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Katherine A. Wilkinson

Abstract

The muscle spindle (MS) provides essential sensory informa-
tion for motor control and proprioception. The Group la and I
MS afferents are low threshold slowly-adapting mechanore-
ceptors and report both static muscle length and dynamic
muscle movement information. The exact molecular mecha-
nism by which MS afferents transduce muscle movement into
action potentials is incompletely understood. This short review
will discuss recent evidence suggesting that PIEZO2 is an
essential mechanically sensitive ion channel in MS afferents
and that vesicle-released glutamate contributes to maintaining
afferent excitability during the static phase of stretch. Other
mechanically gated ion channels, voltage-gated sodium
channels, other ion channels, regulatory proteins, and in-
teractions with the intrafusal fibers are also important for MS
afferent mechanosensation. Future studies are needed to fully
understand mechanosensation in the MS and whether different
complements of molecular mediators contribute to the different
response properties of Group la and Il afferents.

Addresses
Department of Biological Sciences, San José State University, San
Jose, CA, USA

Corresponding author: Wilkinson, Katherine A (Katherine.wilkinson@
sjsu.edu)
Y (Wilkinson K.A.)

Current Opinion in Neurobiology 2022, 74:102542

This review comes from a themed issue on Neuroscience of Somato-
sensation 2022

Edited by Miriam Goodman and Diana Bautista

For complete overview of the section, please refer the article collection -
Neuroscience of Somatosensation 2022

Available online 14 April 2022
hitps://doi.org/10.1016/j.conb.2022.102542

0959-4388/© 2022 The Author(s). Published by Elsevier Ltd. This is an
open access article under the CC BY license (htip://creativecommons.
org/licenses/by/4.0/).

Introduction

The muscle spindle (MS) is an encapsulated sensory
organ located in parallel to the extrafusal muscle fibers.
It is composed of contractile intrafusal bag and chain
fibers whose polar regions are innervated by static and
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dynamic gamma motor neurons that control the intra-
fusal fiber length and by this maintain their sensitivity in
all contractile states [1]. The MS is also innervated by
stretch-sensitive Group la and Il afferents. These slowly
adapting low threshold mechanoreceptors report static
muscle length as well as muscle movement. The Group
Ia and IT MS afferents differ in their dynamic and static
sensitivities to stretch, innervation patterns, and gene
expression patterns [1—3ee]. The MS afferents are the
sensory part of the myotatic reflex, which is important
for motor control, coordinated movements, and balance.
MS afferent sensory information also provides the pri-
mary input for proprioception, the sense of body and
limb position in space [4]. The molecular mechanisms
by which MS afferents transduce muscle movement into
action potentials are incompletely understood, although
a variety of ion channels, synaptic-like vesicles, and in-
teractions with the intrafusal fibers are thought
to be necessary [5]. Here I will discuss the recent evi-
dence for molecular elements thought to be involved
and identify some unanswered questions in
MS mechanosensation.

PIEZO2 is necessary for MS afferent
mechanosensation

The PIEZOZ channel is a rapidly adapting, mechani-
cally sensitive, non-selective cation channel that has
been implicated in mechanosensation in a wide range
of cell types [6], including muscle proprioceptors [7,8]
and the Merkel cell—neurite complex, which is also a
slowly adapting low threshold mechanoreceptor [9,10].
Absence of PIEZOZ in dorsal root ganglion (DRG) or
mesencephalic trigeminal nucleus proprioceptors in
mice eliminates the rapidly adapting mechanically
sensitive current in cell bodies and causes defects in
balance and limb coordination [7,8]. MS anatomy and
innervation appear normal, but almost no stretch-sen-
sitive activity can be recorded from MS afferents
lacking PIEZ0Z, suggesting the need for PIEZOZ in
afferent endings for proper function [7]. Loss of
PIEZ02 in proprioceptors also leads to scoliosis and hip
dysplasia, similar to what was seen in mice completely
lacking proprioceptive innervation [1le]. The human
PIEZOZ protein is highly homologous to mouse
PIEZOZ [12] and mutations causing loss of function in
PIEZO2Z have been associated with rare genetic dis-
eases causing proprioceptive deficits (reviewed in
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Ref. [6]). The similarity in symptoms seen in human
patients and mouse models following loss of the
PIEZO2 gene argue that PIEZO2 is also necessary for
normal MS afferent function in humans.

PIEZO2’s rapidly inactivating currents in proprioceptor
somas do not match the slowly adapting currents elici-
ted in response to stretch, though. It 1s unclear how
similar soma PIEZOZ2 channel kinetics are to those of
the channel in the afferent endings, but the differences
might suggest the presence of modulatory influences.
One modulator is the molecular environment in which
the PIEZOZ channel is embedded. Unlike PIEZO1
which can be opened by force-from-lipids and lipid
membrane stretch alone [13], PIEZO2 activity seems to
rely both on the mechanics of the plasma membrane as
well as force-from-filament forces from the cytoskeleton
and extracellular matrix [6,14,15]. PIEZO2 can be
activated by membrane indentation on proprioceptor
cell bodies [7] as well as increased static plasma tension
caused by osmotic swelling [16]. Membrane composi-
tion and lipid bilayer rigidity also alter PIEZOZ
mechanosensitivity with margaric acid and decreased
levels of phosphoinositides inhibiting and stomatin-like
protein 3 (Szom/3) and cholesterol-rich lipid rafts
increasing PIEZOZ currents [14,17—19]. An intact
cytoskeleton is also necessary for PIEZOZ mechano-
transduction, as disrupting actin or microtubule poly-
merization decreases PIEZOZ2 currents [14,16,20,21].
Conversely, PIEZOZ currents in Merkel cells were
potentiated in the presence of paclitaxel, which pre-
vents microtubule depolymerization [21].

Additional proteins in the afferent endings may also
modulate PIEZOZ channel kinetics and contribute to
the slowly adapting response in MS afferents.
TMEM150c¢/Tentonin-3 was thought to be a mechani-
cally sensitive ion channel, but mechanosensitive cur-
rents in TMEMI50C expressing HEK cells are
eliminated following the elimination of endogenous
PIEZO1 expression [22], suggesting that TMEM150C
is not a channel but modulates mechanotransduction by
PIEZO channels. In agreement with this idea,
TMEM150c is not preferentially expressed in neurons
with mechanosensitive currents and selective knock-
down of TMEMI150C using siRNA does not alter
mechanosensitivity in DRG neuron soma [23]. How-
ever, others have shown slowly adapting mechanical
current in Piezol deficient cells treated with actin-
stabilizing agents [24], so whether TMEM150c¢ can
act as an independent mechanically sensitive ion chan-
nel in proprioceptors is still unresolved. TMEM150c is
present in MS afferent endings and loss of TMEM150c
leads to proprioceptive deficits and lower MS afferent
firing rates during stretch [25]. These effects could be
due to the ability of TMEM150C to enhance PIEZO2Z
currents both by prolonging the time to inactivation and
decreasing the activation threshold [26e]. Future

studies are needed to resolve whether TMEM150C and/
or additional proteins in afferent endings modulate
PIEZOZ2 mechanotransduction and allow for additional
mechanosensitive current during prolonged stretch.

Role of additional mechanically sensitive
ion channels

Additional mechanically sensitive ion channels,
including members of the DEG/ENaC and TRP fam-
ilies, have been identified in the MS afferents by
immunohistochemistry and/or RNA sequencing
[2ee,27], but their role in mechanosensation is even
less well understood. The spinal curvature phenotype
in mice lacking PIEZ0O2 in proprioceptors was slightly
different from that seen in Runx3 knockout mice, which
lack all proprioceptive innervation [1le], suggesting
the presence of additional mechanically sensitive ion
channels that could compensate for some of the effects
of gene ablation. Additional mechanically sensitive ion
channels are ideally situated to contribute ionic current
to maintain firing during sustained stretch. As potas-
sium current does not seem to underlie the abrupt
cessation of firing upon the release of stretch [28], it
seems likely that the closing of mechanically sensitive
sodium or cation channels is necessary to mediate the
abrupt cessation of firing when the muscle is short-
ened. If PIEZOZ is as rapidly adapting in the afferent
endings as it is in the soma, additional mechanically
sensitive 1on channels would have to mediate the
cessation of firing after stretch. Using RNAseq, six
mechanically sensitive ion channels were shown to be
differentially expressed in MS afferent subtypes. Eight
other mechanically sensitive ion channels, including
PIEZOZ, were found in all proprioceptor subtypes
[Zee]. This could suggest that different complements
of mechanically sensitive ion channels help differen-
tiate mechanosensitivity in MS afferent subtypes, but
this possibility remains to be experimentally tested.
Loss of the scaffolding protein Whirlin decreases
stretch evoked firing and firing fidelity [29]. Whirlin is
known to interact with mechanically sensitive ion
channels in other cell types [30] but its interactome in
MS afferent endings or whether it has a role in regu-
lating the subcellular distribution of the channels
within the endings remain to be determined [29].

Members of the DEG/ENaC family are the candidate
mechanosensitive 1on channels with the most
convincing evidence for contributing to MS afferent
mechanosensation. The @, B, and Y subunits of the
ENaC channels and ASICZ and ASIC3 have been
localized to afferent endings using immunohisto-
chemistry [27,31]. ASIC1, ASIC2, and ASIC3 have also
been shown to be expressed in MS afferents using RNA
sequencing [Zee]. Functionally, knockout of ASIC3 in
parvalbumin-expressing proprioceptors decreases sub-
strate-driven neurite stretch response in cultured DRG
neurons and causes proprioceptive impairments  viva,
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especially in the dark. Interestingly, though, MS
afferent firing was increased during dynamic stretch
but otherwise unchanged [31]. These results could
have been due to compensation by other ASIC subunits
or because ASIC3 is found primarily in Group II MS
afferents so the population responses are skewed to-
wards more dynamically sensitive Group la MS affer-
ents in the knockout animals [2ee 31]. Amiloride, a
non-specific blocker of DEG/ENaC channels, and its
analogs can decrease MS spindle afferent firing, but
caution should be taken when interpreting these re-
sults as DEG/ENaC channels are also found in both
intrafusal and extrafusal muscle fibers so the drug ef-
fects could have been due to changes in muscle tone
[27]. The MS afferent receptor potential is primarily
sodium, so the DEG/ENaC channels are well suited to
allow for more sodium current in addition to the mixed
cation current from PIEZO2 [28]. Additional func-
tional studies are needed to clarify the role of the DEG/
ENaC channels in MS mechanosensation.

Molecular determinants of mechanosensation Wilkinson 3

Vesicle-released glutamate is necessary for
maintaining MS afferent excitability

MS afferent endings contain glutamate-filled synaptic-
like vesicles that are released in a stretch and calcium-
dependent manner [32]. The primary transporter
transferring glutamate from the cytoplasm into the
vesicles in MS afferent endings is the vesicular gluta-
mate transporter 1 (VGLUT1) [33]. Blocking VGLUT1
using xanthurenic acid leads to decreased afferent
excitability. Decreased firing was observed particularly
during the static phase of a ramp-and-hold stretch,
whereas firing during the dynamic phase of the stretch
and during sinusoidal vibration were less affected
(Figure 1a—b). Similarly, animals lacking one copy of the
VGLUTT gene had lower firing rates during the plateau
phase of ramp-and-hold stretches but similar firing rates
during vibration as wild-type controls, confirming that
glutamate release is essential for static but not dynamic
sensitivity [34e]. As calcium has been shown to enter
the sensory terminal upon stretch, this vesicle-released
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Merkel-mediated firing

Similarity in mechanosensation in the muscle spindle and Merkel cell-neurite complex. Xanthurenic acid (XA) was used to block the packaging of
glutamate into synaptic-like vesicles and MS afferent response to ramp-and-hold stretch and sinusoidal vibration assayed before and after XA. MS
afferent firing was decreased or eliminated during ramp-and-hold stretch in the majority of afferents tested and firing at the end of stretch was affected
earliest (a). Even in some units that could not maintain firing during stretch, the response to vibration was unchanged (b; same unit as a; [34s]),
suggesting vesicle-released glutamate is required for static but not dynamic response to stretch likely via effects on general afferent excitability. (c)
Similarly, in the Merkel cell-associated AB afferent, preventing the Merkel cell from releasing synaptic vesicles (K14°°;R26™NT) preferentially decreased
firing during the hold phase of touch as compared to littermate controls (R26NT). A similar reduction in static touch response occurs if Merkel cells are
eliminated [37], PIEZOZ in Merkel cells is eliminated [9,10], or the B2 receptor is eliminated from the Af afferent [39]. (d). The mechanosensation model
proposed for the Merkel cell-neurite complex [39] is similar to that proposed here for the MS afferent. Touch is thought to open PIEZO2 channels in the
AP afferent to mediate the initial response. Opening of PIEZO2 in the Merkel cell then leads to synaptic-like vesicle release which is necessary for the
static phase response via some unknown pathway. Panels a and b taken from [34e] and ¢ and d from Ref. [39].
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glutamate is ideally situated to couple mechanically
generated receptor potentials with additional depola-
rizing current to maintain firing during sustained
stretch. Calcium ions could enter directly through
PIEZOZ but other voltage-gated calcium channels
might also contribute.

The time-course of vesicle release is such that gluta-
mate is likely to primarily act by increasing overall
afferent excitability, with the kinetics of afferent firing
determined primarily by the mechanically sensitive ion
channels and potentially voltage-gated channels.
Vesicle-released glutamate presumably acts on an
autoreceptor on the afferent ending, but the identity of
the glutamate receptor(s) is/are still to be determined.
Tonotropic glutamate recepror(s) could allow for the
quick flow of additional sodium current, while metabo-
tropic receptors would suggest modulatory effects on
other ion channels. Antagonists to the phospholipase-D
coupled mertabotropic glutamate receptor (PLD
mGluR) could block all stretch-sensitive firing, but it
took almost 4 h to do so, which 1s much longer than the
minutes required for effects to be seen after blocking
glutamate packaging [34e]. Kainic acid was also re-
ported to increase the firing rate in some [32,35], but
not all studies [34e], with the discrepancy potentially
due to receptor desensitization. All other drugs tested
targeting ionotropic and metabotropic glutamate re-
ceptors were ineffective, however, only whole nerve
firing in response to stretch and not the firing rates of
identified MS afferents were measured. Additionally,
these tests had a relatively low sample size (4—6), so
subtle changes in MS afferent firing could have been
missed [32]. Recent single-cell RNAseq studies in
proprioceptors have 1identified glutamate receptor
coding genes including NMDA, AMPA, and kainate re-
ceptor subunits, mGluR4, mGluR7, and mGIluR8
[2ee 3ee]. These results are likely biased towards re-
ceptor subtypes expressed in the soma, may miss genes
present at low frequencies, and do not provide infor-
mation about the expression at the afferent ending.
Immunohistochemistry on rat masseter muscle MS
afferent endings identified mGluR5 expression, but not
NMDARZB or GluR1 [36]. Once the glutamate re-
ceptor(s) involved are identified, the specific role of
vesicle-released glutamate in MS afferent mechano-
transduction will be better understood.

Interestingly, a similar role for vesicle-released neuro-
transmitters has been identified in the Merkel
cell—neurite complex. Elimination of Merkel cells [37]
or of PIEZO2 expression in Merkel cells [9,10] leads to
firing only at the beginning phase of the touch response.
This firing is due to the mechanically sensitive AP low
threshold mechanoreceptors (ILT'MRs), which also ex-
press PIEZO2Z [38]. Merkel cells also contain the ma-
chinery to release synaptic-like vesicles, and blocking
vesicle release phenocopied the effect of eliminating

Merkel cells entirely (Figure 1c) [39]. This suggests
that Merkel cell release of neurotransmitters is also
important for static phase firing of LI'MRs. However,
the identity of the neurotransmitter(s) involved and
how these effects are mediated is still controversial. One
study suggests that norepinephrine acting via the P
receptor is necessary to mediate prolonged static phase
firing in the Merkel-cell afferents ([39]; Figure 1d).
However, other studies have implicated Merkel cell
glutamate or serotonin release, and not norepinephrine,
as necessary for full touch sensitivity [40,41]. In
conclusion, both MS afferents and the Merkel-cell
neurite complex appear to use similar strategies of
vesicularly releasing modulatory components to
generate slowly adapting responses while relying on a
rapidly adapting mechanically sensitive ion channel
(Figure 1). The mechanisms by which these modulatory
components can help to mediate the unique slowly
adapting firing properties of MS afferents and Merkel-
cell neurite complexes remain to be determined.

Contributions of voltage-gated ion channels
to MS afferent mechanosensation

The complement of voltage-gated and other ion chan-
nels on the afferent endings, heminodes, and preter-
minal axons contributes to the overall excitability and
neuronal firing properties of MS afferents (reviewed in
more detail in Ref. [5]). Persistent inward sodium cur-
rents (INaP) have been implicated as important for
sustained firing in MS afferents as tonic firing can be
blocked using riluzole and phenytoin, which share only
the ability to block INaP [42]. Nay1¢ and Naygy
immunoreactivity at heminodes and preterminal axons
is observed, suggesting a role for those channels in spike
initiation and maintenance of repetitive firing. More
unexpectedly, Na, 1, Nay; 6, and Nay 7 are observed in
the sensory encoding regions of the MS afferent end-
ings, suggesting that INaP from these channels could
amplify the receptor current as it travels to the hemin-
odes [43ee]. More experiments are needed to clarify the
role of each of the Na, channels in the generation of the
receptor current, spike initiation, and tonic firing in
MS afferents.

Blocking calcium and calcium-activated potassium
channels, K(Ca), can alter MS afferent dynamic
sensitivity, although the specific channels affected
have not yet been identified [44]. The K(Ca) channel
SKZ has been observed in MS afferent endings, but
functional studies are necessary to understand its role
in mechanosensation [45]. Multiple voltage-gated
sodium, potassium, and calcium channels are found
using RNA sequencing in proprioceptors, although it
remains to be determined which channels are localized
to afferent endings [Zee 3ee46]. Interestingly,
though, MS afferent subtypes show differential
expression of K, channels, notably with Group Ia af-
ferents preferentially expressing Kvy; and Kvy;

Current Opinion in Neurobiology 2022, 74:102542
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[2ee,30e]]. Inhibiting the Kv;; and Kvy; channels in
DRG soma changes phasic firing in response to current
injection from putative Group la afferents to tonic
firing [3ee]. Whether this differential expression of K,
channels occurs on the soma and/or afferent endings
and contributes to the increased dynamic sensitivity
seen in Group la afferents as compared to Group II
afferents is currently unknown [3ee].

Molecular determinants of mechanosensation Wilkinson 5

Intrafusal fiber and MS afferent interactions
are important for mechanosensation

The MS is composed of chain fibers and 2 types of bag
intrafusal fibers which are differentially innervated by
static or dynamic gamma motor neurons. The fiber types
that an MS afferent innervates contribute to their dy-
namic and static sensitivities, although the relative
contribution of intrafusal fibers compared to afferent

Figure 2
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Molecular contributors to mechanosensation in muscle spindle afferents. (a) Schematic of the muscle spindle (MS), which is innervated by Group la
and Il MS afferents as well gamma motor neuron efferents. (b) Sensory endings in the MS afferent (gray) require the mechanically sensitive non-specific
cation channel PIEZO2 for normal function [7]. TMEM150c/Tentonin-3 is found in MS afferent endings and has been shown to enhance PIEZO2 current
and increase the time to inactivation [25,26e]. Additional mechanically sensitive ion channels have been found in MS afferents, including DEG/ENaC and
TRP family members, but future work is needed to understand their role in mechanosensation [2ee,27,31]. Synaptic-like vesicles containing glutamate are
released in a stretch and calcium-dependent manner and are necessary for maintaining afferent excitability and static sensitivity [32,34s]. The glutamate
receptor(s) (GluR) and signaling pathway(s) necessary to mediate the glutamate-induced effects are currently unknown. Voltage-gated sodium channels
(Nav) are located on MS afferent sensory endings and presumably amplify receptor current as it travels to the spike generating heminode [43ss].
Additional ion channels are necessary for receptor current generation and different complements of ion channels may underlie differences in sensitivity of
MS afferent subtypes [3ee]. Mechanical interactions with the intrafusal fiber bag and chain fibers are also important for MS afferent mechanosensation.
Acetylcholine is released from the MS afferent ending and binds to acetylcholine receptors on intrafusal fibers and decreases afferent sensitivity [47es].
(c) The heminode is the site of action potential generation and the complement of Nav and potassium channels and other ion channels can shape the
slowly adapting response of the MS afferent to stretch ([5,43e¢]; raw trace of MS afferent response to stretch in mouse shown above). Abbreviations:
VGLUT1 (vesicular glutamate transporter 1), VAChT (vesicular acetylcholine transporter), GIUR (glutamate receptor), AChR (acetylcholine receptor).
Figure modified from [34s]. Created with BioRender.com.

www.sciencedirect.com Current Opinion in Neurobiology 2022, 74:102542



6 Neuroscience of Somatosensation 2022

mechanisms is not well understood [ 1,44]. Recent evi-
dence suggests that in addition to the role of intrafusal
fiber mechanics on afferents, there is also cholinergic
signaling to the intrafusal fibers from the MS afferents
[4780,48]. MS afferents contain the machinery neces-
sary to release synaptic-like vesicles containing acetyl-
choline and the contact site on the intrafusal fibers in
the equatorial region of the spindle contain acetylcho-
line receprors [48]. Blocking acetylcholine receptors or
packaging and release of acetylcholine in an ex vivo
muscle nerve preparation with no gamma motor tone
increased MS afferent firing, presumably by altering
intrafusal fiber tone, although this remains to be
experimentally shown [47ee]. Future work is needed to
understand the role of this acetylcholine signaling
pathway during normal movement and disease.

Intrafusal fibers contain many of the same proteins as
extrafusal fibers [49], but until recently, MS effects
during neuromuscular diseases have been largely over-
looked. In two mouse lines with mutations modeling
different forms of muscular dystrophy, increases in MS
afferent response at rest and during sinusoidal vibration
were observed even though intrafusal fibers structurally
seemed less affected than extrafusal fibers [50]. Simi-
larly, in a mouse model of Amish Nemaline Myopathy,
loss of the slow skeletal muscle isoform of troponin T
caused changes in intrafusal nuclear bag fibers and
deficits in performance on the rotarod and balance beam
[51]. Additional neuromuscular diseases likely also have
MS impairments and understanding those effects may
suggest therapeutic treatments as well as provide
insight into the regulation of mechanosensation by
intrafusal fibers [52].

Summary

Recent work has suggested some key players in MS
afferent mechanosensation (Figure 2), but there are still
many unanswered questions about the identities and
exact role of the proteins involved. Current evidence
suggests that the primary mechanically sensitive ion
channel in MS afferent endings is PIEZO2 [7,8], but
that, additional molecular mediators are necessary given
that the MS afferent receptor potential is primarily
sodium [28]. Additional mechanically sensitive ion
channels from the DEG/ENaC and TRP families may
also be necessary for normal MS afferent mechano-
sensation [Zee,27,31], potentially by providing addi-
tional sodium current and/or by modulating the dynamic
sensitivity of the afferent. Additional molecular media-
tors including vesicle-released glutamate [34e], Na, ion
channels [43ee], TMEM150c [25], Whirlin [29], and
others are necessary for the generation of the slowly
adapting response of MS afferents. The complement of
sodium, potassium, and calcium ion channels at the
sensory endings, heminodes, and axons are also impor-
tant and differences in these channels may contribute to

the different responses of Group la and Group II affer-
ents [2ee,3ee 5 430e]]. Interactions with the intrafusal
fibers, including a recently discovered acetylcholine
signaling pathway [47ee], also regulate MS afferent
sensitivity. Variations in the complement of molecular
mediators found on Group la vs. Group II afferents may
help explain their unique response properties to stretch
[2ee,300,53]. Similarly, changes in gene expression over
time as well as structural changes may underlie the
developmental differences in afferent responsiveness
[2ee,300,53]. Other contributing ion channels and
signaling pathways are waiting to be discovered to pro-
vide a more complete picture of how the complex MS
afferent responses to muscle movement are generated.
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