
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

Malware Classification using API Call Information and Word Malware Classification using API Call Information and Word

Embeddings Embeddings

Sahil Aggarwal
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Aggarwal, Sahil, "Malware Classification using API Call Information and Word Embeddings" (2023).
Master's Projects. 1267.
DOI: https://doi.org/10.31979/etd.398w-b3fs
https://scholarworks.sjsu.edu/etd_projects/1267

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1267&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1267?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1267&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Malware Classification using API Call Information and Word Embeddings

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Sahil Aggarwal

May 2023

© 2023

Sahil Aggarwal

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Malware Classification using API Call Information and Word Embeddings

by

Sahil Aggarwal

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2023

Dr. Fabio Di Troia Department of Computer Science

Dr. Wendy Lee Department of Computer Science

Dr. Faranak Abri Department of Computer Science

ABSTRACT

Malware Classification using API Call Information and Word Embeddings

by Sahil Aggarwal

Malware classification is the process of classifying malware into recognizable

categories and is an integral part of implementing computer security. In recent times,

machine learning has emerged as one of the most suitable techniques to perform

this task. Models can be trained on various malware features such as opcodes, and

API calls among many others to deduce information that would be helpful in the

classification.

Word embeddings are a key part of natural language processing and can be seen as

a representation of text wherein similar words will have closer representations. These

embeddings can be used to discover a quantifiable measure of similarity between words.

In this research, we conduct a series of experiments using hybrid machine learning

techniques, where we generate word vectors and use them as features with various

classifiers. We use Hidden Markov Models and Word2Vec to generate embeddings

based on dynamic API call logs of the malware. Apart from these, we also use the

popular BERT and ELMo models which are known for generating contextualized

embeddings. The resulting vectors are used as input for our classifiers, specifically

Support Vector Machines (SVM), Random forest (RF), k-Nearest Neighbors (kNN),

and Convolutional Neural Networks (CNN). Using these, we conduct two distinct sets

of experiments where we try to classify the family of malware as well as the category

of malware. The results achieved here prove that embeddings of API calls can be a

useful tool in malware classification, especially in the case of families.

Index Terms – Word Embeddings, Dynamic Analysis, API Calls,

Hmm2Vec, Word2Vec, ELMo, BERT, SVM, RF, kNN, CNN

ACKNOWLEDGMENTS

I would like to thank my guide and advisor Prof. Fabio Di Troia for his constant

guidance and support throughout this work. The valuable suggestions and feedback

he procided went a long way in helping me achieve the milestones set for this project.

I am also grateful to my committee members Prof. Wendy Lee and Prof. Faranak

Abri for their feedback and suggestions. Finally, I would like to thank my family and

friends for their constant support throughout my time at SJSU.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Related Work . 4

3 Background . 7

3.1 Malware Analysis . 7

3.1.1 Malware Category and Family 7

3.1.2 Dynamic Analysis with Buster Sandbox Analyzer and
Sandboxie . 7

3.2 Word Embedding Techniques . 8

3.2.1 HMM2Vec . 9

3.2.2 Word2Vec . 12

3.2.3 ELMo . 13

3.2.4 BERT . 15

3.3 Classifiers . 16

3.3.1 Support Vector Machine 16

3.3.2 Random Forest . 17

3.3.3 k-Nearest Neighbors . 18

3.3.4 Convolutional Neural Networks 18

4 Dataset and Experiments . 19

4.1 Dataset . 19

4.2 Experiments . 23

4.2.1 HMM2Vec Experiments 23

vi

vii

4.2.2 Word2Vec Experiments 24

4.2.3 ELMo . 24

4.2.4 BERT . 24

4.2.5 Classifiers . 25

4.3 Results . 27

4.3.1 Malware Category Classification 27

4.3.2 Malware Category Classification with Different Set of Calls 39

4.3.3 Malware Family Classification 44

5 Conclusion and Future Work . 55

LIST OF REFERENCES . 57

APPENDIX

Appendix . 60

A.1 Additional Results . 60

LIST OF FIGURES

1 General Layout of Experiments 3

2 Malware under analysis with BSA 9

3 Initial and final B transpose [1] 11

4 CBOW and Skip-Gram Architecture [2] 13

5 ELMo Architecture [3] . 14

6 BERT Pre-training and Fine-tuning [4] 16

7 Sample Preprocessed API log . 22

8 Confusion Matrix for HMM2Vec-RF Category Classification . . . 28

9 Top 20 calls vs Top 40 calls for HMM2Vec Category Classificaiton 29

10 Confusion Matrix for HMM2Vec-RF Category Classification with
Other Symbol (41 Calls) . 30

11 Top 40 calls vs Top 40 calls and Other (41) for HMM2Vec
Category Classificaiton . 31

12 Confusion Matrix for Word2Vec-RF Category Classification . . . 32

13 Top 20 calls vs Top 40 calls for Word2Vec Category Classification 33

14 Confusion Matrix for ELMo-RF Category Classification 34

15 Top 20 calls vs Top 40 calls for ELMo Category Classification . . 35

16 Confusion Matrix for BERT-RF Category Classification 36

17 Top 20 calls vs Top 40 calls for BERT Category classification . . 37

18 Comparison of hybrid machine learning approaches for categories 39

19 Confusion Matrix for HMM2Vec-RF Category Classification with
calls in all categories . 40

viii

ix

20 Confusion Matrix for Word2Vec-KNN Category Classification with
calls in all categories . 42

21 Comparison of HMM2Vec scores for categories with Top 40 calls
and calls in all categories (31 calls) 43

22 Comparison of Word2Vec scores for categories with Top 40 calls
and calls in all categories (31 calls) 44

23 Confusion Matrix for HMM2Vec Family Experiments 46

24 Training Model Accuracy vs Loss For HMM2Vec-CNN 47

25 Confusion Matrix for Word2Vec Family Experiments 48

26 Training Model Accuracy vs Loss For Word2Vec-CNN 49

27 Confusion Matrix for ELMo Family Experiments 50

28 Training Model Accuracy vs Loss For ELMo-CNN 51

29 Confusion Matrix for BERT Family Experiments 51

30 Training Model Accuracy vs Loss For BERT-CNN 52

31 Comparison of hybrid machine learning approaches for families . 54

A.32 Confusion Matrix for HMM2Vec-SVM Category Classification . . 60

A.33 Confusion Matrix for HMM2Vec-KNN Category Classification . . 61

A.34 Confusion Matrix for HMM2Vec-CNN Category Classification . . 62

A.35 Training Model Accuracy vs Loss For Hmm2Vec-CNN For Category 63

A.36 Confusion Matrix for Word2Vec-SVM Category Classification . . 63

A.37 Confusion Matrix for Word2Vec-KNN Category Classification . . 64

A.38 Confusion Matrix for Word2Vec-CNN Category Classification . . 65

A.39 Training Model Accuracy vs Loss For Word2Vec-CNN For Category 66

A.40 Confusion Matrix for ELMo-SVM Category Classification 66

A.41 Confusion Matrix for ELMo-KNN Category Classification 67

x

A.42 Confusion Matrix for ELMo-CNN Category Classification 68

A.43 Training Model Accuracy vs Loss For ELMo-CNN For Category . 69

A.44 Confusion Matrix for BERT-SVM Category Classification 69

A.45 Confusion Matrix for BERT-KNN Category Classification 70

A.46 Confusion Matrix for BERT-CNN Category Classification 71

A.47 Training Model Accuracy vs Loss For BERT-CNN For Category 72

A.48 Confusion Matrix for HMM2Vec-SVM Category Classification with
Other Symbol (41 Calls) . 72

A.49 Confusion Matrix for HMM2Vec-KNN Category Classification with
Other Symbol (41 Calls) . 73

A.50 Confusion Matrix for HMM2Vec-CNN Category Classification with
Other Symbol (41 Calls) . 74

A.51 Confusion Matrix for HMM2Vec-SVM Category Classification with
calls in all categories . 75

A.52 Confusion Matrix for HMM2Vec-KNN Category Classification with
calls in all categories . 76

A.53 Confusion Matrix for HMM2Vec-CNN Category Classification with
calls in all categories . 77

A.54 Confusion Matrix for Word2Vec-SVM Category Classification with
calls in all categories . 78

A.55 Confusion Matrix for Word2Vec-RF Category Classification with
calls in all categories . 79

A.56 Confusion Matrix for Word2Vec-CNN Category Classification with
calls in all categories . 80

xi

LIST OF TABLES

1 Number of Samples for Malware Categories 20

2 Number of Samples for Malware Families 21

3 Percentage Distribution of Top Calls 22

4 Hyperparameters Tested for Classifiers 26

5 Classification Report for HMM2Vec Category Classification . . . 29

6 Classification Report for Word2Vec Category Classification . . . 33

7 Classification Report for ELMo-RF Category Classification 35

8 Classification Report for BERT-RF Category Classification . . . 37

9 Hyperparameters Selected for Category Classification 38

10 Classification Report for HMM2Vec-RF Category Classification
with calls in all categories . 41

11 Classification Report for Word2Vec-KNN Category Classification
with calls in all categories . 43

12 Classification Report for best HMM2Vec Family Classification . . 45

13 Classification Report for best Word2Vec Family Classification . . 47

14 Classification Report for best ELMo Family Classification 47

15 Classification Report for best BERT Family Classification 52

16 Hyperparameters Selected for Family Classification 53

CHAPTER 1

Introduction

In the past few decades, technology has become integral to several parts of our

daily lives and computers are omnipresent. With such advancement, it is no surprise

that attackers have found different ways to disrupt and damage these computer

systems for personal gain. Such attackers work by trying to inject some malicious

code into normal-looking programs which can then in turn do several different kinds

of damage. They may steal money, and personal information, bombard the computer

with downloads so the system fails or even encrypt your data asking for a ransom

in exchange for a safe resolution. This malicious code can be defined as malicious

software or malware. Over the years, malware has advanced to the point that it

can infect virtually any system such as laptops, mobiles, and even internet services.

According to the SonicWall Cyber Threat Report in 2023, the number of malware

hits has increased for the first time in over three years and is recorded at a very high

value of 5.5 billion [5]. Owing to such circumstances, the task of malware detection

and classification has become ever so critical.

Malware classification can be defined as figuring out which class or family a

particular malware belongs to. The rationale behind this stands that malware belonging

to the same families and categories exhibit similar behavior in their execution. This

is a fundamental problem in malware analysis. Current tools for the same employ a

signature-based detection algorithm wherein they have a database of signatures of

malware that have been previously analyzed. However, this technique often fails when

the malware in question is new and has not been seen that much before. Making

the job even more difficult is the fact that malware developers continuously find

new ways to evade detection. To solve this problem, a lot of the new research has

focused on how machine learning can be employed to detect and classify malware.

1

Malware can be divided into categories such as Worm and Trojan based on how they

interact with the system and these categories can further be divided into another

level which is families. Malware with the same characteristics such as a common code

base, or common authors is considered to be part of the same family. These common

characteristics can be used and exploited to classify malware.

In this research, the use of API calls as features are considered for malware

classification. We use word embedding techniques to create vector representations from

them and use these as input to different multi-class classifiers. The word embedding

techniques considered in this research include HMM2Vec, Word2Vec, Embeddings

from Language Model (ELMo), and Bidirectional Encoder Representations from

Transformers (BERT). These techniques play a crucial role in our classification as the

results are highly dependent on the ability of the generated embeddings to understand

the latent features in the call sequence. In all these cases, we experiment with the

same multi-class classifiers that are k-Nearest Neighbours (kNN), Support Vector

Machines (SVM), Random Forest classifiers (RF), and Convolutional Neural Networks

(CNN). These hybrid techniques are implemented and tests are conducted on a wide

variety of malware and all the results are compiled into this report. Fig 1 below

describes the layout for how the experiments were conducted starting with the analysis

of malware to extract logs and concluding in attempting classification. The process

remains unchanged for most techniques except HMM2Vec, where we add an extra

step to map the calls to numbers. The relevant details have been provided in Chapter

4.

2

Figure 1: General Layout of Experiments

The remainder of this report is organized as follows. Chapter 2 discusses the

related work and previous literature around malware classification followed by Chapter

3, which provides a deep dive into some of the background concepts that are needed

to understand the work done. In Chapter 4, the data set is introduced and we go into

the details of the proposed experiments as well as the results garnered. Finally, we

end with Chapter 5 which concludes the work done and builds upon it with some

ideas that could potentially improve the work done.

3

CHAPTER 2

Related Work

Malware classification is among some of the most researched problems because of

it’s global impact and as such several machine learning techniques have been identified

to try to solve this problem. Within them, a common methodology is to study how

the malware interacts with a system and extract features from them which could be

helpful in understanding their behaviour. These features may include a number of

things such as opcodes, register changes, file system changes, API calls made and so

on. These features can be extracted using static analysis or dynamic analysis of the

malware executable.

Several studies have used API call logs as features to detect or classify malware

and they have achieved good results. A malware under execution may cause the system

to make different API calls and these are good features for machine learning as usually

they are used in a specific way. To extract these calls, we need to run the malware

executable which often requires a virtual environment [6]. Authors in [7] proposed

a method for selecting a subset of API calls and achieved 0.98 accuracy in malware

classification using algorithms like SVM and Random Forest. In a similar scheme,

the authors in [8] propose enhancing the API call information using Term Frequency

and Inverse document frequency (TF-IDF) to select only the most important calls

for malware detection achieving near perfect accuracy. These results provide enough

evidence to argue the effectiveness of API calls as a feature.

While algorithms like SVM and Random Forest generally perform well at classifi-

cation tasks, recent works have shown that techniques using deep neural networks can

be successfully used because of their ability to uncover and learn complex relationships.

In [9], the authors propose a CNN based architecture where they convert malware

binaries to images recording an impressive 98% accuracy. In [10], the authors discuss

4

data mining techniques to select features and classify them using models like kNN

and Naive Bayes. The selection of appropriate techniques to enhance the relevance of

information in our features can be crucial in classifying malware.

Word embeddings are learned representations of text that are used in natural

language processing (NLP). Since their advent, they have been employed in a number

of varied tasks with very promising results. Among these, malware classification

has also emerged as a field where these techniques prove useful. This statement

is supported by the work done in [11], where API call sequences are converted to

numeric vectors using various methods. Another popular algorithm used to generate

these representations is Word2Vec, developed at Google [2]. In [12], the author uses

Word2Vec to extract vectors from machine code instructions and demonstrates the

algorithms ability in tasks of malware detection.

Hidden Markov Models (HMM) have found an effective use-case in malware

analysis because of their ability determine patterns in sequences that are generally not

observable otherwise. Several research works have tried modelling HMMs on various

malware features and have shown promising results. In [13], the authors conduct

a comparison between the efficacy of opcode sequences and API call sequences by

training HMMs on them and conclude that the latter perform better. In a similar

study, A.Damodaran et al. [14] use HMMs and reach a similar conclusion. They

argue that while opcodes are generally good, they fail to predict some families due to

obfuscation techniques which are likely to affect them more than API calls. In [15],

the author shows HMM2Vec, a technique for generating vectors using HMMs opcodes

as features. The work compares the performance of HMM2Vec with Word2Vec and

deliver promising results with an accuracy of about 93 percent in both cases thereby

validating the HMM2Vec approach.

One drawaback of the Word2Vec algorithm is the inability of producing vectors

5

that have contextual information. Further developments in the field of NLP led

to the development of several other models for generating embeddings which could

overcome this problem. One such model was introduced in [16] called Embeddings for

Language Model (ELMo) which is based on the biLSTM model and it achieved state

of the art results in several common NLP tasks. Another breakthrough came with

the introduction of the transformer architecture and self-attention mechanism in [17].

With the increased interest in transformed based architectures, J.Delvin et al. [4]

introduced Bidirectional Encoder Representations from Transformers (BERT) which

again achieved state of the art results. In [18], the authors use malware opcode and

compare the performance of these newer techniques with HMM2Vec and Word2Vec

for the task of malware family classification. Both approaches performed relatively

well and improved performance over the former two with results indicating that BERT

slightly outperforms ELMo in the given task. More on how each of these techniques

work is discussed in the next section. This research is highly motivated by the work

done in [15][18]. The work done here follows a similar structure to these works but

instead of opcode sequences, we rely on the API call sequences for classification.

6

CHAPTER 3

Background

This chapter explains the basics of the various tools and technologies that were

used in this research. It starts with malware analysis and how we can extract API

calls from a given executable. Following this, we briefly describe the workings of the

word embedding models used namely HMM2Vec, Word2Vec, BERT, and ELMo. At

last, we discuss the various multi-class classifiers used here. In particular, we talk

about SVM, kNN, Random Forest, and CNN. Following this is Chapter 4 which talks

about the dataset, the experiments performed, and the results that were achieved.

3.1 Malware Analysis
3.1.1 Malware Category and Family

Any program that is created with the intent to disrupt or harm a computer system

can be defined as malware. As such, based on their behavior malware can take many

different forms and present as one among various categories such as Ransomware and

Trojan. This broad categorization dependent on a malware’s characteristics, behavior,

and aim, is referred to as the category of malware. On the other hand, a malware

family is a more specific characterization within a category wherein we group them

based on functional similarities such as the code base or origin i.e. a single category

has multiple families. Due to this, the classification of malware by category is generally

more complex than classification by family. In this paper, we focus on both of these

categorizations and our experiments try to classify malware in both groups.

3.1.2 Dynamic Analysis with Buster Sandbox Analyzer and Sandboxie

The term dynamic analysis can be explained as the analysis of software that is

executed in a controlled environment. In contrast, static analysis refers to the analysis

of software that is not under execution. Although dynamic analysis usually incurs

a larger overhead, previous work has shown that they are suitable for deriving an

7

accurate model of the malware [14] [7]. Common information that can be derived

from dynamic analysis of a malware executable is API calls, system calls, and register

changes and these can be useful as features in several malware tasks. In this research,

we specifically focus on the API calls extracted. In the lifetime of its execution,

malware may use various API calls for different purposes such as accessing a file

system or connecting to a remote server. This behavior can be exploited to understand

the malware better.

There are a lot of tools that can help us in extracting the required information.

The tool that was used in this research is called Buster Sandbox Analyzer (BSA) [19].

BSA is a free, open-source dynamic analysis tool designed to detect if processes exhibit

malicious activities. BSA works by executing the malware in a controlled virtual

environment so the host system is not affected by any harmful activities. It does so

by working in conjunction with another software called Sandboxie which provides a

sandboxed environment to run programs in[20]. One of the best features of BSA is

that it can capture an executable’s workings and automatically generate reports based

on it including details such as API calls network communications, file system changes,

and various other information. Together, BSA and Sandboxie provide a powerful

method of analyzing malware and as such are used in this research to analyze the

malware samples. Fig 2. shows a screenshot of malware under analysis with BSA. The

API call log that we use for our experiments can be seen as generated by the program.

3.2 Word Embedding Techniques

As mentioned previously, word embedding techniques are primarily used in

natural language processing tasks to numerically quantify the distance among words

in a vocabulary. In this research, we used these techniques to generate features for our

classifiers. It is expected that by using these techniques, we will be able to identify

8

Figure 2: Malware under analysis with BSA

relationships that could be better understood by the classification algorithms. In

this section, we discuss the embedding techniques used in this research starting with

HMM2Vec, an embedding technique based on HMMs, followed by the well-known

Word2Vec. Finally, we discuss some of the relatively newer techniques ELMo and

BERT which can understand the context among the words in our vocabulary.

3.2.1 HMM2Vec

The hidden Markov Model is a statistical model in which a system is assumed

to be a Markov process of order one with a number of hidden states that are not

directly observable. The aim of an HMM is to figure out the most probable sequence

9

of states that could have generated the data. Usually, HMM can be represented by

three matrices A, B, and Pi which denote the hidden state transition probability, the

observation probability matrix and the initial state probabilities respectively [1]. The

number of hidden states that the HMM may infer is donated by N and is usually

selected by the user. Other notations that are used are T, to define the length of the

observation sequence, and M, which represents the number of unique symbols in the

vocabulary. The values of M and T are most commonly derived on the basis of the

training data set.

To shed more light on the workings of HMM, we use the example as explained

in [1]. The author considers the problem of training an HMM on English text where

each letter is a part of M, our observation symbols. Therefore, the total number of

observation symbols comes out to 27 including the ‘space’ as a letter. The HMM is

trained on a large sample of English text and the number of hidden states is set to 2.

Fig 3. shows the initial and final B-transpose of the HMM. Interestingly, we notice

from the converged B matrix that the HMM has identified the two states to be vowels

and consonants without any prior assumptions. This shows that the HMM was able

to identify a statistically significant distinction in the English text.

HMM2Vec is a technique in which we calculate the cosine similarity between any

two vectors. We consider the row of the converged B transpose matrix as the vector

representation of that particular letter. This means that for each individual letter, we

have a vector of length 2. The length of the vector depends on the number of hidden

states.

The formula for cosine similarity between any two vectors X and Y is given by

𝑐𝑜𝑠(𝑋, 𝑌) =

∑︀𝑛−1
𝑖=0 𝑋𝑖𝑌𝑖√︁∑︀𝑛−1

𝑖=0 𝑋2
𝑖

√︁∑︀𝑛−1
𝑖=0 𝑌

2
𝑖

(1)

The cosine similarity is the measure of the cosine angle and can be a value between

10

Figure 3: Initial and final B transpose [1]

0 and 1. The closer the value is to 1, the more similar two vectors are and vice versa.

Based on this understanding, consider the following example explained in [15].

V(a) = (0.13845, 0.00075) V(e) = (0.21404, 0.00000)

V(s) = (0.00000, 0.11042) V(t) = (0.01102, 0.14392)

Now, if we use the formula to calculate their similarity, we can see that the

vowels are very close together as cos(V(a), V(e)) = 0.999 which is what we expect

11

since they belong to the same state. On the other hand, cos(V(a), V(t)) = 0.0817

representing that these letters are not very similar. Based on this, we can infer that

these embeddings carry some information that may help us understand the vocabulary

better. Therefore, we can train HMMs on distinct observation sequences and define

numerical vectors using the B matrix. More detailed information on HMM and how

they work can be accessed here [1].

3.2.2 Word2Vec

Word2Vec is a word embedding technique introduced by Tomas Mikolov at

Google in 2013 [2]. The algorithm is based on a shallow neural network that can be

used to embed features in a high-dimensional space. The trained extracted embeddings

can be used in several tasks as the words that are similar in context are represented

closely together.

Word2Vec consists of two algorithms that can be trained to generate the embed-

dings for the words which are

3.2.2.1 Common Bag of Words (CBOW)

In this algorithm, the embedding for a given word is generated by combining the

distributed representations of the other words that appear in its context. The context

is usually defined as a window where the word to be represented is the middle word

and all others are the context.

3.2.2.2 Skip N-gram

In this algorithm, the model tries to model a given word by trying to predict

the neighboring words that would appear in its context i.e. given an input word, the

model tries to predict what the words are that either appears immediately before or

after.

Looking at the architectures from Fig 4, we can see that both techniques are mirror

12

Figure 4: CBOW and Skip-Gram Architecture [2]

images of each other. While both of these models are quite effective for generating

embeddings, the Skip-gram model is more powerful as it models every single word in

the vocabulary. However, due to this it also incurs a high overhead compared to the

CBOW. In our experiments, we use the default model available which is based on the

CBOW architecture.

Since the Word2Vec similarity is also based on the cosine similarity discussed

in the previous section, the experiments are somewhat analogous to the HMM2Vec

experiments. However, Word2Vec offers some advantages over the HMM2Vec the

main one being that HMM2Vec is based on a Markov model of order one which means

it is limited in the context information it may capture compared to this. Another

drawback with HMM is the training time, as it takes an order of 𝑁2𝑇 work which

means for larger values of N and T, training can be cumbersome.

3.2.3 ELMo

ELMo was introduced by Matthew E. Peters et al. in [16] in 2018. ELMo is a bi-

directional language model capable of generating contextualized vectors for a particular

13

word by capturing both semantics as well as the syntax for said word [18]. This

means that similar words represented in different contexts are represented differently

which allows us to capture subtle differences in the language. The architecture of

ELMo consists of two LSTM networks called the Forward layer and Backward layer

as shown in Fig 5. These layers are trained on the tasks of next-word prediction and

previous-word prediction respectively and work in conjunction thereby processing

input in both directions and capturing meaningful relationships in both directions. The

final word embedding is generated by concatenating these contextualized embeddings

and scaling them with the help of a normalizing factor. These bidirectional layers are

also supported by a task-specific layer on top which helps transform the embeddings

from our layers into a suitable form for the task at hand, by usually projecting them

into a lower dimension.

Figure 5: ELMo Architecture [3]

Apart from generating contextualized vectors, ELMo offers another advantage

over the previously mentioned techniques wherein we do not necessarily have to handle

out-of-vocabulary words as ELMo can create embeddings for these using character-

level representations. This makes ELMo quite powerful in tasks that are highly

domain-specific and may contain lots of out-of-vocabulary words. More information

14

on ELMo can be found here [16].

3.2.4 BERT

BERT, standing for Bidirectional Encoder Representations from Transformers,

was introduced in [4] at Google. It is based on the transformer architecture that was

introduced in 2017 by Vaswani et al [17]. The transformer architecture introduced

the concept of self-attention, in which each input embedding is represented as three

vectors namely the query, key, and value vectors. These vectors are then used to

calculate attention scores among the different units and combined to produce a final

sum. This was a key improvement over other models as it meant that we could

now capture long-range dependencies without having fixed-size windows. Like ELMo,

BERT uses self-attention and also produces contextualized word embeddings.

The architecture of BERT consists of just a stack of encoder models, twelve

in number to be precise. The BERT model produces embeddings by following a

two-step procedure of pre-training and fine-tuning. During pre-training, the model is

trained on a very huge amount of text data and also goes under training on a couple of

specific tasks which are next sentence prediction (NSP) and masked language modeling

(MLM). In MLM, some of the words in the input are masked and the model is tasked

with predicting the original masked word which helps the model learn robustly. In

NSP, the model is tasked with deciding which among two of the input sentences

precedes the other in a text. This helps the model learn relationships among sentences.

Following all this, fine-tuning of these pre-trained parameters is done. This fine-tuning

is based on the task to be performed and incorporates training on a labeled data set

to optimize the parameters generated in pre-training.

15

Figure 6: BERT Pre-training and Fine-tuning [4]

3.3 Classifiers

Given a labeled data set, classification can be defined as the process of predicting

the label for a given input. This prediction is done on the basis of input features,

which are analyzed to derive commonalities among the input and previously analyzed

inputs. There are several models that have been developed and found to be of great

use in classification tasks such as SVM. In our research, we use the vectors generated

by the word embedding techniques as features to try and classify malware in their

respective class or family. We use various classifiers and the following section describes

the concepts on which these are based. All the classifiers used here have proven to be

effective in the task of malware classification using different features as inferred by

the works done in [18] [9] [13] [15]. This section marks the end of this chapter and is

followed by Chapter 4, which contains some implementation-specific details on these

classifiers related to our experiments.

3.3.1 Support Vector Machine

Support Vector Machines (SVM) is a set of supervised machine learning algorithms

that are hugely popular in classification tasks. In order to maximize the distance

between classes, SVM tries to construct a hyperplane that can act as a separator. In

[18], the authors have used SVM for the classification of malware features generated

16

using word embedding techniques and achieved promising results. SVM can help us

identify subtle changes in malware samples as the hyperplane is capable of working

in a higher dimensional space with the help of a kernel trick in cases where the data

is not linearly separable. There are a number of kernel functions that we can use

to achieve this high-dimensional mapping. Another important part of the algorithm

is the cost regularization parameter C which helps avoid overfitting. It does so by

allowing some classes into the boundary of the hyperplane. Once the hyperplane is set,

the algorithm predicts classes by mapping data points to the high-dimension space

and judging the relative position with the hyperplane. More information on SVM and

its mathematical proof has been provided here [21].

3.3.2 Random Forest

Random Forest (RF) is an ensemble learning technique that uses multiple decision

trees to predict a class label introduced by Breiman in [22]. A decision tree is a

supervised machine learning algorithm that works by recursively splitting up the input

into smaller similar subsets. While they have their advantages, a single decision tree

tends to overfit as the depth and complexity of the tree increase. Random Forest tries

to solve this problem by combining the decisions from several decision trees. This is

because, since the algorithm bags features along with the observations, the trees tend

to protect each other from individual errors and avoid overfitting. The algorithm

works by assigning samples at random to different decision trees and then averaging

the results. The class label predicted is the one that received the most votes from the

individual trees. A good explanation of how to use these algorithms can be found at

[23].

17

3.3.3 k-Nearest Neighbors

k-Nearest Neighbors is a simple supervised machine learning algorithm that makes

use of a sample’s neighboring data points to predict where it belongs. First, the k

nearest samples are taken and then the distance between them and the input sample

to be predicted is calculated. The distance measure is a parameter that we can decide

based on the use case such as Euclidean distance or Minkowski distance and this value

is what the prediction is based on. The algorithm does not include a training phase

which is why is referred to as a lazy classifier. When implementing kNN, The value of

k is of paramount concern as too small values can lead to overfitting while very large

values can lead to performance and accuracy degradation [18].

3.3.4 Convolutional Neural Networks

Neural networks are algorithms modeled to work like the human brain. A

convolutional neural network or a CNN is a type of feedforward deep neural network

introduced in [24] that has found success in several image classification tasks. A CNN

consists of several layers including an input layer, several hidden layers, and an output

layer. Among these, the convolutional layer is the core building block. It contains a

set of filters that slide over an input to extract relevant features by exploiting any

spatial patterns.

18

CHAPTER 4

Dataset and Experiments
4.1 Dataset

The dataset used in this project contains a number of windows executable files.

The executables were analyzed under Buster Sandbox Analyzer to extract the list of

API logs the malware called under execution. In total, we extracted 782 samples from

the initial raw data set and created 2 distinct sets from this – one for categories with

about 583 samples and one for families with about 492 samples. These datasets were

used in the experiments that are described in the upcoming sections.

For categories, we separated the 583 samples into 11 malware categories. The

description of these is given below:

Adware: This is a type of malware that floods the computer with unwanted ads

in the form of pop-ups or banners.

Backdoor: This type of malware tries to create unauthorized entry points into

a system. These entry points could be used at any time to gain access to said system.

Modifier: Modifiers attack the system by modifying the behavior of other

programs ranging from changing a browser’s homepage to even installing additional

malware.

PWS: PWS or Password Stealer is a type of malware specifically designed to

steal credentials and other sensitive information.

Rogue: Rogue software is a type of malware that disguises itself as a legitimate

antivirus software and tries to get the user to pay for it.

Tool: These are programs that can do a number of harmful tasks such as creating

viruses or preventing an antivirus from detecting malicious software.

Trojan: Trojans usually present as legitimate programs that are actually trying

to do malicious activities such as gain control of a system or steal information.

19

Trojan Downloader: This type of malware downloads and installs a number of

software on the system, including several malware.

Trojan Monitoring Service: This type of malware spies on the computer

and tries to steal important information. It may do so by recording keystrokes and

screenshots.

Virus: Viruses are type of malware that attach themselves to legitimate programs.

These are able to spread rapidly and can cause significant damage.

Worm: This is a type of malware that create copies of itself and spreads it to

other systems connected to a common network.

Table 1 shows the number of samples for each of these categories in the data set.

Table 1: Number of Samples for Malware Categories

Malware Category Sample Count
Adware 50

Backdoor 53
Modifier 52

PWS 50
Rogue 53
Tool 60

Trojan 53
Trojan Downloader 52

Trojan Monitoring Service 53
Virus 55
Worm 52

For families, we were able to separate the samples into 7 malware families. A

brief description of these is as follows:

Adload: Adload is a family of Adware and displays unwanted advertisements

on a system under attack.

Bancos: : Bancos is a trojan that is concerned with banking details. It steals

20

sensitive information such as credit card numbers and bank credentials.

Onlinegames: This family of malware is designed to steal information such as

passwords of online games by monitoring keystrokes and such.

VBInject: Is a type of malware family that injects malicious code in other

programs and gathers data like system settings, network configuration and so on.

Vundo: Is again a malware family that is known to cause unwanted ads on a

system thereby leading to performance degradation.

Winwebsec: Is a malware that disguises itself as antivirus or security software

followed by asking the user to pay money to clean up the system.

Zwangi: Zwangi is a type of Browser Modifier malware that infects Windows

systems and redirects the user to different webpages that may cause harm to the

victim.

Table 2 shows the number of samples for each of these families in the data set.

Table 2: Number of Samples for Malware Families

Malware Family Sample Count
Adload 70
Bancos 71

Onlinegames 70
VBInject 70
Vundo 71

Winwebsec 70
Zwangi 70

A single sample in either of the datasets consists of the API call log sequence for

that malware. The logs are usually presented in the form of the API name with some

other information such as file path as seen in Fig 2. We initially preprocess these files

to remove all other information except the API call names. Therefore, we have for

each sample a sequence of API calls that were invoked when the sample was under

21

execution. Fig 7 shows a sample preprocessed log with just the API names.

Figure 7: Sample Preprocessed API log

The number of distinct API calls that we saw in total was about 94. While using

all calls can be good, it would incur significant processing times, and as such it is

important to select the most relevant or the most important calls. To determine the

importance of a single call, we simply use the frequency counts of all API calls. Work

done by [18] follows a similar approach where they consider working with the Top 20

opcodes. For the experiments we conducted, we consider the top 20 and top 40 calls

giving us two distinct sets of features. The total percentage of calls these cover over

the entire set of calls is given in Table 15.

Table 3: Percentage Distribution of Top Calls

Calls Count (Percentage)
Total (Category) 233539 (100%)

Top 40 (Category) 232080 (99.37%)
Top 20 (Category) 223698 (95.78%)

Total (Family) 160813 (100%)
Top 40 (Family) 159987 (99.48%)
Top 20 (Family) 154868 (96.3%)

In both the cases of families and categories, we see that the same API call has

22

the highest frequency which is the VirtualAllocEx.

4.2 Experiments

Similar techniques were used with regard to both categories and families i.e. even

though the data may change, the process of how we conduct the experiments remain

the same. This section provides some insight into this process.

4.2.1 HMM2Vec Experiments

The first technique used for feature extraction is HMM2Vec, which is based on

Hidden Markov Models.The sequence of API calls that has been processed is used as

the observation sequence to train the HMM. For the experiments, all HMMs were

initialized with N = 2 as it is known to give the best classification accuracy [18]. The

number of unique observation symbols i.e. M is either set to 20 or 40 depending on the

number of calls retained. For training, we used a modified version of the HMM code

available here [25]. For each of the malware samples, we obtain the best model after

20 random restarts. Another set of experiments is done with the total number of calls

set to 41 instead of 40. In this case, all calls that lie outside the top 40 are replaced

with a symbol denoting ’Other’ instead of being deleted. This is done to try and see

if retaining the whole sequence would be more helpful for HMM to understand. For

training, each call in the sequence is mapped statically to a number for the training

of the model which allows us to define positions for each call. The B matrix of the

trained model is used to derive the vector representation. The final vector for a sample

is created by appending the rows of the B matrix resulting in a one-dimensional vector

of length N*M.

One of the challenges with HMM2Vec is maintaining consistency among the rows

of the B matrix. To elaborate, consider the English language example we used earlier

where any of the 2 rows of the matrix could represent the letter being a vowel or a

23

consonant i.e. the ordering of these rows is not fixed. To overcome this, we maintain

that the row which shows convergence for the most popular call, VirtualAllocEx, will

always be row 0 of the matrix we use. In cases where the convergence is in state 1,

we swap the rows of the matrix thereby maintaining consistency among the features.

4.2.2 Word2Vec Experiments

Each call sequence is viewed as a stream of words during Word2Vec training.

The implementation for this is done using the gensim module in Python [26]. The

module allows us to specify various parameters for training such as vector size and

the algorithm to use. As mentioned previously, we use the CBOW algorithm which is

the default setting. In addition, we set the vector size to 2 to maintain consistency

with the number of states from our HMM experiments. To obtain the final vector for

a sample, we append the individual vectors for each word similar to HMM to obtain a

1D vector of length.
𝑣𝑒𝑐𝑡𝑜𝑟_𝑠𝑖𝑧𝑒 * 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑤𝑜𝑟𝑑𝑠 (2)

4.2.3 ELMo

The ELMo model we use is available to us in Python through the TensorFlow

module. This model generates context-aware embeddings and is pre-trained on a

large amount of English text. ELMo, just like Word2Vec, requires the input as a

stream of words and outputs a vector of size 1024 for each of the tokens in its input

sequence. Since each of our samples may contain a different number of words, the

embeddings generated would be of different sizes. To maintain uniformity, we sum up

the individual vectors for each word and divide them by the total number of samples.

The final vector for a sample is a one-dimensional vector of length 1024.

4.2.4 BERT

BERT, like ELMo, uses the self-attention mechanism to generate context-aware

embeddings. In this research, we use the BERT Base model available through the

24

transformers module. This Base model is trained on a large corpus and consists of

110 million parameters. It is a smaller version compared to the other BERT models

but it has previously performed quite well in malware classification [18]. BERT only

works with sequences of length up to 512 so any longer sequences are truncated to

meet this constraint that is we use the first 512 tokens. BERT works by adding two

special tokens, namely CLS and SEP, to the sequences. The CLS is a special token

that is used to represent the entire sequence. For this BERT model, the output is a

tensor of size
𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 * 𝑛𝑢𝑚𝑏𝑒𝑟𝑜𝑓𝑤𝑜𝑟𝑑𝑠 * 768 (3)

For classification, we create a final vector of size 768 by grabbing the embedding for

the CLS token.

4.2.5 Classifiers

All of the classifiers namely SVM, RF, kNN, and CNN have several different

parameters that can be optimized to get the best possible result for each set of features.

To determine these, we make use of the Grid Search module available in the sklearn

library. It works by specifying several different values for each of the parameters we

want to tune, and then the module performs an exhaustive search with all possible

combinations of the parameters. The combination with the best accuracy is selected.

It is also very helpful in the fact that it does a cross-validation over 5 folds for each of

the combinations to find the best one.This means for the training set that is fed into

the GridSearch, it will validate the different combinations over 5 different intermediate

test sets created off the original training set. Since our experiments are conducted

with generally less samples per label, the cross validation aspect of this module helps

increase the reliability and generalizability of these results. Table 4 below shows the

parameters that we tested for the different classifiers.

25

Table 4: Hyperparameters Tested for Classifiers

Classifier Hyperparameter Tested Values
SVM Kernel rbf, linear, poly

C 0.1, 1, 10, 100, 1000
Gamma (only rbf) 10, 1, 0.01, 0.0001

Random Forest n_estimators 200 to 1000 step 100
max_depth 10 to 40 step 10
min_samples_split 2, 5, 10, 50
min_samples_leaf 1, 2, 5, 10

kNN n_neighbors 1 to 19 step 2
metric minkowski, manhattan, euclidean
weights distance, uniform

CNN epochs 100, 200, 1000
learning_rate 0.1, 0.01, 0.001
activation relu, tanh
optimizer sgd, adam

Note that for all the word embedding techniques, we test 60 combinations each for

SVM and kNN, 576 combinations for Random Forest and at last about 48 combinations

for CNN and we repeat these experiments for both the Top 20 and Top 40 calls. In

total, we test
2 * (30 + 60 + 576 + 48) = 1428 (4)

combinations each for category classification and family classification per word embed-

ding technique to determine the best parameters. In addition, for SVM experiments,

we scaled the data between 0 and 1 using the StandardScaler functionality of sci-kit

learn. This is because SVM performs better on data that is scaled and we observed

the same as the accuracy improved significantly. For our CNN experiments, we create

networks with 4 hidden layers and since we are attempting multiclass classification,

we use the spars_categorical_crossentropy as our loss function. All experiments were

performed with the same split, with 80 percent of the data being used for training

26

and the remaining 20 percent for testing. In the case of CNN, we split the training

data further into 70% for training and 10% for validation.

4.3 Results
4.3.1 Malware Category Classification

For this set of experiments, we consider eleven malware categories that were

discussed in Section 4.1.

4.3.1.1 HMM2Vec

For the HMM2Vec experiments, the best accuracy we achieved came with the

Random Forest classifier at 0.69. kNN performed very close reaching 0.68 followed by

SVM at 0.62. The worst performance came with CNN with 0.61 accuracy. Fig A.32

to Fig A.34 show the confusion matrix for each of the classifiers.

27

Figure 8: Confusion Matrix for HMM2Vec-RF Category Classification

From these results, we see a common pattern where the Worm category is

continually misidentified with all classifiers. This may be because of high amount

of variance within the samples in this class. In respect to the calls retained, for

HMM2Vec we see that the Top 40 calls perform better than the Top 20 calls although

not by too big of a margin. Fig 9 shows the accuracy achieved in both cases.

28

Table 5: Classification Report for HMM2Vec Category Classification

Category Precision Recall F1-Score
Adware 0.64 0.90 0.75

Backdoor 0.50 0.27 0.35
PWS 0.82 0.90 0.86

Modifier 0.82 0.90 0.86
Rogue 0.89 0.73 0.80
Tool 0.67 0.67 0.67

Trojan 0.73 0.73 0.73
Trojan Downloader 0.78 0.70 0.74

Trojan Spy 0.58 0.64 0.61
Worm 0.50 0.36 0.42
Virus 0.64 0.90 0.75

Figure 9: Top 20 calls vs Top 40 calls for HMM2Vec Category Classificaiton

For experiments done where we replaced all calls outside of the selected ones

with a constant symbol, the performance decreased. This may be because the number

of these calls that lie outside our selected set may add up to a higher number masking

what the sequence actually represents in the output matrices. For these experiments,

29

the best accuracy we achieved came with the Random Forest classifier at 0.62. Fig 11

shows the accuracy of this approach compared to the one where we delete the calls.

Figure 10: Confusion Matrix for HMM2Vec-RF Category Classification with Other
Symbol (41 Calls)

30

Figure 11: Top 40 calls vs Top 40 calls and Other (41) for HMM2Vec Category
Classificaiton

4.3.1.2 Word2Vec

For the Word2Vec experiments, the best accuracy we achieved came with the

Random Forest and kNN classifiers at 0.77. Overall, this was the highest accuracy

achieved in the task of malware category classification. Word2Vec-SVM performed

slightly worse at 0.76 whereas CNN came last with about 0.74.

31

Figure 12: Confusion Matrix for Word2Vec-RF Category Classification

Again we see that the Worm class is the least accurate. However, compared to

the HMM2Vec experiments we see that Word2Vec can predict the category Backdoor

with much higher accuracy which is probably the cause of the boost in accuracy. With

respect to the calls retained, for Word2Vec we see that the Top 40 calls perform

significantly better than the Top 20 calls which was not the case for HMM2Vec. Fig

13 shows the accuracy achieved in both cases.

32

Table 6: Classification Report for Word2Vec Category Classification

Category Precision Recall F1-Score
Adware 0.80 0.80 0.80

Backdoor 0.58 0.64 0.61
PWS 0.91 1.00 0.95

Modifier 0.80 0.80 0.80
Rogue 0.82 0.82 0.82
Tool 0.53 0.67 0.59

Trojan 0.83 0.91 0.87
Trojan Downloader 0.89 0.70 0.84

Trojan Spy 0.89 0.73 0.80
Worm 0.83 0.45 0.59
Virus 0.75 0.90 0.82

Figure 13: Top 20 calls vs Top 40 calls for Word2Vec Category Classification

4.3.1.3 ELMo

Within the ELMo experimetns, RF again performed the best and achieved an

accuracy of 0.77. Surprisingly, kNN did not perform as well as it lags far behind with

33

0.71. Finally, similar to the experiments above SVM and CNN did not perform as well

with only about 0.70 and 0.67 respectively. Fig A.40 to Fig A.42 show the confusion

matrices for these experiments.

Figure 14: Confusion Matrix for ELMo-RF Category Classification

Similar to Word2Vec, ELMo performed significantly better with the Top 40 calls

than it does with the Top 20 calls as seen in Fig 15.

34

Table 7: Classification Report for ELMo-RF Category Classification

Category Precision Recall F1-Score
Adware 0.80 0.80 0.80

Backdoor 0.80 0.36 0.50
PWS 1.00 1.00 1.00

Modifier 0.82 0.90 0.86
Rogue 0.80 0.73 0.76
Tool 0.58 0.58 0.58

Trojan 0.75 0.82 0.78
Trojan Downloader 0.75 0.90 0.81

Trojan Spy 0.80 0.72 0.75
Worm 0.50 0.58 0.53
Virus 0.63 0.91 0.75

Figure 15: Top 20 calls vs Top 40 calls for ELMo Category Classification

4.3.1.4 BERT

The process for BERT is quite similar to ELMo and we expected close results.

Analogous to previous results, kNN and RF got the highest accuracy both at 0.74.

35

While this is lower than ELMo, surprisingly SVM performed much better with BERT

than the other techniques and was able to reach the maximum accuracy at 0.74. CNN

was quite far behind all the other three techniques here at 0.67.

Figure 16: Confusion Matrix for BERT-RF Category Classification

Fig 17 shows the accuracy for the calls retained. While the Top 40 calls come

out ahead again, the difference is not very much.

36

Table 8: Classification Report for BERT-RF Category Classification

Category Precision Recall F1-Score
Adware 0.82 0.90 0.86

Backdoor 0.57 0.36 0.44
PWS 0.91 1.00 0.95

Modifier 0.77 1.00 0.87
Rogue 1.00 0.73 0.84
Tool 0.54 0.58 0.56

Trojan 0.58 0.64 0.61
Trojan Downloader 0.89 0.80 0.84

Trojan Spy 0.67 0.91 0.77
Worm 0.62 0.73 0.67
Virus 1.00 0.50 0.67

Figure 17: Top 20 calls vs Top 40 calls for BERT Category classification

4.3.1.5 Results on Malware Category Classification

Table 9 shows the optimal values we got for the hyperparameters of all classifiers.

37

Table 9: Hyperparameters Selected for Category Classification

Classifier Hyperparameter HMM2Vec Word2Vec ELMo BERT
SVM Kernel rbf rbf rbf rbf

C 1000 1000 100 100
gamma 0.1 0.1 0.0001 0.0001

RF n_estimators 200 400 700 400
max_depth 40 40 30 40
min_samples_split 2 2 3 3
min_samples_leaf 2 1 1 2

kNN n_neighbors 3 3 3 3
metric manhattan euclidean euclidean euclidean
weights distance distance distance distance

CNN epochs 200 200 1000 1000
learning_rate 0.0001 0.0001 0.0001 0.0001
activation relu relu relu relu
optimizer adam adam adam adam

Overall, the classification of categories does not perform as well as compared

families. This is expected as the malware category is much more difficult to predict

since each malware in a category may belong to a different family and may function

differently. In our dataset, among 11 categories we have about 90 distinct families.

This high number of families may be a contributing factor to the low accuracy score

we see here. Fig 18 shows the accuracies achieved for the different hybrid techniques.

It was observed that a high number of misclassifications occur for the Worm and

Backdoor categories. The maximum accuracy we achieved came with Word2Vec-RF

at about 77%. ELMo performed similarly well with Random Forest the as classifier.

The best results we achieved using HMM2Vec for category classification were 69%.

Among the embedding techniques, Word2Vec and ELMo perform the best and produce

similar results. In general, we see that there is agreement among the embedding

techniques for the best classifier which is RF. In addition, we see that in most cases

RF and kNN perform similarly well whereas SVM and CNN are somewhat lagging.

38

However, interestingly SVM performed on par with RF and kNN in the case of BERT.

This may be because of SVM’s ability to handle high-dimensional data.

Figure 18: Comparison of hybrid machine learning approaches for categories

4.3.2 Malware Category Classification with Different Set of Calls

While selecting calls by frequency has given some decent results, there is a

possibility that these calls are dominated by a few categories and we are missing out

on some essential calls that may be representative of the other categories. To this

extent, we perform an experiment on the Category classification of samples using all

common calls across the categories. In this, rather than frequency we would use a

counter to maintain how many categories a particular call appears in and in the end

we retain the ones that appear in all. The total number of these calls was 31 and the

experiment was only performed with the embeddings generated using HMM2Vec and

Word2Vec. The best results achieved with this experiment with each classifier can be

seen below.

39

4.3.2.1 HMM2Vec

Figure 19: Confusion Matrix for HMM2Vec-RF Category Classification with calls in
all categories

40

Table 10: Classification Report for HMM2Vec-RF Category Classification with calls
in all categories

Category Precision Recall F1-Score
Adware 0.60 0.90 0.72

Backdoor 0.67 0.55 0.60
PWS 0.69 0.90 0.78

Modifier 0.64 0.70 0.67
Rogue 0.90 0.82 0.86
Tool 0.56 0.42 0.48

Trojan 0.89 0.73 0.80
Trojan Downloader 0.83 0.50 0.62

Trojan Spy 0.56 0.82 0.67
Worm 0.33 0.18 0.24
Virus 0.69 0.90 0.78

41

4.3.2.2 Word2Vec

Figure 20: Confusion Matrix for Word2Vec-KNN Category Classification with calls
in all categories

The best results achieved with Hmm2Vec and Word2Vec experiments came with

Random Forest and KNN at 0.67 and 0.72 respectively. The figures below compare

the scores achieved here to that from the experiments performed using Top 40 Calls.

42

Table 11: Classification Report for Word2Vec-KNN Category Classification with calls
in all categories

Category Precision Recall F1-Score
Adware 0.83 0.50 0.62

Backdoor 0.70 0.64 0.67
PWS 1.00 1.00 1.00

Modifier 0.75 0.60 0.67
Rogue 0.79 1.00 0.88
Tool 0.60 0.75 0.67

Trojan 0.67 0.55 0.60
Trojan Downloader 0.69 0.90 0.78

Trojan Spy 0.73 0.73 0.73
Worm 0.60 0.55 0.57
Virus 0.64 0.70 0.67

Figure 21: Comparison of HMM2Vec scores for categories with Top 40 calls and calls
in all categories (31 calls)

43

Figure 22: Comparison of Word2Vec scores for categories with Top 40 calls and calls
in all categories (31 calls)

These results indicate that the Top 40 Calls give us a better representation of

the malware sample than the calls that are present across all categories. This may be

because the number of these calls is 31 and is mostly a subset of the Top 40 Calls

which would mean that we are actually not gaining any insight. We also tried to do

some experiments with a set of calls that were common across all samples, however

since the number of calls was too low at 5 we concluded that there will be too much

information lost. However, selecting a different set using other methods such as

specifically tagging suspicious or rarer calls may still produce better results as seen

here [27].

4.3.3 Malware Family Classification

The experiments here consider seven malware families that were introduced in

4.1. Since the Top 40 calls performed consistently better than the Top 20 calls for all

our hybrid techniques, the features with Top 20 Calls are not considered for this part

of the research.

44

4.3.3.1 HMM2Vec

For HMM2Vec experiments, the best accuracy achieved came with Random

Forest at 0.85. The other classifiers performed very close achieving 0.84, 0.84 and 0.82

for SVM, kNN and CNN respectively. Fig 23 shows the confusion matrix for these set

of experiments.

Table 12: Classification Report for best HMM2Vec Family Classification

Category Precision Recall F1-Score
Adload 0.93 0.93 0.93
Bancos 0.69 0.73 0.71

Onlinegames 0.81 0.93 0.87
Vbinject 0.92 0.79 0.85
Vundo 0.75 0.86 0.80

Winwebsec 1.00 0.79 0.88
Zwangi 0.93 0.93 0.93

Note that a lot of the samples from distinct malware families are being misclassified

into the Bancos and Onlinegames families. This situation is apparent in other

experiments as well and may indicate a need for a more robust feature selection

technique.

4.3.3.2 Word2Vec

Word2Vec-RF received the best results overall for family classification, even

among all the word embedding techniques, at 0.93. This is a particularly good

result as this approach is able to predict a high number of samples. Other classifiers

also performed quite well with SVM, kNN and CNN achieving 0.9, 0.92 and 0.89

respectively.

4.3.3.3 ELMo

Fig 27 shows the confusion matrix for our hybrid ELMo experiments.

45

(a) HMM2Vec-SVM (b) HMM2Vec-RF

(c) HMM2Vec-kNN (d) HMM2Vec-CNN

Figure 23: Confusion Matrix for HMM2Vec Family Experiments

46

(a) Accuracy (b) Loss

Figure 24: Training Model Accuracy vs Loss For HMM2Vec-CNN

Table 13: Classification Report for best Word2Vec Family Classification

Category Precision Recall F1-Score
Adload 0.93 1.00 0.97
Bancos 0.93 0.93 0.93

Onlinegames 0.93 0.93 0.93
Vbinject 0.87 0.93 0.90
Vundo 0.93 0.87 0.90

Winwebsec 0.92 0.86 0.89
Zwangi 1.00 0.93 0.97

Table 14: Classification Report for best ELMo Family Classification

Category Precision Recall F1-Score
Adload 1.00 1.00 1.00
Bancos 0.82 0.93 0.87

Onlinegames 0.83 0.71 0.77
Vbinject 0.87 0.93 0.90
Vundo 1.00 1.00 1.00

Winwebsec 0.97 0.93 0.90
Zwangi 1.00 0.86 0.92

47

(a) Word2Vec-SVM (b) Word2Vec-RF

(c) Word2Vec-kNN (d) Word2Vec-CNN

Figure 25: Confusion Matrix for Word2Vec Family Experiments

48

(a) Accuracy (b) Loss

Figure 26: Training Model Accuracy vs Loss For Word2Vec-CNN

The accuracies, in increasing order, were 0.86 for CNN, 0.9 for SVM and kNN

and finally Random forest with 0.91.

4.3.3.4 BERT

The highest accuracy achieved for BERT was 0.92 with Random forest. Similar

to the previous category experiments, we saw that SVM performed better than kNN

getting 0.9 compared to the latter’s 0.88. Finally, CNN came last with about 0.88.

49

(a) ELMo-SVM (b) ELMo-RF

(c) ELMo-kNN (d) ELMo-CNN

Figure 27: Confusion Matrix for ELMo Family Experiments

50

(a) Accuracy (b) Loss

Figure 28: Training Model Accuracy vs Loss For ELMo-CNN

(a) BERT-SVM (b) BERT-RF

(c) BERT-kNN (d) BERT-CNN

Figure 29: Confusion Matrix for BERT Family Experiments

51

(a) Accuracy (b) Loss

Figure 30: Training Model Accuracy vs Loss For BERT-CNN

Table 15: Classification Report for best BERT Family Classification

Category Precision Recall F1-Score
Adload 1.00 0.93 0.97
Bancos 0.87 0.87 0.87

Onlinegames 0.93 1.00 0.97
Vbinject 0.93 1.00 0.97
Vundo 0.93 0.93 0.93

Winwebsec 0.85 0.79 0.82
Zwangi 0.93 0.93 0.93

4.3.3.5 Results on Malware Family Classification

Table 16 shows the optimal values we got for the hyperparameters of all classifiers.

52

Table 16: Hyperparameters Selected for Family Classification

Classifier Hyperparameter HMM2Vec Word2Vec ELMo BERT
SVM Kernel linear linear rbf rbf

C 1000 1000 100 100
gamma - - 0.0001 0.0001

RF n_estimators 200 200 400 400
max_depth 40 40 10 40
min_samples_split 2 2 2 3
min_samples_leaf 2 1 1 2

kNN n_neighbors 3 3 3 3
metric manhattan euclidean euclidean euclidean
weights distance distance distance distance

CNN epochs 200 200 200 200
learning_rate 0.0001 0.0001 0.0001 0.0001
activation relu relu relu relu
optimizer adam adam adam adam

Using the hybrid techniques, we were able to achieve high accuracy for classifi-

cation among the seven families peaking at 93% with Word2Vec-RF. Fig 31 shows

the accuracies achieved for the different techniques. The maximum accuracy with

HMM2Vec came at about 85 percent with Random forest, which is the least among

all our word embedding techniques. We observed that in samples where the number

of distinct API calls was not very high, the feature vector obtained had much less

information compared to the other techniques. This could attribute to the reason why

we see the low scores. It was observed that most of the misclassifications came from

Winwebsec being predicted as Bancos or Onlinegames.

53

Figure 31: Comparison of hybrid machine learning approaches for families

54

CHAPTER 5

Conclusion and Future Work

In this work, we conducted several experiments to understand the effectiveness of

API call information as a feature for malware category and family classification. We

tested hybrid machine learning techniques wherein we used different word embedding

techniques for engineering features. We tested the performance of four embedding

techniques, namely Hmm2Vec, Word2Vec, ELMo, and BERT, in conjunction with

four different classifiers SVM, RF, kNN, and CNN. From our results, it is clear that

Word2Vec outperforms all other embedding techniques with the highest accuracy in

the case of families reaching 93% and 77% in the case of categories. This is good

as Word2Vec training also takes the least amount of time among all our techniques

however it was expected for BERT to perform better. One of the reasons for this may

be the size of the dataset used. BERT requires a large amount of training data to

learn meaningful relationships and it is possible that with an increase in the number

of samples, we see an increase in performance. Another possible reason may be the

limitation on the length of the input. For BERT, this length is set at 512 and we

make use of the first 512 tokens in our sequence. However, since our sequences are

quite long in some cases, it is possible that we are losing essential information and

a different method to yield the tokens such as the last 512 or a custom selection

may produce better results. In terms of classifiers, we observe that Random Forest

consistently outperforms all other classifiers. The results documented show that API

calls can be very useful for classifying malware.

In the future, the experiments performed here can be extended to more malware

categories and families. Moreover, it would be interesting to see similar experiments

performed with other features such as byte n-grams or some combinations of features.

Another possibly promising approach would be to try more enhanced techniques for

55

feature selection. In this research, we select features based on their frequency but

other techniques such as TF-IDF and Fisher score have proved effective for this task

[8] [28]. These techniques could boost the scores specifically in the case of HMM2Vec

as they would remove some irrelevant features.

We have used many word embedding techniques in this project but there exist

many more that could provide fruitful results. Firstly, experiments done here can be

extended to include more parameters such as the skip-gram algorithm for Word2Vec.

Since Word2Vec with CBOW gave us the best results, the performance could poten-

tially improve with skip-gram. In addition, we could also try to use other embedding

techniques. Recently, GPT-based models have gained a lot of popularity and it would

be interesting to see how they perform compared to the techniques we tried here.

BERT performed quite well in most of the experiments and as mentioned previously,

with more exploration the results could potentially improve. This warrants a further

look into other models related to it as well such as distilBERT or Roberta. Another

possible approach would be to use more complex architectures for CNN such as ResNet

rather than building sequential layers.

56

LIST OF REFERENCES

[1] M. Stamp, ‘‘A revealing introduction to hidden markov models,’’ Science, pp.
1--20, 01 2004.

[2] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of word
representations in vector space,’’ 2013.

[3] D. A. Nguyen, ‘‘Create a strong text classification with the help from elmo,’’
2019. [Online]. Available: https://andy-nguyen.medium.com/create-a-strong-
text-classification-with-the-help-from-elmo-e90809ba29da

[4] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, ‘‘Bert: Pre-training of deep
bidirectional transformers for language understanding,’’ 2019.

[5] ‘‘Sonicwall cyber threat report,’’ p. 21, 2023. [Online]. Available: https://www.
sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf

[6] M. Egele, T. Scholte, E. Kirda, and C. Kruegel, ‘‘A survey on automated
dynamic malware-analysis techniques and tools,’’ ACM Comput. Surv., vol. 44,
no. 2, mar 2008. [Online]. Available: https://doi.org/10.1145/2089125.2089126

[7] D. Uppal, R. Sinha, V. Mehra, and V. Jain, ‘‘Exploring behavioral aspects of
api calls for malware identification and categorization,’’ in 2014 International
Conference on Computational Intelligence and Communication Networks, 2014,
pp. 824--828.

[8] Namita, Prachi, and P. Sharma, ‘‘Windows malware detection using machine
learning and tf-idf enriched api calls information,’’ in 2022 Second International
Conference on Computer Science, Engineering and Applications (ICCSEA), 2022,
pp. 1--6.

[9] M. Kalash, M. Rochan, N. Mohammed, N. D. B. Bruce, Y. Wang, and F. Iqbal,
‘‘Malware classification with deep convolutional neural networks,’’ in 2018 9th
IFIP International Conference on New Technologies, Mobility and Security
(NTMS), 2018, pp. 1--5.

[10] M. Siddiqui, M. C. Wang, and J. Lee, ‘‘A survey of data mining techniques
for malware detection using file features,’’ in Proceedings of the 46th Annual
Southeast Regional Conference on XX, ser. ACM-SE 46. New York, NY, USA:
Association for Computing Machinery, 2008, p. 509–510. [Online]. Available:
https://doi.org/10.1145/1593105.1593239

57

https://andy-nguyen.medium.com/create-a-strong-text-classification-with-the-help-from-elmo-e90809ba29da
https://andy-nguyen.medium.com/create-a-strong-text-classification-with-the-help-from-elmo-e90809ba29da
https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf
https://www.sonicwall.com/medialibrary/en/white-paper/2023-cyber-threat-report.pdf
https://doi.org/10.1145/2089125.2089126
https://doi.org/10.1145/1593105.1593239

[11] T. K. Tran and H. Sato, ‘‘Nlp-based approaches for malware classification from api
sequences,’’ in 2017 21st Asia Pacific Symposium on Intelligent and Evolutionary
Systems (IES), 2017, pp. 101--105.

[12] I. Popov, ‘‘Malware detection using machine learning based on word2vec em-
beddings of machine code instructions,’’ in 2017 Siberian Symposium on Data
Science and Engineering (SSDSE), 2017, pp. 1--4.

[13] S. Alqurashi and O. Batarfi, ‘‘A comparison between api call sequences and
opcode sequences as reflectors of malware behavior,’’ in 2017 12th International
Conference for Internet Technology and Secured Transactions (ICITST), 2017,
pp. 105--110.

[14] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp, ‘‘A
comparison of static, dynamic, and hybrid analysis for malware detection,’’
Journal of Computer Virology and Hacking Techniques, vol. 13, no. 1, pp. 1--12,
dec 2015. [Online]. Available: https://doi.org/10.1007%2Fs11416-015-0261-z

[15] A. Chandak, W. Lee, and M. Stamp, ‘‘A comparison of word2vec, hmm2vec, and
pca2vec for malware classification,’’ 2021.

[16] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and
L. Zettlemoyer, ‘‘Deep contextualized word representations,’’ 2018.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, ‘‘Attention is all you need,’’ 2017.

[18] A. Kale, V. Pandya, F. Di Troia, and M. Stamp, ‘‘Malware classification with
word2vec, hmm2vec, bert, and elmo,’’ Journal of Computer Virology and Hacking
Techniques, vol. 19, pp. 1--16, 04 2022.

[19] ‘‘Buster sanbox analyzer.’’ [Online]. Available: https://bsa.isoftware.nl/

[20] ‘‘Sandboxie.’’ [Online]. Available: https://sandboxie-plus.com/sandboxie/

[21] M. Stamp, A Reassuring Introduction to Support Vector Machines, 09 2017, pp.
95--132.

[22] L. Breiman, ‘‘Random forests,’’ Machine Learning, vol. 45, pp. 5--32, 10 2001.

[23] A. Liaw and M. Wiener, ‘‘Classification and regression by randomforest,’’ Forest,
vol. 23, 11 2001.

[24] K. O’Shea and R. Nash, ‘‘An introduction to convolutional neural networks,’’
2015.

58

https://doi.org/10.1007%2Fs11416-015-0261-z
https://bsa.isoftware.nl/
https://sandboxie-plus.com/sandboxie/

[25] M. Stamp, ‘‘Reference implementation of hmm in c.’’ [Online]. Available:
https://www.cs.sjsu.edu/~stamp/RUA/HMM_ref.zip

[26] ‘‘Gensim.’’ [Online]. Available: https://radimrehurek.com/gensim/

[27] S. Gupta, H. Sharma, and S. Kaur, ‘‘Malware characterization using windows
api call sequences,’’ in Security, Privacy, and Applied Cryptography Engineering:
6th International Conference, SPACE 2016, Hyderabad, India, December 14-18,
2016, Proceedings 6. Springer, 2016, pp. 271--280.

[28] S. Sharma, C. R. Krishna, and S. K. Sahay, ‘‘Detection of advanced malware by
machine learning techniques,’’ 2019.

59

https://www.cs.sjsu.edu/~stamp/RUA/HMM_ref.zip
https://radimrehurek.com/gensim/

APPENDIX

Appendix
A.1 Additional Results

Figure A.32: Confusion Matrix for HMM2Vec-SVM Category Classification

60

Figure A.33: Confusion Matrix for HMM2Vec-KNN Category Classification

61

Figure A.34: Confusion Matrix for HMM2Vec-CNN Category Classification

62

(a) Accuracy (b) Loss

Figure A.35: Training Model Accuracy vs Loss For Hmm2Vec-CNN For Category

Figure A.36: Confusion Matrix for Word2Vec-SVM Category Classification63

Figure A.37: Confusion Matrix for Word2Vec-KNN Category Classification

64

Figure A.38: Confusion Matrix for Word2Vec-CNN Category Classification

65

(a) Accuracy (b) Loss

Figure A.39: Training Model Accuracy vs Loss For Word2Vec-CNN For Category

Figure A.40: Confusion Matrix for ELMo-SVM Category Classification
66

Figure A.41: Confusion Matrix for ELMo-KNN Category Classification

67

Figure A.42: Confusion Matrix for ELMo-CNN Category Classification

68

(a) Accuracy (b) Loss

Figure A.43: Training Model Accuracy vs Loss For ELMo-CNN For Category

Figure A.44: Confusion Matrix for BERT-SVM Category Classification
69

Figure A.45: Confusion Matrix for BERT-KNN Category Classification

70

Figure A.46: Confusion Matrix for BERT-CNN Category Classification

71

(a) Accuracy (b) Loss

Figure A.47: Training Model Accuracy vs Loss For BERT-CNN For Category

Figure A.48: Confusion Matrix for HMM2Vec-SVM Category Classification with
Other Symbol (41 Calls)

72

Figure A.49: Confusion Matrix for HMM2Vec-KNN Category Classification with
Other Symbol (41 Calls)

73

Figure A.50: Confusion Matrix for HMM2Vec-CNN Category Classification with
Other Symbol (41 Calls)

74

Figure A.51: Confusion Matrix for HMM2Vec-SVM Category Classification with calls
in all categories

75

Figure A.52: Confusion Matrix for HMM2Vec-KNN Category Classification with calls
in all categories

76

Figure A.53: Confusion Matrix for HMM2Vec-CNN Category Classification with calls
in all categories

77

Figure A.54: Confusion Matrix for Word2Vec-SVM Category Classification with calls
in all categories

78

Figure A.55: Confusion Matrix for Word2Vec-RF Category Classification with calls
in all categories

79

Figure A.56: Confusion Matrix for Word2Vec-CNN Category Classification with calls
in all categories

80

	Malware Classification using API Call Information and Word Embeddings
	Recommended Citation

	Introduction
	Related Work
	Background
	Malware Analysis
	Malware Category and Family
	Dynamic Analysis with Buster Sandbox Analyzer and Sandboxie

	Word Embedding Techniques
	HMM2Vec
	Word2Vec
	ELMo
	BERT

	Classifiers
	Support Vector Machine
	Random Forest
	k-Nearest Neighbors
	Convolutional Neural Networks

	Dataset and Experiments
	Dataset
	Experiments
	HMM2Vec Experiments
	Word2Vec Experiments
	ELMo
	BERT
	Classifiers

	Results
	Malware Category Classification
	Malware Category Classification with Different Set of Calls
	Malware Family Classification

	Conclusion and Future Work
	LIST OF REFERENCES
	Appendix
	Additional Results

