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a b s t r a c t

Cluster analysis is a broadly used unsupervised data analysis technique for finding groups of homoge-
neous units in a data set. Probabilistic distance clustering adjusted for cluster size (PDQ), discussed in
this contribution, falls within the broad category of clustering methods initially developed to deal with
continuous data; it has the advantage of fuzzy membership and robustness. However, a common issue
in clustering deals with treating mixed-type data: continuous and categorical, which are among the
most common types of data. This paper extends PDQ for mixed-type data using different dissimilarities
for different kinds of variables. At first, the PDQ for mixed-type data is defined, then a simulation design
shows its advantages compared to some state of the art techniques, and ultimately, it is used on a
real data set. The conclusion includes some future developments.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Permanent link to reproducible Capsule: https://doi.org/10.
24433/CO.5531267.v1

1. Introduction

Data clustering refers to a vast range of numerical algorithms
designed to find groups of homogeneous data using systematic
numerical methods. If the number of scientific papers devoted to
reviewing clustering algorithms in specific and general domains
is assumed as a proxy variable measuring the interest towards
clustering, then launching the Google Scholar query {review
clustering}, the query would return more than 350 entries,
limiting the search to only the articles’ titles. However, despite
all, a unique definition for data clustering would not be found be-
cause diverse definitions and formalization exist in each research
domain intended to be maximally adherent to what data cluster-
ing in that specific domain represents. In the last few decades, the
numerical and computational perspective has become even more
crucial because of the ever more considerable amount of available
data.

Two approaches for data clustering exist: hierarchical and
non-hierarchical (e.g., see [1]). The former leads to an indexed

The code (and data) in this article has been certified as Reproducible by
Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-
engineering/computer-science/journals.

∗ Corresponding author.
E-mail address: cristina.tortora@sjsu.edu (C. Tortora).

hierarchy through an agglomerating or divisive process. In con-
trast, the latter exploits iterative algorithms pursuing a statistical
or geometrical homogeneity criterion to partition the data into a
given number of clusters. In general, non-hierarchical algorithms’
complexity is linearly dependent on the total number of statistical
units, and they are easily parallelizable; therefore, they can be
considered a practical and helpful approach to clustering large
and even huge data sets [2]. Moreover, under the hypothesis
that the data are generated from a mixture of known multi-
variate distributions with unknown vectors of parameters, the
clustering problem can be afforded by estimating the mixture’s
parameters [3,4]; these algorithms are referred to as model-based
clustering. Geometrical algorithms, instead, optimize a homo-
geneity criterion, where the homogeneity is measured in terms of
distance among statistical units. Model-based clustering provides
estimations with desirable statistical properties from an infer-
ential point of view; however, it requires that the distributional
hypotheses are satisfied. Moreover, model-based clustering might
have more convergence issues than geometrical approaches [5,
sect. 3.6]. In both cases, most algorithms determine two quan-
tities: cluster memberships and cluster parameters. The compu-
tation of parameters and memberships depend on one another;
therefore, the problem cannot be solved with direct optimiza-
tion [6, Chap. 9]. The solution is determined through an iterative
algorithm that alternatively computes the two quantities and
stops when the optimized criterion reaches a local or a global
minimum (maximum). The membership can be crisp, where a
point belongs or does not belong to a given cluster, or probabilistic
where a point can be assigned to one or more clusters with
degrees of probability.

https://doi.org/10.1016/j.asoc.2022.109704
1568-4946/© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
nc-nd/4.0/).
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This article focuses on the Probability Distance Clustering
(PDC) [7] and its extension to the mixed-data type, which falls
in the geometrical data clustering approaches with probabilistic
cluster membership.

As first introduced by Iyigun [8], and Ben-Israel and Iyigun [7],
PDC is an iterative two-step clustering algorithm that takes into
input the number of groups and alternately updates the proba-
bilistic memberships and the centers. It optimizes a classifiability
criterion called joint distance function (JDF) that depends on the
distance between every point from all centers. More recently,
Tortora [9] and Tortora et al. [10] proposed factor PDC (FPDC),
a generalization of PDC in a reduced space. Based on Tucker3 [11,
12], FPDC exploits Tucker3 decomposition to obtain a subspace
consistent with the PDC criterion; this extension is handy for
large data sets [13]. Another proposed generalization introduces
a new notion of dissimilarity that is grounded on a generic mul-
tivariate density function and increases the flexibility in cluster
shapes [14]. PDC ensures a convex target function, and the overall
JDF criterion decreases or at least does not increase at each step.
The algorithm stops when JDF does not vary from one step to the
next.

Most clustering approaches, including PDC in Ben-Israel and
Iyigun’s original proposal, aim to optimize a criterion that in-
volves just one type of variable. However, in our multi-facet
world, data stored in the databases of companies and institutions
consist of more than one type of variable, e.g., data that refer to
customers or goods or patients consist of categorical and continu-
ous variables. One possible solution is to re-code mixed data into
a single data type by, for example, transforming the continuous
variables into categorical ones [15]. Although widely appreciated,
this approach requires data pre-processing, such that the orig-
inal association structure can result in significantly weakened.
Several clustering methods specific to mixed data exist; for ex-
ample, a good model-based method was proposed by McParland
and Gormley [16]; Mbuga and Tortora [17] recently proposed a
method based on a graph-based clustering technique. Although
both techniques give excellent clustering results, they tend to be
slow. The primary issue in clustering mixed data is the substantial
gap between the similarity metrics in numerical and categorical
data needing to identify a unified similarity metric [18]. Some
approaches have been created based on this idea; among those
techniques, the most common are k-prototypes [19] and KAy-
means for MIxed LArge data (Kamila) [20]. For more detailed
reviews on mixed-type data clustering, see [21–23].

This paper proposes an extension of PDC for mixed-type data
within this framework. Since PDC is based on a dissimilarity
matrix, a suitable newly defined dissimilarity measure, integrat-
ing different variables, is proposed. The cluster parameters that
optimize the criterion based on the updated dissimilarity are then
found and integrated into the algorithm.

2. PD-clustering algorithm

Let X be a data matrix with n units and J variables, and
consider K (non-empty) clusters, with K assumed to be a priori
known, probabilistic distance (PD) clustering [7] aims to find
homogeneous clusters in the data according to two quantities:
the distance of each data point xi from each cluster center ck,
denoted as dik, and the probability of each point belonging to a
cluster, i.e., pik, for k = 1, . . . , K and i = 1, . . . , n. PD-clustering
relies on the following expression

pikdik = F (xi),

stating that for any xi the product of the distance dik and the
probability pik is a constant denoted by F (xi), for k = 1, . . . , K [7].
F (xi) is a constant for each observation and, therefore, does not

depend on k. As the distance from the cluster center decreases,
the probability of the point belonging to the cluster increases. The
quantity F (xi) is impacted by the closeness of xi to the cluster
centers, and it measures the classifiability of the point xi to the
K centers ck, for k = 1, . . . , K . The smaller the F (xi), the higher
the probability of the point belonging to one cluster. If all of the
distances between the point xi and the centers of the clusters
are equal to di, then F (xi) = di/K and all of the probabilities of
belonging to each cluster are equal, i.e., pik = 1/K . The sum of
F (xi) over i is called joint distance function (JDF)

JDF =

n∑
i=1

K∑
k=1

pikdik.

The K centers that minimize the JDF maximize the overall classi-
fiability. To account for clusters of different size, Iyigun and Ben
Israel [24] proposed an extension adjusted for cluster size, namely
PDQ clustering. The JDF is weighted as follow

JDF =

n∑
i=1

K∑
k=1

pikdik
qk

,

where qk is the cluster size, under the constraint that
∑K

k=1 qk =

n. The pik can then be computed via

pik =

∏
m̸=k dim/qm∑K

r=1
∏

m̸=r dim/qm
. (1)

Since 0 ≤ pik ≤ 1 by definition then p2ik is a monotonic decreasing
transformation that preserves the optimal minimum. To allow for
optimization through a quadratic form, Iyigun and Ben-Israel [24]
proposed to find the cluster size qk and the centers that maximize
the classifiability minimizing the following adjusted JDF function

JDF =

n∑
i=1

K∑
k=1

p2ikdik
qk

.

The cluster size becomes

qk = n

(∑N
i=1 dikp

2
ik

)1/2

∑K
k=1

(∑N
i=1 dikp

2
ik

)1/2 , (2)

for k = 1, . . . , K − 1, and

qK = n −

K−1∑
k=1

qk.

The optimal centers for continuous data using the Euclidean
distance are

ck =

∑n
i=1

p2ik
dik

xi∑n
i=1

p2ik
dik

. (3)

Further extensions of PDC exist; Tortora et al. [13] proposed a
factor version of the method to deal with high-dimensional data.
Recently, [14,25] further extended the method to include greater
flexibility.

3. PD-clustering for mixed-type data

The present article proposes using Gower’s dissimilarity [26]
to deal with mixed-type variables in the PDQ algorithm. Let us
define with X the n × J data matrix of a general element xij
and with C the K × J matrix of centers; we assume that both
X and C have L continuous variables, O ordinal variables, and M
categorical variables. Binary variables are treated as categorical

2
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ones. The Gower’s dissimilarity between a generic data point xi
and a center ck is:

Dik =

∑J
j=1 wikjdikj∑J
j=1 wikj

,

where dikj is the dissimilarity between the observation data point
xi and the center ck for the jth variable. It is worth noting that the
quantity dikj is determined by a different expression, as described
in the following, according to the type of variable. Let us define
with l = 1, . . . , L the continuous variables, o = 1, . . . ,O the or-
dinal variables, and m = 1, . . . ,M the categorical variables, with
L + O + M = J . For ordinal data, the dissimilarity measurement
of choice is:

diko =
|xio − cko|

Ro
,

where diko is scaled between 0 ≤ diko ≤ 1 by the division of Ro,
the range of variable o. To be consistent with PDQ, the Euclidean
distance is used for the L continuous variables, but it needs to be
scaled. Scaling a distance is challenging, and different approaches
can be used; Milligan and Cooper [27] suggest several approaches,
an adaptation of one of the approaches works for this problem,
and the distance is therefore defined as

dik =

√ L∑
l=1

(
xil − ckl

x∗

l

)2

,

where x∗

l = 1 if −0.1 < x̄l < 0.1, x∗

l = x̄l otherwise. For binary
data and categorical data, the exact match indicator function is
usually used:

dikm =

{
0 xim = ckm
1 xim ̸= ckm.

The weights traditionally used for Gower’s dissimilarity are
1 for variables that are comparable and 0 for non-comparable
variables or missing data. Weights proportional to the number
of continuous, ordinal, and categorical variables were the most
natural choice and appeared to cluster the best. The Gower’s
dissimilarity used is as follows:

Dik =
1
J

⎛⎝L

√ L∑
l=1

(
xil − ckl

x̄l

)2

+ O
∑O

o=1 |xio − cko|
Ro

+ M
M∑

m=1

1(xim ̸=ckm)

⎞⎠ ,

(4)

where L + O + M = J and the center of cluster k has been parti-
tioned into ck = [ckL, ckO, ckM ], corresponding to the continuous,
ordinal and categorical variables respectively.

3.1. Center updates

Using Gower’s dissimilarity, the PDQ objective becomes to
minimize

JDF =
1
J

n∑
i=1

K∑
k=1

p2ik
qk

⎛⎝L

√ L∑
l=1

(
xil − ckl

x̄l

)2

+ O
∑O

o=1 |xio − cko|
Ro

+ M
M∑

m=1

1(xim ̸=ckm)

⎞⎠ .

To obtain the centers that minimize the JDF each type of vari-
able can be considered separately. Let us start considering the

continuous variables,

∂ JDF
∂ckL

=
∂

∂ckL
L
J

n∑
i=1

K∑
k=1

p2ik
qk

√ L∑
l=1

(
xil − ckl

x̄l

)2

.

Setting the derivative equal to zero,

∂

∂ckL

n∑
i=1

K∑
k=1

p2ik
qk

√ L∑
l=1

(
xil − ckl

x̄l

)2

= 0,

the optimization problem reduces to the same optimization prob-
lem as PDQ for continuous data using Euclidean distance; thus,
the centers for continuous variables correspond to (3).

For the ordinal data, the derivatives reduce to be coordinate
by coordinate

∂ JDF
∂cko

=
∂

∂cko

O
J

n∑
i=1

K∑
k=1

p2ik
qk

O∑
o=1

|xio − cko|
Ro

,

and setting the derivatives equal to zero
n∑

i=1

p2ik
qk

|xio − cko|
Ro

= 0,

we obtain

cko =

n∑
i=1

p2ikxio∑n
i=1 p

2
ik

. (5)

For categorical data the dissimilarity measure is

1(xim,ckm) =

{
0 xim = ckm
1 xim ̸= ckm,

the JDF cannot be minimized through direct differentiation. The
minimum is obtained when the cluster center ckm are equal to the
highest number of observations since when 1(xim,ckm) = 0, then,
1(xim,ckm)p2ij

qj
= 0. It follows that the mode of the variable xm, for

categorical variables, will minimize the JDF, i.e.,

ckm = max
sm

n∑
i=1,xim=sm

xkim, (6)

where xkim means that xim belongs to cluster k and sm are the
modalities of the variable m.

3.2. Algorithm

Cluster center initialization is obtained using partition around
medoids (PAM) [28]. The dissimilarity between each point and
each center is computed using (4), D is the matrix of dissimilar-
ities of elements Dik, and the probabilities are updated using (1).
Given the new dissimilarities and probabilities the parameters
can be updated using (2) for qk and (3), (5), or (6) for the centers
according to the type of variable. The difference between the
previous and new centers is calculated. As proposed in [24] the al-
gorithm convergences when the difference among the centers in
two successive iterations is smaller than a predetermined thresh-
old or the algorithm reaches an established maximum number of
iterations. The matrix of probabilities P of general elements pik
and the centers ck are the output. The matrix P can be used to
obtain a crisp classification assigning each point to the cluster
corresponding the biggest value of pik. The algorithm steps are
summarized in the flow chart in Fig. 1.

3
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Fig. 1. Flow chart of the PDQ algorithm for mixed-type data.

Fig. 2. Example of a simulated data set with 3 clusters, 2 continuous, 2 ordinal, and 2 categorical variables. One variable per kind has 0.4 and 0.8 overlap. The color
and shape represent the cluster partition.

4. Application

4.1. Mixed-type data clustering algorithms

In the following sections, PDQ is used on real and simulated
data. On the same data, K-prototypes [19] and Kamila (KAy-
means for MIxed LArge data sets) [20] are used. Other techniques
for mixed-type data exist, including many two-steps approaches,
however the selected competitors have shown better results [29].
Both methods rely on one of the most widely used distance-based
clustering algorithms: the K-means algorithm [30]. K-means goal
is to minimize the within-cluster sum of the squared distances.
It is achieved by randomly initializing the cluster centers at first,
then the distance between each data point and the cluster centers
is measured using the Euclidean distance to find the cluster
membership. Finally, the centers are updated as cluster mean,
and the algorithm iterates until convergence. The algorithm has
been extended to cluster categorical data using simple matching

as distance and mode as centers, namely the K-modes algo-
rithm [31]. K-prototypes uses a dissimilarity measure between
two observations which sums the mismatches for the categorical
variables and the sum of the squared Euclidean distance for
continuous variables into one measurement of dissimilarity, using
a weight. The optimal centers are calculated individually for the
continuous and categorical variables as the weighted mean and
mode, respectively. Kamila has a semiparametric approach. The
categorical variables are modeled as multivariate multinomial
distributions, with dimensions equivalent to the number of dis-
crete variables in the data (e.g., each observation of a data set with
three categorical variables is modeled as a multivariate multi-
nomial observation of three random variables). The continuous
variables are modeled as multivariate random variables where
a univariate probability density function is estimated through
the kernel density transformation method. Each observation is
classified into the cluster that maximizes the following qualifier:

H (t)
i (k) = log[f̂ (t)v (dik)(t)] + log[c(t)ik ],

4



C. Tortora and F. Palumbo Applied Soft Computing 130 (2022) 109704

Fig. 3. Simulation results for 3 Clusters, average ARI varying the number of continuous, categorical, and ordinal variables. ‘P’ stands for PDQ, ‘A’ for Kamila, and ‘K’
for Kprototypes. Black represents 0.6 overlap with no correlation, red 0.8 overlap no correlation, green 0.4 overlap with random correlation.

where k = 1, . . . , K is the cluster, i = 1, . . . , n is the observation,
t is the algorithm iteration, f̂ (t)v (dik)(t) is the univariate kernel
density estimate of the ith observation evaluated at d(t)ik , d

(t)
ik is

the distance between observation i and the center µk for cluster
k, and c(t)ik is the kth cluster multivariate multinomial probability
for observation i.

Unfortunately, both K-prototype and Kamila algorithms are
limited to categorical and continuous variables and do not deal
with ordinal variables.

4.2. Simulation design

The analysis was done in [32], both competitor algorithms
are available on Cran R, the package clustMixType [19] im-
plements K-prototypes, while kamila [20] implements Kamila.
Since K-prototypes and Kamila only work on continuous or cate-
gorical variables, ordinal variables have been treated as categori-
cal. Both algorithms use random starts, and we used five random
starts. The code for the PDQ with mix-type data is available in
the package FPDclustering [33]. To measure the quality of a
partition, we used the adjusted Rand index (ARI). The ARI corrects
the Rand index [34] for chance; it has an expected value equal to
zero under random classification and is equal to one when there
is a perfect class agreement. The ARI can be obtained using the
ARI function of the MixGHD package [35]

Data were simulated using a similar methodology to the one
used by McParland and Gormley 2016 [16]. Continuous data
were generated from a multivariate Gaussian density with the

dimension corresponding to the number of continuous variables
desired. The means of the clusters set the levels of overlap.
For continuous variables, the means for cluster 1 were obtained
by equally partitioning the interval [0, 10] into the number of
variables to simulate. For example, if three continuous vari-
ables were simulated, then the starting means for cluster 1
would be: (0, 5, 10). The means for the observations belong-
ing to the other clusters were computed according to the de-
sired overlap: µk+1 = µk + 5 − (ovlp ∗ 5). For example a
10% overlap would correspond with the following means for
3 clusters: (0, 5, 10), (4.5, 9.5, 14.5), (9, 14, 19). For categorical
variables, we assume that the mth variable with Gm possible
responses has an underlying continuous vector that has Gm − 1
dimensions, i.e., zim =

(
z1im, . . . , zGm−1

im

)
∼ MVNGm−1

(
µm, Σm

)
,

where MVN denotes the multivariate Gaussian distribution. The
observed categorical response yim is a manifestation of the values
of the elements of zij relative to each other and to a threshold,
assumed to be 0 . That is,

xim =

{
1 if maxs

{
zsim

}
< 0

g if zg−1
im = maxs

{
zsim

}
and zg−1

im > 0 for s = 2, . . . ,Gm.

(7)

Therefore a multivariate Gaussian distribution is used to simulate
the zij. We choose 2 ∗K dimension, corresponding to the modali-
ties. The vector µ1 is 2.5 for dimensions 1 and 2, and 2.5∗ovlp for
the remaining dimensions. For cluster 2 µ2, we shift the 2.5 to the

5
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Fig. 4. Simulation results for 6 Clusters, average ARI varying the number of continuous, categorical, and ordinal variables. ‘P’ stands for PDQ, ‘A’ for Kamila, and ‘K’
for Kprototypes. Black represents 0.6 overlap with no correlation, red 0.8 overlap no correlation, green 0.4 overlap with random correlation.

Fig. 5. Box plot of the variable Absolute temperature in K per color.

dimensions 3 and 4, and the remaining dimensions are calculated
as 2.5∗ovlp, and so on. The categorical variables are then obtained
using Eq. (7).

Similarly to categorical data, ordinal data, with O levels, is
simulated through the assumption that it follows a latent variable
z ∼ N(µ, σ 2). Using a partitioned interval such that: −∞ = α1 <

α2 < · · · < αO = ∞.
Classification occurs with the following criteria:

αo−1 < z < αo,

then the observed value xi = o.
Ordinal data were simulated using the same method as the

continuous variables, with the mean for cluster 1 was initialized
by partitioning the interval [0, 10], where the number of parti-
tions is equivalent to the number of simulated ordinal variables.

The means are updated for each cluster using the following for-
mula µo+1 = µo + (7 − 7 ∗ ovlp). All the variance covariance
matrices Σm were either diagonal or randomly generated using
the R function genPositiveDefMat from the package clus-
terGeneration [36]. Fig. 2 shows an example of a simulated
data set with 3 clusters, 2 continuous, 2 ordinal, and 2 categorical
variables, with no correlation. One variable per kind has 0.4 and
0.8 overlaps. The color and shape represent the cluster partition.

4.3. Simulation results

For the simulation, we fixed the number of continuous, cat-
egorical, and ordinal variables equal to 2, 4, or 6, and we con-
sidered all the possible combinations. We fixed the number of
observations equal to 600 and balanced it among clusters. We
then varied the overlap between 0.6 and 0.8 with no correla-
tion among variables and 0.4 with random correlation. Results
are shown in Fig. 3. We repeated the same simulations with 6
clusters, and the results are in Fig. 4. We generate 10 data sets
for each scenario, and the plots show the average ARI. The letters
indicate the method in the plots: ‘P’ for PDQ, ‘A’ for Kamila, and
‘K’ for Kprototypes. The colors represent the level of overlapping,
black for 0.6 with no correlation, red for 0.8 no correlation, and
green for 0.4 with random correlation. In the data sets with 3
clusters, Fig. 3, all the techniques have similar performances with
a lower overlap, 0.6, and no correlation (black). The overlap has
the most significant impact on the ARI: when the overlap is 0.8
(red), the ARI decreases for all the methods and scenarios. PDQ

6
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Fig. 6. Scatter plot of the variables relative luminosity, relative radius, and absolute magnitude on the left and of log relative luminosity, log relative radius, and
absolute magnitude on the right.

Fig. 7. Silhouette plot of the partition in 6 clusters of the Star data set using
PDQ.

performs better when there are more categorical and/or ordinal
variables. Kprototypes algorithm has the lowest ARI in general.

With 6 clusters, Fig. 4, Kprototypes performs worst than the
other two techniques almost for all scenarios. PDQ and Kamila
have similar behaviors, although PDQ performs better with cor-
related variables.

4.4. Star classification

The Star data set is available on Kaggle,1 the goal is to rec-
ognize the start type given some characteristics. The available
variables are:

• Absolute Temperature (in K, continuous)
• Relative Luminosity (L/Lo, continuous)
• Relative Radius (R/Ro, continuous)
• Absolute Magnitude (Mv,continuous)
• Star Color (white,Red,Blue,Yellow,yellow–white, blue–white)
• Spectral Class (O,B,A,F,G,K,M)

The star types are: Red Dwarf, Brown Dwarf, White Dwarf, Main
Sequence, SuperGiants, HyperGiants.

Fig. 5 shows the box plot of the variable Absolute temperature
(symbol K on the vertical axis) by the color; red, white, and
yellow white stars appear clearly distinct, blue and white blue
have high variability in temperature. Both color and temperature
depend on the star radiate energy; therefore, keeping both did not
make sense, and we dropped the absolute temperature variable.

Moreover, looking at Fig. 6 we decide to use a logarithmic
transformation for the variables, Relative Luminosity, and Rela-
tive Radius. We set the number of clusters equal to 6 for all the
methods.

Table 1 shows the ARI for the three methods, PDQ performs
better than the other two with a big margin; the PDQ ARI is 0.85
versus 0.63 and 0.60 for Kamila and Kprototypes, respectively

1 https://www.kaggle.com/deepu1109/star-dataset.

Table 1
Average ARI of cluster partition vs. type.

PDQ Kamila Kprototypes

ARI 0.8449 0.6290 0.6048

Table 2
Confusion matrix of the cluster partition obtained using PDQ vs. type.
Cluster Red D. Brown D. White D. Main Seq. Super G. Hyper G.

5 39 4 0 0 0 0
6 1 36 0 6 0 0
2 0 0 40 0 0 0
4 0 0 0 24 0 0
1 0 0 0 6 40 0
3 0 0 0 0 0 37

(average). Kamila and Kprototypes had high variability in the
results; the table shows the average ARI obtained on 25 iterations
the corresponding standard deviations are 0.1066 for Kamila and
0.1152 for Kprototypes.

Table 2 shows the confusion matrix for the PDQ. Most clus-
ters are very well separated, except the type Main Sequence,
which gets mixed up with Super Giants and Brown Dwarf. Fig. 7
shows a probabilistic Silhouette plot. All the clusters are very
well separated with high belonging probabilities, clusters 6 and
4 corresponding to Brown Dwarf, and Main Sequence have some
points with lower belonging probabilities. Those are two of the
clusters that contain miss-classified points. Cluster 1, Super Gi-
ants, also contains some miss-classified points, but this is not
obvious in the silhouette plot.

Fig. 8 shows a scatter plot and a parallel coordinate plot of
the continuous variables of the Star data set. We can see that
clusters 3 Hyper Giants, 1 Super Giant, and 4 Main Sequence are
well separated on the continuous variables. Brown Dwarf, cluster
6, slightly overlaps with Red and white Dwarf, clusters 5 and 2
respectively. Looking at the categorical variables Fig. 9, cluster 5
Red Dwarfs, and Brown Dwarfs, cluster 6 are very homogeneous
and clearly different form White Dwarf, cluster 2, and 4 Super
Giant. The categorical variables also separate clusters 1 and 4
corresponding to Main Sequence and Super Giants. Those plots
clearly emphasize how both groups of variables, continuous and
categorical, contribute to the correct partition of the stars.

4.5. Other fields of application

The Star classification problem is a suitable example to appre-
ciate the PDQ clustering potentialities, showing the PDQ flexibil-
ity in treating different types of variables. PDQ does not require
strong distributional assumptions on the data and can be applied
in several fields: in medicine or psychology, for example, where
patients’ records contain data of mixed types, and clustering is
a tool that helps the diagnostics. Mixed data generally arise also
when dealing with customer profiling problems. Clustering is also

7
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Fig. 8. Scatter plot and parallel plot of the continuous variables of the star data set. The colors represent the partition obtained with the PDQ.

Fig. 9. Bar plot of the categorical variables of the star data set. The colors represent the categorical variables and the x axes the partition obtained with the PDQ.

a step in more complex models or analyses. For example, in pro-
cess control, a different equation-type model can be used in each
cluster to describe the input–output-relations within the clus-
ter [37]. Recently, many fields historically unrelated to clustering
have started using cluster analysis models: graph theory and
networks analysis exploit cluster analysis capabilities to afford
several categorization problems in many domains. Clusters anal-
ysis also helps to increase the lifetime of various wireless sensor
networks efficiently [38]. The contribute [39] offers many other
examples in several domains of cluster analysis applications.

5. Conclusion

Real data analysis increasingly involves variables of mixed-
type, i.e., continuous, ordinal, and categorical, with a consequent
increase in the need for clustering algorithms capable of finding
clusters, i.e., homogeneous groups of units within the data when
the variables are mixed-type. This work extends probabilistic dis-
tance clustering adjusted for cluster size (PDQ) for this purpose.
PDQ associates a fuzzy cluster membership to each observation
and has shown promising results on simulated and real data.

PDQ has the advantage of overcoming several limitations of
clustering methods for mixed-type data based on a geometric
approach. One of them is that the weighting considers the inner
cluster variability. However, it cannot account for the correlation
among the variables (see also [14]). Nevertheless, considering
correlations when dealing with mixed-type variables turns out
quite challenging, and conditional independence assumption is
common even in a mixture model context, where correlation is
usually estimated [40]. Future research can go in several differ-
ent directions; research into different weight measures for the
different types of variables is limited, which leaves room for
further exploratory studies, together with an extension of factor

probabilistic distance clustering (FPDC), specific for high dimen-
sional data, to mixed-type data. Another opportunity for future
exploratory studies is the choice of the algorithm, the current
algorithm, although pretty fast, can still converge to local optima.
A possible solution is to consider MCMC-like algorithms [41].

The software used for this paper is available on CRAN, R
package FPDclustering [33]. The code for mixed-type data
clustering is part of the PDQ function, specifying the appropriate
distance.
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