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ABSTRACT
Blackcurrants are nutrient-rich fruits with a significant amount of bioactive 
compounds including vitamin C and polyphenols, especially anthocyanins. The 
high phytochemical content of blackcurrants promotes this fruit to become 
a valuable functional food ingredient with varying health-promoting activities 
targeting different consumers including athletes. Athletes experience oxidative 
stress during intense exercise, which can result in inflammation and reduced 
exercise performance. Antioxidants such as vitamin C and polyphenols can 
restore the regular oxidative status of the body. Blackcurrant supplementation 
has shown potential ergogenic activity to improve athlete performance during 
high-intensity training. Clinical trials have evaluated the effectiveness of black
currant supplementation on exercise performance, fat oxidation, blood lactate 
levels, muscle fatigue, and cardiac output. Due to the rich nutritional value of 
blackcurrants, they can be a potential candidate for the development of func
tional foods targeted at the improved performance of athletes. Blackcurrants can 
be used as ingredients to develop functional beverages and snacks for athletes 
as well as gluten-free products for celiac athletes. 

Blackcurrant is rich in bioactive compounds that can help improve athletic 
performance. It can be considered a potential bioactive ingredient to develop 
functional foods for athletes.
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Introduction

As a species of the family Grossulariaceae, blackcurrant (BC; Ribes nigrum) is a small dark purple fruit 
that comes from medium-sized woody shrubs, native to colder climate areas such as northern Europe, 
Northern Asia, and Central Asia.[1] In Europe, BC is commonly consumed with an annual production 
of about 180,000 tons, and Poland is the primary exporter worldwide of fresh and processed fruits.[2]

The nutritional composition of BC has been widely studied regarding the growing condition and 
several phytochemicals have been investigated, such as phenolic compounds,[3] vitamin C [4] (Fig. 1), 
carotenoids, and phytosterols,[5] both in fresh berries and in berry-derived products,[6] as well as in by- 
products.[7] In a recent paper, BC European cultivars have been studied by ultra-performance liquid 
chromatography and tandem mass spectrometry and it was found that anthocyanins were the most 
dominant group of polyphenols, being the highest cyanidin and delphinidin derivatives, especially 
delphinidin-3-O-rutinoside.[5]

The high nutrient content of BCs has given this fruit a wide range of health-promoting benefits that 
have been investigated in vitro and in vivo. Two key bioactive properties of BC nutrients are 
antioxidant and anti-inflammatory activities. BC extracts have shown significant reducing power, 
and hydroxyl, superoxide anion, 20-azino-bis (3-ethlylbenzothiazoline-6-sulfonic acid), and 
1,1-diphenyl-2-picrylhydrazyl radical scavenging activities based on in vitro experiments.[8,9] In 
addition, BC extracts have shown superior anti-inflammatory activity when compared to chokeberry, 
rosehip, and hawthorn berries in terms of inhibitory potential of pro-inflammatory enzymes (cycloox
ygenase-1 and cyclooxygenase-2).[10] Furthermore, BC supplementation has been successful in 
increasing the activation of nuclear factor kappa B (NF-κB) in the liver of transgenic mice.[11]

To validate the efficacy of BC extracts on physio-pathological parameters, many clinical trials have 
been carried out. First of all, substantial research evidenced that the polyphenol-rich juice supported 
the prevention of cardiovascular disease,[12] and significantly reduced systolic blood pressure (BP) in 
both normotensive and hypertensive subjects,[13] with the effect being more significant in the latter 
group.[14] Moreover, in older adults, intake of BC extracts led to significant decreases in systolic and 
diastolic BP, but there was no effect on 6-minute walk performance or cognitive function variables.[15] 

Other implications, mainly associated with the berry-derived polyphenolic compounds, have been 
found to have beneficial effects on postprandial glucose metabolism and oxidative stress, as well as in 
inflammatory processes and allergies.[16] In recent research, 75 g of BC containing all the berry’s 
natural constituents reduced sugar-induced excursions, decreased postprandial glycemia and insuli
nemia, and normalized non-esterified fatty acid levels.[17]

Generally, natural compounds extracted from berry fruits have been studied for antioxidant 
capacity in an athlete’s performance.[18] The relationship between BC and exercise has also been 
investigated. Exercise-induced reactive oxygen and nitrogen species (RONS) are unavoidable by- 
products of increased oxidative metabolism and superoxide anion (O2•–) and nitric oxide (NO). 
However, RONS are the main free radicals that initiate reactions with other molecules to produce 
additional reactive free radicals.[19] Although once assumed to be harmful to health, it has recently 
been shown that these reactive species play a critical role in the body’s adaptive response to exercise, 
since inhibiting RONS with large doses of dietary antioxidants removed the beneficial effects of 
exercise.[20] However, severe and prolonged exercise during overtraining increases the formation of 
muscular damage and induces a detrimental redox environment, resulting in decreased exercise 
capacity and health.[21]

The rich nutritional composition of BCs and their significant antioxidant activity make them 
a potential ingredient for developing functional foods targeting athletes. The most common side 
effect of intensive exercise across all sports fields is oxidative stress. Oxidative stress is a result of an 
imbalance of the RONS levels in the cells and tissues with the capability of the body to detoxify these 
harmful reactive species.[22] Natural antioxidants can scavenge RONS and eliminate their harmful 
effects that could negatively influence the athlete’s performance. In this review, the nutritional 
composition and bioactive content of BCs are reviewed focusing on their beneficial potential to 
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Myricetin Isorhamnetin Sakuranetin

Quercetin Kaempferol L-ascorbic acid

Gallic acid Ellagic acid

Myrtillin 
(delphinidin-3-O-glucoside)

Tulipanin 
(delphinidin-3-O-rutinoside)

Delphinidin-3-O-(6-p-
coumaroyl) glucoside

Antirrhinin
(cyanidin-3-O-rutinoside)

Petunidin-3-O-glucoside

Callistephin 
(pelargonidin-3-O-

glucoside)
Peonidin-3-O-glucoside

Oenin 
(malvidin-3-O-glucoside)

Figure 1. Chemical structures of phytonutrients present in blackcurrant fruit. The components of this figure are not associated with 
any copyrights (public domain).
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enhance athletes’ performance. In addition, the current clinical-based evidence of the sports applica
tions of BC supplementation is discussed and evaluated. Finally, the potential BC-based functional 
food products that could form part of diets useful for enhancing athletes’ performance are discussed.

Nutritional composition of blackcurrants

Carbohydrates

BCs contain reduced amounts of sugar compared to other fruits. Total sugars are commonly present in 
the range of 7–10 g/100 g and are comprised of 45% fructose, 40% glucose and 15% sucrose. The 
differences in cultivars account for minor differences in terms of fructose, which is always higher in 
concentration, while glucose and sucrose may vary more widely.[23] BC concentrates available on the 
market have higher amounts of sugars (from 20 to 30 g/100 g), with an absence of sucrose that may be 
the result of inversion, which was recorded to occur in blackberry and apple concentrates.[24] In fact, 
the carbohydrate content of BC pomace is 2.3% of dry matter according to the reported global 
composition of BC pomace.[25] Polysaccharides extracted from BC have exhibited strong antioxidant 
activity based on in vitro assays.[8]

The architectural elements of BCs are pervaded by carbohydrates structures, and it has been found 
that a peculiar polysaccharide-rich substance is present, in addition to monomeric sugars. This 
substance consists of chains of rhamnose, mannose, arabinose, galactose, xylose, and glucose in 
a molar ratio of 11.3:0.9:54.1:29.8:2.0:1.9.[26] Another study has reported the molar ratio of 
0.32:0.19:1.00:0.31:0.66:0.09 for rhamnose, mannose, arabinose, galactose, galacturonic acid, and 
glucose in BC.[27]

In combination with organic acids, sugars are responsible for the taste of these berries, which are 
highly acidic compared with other species of currants.[2] In fresh fruits, the amount of these acids is 
reported to be around 5–6%, rising to 16–25% in BC concentrates.[23,24] Organic acids present in BCs 
are mainly citric acid, which alone represents 75–97% of this category, followed by malic, quinic, and 
ascorbic acids.[5] Some studies also report minor quantities of succinic, tartaric, and salicylic acids. 
Titratable acids such as phosphoric acid are present at an additional 3–5% concentration in fresh 
fruits.[28,29]

Among non-digestible carbohydrates, the dietary fibre in BC has been shown to be represented in 
an optimal ratio between soluble and insoluble types. BC pomaces at about 5% moisture were reported 
to present considerable amounts of dietary fibre with soluble fibre ranging from 25 to 30% w/w and 
insoluble fibre accounting for about 47% w/w.[30] The most represented fibres in this fruit are pectin 
(acid-soluble and calcium-bound), hemicellulose, cellulose, and lignin.

Based on the reported global composition, BC pomace contains a sum of 61.6% of the fibre in dry 
matter content that is divided between cellulose (18.2%), hemicellulose (8.8%), and lignin (34.6%).[25]

Lipids

The total amount of lipids in BCs is only 0.41 g/100 g of fresh fruit.[31] However, according to the 
reported global composition of BC pomace, it contains 14.8% of lipids in dry matter content.[25] 

According to the chromatographic analysis, BC lipids are mainly comprised of three fatty acids: 
palmitic, oleic, and linoleic acid (Fig. 2).[25]

Proteins

The amount of protein present in BCs is limited. In the pomace, with around 5% moisture, the relative 
presence of proteins is between 11 and 13%, while the USDA dataset reports that proteins account for 
1.5 g/100 g of fresh weight.[30,31] An example of BC proteins is arabinogalactan proteins, which have 
galactose and arabinose residues and may additionally include xylose carbohydrate residues as well.[32] 
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In addition, BC pomace contains 16.9% of proteins in dry matter content according to the reported 
global composition.[25] The amino acid profile of BC pomace detected 18 amino acids, with glutamic 
acid being the most dominant (Table 1).[25]

Vitamins and minerals

BCs are excellent sources of ascorbic acid and less than a portion of 100 g of these fruits are likely to 
fulfil the daily requirements of vitamin C. Multiple studies investigated the range of concentration of 
this vitamin among cultivars: a review in 2012 reported an average content of 125–151 mg/100 g fresh 
weight.[33] Among the different BC cultivars harvested from 2001 to 2005 in Denmark, vitamin 
C content ranged from 96 to 219 mg/100 g [34] while in another study it was reported to vary between 
67 and 204 mg/100 g.[5] Compositional mean data for vitamins and minerals in fresh BC are not fully 
reported in the literature and the most complete data are found in EFSA nutritional values database.

In addition to vitamin C, BCs are also sources of thiamine (0.05 mg/100 g), riboflavin (0.05 mg/100 
g), niacin (0.53 mg/100 g), vitamin K (30 μg/100 g), vitamin B6 (0.08 mg/100 g), and vitamin E (1.32 
mg/100 g). Among minerals, mean amounts have been reported for calcium (56.86 mg/100 g), copper 
(0.11 mg/100 g), magnesium (20.14 mg/100 g), potassium (318.29 mg/100 g), phosphorus (48.86 mg/ 
100 g), iron (1.29 mg/100 g), selenium (0.73 mg/100 g), and zinc (0.29 mg/100 g) 31, . On the other 

Figure 2. Fatty acid content of blackcurrant pomace.

Table 1. Amino acid profile of blackcurrant pomace.

Amino acid
Content 

(wt. % of total amino acids)

Tryptophan 2
Arginine 8
Histidine 2
Lysine 5
Phenylalanine 4
Tyrosine 3
Leucine 7
Isoleucine 5
Methionine 2
Cysteine 2
Valine 4
Alanine 5
Glycine 6
Proline 4
Glutamic acid 21
Serine 4
Threonine 4
Aspartic acid 10
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hand, a Serbian study reported that a soil management system may heavily modify the concentrations 
of some micronutrients, such as iron and copper, that were found in quadruple values, and for zinc, 
which had a 1.5-fold increase compared to standards; sodium was relatively high in this study (20 mg/ 
100 g).[35] A Romanian study reported that local cultivars have a higher amount (about 50 mg/100 g) 
of magnesium and a lower level (1 mg/100 g) of sodium.[36]

Phytochemicals

BCs are rich in phytochemicals and contain a significant amount of polyphenols (Fig. 1).[37] Phenolic 
content heavily depends on cultivars and it is reported in the literature that it may range from 
a minimum of 400 mg to a maximum of 800 mg in 100 g of fresh fruit and from 600 mg to 2800 
mg in 100 g of dry fruit.[5,34,38] Anthocyanins are the major group of phenolics found in BC and 
account for 80–96% of total phenolics.[39] Their amount can vary between 80 and 470 mg/100 g of 
fresh weight.[40] A recent comprehensive study evaluating the concentration of anthocyanins in eight 
cultivars over three years reported that the four major BC anthocyanins are delphinidin-3-rutinoside 
(36.7–63.6%), cyanidin-3-rutinoside (26.4–40.6%), delphinidin-3-glucoside (6.1–17.9%), and cyani
din-3-glucoside (1.3–9.9%).[40] These four anthocyanins represent 97–98% of total BC anthocyanins.

On the other hand, flavonols in BC fruits represent a small portion of total polyphenols (1–6%), 
with about 20–60 mg/100 g of dry weight and with myricetin glycosides appearing to be the dominant 
group, quercetin glycosides appearing in a lower concentration.[5] The concentration of flavanols in 
these fruits is between 10 to 20 mg/100 g of dry weight, with gallocatechins and epigallocatechins 
accounting for the highest levels in this category. BC is also recognized, similarly to other berries and 
grapes, to have a high concentration of proanthocyanidins, oligomers or polymers of monomeric 
flavanols, which was reported to be as high as 400 mg/100 g of fresh fruit with gallocatechins and 
epigallocatechins being the most prevalent.[41] Yet, BC-processed product derivatives, such as juices 
and concentrates, have shown to have on average much lower proanthocyanidin contents than the 
corresponding fruits and the bioavailability of these compounds needs investigation since most have 
a high degree of polymerization, which may decrease their health benefits.[42]

Among the non-flavonoid compounds in BC, phenolic acids are the most represented and are 
mainly conjugates of coumaric acids, followed by caffeic acid and ferulic acid (15–25 mg/100 g of dry 
weight.[5] A couple of cultivars were found to contain more derivatives of caffeic acid than coumaric 
acid. Another study reporting more specific data on phenolic acids showed that multiple phenolic 
acids may be additionally extracted from BC such as protocatechuic, vanillic, ellagic, gallic, and 
syringic acid.[28]

Finally, other interesting BC phytochemicals include monoterpenes such as 3-carene, orcimene, 
myrcene, sabinene, humulene, α pinene, eucalyptol, and terpinolene, which are responsible for the 
peculiar aroma profile of this fruit.[43]

It is important to highlight the complexity of the absorption and metabolism of polyphenols. 
Anthocyanins can be absorbed by the body in their intact form (e.g. cyanidin-3-glycoside), however 
many polyphenols are present as glycosides that need to undergo hydrolysis to form the polyphenol 
(aglycone) and the sugar group (glycone) before absorption.[18] The hydrolysis reaction can take place 
through lactase phlorizin hydrolase present in the microvillar membrane of epithelial cells in the small 
intestine or through cytosolic β-glucosidase within the epithelial cells. The aglycone product can then 
be absorbed, though it may undergo conjugation.

Role of blackcurrant bioactive compounds in sports nutrition

The common human intake of polyphenols can reach up to 1 g/day, which is ~10–100 times greater 
than the intake of other dietary antioxidants.[44] For athletes, it has been recommended that the intake 
of >1000 mg/day polyphenol supplementation for at least three days (or more) before and following 
exercise can be effective in enhancing recovery from the muscle damage through antioxidant and anti- 
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inflammatory mechanisms.[18] The most common polyphenol supplementations that have been 
explored for enhancing sports performance are derived from pomegranate, tart Montmorency cherry, 
dark chocolate, honey, blackcurrants, and cherry juice.[44]

General considerations on the energy metabolism of skeletal muscle allow to develop a schematic 
breakdown of physical activity and adaptation that occurs. During extremely brief efforts lasting 
seconds, such as throws, jumps, or 100- to 400-meter sprints, the most of adenosine triphosphate 
(ATP) is produced from phosphocreatine while glycogen is decomposed into lactate.[45] The aerobic 
and oxidative metabolism of carbohydrates and fats occurs only during events lasting several minutes 
to hours and supplies nearly all the ATP for contracting skeletal muscle in marathons, triathlons, or 
cross-country skiing.[46] Nowadays, there is no single systematic classification of sports that can be 
fully exhaustive. However, based on the aerobic or anaerobic metabolism induced by training, it is 
possible to distinguish different physical activities that have even different implications on nutritional 
supplementation.[47] Indeed, there is clear evidence that chronic and moderate exercise training 
improves endogenous antioxidant capacity and studies suggest that aerobic endurance training is 
more involved than anaerobic ones.[48] For instance, while prolonged exercise increases ROS genera
tion at higher exercise intensities, moderate-intensity exercise is likely to have positive effects, as 
shown in a study that compared different cycling intensities.[49]

Many hypotheses have been developed with respect to the antioxidant mechanism of polyphenols with 
respect to athletic performance. Contrary to expectations, recent research reports indicate that the mito
chondria are not the main location of reactive oxygen species (ROS) generation in skeletal muscle during 
exercise.[50] Other sources of ROS in the sarcoplasm are NADPH oxidases (isoform NOX2 is considered the 
most active in ROS production in muscle fibres) and phospholipase A2, which cleaves membrane phos
pholipids to release arachidonic acid, a substrate that stimulates ROS-generating enzyme systems (Fig. 3).[51]

In general, antioxidants can be divided into either RONS sequestrants (such as vitamin C, and vitamin E) 
or Nrf-2 activators (such as resveratrol and flavonoids). The high anti-oxidation capability of anthocyanins 
is due to donation of a hydrogen atom from the phenolic hydroxyl (OH) group,[52] as well as the antioxidant 

Figure 3. Proposed sites and mechanism of the production of reactive oxygen species in contracting skeletal muscles. CAT, catalase; 
SOD, superoxide dismutase; GPX, glutathione peroxidase; O2.−, superoxide; ·oh, hydroxyl radical; H2O2, hydrogen peroxide; 
NOX, NADPH oxidase; PLA2, phospholipase A2. Adapted from [51] under the licences of (CC BY-NC-ND 4.0).
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ability centre of phenolic acids, which is the number and position of phenolic hydroxyls directly related to 
their radical scavenging activity.[53] It is reported that RONS scavengers prevented the transient elevation of 
free radicals and, therefore, inhibited the antioxidant endogenous enzymes expression including mitochon
drial superoxide dismutase (Mn-SOD) and glutathione peroxidase (GPX).[20] As a consequence, RONS 
reduction with BC supplements before physical activities is positively considered when muscles are 
subjected to overstressing, whereas in standard training it negatively influences the adaptative response 
(Fig. 4).[54]

In addition to their radical scavenging property, polyphenols could also act as xenobiotics and conse
quently stimulate the hermetic cellular response that results in the production of endogenous antioxidants 
(such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione 
transferase), which can further enhance the antioxidant status of the human body, including athletes 
(Fig. 5).[55] Furthermore, flavonoids could assist in the recovery from exercise-induced muscle damage by 
upregulating Nrf2 cellular stress signalling pathway.[56] The findings of a recent meta-analyses showed that 
flavonoid supplementation can improve muscle strength recovery by 7.14% (95% CI [5.50–8.78], P < 
.00001) and decrease muscle soreness by 4.12% (95% CI [−5.82 to −2.41] P = .00001).[56] However, it did not 
influence the recovery of creatine kinase concentrations. The analyses concluded that flavonoids can 

Figure 4. Physiological impact of blackcurrant anthocyanins and vitamin C on the oxidative stress in athletes.
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significantly enhance muscular strength recovery and reduce muscle soreness during a 4-day period post 
exercise-induced muscle damage.

Blackcurrant supplementation and sports performance

In the past decade, exploration of the effectiveness of BC supplementation in the field of sports science 
has moved to the clinical phase. This includes studying the effect of BC supplementation on exercise 
performance, fat oxidation, blood lactate levels, muscle fatigue, and cardiac output as summarised in 
Table 2. The New Zealand Blackcurrant (NZBC) variety was preferred among the 15 selected studies as 
its total anthocyanin content ranges between 336 to 850 mg/100 mL of fruit juice compared to non-NZ 
BCs (170 to 310 mg/100 mL of juice).[57]

Improved performance

Athletic performance differing by even 1% could ascertain the podium position of a competitor.[57] 

A study [58] reported that a 2.4% increase in cycling time-trial performance as a result of improved 
endothelial function and a potential increase in peripheral blood flow. Based on the findings of,[59] 

NZBC supplementation may have beneficial effects on physical performances associated with iso
metric force steadiness through potential mechanisms like changes in local blood flow influencing 

Figure 5. Mechanism of activation of cellular stress-related signalling pathways by polyphenols resulting in the mobilisation of 
nuclear factor-erythroid factor 2-related factor 2 (Nrf2) and the activation of the nuclear antioxidant response element (ARE). 
Activation of the ARE promotes the production of Phase II enzymes and antioxidants (such as glutathione (GSH)). Abbreviations: PI3K 
- Phosphoinositide 3-kinase, Akt – protein kinase B, PKC – protein kinase C, Grb2 - growth factor receptor-bound protein 2, ERK 1/2 - 
extracellular signal-regulated kinase 1/2, P – phosphate, and bZIP – basic region-leucine zipper.
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contractile function, central nervous system (CNS) functioning, changes in gut microbiota, reduction 
of synaptic noise and finally antioxidative effects through lowering contraction-induced fatigue. 
Additionally, across a total of three climbs performed by male rock climbers, the improved higher 
Hang Time (HT) observed by may be explained by a potential increase in blood flow and improved 
oxygenation properties, though this may not account for progressive climb performance between the 
three climbs.[60] As no difference in maximal oxygen uptake (VO2 max) between incremental doses 
was found, it is safe to assume that NZBC does not have diminishing effects on performance.[61] The 
oxidative capacity or oxygen half-time recovery (O2HTR), reported by,[62] was significantly improved 
by 5.3 seconds with NZBC supplementation. However, despite lowered minimum tissue saturation 
index (min-TSI%), no effect on performance was observed, which may have been a consequence of the 
discipline of climbers; differentiated between sport climbers and boulderers or by experiment design.

Fat oxidation

The passive benefits of fat oxidation are for individuals addressing weight-related concerns, including 
the maintenance of health for athletes.[63] A study by [64] suggested that increased adipose tissue 
lipolysis under resting conditions, along with glycerol and plasma non-esterified fatty acid (NEFA) 
concentrations being maintained at a higher-level during exercise, may be a potential mechanism for 
fat oxidation under the influence of NZBC. Interestingly, two studies [63,64] found that females 
appeared to be more responsive to NZBC supplementation towards exercise-induced fat oxidation 
compared to males, with a dependency on body composition. Four of the selected studies suggested 
that improved peripheral blood flow and vascular function allowed plasma fatty acids to be greatly 
available with enhanced delivery to skeletal muscles, which in turn, potentially increased fat 
oxidation.[58,61,64,65] A study by [58] further suggested that NZBC may play a role in the upregulation 
of relevant genes involved in fat oxidation, transport of fatty acids into mitochondria, improved nitric 
oxide availability and increased peripheral blood flow. The findings of a study [61] suggested that 
a 7-day intake may result in anthocyanin metabolite accumulation over time resulting in increased fat 
oxidation. In sport climbing performance, a study [60] identified that the smaller changes obtained in 
physiological responses on NZBC were indicative of lower physiological distress with long climb times 
possibly due to improved local blood flow in the forearm. On the other hand, another study [66] 

reported that blood flow as well as arterial diameter remained unchanged in placebo and was proposed 
to have been due to the timing of measurement, missing the peak blood flow.

Changes in blood lactate levels

Performing high-intensity exercises can increase the level of blood lactate, which can cause muscle 
soreness and reduce athletic performance. Research by [67] and [58] reported that NZBC supple
mentation increased blood/plasma lactate to exhaustion. These findings may have encouraged 
a faster rate of lactate removal (mass action effect), which improves passive recovery with NZBC. 
This was confirmed by [68] wherein plasma lactate was lowered at aerobic capacity with NZBC due to 
vasodilation, causing delayed Onset of Blood Lactate Accumulation (OBLA) and allowing endur
ance athletes to perform prolonged high-intensity exercises. High lactate values may be a result of 
intracellular acidosis from the high intensity of repeated exercises, potentially postponing muscle 
fatigue and reductions in muscle excitability. It was also found that maximum oxygen uptake was 
obtained at lower lactate measurements, which may indicate the reduced requirement of anaerobic 
glycolysis to exhaustion. In contrast to these findings, the work of [61] showed no changes in blood 
lactate levels.
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Muscle fatigue

Muscle damage incurred by athletes may ultimately determine the duration for which they can 
prolong their performance. A study by [69] suggested that improved blood flow by NZBC may have 
influenced the rapid influx and outflux of neutrophils while enhancing its antioxidant capacity, 
therefore preserving muscle functionality against oxidative stress, and preventing neutrophil- 
mediated inflammation. Similarly,[70] found that BC nectar (BCN) provided a protective effect against 
muscular damage and attenuated the degradative effects of Exercise-Induced Muscle Damage (EIMD). 
Due to the antioxidative activities of BCs, the negative effects of ROS on sodium-potassium pumps 
were attenuated, resulting in the possible alleviation or prevention of fatigue. According to,[69] 

a prolonged NZBC dosing strategy may have increased anthocyanin bioavailability, priming the 
cells and neutralising the release of ROS for longer periods as well as attenuating oxidative stress- 
induced damage to the before it occurs. In further agreement,[71] observed consistently low muscle 
oxygen saturation (SmO2%) under presumed greater oxygen supply during 30% isometric maximal 
voluntary contractions (iMVC), which may indicate greater extraction and utilisation of oxygen, 
therefore resulting in lower muscular fatigue.

Cardiac output

Cardiac output determines the amount of blood pumped per minute to the rest of the body, 
consequently supporting several responses to exercises. A study [62] proved the vasodilation 
potential of NZBC with improved oxygen delivery. Subsequently, however, intermediate rock 
climbers obtained no supporting measurements on arterial diameter, but the authors determined 
that faster time to half recovery (TTHR) may be explained by enhanced capillary function and 
oxygenation in the forearm muscle.[66] The standard day-to-day artery diameter was found to be 
between 2.9 ± 0.4to 3.96 ± 0.5%, however, a study [71] found femoral artery diameter increase 
ranged from 6.0–8.2%, which was attributed to the intake of NZBC. Furthermore, it was 
speculated that NZBC was effective on vasodilation not localized to just the femoral artery 
and increased absolute haemoglobin concentration (THb), which is indicative of an increased 
amount of blood in the muscle. This may explain the cardiovascular responses obtained, which 
could differ between individuals due to genotype. It was also suggested that several anthocyanin 
metabolites influenced cardiovascular bioactivity.

Similarly, a group of researchers [72] also proposed that prolonged supplementation allowed 
anthocyanin metabolites or their synergistic action to alter cardiovascular functions during 
supine rest with an effect on vascular smooth cell behaviour, leading to decreased total periph
eral resistance and mean arterial pressure. Moreover, another study [68] demonstrated that 
reduced peripheral resistance, which is possibly due to increased nitric oxide production, 
increased cardiac output and volume at rest, with no changes in heart rate and blood pressure 
suggests that more complex haemodynamic mechanisms may be involved.

Although NZBC has influenced performance improvement with increased cardiac output and 
stroke volume, four of the selected studies reported no changes in heart rate compared to the 
placebo.[61,63,68,72] The heart rate and oxygen uptake at OBLA are characteristic of training endurance 
adaptations.[68] However, as they remained unaffected, it was speculated that the delayed OBLA may 
have enhanced endurance performance and may involve different physiological mechanisms com
pared to other reported supplements such as beta-alanine, leucine and betamethylbutarate. The results 
of [59] implicated that the longer-lasting anthocyanin metabolites may alter the mechanism that can 
enhance isometric force steadiness. Furthermore, different dosing forms may provide varying results 
as demonstrated by [72] wherein encapsulated NZBC extract was used and resulted in reduced mean 
arterial pressure with higher doses of anthocyanins. In contrast, the NZBC powder dissolved in water 
presented no changes in arterial pressure with lower doses.[68] The improved absorption rate of 
anthocyanins and potentially bypassing degradation from saliva may be the cause. Additionally,[61] 
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and [72] observed no significant increase between 600 and 900 mg/day NZBC intake on any cardio
vascular parameter during supine rest or on fat oxidation, respectively, which suggests that an upper 
limit in substrate utilisation or activity may have been limited by mechanisms responsible for 
anthocyanin absorption.

Potential blackcurrant-based functional products for athletes

Development of functional beverages for athletes

Functional beverages can provide energy and compensate for nutrient loss and fluid loss during 
physical activities.[73] The addition of antioxidants, such as polyphenols, to these beverages, can 
promote recovery caused by oxidative stress and muscle damage. For example, an açai (Euterpe 
oleracea Mart.)-based functional beverage, containing 27.6 mg of anthocyanins per dose, was effective 
in enhancing the time to exhaustion of elite athletes during short-term high-intensity exercise, which 
reduced the metabolic stress induced by exercise, decreased perceived exertion, and improved 
cardiorespiratory responses.[74] Thus, polyphenol (anthocyanin)-rich sources, like BC, can be used 
to develop functional beverages that will act as potential ergogenic aids in improving athlete perfor
mance during high-intensity training.

BC has been incorporated into a few beverages to produce functional products such as yoghurt and 
powdered beverages. A yoghurt beverage is characterized as a stirred yoghurt with low viscosity. 
A high-speed agitation is used to homogenize the yoghurt with or without the addition of cold 
yoghurt. During the agitation, the coagulum is broken. The incorporation of BC pomace extract 
into yoghurt beverages produced a fortified yoghurt beverage with a significant amount of polyphe
nols and anthocyanins.[75] In addition, the fortified yoghurt showed enhanced antioxidant activity. In 
fact, fortification using BC pomace extract improved the yoghurt beverage storage stability.

Powered beverages are another type of functional beverage in the market. They are manufactured 
with spray-drying to remove the liquid in raw materials, which are designed to mix with water or milk 
to resemble beverages with fruit or soda flavour. Vitamins or other nutrients (e.g., prebiotics) are 
usually included in the powered beverages. The beverage powders are convenient to carry, shelf-life 
stable and nutrient-rich as well as welcomed by consumers, especially athletes. Athletes can use these 
beverages on different occasions and in sports settings.

A powdered beverage formulated using BC berries and yerba-mate infusion by freeze drying has 
shown good physical, biochemical, and microbiological stability under industrial storage.[38] This 
polyphenol-rich beverage powder has shown high antioxidant activity after in vitro simulated gastro
intestinal digestion. Again, the high antioxidant activity promotes this powdered beverage for further 
research in the development of functional beverages for athletes. This study also reported that the 
sensory analysis scores reflected consumers’ high level of acceptance.

Hydration is essential to athlete performance. Flavouring pure water with fruit flavour aids 
hydration practice as well as compensating electrolyte loss during sweating. The antioxidant compo
nents of BC fruit can improve athlete performance and control oxidative stress as discussed. Thus, it 
could be a potential flavouring ingredient.

Development of functional snacks for athletes

Athletes performing exercise tend to have a higher metabolism rate and energy consumption, thus will 
consume more food during the day than non-athletes. Snacks, such as functional crackers, could be 
a good option for athletes. Crackers are associated with a diet containing high dietary fibre and 
nutrient content. Crackers produced with white flour contain less fibre because the process of refining 
removes the grain parts containing high fibre and keeps starchy endosperm. The gross composition of 
dietary fibres in white flour is 4%. On the other hand, the dietary fibres of BC pomace are around 57%, 
which is over 16 and 6 times greater than wheat flour and corn flour, respectively.
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Pomace powders from BC, redcurrant, chokeberry, rowanberry, and gooseberry contain a higher 
fibre content, reaching >550 g/kg and fat content of up to 200 g/kg. The residues of the berry also 
contain bioactive compounds, e.g., anthocyanins that trigger health-promoting effects. Although 
pomace from BC is a by-product of juice processing after drying and milling processes, it can be 
incorporated into crackers, leading towards healthier, functional, and innovative products. Non-wheat 
flour can also be used to produce gluten-free products so that the products are rich in vitamins, 
phenolic compounds, and dietary fibre.

High dietary fibre is associated with athlete performance.[76] Diets containing high fibre are 
recommended for weight regulation. Consumption of high dietary fibres can protect against the 
impacts of cancer, type II diabetes, and negative cardiovascular events.[77] The positive effects of 
exercise on gut microbiota depend on dietary fibre and protein intake. The consumption of crackers 
with high dietary fibre and antioxidants could be an option to eat for the athlete to keep their 
performance. As discussed earlier, the consumption of antioxidants prevents or minimizes the attack 
of free radicals in skeletal muscle damage and muscle fatigue. Furthermore, based on clinical evidence, 
dietary fibre can improve athletic performance, by possessing physiological effects in the gastrointest
inal tract.[78]

The berry pomaces could be integrated into savoury crackers to produce functional crackers. BC 
pomace appears to be a potential ingredient due to its nutritional composition, purple colour, 
delicious flavour, and odour. Incorporating BC pomace as a partial flour substitute in savoury crackers 
resulted in producing crackers with acid and fruity smell and taste, with higher nutritional value, and 
without altering the general acceptance of the product.[79] Nevertheless, the dough characteristics and 
product properties had some weaknesses that could be compensated for by altering the formulation to 
achieve iso-viscoelastic doughs.

Corn puffs can be considered a potential snack that could turn into a functional snack upon 
fortification with beneficial antioxidants. Pressed residues of BC obtained after juice extraction have 
been used as an antioxidant-rich source to fortify corn puffs.[80] The fortified corn puffs had higher 
polyphenol and antioxidant contents compared to pure corn puffs. The anthocyanins delphinidin- 
3-O-rutinoside, petunidin-3-O-rutinoside, cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, delphi
nidin-3-O-(6’’-p-coumaroyl)-glucoside, and cyanidin-3-O-(6’’-p-coumaroyl)-glucoside were present 
in the formulated product.

Gluten-free products for celiac athletes

Gluten is a protein mixture in bakery products, whose main compositions are gliadins and glutenins, 
with limited solubility in water.[81] For gluten formation, gliadins and glutenins should be hydrated 
with water or other liquid and mixed to form a cohesive network.[82] The gluten network is dependent 
on the disulfide bonds and non-covalent bond formation during dough preparation, which can be 
affected by the amount of added water, oil, sugar and temperature.[83] The network provides a stretchy 
quality in the final products. The texture of bread, such as chewiness, is dependent on gluten 
formation in the dough.

People affected by celiac disease are incapable of digesting gluten-rich products. Celiac disease is 
a chronic immune disorder prompted by ingesting gluten that results in damage to the intestinal lining 
and causes diarrhoea, fatigue, weight loss, bloating and anaemia.[84] For an athlete, the diagnosis of the 
celiac disease means a lifestyle change. Athletes who suffer from celiac disease can have poor iron, 
vitamin D, and calcium absorption, which causes anaemia, osteoporosis, and weak bones, 
respectively.[85] Celiac athletes need to be supplemented with multivitamins and minerals. Recent 
studies have focused on adding nutrition-rich sources to gluten-free bakery products to improve their 
nutritional values. BC, as a rich source of nutrients, could be a functional ingredient to produce gluten- 
free bakery products for celiac athletes and positively influence their performance.

Incorporating defatted BC seeds in gluten-free bread significantly improved the viscoelastic proper
ties of the dough and decreased the consistency coefficient values and flow indices.[86] The produced 
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bread had high dietary fibre, protein, and polyphenols contents. The incorporation of defatted BC 
seeds in gluten-free recipes did not have a negative impact on the sensory evaluation of the products. 
In addition, the dehydrated BC juice by-product, containing high polyphenol and dietary fibre 
contents, has been used to formulate functional gluten-free chocolate cookies.[87] The incorporation 
of BC into the cookies did not cause any severe organoleptic changes. In fact, it increased the phenolic 
content and antioxidant activity by 62 and 70%, respectively. Moreover, BC antioxidants showed 
acceptable bioaccessibility by reaching the large intestine as evaluated through in vitro digestion. 
Additionally, the total dietary fibre of the product increased 2.5 times reaching a final content that 
enables it to become a source of fibre according to the Codex Alimentarius. Both coeliac and non- 
coeliac consumers reported a high level of acceptance of the products based on sensory analysis.

Conclusions

BCs contain a wide range of nutrients and bioactive compounds. This makes BC a rich nutritional and 
antioxidant source that can be used to develop functional foods. The high vitamin C and polyphenol 
contents of BCs make them a potential candidate to develop functional foods for athletes. Athletes face 
oxidative stress when practising intensive exercise, which can reduce their performance. However, 
clinical studies have shown that BC supplementation can improve athletic performance. BC juice, 
powder, or pomace can become a functional ingredient to develop functional beverages and snacks for 
athletes. Yet, only limited products have been developed so far.
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