
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Faculty Research, Scholarly, and Creative Activity

3-14-2023

Foregrounding the Code: Computational Chemistry Instructional Foregrounding the Code: Computational Chemistry Instructional

Activities Using a Highly Readable Fluid Simulation Code Activities Using a Highly Readable Fluid Simulation Code

Gianmarc Grazioli
San Jose State University, gianmarc.grazioli@sjsu.edu

Adam Ingwerson
San Jose State University

David Santiago
San Jose State University, david.santiago@sjsu.edu

Patrick Regan
San Jose State University

Hee Kun Cho
San Jose State University, heekun.cho@sjsu.edu

Follow this and additional works at: https://scholarworks.sjsu.edu/faculty_rsca

Recommended Citation Recommended Citation
Gianmarc Grazioli, Adam Ingwerson, David Santiago, Patrick Regan, and Hee Kun Cho. "Foregrounding the
Code: Computational Chemistry Instructional Activities Using a Highly Readable Fluid Simulation Code"
Journal of Chemical Education (2023): 1155-1163. https://doi.org/10.1021/acs.jchemed.2c00838

This Article is brought to you for free and open access by SJSU ScholarWorks. It has been accepted for inclusion in
Faculty Research, Scholarly, and Creative Activity by an authorized administrator of SJSU ScholarWorks. For more
information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/faculty_rsca
https://scholarworks.sjsu.edu/faculty_rsca?utm_source=scholarworks.sjsu.edu%2Ffaculty_rsca%2F3192&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1021/acs.jchemed.2c00838
mailto:scholarworks@sjsu.edu

Foregrounding the Code: Computational Chemistry Instructional
Activities Using a Highly Readable Fluid Simulation Code
Gianmarc Grazioli,* Adam Ingwerson, David Santiago, Jr., Patrick Regan, and Heekun Cho

Cite This: J. Chem. Educ. 2023, 100, 1155−1163 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Computational chemistry instructional activities are
often based around students running chemical simulations via a
graphical user interface (GUI). GUI-based activities offer many
advantages, as they enable students to run chemical simulations
with a few mouse clicks. Although these activities are excellent for
introducing students to the capabilities of chemical simulations,
the disadvantage is that the students’ experience is not
representative of how professional computational chemists work.
Just as it is important that students in an organic chemistry
instructional lab gain hands-on experience with equipment
commonly used by professional organic chemists, students of
computational chemistry must gain hands-on experience with
coding, as professional computational chemists do not rely on
GUIs; we write code. Motivated by the need for instructional activities that provide hands-on experience with computer code, a pair
of activities were created around a free lightweight (runs on standard laptops) open-source Lennard-Jones (LJ) fluid simulation code
written in Python, a programming language that prioritizes readability. The first activity, aimed at undergraduate physical chemistry
lab courses, involves students writing Python code in a Jupyter Notebook that is used to run LJ simulations and fit a van der Waals
gas model to data produced by the LJ fluid simulations. The second is a jigsaw activity, aimed at advanced undergraduate or graduate
students, where students are assigned different sections of the LJ fluid simulation code, and must demonstrate the functionality of
their section to the class by both giving an oral presentation and sharing a Jupyter Notebook demonstration of their own design.
KEYWORDS: Upper Division Undergraduate, Graduate Education, Physical Chemistry,
Computer-Based Learning, Distance Learning, Hands-On Learning, Internet/Web-Based Learning,
Computational Chemistry, Statistical Mechanics, Theoretical Chemistry, Thermodynamics

Advancements in computing power, high throughput
laboratory equipment, and other technological develop-

ments have led to computational methodologies taking on a
central role in the way that chemists work in areas ranging
from drug development to materials design.1,2 This paradigm
shift has made it paramount that chemistry students develop
the skills necessary to efficiently and effectively process,
analyze, visualize, and report findings from chemical data
using modern computational toolchains. Although software
packages like Microsoft Excel can be used for some data
processing tasks, these graphical user interface-based (GUI-
based) programs quickly become unwieldy for processing large
data sets, creating custom data visualizations, and multidimen-
sional analysis.3 Working with the massive data sets and
simulation tools that have become commonplace in the field of
chemistry requires proficiency with more powerful coding-
based software tools for data analysis and data management,
such as the wide variety of software libraries available for
Python and R. Python is one of the most popular programming
languages in the world, is the perennial favorite as the
programming language most frequently mentioned in job

descriptions on LinkedIn,4 and has seen a particularly strong
recent uptick in the scientific community.3 The Jupyter
notebook is a powerful interactive coding environment which
has also gained popularity in the scientific community for
sharing experimental data,5 as demonstrated by the 2017
Nobel Prize winning observation of gravitational waves from
the LIGO and Virgo Collaboration.6 The development of free
open-source chemical education materials coded in Python
that leverage the framework of Jupyter Notebooks and
JupyterLab is gaining momentum,3,7−12 and we aim to
contribute to that momentum with the educational tools
presented herein.13−15

Received: August 29, 2022
Revised: January 23, 2023
Published: February 7, 2023

Articlepubs.acs.org/jchemeduc

© 2023 The Authors. Published by
American Chemical Society and Division

of Chemical Education, Inc. 1155
https://doi.org/10.1021/acs.jchemed.2c00838

J. Chem. Educ. 2023, 100, 1155−1163

D
ow

nl
oa

de
d

vi
a

SA
N

 J
O

SE
 S

T
A

T
E

 U
N

IV
 o

n
A

pr
il

28
, 2

02
3

at
 1

8:
43

:5
7

(U
T

C
).

Se
e

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n

ho
w

 to
 le

gi
tim

at
el

y
sh

ar
e

pu
bl

is
he

d
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gianmarc+Grazioli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adam+Ingwerson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Santiago+Jr."&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+Regan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Heekun+Cho"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jchemed.2c00838&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=abs1&ref=pdf
https://pubs.acs.org/toc/jceda8/100/3?ref=pdf
https://pubs.acs.org/toc/jceda8/100/3?ref=pdf
https://pubs.acs.org/toc/jceda8/100/3?ref=pdf
https://pubs.acs.org/toc/jceda8/100/3?ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/jchemeduc?ref=pdf
https://pubs.acs.org/jchemeduc?ref=pdf
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://acsopenscience.org/open-access/licensing-options/

Here we introduce two student-centered exercises for
teaching computational chemistry: the first is an introductory
undergraduate level activity titled “Lennard-Jones Fluid
Simulation Lab in a Jupyter Notebook,” and the second
activity, which is at the advanced undergraduate/introductory
graduate level, is titled “Lennard-Jones Fluid Simulation Code
Dissection.” Both activities use Jupyter notebooks and Python
to explore molecular simulations using the Lennard-Jones fluid
model. All materials for both activities are freely available
online,13,15 including a roughly 2 h complete video guide on
YouTube for the introductory activity,14 which enables
instructors to assign the activity as an asynchronous fully
online assignment, greatly reducing any barriers that may be
present due to an instructor’s personal comfort with computer
programming. The LJ fluid simulations are used to
demonstrate the application of important physical chemistry
concepts such as Newtonian mechanics, the van der Waals
equation of state, and the kinetic theory of gases, while
minimizing complexity and computing hardware requirements

(any laptop is sufficient) thanks to the venerable, simple but
effective, Lennard-Jones interaction potential.16,17 This sim-
plified fluid model is centered around a two parameter
intermolecular pair potential that, despite decades of research
since its introduction, is still a subject of current interest,18,19 as
is the development of coarse-grained models in general.20−23

In addition to standalone LJ fluid simulations, the LJ potential
is also utilized in many of the most widely used molecular
dynamics (MD) force fields used to simulate proteins, nucleic
acids, and other complex systems.24,25 Additionally, many of
the concepts covered in the advanced activity, such as periodic
boundary conditions and numerical integration of equations of
motion, are general to a wide variety of more complex
molecular simulation methods, and thus can be useful for
aiding students’ understanding of how other molecular
simulation methodologies function. The Lennard-Jones
simulation code introduced in the present work offers an
opportunity for instructors to foreground coding for students
of computational chemistry not only as it pertains to running

Figure 1. (A) Excerpts from the Lennard-Jones Fluid Simulation Lab Jupyter Notebook. This image displays the beginning of the notebook,
describing the student objectives for the lab, including programming skills in python that will be learned throughout the lab, followed by some of
the motivations behind the model. The Lennard-Jones potential energy equation is displayed neatly in the Jupyter Notebook (LaTeX typesetting is
available for Jupyter) and explained within. Also displayed under the equation is a code cell from the Jupyter Notebook, showing how students can
get experience writing and executing code directly in the Jupyter Notebook containing the assignment. (B) A single frame from the animated GIF
file outputted by the LJ simulation code, which can be viewed as a movie by opening it in any web browser (see Supporting Information for a movie
showing the animated GIF 2D_trajectory_f rom_GIF.mov). (C) A 3D rendering of data created by using VMD28 to visualize trajectories created by
the three-dimensional LJ fluid simulation (see Supporting Information for the trajectory file sample_3D_trajectory.xyz and a movie of the trajectory
LJ_3D_periodic_boundaries.mov). Notebook and 2D renderings were generated using Jupyter Notebook version 6.0.3, and Matplotlib version 3.2.2.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1156

https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig1&ref=pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_002.mov
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_001.xyz
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_003.mov
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig1&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

and interpreting molecular simulations, but also with respect to
the molecular simulation code itself.
In the following sections, we begin with an overview of the

materials common to both instructional activities, then give a
description of the more introductory LJ Fluid Simulation Lab
assignment, followed by a description of the more advanced LJ
Fluid Simulation Code Dissection assignment, then describe
the results of our assessment of effectiveness for the
assignments, and finally offer some concluding remarks to
summarize some of the key points and findings from this work.

■ STRUCTURE AND IMPLEMENTATION

Overview
The instructional activities described in the present work were
constructed using two software frameworks: the Python
programming language and Jupyter Notebook. Python offers
several advantages leading to a widely available and easy to
learn language, including large community-based tutorials and
help forums (e.g., Github, Stackoverf low), free online courses,
and custom coding packages and libraries tailored to specific
uses, such as ChemPy for writing chemical applications in
Python.11 The coding syntax was created with readability as its
main emphasis, and is an object-oriented language, allowing for
efficient coding and fewer lines of code compared to other
programming languages.9 Jupyter Notebook is a multifaceted
interactive development environment which uses a web
browser to run the IDE. Jupyter Notebook supports over 40
coding languages, has a modular and intuitive interface, and is
incredibly flexible.26 Similarly to Python, Jupyter has a large
community with easy access to online tutorials and help.
Jupyter uses expandable text blocks known as “cells” which can
be used to write code or notes in a piecewise fashion. Each cell
can be executed individually to test code blocks independently,
or cells can be run all at once. The Lennard-Jones Fluid
Simulation Lab activity, discussed in the following section, is
carried out entirely within a Jupyter Notebook, including but
not limited to communicating student learning objectives,
background information on the activity, running chemical
simulations, data visualizations, and a few basic coding
exercises. In keeping with best practices in writing flexible,
modular, and reusable code,27 the LJ simulation code created
for the instructional activities in the present work is split
between different files, within which the functionality and data
storage is organized into classes of objects, such as molecules
(Mol()), which store data like the positions and velocities of a
particular LJ particle, and ensembles (Ensemble()) that store
information about entire systems of LJ particles, like the
number of particles, size of the container, whether the
container includes periodic boundary conditions, etc. For an
in-depth look at the Lennard-Jones Fluid Simulation Lab
activity, the reader is encouraged to view a PDF of the entire
Jupyter notebook (included in the Supporting Information as
LennardJonesFluidLabJupyterNotebook.pdf), as well as down-
load the Jupyter notebook and supporting Python code from
GitHub.13,15 Figure 1 is also helpful for giving a sense of how
the activity is structured within a Jupyter Notebook.
Lennard-Jones Fluid Simulation Lab in a Jupyter
Notebook
The Lennard-Jones Fluid Simulation Lab exercise is a guided,
student-centered, hands-on experience aimed at giving under-
graduate students an introduction to running and interpreting
molecular simulations. The assignment is fully contained

within a Jupyter Notebook, runs locally on any laptop, and
requires the students to learn to write some simple Python
code to both run the molecular simulations and interpret them.
Another option, which is especially helpful for students with
limited RAM on their devices, is to run the Google Colab
version of the Jupyter Notebook (a link is included on the
GitHub repository13), which enables users to utilize free
computing resources hosted by Google to run the simulations.
Video tutorials for both installing the requisite free software
(Anaconda�a popular distribution of Python among
scientists), and carrying out the entire lab are freely available
on YouTube.14,29 Although the video demonstration accom-
panying this activity is roughly 2 h long, instructors can
typically expect this activity to take students between 2.5 and
3.5 h to complete, as students will need to pause the video
frequently to work through the different steps of the activity.
The pacing of the activity makes it ideal as a computational lab
activity for undergraduate physical chemistry lab courses. It is
recommended that instructors assign the 4 prelab questions in
advance of completing the lab activity and dedicate about 10
min of classroom time to going over the students’ answers
before beginning the computational lab activity. In particular,
instructors should ensure that students have completed prelab
question 4 correctly, as the volume of the 3D Lennard-Jones
particle is needed for fitting the van der Waals fluid model to
the Lennard-Jones simulation data. The video demonstration
makes it possible for instructors to assign the activity fully
asynchronously, although instructors will ideally want to make
themselves accessible for answering questions. One in-person
teaching approach is to have students work in pairs using the
video as their guide, with the instructor moving from group to
group answering questions as they arise. Student learning
outcomes (SLOs) for this activity are that students will be able
to

1. Write and execute basic Python codes inside of a Jupyter
Notebook.

2. Explain the effects of the LJ potential and periodic
boundary conditions on the interactions between
particles.

3. Optimize the a parameter of a van der Waals fluid to fit
data from a set of Lennard-Jones fluid simulations.

The first outcome is measured throughout the activity, the
second is measured in lab question 3, and the last is measured
by the last 7 steps of the activity.

Section 1 of the assignment consists of instructions on basic
python programming such as importing the necessary libraries
using the “import” command, as well as four prelab questions.
The prelab questions are designed to demonstrate some of the
basic plotting capabilities within a Jupyter Notebook, which
the students must interpret, as well as to test the students’
comprehension of the background information provided. The
prelab questions also involve using fundamental Jupyter
notebook functionality such as markdown cells and code
cells. The second prelab question has students create a new
code cell and write a print statement to display the ϵ and σ
parameters for an Ensemble object. Constant reinforcement of
the physical chemistry and mathematical concepts behind the
simulation code is maintained, and in the second prelab
question students are required to write out the LJ potential
function on paper and plug in those sigma and epsilon values
to solve for the equilibrium bond length rij between particles i
and j after some basic calculus (the minimum energy length is

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1157

https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_004.pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

where the derivative of the potential energy function V(rij)
equals zero). The students are then encouraged to develop
their own physical interpretation of this behavior, as the
particles can be thought of as deformable spheres (or circles in
a 2D LJ fluid) that are weakly attracted to each other. Prelab
question 3 demonstrates how changing the parameters of the
LJ potential affects the behavior of the potential energy
function. This helps reinforce the concept of finding the best
possible set of parameters that can accurately model the
behavior of physical particles with van der Waals force-like
interactions, without the computational cost of explicitly
modeling the quantum mechanical effects on electronic
structure that would produce similar behavior.
As is the case with nearly every programming language,

Python allows users to add comments to code that are not
interpreted by the Python interpreter as code, which also
allows programmers to temporarily disable lines of code by
“commenting them out.” Section 2 begins with commented-
out code that students will read line by line, along with an
explanation in the provided video lesson. Once they have
restored the commented out code, and understand what the
code is doing, the simulation is run. This code creates an
animated GIF file that displays 2D LJ particles moving in a
simulation that can be viewed by opening the GIF in any web
browser. Following this simulation, two lab questions are
asked. The first lab question tests the students’ understanding
of periodic boundary conditions based on the behavior they
observed in the animated GIF file. The second lab question has
students plot the potential and kinetic energies of the system,
along with the total energy of the system. This demonstrates
that the conservation of energy is maintained in the system in
perfect balance as energy transfers between the total kinetic
energy and total potential energy of the particles (the system is
a microcanonical, or NVE ensemble). Another simulation is
then run which is set without periodic boundary conditions,
and again produces a GIF file as an animated data visualization.
By creating similar simulations that differ only in the turning
off of the periodic boundary conditions and the forces due to
the LJ potential, students can dynamically visualize the
difference that these conditions make on the simulation and
the resulting data. Lab question 3 reinforces this by asking

students to explain why the second simulation’s particles
behave like an ideal gas, rather than an LJ fluid. Lab question 4
requires students to uncomment a line of code that outputs all
the keys from the python dictionary, “ensemble_2,” and is
intended to both introduce students to an important class of
objects in Python and to encourage students to explore the
simulation code further. The Lennard-Jones fluid lab activity
culminates with the students running a set of 10 LJ fluid
simulations at different temperatures, and then using the
temperatures and pressures of those simulations to fit a van der
Waals fluid model to the LJ fluid data. This portion of the
activity can provide a valuable entry point for instructors to
cover topics ranging from the development of coarse-grained
models to explaining how different levels of theory that can be
used to describe the same system, depending on the use case
for the model. The approach leverages the fact that the van der
Waals equation

p a
v

v b k T()2 B+ =i
k
jjj y

{
zzz (1)

where v = V/N (N is the number of particles and V is volume),
p is reduced pressure (P/N), kB is Boltzmann’s constant (here,
kb is set to unity, a commonly used approach for simplifying
simulations of this type), a and b are the van der Waals
corrections to pressure and volume due to van der Walls type
forces and the volume occupied by the particles themselves,
respectively, and T is temperature, can be rearranged to the
form

p ab av Tv
bv v

2

2 3= +
(2)

This form allows one to generate plots of pressure as a function
of volume, assuming, of course, that one knows the values of a
and b! Since the students calculated the volume of a Lennard-
Jones particle with both LJ parameters set to 1 in the beginning
of the lab, the value of b has already been determined; thus, all
that remains is to find the optimal value for a that yields the
van der Waals model that best fits their LJ simulation data. The
students then use functions provided in the Jupyter Notebook
to plug 500 different values for a into the van der Waals model
and measure the squared error between each van der Waals

Figure 2. A) Plot showing the squared error between the pressures predicted by the van der Waals equation for ten different temperatures and the
pressure measured from Lennard-Jones fluid simulations, at the same ten different temperatures, as a function of the van der Waals parameter a. It
is easy to see that the minimum error is within the bounds of the highest and lowest a values that were plugged into the van der Waals equation.
The students are then instructed to write a short Python code to extract the a value that produced the smallest squared error. (B) Points indicate
pressure as a function of temperature as measured in the LJ fluid simulation, and the line indicates pressure values predicted by the optimal van der
Waals model. Plots were generated using Jupyter Notebook version 6.0.3, and Matplotlib version 3.2.2.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1158

https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig2&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

model and the simulation data to show that the best van der
Waals model is the one with the smallest squared error (Figure
2). Although optimization of the model could have been
carried out by using an optimization function from an existing
library, this would also result in an abstraction of the
optimization process away from the students. Since one of
the primary goals of the exercise is transparency, having
students write their own simple optimization code, that
systematically tests a grid of potential parameters and selects
the value of minimal squared error does more to reinforce the
students’ understanding of what it means to fit an optimal
model to a data set.
Thus, by taking an opposite and complementary approach to

most computational chemistry classroom exercises, where the
process of initializing and interpreting complex chemical
simulations is simplified for the sake of accessibility, we have
instead constructed an assignment around a more accessible
model of a chemical system so that students are able to work
more closely with the coding aspects of the simulation, and
build better intuition for what goes into constructing a
chemical simulation. In fact, we suggest that instructors
encourage students to explore the simulation code itself.
This could mean simply reading the code to try and
understand how it works, or even probing the code by making
modifications to it and observing the effects. Given that there
are zero safety concerns with a computational lab, the code is
lightweight and self-contained, and a fresh version of the code
can always be redownloaded from GitHub, this lab offers a
unique opportunity for inexperienced students to be bold in
their experimentation! Instructors interested in adopting the LJ
simulation lab activity are also invited to adjust the difficulty of
the assignment by editing the Jupyter Notebook prior to
sharing it with the students (e.g., adding additional code
snippets to make the activity easier, or taking away some of the
code snippets and hints to increase the difficulty).
Lennard-Jones Fluid Simulation Code Dissection

This assignment derives its name from dissection activities
common in biology lab courses, in that, just as removing and
examining organs from an organism can aid in understanding
how each contributes vital functionality to the organism,
importing individual modules from the LJ simulation code into
a Jupyter notebook allows students to explore their
functionality in an isolated environment, where they can
experiment with aspects of the functions that they would not
even be aware of while using the LJ simulation code to simply
carry out simulations. The approach for the LJ fluid simulation
code dissection activity is straightforward: divide the LJ
simulation code into chunks, where each chunk encapsulates
some functionality within the LJ code that contributes to its
overall functionality, and then assign the different chunks to
individual students or pairs of students to present to the rest of
the class. This practice of dividing the subject matter into
separate parts to be understood in-depth by individual
subgroups and later collaboratively recombined to produce a
synthesized understanding of the subject matter as a whole by
the class is a well-established technique in education research
called a “jigsaw.”30,31 In addition to being an excellent vehicle
for active learning, jigsaw activities have an added benefit of
fostering a sense of community and cohort building in the
classroom. In fact, the motivation behind their creation in the
late 1970s was to foster unity in classrooms following the end
of racial segregation in American public schools.32

It should be noted that the code dissection activity is not an
introductory activity, or one that can be completed during one
or two class meetings. The code dissection activity is best
implemented as a multiweek project, and assigned only after
Python programming basics have been introduced. In the
Introduction to Computational Chemistry course taught by
the lead author, after spending the first 5 weeks of the semester
covering some of the basics of Python programming and
molecular simulation fundamentals, the Lennard-Jones Fluid
Simulation Lab was assigned and completed during week 6.
During week 7, a brief overview of the different functions that
make up the Lennard-Jones fluid simulation code was given by
the instructor, and students were given the opportunity to
express interest in presenting portions of the code they found
particularly interesting. The remainder of the class time during
week 7 and all of week 8 was used for individual meetings
between the instructor and students so that the instructor
could provide guidance. The students gave oral presentations
with accompanying Jupyter Notebook-based demonstrations
during week 9. In the interest of providing context, the Course
learning outcomes (CLOs) for the Introduction to Computa-
tional Chemistry course, where the first author originally
introduced the code dissection activity, included that students:

1. Become conversant in methodologies from computa-
tional chemistry used in research and industry for
analyzing the dynamic structure and function of
molecules.

2. Develop the skill of teaching one’s self-to write computer
code and use new software tools to solve chemical
problems.

3. Improve written and verbal communication skills as
applied to topics in computational chemistry.

This assignment effectively served all three of these
objectives by coupling the students each carrying out an
exploratory “dissection” of different portions of the LJ
simulation code with a class presentation given by each of
the students. In giving their presentations, students were
responsible for explaining to their peers how their assigned
portion of the code works, both within the context of computer
programming, i.e., what each line of the code is doing
programmatically, as well as how their portion of the code
contributes to the overall functionality of the LJ simulation. In
addition to giving a 15 min presentation using slides, the
students assigned to each component were also required to
create a new Jupyter Notebook specifically designed to
demonstrate how their portion of the code works and
distribute them to the rest of the class. Students were given
the option of either giving a more interactive presentation,
where their classmates would be interacting with the Jupyter
Notebook they created for the demonstration, or giving a more
slide-based presentation and providing the Jupyter Notebook
for their classmates to review later at their own pace.

Carrying out a case study in programming molecular
simulations in this manner serves several purposes. For one,
there is no substitute for first hand experience working directly
with a molecular simulation code. Although there is value in
discussing with students how molecular simulations work and
even having them answer exam questions about them, this can
limit student learning outcomes (SLOs) to the lower levels of
Bloom’s taxonomy.33 By requiring students to go beyond
understanding the code, and moving on to evaluating how
their portion of the code functions under different scenarios

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1159

pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

that they create to test the code, and to even create a Jupyter
Notebook of their own design for the purpose of
demonstrating the functionality of their portion of the code,
motivated students will reach the highest levels of learning
upon completion of this activity. Further benefits include: a
better appreciation for structuring readable, modular, reusable
code that can be developed in a team environment (of key
importance in industry), practice using integrated development
environments (IDEs) like Spyder (recommended, as it is
included in any Anaconda installation) to develop code

intended for collaborative projects, the well-established
benefits of group work for student learning,34 and even
improved efficiency in the use of class time, leaving more time
for questions and discussion.35 In order to get a sense for the
high degree of readability of the LJ code, and how a student
might demonstrate the functionality of their assigned function,
the reader is directed to Figure 3. The function
GetPointsOnSquareGrid() assigns the initial positions of 2D
LJ particles in an ensemble on a square grid, a task likely taken

Figure 3. (A) Sample code showing the function “GetPointsOnSquareGrid(),” from the Lennard-Jones fluid simulation code. This function assigns
initial positions of all particles in a 2D LJ fluid simulation. (B) This nine-point cubic grid was produced from the function in panel A using the
inputs 9, 10, and 0.75 (number of particles, side length of the container, and distance from the walls for the particles on the edge). (C) This eight-
point incomplete grid was produced from the function in panel A using the inputs 8, 10, and 0.75. Note how the function determines the positions
for the nearest perfect square number of points (9) and returns all but the last to give 8 positions. Plots were generated using Jupyter Notebook
version 6.0.3, and Matplotlib version 3.2.2.

Figure 4. Survey results indicating students’ experience with programming prior to the course where the students completed the activities.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1160

https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig4&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

for granted by students who have never been directly exposed
to molecular simulation code.
The authors strongly suggest that any instructor planning to

assign the code dissection should first assign the Lennard-Jones
simulation lab activity, as the students should experience the
code as a user before they experience it from a development
perspective.

■ ASSESSMENT OF STUDENT EXPERIENCE
In order to assess the student experience for both activities, a
survey was administered to the students in the Introduction to
Computational Chemistry graduate course, which was taught
in the online modality. All survey results were submitted
anonymously and voluntarily at the end of the semester by
students who had completed both activities as graded
assignments while enrolled in the Introduction to Computa-
tional Chemistry course. Students were informed that the data
collected anonymously in the survey would be used in the
present study, and that consenting to participate in the study
by completing the survey was optional and would not impact
their grade in any way. The response rate was 82%. Although
the course was listed as a graduate course, it was also open to
interested undergraduate students, resulting in a number of
undergraduates enrolling in the course as well. Of the students

who responded to the assessment survey, 35% were under-
graduate students and 64% were graduate students.

The programming experience of the students going into the
course varied from none at all to two or more years of prior
programming experience to taking the course (Survey Results
(a), Figure 4). Additionally, prior experience with using
Jupyter Notebooks varied similarly to programming experience
(Survey Results (b), Figure 4). After the completion of the
Lennard-Jones lab and code dissection activity, the students’
perception of their understanding of concepts associated with
the assignments was improved. The use of functions and
object-oriented programming can be challenging topics for
students new to programming, and the survey indicates that
the students’ perceived understanding of the use of objects and
functions in the context of scientific computing and
programming improved as a result of completing the two
assignments (Survey Results (c) and (d), Figure 5). Addition-
ally, conceptual questions related to Lennard-Jones fluids and
the Python language were included in the survey to gauge
students’ comprehension of these topics (Survey Results (e),
(f), (g), and (h) in Figure 5 and Figure 6). The professor for
the course in which these activities were introduced also
observed a marked improvement in the quality of students’
code when comparing coding assignments prior to this

Figure 5. Survey results indicating students’ feelings on how the code dissection aided their understanding of scientific computing concepts.

Figure 6. Survey results testing students’ comprehension of computational chemistry topics.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1161

https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig6&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

assignment with the students’ final projects immediately
following the code dissection activity. One of the most exciting
survey results is that the majority of the class plans to continue
developing their newfound skills as scientific programmers
(Survey Results (h), Figure 7).

Survey Results

■ CONCLUSION
Two new instructional activities in computational chemistry
were introduced, which are centered around a Lennard-Jones
fluid simulation Python code that is designed for maximal
readability and to encourage student curiosity and exploration
into how molecular simulations work. The Jupyter-based lab
activity is ideal for undergraduate physical chemistry lab
courses, while the code dissection activity is ideal for either an
advanced upper-level undergraduate course in computational
chemistry or an introductory graduate course on computa-
tional chemistry. Both activities are focused on exposing the
students to computer code used to simulate chemical systems,
rather than insulating them from it through the use of graphical
user interfaces (GUIs). The activities discussed herein offer an
opposite yet complementary approach to GUI-based activities,
where instead of simplifying the user interface to make the
complex software more accessible, the simplified Lennard-
Jones model of a fluid is implemented in a lightweight highly
readable Python code. This approach allows students more
opportunities to interact directly with chemical simulation
code, offering an experience more representative of how
professional computational chemists work. Both the simulation
code and the Jupyter notebook containing the guided LJ fluid
simulation activity are available as free open-source downloads
on GitHub,13,15 and a video tutorial for the LJ fluid simulation
activity is available on YouTube.14

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available at https://pubs.ac-
s.org/doi/10.1021/acs.jchemed.2c00838.

xyz trajectory file of a 3D LJ fluid simulation(XYZ)
2D Lennard-Jones (LJ) fluid simulation (2D_trajector-
y_from_GIF.mov) (MOV)
D LJ fluid simulation (LJ_3D_periodic_boundaries.-
mov) (MOV)

PDF of the Jupyter Notebook used in the laboratory
(PDF)

■ AUTHOR INFORMATION
Corresponding Author

Gianmarc Grazioli − Department of Chemistry, San Jose State
University, San Jose, California 95192, United States;
orcid.org/0000-0003-2559-5103;

Email: gianmarc.grazioli@sjsu.edu

Authors

Adam Ingwerson − Department of Chemistry, San Jose State
University, San Jose, California 95192, United States

David Santiago, Jr. − Department of Chemistry, San Jose State
University, San Jose, California 95192, United States;
orcid.org/0000-0002-3088-3444

Patrick Regan − Department of Chemistry, San Jose State
University, San Jose, California 95192, United States

Heekun Cho − Department of Chemistry, San Jose State
University, San Jose, California 95192, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jchemed.2c00838

Author Contributions

GG wrote the Lennard-Jones fluid simulation code, designed
and wrote the Jupyter Notebook lab activity, designed the code
dissection activity, created all instructional and assessment
materials for both activities, and contributed to writing the
manuscript. AI, DS, HC, and PR carried out key beta testing of
both instructional activities, provided feedback that was used
to improve the simulation code and activities, and contributed
to writing the manuscript.
Notes

The authors declare no competing financial interest.
The Python code and Jupyter Notebook needed to complete
both of the activities presented herein are available for
d o w n l o a d a t h t t p s : / / g i t h u b . c om / g g r a z i o l i /
LennardJonesFluidLab. Also available at that same GitHub
link is a Google Colab version of the Jupyter Notebook, which
utilizes Google’s computing resources to run the simulation,
enabling students to carry out the activity on devices with less
available RAM. Finally, a video walkthrough of the entire LJ
fluid simulation lab, which can be used by instructors for
assigning the lab activity as an asynchronous online assign-
ment, is available on YouTube at https://youtu.be/
WgyuJYh1VaA.

■ ACKNOWLEDGMENTS
GG gratefully acknowledges helpful conversations with Prof.
Nicholas Esker, as the LJ fluid simulation laboratory activity
was assigned to students for the first time in his section of an
undergraduate physical chemistry lab course at San José State
University. This work was supported by San José State
University and a California State University Program for
Education and Research in Biotechnology (CSUPERB) award.

■ REFERENCES
(1) Sabe, V. T.; Ntombela, T.; Jhamba, L. A.; Maguire, G. E.;
Govender, T.; Naicker, T.; Kruger, H. G. Current trends in computer
aided drug design and a highlight of drugs discovered via

Figure 7. Survey results indicating students’ plans for continuing to
develop the skills they learned while completing the activities.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1162

https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?goto=supporting-info
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_001.xyz
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_002.mov
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_003.mov
https://pubs.acs.org/doi/suppl/10.1021/acs.jchemed.2c00838/suppl_file/ed2c00838_si_004.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Gianmarc+Grazioli"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-2559-5103
https://orcid.org/0000-0003-2559-5103
mailto:gianmarc.grazioli@sjsu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Adam+Ingwerson"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="David+Santiago+Jr."&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-3088-3444
https://orcid.org/0000-0002-3088-3444
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Patrick+Regan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Heekun+Cho"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?ref=pdf
https://github.com/ggrazioli/LennardJonesFluidLab
https://github.com/ggrazioli/LennardJonesFluidLab
https://youtu.be/WgyuJYh1VaA
https://youtu.be/WgyuJYh1VaA
https://doi.org/10.1016/j.ejmech.2021.113705
https://doi.org/10.1016/j.ejmech.2021.113705
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig7&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jchemed.2c00838?fig=fig7&ref=pdf
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

computational techniques: A review. Eur. J. Med. Chem. 2021, 224,
113705.
(2) Fish, J.; Wagner, G. J.; Keten, S. Mesoscopic and multiscale
modelling in materials. Nature materials 2021, 20, 774−786.
(3) Menke, E. J. Series of Jupyter Notebooks Using Python for an
Analytical Chemistry Course. J. Chem. Educ. 2020, 97, 3899−3903.
(4) Programming Languages Most in Demand Right Now. https://
www.linkedin.com/pulse/programming-languages-most-demand-
right-now-michael-spencer-?trk=articles_directory (accessed 2022−
08−14).
(5) Wofford, M. F.; Boscoe, B. M.; Borgman, C. L.; Pasquetto, I. V.;
Golshan, M. S. Jupyter notebooks as discovery mechanisms for open
science: Citation practices in the astronomy community. Computing in
Science & Engineering 2020, 22, 5−15.
(6) Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M.; Acernese,
F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; et al.
Observation of gravitational waves from a binary black hole merger.
Physical review letters 2016, 116, 061102.
(7) Weiss, C. J. A creative commons textbook for teaching scientific
computing to chemistry students with python and Jupyter notebooks.
J. Chem. Educ. 2021, 98, 489−494.
(8) Perri, M. Online Data generation in quantitative analysis: excel
spreadsheets and an online HPLC simulator using a jupyter notebook
on the chem compute web site. J. Chem. Educ. 2020, 97, 2950−2954.
(9) Lafuente, D.; Cohen, B.; Fiorini, G.; García, A.; Bringas, M.;
Morzan, E.; Onna, D. Introduction to Machine Learning for chemists:
An undergraduate course using Python notebooks for visualization,
data processing, data analysis, and data modeling. ChemRxiv. 2021
Preprint, Ver. 1, https://chemrxiv.org/engage/chemrxiv/article-
details/60c754d9337d6c22b0e28aec (accessed December 3, 2022).
(10) Srnec, M. N.; Upadhyay, S.; Madura, J. D. A Python Program
for Solving Schrödinger’s Equation in Undergraduate Physical
Chemistry. J. Chem. Educ. 2017, 94, 813−815.
(11) Dahlgren, B. ChemPy: A package useful for chemistry written
in Python. Journal of Open Source Software 2018, 3, 565.
(12) Weiss, C. J. Scientific computing for chemists: An under-
graduate course in simulations, data processing, and visualization. J.
Chem. Educ. 2017, 94, 592−597.
(13) Lennard-Jones Fluid Lab. https://github.com/ggrazioli/
LennardJonesFluidLab (accessed 2022−08−14).
(14) Lennard-Jones Fluid Simulation Lab. https://youtu.be/
WgyuJYh1VaA (accessed 2022−08−15).
(15) Grazioli, G. ggrazioli/LennardJonesFluidLab: Initial Release.
2022; DOI: 10.5281/zenodo.7242966 (accessed 2022−08−14).
(16) Jones, J. E. On the determination of molecular fields.−I. From
the variation of the viscosity of a gas with temperature. Proceedings of
the Royal Society of London. Series A, Containing Papers of a
Mathematical and Physical Character 1924, 106, 441−462.
(17) Jones, J. E. On the determination of molecular fields.−II. From
the equation of state of a gas. Proceedings of the Royal Society of
London. Series A, Containing Papers of a Mathematical and Physical
Character 1924, 106, 463−477.
(18) Stephan, S.; Thol, M.; Vrabec, J.; Hasse, H. Thermophysical
properties of the Lennard-Jones fluid: Database and data assessment.
J. Chem. Inf. Model. 2019, 59, 4248−4265.
(19) Wang, X.; Ramírez-Hinestrosa, S.; Dobnikar, J.; Frenkel, D.
The Lennard-Jones potential: when (not) to use it. Phys. Chem. Chem.
Phys. 2020, 22, 10624−10633.
(20) Souza, P. C.; Alessandri, R.; Barnoud, J.; Thallmair, S.;
Faustino, I.; Grünewald, F.; Patmanidis, I.; Abdizadeh, H.; Bruininks,
B. M.; Wassenaar, T. A.; et al. Martini 3: a general purpose force field
for coarse-grained molecular dynamics. Nat. Methods 2021, 18, 382−
388.
(21) Grazioli, G.; Yu, Y.; Unhelkar, M. H.; Martin, R. W.; Butts, C.
T. Network-based classification and modeling of amyloid fibrils. J.
Phys. Chem. B 2019, 123, 5452−5462.
(22) Roy, M.; Grazioli, G.; Andricioaei, I. Rate turnover in mechano-
catalytic coupling: A model and its microscopic origin. J. Chem. Phys.
2015, 143, 045105.

(23) Duong, V. T.; Diessner, E. M.; Grazioli, G.; Martin, R. W.;
Butts, C. T. Neural Upscaling from Residue-Level Protein Structure
Networks to Atomistic Structures. Biomolecules 2021, 11, 1788.
(24) Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D.
A. Development and testing of a general amber force field. Journal of
computational chemistry 2004, 25, 1157−1174.
(25) Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.;
Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.;
et al. CHARMM general force field: A force field for drug-like
molecules compatible with the CHARMM all-atom additive biological
force fields. Journal of computational chemistry 2009, 31, 671−690.
(26) Domínguez, J.; Alonso, M.; González, E.; Guijarro, M.;
Miranda, R.; Oliet, M.; Rigual, V.; Toledo, J.; Villar-Chavero, M.;
Yustos, P. Teaching chemical engineering using Jupyter notebook:
Problem generators and lecturing tools. Education for Chemical
Engineers 2021, 37, 1−10.
(27) Barba, L. A. Engineers Code: reusable open learning modules
for engineering computations. Computing in Science & Engineering
2020, 22, 26−35.
(28) Humphrey, W.; Dalke, A.; Schulten, K. VMD - Visual
Molecular Dynamics. J. Mol. Graphics 1996, 14, 33−38.
(29) How to Install Anaconda�CHEM-101 at San Jose ́ State
University. https://youtu.be/Y-9Hlrq1kt8 (accessed 2022−08−15).
(30) Jones, T. N.; Graham, K. J.; Schaller, C. P. A jigsaw classroom
activity for learning IR analysis in organic chemistry. J. Chem. Educ.
2012, 89, 1293−1294.
(31) Perkins, D. V.; Saris, R. N. A” jigsaw classroom” technique for
undergraduate statistics courses. Teaching of psychology 2001, 28,
111−113.
(32) Aronson, E. The jigsaw route to learning and liking. Psychology

Today 1975, 43−59.
(33) Krathwohl, D. R. A revision of Bloom’s taxonomy: An overview.

Theory into practice 2002, 41, 212−218.
(34) Johnson, D. W.; Maruyama, G.; Johnson, R.; Nelson, D.; Skon,
L. Effects of cooperative, competitive, and individualistic goal
structures on achievement: A meta-analysis. Psychological bulletin
1981, 89, 47−62.
(35) Carroll, D. W. Use of the jigsaw technique in laboratory and
discussion classes. Teaching of Psychology 1986, 13, 208−210.

Journal of Chemical Education pubs.acs.org/jchemeduc Article

https://doi.org/10.1021/acs.jchemed.2c00838
J. Chem. Educ. 2023, 100, 1155−1163

1163

https://doi.org/10.1016/j.ejmech.2021.113705
https://doi.org/10.1038/s41563-020-00913-0
https://doi.org/10.1038/s41563-020-00913-0
https://doi.org/10.1021/acs.jchemed.9b01131?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.9b01131?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://www.linkedin.com/pulse/programming-languages-most-demand-right-now-michael-spencer-?trk=articles_directory
https://www.linkedin.com/pulse/programming-languages-most-demand-right-now-michael-spencer-?trk=articles_directory
https://www.linkedin.com/pulse/programming-languages-most-demand-right-now-michael-spencer-?trk=articles_directory
https://doi.org/10.1109/MCSE.2019.2932067
https://doi.org/10.1109/MCSE.2019.2932067
https://doi.org/10.1103/PhysRevLett.116.061102
https://doi.org/10.1021/acs.jchemed.0c01071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.0c01071?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.0c00565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.0c00565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.0c00565?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://chemrxiv.org/engage/chemrxiv/article-details/60c754d9337d6c22b0e28aec
https://chemrxiv.org/engage/chemrxiv/article-details/60c754d9337d6c22b0e28aec
https://doi.org/10.1021/acs.jchemed.7b00003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.7b00003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.7b00003?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.21105/joss.00565
https://doi.org/10.21105/joss.00565
https://doi.org/10.1021/acs.jchemed.7b00078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jchemed.7b00078?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://github.com/ggrazioli/LennardJonesFluidLab
https://github.com/ggrazioli/LennardJonesFluidLab
https://youtu.be/WgyuJYh1VaA
https://youtu.be/WgyuJYh1VaA
https://doi.org/10.5281/zenodo.7242966?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1098/rspa.1924.0081
https://doi.org/10.1098/rspa.1924.0081
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1098/rspa.1924.0082
https://doi.org/10.1021/acs.jcim.9b00620?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jcim.9b00620?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1039/C9CP05445F
https://doi.org/10.1038/s41592-021-01098-3
https://doi.org/10.1038/s41592-021-01098-3
https://doi.org/10.1021/acs.jpcb.9b03494?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.4926664
https://doi.org/10.1063/1.4926664
https://doi.org/10.3390/biom11121788
https://doi.org/10.3390/biom11121788
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1002/jcc.21367
https://doi.org/10.1016/j.ece.2021.06.004
https://doi.org/10.1016/j.ece.2021.06.004
https://doi.org/10.1109/MCSE.2020.2976002
https://doi.org/10.1109/MCSE.2020.2976002
https://doi.org/10.1016/0263-7855(96)00018-5
https://doi.org/10.1016/0263-7855(96)00018-5
https://youtu.be/Y-9Hlrq1kt8
https://doi.org/10.1021/ed200334n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ed200334n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1207/S15328023TOP2802_09
https://doi.org/10.1207/S15328023TOP2802_09
https://doi.org/10.1207/s15430421tip4104_2
https://doi.org/10.1037/0033-2909.89.1.47
https://doi.org/10.1037/0033-2909.89.1.47
https://doi.org/10.1207/s15328023top1304_9
https://doi.org/10.1207/s15328023top1304_9
pubs.acs.org/jchemeduc?ref=pdf
https://doi.org/10.1021/acs.jchemed.2c00838?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

	Foregrounding the Code: Computational Chemistry Instructional Activities Using a Highly Readable Fluid Simulation Code
	Recommended Citation

	Foregrounding the Code: Computational Chemistry Instructional Activities Using a Highly Readable Fluid Simulation Code

