
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2023

Malware Classification using Graph Neural Networks Malware Classification using Graph Neural Networks

Manasa Mananjaya
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Mananjaya, Manasa, "Malware Classification using Graph Neural Networks" (2023). Master's Projects.
1268.
DOI: https://doi.org/10.31979/etd.68ya-hj74
https://scholarworks.sjsu.edu/etd_projects/1268

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at
SJSU ScholarWorks. It has been accepted for inclusion in Master's Projects by an authorized administrator of SJSU
ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/1268?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1268&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

Malware Classification using Graph Neural Networks

A Project

Presented to

The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Manasa Mananjaya

May 2023

© 2023

Manasa Mananjaya

ALL RIGHTS RESERVED

The Designated Project Committee Approves the Project Titled

Malware Classification using Graph Neural Networks

by

Manasa Mananjaya

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSÉ STATE UNIVERSITY

May 2023

Dr. Fabio Di Troia Department of Computer Science

Dr. William Andreopoulos Department of Computer Science

Dr. Thomas Austin Department of Computer Science

ABSTRACT

Malware Classification using Graph Neural Networks

by Manasa Mananjaya

Word embeddings are widely recognized as important in natural language pro-

cessing for capturing semantic relationships between words. In this study, we conduct

experiments to explore the effectiveness of word embedding techniques in classifying

malware. Specifically, we evaluate the performance of Graph Neural Network (GNN)

applied to knowledge graphs constructed from opcode sequences of malware files. In the

first set of experiments, Graph Convolution Network (GCN) is applied to knowledge

graphs built with different word embedding techniques such as Bag-of-words, TF-IDF,

and Word2Vec. Our results indicate that Word2Vec produces the most effective word

embeddings, serving as a baseline for comparison with three GNN models- Graph

Convolution network, Graph Attention network (GAT), and GraphSAGE network

(GraphSAGE). For the next set of experiments, we generate vector embeddings of

various lengths using Word2Vec and construct knowledge graphs with these embed-

dings as node features. Through performance comparison of the GNN models, we

show that larger vector embeddings improve the models’ performance in classifying

the malware files into their respective families. Our experiments demonstrate that

word embedding techniques can enhance feature engineering in malware analysis.

ACKNOWLEDGMENTS

I express my appreciation to Dr. Fabio Di Troia, my advisor, for his encourage-

ment and mentorship during my research. His vast knowledge and valuable suggestions

have been essential in directing my research toward the right path and ensuring its

progress. I am thankful to my committee members, Dr. William Andreopoulos and

Dr. Thomas Austin, for their valuable time and constructive comments.

Additionally, I would like to acknowledge the continuous support of my family

and friends throughout this project.

v

TABLE OF CONTENTS

CHAPTER

1 Introduction . 1

2 Background . 3

2.1 Previous Work . 4

2.2 Word Embedding Techniques . 7

2.2.1 Bag-of-Words . 7

2.2.2 TF-IDF . 8

2.2.3 Word2Vec . 9

2.3 Graph Neural Networks . 10

2.3.1 Graph Convolution Network 10

2.3.2 Graph Attention Network 11

2.3.3 GraphSAGE Network . 12

3 Experiments and Result Analysis 13

3.1 Dataset . 13

3.2 Dataset Preprocessing . 14

3.2.1 Binary Classification using Word2Vec-CNN 15

3.3 Feature Vector Generation . 16

3.3.1 GCN-Bag-of-Words . 17

3.3.2 GCN-TF-IDF . 18

3.3.3 GCN-Word2Vec . 19

3.3.4 Creating Knowledge Graphs 19

vi

vii

3.3.5 Results for Word Embedding Experiments 20

3.4 GNN Implementation . 21

3.4.1 Word2Vec-GCN . 21

3.4.2 Word2Vec-GAT . 22

3.4.3 Word2Vec-GraphSAGE 23

3.5 Classification Results . 24

3.5.1 GCN Results . 25

3.5.2 GAT Results . 26

3.5.3 GraphSAGE Results . 27

3.5.4 Discussion . 28

4 Conclusion and Future Study . 29

LIST OF REFERENCES . 31

APPENDIX

Appendix . 35

A.1 Additional Experiments . 35

A.1.1 BERT Implementation . 35

A.1.2 Results . 35

A.2 Additional Results . 38

A.2.1 Accuracy-Loss Graphs . 38

A.2.2 Knowledge Graphs . 40

LIST OF TABLES

1 Malware Families . 13

2 Accuracy of Word Embedding Techniques 21

3 GCN Hyperparameter Values . 22

4 GAT Hyperparameter Values . 23

5 GraphSAGE Hyperparameter Values 24

A.6 BERT Accuracy . 36

viii

LIST OF FIGURES

1 Opcode Frequency . 15

2 Word2Vec-CNN: Binary Classification Results 16

3 Bag-of-Words Feature Generation 18

4 TF-IDF Feature Generation . 18

5 Word2Vec Feature Generation 19

6 Classification Matrices for GCN 25

7 Classification Matrices for GAT 26

8 Classification Matrices for GraphSAGE 27

9 Accuracy for GNN models with varying Word2Vec vector lengths 28

A.10 Classification Matrices for BERT 36

A.11 BERT vs Word2Vec . 37

A.12 GCN Accuracy and Loss Graphs 38

A.13 GAT Accuracy and Loss Graphs 38

A.14 GraphSAGE Accuracy and Loss Graphs 39

A.15 Regular Graph . 40

A.16 Bag-of-Words Graph . 41

A.17 TF-IDF Graph . 42

A.18 Word2Vec Graph . 43

ix

CHAPTER 1

Introduction

The threat of malware to the security of computer systems and networks is growing

rapidly. Malicious software can be used to steal sensitive data, gain unauthorized

access, disrupt services, and cause damage to systems. Due to their increasing

complexity and sophistication, malware is becoming difficult to detect and analyze.

Traditional signature-based methods are often insufficient to detect new and unknown

malware, while behavioral-based methods may produce high false positives. Machine

learning techniques have emerged as a promising approach to malware classification,

offering the potential for accurate and efficient detection of both known and unknown

malware.

One such machine learning technique called Graph Neural Network (GNN) has

recently gained attention in the field of malware analysis as a powerful tool for

capturing the structural relationships between features of malware samples [1]. GNNs

can process data represented as graphs, where individual elements are depicted as

nodes and edges depict relationships between the elements [2]. They have proven

effective in different fields of study, such as Natural Language Processing (NLP),

Computer Vision, and Social Network Analysis, where the data is represented as a

graph.

On the other hand, word embedding techniques are implemented to represent

words in a high-dimensional space as vectors. These vectors capture the meaning and

structural relationships between words and can be used for various NLP tasks. By

applying word embedding techniques to malware samples, it is possible to capture the

semantic relationships between different parts of the code and use them for classifying

malware [3].

In this research, we explore the use of three GNN models for malware classification

1

using word embedding techniques. We focus on the application of GNNs to knowledge

graphs constructed from opcode sequences of malware files. Opcode sequences are a

representation of the behavior of a program, consisting of instructions executed by

the program. Knowledge graphs are graphs that represent structured knowledge in a

form that can be processed by machines. In our case, we construct knowledge graphs

where nodes represent opcodes, and edges represent the co-occurrence of opcodes in

malware samples.

We evaluate the effectiveness of different word embedding methods such as

Word2Vec [4], TF-IDF [5], and Bag-of-Words [6] in classifying malware using GNNs.

First, we investigate the performance of GCN applied to knowledge graphs built using

various word embedding techniques. The best word embedding technique is then

deduced and used to build knowledge graphs. Finally, the performances of GCN,

GAT, and GraphSAGE in classifying the word-embedded knowledge graphs into their

respective families are evaluated.

The remaining sections of this paper are organized in the following manner. In

Chapter 2, we discuss previous research conducted in the area of machine learning

for malware analysis, including word embedding techniques and GNNs. Chapter 3

describes the data set used in our experiments, the methodology for constructing

knowledge graphs, and the results of our classification experiments. Finally, we

conclude our report and present potential directions for future work in Chapter 4.

2

CHAPTER 2

Background

Malware is a software program designed with the malicious intent of causing

harm to computer systems, stealing sensitive information, or gaining unauthorized

access to the network. They are difficult to detect and analyze due to their increasing

complexity and sophistication, posing a significant threat to the security of computer

systems and networks [7]. According to the Cybersecurity Ventures Report 2021,

cybercrime will cause damages worth $10.5 trillion annually by 2025 [8]. Malware is a

primary weapon used by cybercriminals to infiltrate computer systems and networks.

The sheer volume and diversity of malware pose a significant challenge to cybersecurity

experts. For instance, in 2019, the number of malware families increased by 13.7%,

reaching a total of 971,390 [9]. Moreover, cybercriminals use various obfuscation

techniques to make it harder for traditional signature-based methods to detect malware.

In addition, the detection speed of new malware variants is crucial, as delays can lead

to serious security breaches. Therefore, the need for effective and efficient malware

detection techniques is essential to protect computer systems and networks from

malware attacks.

Most companies rely on conventional methods for detecting malware, such as

signature-based and behavioral-based detection methods. Signature-based malware

detection methods make use of signatures or patterns to identify known malware.

These methods are based on the idea that malware has distinguishing characteristics

that can be utilized to identify it [10]. They compare the code or behavior of a file to

a database of known signatures to detect malware. Although this technique is fast

and efficient, it is ineffective in detecting unknown malware.

On the other hand, malware detection methods based on behavior focus on the

actions performed by the malware rather than just its signature [11]. These methods

3

monitor the system’s activities and detect unusual behavior that may indicate malware

activity. They overcome the drawback of traditional based methods in detecting

new and unknown malware that do not have signatures in the database. However,

behavioral-based methods can produce high false positives since legitimate software

can also exhibit abnormal behavior.

As traditional signature-based and behavioral-based methods of malware detection

are insufficient to detect new and unknown malware, researchers have turned to

machine learning for improved malware detection.

2.1 Previous Work

In recent years, research has been focused on developing advanced methods to

detect malware using machine learning techniques. Among these techniques, graph

neural networks (GNNs) and word embedding have gained considerable attention for

their effectiveness in identifying and classifying malware. In [12], the authors conducted

a survey on malware detection using graph representation learning. They analyzed

various graph-based methods for detecting malware and discussed the advantages and

limitations of these methods. The survey concluded that GNNs show potential as

a viable method for malware detection due to their ability to capture the complex

relationships between different features of malware.

A Dynamic Evolving Graph Convolutional Network (DEGCN) was proposed

in [13] to detect malware. The malware files are represented as graphs where the

API calls are represented as nodes and the order in which they appear is captured

through the edges between the nodes. The DEGCN model dynamically adjusts the

node weights based on the significance of the API call and updates the edge weights

according to their temporal sequence. The proposed model achieved a 98.3% detection

rate on a dataset of 1,400 malware samples.

4

The proposed malware detection method in [14] implements GCNs for identi-

fying malware. The authors used a graph representation of malware, where nodes

represent API calls and edges represent their dependencies. This method achieved

an accuracy of 98.6% on a dataset of 3,512 malware samples. In a similar context,

[15] implemented GATs for intelligent transportation systems. The authors used a

graph-based representation of network traffic, where nodes represented the source and

destination IP addresses, and edges represented the communication between these

addresses. An accuracy of 97.4% was achieved by the proposed method on a dataset

of 400,000 network packets.

The authors of [16] proposed a multi-view attention-based deep learning framework

for detecting malware in smart healthcare systems. They used multiple views of

malware, including API calls, system calls, and static features, and applied attention

mechanisms to capture the most relevant features. The attention mechanism focuses

on the most significant segments of the input data, thereby reducing the feature space’s

dimensionality and enhancing the classification accuracy. According to the results,

the proposed framework performs better with an accuracy of 99.4% as compared to

Support Vector Machine (SVM) and Convolution Neural Networks (CNNs).

In [17], an intelligent malware detection method based on GCN is proposed.

Over 15,000 malware samples are represented as graphs and evaluated using GCN.

The performance of the proposed method is evaluated against traditional machine

learning methods such as SVM, and other graph-based methods such as GAT and

ChebNet. This method shows promise in improving the detection of malware through

the use of GCNs. Comparably, the authors of [18] proposed a GNN model that

uses a similarity-based approach to cluster malware samples with similar structures

into the same category, regardless of their behavior. One of the strengths of the

proposed method is that it does not need any feature engineering or prior knowledge

5

about malware. The approach extracts the structural information of malware samples

automatically and captures the underlying similarities between them. This makes the

approach more robust and generalizable to the new malware samples.

Rather than traditional graph-based methods, [19] implements a novel attention

network that uses multi-feature alignment and fusion to detect malware. The proposed

model combines the strength of GCNs and attention mechanisms to capture both

local and global features of malware effectively. To evaluate the proposed model, the

authors conducted experiments on a dataset of 10,000 benign samples and 10,000

malware samples and achieved an accuracy of 99.2% and an AUC of 0.998. The multi-

feature alignment and fusion technique improves the alignment of multiple features

and enhances the model’s performance by providing high accuracy and robustness.

Various word embedding techniques are explored in [20]. The authors propose a

novel method for representing malware samples as sequences of opcodes, which are

then converted into Word2Vec embeddings or HMM states. The experiments were

conducted on a dataset of 7,000 malware samples from 7 families. The experiments

assessed how effectively 8 distinct machine learning techniques classified malware. The

results showed that the machine learning methods based on Word2Vec embeddings

outperformed those based on HMM states. Specifically, the Word2Vec-RF model

achieved the highest accuracy of 96.2%, while the HMM-RF model achieved an

accuracy of 96%. This shows that Word2Vec-based models outperform HMM-based

models in terms of accuracy and computational efficiency.

In a similar context, [21] compares the performance of three machine learning

techniques, Word2Vec, PCA2Vec, and HMM2Vec, for classifying malware. The results

show that Word2Vec-based techniques perform the best and are more computationally

efficient than HMM2Vec and PCA2Vec. The paper provides a useful comparison of

different machine learning techniques with word embedding for malware classification,

6

which can help researchers and practitioners in the field make informed decisions

about which techniques to use for their specific applications.

During our review of previous research, we understood that utilizing word em-

bedding techniques for feature engineering can enhance a model’s effectiveness. By

integrating this with GNNs, we can create a robust model capable of detecting malware.

This is the foundation of our study.

2.2 Word Embedding Techniques

Word embedding techniques are used in NLP to represent words as high-

dimensional vectors of numerical values. These techniques map words with com-

parable meanings to comparable vectors in a high-dimensional space, allowing for

mathematical operations to be performed on words. This enables machine learning

algorithms to process text data in a more efficient and effective manner, improving

the performance of tasks such as text classification. In this section, we explore three

different techniques of word embedding and evaluate their effectiveness in classifying

malware using GNNs. These techniques are utilized to generate feature vectors that

are subsequently utilized as node features within knowledge graphs.

2.2.1 Bag-of-Words

Bag-of-words (BoW) [6] is a simple and widely used word embedding technique

in NLP. This method counts the occurrences of each word in a text document to

represent it as a vector. BoW considers each word in the document to be independent

of the other words in the text and disregards their order, syntax, or structure.

It is necessary to create a vocabulary comprising tokenized text data to generate

a BoW model. We build a matrix of word frequency counts for each document in the

corpus using this vocabulary, where each document is represented by a row and each

word in the vocabulary is represented by a column. In order to take into consideration

7

the different document lengths and phrase frequencies, we finally normalize the matrix.

Let W stand for the vocabulary set, D for the collection of documents, and n(d,

w) for the frequency of word w in a document d. The BoW representation of document

d is a vector x(d) of size |W|, where each element of the vector is given by:

𝑥(𝑑)[𝑤] = 𝑛(𝑑, 𝑤)

In the experiments described in Chapter 3, we use the BoW model to generate

one-dimensional feature vectors. These vectors will serve as node features during the

classification of graphs. More information on BoW can be found in [22] and [23].

2.2.2 TF-IDF

A prominent word embedding method in NLP, TF-IDF (Term Frequency-Inverse

Document Frequency) [5], converts textual information into a numerical representation.

It is a statistical measurement that computes each word’s importance in a manuscript.

The basic principle of the TF-IDF technique is that a word’s relevance in a document

inversely correlates with its frequency (TF) in that document and across all documents

(IDF). In other words, a word is likely to be more significant for that particular

document if it occurs frequently there but infrequently elsewhere.

TF-IDF score is computed by multiplying TF and IDF of a word w in a document

d :

𝑇𝐹 − 𝐼𝐷𝐹 (𝑤, 𝑑) = 𝐼𝐷𝐹 (𝑤) * 𝑇𝐹 (𝑤, 𝑑)

TF is the ratio of the number of occurrences of a word w in a document d to the

total number of words in d :

𝑇𝐹 (𝑤, 𝑑) =
number of occurrence of w in d

total number of words in d

The logarithm of the ratio of the total number of documents N to the number of

8

documents containing the word w gives the IDF value:

𝐼𝐷𝐹 (𝑤) = log

(︂
𝑁

number of documents that include 𝑤

)︂
The logarithmic function is used to reduce the impact of rare words on the IDF

score. The IDF score of words that frequently appear in documents will be lower, and

as a result, will have a lower impact on the TF-IDF score. The TF-IDF scores for

each word in a document may then be computed and used as features in machine

learning models. More information on TF-IDF can be found in [24].

2.2.3 Word2Vec

Word2Vec is a shallow neural network that is used to generate word embeddings

[25]. Word embeddings are word representations that are distributed across a high-

dimensional vector space, with each dimension representing a feature of the word.

These embeddings can be used in a variety of NLP tasks such as text categorization,

sentiment analysis, and language modeling [26].

Word2Vec creates word embeddings using a neural network that has been trained

on a large text corpus. This neural network learns to either predict a word given

its context or to anticipate a word given its nearby words. The word embeddings

are subsequently created using the weights from the neural network’s hidden layer.

Word2Vec’s ability to capture semantic relationships between words is its biggest

advantage. For example, words with similar meanings, such as "car" and "automobile"

will have similar embeddings.

Two architectures used to train Word2Vec are the Continuous Bag of Words

(CBOW) and the Skip-Gram model [27]. The CBOW technique utilizes a group of

words surrounding the target word to make a prediction, whereas the Skip-Gram

approach takes the target word as input and tries to anticipate the surrounding

context words [28]. We experiment with the Skip-Gram model in this research.

9

2.3 Graph Neural Networks

Graph Neural Network is a deep learning algorithm that is designed to analyze

structured data represented as graphs. Unlike traditional neural networks that take

fixed-length data as input, GNNs take graphs as input where individual elements are

represented as nodes and edges represent the relationship between the elements [29].

Mathematically, GNNs are defined as a series of iterative graph convolution

operations, which can be represented as

ℎ(𝑘+1)
𝑣 = 𝜎(

∑︁
𝑢∈𝒩 (𝑣)

𝑊 (𝑘)ℎ(𝑘)
𝑢 + 𝑏(𝑘))

where ℎ
(𝑘)
𝑣 is the representation of node 𝑣 at the 𝑘-th iteration, 𝒩 (𝑣) is the set

of neighboring nodes of 𝑣, 𝑊 (𝑘) and 𝑏(𝑘) are the learnable weight matrix and bias

vector at the 𝑘-th iteration, and 𝜎 is a non-linear activation function such as ReLU or

sigmoid [30].

In our case of malware classification, the nodes in the input graphs represent

the opcodes whereas the edges connect the opcodes that appear together frequently.

The GNN performs message passing between the nodes to capture information about

the relationships between them. This involves computing node embeddings based

on the embeddings of its neighbors, and then using these embeddings to update the

central node’s representation. This process can be repeated multiple times to capture

higher-level relationships between nodes. This paper presents the implementation of

three graph neural network models to classify malware files.

2.3.1 Graph Convolution Network

Graph Convolutional Network [31], a variant of GNN, incorporates convolutional

layers, which allow for shared weights and translation invariance, as well as pooling

layers, which allow for hierarchical learning. GCNs learn a set of filters that can

operate on the graph structure to extract features from the data. The filters are

10

typically defined as functions that operate on the node’s local neighborhood and

produce a new representation for the node.

During training, the weights of the filters are learned through backpropagation,

which enables the GCN to learn to extract meaningful features from the graph

structure. By applying these filters repeatedly, the GCN is able to learn hierarchical

representations of the graph. In the classification phase, the feature vectors of each

node are taken as input by the GCN and a label for each graph is produced. Labeling

the graph is accomplished by applying a pooling operation to the output of the last

layer of the GCN. The pooling layer aggregates the feature vectors of all nodes into

a single vector. This vector is then fed into a fully connected layer, which produces

a final output vector that represents the predicted class probabilities for the input

graph. Chapter 3 provides the architecture of GCN and presents several experiments

that are conducted using various word embedding techniques.

2.3.2 Graph Attention Network

Graph Attention Networks are a popular graph-based machine learning approach

designed by [32]. GATs differ from GCNs by employing an attention mechanism

to learn the importance of each node’s neighbors for a given task. This is achieved

through a series of weighted linear combinations of the neighbors’ hidden states, with

the weights learned through a self-attention mechanism. In other words, GATs use

the graph structure to determine which nodes are most relevant for a given task,

rather than treating all nodes equally.

GAT optimizes the loss function with respect to model parameters during the

training phase. This typically involves computing the model’s predictions for a set

of labeled examples and comparing them to the true labels using a loss function.

Backpropagation is then used to update the model parameters. Classifying new

11

examples involves computing the hidden states of all nodes in the graph and obtaining a

probability distribution over the possible labels. The label with the highest probability

is then assigned to the graph. More information on the application of GATs in text

classification can be found at [33] and [34].

2.3.3 GraphSAGE Network

GraphSAGE (Graph Sample and Aggregate) networks [35] are a class of GNNs

that learn representations for nodes in a graph by aggregating information from their

local neighborhoods. This model aims to overcome the drawbacks of traditional

graph-based learning methods by leveraging graph convolutions, which can learn from

both local and global information.

The GraphSAGE algorithm converts every node in the input graph to a low-

dimension vector. A multi-layer neural network operates on each node and its neighbors

in the graph to achieve this. At each layer, the model aggregates information from

the local neighborhood of each node by sampling a fixed number of neighbors and

performing a mean or max pooling operation. The resulting representations are then

passed through a non-linear activation function and fed into the next layer. This

process is carried out repeatedly for a specified number of layers until the final node

embeddings are obtained. This ability of the GraphSAGE network makes it highly

efficient in generating node embedding for unseen data.

In our study, GraphSAGE learns embeddings for each opcode by taking into

account the relationships between adjacent opcodes. A summary vector is computed

for the entire graph based on the embeddings of its constituent nodes. This vector is

then passed through a fully-connected neural network to obtain the final graph-level

classification [36]. [37] provides more details on how GraphSAGE networks can be

implemented for text classification.

12

CHAPTER 3

Experiments and Result Analysis

This chapter focuses on the malware data utilized in the study and its preprocess-

ing. We provide a brief overview of feature engineering and highlight the experiments

performed using different word embedding techniques and GNNs.

3.1 Dataset

The dataset experimented with in this study is taken from the VirusShare

website that hosts malware files belonging to various families. It consists of 13,597

malware families with at least one malware file belonging to each family. However,

due to the significant number of families and the large number of opcodes in each

file, classifying all families requires extensive computational resources, rendering it

infeasible. Therefore, we limited our experiments to only five families listed in Table 1.

To ensure balance in the dataset, 1,000 samples are selected randomly from these five

malware families, resulting in a total of 5,000 samples. Other implementations using

this dataset can be found in [20] and [21]. We will briefly discuss the characteristics

of each malware family in this section.

Table 1: Malware Families

Family Type of Malware No. of Samples
BHO Trojan 3843

OnLineGames Password Stealer 13164
Renos Trojan Downloader 23980

VBInject VirTool 15171
Winwebsec Rogue 13277

BHO - This is a type of Trojan malware that is used by attackers for malicious

activities like tracking user activities or installing other malware in user systems [38].

OnLineGames - This type of malware is used to target online gamers. It is

typically disguised as a component in legitimate game installations or distributed

13

through fake games. Once installed, it can steal sensitive information such as login

credentials, banking information, and game items [39].

Renos - Renos is another type of Trojan malware that is typically installed by

itself on a computer through security vulnerabilities or social engineering tactics. It

performs various malicious activities such as displaying fake alerts or redirecting web

traffic [40].

VBInject - Malware of this family injects malicious code into legitimate processes

running on the operating systems. Attackers use this malware to steal sensitive

information or log keystrokes [41].

Winwebsec - Windows Web Security or Winwebsec is a rogue antivirus software

that masquerades as a legitimate antivirus program. It steals personal information

and tricks users into paying for unnecessary antivirus licenses [42].

3.2 Dataset Preprocessing

For our research, we classify the executable malware files into their respective

families using a .csv file containing the file names and families as reference. Specifically,

we sort 1,000 original malware files into each of the five families, resulting in a total

of 5,000 files. The malware files are disassembled into .asm binary files for opcode

extraction. This was achieved on a Linux system using the Objdump command, which

is part of the GNU Binutils package. Opcodes extracted from each binary file are

stored in a text file with the same file name. Including all of the distinct opcodes

present in each file would have resulted in additional overhead during the machine

learning model training process, as there are a considerable number of such opcodes.

Moreover, the majority of opcodes contributed to less than 1% of the total number of

opcodes. The top 50 opcodes and their frequencies are shown in Figure 1.

14

Figure 1: Opcode Frequency

3.2.1 Binary Classification using Word2Vec-CNN

It can be observed that a large portion of the opcodes in the top 50 opcodes

are infrequent. To determine how many opcodes to utilize in our experiments, we

conducted binary classification using BHO and OnLineGames malware families. 1,000

malware files from each family are considered for classification. Our methodology

involved implementing a Convolutional Neural Network (CNN) with the Word2Vec

15

embedding technique. The experiments consisted of training the CNN model with the

top 10, 20, 30, 40, and 50 opcodes, with embedded vector lengths of 2, 10, 50, and 100.

Figure 2 displays the classification accuracy results obtained by the Word2Vec-CNN

model for varying numbers of opcodes and vector lengths. It can be observed that

there is no significant difference in performance when using 50 opcodes or 10 opcodes.

Therefore, it is more practical to use fewer opcodes to reduce computation time and

overhead during the training of machine learning models.

It can be observed that the highest average accuracy is achieved when utilizing

the top 20 opcodes across all vector lengths. Consequently, we extracted the top

20 opcodes and processed the opcode files to contain only these opcodes, which are

subsequently utilized for further experimentation. For each file, a pre-processing step

was performed to remove any punctuations and tokenize the text into individual

words.

Figure 2: Word2Vec-CNN: Binary Classification Results

3.3 Feature Vector Generation

In this section, we describe different word embedding methods that are imple-

mented to create feature vectors for the sequence of opcodes obtained from the malware

16

files. We also examine the impact of each embedding technique on the performance

of the malware file classification process. All of the embedding techniques are tested

using the same GCN model described in Section 3.4.1. Additionally, a separate model

was developed that did not implement any of the word embedding techniques, which

served as a base model for comparison with other word embedding implemented mod-

els. The resulting feature vectors are subsequently incorporated into the knowledge

graphs as discussed in Section 3.3.4.

3.3.1 GCN-Bag-of-Words

Bag-of-Words is a widely used word embedding technique in NLP [7]. It is

a simple yet effective way to extract features and create a feature vector without

considering the meaning or semantics of the opcode sequences. It enables us to

determine how the frequency of certain opcodes influences the type of malware family

we are dealing with. In our implementation of BoW, we create a feature vector of

length 20, where each vector value represents the frequency of a particular opcode in

the malware file.

To ensure consistent vector lengths, a value of zero is appended to the feature

vector if an opcode is missing. This step is necessary because the BoW technique

used to generate feature vectors requires a fixed-length vector for each malware file.

By appending zeros to the end of the vector, the missing opcodes are effectively

represented as non-existent features, which allows for consistent vector lengths to

be maintained across all malware files. This feature vector is incorporated in the

knowledge graphs as described in Section 3.3.4. Figure 3 depicts how the feature

vector is generated using the BoW method.

17

Figure 3: Bag-of-Words Feature Generation

3.3.2 GCN-TF-IDF

This section presents the TF-IDF technique for generating feature vectors for each

malware file containing the opcode sequences. In our implementation, we first create a

document-term matrix, where each row represents a document (i.e., malware file) and

each column represents an opcode. The entries in the matrix correspond to the term

frequency of each opcode in each document. Next, we compute the inverse document

frequency for each opcode as described in Section 2.2.2. Finally, we calculate the

TF-IDF score for each opcode by multiplying its TF score with the IDF value. The

resulting TF-IDF matrix is then used to generate a feature vector for each file, where

each vector represents a document and contains the TF-IDF scores for every opcode

in the malware file. Figure 4 illustrates the process of generating feature vectors using

the TF-IDF vectorizer.

Figure 4: TF-IDF Feature Generation

18

3.3.3 GCN-Word2Vec

Word2Vec is an important word embedding method used to generate feature

vectors in this research [7]. In our experiment, we implement the gensim Word2Vec

model and train it using the opcode sequences. The vector length is kept as 100

and the window size is set to the default value of 5. The Word2Vec library offers

two training techniques - Skip-Gram and Continuous Bag of Words (CBOW). To

conduct our experiments, we opted to use the CBOW algorithm to train Word2Vec.

The trained Word2Vec model is then employed to generate feature vectors for each

document by averaging the opcode vectors of all the opcodes present in the document.

Figure 5 illustrates the usage of the Word2Vec model in generating feature vectors for

each malware file.

Figure 5: Word2Vec Feature Generation

3.3.4 Creating Knowledge Graphs

We utilize Python’s NetworkX library to create knowledge graphs from the opcode

files. The nodes in the graph represent the opcodes, and the edges between them

indicate the relationship between the opcodes. Specifically, we create an edge between

two opcodes if they occur consecutively in the file. To compute the edge weights, we

calculate the bi-gram frequency of the opcode pair.

To establish a baseline for comparison, we generate 5,000 knowledge graphs from

the opcode files without any word embedding. This baseline model is used to compare

19

with the word-embedded graphs. After creating the graph, we save it in a .pkl file

format, along with its corresponding label. During classification, this data is retrieved

from the .pkl file and used for further analysis. An example of a regular graph is

shown in Figure A.15.

To generate word-embedded graphs, we store the feature vectors generated by

the word embedding techniques in the .pkl files along with the graph and label data.

During the training phase, these feature vectors are embedded as node features in the

graph that is loaded. This additional information enhances the performance of the

GNN models. Figures A.16, A.17, and A.18 illustrate the knowledge graphs created

using BoW, TF-IDF, and Word2Vec techniques respectively. Each of these techniques

generates 5,000 knowledge graphs, which are used in our experiments.

3.3.5 Results for Word Embedding Experiments

The classification results obtained for various word embedding techniques are

summarized in Table 2. The same GCN model described in Section 3.4.1 is used

to classify the graphs generated using these word embedding techniques. These

results help us in deciding which word embedding technique to continue with for

our implementation using GNN models. We can see that only Word2Vec is giving

improved classification results as compared to our baseline model. On the other

hand, TF-IDF and BoW worsen the classification accuracy with BoW giving 59.80%

accuracy and TF-IDF giving just 22.6% accuracy.

It should be observed that the dimension of feature vectors generated by BoW

and TF-IDF techniques are 20x1, whereas the feature vectors generated by Word2Vec

are of size 20x100. This indicates the dimensionality of the vector space that each

technique uses to represent the text data. A larger vector size allows for more complex

and nuanced relationships between opcodes to be captured, which can improve the

20

performance in downstream tasks such as classification. Therefore, we select Word2Vec

as the primary word embedding technique for our GNN models. Section 3.4 describes

this in detail.

Table 2: Accuracy of Word Embedding Techniques

Model Accuracy
Baseline Model 71.60%

GCN-BoW 59.80%
GCN-TFIDF 22.60%

GCN-Word2Vec 91.91%

3.4 GNN Implementation

This section presents the architecture of the three GNNs used in this research for

malware classification. All models are designed to handle graph data with Word2Vec

generated feature vectors that are embedded as node features in the graphs. In our

experiments, we vary the vector length of feature vectors generated by Word2Vec.

More information on these experiments is available in Section 3.5.

In our implementation, the first step involves loading all the graph data from the

stored .pkl files. The feature vectors are then read from the files and embedded in

the nodes after the graph is loaded. Before training the GNN models, we use graph

generators to create graph data generators, which are used to feed the graph data to

the GNN models during the training phase. This enables the models to learn from

the graph data with varying numbers of nodes and edges.

3.4.1 Word2Vec-GCN

Graph Convolutional Network is a neural network designed to work with graph-

structured data [43], and it performs message passing over the graph to compute node

embeddings. GCNSupervisedGraphClassification class from the stellargraph

library in Python is used to implement the GCN model.

21

The GCN model architecture consists of two graph convolutional layers with

64 units each and ReLU activation function. A dropout rate is set to 0.4 and is

applied to the convolutional layers to avoid the model from overfitting. The global

average pooling layer aggregates the node features of the graph into a single vector

representation. The output of the global average pooling layer is then fed into two

fully connected dense layers, the first with 32 units and ReLU activation, and the second

with 5 units and softmax activation, which generates a probability distribution over

the five possible classes. The Adam optimizer is used to minimize sparse categorical

cross-entropy, which computes the difference between the predicted and true class

labels. The accuracy metric is used to assess the model’s performance on the test data.

These values are summarized in Table 3. Experiment results obtained with GCN are

explained in Section 3.5.

Table 3: GCN Hyperparameter Values

Hyperparameter Value
Number of GCN layers 2

Number of units per GCN layer 64
Dense layer sizes [32, 5]

Activation [relu, softmax]
Dropout rate 0.4
Learning rate 0.001

Optimization algorithm Adam
Loss function Sparse categorical cross-entropy

3.4.2 Word2Vec-GAT

Graph Attention Network is designed to use self-attention mechanism to learn

the node embeddings in the graph by aggregating information from the neighboring

nodes. The GATConv layer, available in the spektral library of Python, is used to

implement the GAT model. In our implementation, we use two GAT layers that

22

consist of 64 hidden units with a dropout rate of 0.5 and elu activation function.

The attn_heads parameter defines the number of attention heads used by the

GAT model. Each head computes a separate attention coefficient for each neighbor

of a node and then concatenates the results. The value of this hyperparameter is set

to 8 and the dropout rate is set to 0.4 in the GAT layers. The global sum pooling

layer with 64 units and relu activation function and an output layer with 5 units and

softmax activation function are added. The Adam optimizer is used with a learning

rate of 0.005, categorical cross-entropy loss function is used to compute the

variance between the predicted and actual labels, and the accuracy metric is used

to assess the performance of the model. These values are summarized in Table 4.

Experiment results obtained with GAT are explained in Section 3.5.

Table 4: GAT Hyperparameter Values

Hyperparameter Value
Number of GAT layers 2

Number of units per GAT layer 64
Dense layer sizes [64,5]

Activation [elu, relu, softmax]
Attention heads 8
Dropout rate 0.4
Learning rate 0.005

Optimization algorithm Adam
Loss function Categorical cross-entropy

3.4.3 Word2Vec-GraphSAGE

GraphSAGE is a graph neural network that learns node embeddings by aggre-

gating information from a node’s local neighborhood [36]. In our implementation,

we use GraphSAGENodeGenerator to generate training and validation batches, with

batch size and the number of samples specified in the generator. The model consists

of two GraphSAGEConv layers, available in Python’s spektral library, with hidden

23

dimensions of 32 and ReLU activation function.

The dropout rate is set to 0.5 in each layer. Global max pooling operation

is applied to obtain a single feature vector representing the entire graph, which is

then fed into a dense output layer with a softmax activation function to generate

the final classification output. The model is compiled using the Adam optimizer with

a learning rate of 0.005, categorical cross-entropy loss, and accuracy as the

evaluation metric. These values are summarized in Table 5.

Table 5: GraphSAGE Hyperparameter Values

Hyperparameter Value
Number of GraphSAGE layers 2

Number of units per GraphSAGE layer 32
Dense layer sizes [32, 5]

Activation [relu, softmax]
Dropout rate 0.5
Learning rate 0.005

Optimization algorithm Adam
Loss function Categorical cross-entropy

3.5 Classification Results

We train GNN models with graph samples using the best hyperparameter values

to investigate their classification performance. A baseline result is first established

for graph classification without any word embeddings to observe the effect of word

embeddings on classification performance. Next, we experiment with Word2Vec

embeddings, varying the vector length from 1 to 100. 5,000 graph samples are generated

for each vector length category and the classification performance is evaluated using

accuracy and classification matrices for each GNN model. Comparing the classification

results helps in gaining insights into how the quality of feature vectors affects the

classification performance of the GNN models.

24

3.5.1 GCN Results

Figure 6 gives the confusion matrices for GCN. This model achieves an accuracy

of 79.60% for the baseline model, 60.20% for Word2Vec with vector length of 1, 84.70%

for Word2Vec with vector length of 20, 85.3% for Word2Vec with vector length of 50

and 91.10% for Word2Vec with vector length of 100.

(a) Baseline (b) Vector length=1

(c) Vector length=20 (d) Vector length=50

(e) Vector length=100

Figure 6: Classification Matrices for GCN

25

3.5.2 GAT Results

Figure 7 gives the confusion matrices for GAT. This model achieves an accuracy

of 73.80% for the baseline model, 42.90% for Word2Vec with vector length of 1, 80.80%

for Word2Vec with vector length of 20, 83.80% for Word2Vec with vector length of

50 and 87.30% for Word2Vec with vector length of 100.

(a) Baseline (b) Vector length=1

(c) Vector length=20 (d) Vector length=50

(e) Vector length=100

Figure 7: Classification Matrices for GAT

26

3.5.3 GraphSAGE Results

Figure 8 gives the confusion matrices for GraphSAGE. This graph model achieves

an accuracy of 75.90% for the baseline model, 47.50% for Word2Vec with vector

length of 1, 76.80% for Word2Vec with vector length of 20, 82.70% for Word2Vec

with vector length of 50 and 84.70% for Word2Vec with vector length of 100.

(a) Baseline (b) Vector length=1

(c) Vector length=20 (d) Vector length=50

(e) Vector length=100

Figure 8: Classification Matrices for GraphSAGE

27

3.5.4 Discussion

Figure 9 shows the accuracy achieved by each GNN architecture for the baseline

model and Word2Vec embeddings with vector lengths of 1, 20, 50, and 100. The

results indicate that the classification accuracy improves significantly as the length of

the embedded vector increases. The experiments are concluded at vector length 100

because there is no significant improvement in accuracy observed beyond this length,

even when it is increased up to 200. The results also show that GCN outperforms

GAT and GraphSAGE, achieving an accuracy of 91.10% for a vector length of 100.

GAT and GraphSAGE produced very similar results, with GAT performing slightly

better.

Based on the findings, it can be inferred that as the length of the Word2Vec

vectors increases, the models become capable of capturing more fine-grained details

of the opcode sequence. This, in turn, leads to the creation of higher-quality feature

vectors, which are more effectively utilized by the GNNs to capture the underlying

graph structure and classify nodes accurately.

Figure 9: Accuracy for GNN models with varying Word2Vec vector lengths

28

CHAPTER 4

Conclusion and Future Study

In this study, we analyzed the impact of different word embedding techniques

on the performance of Graph Neural Networks in classifying malware files with

opcode sequences. The results of our experiments provide strong evidence that using

word embeddings can improve feature engineering in malware analysis, resulting in

improved classification performance. We evaluated how well Graph Convolution

Network, Graph Attention Network, and GraphSAGE network perform in classifying

malware files using knowledge graphs constructed from opcode sequences. Our results

indicate that GCN outperforms GAT and GraphSAGE, achieving an accuracy of

91.10% for an embedded vector of length 100.

The first set of experiments investigated the impact of different word embedding

techniques, including Word2Vec, TF-IDF, and Bag-of-words, on the classification

performance of GNN models. The results showed that Word2Vec produces the

most effective word embeddings, serving as a baseline for comparison in subsequent

experiments. We then generated vector embeddings of various lengths using Word2Vec

and constructed knowledge graphs with these embeddings as node features. Through

performance comparison of the GNN models, we demonstrated that feature-embedded

graphs with larger feature vectors improve the models’ performance in classifying the

malware files into their respective families.

Our results indicate that the length of the Word2Vec vectors has a significant

impact on the models’ classification performance. As the length of the embedded

vector increases, the models become capable of capturing more fine-grained details of

the opcode sequence, leading to the creation of higher-quality feature vectors that are

more effectively utilized by the GNNs to capture the underlying graph structure and

classify nodes accurately. The experiments showed that the classification accuracy

29

improves significantly as the length of the embedded vector increases. However, there

was no noticeable change in accuracy beyond a vector length of 100.

Our study has several implications for the field of malware analysis. First,

the use of GNNs for malware classification has shown promising results, indicating

the potential of using graph-based approaches for malware analysis. Second, the

effectiveness of word embeddings in improving feature engineering in malware analysis

highlights the importance of using appropriate feature extraction techniques. Finally,

our study highlights the importance of selecting appropriate GNN architectures and

hyperparameters for graph-based classification tasks.

One possible direction for future work in this field is to investigate the effectiveness

of other word embedding techniques, such as GloVe [44] and FastText [45]. Moreover,

it would be worthwhile to explore the impact of other graph construction techniques,

such as subgraph sampling [46] and random walks [47], on the classification performance

of GNN models. As we are dealing with only five malware families with 1,000 malware

files in each, it would be valuable to assess the performance of GNN models on larger

datasets to evaluate their scalability and robustness.

Another potential future research can focus on exploring other GNN architectures,

such as the recently proposed Transformer-based GNNs [48], and comparing their

performance with traditional GNN models. Other than word embedding generated

feature vectors, additional features, such as file size and entropy, can be added to the

graph to improve the classification performance of GNNs. Furthermore, incorporating

temporal information into the graph, such as the order in which opcodes were executed,

could potentially enhance the GNN’s ability to classify malware.

30

LIST OF REFERENCES

[1] J. Zhou, G. Cui, S. Hu, Z. Zhang, C. Yang, Z. Liu, L. Wang, C. Li, and M. Sun,
‘‘Graph neural networks: A review of methods and applications,’’ 2021.

[2] L. Ding, X. Chen, and Y. Xiang, ‘‘Negative-supervised capsule graph neural
network for few-shot text classification,’’ arXiv preprint arXiv:2101.00736, pp.
6875--6887, 2021.

[3] B. Wang, A. Wang, F. Chen, Y. Wang, and C.-C. J. Kuo, ‘‘Evaluating
word embedding models: methods and experimental results,’’ APSIPA
Transactions on Signal and Information Processing, 2019. [Online]. Available:
https://doi.org/10.1017%2Fatsip.2019.12

[4] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of word
representations in vector space,’’ 2013.

[5] S. Robertson, ‘‘Understanding inverse document frequency: On theoretical ar-
guments for idf,’’ Journal of Documentation - J DOC, vol. 60, pp. 503--520, 10
2004.

[6] W. Qader, M. M. Ameen, and B. Ahmed, ‘‘An overview of bag of
words;importance, implementation, applications, and challenges,’’ 06 2019, pp.
200--204.

[7] M. Stamp, M. Alazab, and A. Shalaginov, Malware analysis using artificial
intelligence and deep learning, 1st ed. Switzerland: Springer, Dec. 2020.

[8] C. Ventures, ‘‘Cybercrime damages $6 trillion by 2025,’’ 2021. [Online]. Available:
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/

[9] Kaspersky, ‘‘Malware variety grew by 13.7% in 2019,’’ 2019. [Online].
Available: https://usa.kaspersky.com/about/press-releases/2019_malware-
variety-grew-by-137-percent-in-2019

[10] O. Savenko, A. Nicheporuk, I. Hurman, and S. Lysenko, ‘‘Dynamic signature-
based malware detection technique based on api call tracing,’’ in ICTERI Work-
shops, 2019.

[11] W. Liu, P. Ren, K. Liu, and H. Duan, ‘‘Behavior-based malware analysis and
detection,’’ in 2010 International Conference on Intelligent Computing and Inte-
grated Systems. IEEE, 2010, pp. 455--458.

31

https://doi.org/10.1017%2Fatsip.2019.12
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://usa.kaspersky.com/about/press-releases/2019_malware-variety-grew-by-137-percent-in-2019
https://usa.kaspersky.com/about/press-releases/2019_malware-variety-grew-by-137-percent-in-2019

[12] T. Bilot, N. E. Madhoun, K. A. Agha, and A. Zouaoui, ‘‘A survey on malware
detection with graph representation learning,’’ 2023.

[13] Z. Zhang, Y. Li, W. Wang, H. Song, and H. Dong, ‘‘Malware detection
with dynamic evolving graph convolutional networks,’’ Int. J. Intell.
Syst., vol. 37, no. 10, p. 7261–7280, mar 2022. [Online]. Available:
https://doi.org/10.1002/int.22880

[14] S. Li, Q. Zhou, R. Zhou, J. Li, and H. Chen, ‘‘Intelligent malware detection based
on graph convolutional network,’’ Journal of Supercomputing, vol. 78, no. 5, pp.
4182--4198, 2022.

[15] C. Catal, H. Gündüz, and A. Ozcan, ‘‘Malware detection based on graph attention
networks for intelligent transportation systems,’’ Electronics, vol. 10, p. 2534, 10
2021.

[16] V. Ravi, M. Alazab, S. Selvaganapathy, and R. Chaganti, ‘‘A multi-view
attention-based deep learning framework for malware detection in smart
healthcare systems,’’ Computer Communications, vol. 195, pp. 73--81,
2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0140366422003231

[17] S. Li, Q. Zhou, R. Zhou, and Q. Lv, ‘‘Intelligent malware detection based on
graph convolutional network,’’ The Journal of Supercomputing, vol. 78, 02 2022.

[18] Y.-H. Chen, J.-L. Chen, and R.-F. Deng, ‘‘Similarity-based malware classification
using graph neural networks,’’ Applied Sciences, vol. 12, no. 21, 2022. [Online].
Available: https://www.mdpi.com/2076-3417/12/21/10837

[19] X. Yang, D. Yang, and Y. Li, ‘‘A hybrid attention network for malware detection
based on multi-feature aligned and fusion,’’ Electronics, vol. 12, no. 3, 2023.
[Online]. Available: https://www.mdpi.com/2079-9292/12/3/713

[20] A. Kale, F. Di Troia, and M. Stamp, ‘‘Malware classification with word embedding
features,’’ 03 2021.

[21] A. Chandak, W. Lee, and M. Stamp, ‘‘A comparison of word2vec, hmm2vec, and
pca2vec for malware classification,’’ 03 2021.

[22] W. Qader, M. M. Ameen, and B. Ahmed, ‘‘An overview of bag of
words;importance, implementation, applications, and challenges,’’ 06 2019, pp.
200--204.

[23] K. Juluru, H.-H. Shih, K. N. Keshava Murthy, and P. Elnajjar, ‘‘Bag-of-words
technique in natural language processing: A primer for radiologists,’’
RadioGraphics, vol. 41, no. 5, pp. 1420--1426, 2021, pMID: 34388050. [Online].
Available: https://doi.org/10.1148/rg.2021210025

32

https://doi.org/10.1002/int.22880
https://www.sciencedirect.com/science/article/pii/S0140366422003231
https://www.sciencedirect.com/science/article/pii/S0140366422003231
https://www.mdpi.com/2076-3417/12/21/10837
https://www.mdpi.com/2079-9292/12/3/713
https://doi.org/10.1148/rg.2021210025

[24] S. Qaiser and R. Ali, ‘‘Text mining: Use of tf-idf to examine the relevance of
words to documents,’’ International Journal of Computer Applications, vol. 181,
07 2018.

[25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of word
representations in vector space,’’ 2013.

[26] T. P. Adewumi, F. Liwicki, and M. Liwicki, ‘‘Word2vec: Optimal hyper-
parameters and their impact on nlp downstream tasks,’’ 2021.

[27] T. Mikolov, K. Chen, G. Corrado, and J. Dean, ‘‘Efficient estimation of word
representations in vector space,’’ 2013.

[28] S. Alashri, S. Alzahrani, M. Alhoshan, I. Alkhanen, S. Alghunaim, and M. Al-
hassoun, ‘‘Lexi-augmenter: Lexicon-based model for tweets sentiment analysis,’’
in 2019 IEEE International Conference on Computational Science and Engi-
neering (CSE) and IEEE International Conference on Embedded and Ubiquitous
Computing (EUC), 2019, pp. 7--10.

[29] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, ‘‘The
graph neural network model,’’ IEEE Transactions on Neural Networks, vol. 20,
no. 1, pp. 61--80, 2009.

[30] F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini, ‘‘The
graph neural network model,’’ IEEE Transactions on Neural Networks, vol. 20,
no. 1, pp. 61--80, 2009.

[31] S. Zhang, H. Tong, J. Xu, and J. Ye, ‘‘Graph convolutional networks: a compre-
hensive review,’’ Computational Social Networks, vol. 6, no. 1, p. 11, 2019.

[32] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio,
‘‘Graph attention networks,’’ 2018.

[33] J. Huang, N. Tao, H. Chen, Q. Deng, W. Wang, and J. Wang, ‘‘Semi-supervised
text classification based on graph attention neural networks,’’ in 2021 4th Inter-
national Conference on Artificial Intelligence and Big Data (ICAIBD), 2021, pp.
325--330.

[34] Y. Liu and X. Gou, ‘‘A text classification method based on graph attention
networks,’’ in 2021 International Conference on Information Technology and
Biomedical Engineering (ICITBE), 2021, pp. 35--39.

[35] W. L. Hamilton, R. Ying, and J. Leskovec, ‘‘Inductive representation learning on
large graphs,’’ 2018.

33

[36] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec,
‘‘Graph convolutional neural networks for web-scale recommender systems,’’
in Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. ACM, jul 2018. [Online]. Available:
https://doi.org/10.1145%2F3219819.3219890

[37] L. Yao, C. Mao, and Y. Luo, ‘‘Graph convolutional networks for text classifica-
tion,’’ 2018.

[38] Microsoft Security Intelligence, ‘‘Trojan:win32/bho,’’ https://www.microsoft.
com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:
Win32/BHO&threatId=-2147364778, 2010.

[39] Microsoft Security Intelligence, ‘‘Pws:win32/onlinegames,’’ https:
//www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?
Name=PWS%3AWin32%2FOnLineGames, 2010.

[40] Microsoft Security Intelligence, ‘‘TrojanDownloader:Win32/Renos,’’
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-
description?Name=TrojanDownloader:Win32/Renos&threatId=16054, 2010.

[41] Microsoft Security Intelligence, ‘‘VBInject,’’ https://www.microsoft.com/en-
us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:
Win32/VBInject%26ThreatID=-2147367171, 2010.

[42] Microsoft Security Intelligence, ‘‘Winwebsec,’’ https://www.microsoft.com/
security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec,
2010.

[43] A. Voytetskiy, A. Herbert, and M. Poptsova, ‘‘Graph neural networks
for z-dna prediction in genomes,’’ bioRxiv, 2022. [Online]. Available:
https://www.biorxiv.org/content/early/2022/08/25/2022.08.23.504929

[44] J. Pennington, R. Socher, and C. Manning, ‘‘Glove: Global vectors for word
representation,’’ vol. 14, 01 2014, pp. 1532--1543.

[45] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, ‘‘Enriching word vectors
with subword information,’’ 2017.

[46] J. Wang, P. Chen, B. Ma, J. Zhou, Z. Ruan, G. Chen, and Q. Xuan, ‘‘Sampling
subgraph network with application to graph classification,’’ 2021.

[47] D. Jin, R. Wang, M. Ge, D. He, X. Li, W. Lin, and W. Zhang, ‘‘Raw-gnn:
Random walk aggregation based graph neural network,’’ 2022.

[48] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, ‘‘Graph transformer networks,’’
2020.

34

https://doi.org/10.1145%2F3219819.3219890
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=Trojan:Win32/BHO&threatId=-2147364778
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=PWS%3AWin32%2FOnLineGames
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=TrojanDownloader:Win32/Renos&threatId=16054
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject%26ThreatID=-2147367171
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject%26ThreatID=-2147367171
https://www.microsoft.com/en-us/wdsi/threats/malware-encyclopedia-description?Name=VirTool:Win32/VBInject%26ThreatID=-2147367171
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.microsoft.com/security/portal/threat/encyclopedia/entry.aspx?Name=Win32%2fWinwebsec
https://www.biorxiv.org/content/early/2022/08/25/2022.08.23.504929

APPENDIX

Appendix
A.1 Additional Experiments

We conducted an additional experiment where we implemented BERT, a pre-

trained language model that generates contextualized word embeddings. Bidirectional

Encoder Representations from Transformers (BERT) has the ability to capture word

context and produce more significant representations. The following sections present

the implementation details and the outcomes achieved by training GNN models with

BERT embeddings.

A.1.1 BERT Implementation

To implement BERT, the BERT model and tokenizer are imported from the

transformers library in Python. To accommodate the BERT model’s ability to

process text of length 512, the opcode sequence from the malware file is split into

chunks of length 512 and each chunk is processed sequentially. The tokenizer is then

used to tokenize the opcodes and generate token IDs. For each opcode in the sequence,

the model takes these token IDs as input and generates embeddings of length 768. To

generate feature vectors for unique opcodes in the file, the feature vector values for

the same opcodes are averaged. These features are then used as node embeddings in

the graphs for classification.

A.1.2 Results

The performance results of GCN, GAT, and GraphSAGE using BERT embedding

method are summarized in Table A.6. An accuracy of 89.90% is achieved by GCN,

87.80% by GAT, and 87% by GraphSAGE.

The obtained results are quite comparable to those achieved by GNN models

trained with Word2Vec for a vector length of 100. It is evident from the results that

using a pre-trained model like BERT in our case is not providing any significant ad-

35

vantage in terms of improved classification performance when compared to Word2Vec,

which is not pre-trained.

Table A.6: BERT Accuracy

Model Accuracy
GCN 89.90%
GAT 87.80%

GraphSAGE 87.00%

The classification matrices for BERT are shown in Figure A.10.

(a) GCN-BERT (b) GAT-BERT

(c) GraphSAGE-BERT

Figure A.10: Classification Matrices for BERT

The classification results obtained using BERT are compared to the results

obtained using Word2Vec with vector length of 100. As shown in Figure A.11, it can

36

be observed that the accuracies achieved by BERT and Word2Vec are quite similar.

However, BERT outperforms Word2Vec in terms of runtime, taking approximately

half the time during training.

(a) Run Time Comparison

(b) Accuracy Comparison

Figure A.11: BERT vs Word2Vec

37

A.2 Additional Results

A.2.1 Accuracy-Loss Graphs

Below are the accuracy-loss graphs of all three models, taken during their training

phase with a Word2Vec embedding of vector length 100.

(a) Accuracy (b) Loss

Figure A.12: GCN Accuracy and Loss Graphs

(a) Accuracy (b) Loss

Figure A.13: GAT Accuracy and Loss Graphs

38

(a) Accuracy (b) Loss

Figure A.14: GraphSAGE Accuracy and Loss Graphs

39

A.2.2 Knowledge Graphs

Figure A.15: Regular Graph

40

Figure A.16: Bag-of-Words Graph

41

Figure A.17: TF-IDF Graph

42

Figure A.18: Word2Vec Graph

43

	Malware Classification using Graph Neural Networks
	Recommended Citation

	Introduction
	Background
	Previous Work
	Word Embedding Techniques
	Bag-of-Words
	TF-IDF
	Word2Vec

	Graph Neural Networks
	Graph Convolution Network
	Graph Attention Network
	GraphSAGE Network

	Experiments and Result Analysis
	Dataset
	Dataset Preprocessing
	Binary Classification using Word2Vec-CNN

	Feature Vector Generation
	GCN-Bag-of-Words
	GCN-TF-IDF
	GCN-Word2Vec
	Creating Knowledge Graphs
	Results for Word Embedding Experiments

	GNN Implementation
	Word2Vec-GCN
	Word2Vec-GAT
	Word2Vec-GraphSAGE

	Classification Results
	GCN Results
	GAT Results
	GraphSAGE Results
	Discussion

	Conclusion and Future Study
	LIST OF REFERENCES
	Appendix
	Additional Experiments
	BERT Implementation
	Results

	Additional Results
	Accuracy-Loss Graphs
	Knowledge Graphs

