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ABSTRACT

Static Taint Analysis via Type-checking in TypeScript

by Abhijn Chadalawada

With the widespread use of web applications across the globe, and the ad-

vancements in web technologies in recent years, these applications have grown more

ubiquitous and sophisticated than ever before. Modern web applications face the

constant threat of numerous web security risks given their presence on the internet

and the massive influx of data from external sources. This paper presents a novel

method for analyzing taint through type-checking and applies it to web applications

in the context of preventing online security threats. The taint analysis technique

is implemented in TypeScript using its built-in type-checking features, and then

integrated into a web application developed using the React web framework. This

web application is then validated against different types of injection attacks.

The results of the validation show that taint analysis is an effective means to

prevent pervasive online attacks, such as eval injection, cross-site scripting (XSS),

and SQL injection in web applications. Considering that our proposed taint analysis

technique can be implemented using existing type-checking features of TypeScript, it

can be quickly adopted by developers to add taint analysis into their applications with

no performance overhead. With the large number of web applications developed in

TypeScript, the widespread adoption of our technique can help prevent cyberattacks

and protect the online community from potential harm. By combining taint analysis

with other secure web practices, such as input validation, application developers can

strengthen the overall security of web applications.
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CHAPTER 1

Introduction
1.1 Domain and Context

In recent years, the internet and web technologies have grown at a rapid pace

(both qualitatively and quantitatively) and still continue to grow even further, with

no signs of stopping or slowing down. At the forefront of this expansion lie web

applications (web apps for short), the evolution of which has been a significant driving

force behind this development.

What used to be a niche space—home to labyrinthian websites that were tedious

to navigate and used by only the most savvy—has now become an accessible hub

for a plethora of services and resources encompassing everything from commerce

to academic texts to entertainment. With Amazon, Google and Youtube becoming

household names, it is apparent that web apps are now real world tools with pragmatic

applications. They are also (mostly) simple and easy to use by anyone, anytime,

anywhere.

This transformation is a result of numerous advancements in web technologies,

such as—improvements in Graphical User Interfaces (GUIs) leading to improved

user accessibility, and the introduction of web scripting languages (PHP, JavaScript,

Ruby, Perl, etc.) and automation of boilerplate web development processes by web

frameworks (Bootstrap, Angular, React, VueJS, etc.) leading to improved developer

accessibility.

The improved developer accessibility led to a rapid production of new web apps,

which in turn led to more web users, further encouraging the production of more

web apps to tap into this booming web market. This feedback loop has resulted in

today’s internet landscape of an abundance of web apps and a majority of the global

population coming online to access these apps [1].

1



1.2 The Problem

However, this growth comes with its own challenges. With more users now on

the internet than ever before, web security is all the more crucial to protect against

the ever-rising threat of cyberattacks. Malicious individuals and organizations are

always seeking to steal application and user data, or even disrupt critical web services.

One particular class of attacks, known as injection attacks, is a very prevalent security

threat today. The Open Worldwide Application Security Project (OWASP)—a leading

authority on web application security—lists injection attacks as the third most critical

security risk among the top 10 web application security risks alongside other risks

including broken access control and cryptographic failures [2].

Figure 1: Top 10 web security risks from 2017 to 2021 according to OWASP [2]

Injection attacks are carried out by exploiting vulnerabilities in web application

code to ‘inject’ malicious code into the application to perform harmful operations

on behalf of the attacker. For instance, web applications gather input data from

the end user in many ways, including but not limited to—web requests (e.g., GET

and POST requests), and web forms explicitly seeking user input. If this input data

is insufficiently validated (i.e., verified to not contain malicious code) before being

processed, the application may be susceptible to injection attacks as attackers can try

to inject malicious code—masquerading as input data—into the application.

A simple, yet effective preventative measure to guard against injection attacks
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involves proper input validation. By thoroughly validating all the input data entering

the application and ensuring that they are free from potentially harmful code, we

effectively eliminate some of the most commonly used points of entry for attackers.

However, ensuring thorough input validation for web applications is easier said

than done. The ease of implementing such validation depends on various factors

like—size, type and number of inputs, complexity of the application, the programming

language and web framework used. It also involves additional effort in the design and

development processes, requiring developers to track numerous inputs and their flow

within the application as they are being processed.

This problem of tracking the flow of incoming data to an application is not unique

to web applications. It has been extensively explored and studied in the domain

of information flow analysis. As the name implies, information flow analysis is a

technique used to evaluate the flow of information within the system—from sources

(where data is produced) to sinks (where data is consumed). This reveals potential

vulnerabilities in the system, allowing developers to address them directly and patch

them up.

1.3 Proposed Solution

Considering that the aforementioned scenario is analogous to how injection attacks

can be prevented, a similar solution may also be applicable to them. Specifically,

taint analysis can be used to analyze the flow of input data (referred to as ‘tainted

data’ indicating that it was produced by an untrusted source) in the form of web

request payloads and user form inputs. By marking input data as tainted when it

enters the application, its movement can be easily monitored and controlled. Before

processing this tainted data, it can first be ‘sanitized’ to remove traces of any malicious

code contained within. Thus, the likelihood of injection attacks occurring is lowered
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significantly by integrating taint analysis into web applications.

In this paper, we propose a taint analysis technique that employs TypeScript’s

built-in type-checking features to help prevent common web security threats such

as—eval injection, cross-site scripting, and SQL injection. Our reasons for picking

TypeScript over any of the other widely used web programming languages for this

project are as follows:

• it compiles to plain JavaScript, which is used by over 98.6% of all websites [3]

• using built-in type-checking features means there is no additional overhead

caused by tracking taint

• the taint analysis can be done statically (i.e., without requiring the application

to be up and running) since TypeScript is statically typed

Figure 2
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JavaScript uses wrapper objects to wrap primitive values (e.g., Boolean, Number,

String) and provides supporting methods for processing them. By defining new classes

to extend these wrapper objects, we are able to create wrapper objects for storing

‘tainted’ versions of primitive values, which contain an additional property indicating

that the values they wrap are tainted and therefore should not be processed directly.

Moreover, they can also include a sanitize() method which may be invoked to

appropriately sanitize the wrapped value according to its data type, thereby removing

any potentially harmful data contained within and making it safe (untainted) and

ready for processing.

Hence, our taint analysis technique can be used to help prevent injection attacks

in web applications by incorporating the following two-step approach:

1. Anytime an input value is about to be processed anywhere within the application,

we first perform a check using TypeScript’s type guard feature to determine

whether the value is tainted

2. If found to be tainted, the value is sanitized by calling the appropriate

sanitize() method

1.4 Results

In addition to the choice of web programming language, modern web applications

also have to make a choice for a suitable web framework. For this project, we use the

React web framework since it is widely used. This helps us demonstrate the validity

of our technique in a typical modern web application setting.

We have put our proposed taint analysis technique to the test by applying the

aforementioned two-step approach to our candidate web application (developed using

TypeScript and React) and subjecting it to various injection attacks like eval injection,

cross-site scripting and SQL injection. Our results show that our taint analysis
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technique is indeed effective in preventing injection attacks. Overall, the web app’s

application data and user data are secured from falling into the wrong hands.

Our goal for this project was to integrate taint analysis techniques into web

applications to help mitigate prevalent cyberattacks. Given the distributed nature

of the internet, and the amount of data being consumed and processed by web

applications, information flow analysis techniques are perfectly suited for web apps to

monitor and control the flow of data entering and exiting them.

Although this project’s focus is to demonstrate the effectiveness of the taint

analysis technique in isolation, it can certainly be combined with thorough input

validation and other secure web development practices for even better protection

against different kinds of cyberattacks. This could be explored by future work on this

subject.

1.5 Report Overview

The rest of this paper is organized as follows:

(a) Chapter 2 discusses related work that was surveyed as part of this project and

provides some background on technologies and concepts described in the paper,

namely—TypeScript, React and information flow analysis

(b) Chapter 3 describes in detail the design for our proposed taint analysis technique

and how we’ve implemented it using TypeScript, and later integrated into a

web application using React web framework

(c) Chapter 4 examines how the technique can be used to prevent some prevalent

cyberattacks. It also provides example applications of the technique in different

web application contexts

(d) Chapter 5 provides results from performance tests conducted to measure the
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overhead caused by integrating our taint tracking technique into a web applica-

tion

(e) Chapter 6 summarizes the key findings from this project and also suggests

avenues for future research and further exploration on the subject
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CHAPTER 2

Background and Related Work
2.1 Background

This section aims to provide some background on web technologies discussed

in this paper that were essential for this project. It also provides background on

information flow analysis.

2.1.1 TypeScript

TypeScript is an open-source client-side programming language that is built on top

of the popular web programming language JavaScript, and adds static type-checking

as an optional feature. It is developed and maintained by Microsoft.

Although JavaScript is widely regarded as one of the most accessible programming

languages, this accessibility comes at the cost of robustness, as the flexibility of

JavaScript encourages poor, unsafe coding practices that often give rise to bugs and

other vulnerabilities in web applications written in JavaScript.

To address this gap, TypeScript was developed with the goal of making JavaScript

more robust and immune to poor coding practices through the inclusion of static

typing. The fact that it still compiled to plain JavaScript meant that the powerful

portability of JavaScript was also preserved. For example, Figure 3a shows a function

written in TypeScript, as indicated by the type declarations in the function signature.

This code is compiled to JavaScript, resulting in the code shown in Figure 3b.

Therefore, it is not surprising that TypeScript is now among the most popular

web development languages and is considered to be well-suited for developing even

large-scale web applications, owing to its robustness.

8



Figure 3: TypeScript compiled to plain JavaScript

(a) TypeScript code for a function

(b) Resulting compiled JavaScript code

2.1.2 React

React is a popular front-end web framework that supports web applications

written in JavaScript. It was developed by Meta with a focus on code reusability and

efficient DOM (Document Object Model) updates to ensure smooth user experiences.

As web applications continue to grow more complex, their reusing of code also

grows in parallel. For instance, a social media web app may choose to display User

Avatars to represent their users wherever applicable—on the homepage, individual

user profiles, comment sections under posts, etc. This requires that the code used to

render User Avatars be reused in all of those places, further adding to the complexity

of the codebase and making it harder to debug and maintain. React aims to address

this inefficiency in code reuse by providing a natural solution for reusing code and

functionality throughout the web app in the form of Components.

Components are discrete units of web app code that are fully self-contained both
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in terms of business logic and user interface, i.e., they are responsible for defining

their own functionality, and decribing and rendering their own user interface. When

used appropriately, they can help break down a web app into smaller, individually

manageable modules. This compartmentalization also leads to one of React’s most

useful design patterns, known as Composition. Components can be composed of other

components, resulting in a tree-like hierarchical structure of components. They can

also communicate with each other (mostly in the form of top-down communication,

since bottom-up communication is quite limited) to pass data in the form of ‘props’

and even other components. It is therefore apparent why components are referred to

as the ‘building blocks’ of React.

In the current landscape of web application development, React stands out as a

prime candidate among other web frameworks due to multiple factors:

• The powerful composition pattern supported by React enables the development

of large-scale web apps with ease

• Reusable components provide improved readability and maintainability for

developers, boosting their efficiency

• An active community that offers plenty of support and third-party component

libraries allows for rapid development of web apps

2.1.3 Information Flow Analysis

Information flow analysis is a technique used in software engineering to analyze

how information flows within a system. This helps us identify weak points within the

system where sensitive information may be leaked to unauthorized entities, thereby

allowing us to fix them and ensure secure information flow.

In the context of web applications and the internet, information flow analysis

can prove to be a particularly useful tool considering the vast amounts of sensitive
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data flowing in and out, between numerous entities, simultaneously. There is also the

constant threat of cyberattacks seeking to exploit any vulnerabilities in applications

and steal data. By analyzing the flow of data within the application, we can quickly

diagnose such vulnerabilities and work towards patching them up. Furthermore,

ensuring secure information flow in web apps also helps us to mitigate a host of

prevalent web security threats seeking to infiltrate the application.

Information flow analysis techniques can be broadly classified into two main types

based on how they operate:

1. Static analysis: Static analysis techniques can be used to analyze the appli-

cation via its source code statically. Consequently, there is no performance

overhead associated with using such techniques as they do not require the

application to be running. They help identify insecure code and other vulnera-

bilities in the source code beginning from the early stages of development of the

application (e.g., design and implementation stages).

2. Dynamic analysis: Dynamic analysis techniques on the other hand, can

be used to analyze the application while it is up and running. It focuses on

identifying vulnerabilities based on user interactions and other external factors

that come into play during runtime.

2.2 Related Work

The study of taint tracking and taint analysis has received a lot of attention

since the publishing of A Lattice Model of Secure Information Flow by Dorothy E.

Denning [4], which was one of the first papers to describe a mechanism that ensures

secure information flow in computer systems.

To examine how well information flow analysis techniques apply to web appli-

cations, Staicu et al., [5] conduct an empirical study of information flows wherein
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they analyze information flows of 56 real-world JavaScript programs to compare and

contrast lightweight taint analysis with implicit flow analysis in terms of their cost and

usefulness in identifying security issues within programs. Their findings indicate that

lightweight taint analysis is sufficient to help identify most security vulnerabilities in

web apps.

Having realized the importance of information flow analysis on the web, researchers

have explored new tools and techniques to perform taint analysis in JavaScript,

including both dynamic and static approaches. Now, let us review these tools and

techniques one at a time, starting with those that make use of the dynamic approach.

Sen et al., [6] developed a powerful analysis tool for JavaScript called Jalangi,

which supports numerous dynamic analyses such as taint tracking, symbolic execution,

type-checking and more. Jalangi makes use of a combination of record-replay, shadow

values and shadow execution techniques to support its dynamic analyses.

Building on the Jalangi framework, Karim et al., [7] use it to implement their

dynamic taint analysis techniques in Ichnaea. Ichnaea is written in ECMAScript 5 and

uses code instrumentation to analyze taint, thereby making it platform-independent,

as demonstrated by their application of the tool to detect privacy leaks in Tizen apps

for the Samsung Gear S2 smartwatch. This tool still fails to track implicit flows, but

the authors provide possible solutions to address the gap.

Augur [8] is a high-performing dynamic taint analysis framework for JavaScript

that makes use of instrumentation API and even supports the ECMAScript 7 speci-

fication that introduced asynchronous programming. Due to their use of a Virtual

Machine for instrumentation, however, it is unable to be integrated directly with web

browsers, instead relying on mock browser environments.

TT-XSS [9] aims to use dynamic taint analysis techniques to specifically tackle

DOM-XSS vulnerabilities. By analyzing web pages to obtain taint traces, it is able to
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automatically generate attack vectors, thereby enabling the developer to track and fix

the vulnerabilities.

That covers most of the substantial work done on dynamic taint analysis in

JavaScript, which leaves us to explore the static and hybrid approaches to taint

analysis.

Actarus [10] performs static taint analysis by modeling JavaScript’s characteris-

tic features such as prototype-chain lookups and reflective property accesses. However,

their results show a high false-positive rate which they aim to alleviate in future work.

Wei et al., [11] present a Blended Taint Analysis approach which combines both

static and dynamic taint analysis techniques to build a more robust taint analysis

model. Their findings show that the Blended approach is better performing and more

accurate in detecting taint when compared to purely static approaches.

Considering how frequently web apps use third party libraries, Staicu et al., [12]

proposed a technique for automatically extracting taint specifications from JavaScript

libraries to help identify security vulnerabilities in third-party libraries. Their proposed

technique is based on using dynamic analysis to infer information flow specifications

from the libraries, and proves to be effective at scale.

In addition to research tackling the application of taint analysis techniques to

typical web scenarios, there has also been some work done to explore more unique

applications of taint analysis.

BridgeTaint [13] introduces a method to track taint across hybrid applications

that use JavaScript bridge communication. It uses a cross-language taint mapping

technique to restore taint information from sensitive data that’s been transmitted

through the bridge. Results from experiments conducted on 1172 apps from the

Android market demonstrate that BridgeTaint is effective in detecting cross-

language privacy leaks and code injection attacks.
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Saoji et al., [14] present a precise taint-tracking strategy for strings, which tracks

taint at the level of characters. This enables them to perform automated sanitization of

tainted strings, thereby preventing the system from crashing when tainted information

is used insecurely.
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CHAPTER 3

Design and Implementation

We’ve implemented our Static Taint Analysis technique in TypeScript (v5.0.3)

and built it into a React application, which has been developed using Meta’s Create

React App as boilerplate. The crux of the technique lies in utilizing TypeScript’s type

guard feature to distinguish between an untainted String and a tainted String.

3.1 Type Guards

Among the numerous features TypeScript offers to ensure type safety, there exists

a special kind of type checking through the use of type guards. Type guards allow

TypeScript to narrow down a variable’s exact type at a given point in code from a

group of potential types, by examining all the different possible branches of execution.

One of the simpler forms of type guards is based on use of the typeof operator.

The typeof operator returns the type of a given variable as a string, such as, "string",

"number", "boolean", etc. When TypeScript encounters a usage of typeof on some

variable, it uses the type information to narrow down the possible types of that

variable. Consider the code snippet in Figure 4.

Figure 4: The typeof Type Guard
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Here, TypeScript sees the usage of typeof operator on variable strs within an

if condition and uses this information to narrow down the possible types of strs to

string[] and null, which are both JavaScript objects. Thus, it alerts the developer

that the variable could possibly be null in that branch of execution.

To implement our taint-tracking technique, we build our own type

guard—isTainted by making use of a type predicate, as shown in the code snippet

in Figure 5.

Figure 5: The isTainted Type Guard

Once we define a function whose return type is a type predicate taking the form

parameterName is Type, we can invoke it with any variable with the corresponding

possible types and the type guard will narrow down the specific type of that variable

at the point of invocation.

This type predicate forms the basis of our taint tracking technique. It allows us

to differentiate between tainted and untainted strings, and can therefore be used near

secure sinks to guard against any tainted strings flowing in.

3.2 Tracking Taint in Web Applications

Modern web applications deal with huge amounts of form data coming in from

different users, some of whom may have malicious intent. For this reason, we have

chosen to build our taint-tracking technique into a React web application. By tainting

all incoming user form data, we can control their flow into sinks.

16



In order to do this, we first need suitable representations for both tainted and

untainted Strings. For untainted Strings, we use plain Javascript String objects to

simplify our problem. For tainted Strings, we have defined a new TaintedString

class (Fig. 6) which acts as a wrapper around the String class, with added support for

tracking taint. This ensures that TaintedString objects can still function the same as

regular string objects for all intents and purposes except when tracking taint.

Figure 6: The TaintedString class

Figure 7: The user interface

Our React web application provides a minimal user interface (Fig. 7) with basic

form controls to simulate a typical web form. A text field is used to accept user input

in the form of a string, which is immediately marked as tainted by wrapping it within

a TaintedString object. Thus, we now have a source for tainted data to enter the

application. For the sink, we have chosen the eval function due to its innate security

risk of executing JavaScript from a string. To prevent the tainted string from being

17



directly executed by eval, we employ our user-defined type guard isTainted in the

evaluator function as shown in Figure 8.

Figure 8: The evaluator function

In this manner, we utilize TypeScript’s built-in type checking features to statically

track taint in a web application.

3.3 Limitations

One limitation of our taint analysis implementation is its inability to preserve and

track taint across string concatenation operations. For instance, when a tainted string

is concatenated with an untainted string, the desired behaviour is for the resulting

string to also be tainted. However, in our implementation, we have been unable

to replicate this behaviour. This could be addressed in future work, potentially by

overriding the concat() method provided by JavaScript.
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CHAPTER 4

Validation

To validate our taint analysis technique, we can include an insecure usage of

tainted data in our web app. Consider the snippet of code in Figure 9. We have a

function secureOperation which only accepts a plain, untainted string as an argument.

We can confirm whether the static taint analysis is functional by attempting to call

secureOperation with a tainted string, in the function insecureOperation. Upon

compiling this code, we are greeted by a compilation error in the terminal window, as

shown in Figure 10.

Figure 9: Insecure usage of tainted data

Figure 10: Error displayed on compilation

Thus, we have successfully validated that our implementation of static taint-

analysis via type-checking can be used for performing taint analysis on source code at
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compilation time.

By integrating this technique into a web application, we also help protect the

application against certain types of web security threats, such as:

4.1 Eval injection

When a web application uses the JavaScript eval() method to process user

input without sufficient validation, it can open itself up to eval injection attacks.

Attackers may exploit this vulnerability by including malicious JavaScript code

within the user input, which when processed by the eval method may result in the

server crashing (denial of service) or the attacker gaining access to the file system.

For example, consider the following usage of eval by a web application to

dynamically select the display language for its user interface based on a user-provided

location string:

Figure 11: Insecure eval usage

An attacker may be able to exploit such usages of eval by providing a string
input like so:

"US;process.exit()"

When this string is processed by the selectLanguage method shown above, it results

in the application process exiting, thereby causing a denial of service for its users.
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Our proposed taint-tracking technique can be used to prevent this class of attacks

by adding an isTainted check within the selectLanguage method to examine the

input string for taint. If the string is found to be tainted, we can call a sanitize

method on it to remove any executable code as follows:

Figure 12: Secure eval usage with taint tracking

Since our technique marks all user input as tainted, the user-provided location

string is tainted by default and therefore will be sanitized and cleared of any harmful

code before it is processed any further.

4.2 Cross-site scripting (XSS)

In this type of attack, an attacker includes some malicious code as payload to

a web request, or as form input on the application. If the application handles this

incoming data in an unsafe manner, the malicious code is executed on the client-side

(browser), thereby stealing the user’s personal data and performing other harmful

operations while impersonating the user. Consider the following snippet of code which

saves a user’s input data to their browser’s local storage and later fetches them to

display a welcome message:
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Figure 13: XSS vulnerability

Here, instead of providing their name in the input field, if the user enters a string
containing some JavaScript code, such as:

"<script>alert(‘This is an XSS vulnerability!’)</script>"

The application then saves this string to the local storage, and the contained script

is executed every time the renderWelcomeMessage method is called to display the

welcome message.

To prevent these types of attacks, we can use taint tracking to track all forms

of incoming data to the application and mark them as tainted by default. Before

performing any secure operations with the tainted data like saving to storage, we

first pass it through a sanitizing function which examines the tainted data for the

presence of <script> tags or other unsafe data, removing them if present. We can

thus transform the saveProfile method shown above as follows:

Figure 14: Using taint tracking to guard against XSS vulnerabilities
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4.3 SQL injection (SQLi)

SQLi attacks are similar to XSS attacks in that they both involve injecting some

malicious code into a target web application via web requests or form inputs, however,

unlike XSS attacks, SQLi attacks specifically target the application’s database. Modern

web applications typically connect with a database to store and manage their user data

and application data, making it a high priority target for web attacks. A malicious

user may attempt to access the application database by including some SQL query

expressions within a web request or form inputs. For example, consider the following

snippet of code where a signup function connects to the database and inserts user

data (username) into a table:

Figure 15: SQLi vulnerability

An attacker can then build a string containing a harmful SQL query to pass as

user input to the application (username in this case) like so:

"user123’); DROP TABLE Users; --"

When this string is processed by the signup function, the DROP command is executed

on the application database, resulting in the Users table being removed from the
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database.

SQLi attacks rely on web applications insecurely handling data when including

them in database queries. As such, these attacks can be prevented by tainting all

incoming data and passing them through a sanitizing function (which validates the

tainted data by ensuring that they do not contain any unwanted characters, SQL

expressions, etc.) before building them into any database queries:

Figure 16: Preventing SQLi attacks using taint tracking

As demonstrated in the examples above, we have successfully validated our taint

analysis technique against eval injection, cross-site scripting and SQL injection attacks.

Overall, taint tracking proves to be an effective preventative measure against injection

attacks.
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CHAPTER 5

Performance Results

One drawback that is often associated with taint analysis techniques is the

performance overhead caused by tracking taint. We have conducted some performance

tests to measure the impact of our own taint analysis technique on the responsiveness

of a web application. Page responsiveness is a crucial metric that is frequently used to

benchmark websites as it directly translates to user experience—lower response times

mean lower wait times for the user, thus ensuring a smooth user experience.

The tests were performed on a 2020 Macbook Air (M1) running macOS Monterey

(Version 12.3) and equipped with 8 GB of Memory. For measuring page responsiveness

on our web app, we use the Lighthouse tool included in the Google Chrome browser

(Version 112.0.5615.137) as part of its Developer Tools (DevTools for short) utilities.

Specifically, we use the Timespan mode in Lighthouse to record a user interaction

on the web app and measure the Interaction to Next Paint (INP) times during that

interaction. INP is a performance metric that measures the time it takes for a web

page to become interactive after the user initiates an action, such as clicking a button

or scrolling the page. As such, it is a useful metric for measuring page responsiveness.

We designed the test case to span one user interaction of clicking a button, which

triggers the app to create some tainted input data and then check it for taint before

displaying the data in an alert box. A snippet of our test code is shown in Figure 17.

We perform the tests with a varying number of inputs, at 10 runs each. By repeating

the tests for untainted input data (i.e., plain strings), we can effectively measure

the performance overhead caused by tracking taint in our web app. Our results are

summarized in Table 1.
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Figure 17: Test code for measuring performance overhead

Test Case Avg. INP (ms)
20 Tainted Inputs 46

20 Untainted Inputs 39
10 Tainted Inputs 39

10 Untainted Inputs 43
1 Tainted Input 41

1 Untainted Input 48
Table 1: Summary of Lighthouse Test Results

As indicated by the average INP times, it is evident that our web app performed

relatively similarly in all of the test cases with the page responsiveness varying from

39-48 ms. A difference of 9 ms can be considered negligible in the case of page response

times and can therefore be safely ignored for the purposes of this performance test.

Our performance tests clearly demonstrate that there is virtually no overhead
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associated with adding our proposed taint analysis technique to a web app. This is

expected, as we make use of standard type-checking features that come baked into

TypeScript for our taint tracking implementation.
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CHAPTER 6

Conclusion and Future Work

In this paper, we have proposed a novel approach to performing static taint

analysis through the use of type-checking. We have implemented this approach

in TypeScript, and validated it against prevalent cyberattacks by integrating our

TypeScript implementation into a web application built using React. By including

support for taint analysis in the web application, we are able to monitor the various

flows of input data within the application. This allows us to track the ‘tainted’ input

data and prevent them from being processed or used in any secure operations without

performing appropriate sanitization procedures on them first. Our findings show that

the proposed taint analysis technique is an effective preventative strategy against

injection attacks, which are among the top web security risks today. Furthermore, as

it is implemented in TypeScript, a widely used web programming language, it can

be adopted by application developers with minimal development effort and at no

performance overhead cost, as measured by our performance tests.

For this project, we have primarily focused on the string data type as it is the

most common type of input data seen on the web. Future work can explore expanding

our technique to work with other data types, such as number, boolean, etc. We can

also explore if and how taint analysis can be used to mitigate web security risks other

than injection attacks. This will allow us to develop a more holistic approach for

mitigating different kinds of web security risks and improving the overall robustness

of web applications. Other avenues for future work include:

• automating the taint analysis integration process such that it can be incorporated

into web applications with no additional development effort, perhaps as a third-

party library

• adding support for tracking taint across string concatenation operations, i.e.,
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tainting the resulting string of a concatenation operation between a tainted

string and an untainted string

• adding support for dynamically detecting form inputs present on the web

application and tainting them without requiring any developer intervention

• improving the sanitization workflow for tainted data and including it within the

taint checking process—if some data is being checked for taint, it may as well

be sanitized in the same step if found to be tainted

With the increasing adoption of progressive web applications, more users are

using web apps now than ever before. Therefore, it is all the more important to protect

against vulnerabilities that plague the web and its users. Taint analysis techniques are

typically used to track information flowing into a system from untrusted sources. For a

web application, untrusted sources may include all of its users, and any other external

entity on the internet. Accordingly, given the fact that web apps are constantly

exposed to data from untrusted sources, tainting all forms of incoming data is a

natural way to track and control their flow within the application. Furthermore,

sanitizing tainted data before performing any secure operations with them is a simple

but effective approach to prevent pervasive web security threats.
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APPENDIX

Additional Figures and Source Code Listing

Figure A.18: Global internet use [1]

32


	Static Taint Analysis via Type-checking in TypeScript
	Recommended Citation

	Introduction
	Domain and Context
	The Problem
	Proposed Solution
	Results
	Report Overview

	Background and Related Work
	Background
	TypeScript
	React
	Information Flow Analysis

	Related Work

	Design and Implementation
	Type Guards
	Tracking Taint in Web Applications
	Limitations

	Validation
	Eval injection
	Cross-site scripting (XSS)
	SQL injection (SQLi)

	Performance Results
	Conclusion and Future Work
	LIST OF REFERENCES
	Additional Figures and Source Code Listing

