
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

CodEval CodEval

Aditi Agrawal
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons, and the Other Computer Sciences Commons

Recommended Citation Recommended Citation
Agrawal, Aditi, "CodEval" (2023). Master's Projects. 1224.
DOI: https://doi.org/10.31979/etd.kj7h-7xxh
https://scholarworks.sjsu.edu/etd_projects/1224

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1224&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1224?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1224&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

CodEval

A Project Report

Presented to

The Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements of the Class

CS 298

By

Aditi Agrawal

May 2023

© 2023

Aditi Agrawal

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

CodEval

by

Aditi Agrawal

Approved for the Department of Computer Science

San Jose State University

May 2023

Dr. Benjamin Reed Department of Computer Science

Dr. Faranak Abri Department of Computer Science

Dr. Thomas Austin Department of Computer Science

 i

ABSTRACT

Grading coding assignments call for a lot of work. There are numerous aspects of the

code that need to be checked, such as compilation errors, runtime errors, the number of test

cases passed or failed, and plagiarism. Automated grading tools for programming

assignments can be used to help instructors and graders in evaluating the programming

assignments quickly and easily. Creating the assignment on Canvas is again a time taking

process and can be automated. We developed CodEval, which instantly grades the student

assignment submitted on Canvas and provides feedback to the students. It also uploads,

creates, and edits assignments, thereby making the whole experience streamlined and quick

for instructors and students. It is simple to use, easily integrated with the learning

management system, and has a low learning curve. This report shows the background,

implementation, and results of using CodEval for programming courses.

 ii

ACKNOWLEDGMENT

 I extend my gratitude to Professor Reed for consistently guiding and being part of this

project. Archit Jain for his contribution to this project, and finally Department of Computer

Science for their resources and support for the opportunities that came up with this project.

I would also like to thank the committee member, Dr. Faranak Abri and Dr. Thomas Austin,

for their guidance.

 i

TABLE OF CONTENTS

ABSTRACT ... i

ACKNOWLEDGMENT .. ii

I. INTRODUCTION ... 1

II. RELATED WORK .. 4

III. SYSTEM DESIGN .. 11

3.1 Grading Submission ... 12

3.1.1 Specification Files .. 13

3.1.2 CodEval Configurations ... 15

3.1.3 Running CodEval ... 16

3.1.4 Feedback Method ... 17

3.1.5 Supporting Multiple Languages .. 19

3.2 Creating Assignments .. 19

3.2.1 Uploading Files .. 20

3.2.2 Converting Text to Markdown .. 22

3.2.3 Creating and Editing Assignments .. 24

3.2.4 Creating Discussion Topic and Linking .. 25

3.2.5 Command Line Arguments ... 26

IV. RESULTS .. 29

4.1 Evaluation of Submissions ... 29

 ii

4.1.2 Student Evaluations .. 30

4.2 Assignment Creation .. 32

V. FUTURE WORK ... 36

5.1 Adding Support for Python .. 36

5.2 Enhancing Readability of Output ... 36

5.3 Convert the bash code to Python .. 37

5.4 Add Support for Plagiarism Check ... 37

5.5 Integrating CodEval with other LMS .. 37

VI. CONCLUSION .. 38

REFERENCES ... 39

 iii

LIST OF TABLES

Table 1: CodEval Specification Tags ... 15

Table 2: Survey Results .. 30

Table 3: Comparing assignments with and without usage of CodEval 32

 iv

LIST OF FIGURES

Figure 1: System Architecture .. 11

Figure 2: CodEval Specification file .. 13

Figure 3: CodEval Configuration File .. 16

Figure 4: parsediff Output .. 18

Figure 5: parsevalgrind Output .. 18

Figure 6: Addition of HINT tag in specification file .. 19

Figure 7: Uploading the files manually .. 20

Figure 8: assignmentFiles folder and required files in it.. 21

Figure 9: Files uploaded on Canvas .. 21

Figure 10: CRT_HW START tag in the specification file ... 22

Figure 11: CRT_HW END tag in the specification file ... 22

Figure 12: EXMPLS tag in the specification file. ... 23

Figure 13: URL_OF_HW in the specification file .. 24

Figure 14: DISCSN_URL tag in the specification file ... 26

Figure 15: Example of creating commands using click [63] ... 27

Figure 16: Command line arguments options in CodEval .. 28

Figure 17: grade-submissions command’s options ... 28

Figure 18: Example of a submission evaluation by CodEval .. 29

Figure 19: Html format of the description ... 32

Figure 20: URL_OF_HW tag has been replaced with the file URL ... 33

Figure 21: Created Assignment on Canvas .. 33

Figure 22: Examples in the description .. 34

file:///C:/SJSUDocs/CS297_Fall2022/Aditi_CS298_FinalReport.docx%23_Toc134699753
file:///C:/SJSUDocs/CS297_Fall2022/Aditi_CS298_FinalReport.docx%23_Toc134699754
file:///C:/SJSUDocs/CS297_Fall2022/Aditi_CS298_FinalReport.docx%23_Toc134699755
file:///C:/SJSUDocs/CS297_Fall2022/Aditi_CS298_FinalReport.docx%23_Toc134699757
file:///C:/SJSUDocs/CS297_Fall2022/Aditi_CS298_FinalReport.docx%23_Toc134699758

 v

Figure 23: Referenced files and discussion topic ... 35

Figure 24: Created Discussion topic, with reference to the assignment. 35

 vi

 LIST OF ABBREVIATIONS

LMS – Learning Management Systems

UML – Unified Modelling Language

API – Application Programming Interface

XML – Extensible Markup Language

RPC – Remote Procedure Call

SQL – Structured Query Language

REST – Representation State Transfer

HTML – HyperText Markup Language

XML – Extensible Markup Language

JSON – JavaScript Object Notation

PEML – Programming Exercise Markup Language

AML – ArchieML

YAML – YAML Ain’t Markup Language

CMS – Content Management System

SGML – Standard Generalized Markup Language

GFM – GitHub Flavoured Markdown

URL – Unified Resource Locator

 1

I. INTRODUCTION

Advancements in technology, easy access to the internet, and the pandemic have led

to the shift to virtual platforms in academia. Streaming classes, taking exams, submitting

assignments, and providing grades all take place through learning management systems

(LMS) such as Canvas [1], Moodle [2], and Codelab [3]. Creating content for the classes is

already a laborious task and on top of it evaluating the assignments, especially coding

assignments for class sizes varying from 20-80, and one assignment per week for a four-month

long semester is cumbersome.

Grading the coding assignments can be done by leveraging automated grading tools

for programming assignments, thereby reducing the workload on an instructor or grader.

There are a number of tools in the market, to name a few, ASSYST [4], JavaAssess [5], MarkUs

[6], and Submitty [7]. These tools are either standalone or integrated with LMS, either way,

an assignment is submitted on these tools and evaluated based on numerous factors such as

compilation errors, run-time errors, the number of test cases passed or failed so on and so

forth and the result is either graded and displayed to the user on the tool or is used by the

grader or instructor to grade the assignment manually and later provide the final grades to

the student.

The advantage of using such tools is that they provide instant feedback to the student

and perform much of the quantitative check of the student code which in turn reduces the

burden on the instructor or grader. Another benefit is that when compared with manual

grading of programming assignments, they are not error-prone and consume much less time

to evaluate the assignment thoroughly.

 2

CodEval [8] is one such automated grading tool for programming assignments that are

integrated with LMS Canvas [1]. It provides instant feedback to the students, and supports

multiple languages such as Java, and C. It has its own specification format which is simple and

has a low learning curve and supports multiple programming languages with minimal changes

and can be used for creating an assignment as well as evaluating the assignment on Canvas[1]

or any other LMS.

San Jose State University uses Canvas to manage assignments and grade them. For

programming assignments, a student must upload a zip file of the code on Canvas [1] and

wait for it to be evaluated. Grader usually waits until after the deadline to start the grading.

The grader or instructor must download the zip file, unzip it on their own environment, setup

the environment, compile the code which can be malicious due to a malicious code, run it

against the test cases, check for additional requirements for the assignment and then grade

the assignment and upload the grades and feedback of each student on Canvas.

As one can see, this is time taking, and this aspect of programming assignment can be

automated therefore CodEval has been developed. CodEval [8], automates downloading the

zip file, running the code on the Docker instance, running it against the specification file, and

providing instant feedback to the student in the comment section of Canvas. In this way the

initial evaluation of the code is done by the tool and the grader or instructor can go through

the feedback provided by CodEval and provide final grades to the student.

The first implementation was finished in the Spring of 2022, which included the

features mentioned above. As part of the fall of 2022, a couple of enhancements features

such as providing hints for failed test cases and providing more readable feedback of failures

to students in the comment section have been implemented. Other enhancement features

 3

such as checking for plagiarism and providing support for using the specification file for

creating the assignment on Canvas will be implemented.

CodEval [8] is already being used in Operating System and Algorithm undergrad

classes at SJSU and has shown positive results by catching the errors at an early stage and

giving students a chance to rework their code and submit it multiple times to get it all right

by the deadline. Student’s feedback has also been positive showing improvement in coding

skills and confidence.

Section 2 will go over the related work and background. Section 3 describes the system

design for CodEval. Section 5 displays the results and Section 6 concludes the report followed

by references.

 4

II. RELATED WORK

Although C++ and Java are supported by most tools, other languages are now being

supported by some tools recently [9]. The most recent automated grading tools on the market

have been compared and examined by Aldriye et al. [10] and J Caiza et al. in [11]. They

emphasize the distinctions, benefits, and advantages of the various systems and have paved

the road for potential future developments in automated grading tools. Assignments in the

programming languages Java, C++, and Scala are graded using a variety of tools, including

CourseMaker created by Nottingham University[12], JavaBrat created at San Jose State

University[13], WebCat, and RoboLift(an incremental work on WebCat).

CourseMaker [12] verifies the student code against specified test cases and examines

typographic consistency as part of their evaluation criteria (indentations, comments, layout

of the file). In contrast to JavaBrat[13] and Virtual Programming Lab[15], which grade based

on code correctness, which is determined by validating the output against the output from

test cases, WebCat[14] checks code correctness (how many tests pass), test completeness

(check which parts of the code are actually executed), and test validity (test accurate-

consistent with the assignment). While some programs merely consider whether test cases

passed or failed, others, like CourseMaker, also consider extra factors like the soundness of

the code design.

CodEval uses the second approach and has additional comprehensive checks for the

code. The effects of automated grading technologies on students' opinions of them as well as

their performance were examined by A. Gordillo [16]. According to the results, adding the

automated evaluation tool to the curriculum helped students by strengthening their

 5

motivation, the standard of their work, and their practical programming abilities. We'll

demonstrate how CodEval yields comparable outcomes.

In [11], the author notes that while most automated grading solutions, such

CourseMaker [12], WebCat [14], and Marmoset [17], are freestanding, the next step for these

technologies would be integration with LMSs. For instance, in order to utilize CourseMaker,

users must install the client on their computer. Similar to CodEval in terms of integration with

LMSs, there are other tools as well, like Virtual Programming Lab, JAssess, and JavaBrat that

can be connected with LMSs or offer plugins with platforms like Moodle.

The Magdeburg University's grading tool [18] is independent of any specific LMS. In

order to evaluate a programming language, it takes into account three servers: the front-end,

an LMS system, and the spooler server, which manages the request, submissions queues, and

back-end calls. XML-RPC (Remote Procedure Calls) has been utilized to talk to the servers. It's

a good idea to make the automatic grading tool independent of an LMS. It is also possible to

utilize CodEval independently with different LMSs. It takes advantage of the LMS's APIs rather

than any explicit procedure calls to communicate. Although CodEval makes use of pre-existing

Docker containers rather than needing the setup of individual servers, it nevertheless

supports a variety of languages and environments.

A software product's security is an essential component. The preservation of the

submissions and safeguarding the host server from any malicious attacks from any submission

are essential in automated grading solutions. Marmoset [17] runs its J2EE web server and SQL

database in a separate environment to guard against the effects of malicious programming.

WebCat [14] has modified architectural concepts to address authentication issues and illegal

activity.

 6

Using sandbox settings to test security measures is a more comprehensive strategy.

CourseWork runs its code in a sandbox environment. The use of containers offers two

benefits. They give the host server security and a tailored, spotless environment in which to

execute the tests. For its container environment, CodEval uses Docker, however, other

environments can be utilized by altering the setup options.

Instead of providing comments with failing test cases, Liu et al. AutoGrader's program

[19] looks for semantically distinct execution paths between a student's submission and the

reference implementation. To completely automate the process of analyzing a submission

based on semantics, the goal of this study is to decrease the amount of manual labor

necessary to generate test cases. By defining unique test instructions in the evaluation

specification, CodEval enables the integration of these tools for evaluation.

Most studies on automated grading tools for programming assignments conducted to

date have divided and contrasted the tools into categories such as programming languages,

dynamic analysis, and static analysis. K.A. Mukta conducted a market analysis of the

automated grading technologies available up till 2005 [20]. She researched and listed the

characteristics that these programming tools could use to analyze automatically. The use of a

sandbox environment for security purposes, testing the code's functionality and efficiency

against predefined test cases, catching programming errors like runtime and compilation

errors, running student-defined test cases, coding style, programming language-specific

issues like memory leak check for C, and special features were some of the features

mentioned (certain libraries are used or not).

Building on similar work, P. Ihantola et al. [21] and Lian et al. [22] covered the

automated grading tools until 2010. Other than evaluating them on the same features as done

 7

in [20], [22] has also compared the tools based on the platforms they are offered on, such as

whether the tool is a standalone tool or integrated with LMS such as CodEval[8], AutoGrader

[23], and on resubmission criteria which includes limiting the number of submissions, penalty

on late submission, limiting the amount of feedback provided for instance in [8], and hybrid

approaches such as in Marmoset[17], where the limit of submissions is optional and set by

the instructor.

Like the surveys previously mentioned, the authors in [24] evaluate the tools until

2021 based on additional criteria including the CS domains supported and the data provided

to a teacher to enhance student learning. They thoroughly divided the tools into various

computing-related fields, including visual programming, system administration (LINSIM[25]),

formal language and automata (JFLAP[26]), web development, software modeling (by

comparing class diagrams and other UML elements), parallel computing (SAUCE[27]), and

software testing, which includes assessing the code base against test cases.

Some surveys evaluated the tools based on the instructional element in addition to

evaluating the technical distinctions and concepts. [20],[28],[29] have contrasted and

compared grading tools for automatic assessment (GAME[30]), semi-automatic assessment

(JACKSON[31]), and hybrid assessment, where some static and dynamic analysis is performed

by the tool and the qualitative analysis, such as code style, and deciding which grade to award

is performed by the instructor or the grader. (Webcat[32] and MOSSHAK[33]).

Separating the tools based on a formative versus summative approach was another

criterion utilized in [20]. In CourseMaker[34] and Codeval [8], the author explains the

formative technique as one in which the student can submit the assignment more than once

 8

to assist them in developing their programming skills. In contrast, a summative approach—

like BOSS[35,36]—allows the learner to submit the code just once.

There are surveys on various aspects of automated grading technologies in addition

to technical and pedagogical evaluation. J.R. Alamo experimented with his students in [37] by

introducing a variety of online assessment tools (Programmr [38], Code Step by Step [39])

each fall semester. He then gathered input from the students to determine whether the tools

had improved their grades.

R. Queiros and J.P. Leal examined an intriguing element of automated tools in [40],

where they assessed the tools' capacity for interoperability. They examined the

interoperability of 15 tools in terms of programming exercises, users, and test outcomes. They

came to the conclusion that more than 50% of these instruments lacked sophisticated

interoperability, thus attention must be paid to this market. Despite the quality of the

literature and surveys on automated grading tools, none of them have thoroughly examined

the assessment criteria of the tools now on the market.

To format a document, assignment, or web page there are a number of markup

languages and respective parsers used on websites and desktop applications. Some of the

most popular markup languages are Hyper Text Markup Languages (HTML) [41], Extensible

Markup Language (XML) [42], and JavaScript Object Notation (JSON) [43]. HTML and XML

are used to display the data in a standard format on web pages and JSON is a data-interchange

format used for programs. Some of the other data-oriented languages are YAML Ain’t Markup

Language (YAML) [44], Programming Exercise Markup Language (PEML) [45], and ArchieML

(AML)[46]. YAML is used in applications where data is stored and transmitted, in

configuration files, and is like JSON.

 9

Programming Exercise Markup Language (PEML), which is a specific data format for

creating coding assignments. In [45], the author claims that the language is simple and has

less learning curve compared to YAML or JSON and therefore is better than to be used for

programming assignments. Another example is ArchieML, which also has a simpler format to

edit and structure a document to be rendered on the web. In [46], explains the subtle

difference of AML when compared to YAML or JSON, which gives less significance to

whitespace, and syntax that can be learned and used by non-programmers.

As mentioned in Standard Generalized Markup language (SGML) [47], a markup

language contains the format of how the document should look like and not the process of

creating the document, therefore parsers are required to convert the data from these markup

languages to entities that can be either rendered as a web page or can be read as input to a

program. A number of desktop applications and websites support the usage of these data

formats by having parsers or plugins to translate the data such as GitHub [48], Kattis, and

Canvas.

Programming languages such as Python, Ruby, R, Java, CPP, and C# have libraries to

parse these markup language data such as the ‘json’ library in CPP to read JSON objects or

the ‘XML’ library in Python to read XML objects. Yet another markup language whose name

came be misleading is Markdown language, which is a markup language to create documents

and is different from other markup languages as it does not contain tags and is simple to read

and edit.

In [49], the author mentions the advantages of using the Markdown language, some

of which are, it can be used to create documents, email, websites, and technical

documentation, it can be opened in any application, it can be created on any Operating

 10

system, and even if the application using it ceases to exist, the Markdown-formatted

document can be read by any other text editor applications as well.

Markdown is popular and is supported by multiple websites such as GitHub, Discord,

Microsoft Teams, and RStudio [50]. The parser for Markdown is a Perl script named

markdown.pl [49], which converts the data in a markdown file to HTML or XHTML, which can

be rendered as web pages. There are third-party parsers that convert the Markdown

formatted data to HTML or pdf, some of them are iaWriter [51], ghostwriter [52], Markdown

Monster [53], ReText [54], and StackEdit [55].

There are other flavors of Markdown as well in the market. GitHub-flavored

Markdown (GFM) [56] supports table contents, nesting block contents under lists, and some

GitHub features such as references to commits, on top of the basic Markdown features.

Similarly, Markdown Extra is implemented in Python and used by content management

systems (CMS) such as Drupal [57] and TYPO3 [58]. The additional features are supported by

Markdown. Extra are tables, footnotes, abbreviations, and multiple lines of code. Due to the

simplicity of Markdown, it is used in CodEval to create assignments.

 11

III. SYSTEM DESIGN

CodEval automates grading the coding submissions and creating the submission on

Canvas. Grading the submission comprises of downloading the assignment from Canvas,

starting the Docker instance, running each submission against the specification file and

displaying the feedback in the comments section on Canvas. On the other hand, creating the

assignment comprises uploading the required files, converting the text to HTML, creating the

assignment, and creating a discussion topic. Other than providing instant feedback and

automatic creation of assignments, another design advantage of using CodEval is that, all the

states of the CodEval reside on Canvas and none on the instructor’s server. This design

advantage makes installing and shifting CodEval to other servers seamless and effortless.

Figure 1, depicts the system architecture of CodEval.

Figure 1: System Architecture

 12

3.1 Grading Submission

CodEval connects to Canvas using the Canvas REST API while running locally on a

computer. CodEval can download contributions and annotate them using this API.

Additionally, we keep specification files and other supporting files for testing and reviewing

the submissions using the Canvas File service. CodEval will only be able to access courses and

content that the user running CodEval is authorized to view since Canvas employs API tokens

to restrict access to Canvas features. This makes sure that a student cannot access the

specifications and submissions of other students.

CodEval leverages Docker to execute the compilation and test cases in a container to

isolate the student code from the machine conducting the test after downloading a

submission and the specification files that specify how to assess the submission. CodEval can

perform the evaluations outside of Docker, however, doing so is not advised to prevent

malicious or buggy submissions from harming the computer running CodEval. After the code

has been assessed, CodEval will use the Canvas REST API to submit the result as a remark to

the submission in Canvas.

CodEval does not require any special Canvas configuration to work. It uses the REST

API that instructors can enable by creating an access token. Instructors upload all the

specification files and support files to Canvas so that they only need to interact with the

Canvas interface once while creating CodEval assignments. Once CodEval is running on a

server using the provided tokens, instructors, students, and graders do everything through

Canvas.

 13

3.1.1 Specification Files

The CodEval specs files were made to be simple to produce and read. Additionally, we

needed them to be adaptable enough to take both our straightforward programming tasks

and our more complicated ones. The tag, a space, and the data associated with the tag are

the first three characters on each line of the file. For instance, Figure 2 displays a very basic

configuration file that executes the well-known ‘hello world’ Java application. In that

illustration, the script to use to analyze the specification file is specified on the first line that

begins with the RUN tag.

 The tag C tells CodEval to run the compilation command adjacent to it. T tag stands

for the test cases that need to be run, and O is the expected output of that test case which is

compared with the student’s output for that test case. X tag is for the exit code of the code

while executing that particular test case. If the output is of multiple lines then each output

Figure 2: CodEval Specification file

 14

line is prefixed with O. The last test case in the figure starts with HT which stands for the

hidden test case. If this test case fails then the input of the test case is not displayed, but a

hint is still provided. Normal test cases will show hints as well as the input of that test case in

case of failures. Table 1 lists all the tags supported by the CodEval specification file.

Tag Meaning Function

RUN Run Script Specifies the script to use to evaluate the specification

file. Defaults to evaluate.sh.

Z Download zip Will be followed by zip files to download from Canvas to
use when running the test cases.

CF Check Function Will be followed by a function name and a list of files to
check to ensure that the function is used by one of those
files.

CMD/TCMD Run command Will be followed by a command to run. The TCMD will
cause the evaluation to fail if the command exits with an
error.

CMP Compare Will be followed by two files to compare.

T/HT Test Case Will be followed by the command to run to test the

submission.

I/IF Supply Input Specifies the input for a test case. The IF version will read
the input from a file.

O/OF Check output Specifies the expected output for a test case. The OF
version will read from a file.

E Check error Specifies the expected error output for a test case.

TO Timeout Specifies the time limit in seconds for a test case to run.
Defaults to 20 seconds.

X Exit code Specifies the expected exit code for a test case. Defaults

to zero.

HINT Hint Provides hints to the hidden test cases.

CRT_HW

START

Start

description

Depicts the beginning of the description of the

assignment. It is followed by the assignment name.

CRT_HW END End

description

Depicts the end of the description of the assignment.

 15

EXMPLS Examples Examples in the description

URL_OF_HW File URL URL of the file is linked.

DISCSN_URL Discussion

Topic URL

URL of the Discussion Topic is linked.

Table 1: CodEval Specification Tags [71].

One of the evaluation criteria that CodEval performs is checking if the required

function is used or not in the code. The grader eventually must verify if the function was

correctly used or not, but the check failing or passing during CodEval evaluation can help

remind the student that he/she has missed using the function or has used it although it was

not required to be used. For instance, the second assignment in the Operating Systems course

focused on using fork(), therefore checking submissions for fork() served as a reminder to

students who had forgotten to include fork(). It also gave the grader a hint about a potential

issue.

 Note that the grader still needed to ensure that fork() was used appropriately even if

the submission did use it. The grep command was not as simple as just grep fork main.c, so

we added the CF tag, which allows us to specify CF fork main.c, to check for the use of

functions at first. We started using CodEval before the CF, TCMD, IF, and OF tags were

included. In each instance, we only needed a few lines of script and a few minutes to add the

tag and get it working. CF command has only four lines of code.

3.1.2 CodEval Configurations

While configuring CodEval, Canvas and Docker both are configured. Figure 3 below

shows the Canvas configuration. The SERVER section has the URL details of the Canvas

 16

instance running on the SJSU server. URL for SJSU: https://sjsu.instructure.com. Following this

tag it contains token which contains Canvas API token corresponding to the user running

CodEval. The RUN section contains the commands to run the evaluation of the submission.

SUBMISSIONS and EVALUATION are substituted with the path of the downloaded submission

and the command to evaluate the submission. The command starts with docker as CodEval

starts a docker instance, sets up the environment in docker, and then runs the code in that

instance.

3.1.3 Running CodEval

The name of the course to be evaluated is passed as a runtime parameter to CodEval.

It will look for any contributions that lack a CodEval remark by scanning all the assignments

with related specification files in the Canvas Files portion of Canvas. These submissions will

be downloaded and evaluated in accordance with the CodEval specification. We utilize the

Linux cron function to execute CodEval every five minutes since we need submissions to be

assessed within five minutes after submission.

The CodEval Python script connects to Canvas using the Canvas REST APIs, creating

the temporary folder, downloading the submissions, and storing the submissions in the

temporary folder. CodEval builds a Docker instance for each student’s every submission,

Figure 3: CodEval Configuration File

https://sjsu.instructure.com/

 17

compiles and runs the student’s code, and compares the student’s output with the expected

output mentioned in the specification file. The output from the comparison is sent back as

feedback to the comment section on Canvas using Canvas REST API.

3.1.4 Feedback Method

Both static and dynamic analyses of code are performed by CodEval. Static analysis

ensures the software compiles correctly and confirms the presence of particular functions or

commands. The CMD or TCMD commands can be used to carry out ad-hoc static analysis. The

specification file's test cases are executed against the compiled code as part of the dynamic

analysis, which then shows whether the test case passed or failed. The command for the failed

test case will be displayed if the test case has failed. The diff tool is used to compile errors

brought on by unexpected output. Dynamic analysis can also use runtime analyzers to verify

the accuracy, such as valgrind [59].

After receiving feedback from students on CodEval, the readability experience of

students was improved. As part of this step, the result from the diff tool and valgrind [59]

were further processed by new parsers namely parsediff and parsevalgrind to parse the result

from diff and valgrind and convert it to a more easily comprehensible format.

parsediff parses the output of diff of expected output and student’s output and

displays the lines that are needed to be added in the student’s output and also the lines that

need to be not present in the student’s output. These lines are prefixed with ‘+’ and ‘-’

respectively. The parsed output is sent to the logOfDiff file in the evaluationLogs folder. The

snippet of the output is given below in Figure 4.

 18

Figure 4: parsediff Output

Similarly, parsevalgrind takes the XML formatted output of valgrind and parses its

respective tags to read the exact error statement, the hierarchy of functions where the error

has occurred, the line in each function, and the type of error for each error in the code and

print it out so that students can better understand where the memory leak has taken place.

parsevalgrind sends its output to the log file log_of_valgrind in the evaluation folder.

codeval.py file reads the logs from this folder and displays them in the comment section on

Canvas. The output of the parser is given below in figure 5.

Another enhancement to CodEval is adding the hints feature for failed test cases. The

HINT tag has been added in the specification format which is present for hidden test cases

and when these test cases failed, it displays the corresponding hint for that test case. This tag

is not added for the other test cases as for those, the input is displayed when the specific test

case fails. Adding hints has helped students debug the code faster and thereby increasing

Figure 5: parsevalgrind Output

 19

their motivation to attempt the assignment. An example of the specification file is presented

below in figure 6.

3.1.5 Supporting Multiple Languages

As of now CodEval supports C and Java but is able to support other languages such

as Python. In order to support multiple languages two things, need to be taken care of,

firstly installing the environment for code compilation in the Docker instance, which is a

one-time work, and secondly, changing the command tag ‘C’ in the specification file suiting

the specific language. For instance, for C language assignments the value for tag ‘C’ is GCC

keyword followed by flags and the file_name.c. Similarly, the java assignments have the

command as javac followed by file name.

3.2 Creating Assignments

The second phase of the project is automating the creation of coding assignments on

Canvas. Creating an assignment consists of multiple steps, such as adding the description,

formatting the description, uploading the relevant files, linking those files in the description,

Figure 6: Addition of HINT tag in specification file

 20

and modifying the attributes of the assignment such as due date, publish, rubric, etc. In

order to streamline the process, this feature has been added. Manually creating the

assignment on Canvas is time-consuming and tedious as it involves all the steps mentioned

above. Creating the assignments each semester can be monotonous and with these many

steps involved, chances of errors in the format of the assignment are high.

Adding examples in each assignment and formatting is again a tedious job. In order

to make an instructor’s job easier and provide a good user experience to students, this

feature has been added. In the following subsections, we will go through each of them.

3.2.1 Uploading Files

Firstly, as part of this feature, CodEval requires certain files to be present on Canvas.

Some of the files required are specification file and other files that students would need to

download for that particular assignment. Manually uploading the files can be frustrating as

you will have to upload one file at a time on Canvas using the upload button as shown below.

Figure 7: Uploading the files manually

In order to simplify this process Canvas API [61] ‘upload’ is used. The instructor or

grader will have to create a folder called assignmentFiles on their server which would contain

all the files that need to be uploaded. Canvas supports varieties of file extensions such as zip,

docx, pdf, xls, py, etc. The below figure shows the assignmentFiles folder containing all the

required files.

 21

Figure 8: assignmentFiles folder and required files in it

Once the files are present in the assignmentFiles folder, CodEval will pick each file and

upload it on Canvas in the course mentioned in the command line arguments. If the command

line option ‘—dry-run’ is provided then it will not upload the files and will print and

information statement instead. If the file upload fails, then it will throw an exception and exit.

In the below figure you can see that under the Files section under the CodEval folder the files

are uploaded.

Figure 9: Files uploaded on Canvas

After the successful upload of the files, CodEval will update a dictionary that contains

the file names as the key and the Url of the corresponding file uploaded in the Files section

of the course on Canvas as the value. This is later used by CodEval to update a tag as described

in the next section.

 22

3.2.2 Converting Text to Markdown

The description of the assignment is present in the specification file. CodEval parses

the description from the specification file which is in the markdown format [62] and converts

it into HTML so that it can be uploaded on Canvas. The description is added between the tags

CRT_HW START and CRT_HW END. The tag CRT_HW START is followed by the name of the

assignment which will be the heading of the assignment on Canvas. The CRT_HW END tag will

not have any value and is purely to demarcate the creation and evaluation parts of the

assignment in the specification file. Figures 10 and 11 show the tags in the specification file.

Figure 10: CRT_HW START tag in the specification file

Figure 11: CRT_HW END tag in the specification file

 23

CodEval parses each line from the beginning of the specification file until the end. It

will parse each line, modify it if required, and add it to a variable which will be converted to

HTML using the markdown function. There are other tags that have been added which include

EXMPLS, URL_OF_HW, and DISCSN_URL.

EXMPLS tag is followed by a number, which is the number of test cases the instructor

wants to print as part of the examples. The maximum value of this could be the number of

non-hidden test cases and a minimum of 1. CodEval replaces this tag with the non-hidden test

cases in the description of the assignment. In the Results section, the example shows tag

EXMPLS 5 has been replaced with five non-hidden test cases.

It is doing it by parsing the test cases after the CRT_HW END tag, editing them to have

different colors for input, output, and exit for easier readability, and finally replacing the tag

with them. Figure 12 below, shows the EXMPLS tag in the specification file.

Figure 12: EXMPLS tag in the specification file.

Another new tag that has been introduced is URL_OF_HW which is followed by the

name of the file that needs to be linked and is mentioned in double quotes. CodEval reads

the filename and checks if this file name is present in the dictionary, if it is then it will update

 24

the specification file by replacing the tag with the file URL obtained from the dictionary. If the

expected file is not present, then an exception is thrown. Figure 13 shows the URL_OF_HW

tag followed by the file name in the specification file.

Figure 13: URL_OF_HW in the specification file

The last tag introduced is DISCSN_URL which does not have any value. This tag is

related to the discussion topic corresponding to the assignment. Processing this tag is taken

care of in creating the assignment section and therefore it will be discussed there.

3.2.3 Creating and Editing Assignments

Once the required files are uploaded and the description text from the specification

file has been converted from markdown to HTML, the next step is to create or edit the

assignment. It will first get the list of groups in the course by using the

get_assignment_groups Canvas API [61] and then it will get the group id by comparing the

group name mentioned in the command line with the one present in the list.

After getting the group id, CodEval will first get the list of assignments in the course

using get_assignments Canvas API [61] and then it will check if the assignment name present

in the specification file is present in this list, if it is then the assignment is edited, otherwise it

 25

will be created. If the ‘—dry-run’ option is provided, then neither the assignment is created

nor edited.

While editing the assignment, some of the attributes that can be changed are as follows:

 Description

 Assignment name

 Group id

 Points possible

 Published

 Allowed extensions

Canvas API used to edit the assignment is ‘edit’ [61], and in case of a failure, while

using the API, an exception is thrown. If the assignment name is not present in the list of

assignments, then the Canvas API ‘create’ [61], is called to create the assignment using the

above-mentioned attributes. In case of failure, the exception is thrown otherwise a successful

information message is printed.

3.2.4 Creating Discussion Topic and Linking

Another problem that has been addressed by CodEval is creating a discussion topic for

an assignment. It is an erroneous task to create it, as first we would have to create the

assignment, then create the discussion topic related to the assignment and add the link of the

corresponding assignment to it, and then again add the link of the discussion topic in the

assignment description.

To tackle this, before the assignment is created, a discussion topic is created for that

assignment using the Canvas API create_discussion_topic [61], and the message attribute in

 26

the API call is kept empty. The created topic object contains html_url attribute which is stored

into a variable to be later used by create_assignment API [61].

Once the discussion topic is created, the Canvas API create_assignment is called to

create the assignment with the attributes mentioned in the previous sub section. In the

description attribute the html text is modified by replacing the DISCSN_URL tag with the URL

of the discussion topic just created. After which the above-created discussion topic is updated

by calling update API [61], and the message is updated with some text and the corresponding

assignment’s URL. Figure 14 depicts the tag in the specification file.

Figure 14: DISCSN_URL tag in the specification file

On successful creation of the assignment and discussion topic, an informatory

message is printed otherwise an exception is thrown. As one can see since this whole circular

process is taken care of by CodEval, it eliminates the chances of error or provides the required

debug logs to find the exact problem in case of any error thrown.

3.2.5 Command Line Arguments

 User experience is an important part of any software development and due to this

reason, the Click [63] library has been used to not only provide a good user experience but

also to simplify the developer’s job. Its built-in methods help in adding options to the

command line arguments in a simple and easy way.

 27

CodEval uses the decorators such as ‘group’ or ‘command’ to create a command. For

instance, adding @click.command right before a function definition will create the command

and it will perform the tasks mentioned in the function. An example of the same is mentioned

in Figure 15 [63], below.

Figure 15: Example of creating commands using click [63]

In CodEval, there are two commands:

 create_assignment : To create the assignment.

 grade_assignment : To grade the assignment.

Each of these commands is followed by their respective arguments such as course name or

spec name and then followed by the optional arguments such as:

 28

 dry run/no_dry_run: This command will run either of the processes and will perform

all the steps in the process but will not update Canvas.

 verbose/no_verbose: This command provides detailed logs and information about

each step in the process.

 force/no_force: This command is available with grade_submissions command only.

This sub-command will grade the submissions even though they are already graded.

 group id: This command is only available with the create_assignment command. It

is an optional command where the user can mention the name of the group in

which the assignment needs to be created.

Figures 16 and 17 show examples of these commands with their options.

Figure 16: Command line arguments options in CodEval

Figure 17: grade-submissions command’s options

 29

IV. RESULTS

4.1 Evaluation of Submissions

CodEval seamlessly creates edits and grades coding assignments. A sample submission

evaluation for an assignment is shown in Figure 18. The assignment requires the program to

output "hello" followed by the name supplied on the command line, but the submission is the

traditional "hello world" example that outputs "hello world." CodEval discovered the error

and informed the student. The second submission passed the first test because "Hello Ben"

was printed on it. The submission passes the usage statement for the second test as well;

however, it fails the third test because it consistently outputs "Hello Ben."

Figure 18: Example of a submission evaluation by CodEval

 30

4.1.2 Student Evaluations

Our hypothesis was that the students would begin their assignments sooner because

they could receive quick feedback on them from CodEval at the beginning of the semester,

but this did not appear to be the case. In comparison to previous semesters, there was no

difference in the need for extensions or the absence of late submissions. Few students, as

seen in the student feedback, thought CodEval improved early starts to the assignments. The

outcomes show that students believed CodEval was beneficial in helping them polish their

work and complete the projects.

Table 2: Survey Results

Another observation is that no one expressed dissatisfaction with their mark after the

assignment had been graded. This is true even if the assignments aren't really graded by

CodEval; instead, the grader is responsible for determining whether the submission was made

correctly. Students were also asked to remark on how CodEval helped them and any changes

they would like to see, in addition to scoring those four specified dimensions. The students

through their responses stated the following about the impact of CodEval:

 31

 Immediate feedback was very valuable

 They were able to catch errors that they wouldn't have otherwise

 They were motivated to fix the errors in time

 They were able to better understand and handle test cases

 The tool helped their overall motivation

 They were more confident about their submission

 They could predict how well they did on an assignment before grades were awarded

 Helped them catch small bugs

The improvements suggested by students are:

 Better readability of the result.

 Hints for hidden test cases.

Four assignments were used in an earlier class that took place two semesters before.

Back then, CodEval did not exist, so students did not receive feedback until after the

assignments had been fully graded. There were two sections of the class in the fall of 2020.

Table 3 shows that for the first three assignments, the average scores for Spring 2022 were

close to or in the middle of the averages for the two parts. This shows that for the early

assignments, students’ perceptions of their accomplishment and the quality of their code

were more accurate than their actual experiences. However, CodEval clearly made

improvements to the final assignment, which was extremely challenging and complex.

It's critical to keep in mind that we used different graders for the fall of 2020 and the

spring of 2022 when making this comparison. The testing of CodEval, which is more thorough

 32

than the ad-hoc scripts that graders in Fall 2020 utilize, was also not available to the Fall 2020

graders. The scores in Fall 2020 may have been exaggerated due to a lack of testing rigor.

Table 3: Comparing assignments from Fall 2020 where CodEval was not used with Spring
2022, where it has been used

4.2 Assignment Creation

Figure 19 shows the generated HTML of the description which will be used to create

the assignment. As one can see, the # has been replaced with <h1></h1> tags and the

paragraph has been prefixed and suffixed with <p></p> tag.

Figure 19: Html format of the description

Figure 20 shows how the reference link has been replaced in place of the URL_OF_HW

tag in Figure 13. This link is accessed after the files have been uploaded on Canvas.

 33

Figure 20: URL_OF_HW tag has been replaced with the file URL

Figure 21 shows that created assignment from the html format on Canvas. As one can

see the name of the assignment ‘Bag of Strings’ which was the value for the tag CRT_HW

START is right at the top of the assignment. The headings which are surrounded by <h1>, <h3>

tags for example assignment, and description is highlighted in this figure.

Figure 21: Created Assignment on Canvas

 34

Figure 22 shows the examples in the description. As shown in Figure 12, the EXMPLS

tag is replaced with 5 test cases. The examples are color coded for enhanced user readability.

Figure 23 shows the highlighted file name which when clicked will either download the file or

will direct it to the corresponding URL. Not only files but as you can see under the discussion

topic, the DISCSN_URL tag shown in Figure 14, is replaced with the link to the corresponding

assignment.

Figure 22: Examples in the description

 35

Figure 23: Referenced files and discussion topic

Figure 24 shows the successful creation of a discussion topic under the Discussions

tab, and in the description of the topic, you can see the assignment name which is linked to

the corresponding assignment.

Figure 24: Created Discussion topic, with reference to the assignment.

 36

V. FUTURE WORK

CodEval’s design is not only simple but also extensible and therefore it can be used in

various programming courses extending across various programming languages. Other than

its flexibility to be incorporated in different programming courses and environments, the next

phase could involve some of the below-mentioned enhancements.

5.1 Adding Support for Python

As of now, CodEval supports C and Java languages. So the next step would be to

incorporate the support for Python. As mentioned earlier, the difficulty with Python is that in

most courses Jupyter notebooks are used and the files exported from there are not in .py

format but in .ipynb format therefore there would be some extra work done in converting the

code into .py format. In the case of code already written in .py format files, it would be

straightforward as using the existing Java or C code with the addition of a Python translator

in Docker.

5.2 Enhancing Readability of Output

After the last modification to enhance the readability of the description sent by

CodEval in the comments section when a test case fails, there is still some room for

improvement. The problem with failure explanation is twofold.

 The output from the diff tool is complicated and confusing.

 The size of the comment section makes it difficult to read the feedback from CodEval.

The last enhancement solved the first problem mentioned above by providing a legible

format that a student can understand. To solve the second problem, the feedback from

CodEval can be directed into a file, one for output differences and another for stderr

 37

differences. The files can be either downloaded from the comment section or a hyperlink can

be provided to open the file on the web browser.

5.3 Convert the bash code to Python

As of now a bash script is used to parse the specification file and it has been used to

its maximum capacity. In the future, so that the developer can add more functionality and do

it easily, the bash code can be converted to Python code.

5.4 Add Support for Plagiarism Check

It is already easy to copy the code from classmates and websites like GeeksforGeeks

[64] and Stackoverflow [65], but with the introduction of ChatGPT [66] and Bard [67], it is

more crucial to validate the authenticity of the work submitted.

To achieve this, either a plagiarism check logic must be written and added in CodEval,

or a plagiarism tool can be integrated. The problem with the former option is that it is time-

consuming and a whole other project on its own. The latter option of integrating third-party

tools for example MOSS [68] seems more feasible and apt.

5.5 Integrating CodEval with other LMS

Another fascinating feature to add in CodEval is supporting and testing the integration

with other LMS such as BlackBoard [69], Moodle [70] , etc. This will increase the user base for

CodEval. This will also lead to the creation a general and simplified template to integrate

CodEval in LMSs.

 38

VI. CONCLUSION

As learning management systems such as Canvas becomes more and more popular,

tools such as CodEval become more crucial for courses related to programming. The aim of

this project was to create a system that provides instant feedback to students, in turn, relieves

the instructor or grader from the tedious aspects of grading the assignment and creates

assignments quickly. All three of these goals have been achieved with CodEval.

CodEval was simple and easy to use in the Operating systems and Networking classes.

The design was simple to make enhancements on it and as a result, it has been extended to

be used in Distributed Systems class as well where the specification file’s format has been

utilized. The future hope with this project is to be introduced to other instructors at San Jose

University so that with some initial modification, they can use CodEval in their courses as well.

CodEval is open source and therefore anybody can enhance and modify it as per their

requirements.

Those interested in using CodEval, can go to [8] and find the relevant information on

how to get started with CodEval. To conclude, CodEval has garnered positive feedback not

only from instructors and graders for simplifying their work but also from students who

witnessed improvement in their coding skills and experience.

 39

REFERENCES

[1] Instructure, "About Canvas | Edtech Learning Platform | Instructure",

instructure.com, https://www.instructure.com/canvas

[2] Moodle. Retrieved from https://moodle.org/

[3] CodeLab by Turingscraft. Retrieved from https://www.turingscraft.com/

[4] D. Jackson and M. Usher. “Grading student programs using ASSYST.”, in

Proceedings of the 28th SIGCSE Technical Symposium on Computer Science

Education. ACM, NY, NY, pp. 335–339. 1997.

[5] D. Insa and J. Silva, “Automatic assessment of Java code.” in Computer

Languages, Systems & Structures, vol. 53, 59–72, Sept. 2018.

https://doi.org/10.1016/j.cl.2018.01.004

[6] Markus: Online Marking, Retrieved from

https://github.com/MarkUsProject/Markus

[7] Submitty: An Open Source, Highly-Configurable Platform for Grading of

Programming Assignments. Retrieved from

https://github.com/Submitty/Submitty

[8] CodEval, “CodEval: Timely Evaluation of Code Submission for Canvas”, Access

11 May, 2022, Retrieved from https://github.com/SJSU-CS-systems-

group/CodEval

[9] N. Rashid, Laurianne Lim, Ooi Sin Eng, Tan Huck Ping, Z. Zainol, O. Majid,” A

Framework of an automatic assessment system for learning programming”,

Advanced Computer and Communication Engineering Technology, vol. 362,

2016, doi: https://doi.org/10.1007/978-3-319-24584-3_82

[10] Hussam Aldriye, Asma Alkhalaf, and Muath Alkhalaf, “Automated grading

systems for programming assignments: A literature review” Int J Adv Comput

Sci Appl, 10(3), 2019. http://dx.doi.org/10.14569/IJACSA.2019.0100328

[11] J.C. Caiza, J.M. Del Alamo,” Programming assignments automatic grading:

review of tools and implementations “, in INTED2013 Proc., pp. 5691-5700,

2012.

https://www.instructure.com/canvas
https://moodle.org/
https://www.turingscraft.com/
https://github.com/Submitty/Submitty
https://github.com/SJSU-CS-systems-group/CodEval
https://github.com/SJSU-CS-systems-group/CodEval
https://doi.org/10.1007/978-3-319-24584-3_82
http://dx.doi.org/10.14569/IJACSA.2019.0100328

 40

[12] C. A.Higgins, G. Gray, P. Symeonidis, A. Tsintsifas,” Automated assessment and

experiences of teaching programming.”, J. Educ. Resour. Comput. , vol. 5, pp.

5., Sept. 2005. https://doi.org/10.1145/1163405.1163410

[13] A. Patil, "Automatic Grading of Programming Assignments", 2010. doi:

https://doi.org/10.31979/etd.vnt7-hgnd

[14] S. H. Edwards, and M. A. Perez-Quinones,” Web-CAT: automatically grading

programming assignments.”, in Proceedings of the 13th annual conference on

Innovation and technology in computer science education(ITiCSE ‘08), ACM

SIGCSE Bulletin, vol. 40, pp. 328-328. doi:

https://doi.org/10.1145/1384271.1384371

[15] J. C. Rodríguez-del-Pino, E. Rubio Royo, and Z. Hernández Figueroa, “A Virtual

Programming Lab for Moodle with automatic assessment and anti-plagiarism

features,” in Proc. WorldComp12, 2012.

[16] A.Gordillo, "Effect of an instructor-centered tool for automatic assessment of

programming assignments on student's perceptions and performance,"

Sustainability 11, no. 20: 5568, 2019. https://doi.org/10.3390/su11205568

[17] J. Spacco, D.Hovemeyer, W. Pugh, F. Emad, J. K. Hollingsworth, N. Padua-

Perez,” Experiences with marmoset: designing and using an advanced

submission and testing system for programming courses.” in Proceedings of

the 11th annual SIGCSE conf. on Innovation and technology in computer

science education (ITICSE ‘06), pp. 13-17, 2006. doi:

https://doi.org/10.1145/1140124.1140131

[18] M. Amelung, P. Forbrig, D. Rösner,” Towards generic and flexible web services

for e-assessment.”, ACM SIGCSE Bulletin, pp. 219-224, 2008.

[19] X. Liu, S. Wang, P. Wang, and D. Wu, "Automatic Grading of Programming

Assignments: An Approach Based on Formal Semantics," 2019 IEEE/ACM 41st

International Conference on Software Engineering: Software Engineering

Education and Training (ICSE-SEET), pp.

126-137, 2019. doi: 10.1109/ICSE-SEET.2019.00022.

https://doi.org/10.1145/1163405.1163410
https://doi.org/10.31979/etd.vnt7-hgnd
https://doi.org/10.1145/1384271.1384371
https://doi.org/10.3390/su11205568
https://doi.org/10.1145/1140124.1140131

 41

[20] K. M. Ala-Mutka, “A survey of automated assessment approaches for

programming assignments,”, Computer Science Education, vol. 15,no. 2, pp.

83–102., June 2005.

[21] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppala,” Review of recent

systems for automatic assessment of programming assignments.”, in

Proceedings of the 10th Koli Calling International Conference on Computing

Education Research (Koli Calling’10). ACM, New York, NY, 86–93, 2010.

[22] Y. Liang, Q. Liu, J. Xu, and D. Wang. ”The recent development of automated

programming assessment.”, in Computational Intelligence and Software

Engineering, pp. 1-5, Dec 2009.

[23] M. T. Helmick,” Interface-based programming assignments and automatic

grading of java programs.”, in ITiCSE ’07: Proceedings of the 12th annual

SIGCSE Conf. on Innovation and technology in computer science education,

ACM, New York, NY, USA, pp. 63–67, 2007.

[24] J.C. Paiva, J.P. Leal, A. Figueria,” Automated Assessment in Computer Science

Education: A State-of-the-Art Review”, in ACM Trans. Comput. Educ., vol. 22,

Article 34, NY, NY, USA, Sept 2022.

[25] U. Buranasaksee, “ LINSIM: A framework of an automatic assessment for

Linux-based operating system exercises.”, in Proceedings of the 5th

International Conference on Information and Education Technology

(ICIET’17). ACM, New York, NY, pp. 121–125, 2017.

[26] E. Gramond and S. H. Rodger, “Using JFLAP to interact with theorems in

automata theory.”, in Proceedings of the 30th SIGCSE Technical Symposium

on Computer Science Education (SIGCSE’99). ACM, New York, NY,pp. 336–340.

https://doi.org/10.1145/299649.299800

[27] C. Hundt, M. Schlarb, and B. Schmidt, “SAUCE: A web application for

interactive teaching and learning of parallel programming.”, in Journal of

Parallel and Distributed Computing, vol. 105,pp. 163–173, July 2017.

https://doi.org/10.1016/j.jpdc.2016.12.028

[28] H. Aldriye, A. Alkhalaf and M. Alkhalaf, “Automated Grading Systems for

Programming Assignments: A Literature Review”, in International Journal of

https://doi.org/10.1145/299649.299800
https://doi.org/10.1016/j.jpdc.2016.12.028

 42

Advanced Computer Science and Application(IJAACSA), vol. 10, no. 3,2019.

http://dx.doi.org/10.14569/IJACSA.2019.0100328

[29] D.M. Souza, K.R. Felizardo, and E.F. Barbosa, “A Systematic Literature Review

of Assessment Tools for Programming Assignments”, in IEEE 29th

International Conference on Software Engineering Education and Training,

New Delhi, India, vol. 1, pp. 22-23, 2016.

[30] M. Blumenstein, S. Green, A. Nguyen, and V. Muthukkumarasamy, “GAME: a

generic automated marking environment for programming assessment,” in

Proceedings of the International Conference on Information Technology:

Coding and Computing, ser. ITCC ’04,

pp. 212–216, 2004.

[31] D. Jackson, “A semi-automated approach to online assessment,” SIGCSE Bull.,

pp. 164–167, 2000.

[32] S. H. Edwards and M. A. Perez-Quinones, “Web-CAT: automatically grading

programming assignments,” SIGCSE Bull., pp. 328–328, 2008.

[33] J. P. Leal and F. Silva, “Mooshak: a web-based multi-site programming contest

system,” in Software: Practice and Experience, pp. 567–581, 2003.

https://doi.org/10.1002/spe.522

[34] C. Higgins, T. Hergazy, P. Symeonidis, and A. Tsinsifas, “The CourseMarker CBA

system: Improvements over Ceilidh.”, in Education and Information

Technologies, vol. 8, pp. 287 – 304,2003

[35] M. Luck and M. Joy, “Automatic submission in an evolutionary approach to

computer science teaching,” Computers & Education, vol. 25,no. 3, pp. 105–

111, 1995.

[36] M. S. Joy and M. Luck, “A user-friendly online submissions system,” in

Proceedings of the Fourth Annual Conference on the Teaching of Computing,

pp. 92–95, 1996.

[37] J.M. Almo,” A study of Online Assessment Tools to Practice Programming and

Their Effect on Students Grades” in ASEE Mid-Atlantic Section Spring

Conference, Washington, Columbia, 2018.

http://dx.doi.org/10.14569/IJACSA.2019.0100328

 43

[38] Programmr: Your Online Code Lab. Accessed 19 February 2019. Retrieved

from http://www.programmr.com/.

[39] CodeStepByStep: A web-based practice problem tool for computer science

students. Accessed 20th February 2018. Retrieved from

https://www.codestepbystep.com

[40] R. Queiros and L. José, “ Programming Exercises Evaluation Systems - An

Interoperability Survey.” in CSEDU 2012 - Proceedings of the 4th International

Conference on Computer Supported Education, vol. 1, pp. 83-90, 2012.

[41] HTML. Accessed 8 December, 2022. Retrieved from

https://html.spec.whatwg.org/multipage/

[42] XML. Accessed on 7 February,2022. Retrieved from

https://www.w3.org/TR/REC-xml/

[43] S.Safris, "A Deep Look at JSON vs. XML, Part 1: The History of Each". Toptal

Engineering Blog. https://www.toptal.com/web/json-vs-xml-part-1 (accessed

Dec.31, 2022)

[44] YAML. Retrieved from https://yaml.org/

[45] PEML. Retrieved from https://cssplice.github.io/peml/

[46] ArchieML. Retrieved from http://archieml.org/

[47] C. F. Goldfarb, "The Roots of SGML – A Personal Recollection". Accesses on

July 7, 2007. Retrieved from sgmlsource.com/history/roots.htm

[48] Github. Retrieved from https://github.com/

[49] Markdown. Retrieved from https://www.markdownguide.org/getting-

started/

[50] RStudio. Retrieved from https://posit.co/

[51] iaWriter. Retrieved from https://ia.net/writer

[52] ghostwriter. Retrieved from https://kde.github.io/ghostwriter/

[53] Markdown Monster. Retrieved from https://markdownmonster.west-

wind.com/

[54] ReText. Retrieved from https://github.com/retext-project/retext

[55] StackEdit. Retrieved from https://www.markdownguide.org/tools/stackedit/

http://www.programmr.com/
http://www.codestepbystep.com/
http://www.codestepbystep.com/
https://html.spec.whatwg.org/multipage/
https://www.w3.org/TR/REC-xml/
https://www.toptal.com/web/json-vs-xml-part-1
https://yaml.org/
https://cssplice.github.io/peml/
http://archieml.org/
https://en.wikipedia.org/wiki/Charles_F._Goldfarb
http://www.sgmlsource.com/history/roots.htm
http://www.sgmlsource.com/history/roots.htm
https://github.com/
https://www.markdownguide.org/getting-started/
https://www.markdownguide.org/getting-started/
https://posit.co/
https://ia.net/writer
https://kde.github.io/ghostwriter/
https://markdownmonster.west-wind.com/
https://markdownmonster.west-wind.com/
https://github.com/retext-project/retext
https://www.markdownguide.org/tools/stackedit/

 44

[56] "A formal spec for GitHub Flavored Markdown". GitHub Engineering.

Accessed from 16 Mar 2017. Retrieved from

https://github.blog/2017-03-14-a-formal-spec-for-github-markdown/

[57] Drupal. Retrieved from

https://www.drupal.org/project/drupal/releases/9.4.8

[58] TYPO3. Retrieved from

https://extensions.typo3.org/extension/markdown_content/

[59] N. Nethercote, J. Seward, "Valgrind: A framework for heavyweight dynamic

binary instrumentation" in Proceedings of ACM SIGPLAN 2007 Conference on

Programming Language Design and Implementation (PLDI 2007), pp. 89-100,

June 2007.doi: https://doi.org/10.1145/1250734.1250746

[60] Jupyter. Retrieved from https://jupyter.org/

[61] Canvas API. Retrieved from https://canvas.instructure.com/doc/api/

[62] Markdown. Retrieved from https://python-markdown.github.io/

[63] Click. Retrieved from

https://click.palletsprojects.com/en/8.1.x/#documentation

[64] GeeksforGeeks. Retrieved from https://www.geeksforgeeks.org/

[65] Stakoverflow. Retrieved from https://stackoverflow.com/

[66] ChatGPT. Retrieved from https://openai.com/blog/chatgpt

[67] Bard. Retrieved from https://bard.google.com/

[68] Moss. Retrieved from https://theory.stanford.edu/~aiken/moss/

[69] Blackboard. Retrieved from https://www.blackboard.com/en-apac/teaching-

learning/learning-management

[70] Moodle. Retrieved from https://moodle.org/

[71] A. Agrawal, A. Jain, and B. Reed, “Codeval: Improving student success in

programming assignments”, in 14th International Conference on Education and

New Learning Technologies, pp. 7546-7554, 2022. doi:

10.21125/edulearn.2022.1767

https://githubengineering.com/a-formal-spec-for-github-markdown/
https://github.blog/2017-03-14-a-formal-spec-for-github-markdown/
https://www.drupal.org/project/drupal/releases/9.4.8
https://extensions.typo3.org/extension/markdown_content/
https://doi.org/10.1145/1250734.1250746
https://jupyter.org/
https://canvas.instructure.com/doc/api/
https://python-markdown.github.io/
https://click.palletsprojects.com/en/8.1.x/#documentation
https://www.geeksforgeeks.org/
https://stackoverflow.com/
https://openai.com/blog/chatgpt
https://bard.google.com/
https://theory.stanford.edu/~aiken/moss/
https://www.blackboard.com/en-apac/teaching-learning/learning-management
https://www.blackboard.com/en-apac/teaching-learning/learning-management
https://moodle.org/
https://doi.org/10.21125/edulearn.2022.1767

	CodEval
	Recommended Citation

	tmp.1684889034.pdf.2tlvj

