
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Master's Projects Master's Theses and Graduate Research 

Spring 2023 

Sending and Receiving Internet Messages from Disconnected Sending and Receiving Internet Messages from Disconnected 

Areas Areas 

Abhishek Prakash Gaikwad 
San Jose State University 

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects 

Recommended Citation Recommended Citation 
Gaikwad, Abhishek Prakash, "Sending and Receiving Internet Messages from Disconnected Areas" 
(2023). Master's Projects. 1210. 
DOI: https://doi.org/10.31979/etd.beq8-ak3y 
https://scholarworks.sjsu.edu/etd_projects/1210 

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at 
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU 
ScholarWorks. For more information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1210?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1210&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


Sending and Receiving Internet Messages from Disconnected Areas

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Abhishek Prakash Gaikwad

May 2023



© 2023

Abhishek Prakash Gaikwad

ALL RIGHTS RESERVED



The Designated Project Committee Approves the Project Titled

Sending and Receiving Internet Messages from Disconnected Areas

by

Abhishek Prakash Gaikwad

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2023

Dr. Ben Reed Department of Computer Science

Dr. Navrati Saxena Department of Computer Science

Bhushan Sonawane Master of Science in Computer Science



ABSTRACT

Sending and Receiving Internet Messages from Disconnected Areas

by Abhishek Prakash Gaikwad

Over 62% of the world is connected to the internet with more than 6.9 billion

smartphone users. The omnipresence of technology in the form of the internet and

smartphones have led to constant research in improving communication throughout the

world. But even today, 37% (2.9 billion people) are not connected to the internet even

though most of the people in such areas have smartphones. To solve this problem of

access to internet services in disconnected areas, a software-only mobile-first approach

has been proposed for disconnected data distribution infrastructure which can support

different internet applications in limited connectivity. A prototype application based

on Signal Messenger has been created to allow users to send and receive internet

messages without the need for internet connectivity. This solution can help bridge

the digital divide, improving access to critical communication services in disconnected

areas.



ACKNOWLEDGMENTS

I would like to acknowledge and give my warmest thanks to my advisor and

mentor Dr. Ben Reed for his patience, enthusiasm, and immense knowledge. His

guidance, advice, and vision have made this whole project possible. Thank you for

teaching me how to approach a difficult problem and bring an idea to reality.

I would also like to thank the rest of the committee: Dr. Navrati Saxena and

Mr. Bhushan Sonawane, for their encouragement, insightful comments, and questions

which helped shape this project.

Finally, I thank my fellow labmates of the Disconnected Data Distribution Group:

Shashank Hegde, Anirudh KC, Aditya Singhania, and Deepak Munagala for all the

stimulating discussions and brainstorming sessions that helped shape this project.

v



TABLE OF CONTENTS

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Disconnected Signal Messenger . . . . . . . . . . . . . . . . . . . . 3

1.2 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Using DDD for sending internet messages . . . . . . . . . . . . . . 5

2.2 Data Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Data Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 Security and Encryption . . . . . . . . . . . . . . . . . . . . . . . 10

2.5.1 Signal Protocol . . . . . . . . . . . . . . . . . . . . . . . . 11

3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 DDD Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Keys and IDs Generated for Registration and Session Management 20

3.3 Registration and Session Management . . . . . . . . . . . . . . . . 21

3.3.1 Client Side Operations . . . . . . . . . . . . . . . . . . . . 23

3.3.2 Registration . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.3.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.4 Finding Contacts in Signal Network . . . . . . . . . . . . . 24

3.4 Receiving Messages . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.4.1 Initiate Receiving . . . . . . . . . . . . . . . . . . . . . . . 25

vi



vii

3.4.2 Receiving Messages . . . . . . . . . . . . . . . . . . . . . . 27

3.4.3 Storing Messages . . . . . . . . . . . . . . . . . . . . . . . 27

3.4.4 Sending Message Files to Disconnected Clients . . . . . . . 27

4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Signal Android . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Bundler Signal Service . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.2 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.3 File Structure, Key Exchange and Storage . . . . . . . . . 36

5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.1 Signal Android Application . . . . . . . . . . . . . . . . . . . . . . 38

5.2 Bundler Signal Service . . . . . . . . . . . . . . . . . . . . . . . . 39

6 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2 Enhancements in Bundler Signal Service and Signal-Android . . . 42

6.3 Collaboration with Signal Developers . . . . . . . . . . . . . . . . 43

6.4 Potential of DDD for Various Internet-based Applications . . . . 43

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

LIST OF REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

APPENDIX



LIST OF TABLES

1 Keys and IDs in Disconnected Signal Messenger . . . . . . . . . 21

2 Dependencies for Bundler Signal Service . . . . . . . . . . . . . . 35

3 Files and Directories of Bundler Signal Service . . . . . . . . . . 37

viii



LIST OF FIGURES

1 Disconnected Data Distribution of Internet Data . . . . . . . . . 2

2 Daknet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 X3DH Asymmetric Key Generation Algorithm. . . . . . . . . . . 12

4 Double Ratchet Algorithm . . . . . . . . . . . . . . . . . . . . . . 14

5 Sesame Algorithm for Asynchronous Session Management. . . . . 15

6 DDD for Signal Messenger . . . . . . . . . . . . . . . . . . . . . . 17

7 Sequence Diagram of Registration . . . . . . . . . . . . . . . . . . 22

8 Sequence Diagram of Receiving Messages on Signal in DDD . . . 26

9 DDDKeys Attributes and Constructor . . . . . . . . . . . . . . . 30

10 Directories, Files and Databases of Bundler Signal Service . . . . 36

11 Keys File Stored at Bundle Client . . . . . . . . . . . . . . . . . . 39

12 Finding Phone Numbers Pre and Post Registration Attempt . . . 40

13 Attempt to Decrypt Messages on Bundle Signal Service . . . . . . 41

ix



CHAPTER 1

Introduction

The Internet is a tool for information, communication, and entertainment. It

has become an unavoidable part of peoples’ life, with the average time spent by an

individual online increasing every year [1]. One of the most important uses of the

internet is communication which takes place by sharing data. The internet offers

multiple ways to communicate, from instant messaging to placing calls. Moreover,

internet communication ensures an instant connection between people on opposite

sides of the world. Today, society is heavily dependent on this digital connectivity,

and people who lack internet access are at a disadvantage. Internet access is not

universal, and there are still many areas where people lack reliable connectivity. This

digital divide can have serious consequences, particularly for those who are already

marginalized or disadvantaged. It can limit educational opportunities, hinder economic

development, and exacerbate social inequalities.

During times of crisis, such as natural disasters or pandemics, internet access

can become even more critical, as it may be the only means of communication

and information dissemination. However, during such events, internet outages, and

disruptions can occur, leaving even those who normally have access without reliable

connectivity [2]. One of the most relevant examples of disconnected areas is remote

villages having poor internet connectivity. The lack of internet is a significant issue in

underdeveloped nations. During the Covid-19 pandemic, many parts of the infected

nations were in a state of lockdown, and students who lived in poorly connected

areas have suffered a lot as they did not get class content [3]. Ensuring universal

connectivity must be a priority if we are to build a truly inclusive and equitable digital

society.

This research attempts to solve the internet connectivity problem in disconnected

1



areas by treating it as a data transport and distribution problem. There have been

many attempts to provide connectivity to remote areas like [4, 5, 6]. All these projects

worked initially but lack sustainability due to manual intervention, maintenance,

or additional infrastructure. This project plans to make use of advancements in

smartphones to create a Disconnected Data Distribution (DDD) network of internet

data where internet data can be transported to a group of disconnected users with

the help of people (host phones) moving between disconnected areas and connected

areas. Figure 1 shows the movement of data to and from disconnected regions with

the help of host phones.

Figure 1: Disconnected Data Distribution of Internet Data

DDD is a form of Delay Tolerant Network (DTN) [7] which is built upon the idea

of an opportunistic mobile social network [8]. DDD is a software-only solution using

internet servers and standard Android phones where only some of the phones have

internet access. Phones can share data between them using applications designed

for DDD which use technologies like WiFi Direct [9] that create an ad-hoc wireless

2



network between two devices that allows them to transfer data.

1.1 Disconnected Signal Messenger

Many different internet services can function in a disconnected setting like email,

social media, streaming websites, etc. Signal Messenger [10] is known for its strong

encryption and privacy features, which make it an preferred option for users who are

concerned about their online security. By creating a version of Signal that can function

without an internet connection, remote users will be able to communicate securely and

reliably even when traditional network infrastructure is unavailable. Signal Messenger

is based on the Signal protocol, which offers end-to-end encryption for voice calls and

instant messaging. Even in disconnected settings, users can generate the necessary

keys to join the Signal Messaging Network. However, due to transport limitations

and delays, the platform currently does not support voice calls, group messaging, or

media sharing.

This research mainly focuses on registration and session management of the

disconnected Signal Messenger. These features will allow users in remote areas to

register themselves in the Signal network and initiate conversations with their contacts.

Additionally, the ability to receive messages from other users in the Signal network

will enable users in remote areas to stay connected with their communities and receive

important updates and information.

1.2 Goals

By creating the underlying infrastructure for a disconnected data distribution

network, the project aims to provide a reliable and sustainable solution for internet

connectivity in remote areas. This infrastructure will be critical in enabling the

transfer of internet data between connected and disconnected areas using host phones

The development of applications and libraries that enable users to receive internet

3



data from disconnected areas is also a critical aspect of the project. These applications

will need to be designed to work seamlessly with the DDD network and will need to

make use of technologies like WiFi Direct to enable the transfer of data between host

phones and end-users.

Developing a disconnected version of the Signal messaging app presents a consid-

erable challenge due to its current direct reliance on Internet communication. The aim

is to enable data transfer over DDD and maintain privacy while still communicating

with the Signal servers. By creating such a version of Signal that can function in a

disconnected setting, users in remote areas will be able to communicate securely and

reliably, even when traditional network infrastructure is unavailable.

Finally, implementing the Signal protocol in an offline environment will pose a

substantial technical hurdle since the private keys utilized for end-to-end encryption

must remain on the phone to safeguard the privacy of the transmitted data over

the network. Ensuring that end-to-end encryption is maintained while data is being

transmitted over the DDD network will require careful attention to security and

encryption protocols.

4



CHAPTER 2

Related Work

This section provides an overview of past and current research in the field of

data distribution and data transport. It also discusses several networks that operate

in disconnected environments. Finally, it covers various security and encryption

algorithms that are used or relevant to the research.

2.1 Using DDD for sending internet messages

Internet Messaging (IM) is a communication medium, where two or more people

communicate with each other over the internet. Numerous internet messengers exist

today like WhatsApp, Facebook Messenger, Snapchat, and Telegram. However, these

messengers are not open source, and the original source code is not made freely

available for other developers to work upon. Open Whisper Systems, founded by

Marlinspike, created Signal Messenger [10] in November 2015. Signal Messenger is

an open-source instant messaging application. Signal Messenger uses Signal Protocol

to provide end-to-end encrypted messaging and calling which is now used by most

messaging applications today [11]. An application based on Signal messenger which

wraps around the protocol is developed as a part of this project which can help users

communicate with each other securely without being connected to the internet using

our DDD architecture.

2.2 Data Transfer

One way to resolve the internet connectivity problem is to examine it as a data

transport problem. There are a lot of techniques available to transfer data wirelessly

between mobile phones without the Internet. Haartsen and Mattisson [12] eliminated

the use of cables to transfer data between mobile phones and computers by creating a

cheap, power-efficient radio chip for wireless connectivity called Bluetooth. Walton

[13] had a similar approach while creating RFID (radio frequency identification)

5



which is used by Near Field Communication (NFC) technology to transfer data over

short-range without the use of cables between two electronic devices. Even though

revolutionary for their time, these techniques are now outdated, slow, and functional

only in short-range.

A different area of investigation on data transport focuses on high-speed data

transfer. Cao and Yin [14] explored a more specific scope where they tried to transfer

data from mobile devices using USB OTG technology. Similarly, other techniques

to transfer data from the phone using USB cables and SD cards require additional

hardware to transfer data. Though these techniques transfer data at high speed,

additional hardware makes them inconvenient.

Another solution is to use Wi-Fi Direct [9], where data transfer takes place

by establishing a Wi-Fi connection between the devices through a mobile hotspot

available in all modern smartphones. Using this technology, it is possible to circumvent

the obstacle of fast data transfer without using additional hardware in the form of

SD cards or USB cables. The range of data transfer can also be effectively better

compared to Bluetooth and NFC as the Wi-Fi hotspot covers a larger area. Thus, the

limitations of short-range and slow file transfer speed using NFC and Bluetooth and

the inconvenience of additional hardware can be addressed by using Wi-Fi Direct as a

tool for data transport. Smartphones can rapidly share data with each other using

Wi-Fi Direct and create a disconnected data network without being connected to the

internet. Thus the DDD architecture leverages Wi-Fi Direct to transfer data from the

user’s phone to the host phone.

2.3 Infrastructure

The current internet infrastructure is host-centric. Information-centric networking

(ICN) [15] introduces uniquely named data wherein data becomes independent of

6



the underlying applications making it easy to cache and replicate. Content-Centric

Networks (CCN) [16] also work in a similar manner where content is made directly

addressable and routable by uniquely naming content instead of the address. DDD

architecture can make use of these techniques to distribute the bundled data amongst

mobile phones and in turn, make it available to a bundler server (host-centric internet

gateway).

Mesh networks [17] connect multiple different nodes (mesh routers or clients)

together and route data to and from clients efficiently. The nodes in a mesh network

dynamically self-organize and self-configure to collectively take responsibility for

delivering the data hence providing better efficiency and reliability and reducing

installation overhead.

A more decentralized approach can be seen in wireless ad hoc networks or mobile

ad moc networks (MANETs) [18]. Nodes can be removed or added anytime and

there is no concrete structure or certain paths laid while setting up the nodes. Nodes

dynamically forward data based on the network connectivity and routing algorithm

in use. Opportunistic Networks [8] are an evolution of MANET where Opportunistic

networks don’t assume that there always exists a path from source to destination.

Opportunistic networks try to find out patterns between the nodes to perform routing

and data sharing. Considering the current rise in the adaption of mobile devices, DDD

focuses on adapting to these networks for better routing and delivery of our bundles

in areas not connected to the internet.

The problem of continuous connectivity is planned to be solved by a version

of Delay Tolerant Networks (DTN) [7] architecture specially designed for modern

smartphones. The routing protocol will be a one-hop “store and forward” approach

where data is moved closer to our bundler server through a host phone.

7



2.4 Data Distribution

Sneakernet is an informal term used in the computer industry for transporting data

using physical drives such as hard drives, USBs, floppy disks, or compact discs (CDs)

rather than transferring it on a computer network like the internet [19]. Sneakernets

are used when data transfer is impractical due to connectivity, or bandwidth issues, or

if the data is isolated. Google has used a sneakernet to transport large datasets from

the Hubble Space Telescope [20]. Google Cloud gives a feature to their customers

where they can import data into the cloud using sneakernet [21]. Data has different

values at different times. It is not possible to transport time-sensitive information such

as news through the sneakernet as by the time it might be received by the recipient it

might not be useful.

A narrower scope was researched by Petland et al. in DakNet [4], a wireless

network provider for rural areas of India and Cambodia. It is an ad hoc network

that uses wireless technology to provide asynchronous digital connectivity. DakNet

transmits data over a short point-to-point link between kiosks and portable storage

devices. The Daknet project was implemented with a kiosk point in each village, as

depicted in Figure 2. Villagers would visit this point to access all the updates. Apps

developed for DakNet allowed villagers to access government and commercial services.

Using this approach, the recipient might receive the data in comparatively less time

than the sneakernet.

Parallel to DakNet, the Wizzy Digital Courier [5] is a project to distribute data

like email to places with no Internet connection, via a USB flash drive. In this

project, the data which is normally carried by dial-up internet connections was instead

physically carried using USB sticks between user locations and high bandwidth drop-

off points that were connected to the internet. Both the Wizzy Digital Courier and

DakNet initially worked very well but lacked sustainability. The use of additional

8



Figure 2: Daknet

infrastructure to transport the data leads to a lot of inconveniences, management, and

upfront investment. Also, physical assistance from humans was involved in various

steps of data transportation and distribution.

Shah et al. [6] go beyond the traditional infrastructure used for data transportation

by exploiting the presence of mobile entities called MULEs which pick up data from

the sensors at close range, process it, and then deliver it to wired access points. This

completely eliminates human assistance by using MULEs to perform the task of

data collection and delivery. This approach has carved a path for further research

that focuses on data distribution without human assistance and with no additional

infrastructure to transport and distribute Internet data.

Recently, Apple released a new update for its "Find My" application which

enabled users to locate the devices not connected to WiFi or cellular or even those

which are switched off [22]. This feature leverages Bluetooth [12] and proximity to

other Apple devices to relay the lost device’s location. When a lost device is offline

but in close proximity to another device, it can connect to that nearby device over

9



Bluetooth, which can then relay its location information to the user. This feature

greatly enhances the trackability of lost devices, increasing the likelihood that they

can be found and retrieved.

The architecture of DDD uses smartphones as MULEs [6] and the Bundler

application as a way of communicating with other nodes (mobile phones) in the

network without human intervention. Similar to Apple’s "Find My" application which

uses Bluetooth to relay device information, the Bundler application uses Wifi Direct

to transport bundles between devices.

2.5 Security and Encryption

Security is a critical concern in any network, but it becomes even more important

in a disconnected network like DDD where multiple untrusted parties are involved

in data transmission. The Signal protocol is known for its strong encryption and

privacy features, and by building on this protocol, the DDD network can ensure that

messages sent between users remain secure and protected from unauthorized access or

manipulation.

In public key cryptography (or asymmetric cryptography), there are two keys

namely the public key and the private key. These keys are generated by a certain

cryptographic algorithm. Anyone can encrypt data using the public key but the same

data could be decrypted only by its corresponding private key. These keys need to be

exchanged with other clients in order to provide encryption of messages over untrusted

hosts (phones) and servers. One of the first and most common algorithms for key

exchange is the Diffie-Hellman (DH) Key Exchange algorithm [23], which securely

exchanges keys through untrustworthy communication mediums. In its simplest form,

the protocol uses the multiplicative group of integers modulo p, where p is a prime

number and g is a primitive root modulo p. The possibilities that a shared secret key

10



can take is from 1 to p-1 based on these two values.

One variant of Diffie-Hellman is the Elliptic-curve Diffie–Hellman (ECDH), with

the main difference being the group that is being chosen to compute the secret keys

[24]. DH uses a multiplicative group of integers modulo a prime number whilst ECDH

uses a multiplicate group of points on an elliptic curve. This technique is derived

from Elliptic-curve cryptography (ECC). One of the fastest ECC curves [25] which

is not covered in any patents and the reference implementation is public domain

software is the Curve25519 elliptical curve. It offers 128 bits of security (256 bits

key size) and can be perfectly integrated with ECDH. During registration, the Signal

Protocol uses ECDH with Curve25519 in its Extended Triple Diffie-Hellman (X3DH)

Key Agreement Protocol [26].

2.5.1 Signal Protocol

Signal Protocol is a state-of-the-art encryption protocol that provides end-to-end

encryption for secure communication. It was developed by Open Whisper Systems,

which is now a part of Signal Messenger LLC. The protocol is designed to ensure that

messages, voice and video calls, and other forms of communication remain private

and secure between the sender and the intended recipient. Signal Protocol is widely

recognized as one of the most secure and reliable encryption protocols available,

and it has been adopted by many popular messaging and communication platforms,

including WhatsApp, Signal, and Facebook Messenger. Signal Protocol consists of

X3DH protocol [26] for shared key generation, Double Ratchet Algorithm [27] to

establish secure communication channels between the sender and recipient, and finally

the Sesame protocol [28] for session management.

Using the X3DH protocol, a shared secret key (SK) between two parties is

established who want to communicate with each other. The EC keys involved in

11



this protocol are Identity Key (IK), Ephemeral Key (EK), PreKey (PK), and Signed

PreKeys (SPK). If Alice wants to communicate with Bob using X3DH, Alice should

fetch the PK bundle of Bob from the Signal server. It is assumed that Bob has

published IKb, SPKb, prekey signature Sig(IKb, Encode(SPKb)) and a set of one-time

prekeys (OPKb1, OPKb2, . . . ) during the time of his registration. Alice checks the

PK signature of Bob and aborts if the verification failed. Alice then generates an

EK pair with public key EKa. If the bundle in Figure 3 does not contain OPKs, the

shared secret is calculated by her in the following way:

DH1 = DH(IKA, SPKB)

DH2 = DH(EKA, IKB)

DH3 = DH(EKA, SPKB)

SK = KDF(DH1 || DH2 || DH3)

If the bundle does contain OPKs of Bob, then the calculation gets modified to

add another DH operation:

DH4 = DH(EKA, OPKB)

SK = KDF(DH1 || DH2 || DH3 || DH4)

Figure 3: X3DH Asymmetric Key Generation Algorithm.

12



The next step according to Signal protocol is the exchange of encrypted messages

with the use of the newly created shared secret key which is done by the Double

Ratchet algorithm [27]. The term "Double Ratchet algorithm" refers to the encryption

technique that employs two types of ratchets: the Symmetric-key ratchet and the

Diffie-Hellman ratchet. The algorithm’s key feature is the KDF chain, a cryptographic

function that takes input data and the KDF key and returns output data. Each

message is encrypted using a message key generated by the Symmetric Key ratchet,

with a constant and chain key serving as input. The constant is included for break-in

recovery purposes.

The Double Ratchet combines the Symmetric key ratchet with the Diffie-Hellman

ratchet to provide forward secrecy. Each party generates its own DH key pair. While

communicating with other parties they send their public key in the header info of the

message, on the receiver side they perform a DH ratchet step with a private key of

their own, and the new public key. As a part of the DH ratchet step, the receiving

side updates its DH key pair and uses this for all further communication. Due to

this phenomenon, after each sending and receiving cycle DH keys are changed which

results in a ping-pong behavior.

The illustration in Figure 4 demonstrates the practical application of the double

ratchet algorithm, with Alice initiating communication to Bob. The algorithm begins

by Alice receiving a Prekey bundle containing Bob’s Identity Key, One-time Prekey,

and Signed Prekey. From this information, Alice creates a Shared Secret Key (SSK).

Alice then combines Bob’s Diffie-Hellman (DH) public key with her own DH private

key to generate a DH shared secret. This secret is then passed to the root KDF

function along with SSK to produce a root key (RK) and a chain key (CK). The CK

is used in the Symmetric-key ratchet step where the KDF function is utilized with

the message, and the output is the encrypted message (A1) and the new CK. Bob

13



then performs a similar ratchet operation on his end to decrypt the message.

Figure 4: Double Ratchet Algorithm

Lost and out-of-order messages are also handled in double ratchet by maintaining

two counters in the header message of each message. Each message has information

about the length of the previous message chain and its current message number in

sending chain. Using these two counters, the double ratchet stores the keys which are

responsible for decoding these messages.

Messages encrypted using the double ratchet algorithm generated with X3DH key

agreement protocol are managed with the Sesame session management algorithm [28].

Sesame is a generic session management protocol and can be used in DDD with certain

changes specific to our disconnected data network. Sesame generates a user id for

each participant which is either a username or a phone number. Participants can have

multiple devices each identified by a unique device id. Servers hold data regarding

all participants’ user id and corresponding active device ids. Figure 5 illustrates

how a session is created between two device IDs, which is identified by a session ID.

14



Each participant has a mailbox on the server where they can receive messages. If a

participant wants to initiate a conversation, they can retrieve the user’s device ID

mapped to their user ID from the Signal server. They can then send an initial message

that contains the sender’s IK, user ID, device ID, and public key in the message

header.

Figure 5: Sesame Algorithm for Asynchronous Session Management.

One of the most important components is establishing trust between the Bundler

Signal Service and the Signal server, as it is going to directly communicate with the

Signal server. Making HTTP requests is not safe as data is not encrypted during the

transmission. HTTPS protocol is built upon HTTP which provides encryption and

verification. HTTPS uses TLS (SSL) to encrypt normal HTTP requests and responses,

and also digitally signs them.

All communication between the bundler server and the signal server is going to

take place using a Secure Sockets Layer (SSL) [29] which in a way establishes an

encrypted link between a server and a client. SSL is more widely known as Transport

Layer Security (TLS). When a client tries to connect to the server which is secured

15



by SSL, the client and server establish an SSL connection using the process called

“SSL Handshake”. Three keys take part in this handshake public, private, and session

keys. The public and private keys are used to create only used to create a symmetric

session key which is then used to encrypt all the transmitted data.

Today, most organizations have a Public Key Infrastructure (PKI) [30] to govern

the encryption keys and management of digital certificates. PKIs are commonly used

in websites to hold SSL certificates so that site visitors know they are communicating

with an intended recipient. A similar requirement of managing the public keys of

participants and their association with user id is done on the Bundler Signal Service.

For every registration request, the Bundler Server is going to create a new user id

(phone number) manually or through the help of tools and services like Twilio, Google

Voice, etc., and associate the keys with this id. All further communication with Signal

servers will be with this generated user id.

Overall, by using all these techniques - creating secret keys using X3DH, signing

keys with ECDH with Curve25519, communication with Double Ratchet protocol,

session management using Sesame, and requests between servers with HTTPS and

PKI-like entities to manage keys and association with user ids DDD is implementing

a strong security framework for its communication systems, which should help to

protect the confidentiality, integrity, and authenticity of its messages.

16



CHAPTER 3

System Overview

The focus of this section pertains to the DDD architecture, registration, and

message-receiving sequence flows, with an in-depth examination of how the Signal

Protocol’s key pairs are both stored and transferred and which components have

visibility to specific parts of the keys. The use of sequence diagrams further clarifies

how information flows through the entirety of the system during registration and

messaging.

3.1 DDD Architecture

This section discusses the DDD architecture used to develop the disconnected

version of the Signal Messenger. It briefly talks about all the different components

that are involved in DDD and how they work together to enable users to register

themselves in the Signal network and participate in messaging with other registered

users, as depicted in Figure 6. The main focus of this section is to discuss the secure

transmission of disconnected user data between components, ensuring privacy.

Figure 6: DDD for Signal Messenger

17



• Signal App

As a part of this research, a wrapper over the original Signal application is

created from which users can register themselves in the Signal network and

participate in messaging with other registered users. The Signal application will

be responsible for creating and storing keys and the offsets required for X3DH

[26] and Double Ratchet Algorithm [27] and also other keys required by the

Sesame Protocol [28].

• DDDlib

DDDlib will be installed as a part of the DDD framework. It is the official

library of DDD which contains a set of APIs that can perform multiple different

operations like fetching data from DDD-based applications or sending data to

DDD-based applications.

• Bundler Client

Bundler Client is an Android application dedicated to doing all the heavy-lifting

jobs such as creating bundles, encrypting them, and then transporting the

encrypted bundles to the host phone. The Bundler Client application will reside

on the user’s phone. All disconnected applications using the DDD framework

will have a dependency on the Bundler Client to send the bundles to the host

phone.

• Bundle Transport

All the information from the disconnected applications will be encrypted and

transformed into bundles which will then be sent to the Bundle Transport

application present on the host phone through WiFi Direct [9] once the host

phone comes within range of the user’s phone. Bundle Transport stores all the

user’s bundles on the host phone, bundles are encrypted and thus immune to

18



man-in-middle attacks.

• Bundler Server

Once the host phone comes into an internet-connected area, all the bundles

will then be transported to the Bundle Server using cellular data or WiFi. The

bundle server is responsible for decrypting the bundles and then routing them

to the correct service adapter based on the decrypted data.

• Signal Service Adapter

The DDD architecture is designed to support various internet services. To

accommodate each disconnected application, an adapter service is provided, to

which the bundler server will send the application-specific data. In the case of

the Signal Messenger, a Signal Service Adapter is established as a gateway for

all Signal-related requests within DDD.

• Bundler Signal Service

In DDD, all the disconnected applications will have their own service to interact

with the actual application services. In the disconnected version of Signal, a

Bundler Signal Service routes all the requests from the Signal Service Adapter

to the actual Signal server. Other than routing requests, it will also contain

mailboxes for each UserID which are used to store the encrypted receiving

messages and databases to store information related to keys, offsets for pre-key

bundles, contacts, and other passwords related to each Signal account.

• Signal Server

Signal Messenger [10] maintains a centralized server on which encrypted messages

between two parties are transmitted. Signal servers also facilitate the discovery

of contacts who are also registered on Signal. If the user wants to communicate

with one of their contacts, they can get the public keys and Prekey bundle from

19



the Signal server to start the X3DH protocol and decide upon a secret shared

key.

In conclusion, the DDD architecture is a robust framework that enables the discon-

nected version of Signal to operate seamlessly. All the components work in tandem

to ensure that users can register themselves in the Signal network and participate in

messaging with other registered users. The Signal Server facilitates the discovery of

contacts and enables encrypted message transmission between two parties. Overall,

the DDD architecture offers an innovative solution to the challenges associated with

operating a disconnected version of a messaging application like Signal.

3.2 Keys and IDs Generated for Registration and Session Management

Table 1 provides an overview of the various keys and IDs used in the Disconnected

Signal Messenger. These keys and IDs play a important role in ensuring secure

communication between users on the Signal Protocol. Each key or ID has a specific

purpose, and their usage is associated with different components of the Signal Protocol.

This table presents a summary of these keys and IDs, their descriptions, how they are

used, and when they are generated, providing a comprehensive guide to understanding

the technical aspects of Signal’s secure messaging system.

20



Table 1: Keys and IDs in Disconnected Signal Messenger

Title Description Usage Generated
at

Identity Key
(IK)

Unique and constant for the user. X3DH Installation

Signed Prekey
(SPK)

Periodically changing (e.g., weekly/-
monthly) and signed with IK.

X3DH Installation

One-time
Prekeys
(OPKs)

Disposable and they get deleted from
the server each time some user requests
a public key bundle from the server.

X3DH Installation

Ephemeral
Key (EK)

User needs to update this key periodi-
cally on the phone.

X3DH Installation

Secret Key
(SK)

The result of X3DH for each session.
Keeps changing after each ratchet.

Double
Ratchet

X3DH

DeviceID Uniquely identifies each device in a ses-
sion.

Sesame Installation

UserID Username or phone number identifying
each user in the Signal Protocol.

Signal
Proto-
col

Bundler
Signal
Service

Message Key Every message sent or received is en-
crypted with a unique message key. The
message keys are output keys from the
sending and receiving KDF chains.

Double
Ratchet

Symmetric-
key ratchet

Account
Identifica-
tion (ACI)
and Phone
Number Iden-
tification
(PNI)

Unique IDs are generated by Signal to
identify an account and a phone number
associated with that account. Every
registered user has ACI and PNI which
are used to establish identity with server

Signal
Proto-
col

Signal
Server

3.3 Registration and Session Management

Ensuring user data privacy is a primary goal of DDD. Figure 7 illustrates how

keys are securely transferred throughout the architecture and outlines the necessary

steps to register a user on Signal from a disconnected area. Additionally, it highlights

how users can initiate conversations with their Signal contacts while maintaining data

21



privacy.

Figure 7: Sequence Diagram of Registration

22



3.3.1 Client Side Operations

A disconnected user can join the Signal network by installing the disconnected

Signal Android application, which is built on the open-source Signal-Android Messenger.

Once installed, users initiate registration on the app, generating and storing necessary

keys on their phone. The public keys are serialized and stored in a JSON file along

with contacts, which are fetched with user permission. The JSON file is then sent

to the Bundle Client app and transported through the DDD infrastructure. Private

keys used to sign and decrypt messages remain on the user’s phone, ensuring message

privacy. Steps 1-2 in Figure 7 denote the client-side operations.

3.3.2 Registration

After the registration bundle reaches the server, it is directed to the Signal

Adapter, which serves as an intermediary between the Bundler Server and the Bundle

Signal Service. The Bundle Signal Service is a Command Line Interface used to

manage the state of disconnected users, including key and contact-related information,

and message mailboxes for each phone number. It also creates payloads that interact

with Signal Servers. During registration, Signal requires a phone number that can

receive a one-time verification pin. However, since disconnected users do not have

access to their phone numbers, a new one is created using tools like Google Voice.

Signal has implemented a security measure requiring a CAPTCHA during the initial

contact with Signal servers. This CAPTCHA can be generated from the Signal website

and can be added to the headers of the request. After generating a phone number and

CAPTCHA, a registration request is made, resulting in the phone number receiving

a pin that has limited validity. The registration operation on Signal Adapter is

represented by Steps 3-5 in Figure 7.

23



3.3.3 Verification

After receiving the verification code on the phone number, the operator will add

this number to a "verify" request through the CLI (Bundle Signal Service) to the

Signal Server. The request includes only two parameters - the E164 formatted phone

number and verification code. If the verification request is successful, the phone

number is registered on the Signal network and can be used to communicate with

other registered users. Signal uses two unique byte arrays, ACI (Account Identifier)

and PNI (Phone Number Identifier), to identify each user for communication purposes.

For all subsequent requests after registration, ACI and PNI must be included in

the headers to authenticate with the Signal Server. After successful verification, the

next step is to register all the Prekeys initially generated on the client’s phone. Each

account must register the public part of the Identity Key, Prekey, and Signed Prekey.

Once Prekeys are registered, other users can use the user’s ACI, PNI, Identity Key,

Signed Prekey, and one Prekey of the Prekey bundle to establish a shared secret using

the X3DH algorithm [26]. In Figure 7, steps 6-8 illustrate the verification process in

Signal registration.

3.3.4 Finding Contacts in Signal Network

After registration, the next step is to determine which of the client’s contacts are

also registered on Signal Messenger. The received bundle contains all the contacts

from the client’s phone. Using the Bundler Signal Service, a "getRegisteredUsers"

request is made, which iterates over all the phone numbers provided by the client

and returns the PNI and ACI of the registered users. The Bundler Signal Service

generates a JSON message with all the contacts registered on Signal and their ACI

and PNI, which is then sent back to the user. This provides a good identification

measure to check which of their contacts are registered on Signal.

24



Finally, the response information, including registered contacts, E164 number,

ACI and PNI of the user, is populated in a JSON message and sent to the Bundler

Server via the adapter, which then sends it to the user’s phone through the DDD

infrastructure. Once the user receives this information, they can start sending and

receiving messages from their contacts. Steps 8-11 in Figure 8 describe how Signal

determines if a contact is registered on the Signal network and about what information

is sent back to the user.

Overall, the Signal registration process for disconnected users involves several

client-side operations, including generating and storing keys, fetching contacts, and

creating a registration bundle that is transported through the DDD infrastructure.

After the bundle reaches the server, it goes through the Signal Adapter and Bundle

Signal Service, where the phone number is verified through a CAPTCHA and a one-

time verification code. Once verified, the user’s contacts are checked for registration

on the Signal network, and the response information is sent back to the user. Signal’s

registration process provides a secure and privacy-focused way for disconnected users

to join the network and communicate with others.

3.4 Receiving Messages

The ability to receive messages while in a disconnected area is a crucial feature of

Signal in DDD, and the message receiving flow facilitates this functionality. This flow

involves the transmission of information to the client without requiring an explicit

request from the client. Figure 8 illustrates the flow of information through the

infrastructure for receiving messages in disconnected Signal.

3.4.1 Initiate Receiving

When a host phone intends to visit an area with no network connectivity, it sends

a request to the Bundler Server to obtain all the bundles that need to be delivered to

25



Figure 8: Sequence Diagram of Receiving Messages on Signal in DDD

the disconnected area. The Bundler Server then initiates a gRPC request known as

prepareData to all adapters, seeking the information to be delivered to clients. As

Signal Messenger is presently the prototype, the Signal Adapter receives a prepareData

request to sync all Signal-related information with the client. Step 1 in Figure 8

represents the initiation stage.

26



3.4.2 Receiving Messages

Upon receiving the prepareData request, the Signal Adapter proceeds to request

the Bundler Signal Service (or Signal CLI) to execute the receive command for all

registered users. The Signal CLI attempts to retrieve messages from the Signal Server

for all disconnected users registered on Signal through DDD. The messages for each

user are stored in mailboxes on the Signal Server. All the user’s messages are encrypted

using Double Ratchet Algorithm [27]. The messages is stored in an envelop which

contains headers with information about timestamps related to the message, sender’s

phone number, sender’s ACI and a message body.

However, these messages cannot be decrypted on the Bundler Signal Service,

since the user has not shared their private keys with the server. To decrypt the

messages, the user needs their Identity Key, Signed Prekey, and Prekey Bundle with

offset, which were used to encrypt the messages. Steps 2 and 3 in Figure 8 illustrate

the process of triggering the receive command on the Signal CLI.

3.4.3 Storing Messages

The Bundler Signal Service assigns a unique ID to each account for identification

purposes. Using this ID, the service creates directories to store the account’s databases

and messages. As illustrated in Figure 10, each message is stored as a separate file

within the directory. The message file includes all the essential information required

for deserializing the envelope on the client side and initiating decryption. Step 4 in

Figure 8 demonstrates the message file creation step.

3.4.4 Sending Message Files to Disconnected Clients

After all messages are received, the generated files are sent back to the adapter,

which in turn sends them to the Bundler Server. Once received, the server packs

the files into encrypted bundles and sends them to the host phone that initiated

27



the prepareData request for the disconnected area. Upon reaching the disconnected

area, the host phone sends the bundles to the client’s phone through Wi-Fi Direct

using the Bundler Client application. The Bundler Client then decrypts the bundles

using APIs from DDDlib, which are integrated within the application, and sends the

messages to Signal Messenger. The messages are decrypted using the keys created

during registration based on the Double Ratchet Protocol [27]. Finally, the decrypted

messages can be viewed and replied to by the user.

28



CHAPTER 4

Implementation

This section discusses the integration of DDD-specific changes into the client

application, as well as the implementation of the Bundler Signal Service.

4.1 Signal Android

The Disconnected Signal Messenger is an Android app that is derived from

the open-source Signal Android app. It can be installed on any Android device

without requiring any complicated setup procedures. All cryptographic operations

in the disconnected messenger are handled by the lib-signal-java library. The main

objective of the Disconnected Signal Messenger application is to perform cryptographic

operations such as creating the necessary keys, serializing them into JSON, and

encrypting and decrypting messages using those keys. Additionally, it communicates

with the Bundle Client application to facilitate the sending and receiving of encrypted

message bundles.

Upon launching the application, the user is prompted to grant permission to

access the contacts. Upon granting access, the "DDDKeys" class is used to generate

all the necessary keys. The SecureRandom algorithm is used to generate random

offsets. The elleptic curve algorithm [24] from libsignal-java is used to generate all

the Identity Key pairs. One hundred Prekeys are generated and stored in the prekey

bundle. A Signed Prekey is generated by creating a new key-pair and signing it with

the private Identity Key. All of these keys are necessary for establishing presence on

the Signal server. Using the public Identity Key, Signed Prekey, and one key from the

prekey bundle, other users can create a shared secret key with the disconnected user

using the X3DH [26] algorithm. Messages can be encrypted based on this shared secret

key and the Symmetric ratchet and Deffie-Hellman ratchet as part of the Double

Ratchet Protocol [27]. Figure 9 illustrates the attributes of the DDDKeys class along

29



with the constructor used to populate these attributes.

Figure 9: DDDKeys Attributes and Constructor

Once the necessary keys are created, they are serialized into JSON and stored

within the Signal application. This includes the public Identity key, Prekey bundle,

Signed Prekey and a list of all the contacts available on user’s phone. The serialized

JSON is then transferred to the Bundle Client application using Android Intent. The

disconnected Signal application will wait for the registration response from DDD

which contains the E164 phone number, ACI, and PNI of the disconnected user, as

well as the necessary contact information for registered Signal users.

Overall, the Disconnected Signal application plays a crucial role in enabling

communication in disconnected settings. By generating the necessary keys and

facilitating encrypted message transfer, it ensures secure communication between users

without requiring an internet connection.

4.2 Bundler Signal Service

The Bundler Signal Service is a Command Line Interface (CLI) designed for

the disconnected Signal messenger in the DDD architecture. It serves as the sole

30



communication channel with official Signal servers and acts as the entry point to

Signal. The service performs various complex operations like generating payloads

required for Signal requests, managing and storing users’ data including keys, contacts,

and more.

The Bundler Signal Service is designed as an executable JAR file that can be

deployed on any machine with Java 17 or higher. As part of the current DDD

infrastructure, it is being hosted on a Linux-based machine along with the Signal

Adapter.

4.2.1 Operations

The Signal CLI or the Bundler Signal Server is designed to perform the following

operations:

• Register

Register a phone number with SMS. It requires three parameters:

– a: The E.164 formatted phone number.

– ddd: A JSON file containing all the public keys and offsets required to set

up an account on Signal. This file is created on the client’s phone and then

transferred through DDD to Bundler Signal Service.

– captcha: The captcha result obtained from the Signal website.

During the registration process, the first command executed from the CLI is

"register". The command attempts to parse the "-a" parameter, and if it detects

a new account, it generates a unique ID and stores it in the accounts.json file.

Based on this ID, a corresponding file and directory are created in the Signal

project for maintaining the user’s state, as shown in Figure 10. Next, the CLI

parses the second parameter, which is the keys file generated on the client side.

The public keys are stored in the ID file, while the Prekeys are ignored until

31



the user is authenticated on the server. The ID file also keeps the location of

this keys file for future use. The third parameter is the CAPTCHA, which is

required initially to authenticate communication with the Signal servers. Signal

requests a CAPTCHA code to be sent as a header with the register request.

The Signal Server has two environments, Production and Staging. The CLI uses

the production environment, which is quite strict. Sending incorrect payloads,

attempting to fetch messages on behalf of other users, decrypting messages with

wrong keys, or retrying too frequently can result in a temporary ban from the

server. After sending the register request, the Signal server will send a six-digit

pin to the phone number specified in the parameters for registration.

Example:

. / s i gna l −c l i −a +11234567890 r e g i s t e r −−ddd \ l o c a t i o n \ o f

\bundle −−captcha s i gna l −captcha : / / . . . . .

• Verify

Verify the number using the code received via SMS. It has two parameters:

– a: The E.164 formatted phone number.

– pin: A six-digit temporary pin received from Signal as an SMS for two-

factor verification.

After receiving the pin on the phone number, it is used as a parameter for the

verify command to authenticate the user on the Signal server. If the pin matches,

Signal returns an ACI and PNI id, which are unique to the user. Subsequent

requests to the server should include these ids in the headers to authenticate

the user.

The next step is to register the user’s Prekeys with the Signal server, which is

optional but recommended. The location of the keys file is obtained from the

32



ID file, which stores the state of the user. The Prekeys and Signed prekeys are

then registered with the Signal server. It is important to note that registering

Signed Prekey is mandatory, as without registering one-time Prekeys, the X3DH

calculation only uses three DH operations. The calculation involves deriving a

shared secret key (SK) using the following operations:

DH1 = DH(IKA, SPKB)

DH2 = DH(EKA, IKB)

DH3 = DH(EKA, SPKB)

SK = KDF(DH1 || DH2 || DH3)

If the bundle contains one-time Prekeys, then the calculation is modified to

include an additional DH operation:

DH4 = DH(EKA, OPKB)

SK = KDF(DH1 || DH2 || DH3 || DH4)

By using these keys, other users will be able to establish a shared secret key

with the disconnected user and initiate secure communication.

Example:

. / s i gna l −c l i −a +11234567890 v e r i f y 123456

• Receive

Query the Signal server for new messages for a registered phone number. All

encrypted messages are downloaded and saved as files in a specific directory. It

has one parameter:

– a: The E.164 formatted phone number.

When a host phone intends to bring internet data with it to a disconnected

area, the receive command is triggered through the Signal Adapter to CLI for

all disconnected users. Unlike other commands, the receive command employs

33



a ReceiveHandler that uses the Sesame algorithm [28]. All incoming messages

from the user are stored in a mailbox on the server. Using this ReceiveHandler,

the messages are synced to Bundler Signal Service’s mailbox and transferred as

Signal envelopes (Figure. 5). These envelopes contain information like sender

and destination ACI, timestamp, content length, and content body, and other

headers necessary for the double ratchet to operate. The messages are then

received in the user’s directory under the "msg-cache" directory and serialized

in JSON format before being sent to the respective clients (Figure. 10). Only

the private keys generated on the client’s phone can decrypt these messages,

providing end-to-end encryption for all messages.

Example:

. / s i gna l −c l i −a +11234567890 r e c e i v e

34



4.2.2 Dependencies

Table 2 presents the dependencies imported in the Signal-Android and Bundle

Signal Service projects. Gradle is utilized as a dependency manager for the Android

project, whereas Maven is utilized for the Service. The Lib-Signal library is used for

generating keys and signatures. The Lib-Signal Client library has all the APIs needed

for calling the Signal servers. The Lib-Signal library requires Bouncy Castle internally

to carry out specific cryptographic algorithms. OkHttp is employed to interact with

the server, and FasterXML is used for key serialization.

Table 2: Dependencies for Bundler Signal Service

Name Description Version Artifact ID
Patched Lib-
Signal Service
Java

A Java library extracted from Signal
Android implementation for implement-
ing the Signal protocol including Double
Ratchet, X3DH, and Sesame protocol.

2.15.3 libsignal-
service-
java

Lib-Signal
Client

This library contains all the APIs used by
the official Signal client and server.

0.22.0 libsignal-
client

SQLite JDBC A library for accessing and creating SQLite
database files in Java. It is used to cre-
ate and store public keys and contacts on
Bundler Signal Service.

3.40.1.0 sqlite-jdbc

OkHttp A Java library that makes HTTP requests
load faster and save bandwidth. It is used
to interact with Signal Server.

4.10.0 okhttp

Bouncy Cas-
tle

A crypto package that contains implemen-
tations of cryptographic algorithms.

1.70 bcprov

FasterXML JSON parser and generator library used
for creating and parsing bundle messages.

2.14.2 jackson-
core

SLF4J The Simple Logging Facade for Java
(SLF4J) is a library used for showing logs,
debug messages, and errors.

2.0.6 slf4j-api

35



4.2.3 File Structure, Key Exchange and Storage

Signal maintains the state of the disconnected user using directories and databases.

Each user is assigned a unique six digit ID, which is mapped to attributes such as

E164 phone number, ACI, and PNI in the accounts.json file. A file and folder with the

".d" extension is created for each ID, with the file containing necessary variables such

as offsets, serialized public keys, passwords, and device IDs. The directory stores a

database file that includes tables for prekeys, contact information, and more. Incoming

messages are also stored in the directory as a mailbox for the user. To provide a better

understanding of the file structure, details on the files and directories are provided in

Table 3, and the directory structure is illustrated in Figure 10.

Figure 10: Directories, Files and Databases of Bundler Signal Service

36



Table 3: Files and Directories of Bundler Signal Service

Name Type Description
signal Directory It is created in the home directory. It is used to

store all files related to Bundler Signal Service.
accounts.json File The data is organized based on E164 formatted

phone numbers and is stored in directories with
unique IDs associated with each phone number.
This includes information related to ACI (Account
Identifier), PNI (Phone Number Identifier), and
other associated IDs. Within each directory, the
user’s information such as their keys, offsets, and
contacts are stored.

123456 (ID for
registered user)

File A JSON file for every user identified by ID allocated
by the Bundler Signal Service. This file stores the
public counterpart of ACI and PNI Identity Keys,
offsets for Prekey bundles, passwords, and session-
related information.

123456.d Directory A directory to store user-related keystore database
files and encrypted incoming messages (mailbox).

account.db File Each registered user has this SQLite file that stores
all key stores, contacts, and other related informa-
tion required to interact with the Signal protocol.
It mainly acts as a persistent storage mechanism
for key management.

msg-cache Directory This directory stores all incoming encrypted mes-
sages for the specific user with headers and times-
tamps.

message-
info.json

File This file maintains a list of all the encrypted incom-
ing messages with their sent, received, and viewed
timestamps. This file is mainly used by the Signal
Adapter to maintain a list of newly received mes-
sages since the last sync.

message.. File This file contains the actual encrypted Signal mes-
sage which is received for the registered user. Since
private keys are missing on Bundler Signal Ser-
vice, there is no way to decrypt this message on
the server side. This message with its respective
Prekey offset when transferred to the client can be
decrypted and viewed.

37



CHAPTER 5

Experiments

This section presents the results of testing the Disconnected Signal application

in various scenarios, such as user registration, message reception, and user-related

data maintenance. The test results demonstrate the feasibility and effectiveness of

the Disconnected Signal application in a disconnected setting.

The messaging application is currently operating on Android 12, while the Signal

Adapter and CLI are running on a Linux machine equipped with Java 17. The

application programming interfaces (APIs) required to communicate with Signal servers

leverage features exclusively available in Java 17 and newer releases. The Disconnected

Signal messaging application is derived from the Signal-Android repository [31], while

the CLI is created from an additional open-source project known as Signal-CLI [32].

Table 2 lists the libraries being utilized in the projects along with their corresponding

versions.

5.1 Signal Android Application

For this project, a modified version of the Signal Android application has been

developed. Within this modified application, a specific class called "DDDKeys" is

responsible for generating all necessary keys for registration. When the user opens

the Signal application for the first time and clicks the "continue" button on the main

screen, the application fetches contacts from the phone using the Contacts Provider,

an Android content provider component. After this step, a DDDKeys object is created

and serialized into JSON format. This JSON object is then stored as a file on the

user’s phone.

Once the file is created, the Signal app sends an Android Intent containing the

file contents to the Bundle Client app. The Bundle Client app then stores the file in

its directory, where it remains until the transport application comes within range of

38



the client phone to retrieve the bundles. Figure 11 shows the keys file stored in the

Bundle Client’s application directory.

Figure 11: Keys File Stored at Bundle Client

5.2 Bundler Signal Service

The last Signal related transactions happen on the Bundler Signal Service where

the bundle of public keys arrives. Bundler Signal Service is a Gradle project designed

to be operated as a CLI. To register a user, two things are needed to be manually

entered - Signal CAPTCHA and a phone number. The CAPTCHA is generated from

a website hosted by Signal and the phone number is generated using internet-based

tools like Google Voice. To test if the registration is happening, one can try to search

for this generated number on the actual Signal application. As this number is newly

created and not registered, the Signal application will throw an error saying that the

phone number is not registered on Signal (Figure 12).

Once the CAPTCHA and phone number are generated, they need to be passed

to the register command of Signal CLI along with the bundle location. The bundle is

unparsed and the Identity Keys are created based on this bundle information. The

bundle location is also stored as Prekeys and Signed Prekeys are only registered after

the user has been verified on Signal. After the generation of Identity Keys, the CLI

39



sends a registration request on behalf of the phone number and requests a pin for

verifying the phone number.

Figure 12: Finding Phone Numbers Pre and Post Registration Attempt

A temporary pin should be received after a successful register request. This pin

is then used in the verification command on the CLI. If the verification is successful,

the Signal server returns two unique IDs called ACI and PNI. Every registered user

on Signal has these two unique IDs. All subsequent communication to Signal Server

must use these two IDs in the header for identification purposes. The next step is to

register all the Prekeys received in the registration bundle which is achieved by calling

the register Prekeys API. When Prekeys are registered, other users can find the phone

number that was being registered (12) and initiate a conversation using the Identity

40



Keys and one of the Prekeys from the Prekey Bundle uploaded during registration.

After registration, if one attempts to find the phone number on Signal Messenger,

a message window will appear stating that the account is registered on the Signal

network and can be communicated with, as shown in Figure 12.

As the user is now in the Signal network, other registered users will be able to

message the user. If other users want to message the DDD user, they will fetch the

public part of Identity Key of the user from Signal server, Signed Prekey and one

Prekey bundle. Based on these keys, the other user can create a shared secret key

using X3DH protocol [26]. The first message which is sent to the DDD user will be

encrypted using this shared secret key. Signal doesn’t use same keys to encrypt all

the messages. All subsequent messages in the conversation will be generated based of

this shared secret key using the Double Ratchet Algorithm [27].

An attempt to decrypt the received messages using random keys generates a

decryption failed exception (ProtocolInvalidMessageException) as shown in Figure 13.

The encrypted messages will only be decrypted by the private counterpart of the keys

which exist on the clients phone. Those private keys never leave clients phone thus

providing end-to-end encryption for messages over the entire DDD network.

Figure 13: Attempt to Decrypt Messages on Bundle Signal Service

41



CHAPTER 6

Future Work

This section discusses the various limitations that arise when using Signal in a

disconnected environment. The limitations are examined, and potential solutions for

addressing them in the future are explored.

6.1 Limitations

The Signal messaging protocol requires periodic rotation of certain keys, as listed

in Table 1. However, the current implementation does not allow for automated key

rotation. Operator intervention is required on the Signal Adapter to generate a phone

number and CAPTCHA. In the context of a disconnected setting, it is not feasible to

conduct voice calls, and our current implementation does not allow for group chats,

sharing of media, or voice notes. In the event that a disconnected user loses their

device, there is no mechanism for them to log in to the previously assigned phone

number.

In the subsequent sections, potential solutions to the aforementioned limitations

will be discussed, along with a few novel ideas.

6.2 Enhancements in Bundler Signal Service and Signal-Android

The Bundler Signal Service is a good base for other developers to start upon.

Currently, the scope is limited to registration, key management, storage of user-related

info, establishing presence, and receiving messages. The flow for sending messages

from the Signal-Android app still needs to be worked on. Currently, the message

can only have text information, Signal app supports images, videos, voice messages,

documents, and stickers which need to be added to Bundler Signal Service.

There is no support for group chat which also can be added. The encryption

protocol for group chat works differently than one-to-one messaging. Fetching profile

information such as last seen, display picture and status can also be synced on

42



disconnected Signal application.

Signal also supports voice and video calls, but as we are in a disconnected setting

where information gets relayed through different nodes over time this will never be

possible.

6.3 Collaboration with Signal Developers

The collaboration between DDD and Signal developers could be very beneficial

for disconnected users who rely on DDD’s version of Signal Messenger. Currently,

the Bundler Signal Service creates a new phone number using Google Voice for every

disconnected user to receive the SMS verification needed for registration. However,

if Signal developers integrate DDD’s architecture into their official app, it could

streamline the registration process and improve the overall user experience.

6.4 Potential of DDD for Various Internet-based Applications

The main idea of disconnected data distribution over limited connectivity can

be applied to a plethora of other internet-based applications. Content sharing or

streaming application like YouTube and Netflix can have their disconnected versions

where disconnected users will be able to request a certain video that can be transferred

to them over the DDD network. Other services like e-mail or social media can function

in a disconnected setting where users will be able to send or receive encrypted emails

over the network and post a picture or get the latest updates from people who the

disconnected user is following on social media websites. This is a completely new

domain, which has not been worked on. If successful, companies that want to cater to

disconnected users and improve their user base can design APIs specifically to handle

requests from disconnected users.

43



CHAPTER 7

Conclusion

The DDD architecture is designed and implemented on the foundation of privacy.

Data is transported in the DDD in form of encrypted bundles. Host phones responsible

for transporting user data from disconnected areas to connected areas have no idea

about the contents of the data. The private keys that are involved in Signal protocol

[26, 27, 28] never leave the user’s phone, hence making decryption of the messages in

the bundle impossible achieving complete privacy.

Several previous projects in related research areas have struggled due to their

dependency on costly infrastructure, human intervention, and ongoing maintenance.

In contrast, DDD is a software-only solution using normal Android phones and servers.

Users don’t need any additional equipment beyond their smartphone to participate in

the disconnected network and use supported applications.

DDD architecture constitutes many different components. The client-side com-

ponents, such as the disconnected Signal Messenger and Bundler Client Android

application, are responsible for generating encryption keys and bundling data before

sending it to the host phone. The Bundle Transport application operating on the

host phone is responsible for transporting the data to the Bundler Server, which then

decrypts the bundles and forwards them to the application-specific adapter. The

Bundler Signal Service is a crucial component in this architecture, it maintains the

disconnected users’ information and provides an entry point to the Signal messaging

services. Overall, this architecture prioritizes modularity, scalability, and maintain-

ability, which can be essential for building complex software systems that can evolve

over time where a new application can be onboarded with ease.

The aim of this research is to address the digital divide in areas with limited

connectivity by enabling users to join a messaging network while maintaining their

44



privacy. This is accomplished through the use of Signal Messenger, which runs the

Signal Protocol in a disconnected setting, ensuring that users’ private keys, necessary

for message signing and decryption, remain on their phones. By adopting this approach,

the digital divide can be narrowed, and access to critical communication services can

be extended to those who are currently underserved.

45



LIST OF REFERENCES

[1] S. R. Department, ‘‘Worldwide digital population july 2022,’’ https://www.
statista.com/statistics/617136/digital-population-worldwide/, Sept 2022, (Ac-
cessed on 12/01/2022).

[2] G. Butler, ‘‘Extreme weather causes outages in the us and aus-
tralia,’’ https://www.datacenterdynamics.com/en/news/extreme-weather-causes-
outages-in-the-us-and-australia/, March 2022, (Accessed on 12/01/2022).

[3] A. F. Per Engzell and M. D. Verhagen, ‘‘Learning loss due to school closures during
the covid-19 pandemic,’’ https://www.pnas.org/doi/10.1073/pnas.2022376118,
April 2021, (Accessed on 12/01/2022).

[4] A. Pentland, R. Fletcher, and A. Hasson, ‘‘Daknet: rethinking connectivity in
developing nations,’’ Computer (Long Beach, Calif.), vol. 37, no. 1, pp. 78--83,
2004.

[5] eZ. Systems, ‘‘Wizzy digital courier,’’ https://web.archive.org/web/
20120204071251/http://wizzy.org.za/, (Accessed on 12/01/2022).

[6] R. C. Shah, S. Roy, S. Jain, and W. Brunette, ‘‘Data mules: modeling and
analysis of a three-tier architecture for sparse sensor networks,’’ Ad hoc networks,
vol. 1, no. 2, pp. 215--233, 2003.

[7] K. Fall, ‘‘A delay-tolerant network architecture for challenged internets.’’ ACM,
2003, pp. 27--34.

[8] A. Chaintreau, A. Mtibaa, L. Massoulie, and C. Diot, ‘‘The diameter of oppor-
tunistic mobile networks.’’ ACM, 2007, pp. 1--12.

[9] D. CAMPS-MUR, A. GARCIA-SAAVEDRA, and P. SERRANO, ‘‘Device-to-
device communications with wifi direct: Overview and experimentation,’’ IEEE
wireless communications, vol. 20, no. 3, pp. 96--104, 2013.

[10] ‘‘Signal messenger,’’ https://signal.org/en/, (Accessed on 12/01/2022).

[11] M. Marlinspike, ‘‘Whatsapp’s signal protocol integration is now complete,’’ https:
//signal.org/blog/whatsapp-complete/, (Accessed on 12/01/2022.

[12] J. C. Haartsen and S. Mattisson, ‘‘Bluetooth-a new low-power radio interface
providing short-range connectivity,’’ Proceedings of the IEEE, vol. 88, no. 10,
pp. 1651--1661, 2000.

46

https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.statista.com/statistics/617136/digital-population-worldwide/
https://www.datacenterdynamics.com/en/news/extreme-weather-causes-outages-in-the-us-and-australia/
https://www.datacenterdynamics.com/en/news/extreme-weather-causes-outages-in-the-us-and-australia/
https://www.pnas.org/doi/10.1073/pnas.2022376118
https://web.archive.org/web/20120204071251/http://wizzy.org.za/
https://web.archive.org/web/20120204071251/http://wizzy.org.za/
https://signal.org/en/
https://signal.org/blog/whatsapp-complete/
https://signal.org/blog/whatsapp-complete/


[13] V. Coskun, B. Ozdenizci, and K. Ok, ‘‘The survey on near field communication,’’
Sensors (Basel, Switzerland); Sensors (Basel), vol. 15, no. 6, pp. 13 348--13 405,
2015.

[14] M. Cao and P. Yin, ‘‘Research of usb otg technology in image high-speed data
transfer,’’ pp. 261--264, 2014.

[15] K. Yu, S. Eum, T. Kurita, Q. Hua, T. Sato, H. Nakazato, T. Asami, and V. P.
Kafle, ‘‘Information-centric networking: Research and standardization status,’’
IEEE access, vol. 7, pp. 126 164--126 176, 2019.

[16] S. H. Ahmed, S. H. Bouk, and D. Kim, Content-Centric Networks An Overview,
Applications and Research Challenges, 1st ed. Singapore: Springer Singapore,
2016.

[17] A. Cilfone, L. Davoli, L. Belli, and G. Ferrari, ‘‘Wireless mesh networking: An
iot-oriented perspective survey on relevant technologies,’’ Future internet, vol. 11,
no. 4, p. 99, 2019.

[18] A. N. A and L. Rajabion, ‘‘Data replication techniques in the mobile ad hoc
networks: A systematic and comprehensive review,’’ International journal of
pervasive computing and communications, vol. 15, no. 3, pp. 174--198, 2019.

[19] ‘‘Sneaketnet,’’ https://en.wikipedia.org/wiki/Sneakernet, (Accessed on
12/01/2022).

[20] C. Farivar, ‘‘Google’s next-gen of sneakernet,’’ https://www.wired.com/2007/03/
googles-next-gen-of-sneakernet/, (Accessed on 12/01/2022).

[21] ‘‘Storage transfer service - google cloud,’’ https://cloud.google.com/storage-
transfer-service, (Accessed on 12/01/2022).

[22] J. Clover, ‘‘Find my app: Everything to know,’’ https://www.macrumors.com/
guide/find-my/, Feb 2022, (Accessed on 04/10/2023).

[23] W. Diffie and M. Hellman, ‘‘New directions in cryptography,’’ IEEE Transactions
on Information Theory, vol. 22, no. 6, pp. 644--654, 1976.

[24] M. Amara and A. Siad, ‘‘Elliptic curve cryptography and its applications.’’ IEEE,
2011, pp. 247--250.

[25] D. J. Bernstein, ‘‘Curve25519: New diffie-hellman speed records,’’ in Public Key
Cryptography - PKC 2006, M. Yung, Y. Dodis, A. Kiayias, and T. Malkin, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 207--228.

[26] M. Marlinspike and T. Perrin, ‘‘The x3dh key agreement protocol,’’ https://
signal.org/docs/specifications/x3dh/.

47

https://en.wikipedia.org/wiki/Sneakernet
https://www.wired.com/2007/03/googles-next-gen-of-sneakernet/
https://www.wired.com/2007/03/googles-next-gen-of-sneakernet/
https://cloud.google.com/storage-transfer-service
https://cloud.google.com/storage-transfer-service
https://www.macrumors.com/guide/find-my/
https://www.macrumors.com/guide/find-my/
https://signal.org/docs/specifications/x3dh/
https://signal.org/docs/specifications/x3dh/


[27] T. Perrin and M. Marlinspike, ‘‘The double ratchet algorithm,’’ https://signal.
org/docs/specifications/doubleratchet/.

[28] T. Perrin and M. Marlinspike, ‘‘The sesame algorithm: Session management
for asynchronous message encryption,’’ https://signal.org/docs/specifications/
sesame/.

[29] A. Satapathy and J. Livingston, ‘‘A comprehensive survey on ssl/ tls and their
vulnerabilities,’’ International Journal of Computer Applications, vol. 153, pp.
31--38, 11 2016.

[30] A. Albarqi, E. Alzaid, F. A. Ghamdi, S. Asiri, and J. Kar, ‘‘Public key infras-
tructure: A survey,’’ Journal of information security, vol. 6, no. 1, pp. 31--37,
2015.

[31] signalapp, ‘‘Signal android (github),’’ https://github.com/signalapp/Signal-
Android, (Accessed on 04/23/2023).

[32] AsamK, ‘‘signal-cli (github),’’ https://github.com/AsamK/signal-cli, (Accessed
on 04/23/2023).

48

https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/sesame/
https://signal.org/docs/specifications/sesame/
https://github.com/signalapp/Signal-Android
https://github.com/signalapp/Signal-Android
https://github.com/AsamK/signal-cli

	Sending and Receiving Internet Messages from Disconnected Areas
	Recommended Citation

	Introduction
	Disconnected Signal Messenger
	Goals

	Related Work
	Using DDD for sending internet messages
	Data Transfer
	Infrastructure
	Data Distribution
	Security and Encryption
	Signal Protocol


	System Overview
	DDD Architecture
	Keys and IDs Generated for Registration and Session Management
	Registration and Session Management
	Client Side Operations
	Registration
	Verification
	Finding Contacts in Signal Network

	Receiving Messages
	Initiate Receiving
	Receiving Messages
	Storing Messages
	Sending Message Files to Disconnected Clients


	Implementation
	Signal Android
	Bundler Signal Service
	Operations
	Dependencies
	File Structure, Key Exchange and Storage


	Experiments
	Signal Android Application
	Bundler Signal Service

	Future Work
	Limitations
	Enhancements in Bundler Signal Service and Signal-Android
	Collaboration with Signal Developers
	Potential of DDD for Various Internet-based Applications

	Conclusion
	LIST OF REFERENCES

