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Preface

The Silicon Valley Cybersecurity Conference (SVCC) is an annual international con-
ference in cybersecurity held at the heart of Silicon Valley, which is supported by the
Silicon Valley Cybersecurity Institute (SVCSI). SVCC focuses on research in depend-
ability, reliability, and security to address cyber-attacks, vulnerabilities, faults, and errors
in networks and systems. This conference is a forum to present research in robustness
and resilience in a wide spectrum of computing systems and networks. All aspects of the
research and practice of applied security are within the scope of this conference. Rel-
evant topics include innovative system design, protocols, and algorithms for detecting,
preventing, mitigating, and responding to malicious threats in dependable and secure
systems and networks including experimentation and assessment. The topics of interest
include the security of hardware, software, networks, clouds, cyber-physical systems,
socio-technical systems, blockchain, and healthcare.

In 2022, SVCC had three keynote speakers and also featured a CyberWarrior cyber-
security competition. The conference accepted seven papers out of ten submitted. Papers
were evaluated with a double blind review process, with three reviews per paper.

In 2022, the conference was supported by Google, Cisco, and The Select Group.

August 2022 Luis Bathen
Gokay Saldamli

Xiaoyan Sun
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Robustness of Image-Based Malware
Analysis

Katrina Tran, Fabio Di Troia, and Mark Stamp(B)

San Jose State University, San Jose, USA

mark.stamp@sjsu.edu

Abstract. In previous work, “gist descriptor” features extracted from
images have been used in malware classification problems and have shown
promising results. In this research, we determine whether gist descriptors
are robust with respect to malware obfuscation techniques, as compared
to Convolutional Neural Networks (CNN) trained directly on malware
images. Using the Python Image Library (PIL), we create images from
malware executables and from malware that we obfuscate. We conduct
experiments to compare classifying these images with a CNN as opposed
to extracting the gist descriptor features from these images to use in clas-
sification. For the gist descriptors, we consider a variety of classification
algorithms including k-nearest neighbors, random forest, support vector
machine, and multi-layer perceptron. We find that gist descriptors are
more robust than CNNs, with respect to the obfuscation techniques that
we consider.

Keywords: Malware · Convolutional neural network · Gist descriptors

1 Introduction

Malware is software created with the intent to be malicious or have a malicious
effect [1]. Malware includes threats like viruses, worms, Trojan horses, and spy-
ware. It can even be used in connection with other kinds of security threats
like spam, bugs, and denial-of-service attacks. As a result of these factors, many
people fall into the trap of having their devices infected with malware. In 2019,
Kaspersky Lab released a threat report that stated that the number of users
who encountered malware had tripled to 1.7 million [12].

Due to the recent COVID-19 pandemic, there has been an increase in peo-
ple spending time online. An empirical study of the relation of cybercrime and
COVID-19 found that there was a positive relationship between the number of
malware infections with closed non-essential businesses and the number of mal-
ware infections with positive COVID-19 cases [4]. In this time period, people
have to stay at home and interact with others online. This causes an increase in
online presence. The more people there are online, the more people there are to
fall victim to malware attacks. In addition to this, malware is constantly evolving
to bypass security measures that protect devices. The attackers that create the
c© The Author(s) 2022
L. Bathen et al. (Eds.): SVCC 2022, CCIS 1683, pp. 3–21, 2022.
https://doi.org/10.1007/978-3-031-24049-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24049-2_1&domain=pdf
http://orcid.org/0000-0002-3803-8368
https://doi.org/10.1007/978-3-031-24049-2_1
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malware can even use obfuscation techniques to disguise the malware to prevent
it from being detected.

Image-based malware analysis is the study of malware converted to images
to identify them. There are many machine learning algorithms that are useful
in classifying images and have helped in making this approach successful. Often
when looking at image classification, Convolutional Neural Networks (CNN) are
used. CNNs are fast, extracting information easily, and give high accuracies.
However, with certain obfuscation techniques, CNNs cannot give the same high
accuracies [14].

This makes it important to also study the results of malware obfuscation with
respect to images. In the field of image-based malware analysis, one approach
is the use of so-called “gist” descriptors, which are designed to extract general
features from images [13]. Using gist descriptors might reduce the effectiveness
of some types of obfuscation that are commonly applied to malware. In previous
research the robustness of gist descriptors in the malware domain was briefly
considered [13].

In this paper, the main objective is to extensively analyze the robustness of
gist descriptors as features for malware classification. With the gist descriptors
as features, we use four different classifiers to compare to the accuracy that a
deep learning algorithm, CNN, can have on an image of malware. This paper is
structured in sections as follows. In Sect. 2 we review representative examples of
relevant related work. Section 3 introduces a wide range of relevant background
topics. Section 4 consists of the experiments done for this research and the results.
Section 5 summarizes our experimental findings and discusses future work.

2 Related Work

There are several examples of research in image-based malware analysis. Most
of this research is based on converting binary files to grayscale images but color
images have recently been studied. There are many different ways to create such
color images. In some of the related work, obfuscation was considered.

2.1 Color Images for Malware Analysis

A crucial part of image-based malware analysis is in the images that the analysis
is performed on. This means that the way these images are created from the
malware is important. Many different ways to create these images have been
considered.

A common methods to create malware images focuses on the bytes of the
executable. D. Vasan et al. [12] considered the malware files as a binary object,
converted the binary to an 8-bit vector, and then organized it into a 2D array,
which can be represented as a grayscale image. Applying a color-map onto the
2D array would result in a color image. In another approach, J. Fu et al. [3]
manipulated the bytes in a more complicated manner. With the malware file,
J. Fu et al. only focused on the bits in the PE sections because they contain the
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crucial information of the executable related to its structure. Since RGB images
are made of three channels, the PE format section is split up again into three
sections to set up for each of the channels. After the split, the entropy values,
byte values, and relative size values are computed with the bytes of the binary
to create RGB channels. The entropy values, byte values, and relative size values
are computed because they can also be important features that reflect aspects of
malware and computing them can create malware images that reflect that fea-
ture. These two methods have achieved a high accuracy of more than 90%. While
the method from J. Fu et al. obtained higher accuracies, it is computationally
expensive when compared to the approach by D. Vasan et al.

Another approach to creating images from malware is based on the instruc-
tions of the executable. To get the instructions of a malware executable, the file is
first disassembled to obtain assembly code and mnemonic opcodes are extracted.
J. Chen [2] took these instructions and filtered for the ones that would be more
closely aligned with actions malware could use to do harm. These instructions
are grouped together in threes and each instruction is taken as their machine
code form to create the bytes for a pixel of an RGB image. In a slightly different
approach, K. Han et al. [5] considered the instructions in a more complicated
way. They also filtered for specific instructions but took the opcode sequences
and put them through a hash to obtain an RGB color alongside the coordinates
for that color to be converted in an image matrix. The images created from this
approach look vastly different from the other approaches because, instead of an
image with every pixel representing a part of the malware, this approach uses
an image matrix and creates specific RGB pixels depending on a specific loca-
tion. This means that not all the coordinates of the image are utilized. Creating
images based on instructions is reasonable and allows for a more guided approach
on filtering unnecessary information. However, disassembling an executable and
filtering for instructions is a costly operation.

2.2 Obfuscation

Malware writer use obfuscation as a means to evade detection. There are many
different approaches to malware obfuscation. To deal with malware obfuscation,
various techniques that have been developed considered in the malware analysis
literature.

S. Yajamanam et al. [13] used gist descriptors. From the malware images, gist
descriptors are extracted to be used in classifying the malware. Gist descriptors
are designed to get the “gist” of the crucial components of an image. Extracting
the gist of the malware image means learning the general points of the malware,
which might increase the likelihood of ignoring obfuscations. In another app-
roach, H. Yakura et al. [14] proposed an image creation method that extracted
sequences from the whole binary data. This method makes the model overcome
obfuscation techniques that would be implemented in the data section. This idea
is similar to the previous method of dealing with malware obfuscation, namely,
they want to look at the “big picture” so that the parts that have been obfus-
cated do not confuse the model from classifying the malware correctly.
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3 Background

In this Section, we first introduce the various classifiers that are used in our
experiments. Then, we summarize the computing environment and we provide
details on the dataset. We also discuss the various methods that we used to
generate images from malware samples, and we introduce the obfuscation tech-
niques that we employ in our robustness experiments. We conclude this Section
with a discussion of gist descriptors, which are an integral component of the
experiments and results in Sect. 4.

3.1 Classifiers

In this research, several different classifiers were used to classify the malware.
To test the robustness of gist descriptors, they were applied as features when
classifying with classification algorithms k-Nearest Neighbor (k-NN), Random
Forest, Support Vector Machine (SVM), and Multi-Layer Perceptron (MLP).
As a comparison, a Convolutional Neural Network (CNN) was used to classify
based on the images themselves.

k-Nearest Neighbor. The k-Nearest Neighbor (k-NN) approach is a super-
vised machine learning algorithm. It requires data from a training dataset that
includes the labels. The classification of new points is based on that data. Such
classification is based on a voting system. It takes a new point and classifies it
based on the k-number of neighbors that are closest to that point. As shown in
Fig. 1, the point x is the new point that needs to be classified. Depending on the
k value chosen, k-NN calculates the k number of nearest points to x to determine
if it belongs to the b-class or the r-class. For example, if k was 3, the x point
looks at the three closest points to it. In this case, it is closest to two r-class
data points and one b-class data point, thus, the majority rules the x point to
be classified as r-class.

Fig. 1. k-Nearest neighbor [11]
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Fig. 2. Random forest [7]

Fig. 3. Support vector machine [11]

Random Forest. Random Forest is a classification algorithm based on decision
trees. A decision tree takes a dataset and splits it into branches based on differ-
ent decisions that it makes about the features. This algorithm creates multiple
decision trees as shown in Fig. 2, showing different possibilities of decision trees
that can be created from the dataset. The data point that has to be classified is
in these multiple decision trees. Its classification, then, depends on the majority
prediction that is made from the multiple decision trees.

Support Vector Machine. Support Vector Machine (SVM) is a supervised
machine learning algorithm. Based on a training dataset, the algorithm decides
on a hyperplane that best separates the classes from each other. As shown in
Fig. 3, the red-class data points and blue-class data points are separated by the
yellow hyperplane. The classification of new points depends on which side of
the hyperplane they lie. For this example, if it is on the upper right side of the
hyperplane, it will classify as red-class.
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Multi-layer Perceptron. Multi-Layer Perceptron (MLP) is a deep learning
algorithm. Deep learning algorithms are made of neural networks, which are a
set of algorithms that are created from layers of neurons. As shown in Fig. 4,
it is comprised of an input layer, several hidden layers, and an output layer.
Between each layer, the edges represent weights that decide the output node
that a data point would lead to. To use MLP as a classifier, it is first trained on
a training dataset. With this training dataset, the model is trained by setting
and adjusting its weights. After the model is trained with the weights adjusted
to the specific classification problem, it can then classify inputs by predicting
what the classification would be from the output.

Convolutional Neural Network. Convolutional Neural Network (CNN) is
a deep learning algorithm. Like the MLP, it is also comprised of a neural net-
work. However, the CNN includes a convolutional layer and a pooling layer. The
convolutional layer of a CNN preprocesses the image and extracts feature infor-
mation from the images. It creates a convolved feature. The pooling layer then
takes this convolved feature and reduces it. The structure of this neural network
is different from the MLP. Like the MLP, though, it first trains on a training
dataset to set its weights for the specific problem and performs classifications
based on the trained model.

3.2 Computing Environment

The environment used to conduct experiments for this research is shown in
Table 1. A Jupyter notebook in Python was used to perform these experiments,
while a Jupyter notebook in MATLAB was used to extract the gist descriptor
features from the images.

Fig. 4. Multi-layer perceptron [11]
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Table 1. Computing environment

System Description

Virtual Machine Software Oracle VM VirtualBox

Operating System Ubuntu 20.04.3

Base Memory 4096 MB

Number of Processors 4

Python Version 3.9.7

Python Libraries pandas, PIL, NumPy, TensorFlow, Keras, scikit-learn, cv2

MATLAB Version 9.11

MATLAB Frameworks Deep Learning Toolbox, Image Processing Toolbox

3.3 Dataset

This dataset was from a project called the Malicia Project [8]. The project is a
collection of malware binaries that were collected from 500 drive-by download
servers over 11 months. Table 2 shows information about the dataset files. Table 3
shows the malware features for each file. Table 4 shows the top five families and
the number of files in each.

In the dataset, the malware binaries had to be extracted from the folders.
The labels were also extracted. After extracting the labels, the data had to be
cleaned and checked for missing labels. Through this process, we were able to find
that there were 1,759 files that were missing a family label. There were also 305
files missing the file type label. These files were excluded from the experiments.

We also only focused on the executable files. This means that we exclusively
focused on the files with the file type label “EXE.” Besides the executable files,
there were also 276 dynamic-link library files. These were not used. These experi-
ments focused only on the top five largest families: Winwebsec, Zbot, Zeroaccess,
Securityshield, and Cridex. In these five families, there was only one dynamic-
link library file in Zbot, making the number of Zbot family files that we used
equal to 2,167.

Table 2. Malicia dataset details

Description Number

Total files 11,668

Executable 11,087

Dynamic-link library 276

Files with no extension label 305

Maximum executable size (bytes) 1,595,576

Minimum executable size (bytes) 3,677

Families 54

Families with 1 file 23

Files with no family label 1,759
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Table 3. Malicia dataset features

Feature Data Type

file ID INT

SHA1 VARCHAR

size INT

file type ENUM

packer VARCHAR

in store TINYINT

icon VARCHAR

icon size INT

icon label VARCHAR

family VARCHAR

traffic label VARCHAR

traffic TINYINT

affiliate VARCHAR

sshot label VARCHAR

Table 4. Malicia dataset largest families

Family name Total files

Winwebsec 5,820

Zbot 2,168

Zeroaccess 1,306

Securityshield 150

Cridex 74

3.4 Images from Malware

In our research, the Python Image Library (PIL) was used to create the images
from malware executables. The PIL takes bytes from the executables and creates
the images from those bytes. The size of the images created for the experiments
are 60 × 60. This size was chosen because the smallest sized file we consider
is 3,677 bytes. The PIL would not be able to make larger images. We wanted
to keep the image size consistent and the executables were truncated to only
take the number of bytes necessary for the image to be created. The PIL offers
different modes for the images to be created into and these different modes are
explored in the experiments [6]. Such modes represent different ways to create
the images. It determines what the type and depth of a pixel for each image.
The modes used in our experiments are listed in Table 5.
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Table 5. Image modes tested

Mode Size Description

1 1-bit pixels Black and white, one pixel per byte

L 8-bit pixels Black and white

RGB 3 × 8-bit pixels True color

CMYK 4 × 8-bit pixels Color separation

YCbCr 3 × 8-bit pixels Color video format

To perform these experiments, the images were created first. The top five
largest families were all converted to images. Different image mode versions
of each of the malware files were created and saved. Examples of a malware
executable converted to imaged form in some of the different color modes are
shown in Fig. 5.

Fig. 5. Python image library modes

3.5 Obfuscating Malware Images

The obfuscation technique we applied in this research is salting. In each family,
we salted all of the files with another family in percentages. These are in pairs
since the experiments are all binary classification experiments. We applied two
different salting techniques in this research.
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The amount of obfuscation is based on percentage of the file. Specifically, we
considered 10%, 30%, 50%, 60%, 75%, 80%, and 100% for the Winwebsec versus
Zbot experiments, and 10%, 50%, 75%, and 100% with the other family pairs.

The first method of salting is implemented in the second set of experiments.
The images are salted by taking random bytes of the other family to salt the
original family. We refer to this approach as random salting.

For example, if we are trying to salt the Winwebsec family with Zbot, we
take each file in the Winwebsec family and convert a specific percentage of the
file to a random section of a Zbot file.

For example, the steps of this process using Winwebsec salted by Zbot by
50% are:

1. Take a file in the Winwebsec family
2. Take a random file in the Zbot family
3. Get the size of the Winwebsec file and calculate the number of bytes of that

file that would be 50% of the file
4. With that number, extract that many bytes from the Zbot family at random

positions in that file
5. Those bytes replace the Winwebsec family at the same spot that they were

taken from in the Zbot file (ex. if the byte at index 12 was taken from the
Zbot file, replace the byte at index 12 in the Winwebsec file by that byte)

6. This results in a Winwebsec family file obfuscated by the Zbot family file and
the image is saved

7. Repeat steps from the beginning with the next Winwebsec family file until
performed for all files in the Winwebsec family.

The second method of salting is implemented in the third set of experiments.
The images are salted by taking a sequential chunk of the other family and
replacing the end of the original family file with it. We refer to this as contiguous
salting.

For example, the steps of this process using Winwebsec salted by Zbot by
50% are:

1. Take a file in the Winwebsec family
2. Take a random file in the Zbot family
3. Get the size of the Winwebsec file and calculate the number of bytes of that

file that would be 50% of the file
4. With that number, we replace the end (lower half of the image) of the Win-

websec family file with the ending of the Zbot family file that is that amount
of bytes

5. This results in a Winwebsec family file obfuscated by the Zbot family file and
the image is saved

6. Repeat steps from the beginning with the next Winwebsec family file until
performed for all files in the Winwebsec family.
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3.6 Gist Descriptors

“Gist descriptors” are features that were created in an effort to represent the
“gist” of an image. Designed by A. Oliva and A. Torralba, that were trying to
create what they called a “Spatial Envelope” [10]. This spatial envelope would
represent the shape of a scene and nothing else; this means it should only contain
what is essential to the image. Through experimentation, the authors were able
to narrow down properties that would represent a spatial envelope as degrees of
naturalness, openness, roughness, expansion, and ruggedness. These five prop-
erties would give a high-level representation of the scene and show the “gist” of
it.

While gist descriptors have been used in many different applications, this
research focuses on its use in malware classification. L. Nataraj et al. extract
gist descriptors to use as their features in multiple experiments to classify mal-
ware [9]. They were able to obtain a classification accuracy of 98% when looking
at a dataset that contained 25 malware families and a benign set of executables.

Our research is partially inspired by S. Yajamanam et al. [13]. In this previous
work, the authors conducted a few experiments testing the robustness of gist
descriptors. They obfuscated the malware, extracted the gist descriptors from the
imaged versions of the obfuscated malware, and used a classification algorithm
to classify them. However, the research by S. Yajamanam et al. was not focused
on the robustness of gist descriptors, thus, there were only a few experiments
to test robustness. To test the robustness of gist descriptors, they experimented
with salting, an obfuscation technique that takes part of a different file and
adds it to the malware in order to add noise and make it less identifiable. Three
different experiments with salting were performed, that is, salting one family,
salting with two closely related families, and salting all the malware families
with benign samples. The experiments showed that the decline in accuracy due
to the salting was not particularly evident. S. Yajamanam et al. concluded that,
while there was the need of more experimentation, it seemed that gist descriptors
was robust against this obfuscation technique.

In relation to the gist descriptor experiments, we first started with extracting
the gist descriptors from the images. The gist descriptor features were then saved.
They only need to be extracted once from each image [10].

To be able to compare our results with gist descriptors to the past works from
[13] and [9], we used 320 gist descriptors instead of the full 512 gist descriptors
that are extracted with the MATLAB code. These works had only used 320
gist descriptors because they wanted dimensions that have the global image
properties with some of the local information.

4 Experiments and Results

These experiments are performed using the images that were created with the
PIL. The first experiment classifies the images by applying CNN with all the
family pairs.
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The second and third experiments are the obfuscation experiments - with
the second experiment testing the first salting method (random salting) while
the third experiment tests the second salting method (contiguous salting). In
these experiments, we performed binary classification. While the CNN uses the
original images directly, the other four classification algorithms require to extract
the gist descriptors first. With the gist descriptor experiments, a stratified 5-fold
cross validation was used. These experiments were performed with a test split
ratio of 0.2.

Here is the list of the tested ratios for the obfuscation set of experiments:

– 0%: accuracy obtained without any obfuscation
– 10%: accuracy obtained when 10% of the malware is salted by the other family
– 30%: accuracy obtained when 30% of the malware is salted by the other family
– 50%: accuracy obtained when 50% of the malware is salted by the other family
– 60%: accuracy obtained when 60% of the malware is salted by the other family
– 75%: accuracy obtained when 75% of the malware is salted by the other family
– 80%: accuracy obtained when 80% of the malware is salted by the other family
– 100%: accuracy obtained when 100% of the malware is salted by the other

family.

In all of these experiments, we show the Winwebsec family. For binary classi-
fication experiments, we highlight the Winwebsec family versus the Zbot family.

4.1 Comparing Image Modes with CNN

The first set of experiments are a baseline to check what the classification accu-
racy is by using the CNN to classify the images that were simply created by the
PIL. A binary classification was performed with the malware images created by
the PIL. Different PIL image modes were used to experiment and understand
how the modes would affect the accuracy.

An initial binary classification test with Winwebsec versus Zbot was per-
formed with the different optimizers to check which gave the best result. We
looked at few optimizer algorithms, that is, Root Mean Squared Propagation
(RMSprop), Adaptive Moment Estimation (Adam), Stochastic Gradient Descent
(SGD), Adadelta, and Adaptive Gradient (Adagrad). This initial test was per-
formed with all the optimizers, a test split size of 0.2, and over five epochs. In
Fig. 6, we see a comparison of the loss and accuracy values with the training and
test data over the number of epochs. From Fig. 6 we determined that the Adam
optimizer with three epochs is the best for this experiment. Thus, the rest of
this experiment was performed with Adam optimizer, test split of 0.2, and over
three epochs.
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Fig. 6. Winwebsec vs Zbot (CNN and YCbCr modes)

Table 6 shows the binary classification results between Winwebsec and the
other top five largest families of the dataset by using CNN. This set of experi-
ments was also used to select the top two modes that we then applied for the
rest of the experiments.

Table 6. Binary classification for Winwebsec

Mode Zbot Zeroaccess Securityshield Cridex

1 0.99687 0.99790 0.99665 0.99661

CMYK 0.99499 0.99790 0.99162 0.98134

L 0.99186 0.96003 0.97571 0.99406

RGB 0.98561 0.98247 0.99414 0.98134

YCbCr 0.99562 0.99439 0.99162 0.98388

Figure 7 shows a comparison between the modes and the accuracy ranking
that they obtained. The ranking accuracy is the ranking that the accuracy value
was in among the other modes. Rank 1 is the best while rank 5 is the worst. This
means that the lower bars are better. From Fig. 7, we determine that mode 1
and mode YCbCr perform the best among the other modes.
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Fig. 7. Mode comparison

4.2 Random Salting Experiments

The second set of experiments introduces the first obfuscated technique. Specif-
ically, we used the random salting method discussed in Sect. 3.5. Recall that
for this salting technique, we randomly select bytes of another class to salt the
executable before converting it to an image.

We experimented with CNN, k-NN, RF, SVM, and MLP classifiers and image
modes 1, and YCbCr. In each case, we consider obfuscation rates of 0%, 10%,
30%, 50%, 60%, 75%, 80%, and 100%, and all experiments are based on an 80-20
training-test split.

For our CNN experiments, three training epochs are performed. We found
that this obtains promising results without overfitting.

For k-NN, we needed to choose a value of k that avoids overfitting. Hence,
we graphed accuracy versus the k value and looked for an “elbow” in the curve.
After determining k, we used a grid search to find the best distance metric
for each mode. We tested four distance metrics, namely, Euclidian, Manhattan,
Chebyshev, and Minkowski.

For mode 1, we chose k = 35 based on Fig. 8(a). For mode YCbCr, we
chose k = 25 based on Fig. 8(b). Based on a grid search, we found that the best
distance metric for mode 1 and mode YCbCr is the Manhattan distance.

We now focus on using Random Forest to classify the malware based on the
gist descriptors as features. To choose how many trees to use, we looked at the
accuracy versus the number of estimators (number of trees). For mode 1, Fig. 9(a)
suggests that 135 yields the best result, while for mode YCbCr, Fig. 9(b) shows
that 160 is ideal.
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Fig. 8. Accuracy of k-NN as a function of k

Fig. 9. Random forest accuracy vs number of estimators

We then focused on using SVM to classify the malware based on the gist
descriptors as features. We used a grid search to tune the hyperparameters. We
tested regularization values of 0.1, 1, 10, 100, and 1000, and we tested gamma
values of 1, 0.1, 0.01, 0.001, and 0.0001. We also tested linear, polynomial, radial
basis function (RBF), and sigmoid kernel functions. For mode 1, we found that
the best hyperparameters are regularization 10, gamma 0.001, and the RBF
kernel. For YCbCr mode, we found regularization 10, gamma 0.01, and again
the best kernel function is RBF.

Then, we implemented MLP to classify the malware samples based on the gist
descriptors. We again used a grid search to tune the hyperparameters. We tested
a few hidden layer activation functions, that is, identity, logistic, hyperbolic tan-
gent (tanh), and rectified linear unit (ReLU). We tested the weight optimization
solvers Quasi-Newton, Limited-memory BFGS (LBFGS), SGD, and Adam. We
tested L2 penalty values of 0.1, 0.01, 0.05, 0.001, and 0.0001, and we tested learn-
ing rate schedules constant, invscaling, and adaptive. We also tested maximum
iterations of 50, 100, 150, and 200.

With mode 1, we found that the best hyperparameters are hidden layer
activation function ReLU, weight optimization solver LBFGS, L2 penalty
value 0.001, learning rate schedule invscaling, and maximum iteration value 200.
With mode YCbCr, the best hyperparameters are hidden layer activation func-
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tion tanh, weight optimization solver Adam, L2 penalty value 0.1, learning rate
schedule adaptive, and maximum iteration value 50.

Using the hyperparameter values as discussed above, the results of all of
our experiments are summarized in Fig. 10. We note that mode YCbCr is much
more robust to obfuscation, and that CNN is the least robust of the classification
techniques considered. Furthermore, RF, SVM, and MLP are the most robust
classification strategies, regardless of which image conversion technique is used.

Fig. 10. Winwebsec vs Zbot (gist descriptors, random salting)

4.3 Contiguous Salting

The third set of experiments uses the contiguous salting method, that is, we salt
executables with contiguous bytes from another class. These experiments use the
same classifiers and the same hyperparameters tuning approach as discussed in
the previous Section. We omit the hyperparameter tuning details and describe
directly the results of our experiments.

Our contiguous salting experiments are summarized in Fig. 11. We see that
mode YCbCr is extremely robust with respect to this method of salting. As with
random salting, we observed that CNN is the least robust of the classification
techniques.
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Fig. 11. Winwebsec vs Zbot (gist descriptors, contiguous salting)

4.4 CNN Experiments Without Obfuscation

The first experiment with CNN showed that CNN yields good results in binary
classification. In all the binary classification combinations with the top five
largest families in the Malicia dataset, nearly all of the accuracies are more
than 92%. There are only three pairs from the first experiment that yielded low
results.

This set of experiments was performed to decide the best modes to use for the
rest of the experiments. While we chose mode 1 and mode YCbCr to use since
they yielded the best accuracies, the other modes were often close in accuracy.

5 Conclusion and Future Work

From the results of the experiments performed in this research, we found that
using gist descriptors extracted from the images is a more robust approach than
directly applying a CNN to images. In fact, the experiments showed that the
CNN did not obtain the same high accuracies as the classifiers that instead relied
on the gist descriptors.

When experimenting with the different modes, we found that mode YCbCr
and mode 1 yielded the best results in combination with the gist descriptors.
In particular, with mode YCbCr, we were able to obtain the best accuracy for
higher obfuscation percentages, as compared to mode 1.

Future work could focus on testing different obfuscation methods. Regard-
ing the salting technique itself, more experiments could be performed testing
different methods of salting. This research focused on bytes, while a different
method may obtain different accuracy results with other image modes. Finally,
other image modes could also be considered.
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Abstract. Signature and anomaly-based techniques are the fundamen-
tal methods to detect malware. However, in recent years this type of
threat has advanced to become more complex and sophisticated, making
these techniques less effective. For this reason, researchers have resorted
to state-of-the-art machine learning techniques to combat the threat of
information security. Nevertheless, despite the integration of the machine
learning models, there is still a shortage of data in training that prevents
these models from performing at their peak. In the past, generative mod-
els have been found to be highly effective at generating image-like data
that are similar to the actual data distribution. In this paper, we lever-
age the knowledge of generative modeling on opcode sequences and aim
to generate malware samples by taking advantage of the contextualized
embeddings from BERT. We obtained promising results when differen-
tiating between real and generated samples. We observe that generated
malware has such similar characteristics to actual malware that the clas-
sifiers are having difficulty in distinguishing between the two, in which
the classifiers falsely identify the generated malware as actual malware
almost 90% of the time.

Keywords: BERT · GAN · Malware · Malware detection · Word
embedding

1 Introduction

The term malware refers to software that is created with the intention of causing
damage to computer data [2]. According to Statista, a total of 5.6 billion malware
attacks took place worldwide in 2020 [15]. These attacks target many small and
large industries, such as finance, transportation, healthcare, manufacturing, or
professional, which can cause immeasurable damage. For this reason, malware
prevention has become a vital part of information security.

Recently, machine learning approaches have been utilized in the malware
detection area to combat these threats. The common method of training
intelligent models is by collecting the malware characteristics such as opcode
sequences, API calls, and bytes vectors, among others [3]. Despite the promis-
ing results from machine learning techniques, there are still significant obstacles
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to overcome, such as adversarial machine learning to deceive machine learning
models [17], malware code obfuscation [5], and the shortage of publicly available
training datasets [28].

In this research, we build realistic fake malware samples from seven distinct
malware families by applying Wasserstein Generative Adversarial Network with
Gradient Penalty (WGAN-GP). To build such realistic samples of a malware
infection, it is crucial to identify the distinctive features of each malware fam-
ily [33]. In general, malware samples belonging to the same family share many
characteristics with one another, yet they differ from those belonging to other
families. These unique characteristics of a malware sample can be quantified
by word embeddings, which can be generated by many Natural Language Pro-
cessing (NLP) models, including BERT. Thus, the focus of this study is on
the effectiveness of word embeddings developed in the context of creating mal-
ware samples. We employ a variety of machine learning classification techniques,
including One-Class Support Vector Machine (OCSVM), Isolation Forest, and
Local Outlier Factor, to assess this effectiveness by differentiating between real
and generated samples.

The rest of the paper is structured as follows. Section 2 reviews earlier and
related work. In addition, it provides a brief overview of the machine learning
techniques and concepts employed in this study. Section 3 explains our method-
ology, including our malware creation pipeline, and the training and evaluation
procedure. Section 4 discusses the actual implementation and our experimental
setup. Section 5 contains the analysis and results of our experiments. Finally, in
Sect. 6, we present the conclusions and future directions of this paper.

2 Background

In this section, we discuss related work in applying Generative Adversarial Net-
works (GANs) to generate malware samples. Also, we briefly introduce the
machine learning techniques used in this research.

2.1 Selective Survey of Related Work

Creating images from malware executable files and utilizing them to perform
malware detection and classification is a current trend in modern malware
research. This enables the use of image-analysis techniques, as well as the oper-
ations of strong deep neural networks that function well with images. Many
researchers utilized malware images to produce malware samples for generative
models, since it allows them to add more samples to the pool and even to perform
data augmentation on real data. For instance, in [21] the authors applied Vari-
ational Auto Encoder (VAE) and GANs to expand the training dataset using
malware as images, resulting in 2% and 6% increase in accuracy, respectively.
Another similar study [29] implemented GAN for the same purpose and obtained
a 6% increase in accuracy when trained ResNet-18 model on malware data.
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Although treating malware as images and perform augmentation has gained
popularity, we should not ignore the drawback of this technique, which requires
huge computational resources. Additionally, training and testing deep convo-
lutional networks can be computational expensive and time-consuming. Under-
standing the disadvantages, the authors in [31] proposed another approach based
on generating mnemonic opcode sequences by applying and comparing Hidden
Markov Models and three different GAN architectures. They were able to fool
the classifiers in distinguishing between real and generated malware with a 76%
detection/accuracy score when using WGAN-GP. Their main goal, however,
was to experiment with various generative modeling techniques when building
mnemonic opcode sequences to represent fake malware. In this work, we push
further the previous study by introducing word embedding generation. The main
difference between our study and [31] is that we utilize word embedding tech-
nique to generate realistic malware. Even though our approach is very similar
to [31], we will not compare our results to theirs because our evaluation method
is different.

Natural Language Processing (NLP) techniques can extract rich information
from sentences in a language, known as word embeddings. These embeddings
are able, for instance, to capture the meaning of a phrase, construct sentences
with similar meaning, or fill in the blanks within a sentence. NLP models extract
information about a word’s relationship to every other word in a phrase. The
model then clusters words with similar meanings together in a higher dimen-
sional space. This information assists NLP models in performing classification
and prediction tasks. In the realm of malicious malware, the models are uti-
lized to build embeddings for malware samples. For example, a research [25]
was conducted on detecting malware samples by applying NLP to mnemonic
opcode sequences. The results, derived by utilizing word embeddings generated
by Word2Vec, HMM2Vec, ELMo, and BERT, prove that NLP based models can
extract rich features that assist with classification accuracy. In particular, word
embeddings generated by BERT consistently achieved a superior classification
accuracy compared to other NLP techniques, with an accuracy of around 96%.

We see that there is a gap in the literature when it comes to utilizing word
embeddings to assist GAN to generate realistic malware. As a result, we con-
duct a study on this subject by introducing the usage of BERT in generative
modeling. In summary, we extract mnemonic opcodes from malware files, apply
BERT transformer to obtain embeddings, and train generative models to gener-
ate malware embeddings.

2.2 Machine Learning Techniques

In this section, we discuss the key elements of this paper, that is, the generative
and NLP models. The generative model that we implemented is Wasserstein
GAN with Gradient Penalty (WGAN-GP), while the NLP model is BERT.

Wasserstein GAN with Gradient Penalty. Ishaan Gulrajani et al. intro-
duced WGAN-GP in 2017 [32]. The fundamental goal of this design is to surpass
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WGAN’s disadvantage by applying gradient norm penalty with Wasserstein loss
formulation to achieve Lipschitz continuity. The authors provide Corollary 1,
which states that the optimum critic in WGAN has a gradient norm of 1 and is
1-Lipschitz continuous. Taking advantage of this, a “penalty” is placed on the
critic if the norm of its gradient deviates from the value 1. WGAN-GP training
method is similar to the WGAN algorithm, with the exception of the weight clip-
ping and the inclusion of the gradient penalty [32]. More details about WGAN
can be found in [26].

BERT. Bidirectional Encoder Representations from Transformers (BERT) is
a transformer-based NLP model that has shown to be successful in difficult
language-based tasks such as masked word prediction and sentiment classifica-
tion. The model is capable of creating contextualized word embedding by taking
the context in which the individual words are used into account. BERT model
finds word relationships via attention, a method that aids in the retention of
long-term dependencies in sentences of up to 512 words, as shown in Fig. 1. In
general, a normal language phrase does not exceed 512 words, but the opcode
sequences in a malware sample can surpass this limit. In our testing, the first 400
opcodes from each malware file were adequate to obtain satisfactory outcomes
while using less computational resources. Further details on the architecture
and attention mechanism of BERT can be found in [16], while an analysis of its
attention heads is covered in [7].

Fig. 1. Trained BERT components

DistilBERT. Despite the fact that BERT has grown more common in Natural
Language Processing, running these huge pre-trained models with tight compu-
tational training or inference budgets remains difficult. DistilBERT, a computa-
tionally efficient and lightweight version of BERT, was proposed to overcome this
challenge. DistilBERT model was constructed using the knowledge distillation
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during the pre-training phase to shrink a BERT model by 40%, while preserving
97% of its language comprehension skills and being 60% faster [4]. This model,
similar to its larger counterparts, is also capable of being fine-tuned with good
performances on a wide range of tasks. Seeing the advantages the model offers, we
utilized DistilBERT in our study to create contextualized malware embeddings.
The DistilBERT model that we used is hosted and open sourced by HuggingFace
team [6], and was pre-trained on the English language. In this study, the model
was neither trained nor fine-tuned on malware samples. More details about the
model can be found in [4].

3 Methodology

This section provide details on the dataset, as well as the training and evaluation
procedure we followed in our experiments.

3.1 Dataset

The dataset that we used for all of our experiments consists of seven malware
families with more than 1000 samples (shown in Table 1).

Table 1. Dataset summary

Malware family Type Samples

WinWebSec Rogue 4360

VBInject Worm 2694

Zbot Information Stealer 2136

Renos Trojan Downloader 1568

OnLineGames Password stealer 1513

BHO Trojan 1405

Zeroaccess Corrupting Devices 1305

To begin with, we looked into the Malicia dataset [18], which has over 50
malware families, and selected Winwebsec, Zbot, and Zeroaccess since they
have over 1000 samples each. The remaining four families were obtained from
VirusShare [30]. There are over 120, 000 malware executables in this 100 Giga-
bytes dataset, from which four extra families were selected, namely, VBInject,
Renos, OnLineGames, and BHO. These families are in top 5 most sample counts,
where each has more than 1300 samples. Winwebsec and Zbot are also provided
in the VirusShare dataset. However, we use the ones from Malicia dataset because
they have almost double the sample size.

We utilized objdump, sed, and cut, the command-line utilities included in the
GNU Binary Utilities package for Unix-like operating systems. Using objdump,
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executable files can be disassembled into Assembly code, thus allowing them
to be extracted as mnemonic opcodes. Then, sed and cut can be used to filter
and transform text to remove all the excessive information, such as registers or
addresses.

Here is a short description of our selected malware families.

Winwebsec: a trojan that creates fictitious problems and claims to have solu-
tions that are authentic anti-virus software [8].

Zbot: a trojan that breaches into Microsoft Window computers and steals con-
fidential information [9].

Zeroaccess: a trojan that infects Window computers and exploits them for
malicious purposes such as corrupting devices [10].

BHO: performs a wide range of harmful behaviors as directed by an attacker
[14]

OnLineGames: steals users’ login credentials and records keystroke activity
[12]

Renos: pretends that the machine is infected with malware and demands money
to remove the non-existed spyware [13]

VBInject: packed malware that obfuscates its content to conceal other malware
and itself from detection [11]

3.2 Training Procedure

Figure 2 depicts an example of our WGAN-GP training process. Tokenizers are
applied to the original malware dataset before turning into BERT inputs that
generate word embeddings. These embeddings are then directly used to train
the generative model. After training, WGAN-GP is able to generate fake mal-
ware embeddings as outputs. We rinse and repeat this entire process through all
malware families.

Fig. 2. WGAN-GP training process

3.3 Evaluation Procedure

Figure 3 shows an illustration of our WGAN-GP evaluation procedure. The ini-
tial set up is partially the same as the training procedure, where we generated
real malware embeddings from malware opcodes using DistilBERT model. Fol-
lowing, we apply 5-fold cross-validation and split the data into 80% training
and 20% validation set. Test data contains malware embeddings generated by
WGAN-GP, and is split into five subsets to participate in 5-fold cross-validation.
After, we construct three new classifiers (One-Class SVM, Isolation Forest, and
Local Outlier Factor) inside each fold to train and assess on the validation and
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test dataset. At the end of each fold, we obtain train, validation, and test accu-
racy. Next, we calculate the average of the 5 folds as the final results for that
WGAN-GP model. We cycle over all generative models that were trained on
that same malware family, and compare their results to determine which model
has the lowest test accuracy score. The lowest score indicates that the model
was the most successful in generating fake samples able to confuse the detec-
tion algorithms. Such model is, thus, selected as the best generative model for
that particular malware family. This same process is repeated for all malware
families.

Fig. 3. WGAN-GP evaluation process

4 Implementation

In this section, we discuss the techniques we applied to extract embeddings using
BERT model. Moreover, the parameters used for the generative and classification
models are also provided.

4.1 Feature Extraction

The classification tokens (CLS) gather information about the entire sentence
and are used to express sentence-level classification results. In the instance of
a malware sample, the CLS token collects all of the sample’s information. This
information can be used to aid the learning of WGAN-GP. Therefore, among the
768 hidden units of BERT, the first column (that represents the CLS tokens)
is selected. Furthermore, leveraging image scaling from image processing, we
applied the same principle to BERT embeddings to help ease the learning of
WGAN-GP. The embeddings were also scaled to fit into the range of −1 and
+1. This technique simplifies BERT embeddings, which allows the generative
models to convert faster.
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4.2 WGAN with Gradient Penalty

In our study, we took WGAN-GP into consideration because the network has
been shown to perform well in [31]. We were influenced by the study of the
authors in [31], and used the same parameters in our experiments. Adam opti-
mizer was used with the following parameters:

Adam(lr = 0.0001, β1 = 0.5, β2 = 0.9)

Each WGAN-GP model was trained for 100, 000 epochs. The critic network
consists of three hidden Conv1D layers with 64, 128, and 256 filters and a kernel
size of 3. Similarly, a kernel size of 3 and three Conv1D layers with 64, 32, and
16 filters were utilized in the generator network. LeakyReLU is the activation
functions for the hidden layers of Conv1D.

In the generator, the output layer consists of a fully connected Dense layer
with 768 neurons. The reason to use exactly 768 neurons is to match the output
size of BERT. The activation function for the generator is TanH, while there is
none for the critic network. The authors in [31] decided to not implement neither
Batch Normalization nor Layer Normalization in the critic network. But in the
generator, Batch Normalization is still applied.

The penalty coefficient, λ, is set to 10. The parameter “n critic”, which rep-
resents the number of critic iterations per generator iteration, is set to 100. In
other words, for each epoch, the generator was only updated after training the
critic for 100 iterations. Table 2 shows all the parameters and their values used
in the generator and critic.

Table 2. Generator and Critic parameters

Parameter Value

Generator activation TanH

kernel size 3

Conv1D layer filter 1 64

Conv1D layer filter 2 32

Conv1D layer filter 3 16

Conv1D padding same

BatchNorm momentum 0.8

Critic activation LeakyReLU

kernel size 3

Conv1D layer filter 1 64

Conv1D layer filter 2 128

Conv1D layer filter 3 256

Conv1D padding same
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4.3 Evaluation Implementation

Because GAN are most commonly used in the image domain, the two popu-
lar metrics Inception Score [22] and Fréchet Inception Distance (FID) [27] are
used to evaluate the quality of the generated images. In addition, generated
images are saved every few hundred epochs, such as 500, before being examined
visually. However, our dataset consists of opcode sequences, which are impossi-
ble to be inspected visually. Hence, we applied a different metrics to evaluate
GAN performance. Reading about the two scores, we realized that the similarity
between them is that they are calculated using the inception-v3 model. More-
over, inception-v3 was trained on more than a million images from the ImageNet
database, and attained a greater than 78.1% accuracy on the same dataset [1].
The key point here is that, when evaluating against GAN, the inception-v3 net-
work has neither seen nor learned about the generated images. Therefore, we
decided to not include generated data, but only malware data, into our training
set. We then use three classification models, that is, One-Class SVM (OCSVM)
[23], Isolation Forest [20], and Local Outlier Factor (LoF) [24], which are based
on the idea of anomaly detection, to evaluate GAN’s performance.

Anomaly detection can be branched off into outlier and novelty detection.
To decide which one to use, we have to look into the difference between the
two. Outlier detection is used when there are outliers in the training data, which
are observations that are different from the rest of the data [19]. On the other
hands, novelty detection is used when the training data is not contaminated with
outliers, and we are interested in determining if a new observation is an outlier
[19]. Since our train data only contains malware opcodes, novelty detection is
selected in our evaluation. Our test dataset, which only contains generated data,
will be considered as new observations to be determined if it is anomaly.

In our study, we saved the generative model at every 500 epochs. We then
generated fake samples from all saved generative models, and classified if they
are outliers or not using the three classification models. Afterwards, we tuned
all three classifiers using sklearn GridSearchCV [34] on each malware family to
achieve the highest train and validation accuracy. Upon training on the real mal-
ware data using 5-fold cross validation, these classifiers will be evaluated against
the generated data. Accuracy score is then computed to see how similar the gen-
erated data is when compared to the real malware data. Lastly, we compared the
score across all our generative models and pick out the best model. Note that our
goal is to achieve as low accuracy score as possible. High accuracy shows that
the three classifiers classified generated data as outliers, which is not similar to
real malware data. And vice versa, low accuracy means the classifiers classified
generated samples as inliers, which is similar to real malware data. Table 3, 4
and 5 below are the summary of the tuned parameters we used for the classifiers.
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Table 3. One-class SVM parameters

Malware family Parameters

nu kernel gamma

Winwebsec 0.5 sigmoid 0.1

Zbot 0.01 sigmoid 0.001

Zeroaccess 0.01 sigmoid 0.001

VBInject 0.01 poly 0.3

BHO 0.01 rbf 0.3

Renos 0.01 rbf 0.01

OnLineGames 0.01 poly 0.3

Table 4. Isolation forest parameters

Malware family Parameters

contamination max samples n estimators bootstrap

Winwebsec 0.01 auto 1 False

Zbot 0.01 auto 1 True

Zeroaccess 0.01 auto 1 True

VBInject 0.01 auto 1 True

BHO 0.01 0.5 1 True

Renos 0.01 auto 0.8 True

OnLineGames 0.01 auto 1 True

Table 5. Local outlier factor parameters

Malware family Parameters

p contamination leaf size n neighbors algorithm novelty

Winwebsec 2 0.01 2 50 auto True

Zbot 1 0.01 2 30 auto True

Zeroaccess 1 0.01 2 30 auto True

VBInject 1 0.01 2 5 auto True

BHO 1 0.01 2 30 auto True

Renos 1 0.01 2 5 auto True

OnLineGames 2 0.01 2 5 auto True
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5 Results

This section provides the classification results of our experiments followed by a
detailed analysis.

5.1 Evaluation Score

The author in [32] suggested that the critic’s loss, which is used to assess WGAN-
GP’s performance, should start at a high negative value and then converge to
zero. The generator’s loss, on the other hand, can fluctuate and, hence, is not
intuitive. Therefore, we start by looking at the loss curves and then the classifi-
cation results.

The critic loss curves for seven families presented a similar pattern to the one
in [31]. In our experiments, they all started at around −10, then quickly spiked
up to around −27 during the first 50 epochs, and slowly converted to around
−0.19 after 10, 000 epochs. In other words, our model was trained properly when
it exhibited this behavior. Figure 4 below shows the ranking (from worst to best)
of critic loss on all malware families at the end of training.

Fig. 4. Ranking of critic loss on malware families

The best test accuracy scores were selected independently from all genera-
tive models, the seven malware families, and the three types of classifiers. Our
parameters for each classifier were the same as those discussed in Table 3, 4,
and 5. The average training accuracy score across seven families was roughly
99.1%. The average validation accuracy score was roughly the same as train-
ing accuracy, about 99%. However, the test accuracy score is consistently low,
achieved the highest score of 38.8% with BHO, and the lowest score of 0.00%
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with Renos. The average of the test score across all families was 15.6%. One-
Class SVM showed to perform better than Isolation Forest and Local Outlier
Factor in terms of classifying between the real and generated malware data.
Most of the test accuracy scores obtained by OCSVM were over 0.00%, except
for Renos family.

The Isolation Forest Classifier obtained an average training accuracy of
99.4%. The average validation accuracy score was around 99.4%, which was sim-
ilar to the training accuracy. However, unlike OCSVM, Isolation Forest obtained
lower average test accuracy score (about 2.5%). There are a few more families
having the test accuracy scores closer to zero compared to OCSVM.

The average of training and validation accuracy scores of Local Outlier Fac-
tor are 99.4% and 98.9%, respectively. There are more families that fooled the
classifier that could not distinguish between real and generated malware data.
BHO, however, obtained the highest test accuracy in all three classifiers (38.8%
for OCSVM, 14.4% for Isolation Forest, and 75.7% for Local Outlier Factor).
The complexity and lack of samples for the BHO family could be a big con-
tributing factor to this result. Having the second least amount of samples, 1405
data points, WGAN-GP was not able to adequately learn the distribution of
this family. This is further supported by having the highest negative critic loss
(−0.247) in the training procedure compared to other families. We computed the
average accuracy from all test score, and obtained a 12.12% average accuracy.
Table 6 summarized the comparison of the accuracy score between each family
and classifier. We see that the majority of the families were recreated correctly
by our BERT-GAN approach, with the exception of the BHO family for which a
considerable number of samples were still classified as fake by LoF and OCSVM.

5.2 Further Analysis

To understand the importance of the accuracy score, we should take a look at
its formula:

Accuracy =
TruePositive + TrueNegative

TruePositive + FalsePositive + TrueNegative + FalseNegative

In our case, Positive represents real malware and Negative represents gen-
erated malware. Since our test dataset only contains generated malware, True
Positive is always 0, that is, cases that are correctly classified as real malware.
Similarly, False Negative is always 0. Hence, the formula simplified as follow:

Accuracy =
TrueNegative

TrueNegative + FalsePositive

The new formula measures the true negative rate, which is the classifiers’
ability to predict a true negative of each category available. Thus, when we
achieved 12.12% average accuracy, this tells us that the classifiers are only able
to correctly identify generated malware 12% of the time. In other words, if we
run the evaluation to classify between real and generated malware 100 times,
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Table 6. WGAN with gradient penalty scores.

Malware Family
One Class SVM Isolation Forest Local Outlier Factor

Train Val Test Train Val Test Train Val Test

Winwebsec 0.995 0.995 0.044 0.998 0.998 0.0 0.993 0.992 0.0

Zbot 0.991 0.990 0.125 0.992 0.996 0.006 0.992 0.991 0.081

Zeroaccess 0.989 0.989 0.163 0.998 0.996 0.0 0.992 0.989 0.0

BHO 0.983 0.981 0.388 0.992 0.992 0.144 0.994 0.994 0.756

OnLineGames 0.994 0.994 0.219 0.992 0.99 0.006 0.996 0.989 0.438

VBInject 0.993 0.992 0.156 0.995 0.995 0.006 0.995 0.989 0.0

Renos 0.99 0.99 0.0 0.994 0.994 0.013 0.998 0.983 0.0

the classifiers will falsely classify generated malware as actual malware 88 times.
Low true negative rate shows that generated malware has such similar character-
istics to actual malware that the classifiers are having difficulty in distinguishing
between the two. Moreover, the results of the experiments look promising since
we applied k-fold cross validation to reduce the effects of overfitting.

6 Conclusions and Future Work

In this paper, we aimed at taking advantage of contextualized embeddings cre-
ated by BERT to generate fake malware embeddings. The generative model we
utilized was Wasserstein Generative Adversarial Networks with Gradient Penalty
(WGAN-GP).

In previous studies, GANs have been shown to generate fake malware opcode
sequences. In term of generating malware embeddings, however, there exists a
gap in the literature.

We explored that gap in our study by training the generative models on
malware embeddings and assess them with three classification models, namely,
One-Class SVM (OCSVM), Isolation Forest, and Local Outlier Factor (LoF).
The results obtained in our experiments show that WGAN-GP can generate
malware embeddings that can closely match the real data distribution. This
demonstrates that WGAN-GP algorithms can be successfully applied to pro-
duce malware embeddings in addition to generating image data. In some cases,
generative models could help increasing the number of data samples for families
with limited sample size. This new approach improves the quality of the fake
malware generated by GAN algorithms, and creates more encouraging opportu-
nities to apply such data to enhance malware datasets used to train supervised
machine learning models.

For future work, this paper may be taken in a variety of different directions.
The dataset, for example, may be expanded, and the experiments can include a
greater number of malware families. A multi-class generative model can also be
explored instead of training distinct WGAN-GP models for each family. Another
possible application is to use many different word embeddings techniques to
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support WGAN-GP training, such as Word2Vec, ELMo, or different version of
BERT. Training BERT model on malware dataset before generating embeddings
could also be considered, which may possibly boost the learning of generative
models. Finally, because stateful networks can produce intriguing results, exper-
iments using LSTM-GAN can be performed.
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Abstract. Online Social Networks (OSNs) have grown exponentially in
terms of active users and have now become an influential factor in the
formation of public opinions. For this reason, the use of bots and botnets
for spreading misinformation on OSNs has become a widespread concern.
Identifying bots and botnets on Twitter can require complex statistical
methods to score a profile based on multiple features. Benford’s Law,
or the Law of Anomalous Numbers, states that, in any naturally occur-
ring sequence of numbers, the First Significant Leading Digit (FSLD)
frequency follows a particular pattern such that they are unevenly dis-
tributed and reducing. This principle can be applied to the first-degree
egocentric network of a Twitter profile to assess its conformity to such
law and, thus, classify it as a bot profile or normal profile. This paper
focuses on leveraging Benford’s Law in combination with various Machine
Learning (ML) classifiers to identify bot profiles on Twitter. In addition,
a comparison with other statistical methods is produced to confirm our
classification results.

Keywords: Benford’s law · Twitter · Machine learning · Social bots ·
Social networks

1 Introduction

Online Social Networks (OSNs), or Social Media Platforms (SMPs) as we know
them, have accumulated millions of users worldwide [20]. With the exponential
growth in the number of accounts and active users on OSNs, it is becoming harder
and harder to moderate the content and account activities. While a genuine
user and malicious user are being considered in this scenario, we also need to
consider informational bots and malicious bots. OSNs have been plagued with
many types of malicious bots in recent years. Twitter is a popular microblogging
and social networking service with millions of users worldwide. Twitter account
holders have the option to follow other accounts, and can have any number of
accounts following them. Each account can post status updates with a limit
of 280 character in the form of “tweets”. Twitter has gained popularity due
to its adaptation by numerous influential figures and regular political coverage.
These services offered by Twitter have become a target of social media bots
c© The Author(s) 2022
L. Bathen et al. (Eds.): SVCC 2022, CCIS 1683, pp. 38–54, 2022.
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for spreading fake and malicious content online. One of the biggest example of
bots spreading fake news and malicious misinformation was during the 2016 U.S.
presidential election where Russian bots tried to interfere in the election [23].
Since then, Twitter has taken numerous measures for content moderation by
suspending suspicious accounts that spread misinformation, and flagging baseless
or questionable tweets.

In the context of OSNs, a social bot or a suspicious user account is a com-
puter algorithm or script that automatically interacts with other accounts and
produces content without human input or intervention. There are different types
of bots, but we only considered two scenarios where either a bot is malicious,
that is, it violates the Twitter community guidelines, or it is an informational
bot which is not involved in malicious activities. There can also be different lev-
els of bots such as fully automated bots, partially automated bots, and hacked
real user accounts for malicious activities.

Bots or suspicious accounts participate in activities that can seriously harm
the integrity of online communities. Previously, there have been numerous stud-
ies which tackle the social bots on Twitter with the help of machine learning
techniques. There are also some real-time Twitter bot detection platforms such
as BotOrNot [7]. Due to these efforts to tackle bots, the bot accounts have
started changing their patterns and they are now able to better camouflage
themselves such that previous methods are not reliable enough anymore to iden-
tify them [14]. This paper focuses on identifying these camouflaged bots with
the help of the Benford’s Law, Machine Learning (ML) classifiers, and Statistical
Analysis.

In Sect. 2, we review the background with various approaches and machine
learning techniques used in the past for bot detection on Twitter with the help
of multiple research papers, journals, and articles. In Sect. 4, we go over the
methodology, experimental setup, and datasets used to implement out research.
In Sect. 5, we discuss the results and observations of our experiments. In Sect. 6,
the conclusion of our work is presented, and possible future scopes of this research
are explored with clarification.

2 Background

In this Section, we discuss the background of our work with particular emphasis
on the Benford’s Law. Moreover, we list the various classification techniques that
we trained and tested on the statistics obtained from such law. We also briefly
introduce the evaluation methods used. For further information, we invite the
reader to the corresponding references.

We experimented using Logistic Regression [25], Näıve Bayes [24], Support
Vector Machine [13], Random Forest [3], AdaBoost [22], and Multi-layer Percep-
tron [19], and evaluated the models with confusion matrix, accuracy, precision,
recall, f-measure, and AUC-ROC curve. More details about these evaluation
methods can be found in [8]. To validate our classification results we also applied
statistical tests such as Pearson’s chi-squared test [21], Kolmogorov-Smirnov
test [16], and Mean Absolute Deviation (MAD).
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2.1 Benford’s Law

The Benford’s Law, or Newcomb-Benford’s Law, states that in any naturally
occurring sequence of numbers, the First Significant Leading Digit (FSLD) fre-
quencies follow a particular pattern such that they are unevenly distributed and
reducing in nature [2,18]. In 1881, the astrologer Simon Newcomb first observed
that the logarithmic tables in the library had their initial pages dirtier and thet
were decaying more rapidly than the latter ones [18]. He concluded that the
initial digits are more commonly to appear or been used than the latter digits.
After 50 years, the physicist Frank Benford re-discovered this lost phenomenon
and, later, published a paper titled “The Law of Anomalous Numbers” [2]. For
experimentation, he researched on 20 sets of naturally occurring sequences with
more than 20,000 samples which included data from sources such as river areas,
population, newspapers, addresses, and death rates [2]. All the different datasets
tested by him followed the Benford’s Law and can be calculated with the formula
in Eq. 1, where P (d) is the predicted value for the digit d.

P (d) = log10(1 +
1
d
) (1)

However, the Benford’s Law does not occur in all datasets. There are certain
conditions that a dataset must fulfil to satisfy this property [17]. We list these
conditions comparing them with Twitter user accounts information:

– All digits from 1 to 9 should occur in leading position. In our Twitter
datasets all digits from 1 to 9 can be possible FSLDs when we consider fol-
lowing counts.

– There should be a greater occurrence of smaller numbers than larger numbers.
In our Twitter datasets, the small numbers are more likely to occur than larger
numbers when we consider status counts.

– The dataset should be natural. Twitter relationships where users follow each
other should form organically. There are botnets which will follow a particular
user to inflate their followers counts when paid for the service.

– There should be no sequence in numbers. Every individual Twitter account
has different number of status counts, following counts, and followers counts.

– No predefined boundaries. Twitter has no maximum or minimum number set
for the parameters such as favorite counts, likes counts, and status counts.

– Different orders of magnitude. Twitter has numbers in tens, hundreds, thou-
sands, and even in millions.

– Dataset should be large. Twitter has millions of users, hence, a large dataset
of users is accessible for research.

The experimental findings of Prof. Jennifer Golbeck in [11,12], and Lale
Madahali & Margeret Hall in [15], have paved the way for the use of Benford’s
Law on the first-degree egocentric network of any social media profile for its
Benford Analysis. It has been experimentally proved that first significant leading
digits of friend counts of a social media account follow the Benford’s distribution
given in Table 1 [11,12]. If any account does not follow the Benford’s distribution,
it can be a suspicious account or malicious bot.
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Table 1. Benford’s distribution FSLD frequencies [2]

Digit Frequency (%)

1 30.103

2 17.609

3 12.494

4 9.691

5 7.918

6 6.695

7 5.799

8 5.115

9 4.576

3 Related Work

This Section discusses the previous work of social bot detection on Twitter
and analyzes the performance and drawbacks of different approaches with and
without application of Benford’s Law. We also show some of the drawbacks of the
previous work which complicates the detection of bots on social media platforms.

Twitter was launched in 2006 as a simple mobile app. However, it quickly
grew into a full-fledged communication platform. Most of the previous work
tackles the problem of social bot detection with supervised machine learning [6].

An example of machine learning applied to Twitter bot detection is the
Botometer service, formerly known as BotOrNot service. This is a popular pub-
licly available bot detection tool which produces a real-time social bot score for
Twitter accounts [7]. The BotOrNot service was released in May 2014, and it
has been developed by researchers from Indiana University at Bloomington. The
service is based on a supervised machine learning classifier which leverages over
1,000 features of the target account to produce a classification score or social
bot score. According to its algorithm, the higher is the score the more likely
is that target account is being controlled by a software. To obtain a feedback
from this tool, the target account’s 200 most recent tweets, and 100 recent men-
tions from other users are required. Its features can be grouped into six main
classes, namely, Network, User, Friends, Temporal, Content, and Sentiment. The
classifier has been trained on 15,000 manually verified bots, and 16,000 human
accounts. The main issue to address is the lack of a standard definition for a
social bot. Hence, the labelled datasets used to train the classifier are created
by researchers after manual analysis. This technique can introduce bias due to
human error. Botometer is accessible through both a web interface and an API
endpoint.
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The researchers Chu et al. have designed a supervised machine learning clas-
sifier to distinguish a target account into three different groups, that is, human,
bot, and cyborg [5]. An account classified as human is defined as to have no
automated activity, whereas an account classified as bot is fully automated. An
account with a mix of automated and non-automated activity is classified as a
cyborg. Their classifier is based on four components, namely, entropy, machine
learning, account properties, and decision maker. The entropy component is used
to recognize automation by detecting a periodic timing for tweeting. The machine
learning component is based on a Bayesian classifier to identify text patterns of
social spambots on Twitter. The account properties component analyses account
information to differentiate humans from bots. Finally, the decision maker com-
ponent employs Linear Discriminant Analysis on the features shortlisted by other
three components to make a classification. The researchers collected their data
by crawling on Twitter using the Twitter API, and found that their dataset con-
stitutes of 53% human, 36% cyborg, and 11% bot accounts. The researchers have
used a very small dataset for the training of the classifier, and have changed a
binary classification problem into multi-class classification problem by introduc-
ing cyborgs. As the results in Fig. 1 show, their classifier is effective in identifying
humans and bots apart but is less confident when classifying between human and
cyborg accounts, or bot and cyborg accounts.

Fig. 1. Confusion matrix on human, cyborg, and bot classification [5].

In 2015, Dr. Jennifer Golbeck from University of Maryland College Park
was the first to apply Benford’s Law on the data from OSNs [12]. The author
experimented with five major OSNs, namely, Facebook, Google Plus, LiveJour-
nal, Pinterest, and Twitter. They were able to discover that certain features of
OSNs, such as the friend’s following counts, conformed to Benford’s Law , that
is, Benford’s Law was applicable to the first-degree egocentric networks of a tar-
get profile. Figure 2 shows those statistics. Specifically, the research findings on
Twitter dataset indicate that accounts which strongly deviated from Benford’s
Law were engaged in malicious or unnatural behavior. The Twitter dataset used
for analysis of the Benford’s Law has been made public by the author [10].

This discovery from [12] led the author to test the hypothesis that the social
connections made by bots are unnatural in nature and they tend to violate Ben-
ford’s Law [11]. The author re-investigated the previously discovered Russian bot
accounts from 2015, and uncovered a larger Russian botnet with about 13,609
Twitter accounts, out of which 99.6 percent did not conform to Benford’s Law.
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Fig. 2. FSLDs for Twitter, Google Plus, Pinterest, Facebook [12].

This study concluded that first significant leading digits of a friend’s follow-
ing counts can be utilized to identify anomalous behavior of malicious bots, and
it is a significant feature to differentiate between humans and malicious bots.
Unfortunately, the author has not made the Russian botnet dataset used in this
research public.

In this research, we continue the previous work by combining the promis-
ing results of Benford’s Law applied to Twitter bot detection to the theory of
machine learning.

4 Implementation

In this Section, we discuss in detail the database and step-by-step pipeline for
the implementation of this research. This Section explains the setup followed
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to train the machine learning models and statistical techniques. Each part of
the implementation of this research has been done by using multiple Conda
virtual environments. Conda can run on many operating systems, and it is an
open-source package and environment management system [1].

4.1 Dataset

Twitter is a global communication network available to the public in real-time.
It is used by millions of users daily who generate lots of metadata in the form
of short messages, location, @handle, display name, number of followers, num-
ber of statuses, number of friends, and more. Twitter metadata can be accessed
and retrieved through the official Twitter API. However, Twitter has recently
announced rate limits to the API service which reduces the access to the meta-
data and slows data collection and retrieval. Due to such rate limits, this research
dataset was built with the help of four publicly available datasets, namely,
anonymizedTwitter [10], botometer-feedback [7], cresci-2017 [6], and gilani-17
[9]. Table 2 shows the number of bots and percentage of human owned accounts
for each datasets.

Fig. 3. anonymizedTwitter data samples following Benford’s Law Distribution.

4.2 Approach

The approach that we implemented is divided into two easy steps, that is, first,
preprocessing each dataset and combining them, then, training and testing mul-
tiple classifier models and selecting the best model. An overview of our approach
is given in Fig. 5 with the application of MLP. We collected the following counts
of all the friends of the profile under scrutiny and extracted the FSLD frequen-
cies to feed our neural network classifier. The input to the models is fixed in size
and is equal to 9, that is, every input is the frequency of that particular first sig-
nificant leading digit. Before outputting the result, the prediction is compared
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Fig. 4. anonymizedTwitter data samples not following Benford’s Law Distribution.

Table 2. Datasets bot and human label counts

Dataset Bots Humans (%)

anonymizedTwitter 317 20,818

botometer-feedback 143 372

cresci-2017 9391 3474

gilani-17 1,090 1,413

Total 10,941 26,077

with the majority vote of our statistical tests. This step is necessary only to
prove the efficacy of our technique.

4.3 Data Preprocessing

Since the first dataset, anonymizedTwitter, did not have labels, labelling was
performed. Specifically, the FSLDs of each of the 21,135 data samples were
extracted from their following counts and then their frequencies were visualized
in the form of a histogram against the Benford’s Law distribution, one sample
at a time. Exploratory data analysis was performed on each data sample and a
bot or human label was assigned to all samples.

The datasets from [6,9,26] were only used to collect the Twitter @handle
and the ‘bot’ or ‘human’ label provided by the original authors. Afterwards,
the first-degree egocentric network data, that is, the following counts of each
friend for that @handle, was collected with the help of the Twitter API. Once
all the first-degree egocentric data from each of the four datasets was available,
a new combined dataset was created. This combined dataset only contained the
FSLD frequencies of each data sample and a label of 0 for human accounts and 1
for bot profiles. Figure 3 shows the congruity of the anonymizedTwitter dataset
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Fig. 5. Overview of our approach.

samples to the Benford’s Law Distribution (legitimate users), while Fig. 4 shows
the samples that are not following such law (possible bots). Figure 6, instead,
shows the FSLD frequencies for few samples (one per row) selected from our
combined dataset, three bots (label 1) and two human accounts (label 0). It is
possible to notice how the rows with bot label 1 are not following the Benford’s
Law distribution.

Fig. 6. Final dataset with FSLD frequencies and bot label.

4.4 Training and Testing Classifiers

Once the preprocessing was completed and the combined dataset with labels
was available, the data was split into train and test sets with a 75:25 split.
Synthetic Minority Oversampling Technique (SMOTE) [4] was used to treat the
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imbalance between our bot and human samples. We trained and tested six super-
vised machine learning classifiers, namely, Logistic Regression, Näıve Bayes, Sup-
port Vector Machine, Random Forest, AdaBoost, and Multi-layer Perceptron.
Random Forest and AdaBoost models gave high accuracy scores, but the best
model was the Multi-layer Perceptron.

5 Results

In this Section, we discuss the results of the experiments performed in our
research. The training results for each machine learning model are discussed
in detail. The summary of all the experiments’ results are given in Table 3.

Table 3. Näıve Bayes performance

Model Accuracy Precision Recall F-Measure

Naive Bayes 95.44% 99.02% 89.68% 94.12%

Logistic regression 99.11% 98.59% 99.22% 98.91%

SVC 99.82% 99.56% 100% 99.78%

Random forest 99.91% 99.83% 99.95% 99.89%

AdaBoost classifier 99.93% 99.89% 99.95% 99.92%

MLP 99.98% 100% 99.95% 99.97%

5.1 Näıve Bayes

The first phase of experiments was the training and testing of Näıve Bayes clas-
sifier. This was a näıve approach as the model considers all the features indepen-
dently with no correlation. With all the nine features evaluated independently
the Näıve bayes model obtain detection accuracy of 95.44%, precision of 99.02%,
recall of 89.68%, and f-measure of 94.12%. Figure 7 shows the AUC-ROC curve
and Confusion Matrix.

5.2 Logistic Regression

In the second phase of experiments, we trained the logistic regression model.
Since we have only nine features, we obtained detection accuracy of 99.11%,
precision of 98.59%, recall of 99.22%, and f-measure of 98.91%. Figure 8 shows
the AUC-ROC curve and Confusion Matrix.
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Fig. 7. AUC-ROC curve (a) and Confusion Matrix (b) of Näıve Bayes

Fig. 8. AUC-ROC curve (a) and Confusion Matrix (b) of Logistic Regression

5.3 SVM

In the third phase of experiments, we trained and tested a Support Vector
Machine (SVM) model on our dataset. The SVM took more time to train that
the previous experiments, but it is well suited for our dataset as we have a binary
classification problem at hand. We obtained a detection accuracy of 99.82%, pre-
cision of 99.56%, recall of 100.00%, and f-measure of 99.78%. Figure 9 shows the
AUC-ROC curve and Confusion Matrix.

Fig. 9. AUC-ROC curve (a) and Confusion Matrix (b) of Support Vector Machine
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5.4 Random Forest

In the fourth phase of experiments, we trained and tested a Random Forest
classifier which uses multiple decision trees to gain high accuracy. The model
trained faster that SVM and has better overall performance compared to all the
previous tests. We obtained detection accuracy of 99.91%, precision of 99.83%,
recall of 99.95%, and f-measure of 99.89%. Figure 10 shows the AUC-ROC curve
and Confusion Matrix.

Fig. 10. AUC-ROC curve (a) and Confusion Matrix (b) of Random Forest

5.5 AdaBoost

The fifth phase of experiments was to push the accuracy score as high as possible,
thus, we trained and tested an Adaptive Boosting model. This is another ensem-
ble learning technique, such as Random Forest, that obtained detection accu-
racy of 99.93%, precision of 99.89%, recall of 99.95%, and f-measure of 99.92%.
Figure 11 shows the AUC-ROC curve and Confusion Matrix.

Fig. 11. AUC-ROC curve (a) and Confusion Matrix (b) of AdaBoost Classifier
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5.6 Multi-layer Perceptron

The sixth and final phase of experiments was completed by training and testing
a feedforward neural network model called Multi-layer Perceptron (MLP). The
MLP classifier have an Input and Output layer just like the Logistic Regression
model, but it also has hidden layers with neurons to achieve the best possible
results. The MLP model obtained the highest accuracy (near perfect) and overall
performance. We obtained detection accuracy of 99.98%, precision of 100.00%,
recall of 99.95%, and f-measure of 99.97%. Figure 12 shows the AUC-ROC curve
and Confusion Matrix.

5.7 Latency Analysis of ML Algorithms

We studied the latency in training our supervised machine learning models on
our combined dataset. When the size of the dataset increases, the training time
of our models tended also to increase significantly. We trained each of our models
on our training dataset of around 25,000 samples. The latency analysis is based
on the training time (in milliseconds) taken by each model. Table 4 shows our
latency analysis results.

5.8 Statistical Tests Majority Vote

Once the MLP model was trained and selected for its high-performance accuracy,
we were ready to test our model on new accounts and then verify our model’s
classification based on a majority vote of our three statistical tests. We took four
random samples with two bots and two humans and tested our MLP classifier
prediction with our statistical tests for majority vote. Here we are testing the
goodness of fit of the FSLDs with the Benford’s Law distribution. The hypothesis
for tests was formulated as:

Null hypothesis (H0) = Account FSLDs follow Benford’s Law
Alternative hypothesis (H1) = Account FSLDs violate Benford’s Law

If p-value is less than 0.05, then reject H0 (Nonconformity), else accept H0

(Conformity)
The majority vote of our statistical tests validates the prediction results of

our MLP classifier and, hence, we proved that the MLP classifier trained on our
combined dataset can be used to detect social bots on Twitter (Table 5).



Twitter Bots’ Detection with Benford’s Law and Machine Learning 51

Fig. 12. AUC-ROC curve (a) and Confusion Matrix (b) of Multi-layer Perceptron

Table 4. Latency analysis on training dataset

Model Latency (ms)

Näıve Bayes 7.26

Logistic regression 51.26

Support vector machine 2935.64

Random forest classifier 1862.07

AdaBoost classifier 1526.95

Multi-layer perceptron 3308.19

Table 5. Statistical tests majority vote

Test Bot1 Bot2 Human1 Human2

Pearson Chi-Squared Nonconformity Nonconformity Conformity Conformity

Kolmogorov-Smirnov Nonconformity Conformity Conformity Conformity

Pearson Correlation Coeff Nonconformity Nonconformity Conformity Conformity

Majority vote Bot Bot Human Human

6 Conclusions and Future Works

The proposed technique, which collects the following counts of all the friends of
the profile under scrutiny and extract the FSLD frequencies to feed our neural
network classifier, works best for classifying malicious social bots from human
accounts. This is due to the strategic selection of our databases used as ground
truth for training our model. The main goal of our research was to create a
ground truth dataset from scratch and to train a neural network model on the
dataset, while also validating the results with majority vote of statistical tests.
The research enables us to identify if a Twitter user is a malicious social bot
or human with high level of confidence. The overall research technique is novel,
and has never been implemented in this fashion as far as the authors are aware.
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Any supervised machine learning technique used for bot detection will only
be as good as the ground truth data that was used to train it. As the social bots
keep changing their patterns and techniques rapidly, even the most sophisticate
bot detection algorithms fail as their training rules become outdated. Benford’s
Law is an unavoidable naturally occurring phenomenon and it is prevalent on
Twitter’s data. Since the malicious bots break away from the natural pattern
by synthetically following other social bots and malicious accounts, they tend
to unknowingly violate the Benford’s Law. Hence, our technique will be able to
identify malicious bots or suspicious accounts even if the bot behavior patterns
keep evolving.

However, there are certain limitations to take in considerations. To analyze
any account on Twitter, we need the account to be following at least 100 other
accounts. The detection accuracy, in fact, deteriorates if the account has less
friends. Furthermore, Benford’s Law requires orders of magnitude and certain
number of samples to work with the FSLD frequency distribution.

6.1 Future Works

The research can be extended to create a web browser plug-in where the users
is able to classify Twitter accounts in real-time without gathering all the first-
degree egocentric data and feeding it to our model. The browser extension could
be able to add graphical and textual information on the Twitter page to warn
the user about any suspicious profile that is encountered during regular activity.

Another extension to this research would be the employment of other tech-
niques to identify if the suspicious account is part of a bigger botnet.

This same technique can also be applied on Facebook datasets, or other social
media platforms, to test if we can successfully classify bots on such platform with
the help of the Benford’s Law.
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CA 95192, USA

{shubham.kumar,younghee.park}@sjsu.edu
3 Department of Computer Science, College of Engineering and Applied Science,

University of Colorado Colorado Springs, Colorado Springs, CO 80918, USA
schang2@uccs.edu

4 Silicon Valley Cybersecurity Institute (SVCSI), San José, CR 95192, USA

Abstract. Collaborative intrusion detection approach uses the shared
detection signature between the collaborative participants to facilitate
coordinated defense. In the context of collaborative intrusion detection
system (CIDS), however, there is no research focusing on the efficiency of
the shared detection signature. The inefficient detection signature costs
not only the IDS resource but also the process of the peer-to-peer (P2P)
network. In this paper, we therefore propose a blockchain-based retribu-
tion mechanism, which aims to incentivize the participants to contribute
to verifying the efficiency of the detection signature in terms of cer-
tain distributed consensus. We implement a prototype using Ethereum
blockchain, which instantiates a token-based retribution mechanism and
a smart contract-enabled voting-based distributed consensus. We con-
duct a number of experiments built on the prototype, and the experi-
mental results demonstrate the effectiveness of the proposed approach.

Keywords: Blockchain · Collaborative intrusion detection ·
Retribution · Detection signature · Verification · Token

1 Introduction

A collaborative intrusion detection system (CIDS) [17] can share security infor-
mation (e.g., the intrusion signature) across multiple domains to gain a collab-
orative intelligence for intrusion detection. A CIDS can have a global view for
large networks or IT ecosystems in contrast to the standalone IDS that only
monitors the intrusion events occurring at one place. In the context of CIDS,
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there are two architectures [18]: centralized and distributed. A centralized CIDS
often applies a centralized server to collect and share the security information to
the distributed IDS, and such a centralized server is often deployed in cloud [5,7].
However, the centralized server often suffers the single point of failure, and the
cloud is also honest-but-curious. On the contrary, a distributed CIDS relies on
a peer-to-peer (P2P) network to propagate the security information. However,
the distributed CIDS has to cope with other security problems, e.g., it needs to
ensure the integrity of the data transmission and to build the trust among the
participants. For addressing those issues, several blockchain-based CIDSes have
been proposed [6,11,13,16].

The blockchain-based CIDSes often use permissioned blockchain, which
means any participant must be registered to the authority which could be a cen-
tralized CA [11,16] or a distributed PKI [6]. Also, one blockchain-based CIDS
often involves distributed consensus protocol to verify and agree the propagated
viable transmissions. Most consensuses of the CIDSes focus on resisting against
the insider attacks, e.g., a number of participants collude together (or are con-
trolled by the attacker) to issue/verify the malicious transmissions across the
whole P2P network. To address this, the blockchain P2P network can use practi-
cal Byzantine Fault Tolerance (pBFT)-based voting to achieve the n-compromise
resistance [6]. However, this research area lacks an approach to verify the effi-
ciency of the shared detection signature.

A detection signature is a malicious data pattern or attack rule that is com-
pared with current behavior to decide if is that of an intruder. The unverified
but widely adopted detection signature not only costs the CIDS resource but
also impacts the coordinated defense, because some participants may yield false
alerts due to the incorrect/inefficient detection signature.

In this paper, we propose a blockchain-based retribution mechanism to ver-
ify the propagated detection signature for CIDS. The following properties of the
blockchain typically motivate our approach: i) decentralization includes distinct
autonomous participants which is consistent with the nature of the CIDS; ii)
digital currency provides the financial nature to incentivize the participants to
contribute to donating and verifying detection signatures; iii) consensus enables
the participants of the P2P network to reach agreement based on a distributed
manner; iv) smart contract provides the programmability to create specific con-
sensus for processing certain payload of transaction; v) permissioned blockchain
controls the participation of the blockchain network.

The retribution mechanism aims to reward the participants who donate effi-
cient detection signatures and punish the participants who share inefficient detec-
tion signatures. Thus, the retribution mechanism introduces an incentive to the
participants to take part in the coordinated defense by sharing efficient detection
signatures. The contributions of this paper are summarized as follows:

– A blockchain-based retribution mechanism is proposed, which is used for
incentivizing the participants to contribute to the collaborative intrusion
detection system.
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– An Ethereum blockchain-based prototype is implemented for validating the
approach, whereby the Ethereum token is applied as the incentive.

– The corresponding experiments are conducted to show the effectiveness of the
proposed approach.

The rest of the paper is organized as follows: Sect. 2 reviews the related work;
Sect. 3 presents our models including the system network model and the threat
model that our approach builds on; Sect. 4 proposes the design of the blockchain-
based retribution mechanism; Sect. 5 presents the Ethereum blockchain-based
prototype implementation; Sect. 6 shows the experimental results; Sect. 7 con-
cludes the paper.

2 Related Work

In this section, we review the related work including the existing retribution
mechanisms in the context of blockchain P2P network and the detection signa-
ture verification methods in the IDS research area.

2.1 Retribution Mechanism

The well-known retribution mechanism in the context of Blockchain P2P network
is IKP [12], which provides an instant Karma mechanism to the distributed PKI
based on permissionless cryptocurrency blockchain. The major contribution of
IKP is that it proposes a resilient mechanism to provide incentives to the CAs to
perform correctly and to the detectors to report unauthorized certificates. IKP is
used to detect the unauthorized certificates for a domain due to CA misbehavior
in terms of certificate policies that specify automatic responses. However, IKP
still involves the mining process which is consistent with Nakamoto consensus
provides natural financial incentives for the participants in the permissionless
blockchain P2P network, in contrast to that, our approach is used for the per-
missioned blockchain without mining process.

Apart from monetary incentive based retribution mechanism, some other
approaches consider using reputation to reward or punish the participants. Thus,
we also consider the Proof-of-Reputation (PoR) as related work where the rep-
utation serves as incentive to push the nodes to participate in the distributed
consensus [8,14,19]. PoR is used to replace the Proof-of-Work (PoW) consensus
essentially to reduce the heavy computation power requirement and increase the
scalability of the blockchain P2P network, while PoR itself should resist against
the attacker whose objective is to get high reputation. The PoR-based consensus
often allows the node having the highest reputation to sign the block, or uses the
reputation to weight the vote of the node. That is different from our approach,
as we encourage every node to share the new detection signature, and also the
reputation is not used to weight the node’s vote.
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2.2 Detection Signature Verification

There are a number of solutions and research about verifying the detection sig-
nature in order to reduce the false positive in the context of signature-based
NIDS, e.g., to track and analyze the protocol status code of the response to see
if it is valid or unexpected [10]; to use the context knowledge, i.e., the protected
network and system configuration to verify the alters [4]; to correlate IDS alarm
with network vulnerability [15] using vulnerability scanning tool like Nessus [1].
Another case in point is the challenge-based approach, which evaluates a node’s
detection correctness by sending challenges and receiving the corresponding feed-
back [11]. In particular, ATLANTIDES [3] is a notable approach that uses an
automatic anomaly-based analysis of the system output, which provides useful
context information regarding the network services. In other words, it takes an
approach by correlating the anomalies detected on the output with the alerts
raised by the NIDS monitoring the input traffic, and built on that, it can discard
a number of the latter as being false positive alerts. More specifically, a commu-
nication’s incoming traffic triggers the signature-based NIDS’s alarm, and then
ATLANTIDES uses anomaly-based IDS to monitor the outgoing traffic of that
communication. If the anomaly-based IDS against outgoing traffic alarms, that
is a true positive detection signature, otherwise, that is a false positive one.

All the above approaches focus on verifying the truthfulness of the detection
signature, while out work stresses on the efficiency of the detection signature.

3 Models

This section presents the models that our approach is based on, which includes
the system network model and the threat model respectively.

3.1 System Network Model

In our approach, the P2P network is decentralized with collaborative detection
communication to gain a coordinated defense. We define the (virtual) network
boundary that comprises standalone intrusion detection engine nodes across geo-
graphical domains. Thus, the system network boundary can be considered as one
autonomous system (AS) overseeing multiple domains, or as a single-domain with
multiple networking inbound points, e.g., firewalls or security-enabled controllers
in SDN network [6]. With this definition, we assume that there is no outsider
attacks threatening the coordination communication between the participants,
e.g., the Denial-of-Service (DoS) attack making the node unable to participate
the distributed consensus [9]. Therefore, we focus on the insider attacks which
compromise the participants to share bogus information and manipulate the
consensus. Those participants will comprise a permissioned blockchain P2P net-
work, and once such a network is created, the set of peers is static within the
defined network boundary.
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3.2 Threat Model

The threat model stresses on the insider attacks rather than the outsider attack
corresponding to the system network model mentioned above. Hence, the DoS
attack from outside against the availability of the participant nodes is out of the
scope. Also, we do not consider the insider-and-outsider collusion case, whereby
an insider adversary does not share newly discovered detection signature to other
participants while inform the zero-day vulnerability to the outsider adversary so
that the outsider adversary can exploit the vulnerability.

The objective of an insider adversary is to take malicious actions to disrupt
the coordinated defense. More specifically, the insider adversary aims to deliver
inefficient detection signatures across the P2P network to enforce other partic-
ipants to download the inefficient detection signature to update their detection
rule set ineffectively. Except for the single node’s bad actions, the insider attack
often involves the network-wide compromise to manipulate the consensus. That
means the adversary has compromised enough participants and can mislead the
entire system to make a wrong decision.

The following items are the potential attack vectors that an insider adversary
can leverage, which our approach is designed to defend against:

1. Flooding: A peer keeps sending tremendous malicious/inefficient detection
signatures to other peers to waste their computation resource.

2. Malicious injection: A peer submits a malicious/inefficient detection sig-
nature to the other coordinated peers, which increases the false alert ratio.

3. Collusive verification: Multiple peers collude together to manipulate the
distributed consensus to affect the verification result. The objectives of this
vector can be i) to share and verify a malicious/inefficient detection signa-
ture (collusive injection); ii) or to defame a valid/efficient detection signature
(collusive defamation).

4 Design

This section proposes the system architecture overview, the efficiency calculation
method, the distributed verification consensus, and the retribution mechanism
as follows.

4.1 System Architecture Overview

An overview of the system architecture is presented by Fig. 1. In our approach,
the blockchain is permissioned, and a registered peer can play two alternative
roles, donor or verifier. Also, according to our system network model mentioned
in Sect. 3.1, the donor and verifiers can monitor different domains/networks.

When the peer is a donor, it submits detection signature to the P2P network;
as a verifier, the peer needs to verify the received detection signature to report
the verification result to indicate the efficiency of the detection signature. With
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Fig. 1. An overview of the architecture design: it includes n peers; when 1 peer plays
as a donor, the rest of the peers play as verifiers.

that, for each detection signature transmitted, there must be a donor and the
rest peers become verifiers in nature. We define the efficiency of a detection
signature as the presence of the detection signature across the verifiers. If a donor
circulates a detection signature, the other peers as verifiers need to examine the
presence of the detection signature separately. That means each verifier checks
its local rule-sets to see if the examined detection signature exists or not. Thus,
if a detection signature presents more times across the peers, it has the higher
efficiency. We propose a retribution mechanism (see Sect. 4.4) to incentivize the
peers to contribute to verifying the efficiency of the detection signature.

In Fig. 1, assuming there are five peers in the blockchain P2P network, when
one of them acts as a donor to push a detection signature file ID (SFID), other
peers will play as the verifiers to download and verify the new detection sig-
nature separately. It is worth noticing that in practice, people do not directly
submit the detection signature file to the blockchain, since storing big size file
(like the detection signature file) in blockchain ledger is not economical. Thus, we
employ the InterPlanetary File System (IPFS) [2] to store the raw detection sig-
nature file, whereby a SFID will be given by IPFS. Thus, the donor just submits
the SFID representing the corresponding detection signature to the blockchain,
and the verifiers can use the SFID to request to the IPFS for downloading the
detection signature for verification.

The distributed verification carried out by multiple verifilers is asynchronous,
since every domain has its own context. When a verifier gets a verification result,
it needs to report the result to the smart contract. Meanwhile, the consensus
checker of the smart contract keeps track of the reports from the verifiers. Once
the results achieve a consensus threshold, the smart contract can make the con-
sensus decision and execute the payout enforcer to perform the retribution.



A Blockchain-Based Retribution Mechanism 63

4.2 Efficiency Calculation Method

The verification method is that the verifier examines the presences of the down-
loaded detection signature in its own rule set (assuming one presence denotes
that the verifier convinces itself that the detection signature is valid by certain
checking approach like [3,4,15]). Thus, we define the peer/participant as p, the
rule set of pi as Ri, where i ∈ {1, 2, ..., 3n + 1} (when 3n + 1 is the total num-
ber of the peers participating in the P2P network to support the n-compromise
resistance), the detection signature as s, the count of the presence of s in Ri as
xi ∈ Z. Thus, if s /∈ Ri, xi = 0; if s ∈ Ri, xi � 1. Also, we define the total
number of the rules in Ri as yi, and the efficiency of s calculated by pi as fsi .
Thus, fsi can be calculated by the following Eq. (1):

fsi =
xi

yi
× 100% (1)

All the verifiers need to report the efficiency of s from their own perspectives
respectively to the smart contract. If fsi � 50%, the smart contract considers
that s is efficient for pi; whereas if fsi < 50%, the smart contract considers that
s is inefficient for pi. The smart contract counts the number of p who reports
the efficiency of s which is greater than or equal to 50%, meanwhile, counts
the number of p who reports the efficiency of s which is less than 50%. These
two counted numbers will be used to make an unanimous decision based on a
distributed consensus (see Sect. 4.3) as an overall verification result to s.

4.3 Distributed Verification Consensus

The distributed verification consensus presented here is used to ensure the dis-
tributed verification of the efficiency of the propagated detection signature, which
is different from the distributed consensus used for mining the block in permis-
sionless cryptocurrency. Hence, we use the practical Byzantine Fault Tolerance
(pBFT)-based voting to sustain the distributed verification consensus, which
provides an “n-compromise resistance” against the up to n participants compro-
mise where we have 3n+ 1 participants in total. In other words, our distributed
verification consensus is based on a majority decision, whereby even 1/3 of the
participants are compromised to perform collusive verification to make an ineffi-
cient s become efficient, the whole P2P network can still work and resist against
such an insider attack.

It is worth noting that Ethereum itself does not use pBFT as the consensus
algorithm for processing the transactions/blocks, while we use pBFT with smart
contract just for voting (and verifying) for the detection signature file proposed
by any peer. With using the pBFT-based voting for the distributed verification
consensus, the smart contract only makes the unanimous decision saying that
s is efficient when more than 2/3 of the total participants reporting that s is
efficient. Otherwise, s is judged as inefficient. Thus, our system is strict to decide
an efficient s (i.e., must have more than 2/3 participants agree) while is loose to
decide an inefficient s (i.e., only needs at least 1/3 participants agree).
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Table 1. Operations of the retribution scheme vs. the threats.

Operation Threat

Deposit (donor) Flooding

Penalty (donor) Malicious injection

Reward (donor) Malicious injection

Reward (verifiers) Collusive verification

In addition, once the consensus is done, there must be a majority group and a
minority group, unless the number of participants agreeing on the efficiency of s
equals the number of participants agreeing on the inefficiency of s. We define the
total number of verifiers which report result as nv, the number of the majority
verifiers as nmajor and the number of the minority verifiers as nminor. Thus,
nv = nmajor + nminor. In the event that s is efficient, the majority group must
includes the participants supporting the efficiency of s, and the minority group
must consist of the participants reporting the inefficiency of s. In contrast, if s
is verified as an inefficient one, the majority group and the minority group could
include either kind of participants respectively, i.e., the majority group could be
comprised of the participants supporting the inefficiency of s while the minority
group could consist of the participants supporting the efficiency of s, or vice
versa.

4.4 Retribution Mechanism

The retribution mechanism represents the reward and punishment methods
incentivizing the participants to contribute to donating and verifying the detec-
tion signature. To this end, we define three sorts of token-based operations:
deposit, penalty and reward. Table 1 summarizes these operations with the
threats (mentioned in Sect. 3.2) resisted against. These operations are detailed
as follows.

Deposit. The deposit operation indicates that one donor must deposit a number
of tokens accompany with the submission of s. We define the number of the
deposited tokens as d. Such an operation can effectively prevent the submission
flooding launched by the malicious donor, as now any donor has to deposit a
certain number of tokens for submission, meaning the submission is not free.

Penalty. The penalty operation towards the donor means that if the submitted s
turns out to be inefficient based on the consensus result reported by the verifiers,
then d will be deducted completely. Such as operation can effectively mitigate the
malicious injection including inefficient s, since if the submitted s is inefficient,
the deposit will be deducted as a penalty to the donor.

Reward (donor). The reward operation towards the donor denotes that if the
submitted s is verified as an efficient one, the donor will get the deposit back
and also get a number of extra tokens as reward for its contribution. We define
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the number of the reward tokens for the donor as rd. In our case, we specify
rd = d, which means the donor will get 2d back as reward, and that actually
awards the donor the number of tokens for one extra submission attempt. Such
an operation can incentivize the donor to submit efficient s in order to get the
deposit and the extra reward back.

Reward (verifier). Regarding the reward for the verifiers, we define the verifier
as vi where i ∈ {1, 2, ...3n} (as there is one out of the 3n+1 participants already
playing as a donor), the number of the reward tokens for all the verifiers as rv,
which equals the number of the deposited tokens from the donor, i.e., rv = d.
If the verifier belongs to the majority group, it will get a maximized reward,
defined as rv−max, and if the verifier belongs to the minority group, it will get
a minimized reward, defined as rv−min. Note that rv = rv−max + rv−min. In
addition, if nmajor = nminor, rv will be divided by nv, which then is allocated
to every vi equally, though this kind of event occurs occasionally. With that, we
define the reward per majority verifier as rper−major, the reward per minority
verifier as rper−minor, and the reward per verifier as rper−v (when nmajor =
nminor). Such an operation can incentivize the verifiers to report their verification
results, and also can resist against the collusive verification when the malicious
verifiers intend to make an inefficient s become an efficient s, unless the attacker
controls more than 2/3 verifiers of the whole P2P network1.

With the above mentioned reward operations for the verifiers, we can have
several payout cases. For example, we specify that d = rd = rv = 100, and there
∃vi reporting the verification result. Therefore, we can have the following reward
payout cases.

Case 1. When there is no vi in the minority group, i.e., nminor = 0, we specify
rv−min = 0 so that rv−max = 100. Hence, each v in the majority group will get
rper−major = 100

nmajor
tokens as reward.

Case 2. When there is vi in the minority group while nminor �= nmajor, we
specify rv−min = 1 so that rv−max = 99. Thus, each v in the majority group will
get rper−major = 99

nmajor
tokens as reward, and each v in the minority group will

get rper−minor = 1
nminor

tokens as reward.

Case 3. When nminor = nmajor, each v that reports verification result will get
rper−v = 100

nv
tokens equally as reward.

Algorithm (1) presents the verifier’s reward payout algorithm, which includes
the above three cases.

One example of the approach regarding verifying a detection signature as
efficiency is illustrated by Fig. 2. In this instance, the P2P network has 5 partic-
ipants. One p as a donor submits an SFID called “DS-file1” with 100 tokens as
deposit to the smart contract. The other four participants play as v to verify the
efficiency of the detection signature. Among these verifiers, three of them report

1 By contrast, to make an efficient s become inefficient, the collusive verification only
needs more than 1/3 verifiers of the whole P2P network. In our system, we consider
the “inefficiency becomes efficiency” more dangerous than the other way round.
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Algorithm 1. Verifier’s Reward Payout Algorithm
Require: 100 tokens deposited
Ensure: ∃vi reporting verification result
1: if nmajor == nminor then
2: rper−v = 100

nv

3: else
4: if nminor == 0 then
5: rper−major = 100

nmajor

6: else
7: rper−major = 99

nmajor

8: rper−minor = 1
nminor

9: end if
10: end if

Fig. 2. Sample interactions between the participants in our approach when a detection
signature is judged as efficiency.

the efficiency of DS-file1 greater than 50% (i.e., 65%, 70% and 55% respectively),
while one of them reports that this detection signature is inefficient since the
efficiency is only 30%. Upon that, the smart contract makes the consensus deci-
sion in terms of the majority results and judges DS-file1 as an efficient detection
signature. Thereafter, the smart contract returns the deposit 100 tokens and an
extra reward with another 100 tokens, i.e., 200 tokens altogether, to the donor
as it contributes an efficient detection signature to the whole system. Also, the
smart contract rewards the verifiers who report the verification results accord-
ing to the reward payout algorithm (see Algorithm (1)). Therefore, the smart
contract splits the 99 tokens proportionally in terms of the number of the major-
ity verifiers, i.e., 33 tokens per majority verifier, while still gives 1 token to the
minority verifier who claims that the detection signature is inefficient.

Because the design principal of the retribution mechanism is to encourage
every participant to work for verification, even though the result makes a verifier
belong to the minority group, the verifier still gets a minimized reward, but
surely the result making the verifier belong to the majority group will lead to a
maximized profit for the verifier.
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5 Implementation

This section presents the prototype including the system implementation and
the token values setup for validating the proposed approach.

For implementing the system, the participant nodes are deployed on Cloud-
Lab with the virtual machine (VM) running Ubuntu 18-64-STD by default set-
ting. On each node, we install Ethereum (Geth version 1.9.16-stable) and Solidity
(version 0.5.16) for solidity files compilation. Thus, we use those nodes to gen-
erate a real premissioned blockchain P2P network. Truffle (version 5.1.34) is
used to deploy the complied smart contracts on the locally created Ethereum
blockchain network. We also use web3.js (version 1.2.1) and truffle-contract (ver-
sion 4.0.31) to interact with the smart contract functions from our JavaScript
files. Also, we employ IPFS to physically store the real detection signature files
while only spread SFID on the blockchain.

The voting smart contract mainly consists of three functions, i.e., push SFID,
consensus, and reward payout. The push SFID function is used to allow the donor
to submit the detection signature to the blockchain P2P network, the consen-
sus function aims to tally up the verification results sent by the verifiers, and
the reward payout function is implemented in compliance with the retribution
mechanism.

Furthermore, regarding the token values setup in a permissioned blockchain,
the smart contract is initialized with a high amount of tokens to ensure that the
system has enough funds for rewarding the participants who make contribution
and in turn ensuring that the system can keep functioning for a long term.
For instance, the smart contract is initialized with 10 million tokens, and each
participant in the P2P network is credited with 1000 tokens initially by the
smart contract. The donor node has to firstly deposit 100 tokens with the smart
contract before it can write a SFID to the smart contract. Also, we specify the
extra reward for the donor as 100 tokens and the total reward for the verifiers
as 100 tokens as well.

In addition, the number of participant nodes (including donor and verifier)
could vary from 10 to 100 in our experiment setting. More details are presented
in the following experimental results.

6 Experiments

The section shows that several experiments are conducted built on the prototype
implementation, and the corresponding experimental results are presented for
evaluating our approach.

6.1 Computation Performance

First of all, we test the computation performance for carrying out different tasks
based on the prototype. Table 2 shows the computation overhead including CPU
usage, memory usage and execution time in terms of the corresponding tasks.
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Table 2. Performance of different tasks on blockchain.

Task CPU (%) MEM (MB) Exec. Time (ms)

Run geth 1.22 305.814 –

Deploy smart contracts 3.12 685.013 1683

Push SFID 4.72 68.36 144.63

Consensus 5.31 75.89 208.77

Reward payout 4.94 62.52 178.04

The blockchain network is initiated by running the Ethereum client (Geth)
and connecting the nodes with each other for forming the P2P network. This
Geth process continues running and takes 1.22% of the CPU and 305.814 MB of
the memory. Once the Ethereum nodes are initialized and connected with each
other, the smart contracts are then deployed to the blockchain network. This
process takes 3.12% of the CPU and 685.013 MB of the memory as it covers
many steps like the compilation of the smart contracts, initialization of smart
contracts, and finally deployment to the blockchain network. This process lasts
1683 ms (around 1.6 s).

The push SFID task utilizes around 4.72% of the CPU, takes 68.36 MB
of the memory, and spends around 144.64 ms for execution. Comparably, the
reward payout task utilizes around 4.94% of the CPU, takes 62.52 MB of the
memory, and spends around 178.04 ms for execution. The consensus task takes
CPU utilization of 5.31%, which is greater than the push SFID task and the
reward payout task, as the consensus task has higher complexity involved, i.e., it
has to keep track of the verification results sent by all the verifiers and maintain
the track of the participants belonging to the majority group and the minority
group respectively. The memory usage of the consensus task is also higher than
the push SFID task and the reward payout task, since the consensus task involves
maintaining the variables and array for storing the incoming efficiency results
from the verifiers, and also, it stores the information about the participant IDs
of the majority group and the minority group. Consequently, the consensus task
spends more time around 208.77 ms for execution.

6.2 Reward per Majority Verifier

We emulate the reward tokens for each majority verifier when there is no minority
verifiers and the submitted detection signature is verified as efficient. Figure 3
shows the result. It is apparent that the more majority verifiers involved, the
less reward each majority verifier can obtain. We can see that when the majority
group includes only 10 verifiers, each one can gain 10 tokens as reward, however,
when the majority group includes 100 verifiers, each one can only gain 1 token
as reward. That result informs that the deposit should be reconciled with the
scale of the P2P network, less deposit will decrease the verifiers’ incentive to
perform verification.
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Fig. 3. Reward per majority verifier.

Fig. 4. Detection file download time cost.

6.3 Detection File Download Time Cost

Figure 4 shows the time cost for downloading the detection files from IPFS. We
measure two sorts of files, i.e., one sort that the file size is 100 KB, and the other
sort that the file size is 500 KB. Note that in our system, each file just contains
one detection signature, and so the file sizes selected here are just in terms of the
typical cases in practice. When the verifier only needs to download one detection
signature file, it takes 1,445 ms for the 100 KB file size and 2,139 ms for the
500 KB file size on average respectively. It is obvious that the bigger file costs
more time for downloading. For example, when 100 verifiers go to download one
hundred 500 KB files, it takes 201,869 ms (∼202 s) altogether, by contrast, when
they go to download one hundred 100 KB files, it only takes 136,909 ms (∼137 s)
altogether. Further, according to the figure, we can see that the file-download
time for the 500 KB file size increases much faster than the 100 KB file size, as
the slope of the curve with the 500 KB file size is much steeper.
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Fig. 5. Networking overheads: Push SFID vs. Consensus vs Reward payout.

Thus, the detection signature file size should keep as small as possible, oth-
erwise it will cost more time for the whole verifiers to download it. Though
the verifiers download the detection signature file from IPFS in parallel, the
networking overhead is aggregated and increases dramatically.

6.4 Distributed Networking Overhead

Figure 5 presents the networking overheads in terms of the increasing number of
verifiers. It includes three curves, i.e., the push SFID time cost, the consensus
time cost and the reward payout time cost using average values with 95% confi-
dence interval. We can see that when there are 10 verifiers, it spends 1202.63 ms
for carrying out the push SFID task, 868.318 ms for performing the consensus
task, and 351.052 ms for taking the reward payout task. Also, when there are
100 verifiers on the P2P network, it spends 1208.6 vs. 8672.6 ms vs. 3726.28 ms,
respectively.

The push SFID task takes the largest networking overhead. This is because
during the push SFID process, the smart contract first checks whether the donor
node has enough tokens for deposit or not. After checking, it stores the SFID
value in temporary storage and emits an event notifying all the other participants
in the network that a new SFID has been pushed to the smart contract. This
further triggers the consensus process.
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The networking overhead of the consensus task is greater than the reward
payout task, as the smart contract has to keep track of the efficiency percentage
result sent by each participant. Also, in the consensus process, the smart contract
keeps track of the number of participants in both the majority group and the
minority group.

In addition, the reward payout task takes the least networking overhead,
since it utilizes the computation result calculated by the consensus function
about the participant IDs which come under either the majority group or the
minority group. The reward payout function then uses this information stored
by the consensus process to distribute the tokens among the majority group and
the minority group accordingly.

7 Conclusion

Collaborative intrusion detection system (CIDS) has a global view against the
network attack, whereby the shared security information including the detection
signature can help to build a coordinated defense. However, the existing CIDSes
often neglect the efficiency of the shared security information, which actually
not only consumes the storage resource and wastes the computational process,
but also brings security problems as the inefficient detection signature will raise
the false alert ratio. In this paper, we proposed a blockchain-based retribution
mechanism to incentivize the participants to verify the efficiency of the shared
detection signature for the CIDS. Thanks to the Ethereum blockchain financial
nature and the smart contract programmability, we facilitated the incentiviza-
tion by using Ethereum tokens and the distributed consensus with the smart
contract pBFT-based voting. The prototype and the corresponding experiments
demonstrated the effectiveness of the proposed approach.
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Abstract. The emergence of crypto currencies such as Bitcoin and
Ethereum have shown the value in decentralized technologies. The idea
of having 24/7 access to programmable money peaked the interest in
the field, and as a by-product, came the realization that the same core
technologies that enable programmable dog money, can enable highly-
available DNS services, highly-available storage services, 24/7 asset
exchanges, and peer-to-peer marketplaces to name a few. This paper
explores the use of smart contracts in multi-cloud environments in order
to facilitate business processes across multiple providers speaking differ-
ent languages in terms of policies, best practices, APIs, and SLAs.

Keywords: Blockchain · Decentralied applications · Smart contracts ·
Cloud

1 Introduction

Never before has a digital cash system been able to capture the attention of
major retailers, the media, and governments as Bitcoin [30], Ethereum [18], and
the many other alt-coin variants. Crypto-currencies became very appealing with
their promise of programmable money [9]. However, their true value is in their
enabling technologies, the blockchain and smart-contracts. These technologies
made it possible to design systems that could transact given a set of business
logic. In 2021, Blockchain funding grew 713% YoY to reach 25.5Bn USD [8].
Such rapid influx of funding has led to the emergence of new concepts such as
Decentralized Finance (DeFi) [33] and Web3.0 [39].

DeFi alone has well over 113Bn USD in funds locked by smart-contracts [33],
this means, programmable money locked by different applications running on
various blockchain platforms. This includes items such as Non-Fungible Tokens
[14], crypto-exchanges, crypto-lending, etc. Web 3.0 on the other hand intends to
remove the middle man from most interactions, making most applications true
peer-to-peer and fully decentralized.

Meanwhile, the Bitcoin network has shown to be highly resilient, provides
high availability and trust in its immutable ledger thanks to its proof-of-work
consensus mechanism [16,17]. The Ethereum network [18] does not fall behind
and provides more complex smart contracts. Blockchain at its core leverages
several concepts in the crypto community, from one-way hash chains [23,34], to
forward security [6], signature aggregation [29], as well as concepts from game
theory [28].
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Though they have their limitations, Bitcoin and Ethereum proved the viabil-
ity of decentralization at scale and their success motivated the next generation
of blockchain technologies [2,10,12,19].

Besides high availability, immutability, and the ability to run business logic,
decentralized applications benefit from the transparency of the logic running
within their blockchain networks. This means that we can verify what code is
running, and what data is being fed to the business logic. This makes it ideal for
scenarios where parties need to collaborate and guarantee that the intended logic
runs. Moreover, in the event something happens, blockchains are fully auditable
and code execution can be replayed. This enables us to design systems that
leverage blockchain technology to manage systems where multiple parties need
to participate without having to fully trust eachother.

This paper explores the use of blockchain in the context of multi-
cloud/hybrid-could environments. We present a storage tiering system that relies
on smart contracts to manage volume tiering and migration policies across var-
ious cloud providers.

2 Background

2.1 Bitcoin Blockchain

Fig. 1. Blockchain diagram

Bitcoin is structured as a peer-to-peer (P2P) network architecture on top of
the Internet. Each full node in the blockchain contains a full copy of the entire
blockchain, which contains all transactions dating back to the original Genesis
block (Fig. 1). This allows blocks to validate new blocks/transactions, while at
the same time, provide a high-degree of redundancy. Each full node requires
several tens of GBs of storage in order to maintain a full copy of the block chain.
Blocks are added to the network via consensus, which can be as energy-hungry
as Bitcoin’s proof-of-work, to more traditional approaches such as Hyperledger
Fabric’s Kafka-based ordering service [1,12].
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2.2 Decentralized Applications

Decentralized applications (dApps) were first introduced by Bitcoin [30]. Appli-
cations such as Namecoin or Colored coins used the ledger as a secure data store,
where they used the OP_RETURN operator/instruction to store encoded data
that could be publically verifiable. Ethereum further improved on the idea of
smart contracts by introducing the Ethereum Virtual Machine (EVM) and its
own programming language called Solidity [18]. The EVM allowed for more com-
plex programming models and implementations, thus becoming the de-factor
ledger of choice for most dApps. HLF [1,12] introduced the concept of chaincode
(smart-contracts) running within their own containers, which enables environ-
ment reproducibility. Unline the EVM, which requires code written in Solidity,
HLF supports golang natively, and has added support for other languages such
as Java and NodeJS.

Namecoin [32] was one of the first projects to leverage the Bitcoin blockchain
to build a decentralized version of a critical legacy system (DNS). Namecoin’s
DNS service was built around the Bitcoin blockchain, where entries were to be
stored as metadata within the blockchain using the OP_RETURN operator.
Due to the limitations of the Bitcoin blockchain, Namecoin decided to do a
full fork plus some additions of the Bitcoin code base. The blockchain allows
DNS entries to be registered within the Namecoin blockchain, making domain
ownership immutable and agreed upon a large number of parties. Each Namecoin
record consists of a key and a value which can be up to 520 bytes in size. Each
key is actually a path, with the namespace preceding the name of the record. The
key d/example signifies a record stored in the DNS namespace d with the name
example and corresponds to the record for the example.bit website. The content
of d/example is expected to conform to the DNS namespace specification [31].

Several approaches have looked at using the blockchain as a means to store
data. One of the most popular approaches is the Inter-Planetary File System
(IPFS) [7], which is growing in popularity among the community. IPFS allows
for truly decentralized storage. Filecoin [27] is yet another up and coming project
that incentivices parties to provide storage in exchange of filecoins. Block-
store [36], keeps block metadata in the Bitcoin blockchain, while storing the
actual block data in a Kademlia-like DHT (see Fig. 2). Similarly, Storj [38] and
MetaDisk [37] follow a similar concept, where block metadata is stored in a
traditional blockchain with a modified proof-of-work, while the data is erasure
coded and distributed among storage nodes in their network.

Decentralized identity [4,5,15,22,24,25] is yet another hot topic in the
Blockchain world, as it relies on granting users unrestricted access to the network.
For a more comprehensive survey on decentralized applications please see [3].

Most decentralized applications rely on a front-end application (UI/UX) that
allows users to interact with the blockchain. These UI/UX systems either talk
to some RESTFul APIs in the form of gateways, that serve as entry points to
ledgers, or they rely on a wallet type client that directly interacts with their
respective blockchains via some discoverable peers. Figure 3 shows an example
of a typicaldApp, where the user is shown accessing the same blockchain via a
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Fig. 2. Blockstore architecture

light-weight client (also known as a wallet), and through a web interface. One
key difference between the two approaches is that the wallet may have access to
the user’s keys, which control which assets he/she owns. In this model, assets
are user owned/user controlled. The second approach does key management on
behalf of the user, thus, not really user controlled nor user owned as the keys
that own the assets belong to the party providing the web portal. This is very
common in Cryptocurrency Exchanges.

2.3 Permissioned Ledgers

Bitcoin, Ethereum, and most crypto-currency variants are known as public per-
missionless blockchains. Public permissionless blockchains are meant to be used
by anyone who wishes it; the only requirement for participating on the network is
having a client that adheres to the blockchain’s protocol, and is able to discover
peers associated with the ledger. Users in these networks interact via the use
of public/private keys. Ideally, in such scenario, users will own the devices they
use to interact with the blockchain, as well as the device that has access to the
keys. As all assets owned on these blockchains are managed by their respective
keys. Thus, when a Alice needs to send Bob a bitcoin, all that she needs is Bob′s
Bitcoin address, which is derived from its public key. Her wallet then constructs
the transaction saying Alice sends coini to Bob, signs it, and broadcasts it over
the network. Bitcoin nodes then process the transaction by verifying that the
owner of the coini is indeed Alice by verifying against the public key provided
by Alice.

Bitcoin’s smart contract engine is stack based, so there is very limited what
it can do, in this case, a simple payment verification script is computed and
validated. Ethereum further enhanced its smart contract engine and made it
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Fig. 3. dApp sample architecture

Turing-complete, thus, Ethereum became the blockchain of choice for most par-
ties looking to deploy smart contract based applications. In this scenario, a smart
contract is compiled, and its bytecode is deployed. Users then invoke the smart
contract with the necessary data to execute the contract, while providing a small
fee called gas. Peers then pickup the invocation request, execute it, and agree on
the result via consensus. If something goes wrong, consensus will fail, however,
in the event of failure, users are still charged the corresponding gas amount.
Bitcoin miners charge a small fee to process the transaction, Ethereum does the
same via its gas concept. This is necessary as all transactions submitted to the
network must be processed, which takes up resources. Requiring transaction fees
is a mechanism that incentivices nodes to provide validation/transaction pro-
cessing services, as well as deterrents against possible denial of service attacks.
You can further limit resources spent on a smart contract by requiring higher
gas fees.

The freedom in public permissionless blockchains comes at the cost of higher
transactional fees, longer transaction validation times, lower transactions pro-
cessed per second, etc. The latter is due to the fact that these blockchains
have to perform resource-intensive consensus protocols, that may rely on brute-
force hashing. There are ledgers that try to minimize this as they move towards
other types of consensus mechanisms (e.g., proof-of-stake [10,11]). Other types of
blockchains include private permissionless (e.g., LTO Network), public permis-
sioned (e.g., Sovring [20] and Ripple [13]) and private permissioned blockchains
(e.g., Hyperledger Fabric [12,19]).
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We choose to work with permissioned blockchains at the enterprise-level as
they give us most blockchain features without the horrors of the wild-west that
are present in Bitcoin or Ethereum, moreover, since permissioned blockchains
require nodes to be authenticated, there is a certain amount of trust on the par-
ticipants, thus, the consensus mechanism can be easier on the wallet. Moreover,
since consensus can be lighter, this means that transaction throughput may be
higher in permissioned blockchains.

Hyperledger Fabric (HLF) supports a plug-in based architecture for various
components, including consensus. The default scheme uses Apache Kafka as its
ordering service, which simple orders transactions on a per-channel basis. The
idea of having separate channels allows for higher transactional throughput, as
peers can process transactions for multiple channels natively.

Fig. 4. Ordering service in hyperledger fabric [12]

Furthermore, HLF for example relies on the idea that a chaincode/smart
contract can be packaged, and deployed on the ledger. When the chaincode is
deployed and initialized, a container instance is created on each peer partici-
pating (subscribed) to the given channel (topic). This means that HLF is not
a single blockchain, but rather, composed of multiple individual chains (called
channels). Another benefit of the channel architecture is the data segregation,
so only peers who join the same channel can see the same data. A high-level
diagram of HLF’s ordering service is shown in Fig. 4.

2.4 Cloud Computing

With a projected revenue of US$397.90Bn in 2022 [35], worldwide adoption of
Public Cloud continues to increase YoY with an expected CAGR 2022–2027 of
15.97%. Cloud computing allows companies to reduce their overhead as they can
purchase compute and storage resources on the fly based on their demans. This
means that many companies may save money by adopting public offerings over
hosting their own services in their own data centers, where companies need to pay
for servers, IT departments, electricity, cooling, premises, etc. Rather, for some
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companies it is more cost effective to run lean IT departments and rely heavily on
the cloud. In some scenarios such move to the cloud may not be cost effective or
feasible. For example, companies with strict data compliance policies may not be
allowed to export data outside of their premises/geo locations. Another reason is
that some companies may prefer to optimize their own IT environments in order
to achieve better cost. This is why sometimes cloud-heavy companies choose to
move back from the cloud and run their own IT infrastructures. Some companies
may choose to take a hybrid approach, where they host some critical/sensitive
services on premise, while hosting other public cloud friendly services in the
cloud.

Though cloud computing has many pros, they are multi-tenant in nature,
thus, when a company uses cloud resources, they are actually sharing said
resources with other companies. In a sense, as cloud providers grow, they con-
tinue to centralize (from a service perspective) compute and storage services.
This means that in the event of a failure, unlike the old days, when a server
fails, the disruption was more or less contained to the company hosting the ser-
vice. In this case, when there is a cloud service disruption, it can affect hundreds
or thousands of companies [21].

Finally, cloud computing in general is the future of computing, thus, many
companies have joined its competitive landscape. This enables companies looking
for better service level agreements (SLAs) and better fault-tolerance, as well as
competitive pricing, to explore spreading their services across various providers,
and in many applications, support for multi-cloud deployments.

3 Smart-Contracts in the Cloud

One of the benefits of having competition in the cloud space besides pressured
innovation and better pricing, is the ability to spread application deployments
across various clouds, be it multiple public clouds, or hybrid-cloud environments.
This means that applications have to talk different languages (e.g., different cloud
APIs) as well as different SLAs. Such ecosystem is composed of multiple parties
that need to trust in a programmable way, where business logics can map to
policies and SLAs. These types of deployments are low-hanging fruit opportu-
nities for Blockchain. Blockchain, would privide a trusted common platform for
multi-cloud applications to deploy business logic that is agreeable across various
parties. It is transparent, auditable, and highly available. All qualities of outmost
importance in today’s rapid evolving IT world.

This section will explore one such use case that leverages the concept of
multi-cloud in conuction with blockchain technology in order to provide a com-
mon platform for the management and deployment of common IT service tech-
nologies such as Information Life Cycle Management, Storage Tiering, Change
Management, etc.
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3.1 Storage Tiering

Overview. Storage tiering helps organizations strike a balance between perfor-
mance and cost by moving data around different tiers to cope with swings in
demand. Tiering ensures that data sits on the most appropriate storage fabric
according to the application’s needs, be it latency or throughput. Most research
efforts have focused on traditional storage systems and tiering across different
disk types. For instance, hot data residing in Tier 2 (high endurance, high capac-
ity, 10K RPM HDs) can be migrated to high performance, high cost SSDs. This
process is called up-tiering, where you go from a lower class tier to a higher class
tier. Similarly, you can migrate cold data from a high tier (T1) to a colder tier
(T2). There are many types of tiers. There are usually several rules of thumb
with respect to how to map data to the right tier. For this, one of the main
metrics dynamic tiering systems use is IO density, which is a function of IO/sec-
ond/GB. Based on IO density we might decide to up-tier or down-tier storage.
Tiering can be done for object storage, file storage, and of course, the most pop-
ular, block storage. For Object/File storage you would look primarily at access
rate, whereas block storage you look primarily at IO density.

Table 1. Tier/IO density mapping for block storage

Storage Volume Tier Level IO Density (IO/second/GB)
Tier0 >=1
Tier1a 0.7 - 1.0
Tier1b 0.5 - 0.7
Tier2 0.1 - 0.5
Tier3 0.01 - 0.1
Nearline 0.0 - 0.01
Inactie 0
Unknown Null

Table 1 shows a traditional rule-of-thumb mapping between a tier and its
applicable IO Density. System administrators/automated systems will use these
metrics to decide where a particular volume should be mapped. Up/Down-tiering
a volume involves copying and moving a volume across tiers, these tiers could
be within a data center (traditionally), across data centers (same organization/-
cloud), and across different organizations (e.g., a hybrid-cloud model). Tiering
has many great benefits, but if not done right (e.g., not using the right policy),
there are many things that could go wrong, from a simple mistake like putting
a volume on the wrong tier, to more serious problems where the volume is lost
in-transit with no one to hold accountable. For instance, if a volume is pushed
to a tier in a remote organization (e.g., third party cloud), and the volume never
makes it to the remote organization, the question is then, what happened? Who
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is accountable? The third party that provides the block storage service? The
system administrator that defined the tiering policy? The engine that executed
the policy and did not check that the volume had made it to the third party
cloud (new tier)? What if an error in a policy resulted in massive losses for a
client, and in order to avoid consequences, the responsible party tampers with
the policy? Can they then deny any wrongdoing?

Our approach tries to solve these issues by providing a way to execute policies
in an automated fashion, while at the same time providing the means to have
accountability for such scenarios. We build on the concept of smart contracts,
where we have a fabric that will execute a policy (a smart contract), that has
been agreed upon and signed by multiple parties (the system administrator,
management, the third party storage provider, etc.), with the goal of introducing
accountability into the tiering process.

Storage Volume Tiering. Figure 5 shows a high level diagram of a tradi-
tional tiering solution. Storage is allocated and pooled into different tiers, in this
example, three tiers, Gold, Silver, and Bronze. When a file system is created/-
mounted, you then request to place the file system on a particular tier based on
business needs, performance needs, etc. This process follows simple rules devel-
oped by system administrators. Similar to the block storage scenario, what tier
to choose is left to the system administrator, or an automated system guided by
a set of policies/rules designed by the system administrator. Automated tiering
solutions like IBM’s Easy Tier, EMC’s Fully Automated Storage Tiering, and
HP/3PAR’s Adaptive Optimization, all rely on policies and best practices for
tiering. These polices are executed by a centralized server/manager, and pre-
defined. Often pre-agreed on, however, when you start engaging other parties,
the question then becomes, what policy should be implemented given that in a
multi-service provider environment, different best practices may be followed, thus
ending in scenarios where the end result deviates from what each party involved
in the tiering transaction expected. For instance, consider a scenario where we
follow Provider A’s guidelines for tiering based on best practices defined by our
architects, but once we start using tiers provided by third parties, which may
have their own policies for tiering, if our expectations are that IO density of
0.1–0.5 (exclusive) should go to Tier2, but the third party storage provider says
0.1–0.5 (inclusive) is Tier1. We want to down-tier, they want to up-tear, thus
leading to problems with respect to where data should reside. If something were
to happen where we cause downtime due to a tiering issue, the question then
arises, who is at fault? Both parties are following their own guidelines and best
practices. For example, our policy says Inactive and unmapped volumes (not
associated with a host - orphan) can be reclaimed, but a third party says such
volumes are just inactive, thus must be kept in Tier3. Or vice versa. Let’s say a
volume is deleted/reclaimed, who is to blame? What policy was followed? This
is particularly important when dealing with information life cycle management
(ILM) as a whole as it can be applied to tiering as well as backup and retention
policies.
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Fig. 5. Traditional tiering solution [26]

Leveraging Smart Contracts. In this work we propose the use of smart-
contracts to solve the best practices, policy mismatch, and provenance problem
inherent in today’s storage tiering and ILM solutions. Our work can be extended
to object, file, and block storage as our engine is technology agnostic. Similarly,
we could extend this work to incorporate other aspects of ILM such as backup,
recovery, and retention policies. Figure 6 shows a high-level diagram of our app-
roach. The blockchain fabric will be used to serve two purposes: 1) Provide
provenance of tiering/ILM actions by recording events in the form of prove-
nance metadata (e.g., hashes of what data is tiered, how much data, time, etc.),
this data is immutable, so there is no way to tamper with it. 2) We will use HLF
[1] for executing policies in the form of chaincode. In our multi-cloud environ-
ment we assume each cloud provider is represented as an organization, and each
organization can have any number of peers. Our chaincode endorsement policies
require at least one peer per organization to agree for consensus. We use leveldb
for a richer world state in order to support dynamic tiering look-up tables.
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Fig. 6. Smart-contract based tiering

First, consider the problem we face in Infrastructure-as-a-Service in multi-
Service provider environments, where storage architects have designed best prac-
tices and policies to best serve their client’s needs. As stated before, different
teams may come up with different solutions, as a result, there will be a mismatch
with respect to how to manage storage resources. For example, tiering, Provider
A may choose to define fine grained policies for tiering, where each tier (Tier0-
Niactive as shown in Table 1) has well defined IO densities, while Provider B
may choose to define a coarser grained set of policies for tiering, where each tier
is mapped to a premium level (a more abstract Gold, Silver, Bronze model as
shown in Fig. 5). In this scenario, the question then comes, a volume with 0.5 IO
density is mapped to Tier1b, Tier2, or Gold or Silver? This mapping needs to be
agreed on, and represented in an abstract model so that we can represented in
a generic, simple, yet auditable and error-proof contract that can be executed.
And in the event of an error with respect to where a volume is mapped, the
contract can be audited and there is non-repudiation as the storage architect-
s/administrators involved in the transaction signed off on the contract. Once a
mapping is agreed upon, the next step is to define the logic that will simply
tiering across organization boundaries. For instance, take Fig. 7, when a volume
enters provider B’s boundaries, the logic within Fig. 7 applies. If the volume’s IO
density is high, the volume will reside within GOLD TIER. Provider A would
have agreed to set the threshold of > 0.5 as GOLD TIER, so that in the event
that a volume goes through up-tiering/down-tiering, we will be able to assign
it to the right tier. Similarly, if a volume crosses Provider A’s boundary, there
should be a clear distinction in IO load between GOLD, BRONZE, and SILVER.
This is because each provider charges different premiums for the different tiers.
For instance, Tier0-Tier2 in Provider A is equivalent the Gold tier in Provider
B, with respect to IO load but pricing is much different. For instance, Provider
A’s premium fee for Tier0 is much higher than Tier1, while Provider B’s pre-
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mium for the Gold tier is equivalent to Tier1b/Tier2. As a result, in the event
volumes going from Provider B to Provider A, Provider B might want to state
that for his/her Gold tier volumes, they should be mapped to Tier1b/Tier2 in
order to respect the SLA guarantees offered to the consumer without incurring
extra cost due to tiering. Now, smart contracts can go beyond simple thresholds
and incorporate things like aggressive/conservative policies (last 45 historical,
spike, up/down tier) and the window-throttle for tiering (sync-rate).

Fig. 7. Tiering chaincode pseudocode

Once the policy has been abstracted, it is represented in chaincode as shown
in Fig. 7. All parties involved in managing the storage backend (e.g., our data
center admin, the third-party storage provider) will review and agree on the
chaincode to be executed. This chainode will exist within a common repository
where we have version tracking, users can push code/comments, and do audits.
The idea is that there will be full transparency in the process. Now, once the
chaincode is agreed upon, all parties (e.g., Party A and Party B) sign the code,
and the code is deployed within the blockchain fabric. The idea is that once code
is agreed upon, parties cannot deny reviewing it in case something goes wrong.
This will give us non-repudiation, so parties are forced to review and sign on any
commonly agreed policy. Because without the signatures (acknowledgement from
parties), the policy will not execute. Moreover, since this goes into an automated
system, whenever a volume’s IO exceeds a tier’s threshold, the data/volume is
then submitted to the blockchain fabric, where the chaincode to evaluate the
volume information is invoked, and the policy is executed by the fabric. Once
tiering is done, in the event somethings goes wrong, auditors can go back in time
and see when tiering was triggered, and what policy was executed (e.g., what
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chaincode was invoked). This also points to the repository that contains the
policy, all of it being immutable so no single party can tamper with the policy
or deny on agreeing on a particular policy.

Fig. 8. SmartContract-based tiering and information life cycle management for storage
infrastructure-as-a-service in a multi-service provider environment

Architecture. Figure 8 shows the steps involved in generating and executed
smart contracts for the tiering/ILM context:

1. All parties define their tiering policies
2. The policy generation engine consolidates those policies and represents them

as a smart contract
3. The smart contract goes through a review process following a devops process

and gets deployed on the blockchain fabric
4. The monitoring engine tracks Volume IO (File IO, Object Reads/Writes,

etc.), and periodically invokes the policy chaincode based on a tunable win-
dow. Furthermore, the monitor is responsible for validating the state of the
system, and check if it does indeed reflect the state in the blockchain. When
volumes are down/up-tiered, the world state of the system changes within
the blockchain fabric itself. So outside parties cannot modify the state of the
system without the monitor finding out.

5. The monitoring engine invokes the policy chaincode via its hash
6. The chaincode validates signatures and executes in the different peer-nodes,

running consensus on wether to tier, not tier (backup or not, migrate or not,
etc.)

7. Finally, the chaincode invokes the tiering engine to execute the up/down-tier
operation for the particular volume (or file/object).
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In the above model, the monitor and the tiering engine are oracles outside
of the blockchain, however, nothing would prevent us from running monitoring
chaincode that validate the state of the system. Similarly, the tiering engine logic
could also run within the blockchain fabric. This would also allow us to provide
a high-availability service, so even if one node goes done, the rest of the network
can still operate, and tiering/ILM functionality is not lost. Although we focus
on storage tiering/ILM, we can extend this process to many other storage man-
agement techniques. Each component in our infrastructure writes provenance
data onto the blockchain describing the different actions each component took.
Be it executing a tier policy, or how much data/number objects/number files
and tier source/destinations, or which chaincode was deployed by which parties.
This will allow us to have full transparency and provide auditing logic.

Each participating cloud provider could run a number of peers, thus, they
could fully monitor all the events in the tiering ecosystem, to make sure that
their SLAs are being respected, while performing the proper analytics and event
monitoring to provide optimal SLAs.

4 Conclusion and Future Work

In this paper we discussed the use of smart contracts in an enterprise scenario.
We showed a simple implementation of a storage tiering engine that allows vol-
ume tiering across multi-cloud environments with the assistance of a private
permissioned fabric. Future work includes exploring the use of dynamic pricing
for volume migration across cloud providers.
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Abstract. Since its introduction in Bitcoin, the blockchain has proven
to be a versatile data structure. In its role as an immutable ledger, it
has grown beyond its initial use in financial transactions to be used in
recording a wide variety of other useful information.

In this paper, we explore the application of the blockchain outside
of its traditional decentralized, financial domain. We show how, even
with only a single “mining” node, a proof-of-work blockchain can be
the cornerstone of a tamper resistant logging framework. By attaching a
proof-of-work to blocks of logging messages, we make it increasingly diffi-
cult for an attacker to modify those logs even after totally compromising
the system. Furthermore, we discuss various strategies an attacker might
take to modify the logs without detection and show how effective those
evasion techniques are against statistical analysis.

Keywords: Blockchain · Tamper-resistance · Logging

1 Introduction

Since its introduction, Bitcoin [23] has revolutionized the world of finance and of
distributed consensus. Systems such as Paxos [18] had previously provided decen-
tralized consensus, but these were fairly complex systems and did not guarantee
availability. In contrast, Bitcoin introduces Nakamoto consensus, a probabilistic
consensus that provides high availability. Since its introduction, other protocols
have attempted to improve upon its design. Ethereum [30] introduced quasi-
Turing complete smart contracts. Tezos [11] sought more graceful evolution of
a blockchain protocol by letting clients vote on blockchain proposals and auto-
matically upgrading to successful proposals, thus avoiding many problems with
hard forks. Several protocols sought to improve on the consensus mechanism,
either by modifying the proof-of-work mechanism [16,17,22] or by eliminating it
totally [7,12,15,28].

The blockchain is central to the design of Bitcoin1. With this data structure,
a block is chained to the previous block by a cryptographic hash. This chain of
1 We note that the original Bitcoin whitepaper [23] did not coin the term “blockchain”;

rather, the author refers to a “chain of blocks”.
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hashes continues back to the first block in the chain, referred to as the genesis
block. With this design, any change made to a block invalidates all subsequent
blocks. Conflicting blocks might both be valid, but blockchain protocols resolve
this by clear rules for prioritizing blocks; in the case of Bitcoin, the blockchain
with the most hashing power used in its computation is the highest priority.

The blockchain data structure has traditionally been used in decentralized,
distributed systems. In this paper, we show how the blockchain may be useful
in a centralized system.

We create a logging framework that stores its logging messages as transac-
tions in a local proof-of-work blockchain. If the system is later compromised by
an attacker, the blockchain helps to prevent the attacker from modifying the
logging messages without detection. An attacker could log fraudulent messages
after the compromise. They could even modify recent log messages by rewrit-
ing the blockchain and expending the necessary computation to redo the search
for valid proof-of-work solutions. However, the older the message, and the more
deeply that message is buried in the blockchain, the more difficult it becomes
for the attacker to tamper with the log without detection.

To evaluate our idea, we implemented our logging framework using the
SpartanGold blockchain framework [4]. We produced a dataset of 30 sample
blockchains in JSON format, and then experimented with various attacks.

Our results show that unsophisticated attacks where an attacker simply
rebuilds the blockchain from a specific block are easily detected. A more sub-
tle attacker would modify the block times so that each rebuilt block takes only
slightly longer than would be typical for a block to be produced. Our results
show that the attacker can only change the block creation times by a fairly
slight amount to avoid detection.

The algorithm used to detect this type of tampering is a deep learning model
trained on pairs of hash IDs and timestamp differences between the current
and previous block (this approximates the time required to create the current
block). We noticed that the model was not able to detect such an attack when
the difference between the timestamps was comparable with the average time
of the creation of a legitimate block. Precisely, the model became unreliable
when the range of time between the current timestamp and the previous one
was between 2 and 8 s.

Our defense gives the attacker a challenging dilemma. The more aggressively
the attacker increments the block time, the more likely they are to be caught;
however, if they are too cautious, an outside observer might notice the change
before the blockchain can be rebuilt.

2 Background and Related Work

Many have observed the potential utility of storage on the blockchain and its
value in providing a public, tamper-resistant data store. Indeed, storing data on
the Bitcoin blockchain was frequent enough that Bitcoin added support for an
OP RETURN opcode to allow the storage to be done in a more efficient manner.
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A few protocols have focused on using storage as part of their consensus. Per-
macoin [22] sought to reduce Bitcoin’s proof-of-work requirements by requiring
that miners also prove that they are storing a portion of the Library of Congress;
storage here is a “public good”, and is not intended to be used for storing arbi-
trary data. Spacemint [25] replaces the proof-of-work portion of Bitcoin with a
proof-of-space system; this data is “junk” data, in the sense that it has no utility
outside of the protocol.

Namecoin [24] is a fork of Bitcoin focused on storing arbitrary data, acting as
a decentralized and distributed key-value store. Ali et al. introduce Blockstack [2]
to serve as a decentralized public-key infrastructure (PKI); their initial model
used Namecoin, though they later migrated to Bitcoin due to the greater security
offered by the Bitcoin network’s stronger hashing power.

Ethereum offers storage on its blockchain, but it is expensive. Several
blockchain protocols have attempted to provide storage, including Filecoin [10],
Storj [27], Siacoin [29], and 0Chain [21].

Intrusion detection has been tackled with machine learning algorithms with
promising results. Since 1980, when the first intrusion detection system (IDS)
was proposed [3], the field experienced several evolving steps. Analytical and
statistical techniques have recently been substituted by machine learning mod-
els due to their superiority in detecting attacks. In [9], deep learning is compared
with traditional intrusion analysis showing how much more effective the appli-
cation of machine learning is in this field. Another example is the survey in [1],
where different machine learning techniques are analyzed and compared on net-
work intrusion detection. The survey concludes that the most widely applied
and best performing algorithm is deep learning.

Network Intrusion Detection Systems (NIDS) are among the most explored
fields where we find the application of IDS; however, it has been applied in a vast
range of areas, such as detecting compromised land vehicles and aerial drones.
In [26], the authors explore attacks to automotive Controller Area Networks
(CANs) applying machine learning techniques to identify the theft of a vehicle.
The work in [14] utilizes machine learning and blockchain technology to evade
intrusions in the piloting system of Unmanned Aerial Vechicles (UAVs). In this
case, the blockchain is used to share and upgrade several machine learning models
to ensure that the most updated one is being used at all times without external
compromising.

Biometric evaluation is also applied to identify intrusion. The work in [13],
for example, assumes that the intruder has access to real users’ gesture data and
applies Convolutional Neural Networks (CNNs) to detect tampering of the data
to bypass user authentication.

While many papers [6,8,19] have approached the conjunction of blockchain
technology and machine learning, there seems to be a lack in the literature when
we assume a complete compromising of the machines hosting the blockchain and,
thus, no applications of machine learning to detect compromised blocks have yet
been proposed to the best of our knowledge.
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3 Logger Design and Implementation

Our logging framework writes messages to transactions on a local blockchain,
helping to ensure the integrity of logging messages even should the system host-
ing the logs be compromised.

In this section, we briefly give an overview of the SpartanGold blockchain
framework, review the code for our logging library, and finally discuss possible
future extensions for the library.

3.1 SpartanGold Overview

SpartanGold [4] is a simplified blockchain written in JavaScript designed for
experimentation and education; as such, it is an ideal tool for our experiments.
Like Bitcoin, it uses the hashcash protocol [5] for proof-of-work consensus. How-
ever, there are some notable differences from Bitcoin:

– SpartanGold uses an account-based model, similar to Ethereum, rather than
Bitcoin’s unspent transaction output (UTXO) model.

– The proof-of-work target for mining a block in SpartanGold does not adjust
over time.

– SpartanGold does not support smart contracts.
– Transactions in SpartanGold are stored directly in the block, rather than in

a Merkle tree [20].
– A block in SpartanGold does not have a strict size limit.

Although SpartanGold does not support smart contracts, new functionality
can be introduced by extending the Miner or Block classes. The homepage for
SpartanGold2 includes several sample implementations of different blockchain
protocols.

The most notable limitation of SpartanGold for our purposes is that it does
not use a Merkle tree. In Bitcoin, all transactions are contained in a single hash
value (the Merkle root) that is hashed during the mining process. In contrast,
all transactions in SpartanGold are stored in a map; the full contents of the
map are directly hashed during the mining process. As a result, if there are a
large number of transactions, or even a single large transaction, the size of the
block might exceed the size of the hash function’s input; when this happens, the
mining power required to find a block is multiplied by the number of hashing
rounds required to hash the block once.

In our performance experiments, we avoided this problem by leaving the
blocks at a constant size. In a real implementation, we could resolve the issue
by extending SpartanGold’s Block class to store a Merkle root of transactions
rather than the transactions themselves.

2 https://github.com/taustin/spartan-gold/.

https://github.com/taustin/spartan-gold/
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3.2 Logging Framework Codebase

We adapt SpartanGold to add the functionality needed for a logging framework.
In our design, every log message writes a transaction to the blockchain. Every
transaction therefore must include both a logging level and the log message itself.
Since the time of the log message might not correspond to the time of the block,
every transaction must also include a timestamp.

Figure 1 shows the Logger class. The log levels specified as constants at the
top of the file (lines 8–9) are loosely based on the log levels for Apache’s Log4J
logging framework3. Convenience methods at the end of the file (lines 52–70)
write log messages at the corresponding levels. One exception is the Block TIME
level; our logging framework uses this level to track the time that the miner
began searching for a proof for the block. Every block should have exactly one
transaction with this log level.

The constructor (lines 13–16) initializes the blockchain, including setting the
proof-of-work target (powLeadingZeroes). It calls the initializeBlockchain
method (lines 35–46), which creates a new miner (line 33), makes the genesis
block (lines 35–42)4, and then triggers the miner to begin mining new blocks
(line 45). (The FakeNet class (lines 32 and 43) uses events to simulate network
traffic between clients and miners. It is not particularly useful in this case, but
is required boilerplate code.)

Once the logger is initialized, the startServer method (lines 18–29) will
start listening for incoming TCP/IP connections on the specified port. When a
message is received (line 21), the message is converted to a string (line 22) and
the logging level and the message are extracted from the string (lines 23–24).
This information is then used to invoke the log method of the logger class.

Most of SpartanGold’s standard classes work well for our implementation.
However, we extend SpartanGold’s Miner class to make LoggingMiner. Two
changes are worthy of closer attention.

The startNewSearch method is called whenever a search for a new block
proof begins. Its responsibility is to create the block of transactions and intial-
ize the proof field so that the proof-of-work search can begin. We extend this
method to add a special transaction with the timestamp of the block. The con-
stant BLOCK TIME LEVEL is set to 5, matching the BLOCK TIME constant defined
in the logging class. (As we shall see in Sect. 4.2, this method also gives us a
good hook to introduce a delay in block production, simulating an attack on the
log.)

3 https://logging.apache.org/log4j/2.x/.
4 The miner’s initial balance of coins (line 40) is required; since no coins are used in

transactions, the specific balance is not particularly important.

https://logging.apache.org/log4j/2.x/
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Fig. 1. Logger class
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The code for the startNewSearch method is shown below:

startNewSearch(txSet=new Set()) {

super.startNewSearch(txSet);

let tx = Blockchain.makeTransaction ({

from: this.address ,

nonce: this.nonce++,

pubKey: this.keyPair.public ,

outputs: [],

data: {

level: BLOCK_TIME_LEVEL ,

time: Date.now(),

},

});

tx.sign(this.keyPair.private);

this.currentBlock.addTransaction(tx);

}

The postLoggingTransaction method sends a transaction to the miner for
inclusion in the blockchain. It calls postGenericTransaction from its parent
class, which handles many of the banal details about posting the transaction.
Since we do not care about coins for these transactions, the ouputs field specify-
ing who gets paid is empty, and the fee of coins to pay the miner for including
this transaction is set to 0.

The data field of a SpartanGold transaction is deliberately unspecified to
allow for greater ease in expanding the code. In our case, we include the level of
the log, the message, and the timestamp.

The method is shown below:

postLoggingTransaction(level , message) {

this.postGenericTransaction ({

outputs: [],

fee: 0,

data: {

level: level ,

message: message ,

time: Date.now(),

}

});

}

3.3 Extensions

Our design uses a blockchain locally for storing messages. Given the blockchain’s
utility in decentralized systems, incorporating multiple servers is a natural exten-
sion.

Instead of sending transactions to a single miner, it would be straightforward
to send the transactions to a network of machines, allowing them to come to
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consensus through the usual mining process. This approach might be useful in
a company with a large network of machines.

Alternately, a smaller company might write their logs to an external
blockchain. This approach might raise concerns if the logs contain any confi-
dential data. Additionally, the cost of blockchain storage might be prohibitive.

Instead, if the logger periodically writes the hash of the latest block to the
external blockchain, then we can detect any tampering of the local log file.
However, it would not be possible to recreate the original logging data with this
approach.

4 Experimental Results

To validate our design, we have generated a series of blockchains to serve as
our dataset of untampered blockchains (that is, blockchains whose production
of blocks has been continuous). In Sect. 4.2 we then show how an attempt to
change a block is likely to be detected, especially if a substantial portion of
blocks must be rewritten to maintain the internal consistency of the blockchain
data structure.

A more subtle attacker might try to adjust the times of blocks to hide
the change. In Sect. 4.3 we show how this attack may still be detected unless
the attacker is able to keep the change in block times very minimal; we note
that keeping the block production timestamps within this level slows down how
quickly the new blockchain could be forged, and thus gives administrators more
time to recognize the discrepancy. All code and data samples are available at
https://github.com/taustin/hardenedLogger.

4.1 Untampered Blockchain Dataset

To generate a sample untampered blockchain, we ran SpartanGold with one
message per block until 1000 blocks were created. We repeated this process
30 times to create our dataset of untampered blockchains. The dataset was
generated on a MacBook Pro with an Apple M1 Pro chip with 10 cores, 16
GBs of memory, and running OSX V.12.4. We used SpartanGold v. 1.0.7. The
proof-of-work target was fixed at 19 leading zeroes (binary).

Each block was printed in JavaScript Object Notation (JSON). A sample
block is shown below, modified for readability:

{

"000001e2b8ae0d44446bafd9564c0733f0ce1ea0b4f732ead2cd06ae22619968": {

"chainLength": 4,

"timestamp": 1655527429332,

"transactions": [

[

"11f44ef63467c34abe83443d2093712d7871ad42646eb5f7a9defdd1bd354d8f",

{

"from": "Mw3+gRGVyOOaG9yWlL3bGHNSaFEkLTEmLE8xtoe4i2g=",

"nonce": 3,

https://github.com/taustin/hardenedLogger
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"pubKey": "-----BEGIN PUBLIC KEY-----\nMFwwDQYJKoZIhvcNAQEBBQ...",

"sig": "d1b095ca774163c09f98d4c3cd0de7961dc45a3487aa06d9d3092...",

"fee": 0,

"outputs": [],

"data": {

"level": 5,

"time": 1655527429332

}

}

]

],

"prevBlockHash": "00000543b2808fa8495ee488288a4f1b4731029e0b70ca994...",

"proof": 923677,

"rewardAddr": "Mw3+gRGVyOOaG9yWlL3bGHNSaFEkLTEmLE8xtoe4i2g="

}

}

The first hash is the block ID. Similar to Bitcoin, the IDs are generated in
the search for a valid proof-of-work; as a result, these IDs always begin with
several leading zeroes.

The timestamp field identifies when the search for a proof-of-work for the
block began. Contrasting this value with the timestamp of the next block indi-
cates the total time that was required to find a valid proof.

In SpartanGold, the proof-of-work is discovered by initializing the proof field
to 0 and then incrementing that field until the hash value meets the proof-of-work
target. Since we search through the space of proofs sequentially, there should be
a positive correlation between the proof and the duration needed to find the
block. Of course, an attacker would not have to follow this rule and could search
the space of possible proofs in any order that they desired.

Table 1 shows the average time to produce a block and the standard deviation
for all of the sample blockchains in our untampered dataset. Results are reported
with a precision of 5 digits.

4.2 Simple Attack

For our first experiment, we simulate an unsophisticated attack where the
intruder attempts to rewrite a portion of the blockchain and continue the logs
from that branch of the blockchain.

To simulate this attack, we introduced a pause at a randomly selected
block before the block production was allowed to continue. As with our benign
dataset, we produced 1000 blocks for each blockchain sample. For each of these
blockchains, a block in the range of 25–975 was selected randomly for the delay.
Other applications and system processes were allowed to run, simulating a real-
istic environment.

When the LoggingMiner class constructor is initialized, we specify the field
compromisedBlockNumber to indicate which block should be delayed; the dura-
tion of the delay is specified in the compromiseDuration field. At the beginning
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Table 1. Block production time

Filename Average block time Standard deviation

blockchain01.json 2706.9 ms 11560 ms

blockchain02.json 2265.3 ms 2258.1 ms

blockchain03.json 2286.6 ms 2153.1 ms

blockchain04.json 8535.3 ms 71270 ms

blockchain05.json 7088.5 ms 61485 ms

blockchain06.json 4927.2 ms 40207 ms

blockchain07.json 5134.8 ms 52046 ms

blockchain08.json 4601.6 ms 44676 ms

blockchain09.json 3733.5 ms 32390 ms

blockchain10.json 3121.5 ms 30224 ms

blockchain11.json 5958.3 ms 57157 ms

blockchain12.json 2322.9 ms 2378.4 ms

blockchain13.json 5115.6 ms 51169 ms

blockchain14.json 2237.8 ms 2134.1 ms

blockchain15.json 6853.3 ms 66749 ms

blockchain16.json 6074.8 ms 57827 ms

blockchain17.json 2242.8 ms 2170.0 ms

blockchain18.json 6100.8 ms 60305 ms

blockchain19.json 2231.5 ms 2197.9 ms

blockchain20.json 9360.7 ms 83588 ms

blockchain21.json 2324.6 ms 2432.3 ms

blockchain22.json 6999.8 ms 65890 ms

blockchain23.json 6224.8 ms 60495 ms

blockchain24.json 2348.0 ms 2299.4 ms

blockchain25.json 4669.7 ms 45306 ms

blockchain26.json 2266.0 ms 2452.6 ms

blockchain27.json 7160.8 ms 67987 ms

blockchain28.json 4129.9 ms 41964 ms

blockchain29.json 2257.5 ms 2252.5 ms

blockchain30.json 3104.3 ms 25419 ms

TOTAL 4479.5 ms 44271 ms

of the startNewSearch method, we introduce a check to see if the search should
be delayed; if so, setTimeout is called to reinvoke the method after the delay.
The compromisedBlockNumber is then deleted to allow the new call to continue
as normal, and we return from the method to prevent the search from beginning
earlier. After this check, the method runs as per normal. The code is shown
below:
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startNewSearch(txSet=new Set()) {

if (!! this.currentBlock && this.compromisedBlockNumber ===

this.currentBlock.chainLength) {

setTimeout (() => {

this.startNewSearch(txSet);

}, this.compromiseDuration);

// After compromise , the blockchain continues normally.

delete this.compromisedBlockNumber;

return;

}

super.startNewSearch(txSet);

// The rest of this method is elided for brevity.

...

}

When the delay was set to 5 min, the compromised block took the greatest
amount of time in two cases, and was among the 3 slowest blocks to be produced
in all cases. The results for a five-minute delay are summarized below.

File Time to mine block Order (out of 1000)

blockchain-rewritten1-05.json 301414 ms 3rd

blockchain-rewritten2-05.json 302700 ms 1st

blockchain-rewritten3-05.json 301815 ms 1st

blockchain-rewritten4-05.json 303038 ms 3rd

blockchain-rewritten5-05.json 305717 ms 2nd

We can improve the results by making the logging process a higher priority.
When we use the Unix nice command with a priority of -105, the compromised
block is the slowest to be produced in all but one of our test cases, as shown
below.

File Time to mine block Order (out of 1000)

blockchain-rewritten1-05-HP.json 300339 ms 1st

blockchain-rewritten2-05-HP.json 306931 ms 1st

blockchain-rewritten3-05-HP.json 302706 ms 1st

blockchain-rewritten4-05-HP.json 302156 ms 2nd

blockchain-rewritten5-05-HP.json 305554 ms 1st

We note that 5 min is also relatively recent activity. The deeper the change is in
the blockchain, the more likely it is that this attack would be detected. These
5 With the nice command, 0 is a normal priority task, 20 is the lowest priority, and

-20 is the highest priority.
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analyses do not attempt to account for the nonces, which would be positively
correlated with the proof-of-work. It also does not account for other activity on
the system. More careful analysis could consider these factors.

4.3 Subtle Attack

When the attacker attempts to recreate the blockchain by interrupting the cre-
ation of a block for a fixed amount of time, the machine learning model is
immediately able to recognize the discrepancy between the block ID and the
amount of time required to compute it. The detection rate, in this case, reaches
an accuracy close to 100%. The attacker needs a more subtle approach. Instead
of adding a fixed pause before computing new blocks, we introduce a pause that
lasts a different amount of time for each block. To simulate this, we modified the
timestamp of every recreated block by adding to the timestamp of the previous
block a random value selected from a specified range and, then, using this as the
timestamp of the current block. Note that the new timestamp cannot be less
than the timestamp of the previous block, that is, the new timestamp and the
previous one differ a specified number of milliseconds between 1 to the upper
bound of the range. For example, the attacker pauses the process for a random
number of milliseconds taken from the range 1 to 60000 (one min). In this way,
the model processes timestamp differences, that is, the distance between the cur-
rent timestamp’s block and the previous one, that are not fixed and that vary
randomly each time to imitate a more realistic scenario.

Fig. 2. Accuracy of the machine learning model for different values of the upper bound.

In Fig. 2, we see the results of this experiment while varying the upper bound
of the range from which the number of milliseconds are selected (from 1 to 180
s). We notice that, when the ranges are close to the legitimate average of the
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timestamp’s distances, the detection of a compromised block becomes unreliable.
This range is highlighted in red and is comprised between 2 and 8 s.

5 Discussion and Future Work

In this paper, we have shown how a logger with a local blockchain can be used to
detect log tampering. We have shown that a simple attack that only restarts the
blockchain log from a given block is easily detected, and a more subtle attacker
can only succeed by moving slowly, and thus opening themselves to a longer
window of detection while they rewrite the blockchain.

While we have focused on a single miner, we could easily expand the sys-
tem to write to multiple mining processes, or even to broadcast out to external
blockchain networks. which would strengthen the defenses of the log. An inter-
esting future direction of this research is to do so in a way that uses external
blockchains to strengthen the log’s defenses, but can do so in a cost-effective
manner.

We are also interested in further understanding the types of attacks that the
attacker could perform, and to further study detection techniques capable of
identifying these attacks.

Increased accuracy in detection could be achieved by applying different
machine learning techniques such as Profile Hidden Markov Models and Ensem-
ble Learning. The model could be trained on sequences of blocks’ information to
increase the ability to detect tampering. Furthermore, the hash ID can be com-
bined with additional block information to find the best combination of training
inputs to achieve both higher accuracy and higher efficiency.
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Abstract. Performance prediction in wireless mobile networks is essen-
tial for diverse purposes in network management and operation. Partic-
ularly, the position of mobile devices is crucial to estimating the per-
formance in the mobile communication setting. With its importance,
this paper investigates mobile communication performance based on the
coordinate information of mobile devices. We analyze a recent 5G data
collection and examine the feasibility of location-based performance pre-
diction. As location information is key to performance prediction, the
basic assumption of making a relevant prediction is the correctness of
the coordinate information of devices given. With its criticality, this
paper also investigates the impact of position falsification on the ML-
based performance predictor, which reveals the significant degradation
of the prediction performance under such attacks, suggesting the need
for effective defense mechanisms against location spoofing threats.

Keywords: Performance prediction · Location spoofing · Position
falsification · Mobile networks · Machine learning

1 Introduction

Performance prediction in wireless mobile networks is essential for network opti-
mization and management [8], application offloading decisions [10], deployment
of unmanned aerial vehicles (UAVs) also known as flying base stations [3], to
list a few. In fact, there would be different angles on performance prediction
in mobile communication, from low-level channel performance [11,12] to mobile
application/device throughput [6,8,10]. In this study, we focus on application
throughput of mobile devices for predicting and evaluating.

In the mobile communication setting, the position of mobile devices is signif-
icantly crucial to estimate the performance. Simply speaking, even for a single
mobile device, the measured performance of that device may show a high degree
c© The Author(s) 2022
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of fluctuation depending on its location (e.g., due to the density of devices, signal
strength, and interference/reflection). In this study, we investigate mobile com-
munication performance based on the coordinate information of mobile devices.
We analyze a recent 5G data collection [7], which contains a set of features
including the GPS coordinates, velocity, and application throughput informa-
tion of mobile devices, with a machine learning (ML) approach.

As the location information is key to performance prediction, the basic
assumption of making relevant prediction is the correctness of the coordinate
information of devices given. However, any malfunctioning of location chips
(e.g., receiving GPS signals) may result in an unacceptably erroneous estimation
(although rare). A more common scenario is location spoofing taken place inten-
tionally; that is, a location spoofing attack falsifying the position information
can be attempted with a malicious intent, which is one of the greatest secu-
rity concerns in mobile communication networks [4,9]. With its criticality, this
paper investigates the impact of position falsification on the presented ML-based
performance predictor.

While this paper presents our initial experimental results and observations,
there are several contributions non-trivial to the research community. Firstly,
this paper examines the feasibility of location-based performance prediction. An
interesting observation is that it is possible to estimate application throughput
with 80% accuracy using a small set of features readily available when estab-
lishing the communication channel. Secondly, the impact of location-spoofing
attacks on performance prediction is evaluated, with the intuition that location-
based performance prediction would be critical to such threats. The experimen-
tal result shows a significant degradation of the performance prediction quality,
signaling the need for effective defense mechanisms against location-spoofing
attacks to enable reliable estimations.

The organization of this paper is as follows. We first introduce the 5G dataset
employed for performance prediction in Sect. 2, with exploratory data analysis.
In Sect. 3, location-based performance prediction is discussed with our initial
experimental results for binary and multi-class classifications. Section 4 shows
the impact of location spoofing attacks on performance prediction using two
types of position falsification techniques (constant and constant-offset spoofing).
Section 5 provides a summary of closely related studies, and we conclude our
presentation with future research directions in Sect. 6.

2 Exploratory Analysis of 5G Dataset

This study employs a recent 5G dataset collected from an Irish mobile operator
network [7]. The data collection was made using different file access applications,
including file transfer and video streaming. The throughput of such applications
was measured in different locations and mobility options (stationary or driv-
ing), in addition to other channel and context information. The number of fea-
tures defined in this dataset is 26 features in total. Table 1 provides the features
referred to for our performance prediction study.
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Table 1. Selected features defined in the 5G dataset

Feature Description

Longitude GPS longitude of mobile device

Latitude GPS latitude of mobile device

Velocity Speed of mobile device (in Km/h)

SNR Signal-to-noise ratio (dB)

RSRP Reference signal received power

RSSI Received signal strength indicator

RSRQ Reference signal received quality (a ratio between RSRP and RSSI)

CQI Channel quality indicator

State Downloading or Idle

DL bitrate (Tput) Application-level download throughput (in Kbps)

Fig. 1. Throughput map based on the measurement, showing the feasibility of estimat-
ing throughput based on the coordinate of the mobile device. (Color figure online)

The number of samples is roughly 189K in the raw dataset. From the original
dataset, we remove data instances meeting any of the following conditions: (i)
DL bitrate=0, (ii) State=Idle, and (iii) if any feature contains a null value. Note
that the State feature defines the state of the download process, whether it
is downloading or idle (i.e., not downloading). After this removal process, the
pre-processed dataset contains 81,859 instances in total.
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Fig. 2. Measured throughput based on CQI values (from 1 to 15)

Fig. 3. Correlation matrix of the selected features (positive correlation → +1, negative
correlation → −1, less correlation → 0)

We carried out initial explorations to understand potential correlations of
the features in the throughput feature (Tput). Figure 1 shows the throughput
information on the coordinate space. The figure shows four different throughput
ranges: (i) Tput < 100 Kbps, (ii) 100 Kbps ≤ Tput < 1 Mbps, (iii) 1 Mbps
≤ Tput < 10 Mbps, and (iv) Tput ≥ 10 Mbps. From the figure, we can see
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Fig. 4. Feature importance (compiled by random forest): None of the features works
dominantly for predicting throughput (DL bitrate).

that the location information would be helpful for estimating throughput. While
some spots (colored in red or orange) show a relatively greater throughput, the
rest (in blue or dark blue) show quite low bit rates. The figure also reveals some
clusters having higher throughput.

The box plot in Fig. 2 provides the measured throughput over different CQI
values. The CQI of a mobile device is a feedback indicating the channel data rate,
provided to the base station (eNB). A previous study in [7] reported a partially
proportional pattern between CQI and throughput. Our experimental result does
not show such proportionality clearly; rather it shows different throughput ranges
for each CQI value.

To see how the features are correlated with each other, Fig. 3 provides a cor-
relation matrix. We can see that the feature of RSRP is strongly correlated to
RSSI, while RSRP is also somewhat correlated to SNR. Additionally, the feature
of RSRQ shows a high degree of correlation with SNR. For the throughput fea-
ture (DL bitrate), none of the features shows any strong correlation. In the next
section, we will examine the feasibility of throughput prediction using conven-
tional ML methods. In addition, Fig. 4 shows the importance of the features to
determine throughput, compiled by using a random forest classifier (described in
Sect. 3). While RSSI is important the most, the result shows any of the features
does not play dominantly for predicting throughput.

3 Performance Prediction

In this study, we reduce the performance prediction to a classification problem.
We employ several conventional supervised learning methods for making the
classification, as follows:

– k-Nearest Neighbors (KNN) performs the grouping of data samples based on
the proximity information. To classify, the class label most frequently found
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from its neighbors is assigned to the given data point (on the basis of the
concept of majority vote).

– Random Forest (RF) is a tree-based ensemble algorithm combining multiple
decision trees. The combining function incorporates the results produced by
individual tree trained in parallel with a subset of the data randomly allo-
cated, to make a final decision.

– Extreme Gradient Boosting (XGB) is also a tree-based ensemble method based
on a gradient descent algorithm. XGB builds one tree at a time, while multiple
decision trees are built independently in RF. This method is based on min-
imizing a loss function iteratively, which is the correction of errors observed
in the previous iteration.

The classification problem takes the input and the predicted class is produced
as the outcome. In this study, we set up three different feature sets to evaluate
their impact on the classification performance, as described in Table 2. We basi-
cally perform the performance prediction based on the position information. For
Set-1, it is reasonable to assume the velocity information is available when issu-
ing the prediction request, whereas the other features defined in Table 1 might
not be available before making the actual communication. Figure 2 shows the
correlation between CQI and throughput (although not strong), and Set-2 refers
to the CQI value in addition to the basic Set-1 features. Lastly, Set-3 refers to
the entire feature set defined in Table 2 except State and Tput.

Table 2. Evaluated feature sets for performance prediction

Set Features

Set-1 {Longitude, Latitude, Velocity} (default)

Set-2 {Longitude, Latitude, Velocity, CQI}
Set-3 {Longitude, Latitude, Velocity, CQI, SNR, RSRP, RSSI, RSRQ}

For actual evaluation, we partition the dataset into two disjoint sets for train-
ing (70%) and testing (30%). To report classification performance, we consider
two standard measures of Accuracy and F1-score: Accuracy is a fraction of the
correctly classified samples, while F1-score is a harmonic mean and balanced in
case of an unbalanced class distribution (i.e., majority vs. minority classes). To
consider a class imbalance concern in the evaluation settings, we mainly utilize
F1 score by default, unless otherwise mentioned.

3.1 Binary Classification Performance

We first evaluate the binary classification performance. Two classes are defined
as: low if tput ≤1 Mbps; high otherwise, in a balanced manner with respect to
the distribution of data instances. The Class-0 (low) contains 39,730 samples
(48.5%) and the Class-1 (high) does 42,129 samples (51.5%).



Impact of Location Spoofing Attacks on Performance Prediction 113

Fig. 5. Binary class classification performance: RF performs the best with Set-1, while
XGB performs consistently over different feature sets.

Figure 5 shows the prediction performance in F1 score. The evaluation result
shows that RF yields the greatest performance, while XGB shows the consistent
performance over the reliance on different feature sets. The KNN algorithm
shows slightly lower performance than the other two schemes. Note that we set
k = 11 that produces the best performance for KNN (between 1 and 100 for
the k value), while we simply take the default setting for RF and XGB (without
intensive optimizations).

An interesting observation is that referencing additional features would not be
helpful for improving the prediction performance. In fact, all the classifiers show
that using set-1 performs better than or at least equal to the use of other feature
sets. We conjecture that this is because any feature defined in Set-2 and Set-3 has
no strong correlation to the throughput feature, as depicted in the correlation
matrix in Fig. 3. The result here shows that the position information plays a
significant role for estimating throughput, and this is somewhat intuitive since a
mobile device may show a high degree of fluctuation in application throughput
depending on its location due to several reasons, such as the density of devices,
signal strength, and interference/reflection.

It is important to note that the features in Set-1 are readily available when
establishing actual communication channels, and it is possible to estimate appli-
cation performance (throughput) with 80% accuracy (precisely F1 score) using
the RF predictor. In contrast, the features additionally defined in Set-2 and Set-3
may not be available beforehand at the connection set-up time.
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Table 3. Class definition for multi-class prediction

Classes 3-class 4-class 5-class

Class-0 <0.1 Mbps <0.1 Mbps <0.01 Mbps

Class-1 [0.1 Mbps, 1 Mbps) [0.1 Mbps, 1 Mbps) [0.01 Mbps, 0.1 Mbps)

Class-2 ≥1Mbps [1 Mbps, 10 Mbps) [0.1 Mbps, 1 Mbps)

Class-3 – ≥10 Mbps [1 Mbps, 10 Mbps)

Class-4 – – ≥10 Mbps

Fig. 6. Multi-class prediction performance (RF): Defining a more number of classes
results in the significant degradation of the estimation performance.

3.2 Multi-class Prediction Performance

We also examine the performance prediction tools with multi-class classifica-
tion settings. Table 3 shows the class definition, for 3-class, 4-class, and 5-class
classification settings.

Figure 6 shows the multi-class classification performance for RF. For the com-
parison purpose, the figure includes the binary classification result as well, As
expected, defining a more number of classes results in the significant degrada-
tion of the estimation performance. For 3-class classification, the performance
goes down to 62% (from 80% when performing the binary classification). As in
the binary classification, the multi-class prediction result also shows using Set-1
performs better than using the other feature sets.

The other two classifiers (KNN and XGB) also showed the similar pattern,
with slightly lower performance than RF. Figure 7 shows the multi-class predic-
tion result for different classifiers when using Set-1. We can see that RF shows
the best performance consistently, while XGB performs better than KNN.
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Fig. 7. Multi-class prediction performance (Set-1): RF shows the best performance
consistently, while XGB performs better than KNN.

4 Location Spoofing Attacks

We next investigate the impact of location-spoofing attacks on the coordinate-
based performance prediction. In fact, location-spoofing attacks are one of the
critical attacks in mobile communication environments. A widely-used Vehicular
Ad-hoc Networks (VANETs) dataset, VeReMi, assumes five different types for
location spoofing attacks [2]: (i) Constant attack transmitting a pre-defined coor-
dinate, (ii) Constant offset adding a pre-defined offset to the original coordinate,
(iii) Random transmitting a random coordinate, (iv) Random offset providing
a random coordinate in a predefined rectangle around the original coordinate,
and (v) Eventual stop transmitting the current coordinate without any change
(although moving).

In this study, we evaluate the impact of spoofing attacks with constant spoof-
ing and constant offset spoofing. Again, the constant spoofing attack overwrites
the location information with the constant value. We chose five random positions
to simulate the constant spoofing attack (within the coordinate space). The sec-
ond scenario is the use of constant offset attack, in which a constant offset value
is added to the original coordinate. For the constant offset attack, we use the
notion of perturbation degree: In the coordinate space in the 5G dataset, it is
straightforward to calculate the width of latitude space (i.e., |x| = xmax −xmin)
and the height of the longitude space (|y| = ymax − ymin). The constant offset
for a perturbation degree p is defined as p × (|x|, |y|). For the constant offset
attack, we configure different perturbation degrees from 5% to 50% to define the
offset.

Table 4 shows the performance prediction result with and without spoofing
attacks. The experiment was performed with Set-1 for the binary prediction.
Since five different coordinates were randomly picked up, we report the result
with the average and standard deviation (for w/ spoofing). As can be seen from
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Table 4. Impact of constant spoofing attack (with Set-1)

Predictor Average F1 score

wo/spoofing w/spoofing wo/spoofing w/spoofing

KNN 0.77 0.524 ± 0.02 0.77 0.486 ± 0.08

RF 0.77 0.502 ± 0.02 0.80 0.342 ± 0.00

XGB 0.78 0.504 ± 0.01 0.78 0.344 ± 0.01

Fig. 8. Impact of constant offset spoofing attacks on performance prediction (binary
classification): Even a small perturbation degree (p = 1%) significantly impacts on
performance prediction, from 80% to lower than 60% in F1 score, regardless of classifier
types. Note that p = 0 indicates no spoofing attack applied.

the table, even this simple spoofing attack considerably degrades the prediction
performance. For instance, RF becomes degraded from 80% to 34.2% in F1 score,
while KNN is slightly less affected than RF and XGB.

The constant spoofing attack would be easily detected and resisted as it relies
on static positions. The constant offset attack is more complicated to detect since
the modified coordinate is based on the original location. Figure 8 shows the
binary classification performance over different perturbation degrees (p). Note
that p = 0 indicates no spoofing attack applied. As can be seen from the figure,
even a small perturbation degree (p = 1%) significantly impacts on performance
prediction, from 80% to lower than 60% in F1 score, regardless of classifier types.
With a greater degree of perturbation, the prediction performance drops below
50% if p ≥ 3% for any classifier. The result here signals the need for effective
defense mechanisms against location-spoofing attacks for reliable estimation of
throughput in a mobile communication setting.
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5 Related Work

A recent study in [6] investigated mobile bandwidth prediction using 4G and
5G datasets. For bandwidth prediction, the authors applied a Recurrent Neu-
ral Network (RNN) structure by formulating the prediction problem as a time
series forecasting. Their experimental result shows better performance than the
conventional univariate and multivariate prediction models. This previous work
assumes bandwidth prediction as a (continuous) regression problem, while our
study defines the throughput estimation as a (discrete) classification problem.

The authors in [5] evaluated the impact of location spoofing attacks using
the VeReMi dataset. In this previous work, two machine learning algorithms
of KNN and Support Vector Machine (SVM) were examined. The measured
detection performance against spoofing attacks shows over 99% (in recall and
precision). A recent study in [1] investigated the detection of falsified positions
and the corresponding attack types in vehicular communication networks using
a boosting decision tree ensemble technique. Our study analyzes the 5G dataset
to understand the impact of location spoofing attacks on performance prediction
(rather than detection of spoofed coordinates).

6 Conclusion

This paper investigates mobile communication performance based on the coor-
dinate information of mobile devices using an ML approach. Only using three
features of <Longitude, Latitude, Velocity>, we observed up to 80% correct
decisions (in F1 score) for binary prediction using a conventional random for-
est classifier. However, the experimental result shows the location-based perfor-
mance prediction becomes considerably degraded when assuming more than two
classes (i.e., multi-class prediction). This paper also investigated the impact of
location-spoofing attacks on the coordinate-based performance prediction, since
location-spoofing attacks are one of the critical attacks in mobile communication
environments. The location spoofing attacks significantly impact on performance
prediction from 80% to lower than 50% correct decisions, signaling the need for
effective defense mechanisms for reliable performance estimation.

In this initial study, we employed conventional ML methods (KNN, RF,
and XGB) for predicting throughput in a mobile communication setting. The
observed performance of 80% for binary classification could be improved by
designing more sophisticated learning models (e.g., using deep structures), which
is one of the future tasks of this study. Additionally, this paper showed the signif-
icant impact of location spoofing attacks on performance prediction by applying
two spoofing attack types (constant spoofing and constant offset spoofing). For
more a sophisticated ML model resilient to such attack types, it will be inter-
esting to apply other types of spoofing attacks (i.e., random, random offset,
and eventual stop spoofing) for evaluating the robustness to location spoofing.
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Another interesting research avenue is the investigation of defense mechanisms
against potential spoofing attacks, with the impact on performance prediction.
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Abstract. The use of IoT devices has significantly increased in recent
years, but there have been growing concerns about the security and pri-
vacy issues associated with these IoT devices. A recent trend is to use
deep network models to classify attack and benign traffic. A traditional
approach is to train the models using centrally stored data collected
from all the devices in the network. However, this framework raises con-
cerns around data privacy and security. Attacks on the central server can
compromise the data and expose sensitive information. To address the
issues of data privacy and security, federated learning is now a widely
studied solution in the research community. In this paper, we explore
and implement federated learning techniques to detect attack traffic in
the IoT network. We use Deep Neural Networks on the labeled dataset
and Autoencoder on the unlabeled dataset in a federated framework.
We implement different model aggregation algorithms such as FedSGD,
FedAvg, and FedProx for federated learning. We compare the perfor-
mance of these federated learning models with the models in a central-
ized framework and study which aggregation algorithm for the global
model yields the best performance for detecting attack traffic in the IoT
network.

1 Introduction

The global market for IoT is rapidly growing, which will rise from $250.72 billion
to $1.4 trillion from 2019 to 2027 [2]. Also, the Smart Home market is expected
to grow to $174 billion by 2025 from $55 billion in 2016. Currently, there are
over 175 million smart homes on a global scale. Some commonly used smart
home IoT devices include video-enabled door alarms, locks with remote access,
device-controlled burglar alarms, face recognition systems, and many more [3].
The advantages of IoT technology include the ability to access devices remotely
and automate tasks that have enhanced the overall experience in homes [1].
However, this improved communication has the risks of security exploits which
may expose data to unwanted sources. This can result in potential threats to
the environment in which the attacked device is located. The risk is higher when
the data is collected from multiple devices. Large, combined datasets can help
attackers learn patterns about the users and businesses. The security of these IoT
devices and data privacy is a very important issue that needs to be addressed.
c© The Author(s) 2022
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Anomaly network intrusion detection systems, which distinguish between
normal behavior and abnormal behavior, have been commonly used to detect
attacks towards IoT devices. A subset of anomaly-based network intrusion detec-
tion methods use deep network models to classify attacks and benign traffic.
Traditionally, machine learning models have been trained in a centralized frame-
work by collecting and storing data at a central server. However, this approach
increases security risks as data containing sensitive information can be compro-
mised due to an attack on the central server. Other risks include vulnerability
to data leaks during data transfer from individual devices to the central server.

With the increasing attention to data privacy, it is important to identify
alternative solutions that can ensure the security of IoT devices while protecting
data privacy. Federated learning is a promising solution to address the issues of
training machine learning models within a centralized framework. It uses a global
model to aggregate models trained on the devices. It helps prevent breaches of
sensitive data as the data is not shared across the network for machine learning
model training [4]. It eliminates the need for data collection at a central location
for model training. The devices use their own local data set to train the local
model. The trained model is sent to the global model for aggregation and an
improved updated version of the model is downloaded to the device for training.
The global model aggregates the local-device models without having the need
to be trained on the entire dataset.

In this paper, we explore and implement federated learning techniques to
detect attack traffic in the IoT network. We use MQTTset [5], a public dataset
to train simulated devices in a federated framework. Along with benign network
traffic, this dataset contains five types of attacks. We use this dataset to imple-
ment supervised and unsupervised deep learning models in a federated learning
framework. For supervised deep learning we use Deep Neural Networks and for
unsupervised deep learning we use Autoencoders. We implement three feder-
ated global model averaging algorithms - FedSGD, FedAvg, and FedProx and
perform experiments by adjusting model training parameters. To compare the
performance of federated learning with centralized learning, we also implement
similar models in a centralized framework by using accuracy as a performance
metric. The goal of this paper is to learn the performance of federated learning
framework for detecting attacks in IoT networks by using supervised and unsu-
pervised deep learning models, and determine which aggregation algorithm for
the global model yields the best performance.

2 Our Approach

2.1 Dataset

In this paper, we use a public dataset, the MQTTset [5] which contains data
from home-based IoT sensors. This dataset is also focused on the Message Queue
Telemetry Transport (MQTT) protocol, which is widely used nowadays in IoT
networks. To simulate the smart home environment, MQTTset includes IoT
devices of different natures, such as motion sensors, humidity, and temperature.
A tool called IoT Flock is used to generate network traffic in MQTTset. This
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tool allows the configuration of networks based on scenarios and protocol-specific
threats. The network consists of eight sensors and an MQTT broker. The IoT
devices are connected to this broker, and the communication uses MQTT Pro-
tocol. This data set contains legitimate traffic and attack traffic. It contains
five types of attacks namely Flooding Denial of Service attack, MQTT Publish
Flood attack, Slow Denial of Service in the Internet of Things environment (Slow
ITe) attack, Malformed Data attack, and Brute Force Authentication attack. We
grouped five types of attacks into a group labelled as attacks. Besides, the dataset
contains a total of 330,926 records and 34 columns.

Data Preprocessing. The data preprocessing steps are common for centralized
and federated learning. One key difference is that for supervised learning imple-
mentation we use the target column while in unsupervised learning we drop this
column so that the Autoencoder is trained without any labels as expected.

For binary classification, we group and relabel the five threat types as 1
and legitimate as 0. Therefore, all benign records are marked as 0 and attacks
are marked as 1. Next, since we perform categorical encoding by changing
the datatypes of all records to type “category” for consistency. This results
in the datatype of all data values to integer. Sklearn library [7] provides
train test split() method to split the entire dataset into train set and test set
with test size of 30%, which results in 231,648 records in the train set and 99,278
records in the test set for supervised learning. Since the Autoencoder is trained
only using benign data, we use 115,814 records for unsupervised learning.

Dataset Splitting for Federated Learning. In federated learning, the data
resides on the devices in the network that run machine learning models locally.
For our implementation, to simulate the federated learning setup, we distribute
the data locally among clients. The dataset used in our experiments has an
Independent and Identical Distribution (I.I.D). Considering the nature of the
dataset used, we split the MQTTset in an I.I.D manner. As the data samples
in this dataset are not dependent on each other and can be distributed inde-
pendently, I.I.D splitting is a natural choice. This splitting is used only for our
supervised learning experiments. The dataset is split based on the target column
which identifies each record as an attack or benign. However, when the data is
allotted to each client, it must be distributed based on the index of the data
record. We use a dictionary data structure to store the data for each client in a
<key, value> pair. Each client is the key, and the value is a set of data record
indices assigned to the client. The data dictionary contains only data indices
and actual data. So as the next step, we need to assign each client the actual
data record based on the indices assigned to it. To assign the actual record we
use a PyTorch data loading utility called DataLoader along with a custom class
that returns actual data record based an input index. We use this data splitting
technique to distribute data among each client.

2.2 Approach Overview

This section provides an overview of our approach for detecting attack traffic in
IoT networks. For the federated framework, we implement both supervised and
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unsupervised learning to compare how the attack detection performs on labeled
and unlabeled data. 1) For supervised learning, we use a deep neural network.
The performance of the global model in a federated framework depends on the
model averaging algorithm to improve the global model. We implement three
model averaging algorithms - FedSGD, FedAvg, and FedProx. For supervised
DNN in a federated framework, we implement all three algorithms to under-
stand the differences and learn which algorithm yields the best results. 2) For
unsupervised learning we use an Autoencoder. We use the FedAvg with Adam
optimizer for the implementation, because it produces the best results compared
to other algorithms we implemented for supervised learning.

To compare with the federated framework, we also implement supervised
learning and unsupervised learning in a centralized framework. In centralized
learning, we also use DNN for labeled data and Autoencoder for unlabeled data.
As the global model for centralized learning is trained directly on the centralized
data, there are no averaging algorithms required in this framework.

Federated learning is different from traditional centralized learning methods.
In federated learning, the interaction between the server and the client occurs
during the communication round. During each round, the clients only exchange
models while the data resides locally on each client. The approach is depicted
in Fig. 1a showing how we use federated learning in IoT networks. During the
initialization phase, each client is trained locally using the MQTTset distributed
among clients. The global model is initialized, which is not trained on any data.
The structure of the model is same as the local models. The local model on a
given client is initialized for local model training. The ways in which the clients
are trained and the global model is averaged depend on the specific algorithm
used in the implementation. The following steps are executed during each com-
munication round: 1) Each client receives a copy of the global model; 2) Each
client trains a local model using its local dataset over e epochs and l number of
local batches; 3) At the end of the round, the updated local models are sent back
to the central server, where all the models received are aggregated to update the
global model, which is a better version compared to the previous round. Steps
1 − 3 are repeated for each round as the global model learns indirectly from
individual local models without exchanging any data.

The evaluation phase is depicted in Fig. 1b. In this step, we use the MQTTset
test data for evaluation using the global model. The global model is improved
by averaging the local client model after each round based on the algorithm.
Therefore, it learns about the entire network through the averaged models. The
accuracy of the model is determined based on the output value of the correct
prediction.

Using unsupervised Autoencoders is based on the assumption that the attack
traffic will have features different from the benign traffic. During the training
phase, we train the autoencoder only on benign traffic. During the evaluation
phase, the test data contains both benign and attack traffic, so the global model
determines the reconstruction loss for both types of data. Our goal is to optimize
the encoder by minimizing this reconstruction loss. By training the autoencoders
on benign traffic data, we can identify the attack traffic during the evaluation
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Fig. 1. Federated training and evaluation phase

stage of the reconstruction loss. A threshold value is determined based on the
reconstruction loss of the benign traffic. Using the threshold value, we can classify
the traffic as benign or attack.

2.3 Federated Learning Algorithms

For supervised federated learning, we implemented three federated averaging
algorithms - FedSGD, FedAvg, and FedPro for local model aggregation to
improve the global model.

FedSGD. In federated learning, the global model can be improved by averag-
ing the gradients or weights of the local client models. In the FederatedSGD
(FedSGD) [8] algorithm, the model weights are updated by the Eq. 1 [8],

wnew = wold − (η ∗ g), (1)

where wnew represents the new weights of the model, wold represents the weights
before update, η represents the learning rate and g are the gradients.

Specifically, for the global model, the weights are updated as described in
Eq. 2 [8],

wnew = wold − (η ∗ (ΣK
k=1

nk

n
∗ gk)), (2)

where n represents the total number of data samples across all the clients, nk

represents the number of data samples and gk represents the gradients on Kth

client.
In a single epoch, the gradients do not get updated while the model weights

are updated. Gradients relate to the loss function used during the epoch. Accu-
mulation of gradients can cause two problems: the vanishing gradient problem
where the gradients become too small, and the exploding gradient problem where
the gradients get too large. Therefore, it is important that the gradients are
cleared at the beginning of each epoch.

FedAvg. Using the FederatedAveraging Algorithm [8] (FedAvg) the global
model is improved by averaging the model weights received from individual
clients. A ClientUpdate function accepts the arguments, virtual device, and
client dictionary. Each client dictionary contains the model, dataset, criterion,
optimizer, and loss. The ClientUpdate function is run on each client to train
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each client on its local dataset and update these models through the client dictio-
nary. During the training phase, the gradients are cleared, the loss between the
actual and predicted values is calculated and finally, the weights are updated.
At the end of ClientUpdate invocation, the trained model is updated in the
client dictionary and returned to the global server. A model average function is
then invoked to average the model weights calculated from the models trained
on each client using their local dataset.

FedProx. FedProx [8] is a generalization of the FedAvg algorithm. In the
FedAvg algorithm, during each round of global model update, not all clients
are included for model training. Hence, not all model updates from the clients
are included. This problem will affect the overall accuracy of the global model.

To improve the accuracy of the global model, the FedProx algorithm has been
proposed to improve the performance of FedAvg in terms of the clients included
during the global model update. Instead of excluding some clients, all the clients
are trained but the number of epochs over which these clients are trained may
vary across clients. We classify the clients included during each global model
update round into three major groups: K = Total number of clients; S = Selected
clients that during each round of global model update where S ∈ K; A = Active
clients that contribute to the model averaging step where A ∈ S; R = Rest of
the clients that belong to S but not A where R ∈ (S − A).

In FedAvg, the global model averages model weights from only the active
clients, while in FedProx, R clients also contribute to the model averaging steps,
thus expected to improve global model accuracy, and improve in fewer com-
munication rounds. In FedProx, we consider a proximal term which basically
calculates the difference between the client model and global model. We con-
sider the global model because it is better than the local client model at any
point. The proximal term improves the overall accuracy by improving the model
updates. In FedProx the weights are updated as described in Eq. 3 [9],

wnew = wold − (η ∗ (g + μ(wk − wg))), (3)

where μ is described as a parameter that is a re-parameterization of E [9]. The
other terms wk and wg represent the model weights of the given client and global
model weights, respectively.

3 Experiment Setup

We train and evaluate all the ML models using Google Colaboratory Pro with
GPU hardware accelerator and Google Drive to store the dataset. For federated
learning implementation for supervised and unsupervised learning, we simulate
the setup by creating virtual clients. We use a Python library called PySyft
which decouples private data from model training [10]. We use PySyft version
0.2.9 and Pytorch version 1.6. PySyft provides get() and send() methods for
exchanging models between the client and server.

For supervised learning, we implement a DNN with structure summarized
in Fig. 2. The activation function transforms the weighted sum of inputs into
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output for the node. We also use a rectified linear activation function (ReLU).
For the output layer, we use a Sigmoid activation function which transforms the
result into a value between 0 and 1. We also use a dropout to randomly ignore
neurons during the training process to prevent the model from overfitting.

The autoencoder implemented in this paper consists of 2 fully connected lay-
ers with ReLU and Leaky ReLU activation functions. The decoder has a similar
structure where the neurons are placed in an opposite way like the structure of
the encoder. The number of neurons in the input layer of the encoder and the
output layer of the decoder is the same as expected.

Fig. 2. Model summary for supervised DNN

4 Experiment Results

We present the experiment results in this section. We use the following perfor-
mance metrics for machine learning model evaluation. 1) Accuracy is the ratio
of correct predictions to the predictions made. As we use a balanced dataset
for our experiments, we can use accuracy as a performance metric to evalu-
ate the model. Logarithmic Loss is used to penalizing false classifications. Low
loss results in higher accuracy of the classifier. 2) A Confusion Matrix (CM)
describes the complete model performance. It contains four important values:
true positive where both actual and predicated classification is “attack”; true
negative where both actual and predicated classification is “benign”; false posi-
tive where the actual classification is “benign” but the predicted classification is
“attack”; and false negative where the actual classification is “attack” but the
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Fig. 3. FedSGD (supervised) with learning rate = 0.0001, epochs = 200

predicted classification is “benign”. The diagonal values represent the accuracy
of the model [11]. 3) Area Under Curve (AUC) is used with respect to binary
classification problems. The probability that a randomly chosen positive record
will be ranked higher than the negative record is indicated by the AUC. To plot
this, false positive rate and true positive rate are used. Greater values represent
a better-performing model. 4) The F1 score measures the accuracy of the test.
It is the preciseness and robustness of a model. As with AUC, the higher the F1
score, the better the performance of the model [11].

4.1 Federated Supervised Learning

For federated supervised learning, we train each client on local epochs and then
send the model parameters to the global model for averaging. In our experi-
ments, we use 10 clients, and each client has trained locally over 10 epochs. The
parameters averaged for the global model vary based on the algorithms. Some
train clients around epochs and use communication rounds for model averaging,
while other algorithms train clients on a single epoch, so the model takes place
in multiple periods on average and does not use rounds. We discuss these details
with the results of every algorithm in the following sections.

FedSGD. In the FedSGD Algorithm, the local clients are trained on a single
epoch and the gradient averaging is done after each epoch at the global model.
At the client level, we define parameters such as learning rate and batch size. For
FedSGD, the batch size is the number of records on each client. We conducted
a total of 6 experiments to evaluate the performance of the model using three
learning rates - 0.001, 0.0001, 0.00001, and in each experiment, we trained the
models using 100 and 200 epochs - 10 rounds per epoch for 10 epochs and 20
rounds per epoch for 10 epochs - to compare with other algorithms. The highest
accuracy of 78% is obtained for the model trained with a learning rate of 0.0001
and Epochs = 200. We use Pytorch SGD [12] optimizer and BCEWithLogitsLoss
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Fig. 4. Accuracy of different federated learning algorithms

[13] to calculate the loss. The result of this model is shown in Fig. 3. According
to Fig. 3a, the model has a high false negative and classified a large number of
attack records as benign. The AUC plot in Fig. 3b has a value of 0.78.

In Fig. 4a, we analyze the performance of the model by changing the learning
rate and the number of epochs. We learn that the highest accuracy of 78% is
achieved for 200 Epochs with a learning rate of 0.0001. For a learning rate of
0.00001, the model does not perform as well as that for other learning rates.
We can also see that the number of epochs affects the accuracy of the learning
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Fig. 5. FedAvg SGD Optimizer (Supervised) with learning rate = 0.001, epochs = 10,
rounds = 20

rate 0.0001 and 0.0001. We can conclude based on the results that the greater
number of epochs results in better accuracy.

FedAvg. In the FedAvg Algorithm, the local clients are trained on epochs and
the global model is averaged across rounds. Each client is trained over 10 epochs.
In our experiments, we use different optimizers with the FedAvg algorithm to
compare the performance. We perform 6 experiments each with SGD and Adam
optimizer separately. We evaluate the performance of the model using three
learning rates - 0.001, 0.0001, 0.00001. We observe that the highest accuracy of
95% is obtained for the model trained with a learning rate of 0.0001, Rounds 20
using the Adam optimizer.

The results of these models are described in Fig. 5 and Fig. 6. For the results
of the FedAvg-SGD Optimizer, in Fig. 5a, the classification report shows that the
accuracy rate is 78%, while the AUC value of Fig. 5b is 0.7844, which is similar
to FedSGD. The training loss in Fig. 5d is for a single client. It can be seen to
decrease after the first round of model averaging, and it remains stable after
increasing rounds. Based on the confusion matrix, we do not see a significant
difference between FedSGD and FedAvg-SGD results in terms of accuracy and
classification, but a higher number of benign records are correctly classified in
this case.

Figure 6 shows the results obtained using the Adam optimizer for model
training and the FedAvg averaging algorithm. FedAvg is different from FedSGD
in that FedSGD compares the local model with the model gradient. Compared
to previous results, we see a significant increase in model accuracy, and the over-
all model performance also improves. In Fig. 6a, the classification report shows
that the F1 scores for both attack and benign records are good. Similarly, the
confusion matrix in Fig. 6c has higher true positive and true negative values. The
AUC value of 0.9535 in Fig. 6b indicates that our model has a high probability
of correctly classifying attack and benign data. The results show that FedAvg
using Adam Optimizer is a better performing model.

Figure 4b shows that when the SGD optimizer is used with FedAvg, the
highest accuracy of 78% is achieved for a learning rate of 0.001 with model-
averaged for 20 rounds. The accuracy rate varies with the learning rate and
global model averaging rounds. These results are comparable to FedSGD, and
we see that the accuracy increases as the learning rate and rounds increase. The
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Fig. 6. FedAvg Adam Optimizer (Supervised) with learning rate = 0.001, epochs =
10, rounds = 20

Fig. 7. FedProx (supervised) with learning rate = 0.001, epochs = 20, rounds = 10

model does not perform well with for learning rate of 0.00001. In the case of
FedSGD the global model is averaged after every epoch in the client while in the
case of FedAvg, the model averaging occurs after several epochs on each client.
In our case, we fix the number of epochs on each client as 10.

In Fig. 4c, we observe a huge improvement in accuracy compared to other
models. Contrasted with SGD, the FedAvg algorithm uses the Adam optimizer
to perform better, with the same learning rate, and an average of 0.001 for 20
rounds. The highest accuracy rate is 95%, which is also the highest accuracy
rate obtained by the supervised learning model in the federated framework. We
see that the choice of optimizer during model training makes a difference in the
performance of the model. Even in the case when Adam optimizer is used, the
model accuracy is 78.30% for a learning rate of 0.00001 for both 10, 20 rounds.
The number of rounds over which the global model is averaged does not affect
the model accuracy significantly. Therefore, we can conclude that the choice
of optimizer and learning rate mainly determines the model performance of a
supervised DNN trained using federated learning and a global model aggregated
using the FedAvg algorithm.

FedProx. The FedProx algorithm uses a similar implementation as FedSGD and
FedAvg but uses an extra parameter μ, a variable parameter similar to learning
rate. We train the model using three learning rates - 0.001, 0.0001, 0.00001, and
each experiment used 10 and 20 rounds for training. Each client uses 10 epochs
for training locally. We perform a total of 12 experiments for FedProx to first
learn that the learning rate of 0.001 yields the highest accuracy for FedProx.
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Therefore, we perform additional experiments to understand how μ affects the
algorithm’s performance. We use a μ of 0, 0.5, 0.9. The results below are for
μ of 0.5 which indicates equal number of clients have 10 epochs and others are
trained over random number of epochs less than total number of epochs.

The results for FedProx are described in Fig. 7. Figure 7a shows that the
confusion matrix results are similar to that of FedAvg-SGD optimizer. We know
that FedAvg and FedProx algorithms are driven by a similar model averaging
logic but the difference is the number of clients that participate in each round.
For model training using SGD Optimizer, we see a similar result. In the case of
FedProx, the additional complexities are associated with a customized optimizer
that uses additional parameters based on the clients. Clients in FedProx are
trained in a variable number of epochs. Figure 7b shows the AUC value of 0.7607.
This is similar to the FedAvg algorithm using SGD Optimizer.

As shown in Fig. 4d, the global model achieved an accuracy of 76% with a
learning rate of 0.001 in 20 rounds of training. As we have seen in the other
models described earlier, the increased number of rounds improves the accuracy
of the model. The accuracy rate depends on the learning rate and the number
of rounds.

4.2 Federated Unsupervised Learning

We performed 9 experiments to train the unsupervised autoencoders in a feder-
ated setting with various parameters. We trained the model using three learning
rates - 0.001, 0.0001, 0.00001, and each experiment used 10, 20, and 30 rounds
for training. Each client uses 10 epochs for training locally. The model trained
after 20 rounds, and a learning rate of 0.001 achieved the highest accuracy rate
of 80%. We use Adam [14] optimizer and MSELoss [15] a function from Pytorch
to calculate the loss. For model averaging, FedAvg algorithm is implemented.

Since the reconstruction loss for attack traffic is higher than that of benign
traffic, we use the reconstruction loss for the classification problem. The recon-
struction loss for benign and attack traffic is shown in Fig. 8. We classify the
traffic as benign and attack based on a threshold value, which is calculated
using the normal distribution described in the Eq. 4 below.

Threshold = μ + σ (4)

The result of this model is shown in Fig. 9. Figure 9c shows that for the
selected threshold, the autoencoder can correctly classify a larger number of
benign records than the attack records. The right value of the threshold is impor-
tant for classification. If we use a higher threshold, we will see that all benign
records will be correctly classified, but it will also affect the number of attack
records that are misclassified. For unsupervised learning, as the model is trained
on an unlabeled data set, reconstruction loss helps to calculate the threshold
required for classification. We see that using Eq. 4 for determining threshold
value yields better results compared to the randomly chosen value.



132 G. G. Prabhugaonkar et al.

Fig. 8. Reconstruction loss for federated autoencoder (unsupervised)

Fig. 9. Results - federated autoencoder (unsupervised)

Fig. 10. Results - centralized DNN (supervised)

4.3 Centralized Supervised Learning

We trained a deep neural network in a centralized setting, where the DNN model
is trained on the complete data set. The highest accuracy of 96% is obtained for
the model trained with a learning rate of 0.0001, Epochs = 500. We use Adam
[14] optimizer and MSELoss [15] from Pytorch function to calculate the loss.
The result of this model is shown in Fig. 10. Overall, we see that Centralized
DNN has a high classification accuracy and a high f1 score for both attack and
benign labels.

4.4 Centralized Unsupervised Learning

For unsupervised learning, we train an autoencoder. The model trained with a
learning rate of 0.0001 can achieve the highest accuracy rate of 80% with 500
epochs. The result of this model is shown in Fig. 11. We see that the results
are similar to those of an unsupervised autoencoder trained using a federated
framework. The model can classify attack and benign records with an accuracy
of 80%.
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Fig. 11. Results - centralized autoencoder (unsupervised)

Fig. 12. Federated supervised learning-model averaging algorithms

4.5 Performance Comparison

In this section, we compare the performance of supervised and unsupervised
machine learning models trained in centralized and federated frameworks.

Federated Supervised Learning - Averaging Algorithms. For federated
supervised learning, we compared the performance of the global model averaging
algorithm results in terms of accuracy. As shown in Fig. 12, the FedAvg algorithm
using DNN trained with Adam optimizer on each client for 10 epochs and a
learning rate of 0.001 for 20 rounds perform best with an accuracy of more than
95%. Among other algorithms that use the SGD optimizer, FedProx has the
lowest accuracy which is close to 75%.

Federated - Supervised vs Unsupervised Learning. We compare the per-
formance of supervised learning and unsupervised learning in the federated
framework. As shown in Fig. 13a, the performance of supervised learning is better
than unsupervised learning due to the labeled data that can be used for model
training and evaluation. The accuracy of federated supervised DNN models is
around 95% while for federated unsupervised autoencoder, the accuracy is close
to 80%. For federated unsupervised autoencoder, we use the results of FedAvg-
Adam experiments for global model averaging. We conclude that supervised
learning performs better than unsupervised learning in a federated framework
for IoT attack detection.

Unsupervised - Centralized vs Federated Learning. We compare the
accuracy of unsupervised autoencoders implemented in federated and central-
ized frameworks. For federated unsupervised autoencoder, we use the results of
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Fig. 13. Performance comparison of different categories

Fig. 14. Comparison - supervised, unsupervised, federated, centralized learning

FedAvg-Adam for global model averaging. As you can see from Fig. 13b, there
is no significant difference between the results and the accuracy is close to 80%.
Thus, for real-time analysis of unlabeled data, we can use federated learning for
IoT attack detection to protect data privacy.

Comparison - Supervised, Unsupervised, Federated, Centralized
Learning. We compare the accuracy of supervised and unsupervised learning
in the federated and centralized frameworks in Fig. 14 and summarize our anal-
ysis as follows: 1) For supervised learning, federated and centralized frameworks
achieve similar accuracy close to 95%; 2) For unsupervised learning, federated
and centralized frameworks achieve similar accuracy close to 80%; 3) Among the
federated averaging algorithms used for supervised learning, FedAvg using the
Adam optimizer achieves the highest accuracy of 95%.

We also see a significant improvement in the accuracy of the used deep neural
networks implemented in a federated framework using MQTTset. Ferrag et al.
[6] achieved an accuracy of 82.60% for the federated DNN global model using IID
MQTTset after 50 rounds and 10 clients. We achieve an accuracy of 95% after
20 rounds. This is faster because of the Adam Optimizer and other parameters
used during model training.

As the global model is averaged using local models, the expectation is that
the global model has learned about the entire network through federated learning
so it should show similar results to the centralized framework. Our experiments
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proved that this is true and the centralized and federated frameworks result in
similar accuracy. Our centralized supervised Deep Neural Network also performs
better with an accuracy of 96% compared to the neural network model trained
on a balanced data set in [5], where the accuracy of 90.44% is achieved. We
understand that improvements in model configuration have improved our results.

We conclude that in federated and centralized frameworks, supervised DNN
and unsupervised autoencoders are effective in detecting and classifying attacks
in MQTTset.

5 Conclusion

In this paper, we used a public dataset called MQTTset to implement a classifier
that uses deep learning to filter IoT traffic. We implemented deep learning models
for supervised and unsupervised learning in a federated framework and compared
their performance with a centralized implementation. For federated learning, we
implemented three different types of federated averaging algorithms - FedSGD,
FedAvg, and FedProx, and compared how they perform to determine, which
algorithm performs better in our experimental setup. Our results showed that
federated learning is effective in determining attacks in IoT traffic using deep
learning models with supervised and unsupervised data.
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