
San Jose State University San Jose State University 

SJSU ScholarWorks SJSU ScholarWorks 

Faculty Research, Scholarly, and Creative Activity 

10-1-2022 

The corner poset with an application to an n-dimensional The corner poset with an application to an n-dimensional 

hypercube stacking puzzle hypercube stacking puzzle 

Ethan Berkove 
Lafayette College 

Jordan Schettler 
San Jose State University, jordan.schettler@sjsu.edu 

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca 

Recommended Citation Recommended Citation 
Ethan Berkove and Jordan Schettler. "The corner poset with an application to an n-dimensional hypercube 
stacking puzzle" Australasian Journal of Combinatorics (2022): 86-110. 

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in 
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more 
information, please contact scholarworks@sjsu.edu. 

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F3458&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu


AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 84(1) (2022), Pages 86–110

The corner poset with an application to
an n-dimensional hypercube stacking puzzle

Ethan Berkove∗

Department of Mathematics
Lafayette College

Easton, PA 18042, U.S.A.
berkovee@lafayette.edu

Jordan Schettler

Department of Mathematics and Statistics
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Abstract

For any dimension n ≥ 3, we establish the corner poset, a natural trian-
gular poset structure on the corners of 2-color hypercubes. We use this
poset to study a problem motivated by a classical cube stacking puzzle
posed by Percy MacMahon as well as Eric Cross’s more recent “Eight
Blocks to Madness.” We say that a hypercube is 2-color when each of
its facets has one of two colors. Given an arbitrary multiset of 2-color
unit n-dimensional hypercubes, we investigate when it is possible to find
a submultiset of 2n hypercubes that can be arranged into a larger hy-
percube of side length 2 with monochrome facets. Through a careful
analysis of the poset and its properties, we construct interesting puzzles,
find and enumerate solutions, and study the maximum size, S(n), for a
puzzle that does not contain a solution. Further, we find bounds on S(n),
showing that it grows as Θ(n2n).

1 Introduction

Many classic puzzles provide a source of interesting mathematics in their analyses
and solutions. A common theme is for the components of the puzzle to be colored in
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a particular way; the puzzle is solved when the components are arranged satisfying
certain adjacency conditions. In this paper, we study a high-dimensional 2-color
puzzle in this vein. In our case, a puzzle is a multiset consisting of n-dimensional unit
hypercubes (n-cubes) with each facet colored from a fixed palette of two colors. We
investigate when it is possible to find a solution to a given puzzle, i.e., a submultiset
of 2n hypercubes that can be arranged into a larger hypercube of side length 2 with
monochrome facets. To do this, we determine how information about hypercube
corners can be extracted from general coloring data. We show in Theorem 4.3 that the
corner information provides a way to organize the collection of all 2-color hypercubes
into a triangular poset structure, which we call the corner poset. We use properties
of this poset to prove our other main results:

1. There is a polynomial time algorithm to determine if a puzzle has a solution,
and we can enumerate solutions by counting lattice points in rational polyhedra
(Proposition 5.1 and its subsequent material).

2. Largest multisets of n-cubes without solutions can be assumed to be composed
of minimal n-cubes in the poset (Theorem 6.3).

3. The size, S(n), of largest collections without solutions grows as Θ(n2n) (Theo-
rem 6.5), and we can give a non-trivial lower bound for an asymptotic constant
(Proposition 6.7).

Our problem has its roots in a question of Alexander Percy MacMahon (1854–
1929), a British mathematician who is known to number theorists for constructing
tables of values of the partition function p(n) and to combinatorialists for finding
the generating function which enumerates a natural two-dimensional generalization
of p(n). MacMahon’s interests also included recreational mathematics, and he cre-
ated/patented several interesting puzzles [17]. One of those puzzles is a cube stacking
problem which we now describe. Take six distinct colors and consider coloring the
faces of a cube from this palette where each color appears exactly once. There are
30 ways of doing this up to rotation. MacMahon asked and answered the following
question:

Given a cube in the 6-color collection, how can one construct a 2× 2× 2
cube from 8 of the remaining 29 cubes which model the given cube (i.e.,
colors match the given cube on the outside) with colors also matching on
the inside?

John Horton Conway is given credit for finding a compact and elegant form of the
complete solution to MacMahon’s question above by arranging the 30 cubes of the
6-color collection into a certain 6 × 6 matrix with an empty diagonal. To solve
MacMahon’s original puzzle, one simply locates the given cube in the matrix, goes
to its reflection (transpose entry), and then takes the eight other cubes in that row
and column. See [15] for a more detailed discussion of Conway’s matrix and [3] for



E. BERKOVE AND J. SCHETTLER/AUSTRALAS. J. COMBIN. 84 (1) (2022), 86–110 88

a: 〈1|0|2〉 b: 〈2|0|1〉

A: 〈1|0|3〉 B: 〈2|0|2〉 C: 〈3|0|1〉

Figure 1: Some nets of 2-color cubes and hypercubes.

an analysis of the S6-action on its rows. A variation of MacMahon’s question was
marketed as “Eight Blocks to Madness,” released by Eric Cross in 1970 [9]. The Eight
Blocks puzzle consists of eight unit cubes from the 6-color collection; the puzzle is
solved by stacking the cubes into a 2× 2× 2 cube, where each 2× 2 face is a single
color. This puzzle is analyzed in [14, 20], and its generalization is the subject of
[11]. (For material on other stacking problems and their analysis, see [6], [8], [18],
and [19].) Our puzzle has the same goal as the Eight Blocks puzzle, but we have
two colors in an arbitrary dimension n ≥ 3 and our puzzles can have more than 2n

blocks, some of which may not be used in any solution.

Each of our puzzles is a multiset of 2-color n-cubes, i.e., hypercubes in dimension
n with each facet colored from a fixed palette of two colors. One obviously needs
at least 2n members in the multiset to solve the puzzle. On the other hand, any
sufficiently large puzzle is guaranteed to have a solution by the pigeonhole principle,
since there are finitely many types of 2-color n-cubes up to rotation, and once we
have 2n of any given type, we can build a scaled version of that n-cube. If, as above,
S(n) denotes the largest possible size of a multiset of cubes that does not contain a
solution, then any puzzle of size S(n)+1 or larger will be guaranteed to have at least
one solution. Puzzles with sizes in between 2n and S(n) are especially interesting
because solutions may not exist at all and even when solutions do exist, they may
not be easy to find or count.

Example 1.1. Consider the nets of some 2-color (black and white) cubes and 4-
dimensional hypercubes in Figure 1. (The 〈a|b|c〉 notation in the figure will be
introduced in Section 3 right before Corollary 3.3.) In general, a net is a polytope
which has been unfolded in the next smallest dimension, like a box being flattened
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into a cross shape. In the case of cubes, the opposite faces in the net are clear since
they correspond to opposite sides of the folded box. For the hypercube nets seen in
Figure 1, the two black facets in “A” are opposite, the two white facets in “C” are
opposite, and the remaining two pairs of opposite facets can be deduced from “B”
(one pair black and one pair white). We can easily show, using the corner poset, that
one cannot construct a 2 × 2 × 2 solution given 7 “a” cubes, and 3 “b” cubes, nor
a 2× 2× 2× 2 solution given 15 “A,” 7 “B,” and 15 “C” hypercubes. This implies
S(3) ≥ 7 + 3 = 10 and S(4) ≥ 15 + 7 + 15 = 37. In fact, S(3) = 19 and S(4) = 53.
In the former case, a collection of 19 cubes without a solution consists of 7 each of
monochrome black and white cubes, 2 “a” cubes, and 3 “b” cubes. Similar results
for higher dimensions are summarized in Table 1.

We note that in a general cube stacking puzzle, finding the largest-sized puzzle
without a solution depends on the number of colors used in the problem as well as
the size of the n× n faces. In [5], it is shown that given any set of n3 cubes having
exactly 6 colors with n > 2, one can always construct an n × n × n solution which
models some k-color cube, i.e., one can arrange the n3 cubes into a larger cube with
colors matching the model cube on the outside and without restriction on the inside.
Other variations of this problem appear in [2, 3, 4]. For the cases analogous to the
2 × 2 × 2 Eight Blocks puzzle, there are sets of 10 cubes having exactly 2 colors
without a solution [2]; 22 cubes having exactly 3 colors without a solution [2]; 10
cubes having exactly 4 colors without a solution [4]; and 23 cubes having exactly 6
colors without a solution [3, 11].

This paper is organized as follows. In Section 2, we provide preliminary notions
and definitions. In Section 3, we count the number of 2-colorings of n-cubes up to
rotation by analyzing color permutations induced by reflections, and show that the
number and type of corners of a particular 2-color n-cube is completely determined
by color pairs of opposite facets. In Section 4, we show how the corner types of
different 2-color n-cubes give a well-defined partial order on the set of all 2-color
n-cubes, and use that to build the corner poset. In Section 5, we apply results from
the poset to determine algorithms for solving puzzles and enumerating solutions. We
also show how the poset’s structure implies the existence of interesting puzzles. In
Section 6, we show how further analysis of the poset and its “upside-down” Pascal
property give results on the composition and growth rate of the maximum multiset
size without a puzzle solution.

2 Definitions and Conventions

When n = 2, our puzzle is straightforward to solve since it consists of four squares
with colors on their boundary. Therefore, we will assume throughout this paper that
n > 2 unless stated otherwise. The case n = 3, like the “Eight Blocks to Madness”
puzzle, is already interesting. In the Eight Blocks puzzle, it is clear what is meant
by orienting cubes so that each 2× 2 face is of uniform color. In higher dimensions
we need to be more careful, since it is not obvious what is meant by orienting a
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hypercube in Rn, nor even how one should define a hypercube’s coloring. We start
by looking at particular substructures within the hypercube. We regularly embed an
n-dimensional hypercube (which we will also refer to as an n-cube) for n ≥ 3 into Rn

centered about the origin so that every coordinate of each vertex is either 1 or −1.
In this way our “unit cube” is actually a cube of side length 2. With this convention,
we define a facet of a hypercube as the convex closure of all vertices that share a
particular value, either 1 or −1, in a fixed coordinate; the facet corresponding to
vertices with a 1 (or −1) in the ith coordinate is perpendicular to the ith coordinate
axis. Therefore, an n-cube contains 2n facets. In any hypercube, there is a notion of
facets which are opposite. These are two facets, one that has 1 in a fixed coordinate
and the other that has −1 instead. Opposite facets, which we will also refer to as
opposite pairs, are necessarily disjoint, since they are separated by some hyperplane
xi = 0. We note that any two facets in a hypercube are either opposite or they are
adjacent, that is, their intersection is non-empty.

There are similar notions for vertices. Two vertices are opposite if none of their
coordinates are equal or, equivalently, if each vertex is taken to the other via central
inversion (changing the signs of all coordinates). We say two vertices are adjacent
when they differ in exactly one coordinate so that they are joined by an edge in the
hypercube. Unlike facets, however, vertices can be neither opposite nor adjacent,
like the non-adjacent vertices on the square face of a cube.

Remark 2.1. We note that if v1 and v2 are opposite vertices, exactly one facet from
every pair of opposite facets will contain v1 and the other facet will contain v2. In
addition, given any two non-opposite facets, there is a vertex, either v1 or v2, that
they both contain, and their opposite facets will contain the opposite vertex.

Next we describe what we mean by a coloring.

Definition 2.2. A k-coloring of an n-cube is a function from its 2n facets to a set
of k-distinct elements, called colors.

A k-coloring of a cube includes the possibility that not all k colors appear in
the range of the coloring function. When the function is surjective, we say that the
coloring is proper.

One issue that arises in working with hypercube colorings is how to determine
when two n-cube colorings are the same. Generally speaking, two colorings of n-
cubes should be the same if there is a rotational symmetry in Rn that takes one to the
other. The full group of symmetries of an n-dimensional hypercube or its dual the n-
octahedron is known as a hyperoctahedral group. It is a Coxeter group of type Bn and
can be described as the wreath product S2 o Sn = Sn2 oθ Sn where θ : Sn → Aut(Sn2 )
is the natural homomorphism [10]. Consequently, the hyperoctahedral group in
dimension n has order 2nn!. Since every coordinate of each hypercube vertex is
either 1 or −1, symmetries of the hypercube are precisely the signed permutations
of coordinates corresponding to the map θ above. The following collection is a (non-
minimal) generating set of reflections for the hyperoctahedral group.
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1. Reflections across a coordinate hyperplane xi = 0. These are maps of the
type ri.

2. Reflections across the hyperplane xi = xj. These are maps of the type sij.

Here, ri acts as multiplication by −1 in the ith coordinate while sij swaps the ith
and jth coordinate. In the semidirect product Bn = Sn2 o Sn, the transpositions
sij generate the factor Sn and the sign changes ri generate the factor Sn2 . We are
particularly interested in the index 2 subgroup Dn ⊂ Bn consisting of elements that
preserve orientation and correspond to rotations. Equivalently, those symmetries are
the ones whose associated signed permutation matrix has determinant 1. Since the
hyperoctahedral groups are reflection groups, we can also characterize the elements
of Dn as those generated by an even number of reflections. We note that neither ri
nor sij are orientation preserving, so they are not elements of Dn.

We return to the question of when two hypercube colorings are the same. The
n-cube symmetries we consider in this paper are compositions of reflections, so we
need to determine the color permutations that a reflection might induce. A reflection
of type ri has the effect of swapping the colors on the opposite pair perpendicular to
the coordinate axis xi while leaving all other facets fixed. Reflections of type sij, on
the other hand, exchange the opposite pairs that are perpendicular to the coordinate
axes xi and xj while leaving all other facets fixed. (The reader may want to consider
the cases of a square and a cube to get a sense of these color permutations.) We
remark that the fixed facets are not fixed pointwise. Given a palette of k-colors, there
is a natural equivalence relation on all k-colorings of a hypercube given by regarding
two k-colorings as equivalent if one is obtained from the other by a rotation, i.e., an
element of Dn. An equivalence class is called a k-color n-cube. In the next section
we determine the total number of 2-color n-cubes.

We can now formally state, given a multiset of hypercubes, what it means to be
able to solve our version of the cube stacking puzzle with k = 2 colors in an arbitrary
dimension n ≥ 3.

Definition 2.3. We call a multiset P of 2-color n-cubes a puzzle. We say that
a submultiset of P consisting of 2n n-cubes is a solution if there is a choice of
corners, one from each n-cube in the submultiset, that can be put into a one-to-one
correspondence with the corners of some hypercube H. In this case, we say that the
solution is modeled on H.

We note that the assignment of corners means that the hypercubes in the solution
can be arranged into a 2 × 2 × · · · × 2 n-cube so that colors match along outer
facets. However, as in the Eight Blocks puzzle, we do not require the restriction of
MacMahon’s puzzle that colors also match on the inside.
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3 Characterizing 2-Color Hypercubes

In any 2-coloring of an n-cube, say with colors black (B) and white (W ), the colors
of opposite facets form either BB, BW , or WW unordered pairs. Clearly, any two
2-colorings that represent the same 2-color n-cube up to rotation determine the same
number of each type of these BB, BW , or WW pairs. It turns out that the converse
is also true.

Lemma 3.1. If two 2-colorings of an n-cube have the same the number of BB, BW ,
and WW unordered pairs, then they represent the same 2-color n-cube, i.e., there is
a rotation in Dn taking one 2-coloring to the other.

Proof. It is sufficient to show that non-trivial color permutations of the facets induced
by the generators ri and sij can also be realized using elements of Dn. We start
by showing that given a fixed 2-coloring of an n-dimensional hypercube, there is a
rotation of the hypercube that has the effect of converting an ordered BW opposite
pair into an ordered WB opposite pair while leaving all other colors fixed. This is
the same non-trivial color permutation that is induced by a reflection ri, and would
justify treating the BW opposite pairs as unordered.

An ordered BW pair perpendicular to the coordinate axis xi can be converted to
an ordered WB pair while fixing all other faces by applying the transformation ri.
However, this reflection is orientation reversing. If there is some other opposite pair
of type BB or WW associated to a coordinate j, then we can apply rj, which does
not change the relative position of any colors in the hypercube. The composition rjri
has the desired effect and, since it is orientation preserving, is an element of Dn. The
only remaining case is when all opposite pairs are of type BW . By Remark 2.1, it
always happens that any two such opposite pairs will have their B facets containing
some vertex v, while their opposite W facets will contain the opposite vertex −v. Let
ρ be a rotation with ρ(v) = (1, 1, 1, . . . , 1). Then apply a map of type ρ−1sijρ to swap
these two BW pairs; the composition of the original mirror image with this map is
orientation-preserving and has the desired effect. By iterating this procedure, we can
construct a rotation in Dn which has the same effect on facet colors as interchanging
any number of opposite pairs.

To complete the proof, we show that we can construct a rotation in Dn which in-
duces the same color permutation as the reflection sij which exchanges any two pairs
of opposite facets. First, we note that we can swap a BB or WW pair perpendicular
to the coordinate axis xi with any other opposite pair perpendicular to the axis xj
by using a reflection of type sij. We then follow it with a reflection of type ri, which
acts as the identity color permutation. The resulting composition is a rotation. The
only remaining possibility is swapping two BW pairs, which was done in the first
part of this proof.

Remark 3.2. Lemma 3.1 is false in general for k-colorings with k > 2. Consider
the two 3-color cubes in Figure 2 with colors black (B), white (W ), and gray (G).
These cubes have the same set of unordered pairs {BW,WG,GB}, but are mirror
images which are not rotationally equivalent.
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Figure 2: Mirror image 3-color cubes which are not rotationally equivalent.

Lemma 3.1 tells us that a 2-color n-cube is completely determined by its opposite
pairs. If the number of BB, BW , and WW pairs are a, b, and c, respectively, then we
use the notation 〈a|b|c〉 to denote this 2-color n-cube. For examples of this notation,
see Figure 1 in the introduction.

Corollary 3.3. There are
(
n+2
2

)
2-colorings of n-cubes up to rotation.

Proof. There are
(
n+2
2

)
multisets of size n using three distinct elements.

Another result related to Lemma 3.1 concerns the classification of corners of a
hypercube. The corner type of a vertex v in a k-coloring of a hypercube can be
defined as follows. Rotate v to the vertex (1, 1, 1, . . . , 1) and consider the sequence of
colors of the facets corresponding to (1, ∗, ∗, . . . , ∗), (∗, 1, ∗, . . . , ∗), . . . , (∗, ∗, . . . , ∗, 1),
where ∗ consists of all values in the interval [−1, 1]. The corner type of v is then the
equivalence class of all such sequences resulting from different choices of rotations
taking v to (1, 1, . . . , 1).

Proposition 3.4. If k < n, then the corner type of a vertex in a k-coloring of an n-
cube is completely determined by the multiset of colors coming from facets containing
that vertex.

Proof. Recall that we assume n ≥ 3. We fix a vertex v in the hypercube and rotate it
to (1, 1, . . . , 1). From the characterization of symmetries as signed permutations, we
see that the stabilizer of (1, 1, . . . , 1) inDn, the subgroup of rotations, is isomorphic to
the alternating group An. In particular, every element of this stabilizer can be written
as the composition of an even number of reflections of the form sij. Since k < n,
there are 2 facets around (1, 1, . . . , 1) which have the same color. A reflection σ̂ of
the form sij which swaps these facets does not change the sequence of colors adjacent
to v. Now take an element σ of Sn, the stabilizer of (1, 1, . . . , 1) in Bn, corresponding
to some permutation of coordinates. If σ can be written as the composition of an
even number of transpositions sij, then it is in Dn. If not, σσ̂ is an element of Dn

whose effect as a color permutation on the facets containing (1, 1, . . . , 1) is identical
to σ. Thus, any color permutation of the facets containing v can be realized from a
rotation from Dn.
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Remark 3.5. Proposition 3.4 does not hold when the number of colors, k, is equal
to or greater than n. For example, see Figure 2. There is no rotation in D3 which
takes the corner type GWB (read counterclockwise) to the corner type GBW . The
reader may wish to compare Proposition 3.4 with Lemma 3.1.

4 The Corner Poset of Hypercubes

When constructing an n-cube of side length 2 from 2n n-cubes of unit length, some
hypercubes are more flexible than others. What we mean is that a hypercube with
many different corners can be used in more potential positions in a solution than a
hypercube with fewer of them. As a way of understanding more about an n-cube’s
collection of corners, we start with a result that connects the colors that appear at a
corner, the color type of the corner, to the collection of opposite pairs of the n-cube.

Proposition 4.1. Let a, b, and c be the number of BB, BW , and WW opposite
pairs, respectively, in a fixed hypercube H, i.e., H = 〈a|b|c〉. Then the generating
function for the color types of H is given by

(B +B)a(B +W )b(W +W )c =
b∑

k=0

2a+c
(
b

k

)
Ba+kW c+b−k. (1)

Proof. A choice of facet color from each opposite pair determines a color at a corner.
The formula on the right follows from noting

(B +B)a(B +W )b(W +W )c = 2a+cBaW c(B +W )b.

We note that Proposition 4.1 easily generalizes to n-cubes with any number of
colors. In addition, when k < n, Proposition 3.4 implies that the corner type of
a vertex is determined by its color type. This, along with the observation that
(B +W )b, contains b+ 1 terms, yields the following corollary.

Corollary 4.2. Let n > 2, and let a, b, and c be the number of BB, BW , and
WW opposite pairs, respectively, in a fixed 2-color n-dimensional hypercube H, i.e.,
H = 〈a|b|c〉. Then the generating function for the corner types of H is given by
Equation (1). Further, the number of distinct corner types in H is one more than
the number of BW opposite pairs it contains.

Given hypercubes H1 and H2, we say H2 � H1 if every corner of H2 is also
a corner of H1, ignoring multiplicity1. The relation � is obviously reflexive and
transitive. Corollary 4.2 also implies that � is antisymmetric, since if H1 � H2 and
H2 � H1, both n-cubes have the same number of BW opposite pairs. Consequently,

1We need not be concerned with multiplicity since at most one corner from a sub-cube is visible
in the construction.
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their generating functions are the same, and H1 and H2 are the same up to rotation
by Lemma 3.1. Therefore, � defines a partial order on the 2-color n-cubes. We
would like to understand the resulting corner poset.

Theorem 4.3. When n > 2, the set of 2-color n-cubes forms a poset under �. In
particular, given an n-cube with at least one BW pair, there are two 2-color n-cubes
directly below it in the poset, the ones that result from replacing the BW opposite
pair with either a WW or BB opposite pair.

Proof. By Corollary 4.2, the number of corner types of an n-cube is determined by
the number of its BW opposite pairs. Assume we have an n-cube H1 with b BW
opposite pairs. If we replace one of those opposite pairs with a monochrome opposite
pair, then the resulting 2-color n-cube, H2, is uniquely determined by Lemma 3.1.
Furthermore, H2 has exactly b − 1 BW opposite pairs. We note that every corner
of H2 is also a corner of H1, i.e., H2 � H1. Given a choice of colors from the b − 1
BW opposite pairs of H2, the same colors can be chosen from b− 1 BW pairs from
H1. Since in H1 there are two color choices for the bth opposite pair, we can match
any color choice for the new monochrome opposite pair in an appropriate corner.
The remaining n − b opposite pairs are of type BB and WW , and have the same
multiplicity in both H1 and H2. The result follows by Proposition 3.4.

Using the notation preceding Corollary 3.3, we refer to elements in the poset by
their triple 〈a|b|c〉 of BB, BW , and WW opposite pairs. We note that the corner
poset contains a unique maximal element, Hmax = 〈0|n|0〉. This is the unique 2-
color n-cube whose opposite pairs are all of type BW , and it contains all possible
corner types. On the other hand, there are n + 1 minimal elements in the poset
having zero opposite pairs of type BW . In addition, we move down the poset by
replacing an BW opposite pair with a monochrome opposite pair. This means that
the poset has the form of a triangle, and the hypercubes in each row are determined
by the number of BW pairs they contain. We refer to the row of the poset which
contains the n-cubes of the form 〈∗|k|n−(∗+k)〉 as row k. Finally, each non-minimal
element in the poset covers two other elements, and it is straightforward to see from
the characterization in Theorem 4.3 that each non-maximal element is covered by
either one or two other elements, depending on whether it contains one or both of
the BB and WW opposite pairs. For example, consider the poset for n = 4, given in
Figure 3. As noted by an anonymous referee, the corner poset is the interval poset
on the chain of n + 1 elements, given by the number of white facets adjacent to a
vertex.

The corner types of minimal 2-color n-cubes in the poset have particularly simple
forms.

Corollary 4.4. The 2n vertices of minimal 2-color n-cubes in the poset are all of
the same corner type.

Proof. From Corollary 4.2 as well as Theorem 4.3 and the discussion afterwards,
minimal 2-color n-cubes in the poset contain no BW opposite pairs and have the
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〈0|0|4〉 〈1|0|3〉 〈2|0|2〉 〈3|0|1〉 〈4|0|0〉

〈0|1|3〉 〈1|1|2〉 〈2|1|1〉 〈3|1|0〉

〈0|2|2〉 〈1|2|1〉 〈2|2|0〉

〈0|3|1〉 〈1|3|0〉

〈0|4|0〉

Figure 3: Poset structure of 2-color 4-cubes.

form 〈a|0|c〉. Therefore, all 2n corners of these n-cubes have a facets colored B and
c facets colored W , with a + c = n. The result follows from Proposition 3.4 and
Corollary 4.2.

Remark 4.5. The anti-symmetry of � fails in general for more than two colors.
An example is given by the two 3-cubes, H1 and H2, from Figure 2 in Section 3.
They have the same corner types but are mirror images of each other and so are not
rotationally equivalent. Therefore, H1 � H2 and H2 � H1, but H1 and H2 are not
rotationally equivalent.

5 Solving and Constructing Puzzles

The results in Section 3 and Section 4 give us a way to describe and compare hy-
percubes. In this section, we apply those results to our cube stacking puzzle. From
Definition 2.3 in Section 2, we can consider a solution as a matching between a sub-
multiset of P of size 2n and a collection of corners corresponding to some 2-color
n-cube to be modeled. We will use this formulation to show that it is possible to
determine whether P has a solution in polynomial time with respect to the size of P .

We start with an observation between hypercubes and their corners which appear
in the poset. By Corollary 4.4, the n-cubes in the bottom of the poset have just one
type of corner, so we can identify a corner with its corresponding n-cube in row 0.
Specifically, in dimension n, we will refer to the unique corner of 〈k|0|n−k〉 as corner
k. The poset also gives us a way to visualize the corners of an n-cube—these are
the corners that lie in the triangular cone below the n-cube. For example, consider
the position marked “4” in Figure 4, which is the 3-cube 〈0|2|1〉. Following its cone
to the bottom of the poset and again applying Corollary 4.2, we see that the 3-cube
has two each of corners 1 and 3, and four of corner 2. We can represent this corner
set as [2, 4, 2, 0]. In general, Corollary 4.2 implies that the n-cube 〈a|b|c〉, where



E. BERKOVE AND J. SCHETTLER/AUSTRALAS. J. COMBIN. 84 (1) (2022), 86–110 97

3 1

4

Figure 4: Hypercube corners and puzzle solutions with n = 3, showing four
copies of 〈0|2|1〉, three copies of 〈1|1|1〉, and one copy of 〈2|1|0〉.

a+ b+ c = n, has corner set

2a+c[ 0, . . . , 0︸ ︷︷ ︸
a copies

,

(
b

0

)
,

(
b

1

)
, . . . ,

(
b

b

)
, 0, . . . , 0︸ ︷︷ ︸
c copies

]. (2)

Proposition 5.1. There is a polynomial time algorithm to determine if a puzzle P
has a solution.

Proof. Given a fixed 2-color n-cube H, we can determine if P has a solution that
is modeled on H by recasting the puzzle as a bipartite matching problem. Add a
vertex in one bipartition for each n-cube in P . The other bipartition will have 2n

vertices, one each for each corner of H, including multiplicity. We connect a vertex
in the first bipartition with a vertex in the second bipartition if the n-cube in P has
the corresponding corner in H. A solution in this context is a matching of size 2n,
that is, 2n cubes in P which can be placed in appropriate corner positions of the
larger hypercube modeled on H.

Recall from the introduction that a puzzle with fewer than 2n hypercubes will
never have a solution, and any puzzle with

(
n+2
2

)
(2n − 1) + 1 or more hypercubes

will always have one by Corollary 3.3 and the pigeonhole principle. Thus, if we
set m = 2n, we may assume that our puzzles are O(m(logm)2) in size. Therefore,
we can encode every puzzle as a bipartite graph with O(m(logm)2) vertices. Since
each cube can match with up to 2n = m corners, the graph will have O(m2(logm)2)
edges. By a result of Hopcroft and Karp ([13]), one can find a maximum matching
in a bipartite graph with |V | vertices and |E| edges in O(

√
|V ||E|) time. In our

matching problem, this corresponds to O(m2.5(log(m))3) time to determine if there
is a matching of size 2n. Finally, we may need to perform this matching for all

(
n+2
2

)
possible n-cubes, resulting in an algorithm that runs in O(m2.5(log(m))5) time.

We next describe how to enumerate puzzle solutions. The algorithm outlined in
Proposition 5.1 will find a solution to P if it exists, and it may find many. However,
a matching may not distinguish cases that we would like to be considered the same,
say when two identical 2-color n-cubes are assigned to two identical corners. We note
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that the matching in Proposition 5.1 sends multisets of 2-color n-cubes to multisets
of corners. We will consider two such matchings, M1 and M2, to be equivalent if
both associate to each type of n-cube the same number and type of corners.

We outline a procedure one can follow to determine the total number of non-
equivalent puzzle solutions that are modeled on a particular 2-color n-cube. In the
dimension n setting, there are

(
n+2
2

)
different n-cubes, which we enumerate using i,

and n + 1 possible corner types, which we enumerate using j. Given a puzzle, let
di ≥ 0 be the number of copies of the n-cube i in P . Define aij to equal 1 if cube
i has corner j and 0 otherwise. To determine if a puzzle has solutions that look
like some fixed 2-color n-cube H, define bj to be the number of corners of type j in
H; the values of bj, which follow from Corollary 4.2, are binomial coefficients scaled
by some non-negative power of 2. Finally, define the variables we wish to solve for,
{xij}, to be the number of n-cubes i which are used for corner j in the solution.

In order to model this fixed 2-color n-cube H, we have the following system of
equations and inequalities:

1. For all j:
(n+2

2 )∑
i=1

aijxij = bj.

This says that enough cubes have been assigned to match with all requisite
corners of type j.

2. For all i:
n∑
j=0

xij ≤ di.

This says that we did not assign the n-cube of type i to more corners than
there are copies in P .

3. For all i, j:
xij ≥ 0.

This says we did not assign a negative number of n-cubes at any point.

4. To avoid extraneous solutions, we require∑
i,j

xij = 2n.

This ensures that all of the variables which did not appear in an equation with
a nonzero bj become zero since we also have b0 + b1 + · · ·+ bn = 2n.

Since the equations are all hyperplanes and the inequalities are all half-spaces, the
solution space when regarding all xij as real variables is a convex set. Each integer
lattice point in the solution space can be identified with a solution to the puzzle
modeled on H, up to equivalence. In two dimensions, the number of lattice points in
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such a region can be counted using Pick’s Theorem. The analogous problem in the
higher dimensional setting can be solved using Barvinok’s algorithm. (See [1], for
example, or its implementation in LattE [16].) As in the proof of Proposition 5.1, one
needs to consider each of the

(
n+2
2

)
hypercube cases separately to fully enumerate all

solutions. Although the solution space to implement Barvinok’s algorithm appears
to live in a large dimension compared to n, the minimum number of variables needed
in a particular case can actually be smaller than it might appear at first.

Example 5.2. Suppose, in dimension n = 3, that we are trying to find how many
ways we can model H = 〈0|1|2〉 having corner set [b0, b1, b2, b3] = [4, 4, 0, 0] from
a puzzle P consisting of d1 = 3 copies of H, d2 = 5 copies of 〈1|1|1〉 with corner
set [0, 4, 4, 0], and d3 = 4 copies of 〈0|2|1〉 with corner set [2, 4, 2, 0]. We have the
following system of equations and inequalities on variables xij ≥ 0:

x10 + x30 = 4

x11 + x21 + x31 = 4

x10 + x11 ≤ 3

x21 ≤ 5

x30 + x31 ≤ 4∑
i,j

xij = 8.

All variables not appearing in the first five lines can be ignored since they are forced
to be zero. We can use the equations to eliminate the variables x30 and x31 as
long as we ensure the quantities representing them remain nonnegative. If we set
x = x10, y = x11, and z = x21, then after removing redundancies we get the system
of inequalities

x+ y ≤ 3

y + z ≤ 4

x+ y + z ≥ 4

y ≥ 0.

These cut out a tetrahedral region in xyz-space seen in Figure 5. The 20 lattice
points in the region correspond to 20 distinct ways of building H from our puzzle P .

In general, a “good puzzle” should contain many hypercubes with lots of different
corners, and many choices of corner orientations. That way, the solver will have
many choices of which corners to incorporate as well how to orient them in the final
solution. We see that n-cubes higher up in the poset have more distinct types of
corners, whereas n-cubes towards the bottom of the poset have fewer. We remark
that although the cube 〈k|0|n− k〉 has only one type of corner, that corner has

(
n
k

)
possible orientations, so that a puzzle with many n-cubes that are lower in the poset
can still be challenging. Another possible desirable puzzle property may be for it to
have a unique solution.
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Figure 5: Lattice points in tetrahedral region for Barvinok’s algorithm.

Example 5.3. Consider the puzzle in Figure 4, with four copies of 〈0|2|1〉, three
copies of 〈1|1|1〉, and one copy of 〈2|1|0〉. We note that the corners [1, 0, 0, 0] and
[0, 0, 0, 1] are monochrome, whereas the other two corners, [0, 1, 0, 0] and [0, 0, 1, 0],
can be oriented three ways. This eight-cube puzzle has seven distinct solutions,
representing three distinct corner sets: [1, 3, 3, 1], [2, 4, 2, 0] (two different ways), and
[0, 4, 4, 0] (four different ways). These are the 3-cubes 〈0|3|0〉, 〈0|2|1〉, and 〈1|1|1〉,
respectively. Because there are so many possible solutions, this might not be an ideal
puzzle. However, if the copy of 〈2|1|0〉 in the puzzle is replaced by a copy of 〈3|0|0〉,
then there is only one solution, the 3-cube 〈0|3|0〉. In this case there are still many
possible configurations for the puzzle solver to consider. There are((

8
4

)
34
) ((

4
3

)
23
)

4!
= 7560

ways, up to rigid rotation, to put the cubes into position and choose a corner to face
outward, and this count does take into account orientating the corners. However,
the puzzle may still not be challenging from a puzzle solver’s standpoint.

One aspect that impacts this puzzle’s difficulty is the presence of the monochrome
cube 〈3|0|0〉. There is no corner choice in its use, and it also restricts which cubes can
be adjacent to it as well as their orientation. Puzzles can be made more challenging
by using cubes that are not in the lowest rows of the poset. We will show that for a
large enough n, it is possible to build puzzles of this type. In particular, challenging
puzzles live in high dimensions.

Proposition 5.4. Fix an integer ` ≥ 1. For n sufficiently large, it is possible to
build a puzzle with a unique solution that does not use cubes from the first ` rows of
the poset.

Proof. Let n = 3(`+1)−1 = 3`+2, and consider the puzzle P containing 2n n-cubes,
distributed as three sets,

∑`
i=0

(
n
i

)
copies of n-cubes 〈0|`|2`+2〉 and 〈2`+2|`|0〉, and∑2`+1

i=`+1

(
n
i

)
copies of n-cube 〈`+ 1|`|`+ 1〉. This puzzle is illustrated in Figure 6. By
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〈0|`|2`+ 2〉 〈`+ 1|`|`+ 1〉 〈2`+ 2|`|0〉

〈0|3`+ 2|0〉

...

...

... .... . . . . . . . .

`+ 1 types `+ 1 types `+ 1 types

Figure 6: “High row” puzzles with a unique solution.

using
(
n
i

)
copies of the appropriate cube for the corner types represented by the ith

entry of the bottom row, Equation 2 implies that we have precisely the corner types
needed to model a solution of type 〈0|n|0〉.

We claim that 〈0|n|0〉 is the only possible solution to this puzzle. Note that the
corner types for these three sets are mutually disjoint and there are the same number
of cubes of type 〈0|`|2`+ 2〉 and 〈2`+ 2|`|0〉. These observations imply that the only
possible solutions to P are of the form 〈k|n − 2k|k〉, with k > ` + 1. We will show
that the

∑`
i=0

(
n
i

)
copies of the cubes of type 〈0|`|2`+2〉 cannot be used as corners in

any other of these solutions. This fact follows from the following observation about
binomial coefficients.(

n

0

)
+ · · ·+

(
n

`

)
= 2

((
n− 1

0

)
+ · · ·+

(
n− 1

`− 1

))
+

(
n− 1

`

)
= 2

[
2

((
n− 2

0

)
+ · · ·+

(
n− 2

`− 2

))
+

(
n− 2

`− 1

)]
+

(
n− 1

`

)
= 2

[
2

((
n− 2

0

)
+ · · ·+

(
n− 2

`− 1

))]
+

(
n− 1

`

)
− 2

(
n− 2

`− 1

)
= 22

((
n− 2

0

)
+ · · ·+

(
n− 2

`− 1

))
+

(
n− 2

`

)
−
(
n− 2

`− 1

)
.

As ` < n
2
, the unimodality of binomial coefficients implies that

(
n−2
`

)
−
(
n−2
`−1

)
> 0.

Comparing this with Equation 2, we see that there are
(
n−2
`

)
−
(
n−2
`−1

)
cubes too many

of type 〈0|`|2`+2〉 to use for appropriate corners of a solution modeled on 〈1|n−2|1〉,
which implies that the latter is not a solution to P . Iterating this process proves
that 〈0|n|0〉 is the sole solution.

It is important to split the bottom row into thirds in this construction. If n =
2`+1, then

∑`
i=0

(
n
i

)
= 2n−1, and one can use 2n−1 copies of 〈`|0|`+1〉 and 〈`+1|0|`〉

to construct a solution that looks like 〈`|1|`〉.

We remark that the collection described in Proposition 5.4, because of its sym-
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metry, size, and uniqueness of solution, would probably be an interesting and chal-
lenging puzzle to solve by trial and error. On the other hand, it is also interesting
to consider puzzles with many solutions. Borrowing from [11], given a subset H
from the set of all 2-color n-cubes, we say a puzzle P is H-complete if the solution
set of P is precisely H. Can we always construct a puzzle which is H-complete for
any H? Haraguchi answered this question in the negative for a generalization of the
Eight Blocks puzzle and found a minimal puzzle which was complete with respect
to the set of all 30 proper 6-color 3-cubes [11]. In our case, the answer is clearly
no as well since if a puzzle can model two adjacent minimal n-cubes 〈i|0|n− i〉 and
〈i+1|0|n− i−1〉, then the puzzle can also model 〈i|1|n− i−1〉. It is also possible to
find a puzzle which is complete with respect to all 2-color n-cubes; for example, con-
sider the puzzle consisting of 2n copies of 〈0|n|0〉 (top n-cube in the corner poset). In
the other extreme, given any 2-color n-cube H, we can always find a puzzle which is
{H}-complete by considering the multiset of minimal 2-color n-cubes corresponding
to the corners of H as in Corollary 4.2. We also note that if we can construct any
number of consecutive entries in row 0 of the poset, then we can construct any entry
in the triangular cone above the consecutive entries. In a different but related vein,
given 2n−1 copies of any two n-cubes H1 and H2, we can construct any entry which
lies in the intersection of the triangular cones below H1 and H2 as in Figure 4. A full
analysis and characterization of H-complete puzzles could be a worthwhile future
project.

6 Maximal Sets Without Solutions

In this section, we investigate necessary conditions associated to solutions and non-
solutions to our puzzle.

Definition 6.1. Let S(n) denote the size of a largest collection of n-cubes such that
no subset of that collection is a solution.

As noted in the introduction, the pigeonhole principle implies that S(n) exists
and is well-defined. To learn a bit more about the values of S(n), we start with a
result that tells us that we can restrict the 2-color n-cubes that we consider. To state
the result, we first need a definition.

Definition 6.2. Given puzzles P1 and P2, we write P1 � P2 to indicate that there
is a bijection H 7→ H ′ from the multiset P1 to a submultiset of P2 such that H � H ′

for all H in P1.

Theorem 6.3. A puzzle P has a solution if and only if there is a puzzle P̃ � P of the
same size with a solution and containing only minimal 2-color n-cubes. Therefore,
the value of S(n) can be realized by a puzzle consisting entirely of minimal 2-color
n-cubes in the corner poset.

Proof. Suppose we can build a solution from 2-color n-cubes in P . Then each n-cube
H in the solution is used solely for a particular corner. We can replace H with the
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unique minimal 2-color n-cube H̃ � H whose corners all have that corner type and
use H̃ in place of H in the solution. We can similarly replace the other n-cubes
in P not used in the solution with minimal n-cubes below them in the poset. The
resulting puzzle P̃ � P will have a solution and will be the same size as P , but with
all minimal 2-color n-cubes.

Now take any puzzle P of 2-color n-cubes without a solution. Let P̃ be any
puzzle obtained by replacing each 2-color n-cube H in P with a minimal 2-color
n-cube H̃ � H in the poset. Note that the corner type of H̃ is also a corner type
of H. Thus P̃ � P does not have a solution because if we could build a solution
from n-cubes in P̃ , then we could build a solution with the original puzzle P . This
finishes the proof of the proposition since |P| = |P̃|.

We have established a significant reduction: by Corollary 4.4 and Theorem 6.3, we
may represent a puzzle P by a vector (a0, a1, . . . , an), where each ai is the multiplicity
of the minimal 2-color n-cube 〈i|0|n − i〉. Corollary 4.4 and Theorem 6.3 together
also imply that in a puzzle P , we can identify a minimal cube in the multiset with
the corner type it is matched to in the solution. If a puzzle P of n-cubes does not
have a solution, this means that we cannot construct any of the 2-color n-cubes in
the poset. By Corollary 4.2, we know the number and corner type of every vertex of
every 2-color n-cube. Each 2-color n-cube can be translated into a constraint that
the elements of P must satisfy. We construct these next.

There are n + 1 2-color n-cubes on the bottom row of the poset (recall from
Theorem 4.3 that this is row 0, matching the number of BW opposite pairs), and
these are all minimal. Therefore, if P = (a0, a1, . . . , an) does not have a solution,
the n + 1 inequalities ai ≤ 2n − 1 for i = 0, 1, . . . n must be satisfied. We set the
constraint C0,i to be the condition ai ≤ 2n − 1. We do something similar with row
1 (second from the bottom, one BW opposite pair): the 2-color n-cubes in that row
have two corner types, each with multiplicity 2n−1. The resulting n constraints each
have the form of a disjunction

C1,i :
(
ai ≤ 2n−1 − 1

)
∨
(
ai+1 ≤ 2n−1 − 1

)
for i = 0, 1, . . . , n−1. In general, there are n+1−k n-cubes in row k of the poset. By
Corollary 4.2, each 2-color n-cube in row k has k+ 1 distinct corner types, and each
corner type appears 2n−k

(
k
j

)
times, for some 0 ≤ j ≤ k. Therefore, the constraint

associated to the first 2-color n-cube of row k is

Ck,0 :
k∨
j=0

(
aj ≤ 2n−k

(
k

j

)
− 1

)
. (3)

The constraints Ck,i with 0 < i ≤ n − k are defined analogously. In order for P to
not have a solution, the conjuction of the constraints

n∧
k=0

n−k∧
i=0

Ck,i (4)

must be satisfied.
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Lemma 6.4. The value of S(n) is maximized for some puzzle of the form P =
(a0, a1, . . . , an), where each ai has the form 2r

(
s
t

)
− 1.

Proof. Every literal in Equation (3) has the form ai ≤ 2r
(
s
t

)
− 1, and the choice of a

value for ai will determine the truth of each literal of which it is part. If the initial
value of ai makes a literal false, then increasing its value will not change the truth
of the literal. So consider all literals where the value of ai makes the literal true.
There are finitely many, and all of the literals are integer inequalities. Therefore,
we can increase the value of ai up to the value where the most restrictive inequality
remains true. Changing the value of ai in this way will not affect the overall truth
of Equation (4).

Lemma 6.4 suggests one way to find the value of S(n). One enumerates the pos-
sible values for ai in literals in Equation (4), then searches through all choices of
(a0, a1, . . . , an) to find the maximum sum of the coefficients such that Equation (4)
is false—these are puzzles P of largest size without solutions. We thank Frank Xia,
who coded this search routine into C++ and generated the results in Table 1 up to
dimension n = 14. We remark that we referenced the n = 3 and 4 cases in the
introduction. The table includes the best known values for S(n). The explicit search
shows that generally there is more than one puzzle of minimum size. We denote the
total number of such puzzles by T (n), using an asterisk to denote cases which are con-
jectural. Some of these puzzles arise by symmetry, since if (a0, a1, . . . , an) is a puzzle
of maximum size, then so is (an, an−1, . . . , a0). However, consider (31, 15, 31, 3, 31, 15)
and (31, 11, 31, 7, 15, 31), which are non-equivalent puzzles without solutions when
n = 5. In the cases n = 11, 12, 13, a search was conducted assuming that the values
of a0 and an were as large as possible, hence the inequality. (We believe this is usually
true, although recall the given examples from the n = 5 case where this does not
happen.)

This naive search routine works for small values of n, but a back-of-the-envelope
calculation shows why this procedure will not work for long. The number of literals
in Equation (4) is

∑n
k=0(k+1)(n+1−k); a quick computation shows that this sum is

about n3

6
, so the average number of choices for each ai is about n2

6
. Therefore, finding

the optimal value of S(n) through an exhaustive search requires checking roughly
O ((n2)n) cases. Further, Equation (4) can be readily rewritten in conjunctive normal
form, and it is known that general satisfiability of these expressions is an NP-complete
problem by Cook’s theorem [7].

On the other hand, we can get some general results on the growth rate of S(n).

Theorem 6.5. We have S(n) = Θ(n2n). In particular,⌊
n+ 2

2

⌋
(2n − 1) ≤ S(n) ≤ (n+ 1)

(
3

4
· 2n − 1

)
+ 2n−2.

Proof. We will show the inequalities follow from Equation (2) and Lemma 6.4. The
left inequality follows from considering puzzles of the form (2n − 1, 0, 2n − 1, 0, . . .).
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n S(n) Sample Largest Known Puzzle without a Solution T (n)
2 7 (3, 1, 3) 1
3 19 (7, 3, 2, 7) 2
4 53 (15, 7, 15, 1, 15) 4
5 126 (31, 15, 31, 3, 15, 31) 6
6 321 (63, 31, 63, 7, 63, 31, 63) 1
7 696 (127, 63, 127, 15, 127, 47, 63, 127) 2
8 1591 (255, 127, 255, 31, 255, 31, 255, 127, 255) 3
9 3446 (511, 255, 511, 63, 511, 255, 63, 511, 255, 511) 2
10 7861 (1023, 511, 1023, 127, 1023, 511, 1023, 63, 1023, 511,

1023)
2

11 ≥ 16500 (2047, 1023, 2047, 255, 2047, 1023, 2047, 127, 2047,
1023, 767, 2047)

6*

12 ≥ 36083 (4095, 2047, 4095, 511, 4095, 2047, 4095, 255, 4095,
2047, 4095, 511, 4095)

10*

13 ≥ 76274 (8191, 4095, 8191, 1023, 8191, 4095, 8191, 511, 8191,
4095, 8191, 1023, 4095, 8191)

14*

14 ≥ 168945 (16383, 8191, 16383, 2047, 16383, 8191, 16383, 1023,
16383, 8191, 16383, 2047, 16383, 8191, 16383)

1*

Table 1: Values for S(n) up to dimension n = 14.

The alternating 0’s mean that there is no solution modeled on a 2-color n-cube with
two or more corner types. In addition, minimal n-cubes need 2n n-cubes of one
corner type to construct.

For the right inequality, we will suppose that we have a puzzle P of the form
(a0, a1, . . . , an) with no solutions and then bound the sum of the ai. No ai can be 2n

or larger, since then a minimal 2-color n-cube could be modeled. Thus ai ≤ 2n−1 for
all i = 0, . . . , n. Additionally, P does not model a solution of the form 〈j|1|n− j−1〉
for any j = 0, . . . , n − 1. Such 2-color n-cubes are in row 1 of the corner poset and
thus have exactly two corner types, coming from two neighboring minimal n-cubes
in the bottom row both with multiplicity 2n−1. Hence min(ai, ai+1) ≤ 2n−1 − 1 for
all i = 0, . . . , n− 1. But this implies

2
n∑
i=0

ai = a0 + an +
n−1∑
i=0

(ai + ai+1)

= a0 + an +
n−1∑
i=0

(max(ai, ai+1) + min(ai, ai+1))

≤ 2 · (2n − 1) + n
(
2n − 1 + 2n−1 − 1

)
= 2n−1 + 3 · 2n−1 − 2 + n

(
3 · 2n−1 − 2

)
= (n+ 1)

(
3 · 2n−1 − 2

)
+ 2n−1,
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so
n∑
i=0

ai ≤ (n+ 1)

(
3

4
· 2n − 1

)
+ 2n−2,

as needed. In particular, if a puzzle has size (n + 1)
(
3
4
· 2n − 1

)
+ 2n−2 + 1, it must

have a solution in one of the bottom two rows of the corner poset.

Remark 6.6. A quick look at the values in Table 1 (and the proof of Theorem 6.5)
suggests that puzzles P which realize the value of S(n) have a lot of structure. The
most important observation is that for n even, every other entry is the maximum
possible size, 2n − 1. Such regularity is not possible for n odd, but the maximum
value of 2n−1 still occurs as much as possible. If this is, as we believe, true in general,
then one could conduct a more extensive computer search, which could potentially
reveal additional structure in the answer.

Suppose we have an asymptotic of the form S(n) ∼ cn2n, that is,

lim
n→∞

S(n)

n2n
= c. (5)

Then the inequalities in Theorem 6.5 imply 0.5 ≤ c ≤ 0.75. We can improve on the
lower bound here.

Proposition 6.7. Assume Equation (5) holds for some constant c. Then

c ≥
∞∑
k=0

2−k−2
k

= 0.64111423493....

Proof. We will show how one can construct large puzzles without solutions by ex-
ploiting the “upside-down” Pascal property of the corner poset, which we will now
describe. As in Section 6, each 2-color n-cube in the poset can be regarded as an
n+ 1-tuple corner set [b0, b1, . . . , bn] where bi denotes the number of corners of type
i corresponding to the corner type of the minimal 2-color n-cube 〈i|0|n − i〉. By
Equation (2), the n-cube 〈j|k|n− j − k〉 has exactly

2n−k
(
k

`

)
(6)

corners of type j+` for 0 ≤ ` ≤ k. The “upside-down” property seen in Equation (7)
implies that if a puzzle fails to have a solution modeled on two adjacent n-cubes in
the poset, H1 = 〈j|k|n − j − k〉 and H2 = 〈j + 1|k|n − (j + 1) − k〉, because there
are not enough corners of a particular type, then there is no solution modeled on
the n-cube above them, H3 = 〈j|k + 1|n − j − (k − 1)〉 either. This follows from
the observation that the number of corners of type m in H3 is the average of the
number of corners of type m in H1 and H2. In particular, fix a corner m, and use
Equation (6) to count these corners in H1, H2, and H3. One confirms that

1

2
· 2n−k

((
k

m− j

)
+

(
k

m− (j + 1)

))
= 2n−(k+1)

(
k + 1

m− j

)
(7)
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Figure 7: Construction for Proposition 6.7 in dimension 14.

where the binomial coefficient is 0 when the bottom number is negative.

Let n be an integer of the form 2i−2. Posets of this type can be covered by rhombi
as in Figure 7, where a rhombus may consist of a single entry in the poset. Note
that every entry on the bottom row belongs to a unique rhombus. Let k(m) denote
the row index of the × in the rhombus containing the minimal cube 〈m|0|n − m〉
with corner type m. Recall that we denote the bottom of the corner poset as row 0
and index up. Here k(m) is always one less than a power of 2. We claim that if we
take am = 2n−k(m) − 1, then the corresponding puzzle P = (a0, a1, . . . , an), has no
solution.

It is clear that n-cubes corresponding to ×’s in row 0 cannot be built from 2n− 1
cubes of the same type. For larger rhombi, we note that for n-cubes on the lower left
and lower right edges of the rhombus require 2n−k(m) or more corners of type m for
their construction by Equation (6), but P only contains 2n−k(m) − 1 minimal cubes
with this corner type. Now, since there are insufficient minimal cubes with corner
type m to construct both n-cubes in row 1 in the rhombus, by Equation (7) there are
not enough to construct the n-cubes in row 2 in the rhombus. Continued application
of Equation (7) shows that there are not enough minimal cubes with corner m to
construct any n-cube in the rhombus. Since the rhombi cover the poset, P has no
solution.

The puzzles we have constructed have the form

(2n − 1, 2n−1 − 1, 2n − 1, 2n−3 − 1, 2n − 1, 2n−1 − 1, 2n − 1, 2n−7 − 1,

2n − 1, 2n−1 − 1, 2n − 1, 2n−3 − 1, 2n − 1, 2n−1 − 1, 2n − 1, 2n−15 − 1, . . .).

This construction leads to the inequality

lim
n→∞

S(n)

n2n
≥ lim

n→∞

(
1

n
+

1

2n
+

1

n
+

1

23n
+

1

n
+

1

2n
+

1

n
+

1

27n
+ · · ·

)
= lim

n→∞

(
n

2
· 1

n
+
n

4
· 1

2n
+
n

8
· 1

23n
+

n

16
· 1

27n
+ · · ·

)
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=
1

21 · 220−1 +
1

22 · 221−1 +
1

23 · 222−1 +
1

24 · 223−1 + · · ·

=
1

220+0
+

1

221+1
+

1

222+2
+

1

223+3
+ · · ·

as claimed.

We remark that T (n) = 1 in Table 1 when n = 2i − 2, i = 2, 3, 4, reinforcing the
special structure of cases of this form. In future work, we would like to determine
the exact value of c. Interestingly, this lower bound 0.64111423493... appears in
an analysis of the performance of a family of divide and conquer algorithms for
computing the Walsh-Hadamard transform, used in signal/image processing [12].

We provide a couple of generalizations to the puzzle presented in this paper and
an additional problem for future exploration.

1. One can restrict puzzles to n-cubes which have a proper 2-coloring, that is,
where both black and white facets occur. This leaves out only two n-cubes,
the monochrome ones. Lemma 6.4 will still hold, but the types of minimal
2-color n-cubes will change. In particular, the 〈0|0|n〉 and 〈n|0|0〉 cubes should
be replaced with 〈0|1|n−1〉 and 〈n−1|1|0〉 cubes. This will clearly change the
values in Table 1, although we expect that Theorem 6.5 will still be valid.

2. This article is concerned with the analysis of the 2-color version of the cube
stacking puzzle. Variations of the puzzle can be constructed for any number of
colors. Considering prior work, such as [2] and [4], we expect this analysis to
be challenging.

3. In the discussion before Theorem 6.5, we noted that the constraints on the
optimization form an expression that can be converted to conjunctive normal
form, suggesting that this optimization problem might be hard. However, the
form of the puzzles in Table 1 provide some evidence that a polynomial time
algorithm to determine the value of S(n) might exist. What more can be said
about the nature of the algorithm?
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