declining population. A 

neutral Fst distribution was then determined under this model via ABC, and outliers 

were identified as observations where the neutral probability distribution was zero.

All five outlier loci identified are located about 20,000 base pairs upstream from 

DECR1. According to NCBI, the protein encoded from this gene, also known as 

DECR1, is an ortholog of the human DECR1 protein and plays a role in fatty acid 

beta-oxidation. In fact, DECR1 is the rate-limiting enzyme in the metabolism of 

polyunsaturated fatty acids. Fatty acid beta-oxidation plays a key role in energy 

production for the heart and other organs in humans. Further, there is evidence to
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suggest that alterations in fatty acid beta-oxidation in cancer cells enables tumors the

ability to survive through periods of increased metabolic stress [36].
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CHAPTER 6

Conclusion and Future Directions

As with any bioinformatics study, further investigation into any finding is required, 

particularly with the use of wet lab experiments. It is most likely of interest to study 

any potential link between the identified intergenic region and the DECR1 gene. 

Further, this study was limited in scope to chromosome 3 because of the indication 

of increased selective factors, but a more expansive study to cover a broader range 

of the genome in the downstream population genetic analyses is warranted. The 

discovery of potential historical sample degradation, as evidenced in 5, also poses an 

interesting hurdle. Although G to A SNPs were removed from the historic cohort 

to account for hydrolytic deamination in PCA analysis, ABC analysis was ran with 

an uncorrected data set. This change may affect the neutral Fst distribution as 

the five closest simulated data sets would vary with a change in observed 2D-SFS. 

Another future inquiry includes analyzing the modern genome directly to the historic 

genome in downstream analysis rather than to the reference genome. Because the 

reference genome was built from a single individual, there is associated uncertainty 

about the accuracy of the genome. Further, since the reference genome was built 

from a contemporary individual (that is, an individual from a population that has 

also experienced rapid anthropogenic climate change), the modern cohort may be 

genetically more similar to the reference genome than the historic cohort is to the 

reference genome, which would also pose a source of error. Finally, a broader study 

on demographic model choice for this population is recommended. As previously 

mentioned, this study explored three basic models: historical population decline, 

historical population expansion, and a constant population size. There is interest 

in the effect of an increase in model complexity on both the maximum estimated 

likelihood as well as the fit of the model to the observed data. Although further inquiry
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into this data is necessary, this project allowed for the development of a Snakemake 

variant calling pipeline and a downstream statistical workflow, both geared toward 

the analysis of SNP data. More importantly, it delved into some of the possibilities of 

temporal data in population genetics, including the ability to build models that can 

allow for insight into future evolutionary trajectories of a given population [8].

Overall, the contemporary pika population exhibited low nucleotide diversity, 

slightly lower than the historic cohort with a similar standard deviation. Tajima’s 

D for the modern cohort shifted toward zero, which could be further indication of 

either genomic equilibrium, as evidenced by low nucleotide diversity, or indicative of 

a declining population, as indicated by statistical modeling. Likewise, inter-cohort 

allele frequency variance described by the global Fst value was low, indicating genetic 

similarity between the two temporal cohorts. Unfortunately, these global statistics, 

taken together, indicate little genomic change or adaptation over the last century. 

However, homing in on the areas with the highest Tajima’s D on the chromosome with 

the highest Fst value led to the discovery of five variant loci when compared to the 

expected neutral Fst distribution for a population with similar size and demographic 

history. These loci were all intergenic, although they mapped near a metabolic gene, 

DECR1. Hopefully, the discovery of these variants can be indicative of other, more 

impactful variants within the population.
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APPENDIX A

Supporting Information: Text
A.1 Technical Background - Variant Calling

After read cleanup and annotation, reads are mapped to a reference genome and

checked for repetition before genomic variants are called and analyzed. First, BWA, or

Burrows Wheeler Alignment tool, allows for the direct comparison of sequence reads to

a reference genome, performing a local alignment. It is based on the Burrows Wheeler

transform, which is a block-sorting data compression algorithm that allows for the

reordering of input text [37]. More specifically, BWA-MEM looks for “maximal exact

matches” (MEM), meaning the algorithm searches for the most exact matches between

a read and the reference genome and then uses the Smith-Waterman algorithm to

fill in gaps, thus “mapping” the read to the genome. BWA-MEM, as opposed to

the other iterations of the tool, is used for longer high-quality sequences [16]. Next,

MarkDuplicates is a java-based tool in the Picard toolkit, accessible through GATK.

It is used to tag duplicate reads stemming from a single DNA fragment, present either

as a PCR duplication artifact or an optical duplicate which occurs when the optical

sensor identifies a single amplification cluster as multiple clusters. The tool compares

the sequence of reads and read-pairs located at the 5’ position and identifies the

duplicate read based on sum of the base-quality score. A SAM flag is then created

for each duplicate, marked as the hexadecimal value 0x0400. HaplotypeCaller, like

MarkDuplicates, is also a java-based tool available in GATK. The tool aims to identify

variants, including single nucleotide polymorphisms (SNPs) and insertion-deletion

variants (indels), using haplotypes and the local reassembly of the haplotypes onto

the reference genome. A haplotype is a possible sequence that represents a given

section of DNA. HaplotypeCaller uses the input reads to generate these haplotypes,

which are then analyzed to find the genotype that is most likely. There are four main
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steps in this process: defining the active regions, local assembly of the active regions

to generate the haplotypes, analyzing the possible haplotypes, and then assigning

genotypes. First, the tool looks for “active regions”, which are regions of DNA that

have a high likelihood of variation from the reference genotype. After examining

each genomic position, the tool creates an “activity profile” using an “activity score”

assigned to each position. The shape and local maxima of this activity profile are

then used to determine the location and size of the active regions. Then, these active

regions are evaluated alongside the input reads that mapped to that specific region

to generate haplotypes. It is common to see several haplotypes generated per active

region due to read diversity as well as sequencing and mapping errors. Next, the

individual reads are then aligned to the haplotypes using PairHMM, a hidden Markov

model that determines the amount of evidence that exists for each allele by generating

a score that expresses “the likelihood of observing that read given that haplotype” [10].

Finally, the algorithm uses Baye’s theorem to select the most likely genotype for that

section of DNA, which then is placed in an output gVCF (genomic variant call format)

file.

A.2 Technical Background: Statistical Analysis

After the data is processed, it can then be analyzed. Approximate Bayesian

Computation, or ABC, is a common analysis in population genetics and can be used to

understand the evolutionary changes a population experiences over time by inferring

the population size history. Stemming from Bayes theorem, it uses sample parameters

to produce artificial datasets which mitigates the need for the likelihood function

P(A|B), which can be difficult to determine in real-world problems where datasets

are normally very large and complex [38]. Another common statistic in population

genetics is site frequency spectra, or SFS. This provides information about genetic
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variation within and between populations by summarizing the distribution of allele

frequencies. Next, principal component analysis, or PCA, is a feature extraction

technique and is a dimension reduction algorithm. It compares genetic covariance

of individuals and provides data visualization of the relatedness of individuals based

on clustering. The global fixation index, or Fst, describes the distribution of allele

frequencies among populations and can identify outlier loci. In this case, outlier loci

would be any loci that were subjected to different patterns of selection or a different

demographic process [35]. Tajima’s D and Fst are summary statistics of the SFS.

A.3 Statistical Tests for Variant Calling

See also: Table 1 and Appendix C.12 Figure. According to GATK best practices,

variants are filtered according to six statistical variables to account for quality score,

stand bias, and mapping quality. These are QualByDepth (QD), FisherStrand (FS),

StrandOddsRatio (SOR), RMSMappingQuality (MQ), MappingQualityRankSumTest

(RQRankSum), and ReadPosRankSumTest (ReadPosRankSum). The generic filtering

recommendation are based on analysis tests ran by the Broad Institute in comparison

with VQSR results [24]. QD is the normalized variant quality score and expresses

the variant quality (QUAL) as normalized by the read depth. The QUAL metric

describes the Phred-scaled probability that a given site does not have a variant [39].

GATK best practices recommends use of QD for filtering rather than QUAL directly

to account for differences in coverage level throughout the genome which affect the

QUAL metric and suggests the filtering out of variants with a QD below 2. FS is a

measure of strand bias probability computed by the Fisher Exact test. No strand bias

relates to an FS of 0 and the generic filtering recommendation suggests a threshold

of 60. SOR is also a measure of strand bias, but it is instead estimated by the

Symmetric Odds Ratio test and can better handle variants at the end of exons than

33



the Fisher Exact test. The generic filtering recommendation is to remove variants

with an SOR value above 3. MQ is the root mean square mapping quality calculated

over all reads at a given site, which allows for the inclusion of the standard deviation

in the metric. An MQ of 60 indicates high quality mapping at a given site and

the generic filtering recommendation indicates a threshold of 40. MQRankSum is

the u-based z-approximation from the Rank Sum Test and describes the quality of

reads supporting the reference or alternate allele. A negative value indicates higher

mapping qualities for reads supporting the reference allele, a positive value supports

the alternate allele, and a value of 0 indicates similar mapping quality at a given

site. The GATK recommendation is to filter out MQRankSum values below -12.5.

Finally, ReadPosRankSum is the u-based z-approximation from the Rank Sum Test by

position. This describes the location within the read that the reference and alternate

alleles occur. A negative value means that the end of the read sees the alternative

allele more frequently than the reference allele, which can indicate a sequencing error.

GATK recommends keeping variants above a ReadPosRankSum value of -8 [24].

A.4 Demographic History Modeling

For each model, a template and estimation file were written in fastsimcoal2

format. The population size parameter and growth rate parameter were passed as

ranges from which different sets of parameters could be chosen for each simulation

(except for constant population size, where the growth rate was set at 0). Population

size was set from 100 to 5000, although the top parameter acts more as a suggestion

and the algorithm can exceed that as needed. Growth rate for population decline was

set from 0.001 to 0.1, with a positive value being necessary because the algorithm

simulates population histories backward in time, meaning that population size would

grow as the algorithm works toward the past. Similarly, growth rate for population
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expansion was -0.001 to -0.1. DNA mutation rate was set at 1.58e-8 mutations per

generation as per findings from Galbreath et al, and no transition bias was set [40].
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APPENDIX B

Supporting Information: Tables
B.1 Table B.1: Sample Information

Sequence ID Cohort County Location Date
JCV1 Historic Tuolumne Lyell Canyon (YNP) 14-Jul-15
JCV2 Historic Tuolumne Lyell Canyon (YNP) 16-Jul-15
JCV3 Historic Tuolumne Lyell Canyon (YNP) 16-Jul-15
JCV4 Historic Tuolumne Lyell Canyon (YNP) 17-Jul-15
JCV5 Historic Tuolumne Lyell Canyon (YNP) 22-Jul-15
JCV6 Historic Mariposa Vogelsang Lake 31-Aug-15
JCV7 Historic Mariposa Vogelsang Lake 31-Aug-15
JCV8 Historic Mariposa Vogelsang Lake 1-Sep-15
JCV9 Historic Mariposa Vogelsang Lake 1-Sep-15
JCV10 Historic Mariposa Vogelsang Lake 2-Sep-15
JCV11 Modern Tuolumne Lyell Canyon (YNP) 29-Jul-03
JCV12 Modern Tuolumne Lyell Canyon (YNP) 31-Jul-03
JCV13 Modern Tuolumne Lyell Canyon (YNP) 30-Jul-03
JCV14 Modern Mariposa Townsley Lake (YNP) 15-Jul-04
JCV15 Modern Mariposa Townsley Lake (YNP) 15-Jul-04
JCV16 Modern Mariposa Townsley Lake (YNP) 16-Jul-04
JCV17 Modern Mariposa Townsley Lake (YNP) 16-Jul-04
JCV18 Modern Mono Gardisky Lake 12-Jul-05
JCV19 Modern Tuolumne Lyell Canyon (YNP) 14-Aug-05
JCV20 Modern Tuolumne Lyell Canyon (YNP) 12-Aug-06

Table B.2: Sample Information
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B.2 Table B.2: Read Depth

Read Depth = (read count * read length)/total genome size
Sample # Coverage Percent of Average

Historic

1 20x 110%
2 18x 90%
3 16x 80%
4 20x 100%
5 19x 100%
6 22x 110%
7 21x 100%
8 17x 90%
9 17x 90%
10 21x 110%

Modern

11 19x 100%
12 19x 100%
13 22x 110%
14 19x 90%
15 14x 70%
16 22x 110%
17 19x 100%
18 18x 90%
19 33x 160%
20 22x 110%

Table B.3: Read Depth

Sample average (�̄�) = 20, sample standard deviation (s) = 4, range = 14-33x, median = 19x.
Read length = 151 bp, Genome size (reference) = 2,231,492,728 bp
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APPENDIX C

Supporting Information: Figures

(a) Raw data quality

(b) Corrected data quality

Figure C.10: Quality Control using FastQC and Fastp

This figure is highlighting some filters of read quality control and their effect on the data.
The raw data for both cohorts is pictured first in (a), whereas the filtered data for both
cohorts is captured on bottom in (b). (a) The first graph (far left) shows the raw mean
quality scores of the reads by position. Reads are 151 base pairs long, represented in the

X-axis. The y-axis shows quality scores in Phred-scale. The Phred-score is the logarithmic
probability that a base was called incorrectly by the sequencer. A Phred-score of 20 is

deemed acceptable and means that a base was called with 99 percent accuracy [10]. The
green section of the graph indicates a Phred score above 30 (99.9 percent accurate call) and
the red section indicates a fail, as there is a higher probability that call was incorrect. Most
reads pass for this filter initially, although some sections of some reads are in the orange
warning zone. The second graph (middle) shows adapter content and indicates that the

Illumina adapter is present on each read. The third graph (far right) shows the per sequence
quality score report. This allows us to see if we have a subset of sequences with universally

low-quality values. The y-axis shows the number of sequences with a given Phred-score
average. The raw reads had high per sequence quality scores indicating negligible DNA

degradation, which could be a potential worry for the historic samples. (b) Fastp performs
base correction for the reads in the warning range of the first graph (far left) such that all
reads pass for mean quality score after processing. The second graph (middle) indicates all
Illumina adapter content was filtered out. The third graph (far right) does not change, as
initial per sequence quality scores were high and correction was therefore unnecessary.
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Figure C.11: Mapping Quality

Report generated using MultiQC. Each point represents a single bam file produced from the
mapping step. In total, there were 41 bam files generated, one for each fastq file from
sequencing. Samples 2-10 and Sample 12 all had three fastq files, each representing a

different section of genome, and therefore had three bam files each. Therefore, number of
total reads is not equal among all bam files. Therefore, the various mapping statistics should
be analyzed based on percentage of total reads in that respective bam file, not comparatively

across bam files. Almost 75 percent of samples have under 200 million total reads, with
similar results for both number of mapped reads as well as the total number of reads passing
quality control. Total reads per sample range from 14 million to 485 million, with the files
with higher number of reads corresponding to samples that only have one file associated

with the sample, whereas files with smaller number of reads correspond to the samples with
three files of read data. For example, sample 20 has 330 million reads present in one file,

whereas sample 6 has 320 million reads spread out over three files, ranging in size from 50
million to 160 million reads per file. The modern samples tend to be bigger in file size

whereas the historic samples are spread out over multiple runs. Therefore, it is important to
look at the data relative to total file size rather than just the raw number of reads.
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Figure C.12: Graphical Interpretation for Filter Selection

Plots show density of SNPs in the modern cohort with various statistical measurements.
Each plot represents the modern cohort after being filtered with the GATK recommended
filters. Plots were then visually inspected and custom, more stringent filters were chosen

based on the point at which the graph flattens (per GATK recommendation [24]). The same
filters were then used on the historic cohort(see Table C.12 for final filters).
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(a) One-dimensional Site Frequency Spectra

(b) Two-dimensional Site Frequency Spectra

Figure C.13: Various Site Frequency Spectra

(a) The one-dimensional site frequency spectra for the modern and historic populations
across the entire genome. Note the differences in y-axis scale between the two graphs.

‘Count’ refers to the number of sites seen within the genome with a given derived allele
frequency, regardless of where it is in the genome. (b) Joint matrix for allele counts in the

entire chromosome 3 and just the areas of interest. Color of each bin is relative to the
number of SNPs within that. Bins relate to the number of SNPs that are seen with a

frequency of x in the modern samples and y in the historic samples. For example, the blue
bin in the 2D-SFS for chromosome 3 (column 0, row 1) means that there are about 15,000

SNPs that are seen no times in the modern cohort and once in the historic cohort.
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Figure C.14: Maximum Estimated Demographic Likelihoods

Top five ECM algorithm derived parameter values per model. Maximum estimated
likelihood is in logscale, with values closest to 0 denoting the highest likelihood.

Figure C.15: Bin Formation

Six diagonal and six off-diagonal bins were calculated. Bin width refers to the number of
boxes on either side of the box on the diagonal or off-diagonal. A bin width of 2 was used in
this analysis. The gray area of the graph mostly represents a box of 0, although about thirty
percent of the gray area contained numbers in the range of 1 to 4. Overall, about eighty
percent of the observed data was contained within the bins and therefore was used for

goodness of fit estimation.
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Figure C.16: Initial Principal Component Analysis

Initial principal component analysis indicated DNA degradation in the historic cohort.
Historic G to A conversions were removed from final PCA results (shown in Figure 6).
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