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Abstract

Let A be a nontrivial additive abelian group and A* = A\ {0}. A graph is A-magic
if there exists an edge labeling f using elements of A* which induces a constant vertex
labeling of the graph. Such a labeling f is called an A-magic labeling and the constant
value of the induced vertex labeling is called an A-magic value. In this paper, we use the
Combinatorial Nullstellensatz to construct nontrivial classes of Z,-magic graphs, prime
p = 3. For these graphs, some lower bounds on the number of distinct Z,,-magic labelings
are also established.

Keywords: integer-magic graph, integer-magic labeling, Combinatorial Nullstellensatz

Math. Subj. Class.: 05C78

1 Introduction

Let G = (V, E) be a graph, where G might be disconnected and/or a multigraph. For any
nontrivial additive abelian group A, let A* = A\ {0}. A mapping f : E(G) — A* is called
an edge labeling of G. Any such edge labeling induces a vertex labeling f~ : V(G) — A,
where the label at a vertex is the sum of the edge labels incident to that vertex. Here, a
loop label is counted only once. An edge labeling f whose induced mapping f on V(G)
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is a constant is called an A-magic labeling of (G. In this case, the constant is called the
A-magic value of f and G is called an A-magic graph. If GG has a Z;-magic labeling (for
some k > 2), then G is an integer-magic graph. The integer-magic spectrum of a graph GG
is the set IM(G) = {k > 2 : G is Zy-magic}. Generally speaking, it is quite difficult to
determine the integer-magic spectrum of a graph. Note that the integer-magic spectrum of
a graph is not to be confused with the set of achievable magic values.

The concept of an A-magic graph was first introduced in [12]. Since then, A-magic
graph labelings have been studied in [15, 20, 22, 37, 39, 41] and Z-magic graphs were
investigated in [11, 13, 14, 16, 17, 18, 19, 21, 24, 25, 30, 31, 32, 33, 42, 38, 40]. Z-
magic graphs were considered by Stanley [43, 44], where he pointed out that the theory of
magic labelings could be studied in the general context of linear homogeneous Diophantine
equations. They were also considered in [2, 34].

Labelings form a large and important area of study in graph theory. First formally in-
troduced by Rosa [29] in the 1960s, graph labelings have captivated the interest of many
mathematicians in the ensuing decades. In addition to the intrinsic beauty of the sub-
ject matter, graph labelings have applications (discussed in papers by Bloom and Golomb
[4, 3]) in graph factorization problems, X-ray crystallography, radar pulse code design, and
addressing systems in communication networks. The interested reader is directed to Gal-
lian’s [6] dynamic survey, which contains 2900+ references to research papers and books
on the topic of graph labelings.

2 Preliminaries

All graph-theoretic terms (which are not explicitly defined) are standard ones and can be
found in [7]. Throughout this paper, we consider general graphs which might be discon-
nected and/or a multigraph. We first note a few important facts which are known about
Zr-magic labelings. Lemmas 2.2 and 2.4 are found in [20], whereas Lemma 2.1 is a slight
generalization of a lemma found in [20].

Lemma 2.1. For a graph G, let i(v) denote the number of edges, multiedges and loops
incident to v € V(G). Then, G is Za-magic <= i(v) are of the same parity, for all
v e V(G).

Lemma 2.2. If G is Zi-magic and k|n, then G is Z,,-magic.
Remark 2.3. The converse of Lemma 2.2 is not true, in general. For example, it was
shown in [13] that IM(K 4 — {uv}) = {4,6,8, ... }. In particular, K; — {uv} is Zg-magic.

However, K4 — {uwv} is not Zs-magic.

Lemma 2.4. Let p be prime. If G is Zy,-magic for some magic value t # 0, then G is
Z,-magic with magic value t' for any nonzero t' € Z,,.

Proof. Let b = t't—'. Multiply all of the edge labels by b. Since Z,, is a field, this gives
edge labels which are non-zero. Hence, we have the desired Z,,-magic labeling. O

Lemmas 2.1 and 2.2 allow us to focus on primes p > 3. Because of Lemma 2.4, it
suffices to look at Z,-magic labelings with magic values equal to 0 and 1.
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3 The Combinatorial Nullstellensatz

In [1], Alon proved the following result and successfully applied it to problems in additive
number theory and graph theory.

Theorem 3.1 (Combinatorial Nullstellensatz). Let f = f(x1,. .., T, ) be a polynomial of
degree d over a field F. Suppose that the coefficient of the monomial :ni‘ ceezbmoin f s

nonzero and ty + --- + t,, = d. If Sy,...,S,, are subsets of F with |S;| = t; + 1, then
there exists an ' = (2%, ), ..., x],) € S1 X --- X S, for which f(z") # 0.

Lt (1)

Example 3.2. Let f(x1, 2, 73, 14) = Tizoxs — 225 + 222322 + 22 € Zs|x1, 29, 23, 74).
We will apply Theorem 3.1 on the term 222222 in f. Note thatdeg(f) = 6 = deg(z?a222).
We choose S; = {0,1,2}, S, = {0,1,2}, S3 = {0,1,2} and S; = {2}. Then, Theo-
rem 3.1 implies that there exist s; € S;, where 1 < i < 4, such that f(s1, s2, s3,54) 7 0.
Note that the Combinatorial Nullstellensatz cannot be applied to any of the other monomial
terms in f.

After its discovery, the Combinatorial Nullstellensatz would soon become a powerful
tool in extremal combinatorics [ 10]. With regards to graph labeling and coloring problems,
it has been used to prove theorems on anti-magic labelings, neighbor sum distinguishing
total colorings, and list colorings [27, 36, &]. For a recent research monograph on the
Combinatorial Nullstellensatz and graph coloring problems, the reader is directed to [45].

4 The Hartke polynomials

Let G = (V, E), where |V(G)| = n, |E(G)| = m, and the edges, multiedges and loops
of GG are identified with variables x1, xa, ..., z,,. As mentioned previously, we will focus
on Zy-magic labelings (prime p > 3) and magic values equal to 0 and 1. For fixed prime
p > 3and t € {0, 1}, define the polynomials f;, in Z, [z, ..., z,,] as

filz) = fulzr,..ozm) =[] [1— t— Y = pl}, @.1)

veV (@) veET;

where the addition and multiplication are taken modulo p. The given factorization of (4.1)
and its factors are called the canonical factorization and canonical factors of f,, respec-
tively. The f, are called Hartke polynomials and were introduced in [23]. Note that each
Hartke polynomial describes a unique graph G up to isomorphism.

In this section, we recall the basic properties of f; (see [23]) and give additional analysis
of these polynomials. This is used in conjunction with Theorem 3.1 in subsequent sections
of this paper, where we construct Z,,-magic graphs.

Remark 4.1. Note thatdeg(f,(z)) = (p — 1) - |[V(G)|. This follows from:
1. There are |V (G)| canonical factors of f,(z).

2. Each of the canonical factors is of degree p — 1.

3. Theorem in [9]: Let R be a commutative ring with unity and g, h € Rz, 7o, ..., T,,]-
If R has no zero divisors, then deg(gh) = deg(g) + deg(h).
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*

Observations 4.2. Let z’ be an m-tuple in Loy X Ly x - - - x Ly, Then, we note the following:

1. fi(z) is defined for all connected multigraphs G.

2. The range of f;(x) is {0, 1}. This follows from the fact that each canonical factor of
fi takes on a value of 0 or 1, due to Fermat’s Little Theorem [9]: If p is prime, then
a? = aforalla € Zj,.

3. folz') =1 = 2’ is a Zy-magic labeling of G with magic value 0.

4. fi(z') = 1 = z'is a Z,-magic labeling of GG with magic value 1.

5. fo(z') = 0and fi(z") = 0 = z’ is not a Z,-magic labeling of G with magic value
Oorl.

6. fo(z') = 1= fi(z') = 0. If fy(z') = 1, then 2’ is a Z,-magic labeling of G with
magic value 0. Thus, z’ is not a Z,-magic labeling of G with magic value 1.

7. fi(z') =1 = fo(z’) = 0. This is the contrapositive of Observation 6.

Two techniques are often used to establish results in graph labeling problems. Either
a construction of a desired labeling is obtained through ingenuity, or one shows the non-
existence of the labeling (via proof by contradiction). In practice, these methods can be
time-consuming and difficult to use.

In [23], the Combinatorial Nullstellensatz and Hartke polynomials were used to prove
that certain graphs were Z,-magic (prime p > 3), without having to construct an actual
Zy-magic labeling. As far as the authors know, it was the first time that a nonconstructive
method was used to analyze integer-magic graph labelings. The focus of this paper is to
use the Combinatorial Nullstellensatz to construct Zj,-magic graphs, for prime p = 3. In
particular, we construct Hartke Z,-magic graphs.

Definition 4.3. Let p > 3 be prime. A graph ( is called Hartke Z,,-magic if Theorem 3.1
can be used on a Hartke polynomial f; of GG to prove that G is Z,-magic. In this case, a
nonvanishing monomial term M of degree (p — 1) - |V ()] in the expansion of f; (where
Theorem 3.1 is applied in such a manner) is called a Hartke term.

Example 4.4. Let p = 3 and G7 be the graph illustrated in Figure 1. Note that G5 is the
graph F4 in [28]. Using Mathematica 12, we see that deg( fo(x)) = 16 and that fy(x) con-
tains the monomial term 14336x526 - - - 799 = 2w576 - - - 729 (mod 3). Let S; = {1,2}
fori =5,6,...,20,and S; = {1} fori = 1,2, 3 and 4. So by Theorem 3.1, we have that
fo(z") # 0, for some =" € Sy x Sy x -+ x Soq. Thus, fo(z') = 1 and we conclude that
G'7 is a Hartke Zs-magic graph with magic value 0.

Proposition 4.5. Let p > 3 be prime and GG be a graph with Hartke polynomial f,. Then,
G is Hartke Z.,,-magic with magic value t <—> f, has a nonvanishing monomial term M of
degree (p — 1) - |V(G)|, where all the exponents t; satisfy 0 < t; < p — 2.

Proof. (==). Suppose that (& is a Hartke Z,-magic graph with Hartke polynomial f;.
Then, there exists a Hartke term M of degree (p — 1) - |[V(G)] in f,. Since G is a Hartke
Z,-magic graph, there exist nonempty subsets Sy, Sy, ..., S, of Z5 = {1,2,...,p — 1}
corresponding to the m variables in f;, which satisfy the hypothesis of Theorem 3.1 (when
applied to M). In particular, all of the exponents #; of M satisfy 0 <¢; <p — 2.
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Figure 1: G'7 has a Zs-magic labeling with magic value 0.

(<=). Suppose that f; has a nonvanishing monomial term M of degree (p—1)-|V(G)],
where all of the exponents £; satisfy 0 < ¢; < p — 2. For each exponent #; (associated with
variable z;) appearing in M, choose a nonempty subset S; of Z;, = {1,2,...,p—1} where
|S;| = t; + 1. Thus by Theorem 3.1, G has a Z,-magic labeling. In particular, G is Hartke
Z,-magic with magic value £. O

Proposition 4.6. Let p > 3 be prime. If G is a Hartke Z,-magic graph, then
|E(G)| = b= - [V(G)|.

= p—

Proof. We prove the contrapositive. If |E(G)| < E - |[V(G)], then a straightforward
counting argument shows that every nonvanishing monomial of degree (p — 1) - |[V(G)]
in f; has an exponent t; > p — 1. Thus by Proposition 4.5, G is not a Hartke Z,,-magic
graph. |

Remark 4.7. The converse of Proposition 4.6 is not true, in general. For example, let
p = 3 and consider the graph GG comprised of I’; with K attached at an end-vertex. Then,
G has 8 vertices and 17 edges. Thus, the inequality |E(G)| > 5 - |V(@)] is satisfied.
However, G is not Zs-magic since /% is not Zs-magic; hence, G 1s not Hartke Z3-magic.

Theorem 4.8. Suppose p > 3 is prime and GG is a graph. Let M and M denote the sets

of nonvanishing monomial terms of degree (p—1)-|V (G)|, of fo(x) and f1(z), respectively.
Then, My = M;.

Proof. Let M € M. For each vertex v € V(G), let b, denote the sum inside the corre-
sponding canonical factor in Equation (4.1). Observe that every term in the expansion of
(0 — b, )P~ = b2~ Lis of degree p — 1. Thus in the expansion of fo(x), M arises from the
product of terms IL,cv (b2~ ". More specifically, M is equal to a product consisting of
one term from each b7 1.

Now, let us examine f; (z) carefully. First, we note that every term in the expansion
of (1 — b,)P~ 1 is of the form _1%p#=1=% where 0 < k < p — 1. In the expansion of
the fi(z), every nonvanishing monomial term of degree (p — 1) - |V(G)| will arise from a
product of terms, one from each of the #2~1. Monomial terms of f;(z) which do not arise
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in this manner have degree atmost (p—1)- ([V(G)|— 1)+ (p—2) = (p—1) - |V(G)| — 1.
In particular, M € M;.
This argument is reversible. Thus, the claim is established. O

Corollary 4.9. Let p > 3 be prime. Then, G is a Hartke Z,-magic graph with magic value
0 <= G is a Hartke Z,-magic graph with magic value 1.

Proof. This follows immediately from Theorems 3.1 and 4.8. O

Example 4.10. This example illustrates the proof of Corollary 4.9. Let p = 3. Consider
the graph G (from Example 4.4) illustrated in Figure 1. In that example, the monomial
term 14336x5x¢ - - - og = 2x576 - - - T20 (mod 3) of degree 8-2 = 16 was found in fj(z).
This was then used to show that G is a Hartke Zs-magic graph with magic value . By
Theorem 4.8, f1(z) must also contain this particular Hartke term. This is easily verified
by using Mathematica 12. Hence, we conclude that 7 is a Hartke Zs-magic graph with
magic value 1.

5 Constructing Z,-magic graphs

Definition 5.1. Let p > 2 be prime, ¢ € {0, 1} and G have a Z,,-magic labeling with magic
value £. Then, G is called an edge-stable Z,-magic graph if the addition of any number of
simple edges, multiedges and/or loops to G results in a Z,,-magic graph with magic value 7.

Example 5.2. The 1-vertex loop graph is an edge-stable Z,-magic graph. In [13], it was
shown that IM(K, — {e}) = {4,6.8,...}. Thus, Cy is Z,-magic but not edge-stable, for
all primes p.

Theorem 5.3. Let p = 3 be prime. Adding simple edges, multiedges and/or loops to
a Hartke Z,-magic graph results in a new Hartke Z,-magic graph. In particular, every
Hartke Z,-magic graph is edge-stable.

Proof. Suppose that (7 is a Hartke Z,-magic graph with Hartke polynomial f,. Let G*
(with Hartke polynomial f;*) be obtained by adding simple edges, multiedges and/or loops
to G. First, note that deg(f;) = deg(f;*). Since G is Hartke Z,,-magic, there exists a Hartke
term M in f;. By Proposition 4.5, all of the exponents #; of M satisfy 0 < #; < p — 2.
Furthermore, M also appears in the expansion of f;. By Proposition 4.5, G* is a Hartke
Zy-magic graph with magic value t. O

Example 5.4. Let p = 5 and G5 be the first graph illustrated in Figure 2. Then, f(z) €
Zs|xr1, w2, ..., x|, where

file) =[1— (1 — (21 +23))"] - [ = (1~ (21 + 22 + 26 + 7)) "] -
[1—(— (z2+z)*-[1 — (1 — (z3 +z4))*] -
(1= (= (za+ w5 + 27 +25))"] - [L = (1= (25 + 26))].

Using Mathematica 12, we see that deg(f,(z)) = 24 and that f,(z) contains the mono-

mial term 10690562323 - -- 23 = 2323 --- 23 (mod 5). Let S; = {1,2,3,4}, fori =
1,2,...,8. By Theorem 3.1, we have that f;(z’) # 0, for some 2’ € S1 X Sy x -+ x Sg.

Thus, f1(z') = 1 and we conclude that G5 is a Hartke Zs-magic graph with magic value 1.
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Ve

Figure 2: A Zs-magic labeling of G5 with magic value 1.

With some considerable effort (by hand), one can obtain a Zs-magic labeling of G5 with
magic value 1, as illustrated in the second graph of Figure 2.

Suppose we add a loop or an additional edge to G5. Then, there exist Zs-magic label-
ings with magic value 1, for these new graphs. Figures 3, 4 and 5 illustrate Theorem 5.3.

Remark 5.5. Theorem 5.3 says that any graph which contains a Hartke Z,-magic graph
as a spanning subgraph is also a Hartke Z,-magic graph. Note that the converse of The-
orem 5.3 is not necessarily true. The 1-vertex loop graph in Example 5.2 illustrates an
edge-stable Z,-magic graph which is not Hartke Z,-magic.

We now establish some lower bounds for the number of Z,,-magic labelings with magic
value ¢ for a given graph. Symmetry is ignored when counting these labelings. For exam-
ple, if one labeling can be obtained by “rotating” another labeling, then these two labelings
are counted separately.

Theorem 5.6. Let p > 3 be prime and GG be a Hartke Z,,-magic graph. Suppose that G*
is obtained by adding =z simple edges, multiedges and/or loops to . Then, the number of
different (ignoring symmetry) Z,-magic labelings of G* (with magic value t) is greater
than or equal to (p — 1)~.

Proof. Let G,G*, f, f and M be defined as in the proof of Theorem 5.3. There, we saw
that M is also a term in the expansion of f;*. The variables in f; corresponding to the
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2 Vg
2 4
4
Vo Vg5
2 4
Ve

Figure 3: A Zs-magic labeling (magic value 1) of G5 with a loop (labeled 1) at v;.

2 Vg
4 2
2
V2 Vs
3 3
V6
Figure 4: A Zs-magic labeling (magic value 1) of G5 with a loop (labeled 2) at v;.

additional z simple edges, multiedges, and/or loops do not appear in M. Hence we can
apply Theorem 3.1 to M in f}*, where each of the z new variables can take on any of the
p — 1 non-zero elements from Z,. Thus for each t € {0, 1}, there are at least (p — 1)*
different Z,-magic labelings of G* with magic value 7. O

Example 5.7. In Example 4.4, we saw that graph G (Figure 1) is a Hartke Z3-magic graph
with magic value 0. By Theorem 4.8 and Corollary 4.9, G'7 is also a Hartke Z3-magic graph
with magic value 1. Let G denote the graph obtained by adding loop 227 and multiple
edge x22 to G7, as illustrated in Figure 6. Since the monomial term 14336z516 - - - wap =
2z526 - - w20 (mod 3) is a Hartke term in the f, of G, there exist Zs-magic labelings of
G7% (with magic value £), with z9; and 92 having labels 1 or 2. Thus, there are at least
(3 — 1)? = 4 different Zs-magic labelings of G% with magic value ¢. For this particular
example, even more can be said. The Hartke term 2526 - - - 729 (mod 3) does not involve
1, T2, T3 and 4. Each of these particular edges can be labeled with 1 or 2. Hence for
ecach ¢ € {0, 1}, there are at least (3 — 1)% = 64 different Z3-magic labelings of G with
magic value .

Definition 5.8. Let p > 3 be prime, GG be a Hartke Z,-magic graph, and M be a Hartke
term of f;. Then, the excess set of M (denoted by £yy) is the set of variables that have
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Figure 5: A Zs-magic labeling (magic value 1) of G5 with edge v1vg (labeled 1).

exponent zero in M.

Theorem 5.9. Let p > 3 be prime, (i be a Hartke Z,-magic graph, and M be a Hartke
term of f,. Then for eacht € {0,1}, G has at least (p— 1)1 different Zy-magic labelings
with magic value t. Furthermore if G — E is connected, where E is any subset of edges
corresponding to variables in Eng, then G — E has a Zy,-magic labeling with magic value
t.

Proof. Suppose that p > 3 is prime, & is a Hartke Z,-magic graph, and M is a Hartke
term of f;. The variables in €3y do not appear in M. Thus, we can apply Theorem 3.1 to
M in f;, where each variable in £y can take on any of the p — 1 non-zero elements from
Z,. Thus for cach t € {0, 1}, there are at least (p — 1)/€4/ different Z,-magic labelings
of G with magic value ¢. Finally, M will still be a Hartke term of the Hartke polynomials
of G — E, where E is any subset of edges (corresponding to variables in £5s). Hence,
Theorem 3.1 can be applied to the Hartke polynomials of G — E and we conclude that
G — E has a Z,-magic labeling with magic value . O

Example 5.10. Consider the graph G7 in Example 4.4. Then Gz — E, where E is any
subset of edges (corresponding to x1, 9, T3, T4), has a Zs-magic labeling with magic
value £. This is because its associated Hartke polynomial contains the same Hartke term
14336z 516 - - - o9 = 2x5T6 - - - Tog (mod 3).

Corollary 5.11. Let p > 3 be prime and G be a Hartke Z,-magic graph. Suppose that
|E(G)| = (p — 1) - |V(G)|. Then, G has at least (p — 1)IE@|=e=1IVEN gifferent
Zy-magic labelings with magic value t, for each t € {0, 1}.

Proof. Suppose that p > 3 is prime, G' is a Hartke Z,-magic graph, and |E(G)| = (p —
1) - |V(G)|. Let M be a Hartke term of f;. Note that when |E(G)| = i:é - V(@)
the corollary follows from Theorem 5.9. When |E(G)| > E -|V(G)|, M includes at
most (p — 1) - |V(G)]| distinct variables. Since |E(G)| > (p — 1) - |V(G)|, we have that
|[Exr] = |E(G)| — (p— 1) - |V(G)|- By Theorem 5.9, the result follows. O

Theorem 5.12. Let p = 3 be prime. Then, the disjoint union of Hartke Z,-magic graphs
is a Hartke Z,-magic graph.
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X2p

Figure 6: For each ¢ € {0, 1}, G% has at least (3 — 1)% = 64 different Zz-magic labelings
with magic value 1.

Proof. 1t suffices to show the claim is true for the disjoint union of two Hartke Z,-magic
graphs Hy and H, with magic value ¢ € {0,1}. Note that the degrees of the Hartke
polynomials of Hy, H, and the disjoint union of Hy and Hs are (p — 1) - |V (H1)|, (p —
1) - |V(H2)|,and (p — 1) - (|V(H1)| + |V (H2)|), respectively. Let My and M, be Hartke
terms in the Hartke polynomials of H; and Ho, respectively. Note that M, - Ms does not
vanish, since the coefficients come from a field. Thus, the degree of M, - My is (p — 1) -
(|V(H1)| + |V(H2)|) and My - My appears in the expansion of the Hartke polynomial of
the disjoint union of H; and Hy. We also see that M; - M5 is a Hartke term, since M; and
My individually are Hartke terms. Therefore, the disjoint union of Hartke Z,,-magic graphs
is a Hartke Z,-magic graph. O

Definition 5.13. A weak join of graphs Hy, H», ..., H, is defined to be a connected graph
with vertex set | J_, V(H;) and edge set Z U (|J!_, E(H;)). where Z is a set of simple
and/or multiedges of the form uv with w € V(H;) and v € V(H;), where i # j.

Example 5.14. Figure 7 illustrates a weak join of Cg, W (of order six) and .
Theorem 5.15. Let p = 3 be prime. Then, a weak join of Hartke Z,-magic graphs is a
Hartke Z,-magic graph.

Proof. Let Hy, H», ..., H, be Hartke Z,-magic graphs. By Theorem 5.12, the disjoint
union | J;_, H; is a Hartke Z,-magic graph. Since a weak join of Hy, Hs. ..., H, is formed
by adding simple edges and/or multiedges between the H; in | J;_, H;, the claim is estab-
lished by Theorem 5.3. (]

Example 5.16. Let p = 3 and G5 be the top half of the graph in Figure 8. Then,
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Figure 7: A weak join of Cy, the wheel graph Wg and 1.

folz) € Zg[xy, 22, ..., x15], where

1— (0~ (z2+ 23+ 28 +29))°] - [1— (0 (x5 + T4 + 712 + 713))] -
1— (0 — (24 + 5 + T9 + T30 + 15))*] - [1 — (0 — (75 + 6 + 715 + 714))?] -
1— (0 — (z6 + z7 + T10 + T11))?]-

Using Mathematica 12, we see that deg( fy(x)) = 14 and that f, () contains the monomial
term —6400x 125 - - - T11 71971415 = 2710 - - - T11 71214715 (mod 3). Let S; = {1, 2},
fori =1,2,...,12,14, 15 and S;3 = {1}. So by Theorem 3.1, we have that fy(z') # 0,
for some ' € S x Sz x --- x Sy5. Thus, fo(z') = 1 and G5 is a Hartke Z3-magic graph
with magic value 0.

Now, let G4 (graph G1121 from [28]) be the bottom half of the graph in Figure 8. Then,
fo(y) € Zs[yr,y2; - - -, Y14, where

1—(0—(y2+ys+yr+ys+y10)°] - [1— (0~ (ys +ya + 13 + y14))°] -
1—(0— (ya+us)? - [1— (0 — (ys +y7 + y11 +¥12))°] -

foy) =[1—(0— (31 +ys + y6 + yo + y10 + 114))%] - [1 — (0 — (31 + y2 + y11))?] -

[

[
[1—(0— (ys + yo + y12 + y13))?]-

Using Mathematica 12, we see that deg(fo(y)) = 14 and that f,(y) contains the mono-
mial term —4096y1ys - - - y13y14 = 24192 - - y13y1a (mod 3). Let S; = {1,2}, fori =
1,2,...,14. So by Theorem 3.1, we have that fo(y') # 0, forsome y’ € S1xS2 % -xS14.
Thus, fo(y') = 1 and Gy is a Hartke Z3-magic graph with magic value 0.

The gr_aph G in Figure 8 is a weak join of G5 and G4, where 21, 22 and z3 are the addi-
tional simple and multiedges used to create the weak join. Let fo(r) € Zg[ri,r2, ..., 732,
where

T if1<i<15;
i = Qyi—1s 116 <i < 29;
lz"_gg if 30 <1 < 32,

be a Hartke polynomial of G. Using Mathematica 12, we see that deg(fo(r)) = 28 and
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that fo(r) contains the monomial term

(—6400?‘1 To--- ?‘117'12?'14?'15) . (—4096?‘15:"17 e T‘gg?‘gg)
= (2ryrg- - -r11T19714715) - (2116717 - - TasTee)  (mod 3)
= TiT - T11T12T14T15T16717 - " T2sT29  (mod 3).
Let S; = {1,2}, fori = 1,2,...,12,14,15,16,17...28,29 and S13 = S3y = S31 =

S32 = {1}. So by Theorem 3.1, we have that f(r’) # 0, for some r’ € Sy x Sp X - - - x Sga.
Thus, fo(r') = 1 and G is a Hartke Z3-magic graph with magic value 0.

Figure 8: A weak join of Hartke Zs-magic graphs (G5 and (G4 is a Hartke Z3-magic graph.

In [22], the Zj-magic property was analyzed for various classical graph products.
There, it was shown that if G and H are connected Zj-magic graphs, then the Cartesian
and lexicographic products of G and H are Zj-magic, for k € {2,3,4,...}. However, if
instead we strengthen the restriction on G and weaken the restriction on H, then we obtain
additional results. To this end, recall the following definitions [5].

Definition 5.17. Let G and H be connected graphs. Then, the Cartesian product GLH is
a graph which has vertex set V(GUH) = {(g,h) : g € V(G)and h € V(H)} and edge
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set E(GLH ), where two vertices (g, h) and (g, h') are adjacent if (g = ¢' and h adj h")
or (h = h' and g adj ¢).

Definition 5.18. Let G and H be connected graphs. Then, the lexicographic product Go H
is a graph which has vertex set V(G o H) = {(g,h) : g € V(G) and h € V(H)} and edge
set E(G o H), where two vertices (g, h) and (g’, h') are adjacent if (g = ¢’ and h adj h")
or (g adj g').

Definition 5.19. Let G and H be connected graphs. Then, the strong product G X H is a
graph which has vertex set V(GX H) = {(g,h) : g € V(G) and h € V(H)} and edge set
E(G K H), where two vertices (g, h) and (¢, h') are adjacent if (g = ¢’ and h adj h') or
(h = h' and g adj ¢’) or (h adj b’ and g adj g").

Of these three graph products, only the lexicographic product is not commutative.

Example 5.20. Figure 9 illustrates 1P, Py o P53, Py o Py and P X Ps.

Corollary 5.21. Let p > 3 be prime. Suppose that G is a Hartke Z,-magic graph and H
is a graph. Then, the Cartesian product GOH is a Hartke Z,-magic graph.

Proof. Let T be a spanning tree of H. GUT is obtained by replacing each vertex of T°
with a copy of GG and replacing each edge of 7" with edges connecting the corresponding
vertices of copies of GG. Since (7 is a Hartke Z,,-magic graph, GOT  is a weak join of Hartke
Zy,-magic graphs. By Theorem 5.15, GOT is a Hartke Z,-magic graph. Finally, for each
of the edges in H which are not in 7', add edges connecting the corresponding vertices of
copies of G in GOT to obtain GOH. Since GUOT is a Hartke Z,-magic graph, we see that
GUH is a Hartke Z,-magic graph, by Theorem 5.3. O

Corollary 5.22. Let p > 3 be prime. Suppose that G is a Hartke Z,-magic graph and H
is a graph. Then, G o H, H o G and G W H are Hartke Z,,-magic graphs.

Proof. First, note that V(GUH) = V(Geo H) = V(H o G) = V(G X H). We also
see that the edge sets of G o H, H o G, and G I H contain the edge set of GLIH. Since
GUOH is Hartke Z,-magic by Corollary 5.21, these other products are Hartke Z,-magic, by
Theorem 5.3. (|

6 Further directions and some open questions

Throughout this paper, we used the Combinatorial Nullstellensatz in the construction of
Hartke Z,-magic graphs, for prime p = 3. Graphs of this type were found to have an
edge-stability property. This was used to further construct non-trivial Hartke Z,-magic
graphs.

It is natural for the reader to wonder if connected simple Hartke Zj,-magic graphs exist,
for all orders n > 6 and prime p > 3. The authors of this paper believe that this is true.

Conjecture 6.1. Let p = 3 be prime. Then, there exists a connected simple Hartke Z,,-
magic graph G, for all |V (G)| = 6.
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N

Cartesian product of P2 and PS

Ay

Lexicographic product of P2 and P3

Lexicographic product of P3 and P2

(Y

h—y

Strong product of P2 and P3

Figure 9: U115, Py o Py, Py o Py and Py X P,

The Combinatorial Nullstellensatz can be generalized in different ways. Theorem 3.1
is true over integral domains. The Generalized Combinatorial Nullstellensatz [35] sharpens
Theorem 3.1; instead of analyzing a monomial with degree = deg( ), it suffices to consider
a monomial that does not divide any other monomial term in f. In [26], Michalek remarks
that the Combinatorial Nullstellensatz is true over any commutative ring f? with unity, as
long as a — b is not a zero divisor in R, for any a,b € S; (i = 1,2,...,m). Can any
of these generalizations of the Combinatorial Nullstellensatz help us in analyzing the Z,,-
magic graph labeling problem (prime p > 3)?

Here are some other questions one might consider.

1. Are there natural classes of Hartke Z,,-magic graphs?

2. Let p > 3 be prime and (G be a connected simple graph satisfying |E(G)| >
|V (G)|. What is the probability that GG is a Hartke Z,-magic graph?

p—1
1

p—2
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3. Are there other types of graph labeling problems where the Combinatorial Nullstel-

lensatz or its various generalizations can be used?
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