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Abstract: Several additive manufacturing processes are capable of fabricating three-dimensional
parts with complex distribution of material composition to achieve desired local properties and func-
tions. This unique advantage could be exploited by developing and implementing methodologies
capable of optimizing the distribution of material composition for one-, two-, and three-dimensional
parts. This paper is the first effort to review the research works on developing these methods. The
underlying components (i.e., building blocks) in all of these methods include the homogenization
approach, material representation technique, finite element analysis approach, and the choice of
optimization algorithm. The overall performance of each method mainly depends on these compo-
nents and how they work together. For instance, if a simple one-dimensional analytical equation is
used to represent the material composition distribution, the finite element analysis and optimization
would be straightforward, but it does not have the versatility of a method which uses an advanced
representation technique. In this paper, evolution of these methods is followed; noteworthy homoge-
nization approaches, representation techniques, finite element analysis approaches, and optimization
algorithms used/developed in these studies are described; and most powerful design methods are
identified, explained, and compared against each other. Also, manufacturing techniques, capable
of producing functionally graded materials with complex material distribution, are reviewed; and
future research directions are discussed.

Keywords: functionally gradient material; design optimization; additive manufacturing; finite
element method; material modeling

1. Introduction

Functionally Graded Materials (FGM) are a type of composite materials made of two
or more constituent phases with a continuously changing phase distribution throughout
the volume [1,2]. Typically, constituent phases are two materials with distinct thermo-
mechanical properties, the volume fraction of each of which changes gradually throughout
the part. Many research efforts have been carried out to develop accurate mathematical
models and numerical techniques for homogenization of FGMs, predict their responses to
mechanical and thermal loads, propose testing methods to measure their properties, and
invent new manufacturing processes to build FG parts. Several journal articles and book
chapters have been written to review these efforts (e.g., [3–14]).

Most of the above-mentioned works are limited to simple one-dimensional material
gradient. However, with the advent of Additive Manufacturing (AM) techniques, complex
three-dimensional material composition distributions are also achievable. Vaezi et al. [15]
have published a review paper on multiple-material additive manufacturing. Also, a
detailed review of AM methods, materials and their potential applications can be found
in [16,17]. Accordingly, many researchers developed models to represent FGMs with
complex material composition distribution. Kou and Tan [18] have published a review
paper on this topic. These representation techniques need human input for material
composition at certain object features (points, curves, surfaces, etc.) and do not result
in optimal material composition distribution. The early developments on the processing
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and thermo-mechanical behavior of FGMs are well described in a two-part review paper
by Mortensen and Suresh [19,20]. By the turn of the century, the increased research on
the modelling and analysis of FGM structures led to several more reviews. One of the
first by Birman and Byrd [13] addressed a variety of FGM-related aspects, including the
homogenization of particulate-type FGMs, the thermoelastic modelling and analysis of
FGM structures, manufacturing issues, and fracture problems in FGMs.

Since late 1990s, researchers have developed methods to optimize the material compo-
sition distribution in FG parts. These methods determine the material composition at each
point to achieve a certain objective (e.g., minimizing residual thermal stress). They consist
of four building blocks: homogenization of FGM, representation of FGM, finite element
analysis, and optimization. This paper, for the first time, reviews FGMs with optimal
design, their design methodologies, manufacturing techniques, and future directions.

2. Evolution of Design Methods

The performance of an FGM is not only a function of properties of its constituent
phases, but it is also directly associated with the ability of a designer in using materials in
the optimal manner. The following sections provide a chronological overview of research
on the optimal design of various types of FG components, as well as an overview of the
evolution of methodologies created to optimize the material composition distribution in
FG parts.

2.1. Prior to 2002

In 1972, Bever and Duwez [21], and Shen and Bever [22] proposed the concept of gra-
dation in material composition for composite polymeric materials. Their efforts, however,
had a limited impact, owing to the unavailability of viable production processes at the
time. In 1984, the National Aerospace Laboratory of Japan developed FGMs for advanced
ultra-high temperature resistance structural materials to be used in space structures, fusion
reactors, and spaceplanes, as well as various functional applications (e.g., optics and elec-
tronics). Their first national project on FGM was carried out from 1987 to 1991 and FGM
test samples for the base of spaceplane fuselages and hemispherical bowls for nose-cones
were fabricated [6,23–25]. The second national project was launched between 1993 and
1998 with the goal of improving the energy conversion efficiency of FG structures and
fabricating thermoelectric and thermionic materials [24,25]. The “physics and chemistry
of FGMs” project was carried out in 1996–1999 to address the fundamental challenges of
grading physical and chemical properties, and it was a huge success in boosting FGM re-
search and applications [25]. Since then, FGMs have evolved dramatically. Some milestone
achievements are shown in Figure 1.
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Gradation in microstructure played an essential part in the evolution of FGMs, and
FGMs were divided into three categories based on the distribution of constituent phases,
namely continuous, discontinuous (step-wise or layered), and multiphase gradation. Fig-
ure 2 depicts different forms of FG microstructures. Many authors analyzed FGM problems
with one-dimensional material properties, in many different cases, under mechanical
and/or thermal loads (e.g., Noda and Tsuji [27], Arai et al. [28], Erdogan et al. [29], and
Noda and Jin [30]). Their results were very motivating and enhanced their aims in the
development of new high-temperature materials. The temperature distribution in most
machine elements in practical cases changes in two or three directions. Therefore, if the
FGM has two- or three-dimensional dependent material properties, more effective high-
temperature resistant materials can be obtained. Accordingly, bi-directional FGM whose
material properties are dependent in two directions were introduced. Many studies on
2D-FGM have been conducted (e.g., Clements et al. [31]; Nemat-Alla and Noda [32–34];
Marin [35]; Ke and Wang [36]). Unfortunately, for continuous gradation of material prop-
erties, they have all considered exponential functions. Except at the upper and lower
surfaces of FGM, the use of exponential functions for material properties frequently aids
the analytical solution but does not provide true representation for material properties.
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Aboudi et al. [38,39] investigated the behavior of FGMs using thermo-elastic/plastic
theory. Their research avoided the drawbacks of the traditional micromechanical technique
used in the examination of FG composites. For relaxing the effective thermal stress, Cho
and Ha [40] adjusted the volume fractions distributions of FGM. For the FGM, they found
the best volume fractions distribution in two directions. The optimum volume fractions
obtained have a random distribution, which is far more difficult to model or simulate
than traditional FGMs, which have continuous composition fluctuations. Goupee and
Vel [41] suggested a two-dimensional modeling and optimization methodology for FGM
material composition distribution. The element-free Galerkin approach was used to solve
two-dimensional quasi-static heat conduction and thermo-elastic problems. By piecewise
bi-cubic interpolation of volume fractions specified at a finite number of grid points, they
were able to derive the spatial distribution of ceramic volume fraction.

2.2. 2003–2009

Nemat-Alla [42] proposed the addition of a third material ingredient to the typical
FGM to survive the resulting severe heat stresses. The resulting material was a 2D-FGM
with the addition of mixture rules and volume fractions relationships. When comparing
2D-FGM to conventional FGM, it was discovered that 2D-FGM had a greater ability to
minimize thermal stresses than conventional FGM. It’s worth noting that the temperature-
independent characteristics and elastic behavior of FGMs have been taken into account
in the majority of the above-mentioned studies. Nemat-Alla et al. [43] investigated the
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temperature dependent properties and elastic-plastic behavior of 2D-FGMs under severe
thermal loading. They proposed a 3D finite element model of 2D-FGM plates with tem-
perature dependent non-linear material properties. The analysis also includes an elastic
plastic stress–strain relationship based on the rule of combination of the 2D-FGM.

For FGMs, it is possible to vary the material composition arbitrarily during production,
and therefore the problem of optimization of non-homogeneous material composition
to minimize the thermal stress has attracted the interest of numerous researchers. For
such problems of material composition optimization, Noda and his coworkers [27,44–46]
analyzed one-dimensional problems for a steady state of a nonhomogeneous plate, a hollow
circular cylinder and a hollow sphere. However, with regard to thermal stress problems, it
is well-known that maximum stress distribution occurs in a transient state which lasts from
the beginning of the heating to the steady state, in general. Therefore, for such optimization
problems, it is necessary to consider the transient state in which the maximum stress
distribution is predicted to occur.

Tanigawa et al. [47] analyzed one-dimensional optimization problem of material com-
position of a nonhomogeneous plate in a transient state, for the first time. In a subsequent
paper, Tanigawa et al. [48] carried out the optimization of material composition of a non-
homogeneous hollow circular cylinder in a transient state to reduce the thermal stress
distributions. These optimization problems have been treated by making use of the non-
linear programming method. However, when such a nonlinear programming method is
adapted to the optimization problem, the analytical procedure becomes complicated and,
hence, a long central processing unit (CPU) time for the numerical calculations is needed.
On the other hand, the concept of neural networks has been introduced to analytical proce-
dures of structural optimization [49–51] and to inverse problems [52]. It is well known that
a neural network can be constructed by a comparatively simplified procedure for numerical
calculations, and optimum calculation can be carried out without nonlinear programming
method by making use of Tanaka’s method [53]. As a result, compared to when nonlinear
programming is utilized, the optimal solution can be produced in a relatively short amount
of time on the CPU. There are several papers on optimization of material composition for
FGM using neural networks (e.g., [54–57]).

Research pertaining to the optimization of FGMs is comprised almost entirely of
single-objective studies [40,57–63]. However, the design of practical FGM structures of-
ten require [64] the maximization or minimization of multiple, often conflicting, objec-
tives. The first study considering multi-objective optimization of FGMs was performed
by Huang et al. [65]. They used a weighted Tchebycheff approach to do a bi-objective
optimization design of FG flywheels with general one-dimensional grading profiles and
radially changing thicknesses. Goupee and Vel [66] developed a methodology for the multi-
objective optimization of material distribution that is based on the element-free Galerkin
(EFG) method [67] for the numerical simulation of FGMs. The material composition profile
was optimized using a real-coded elitist non-dominated sorting genetic algorithm. In a
subsequent paper, Vel and Goupee [68] applied the same algorithm to optimize the volume
fraction of a two-dimensional cooling component made of tungsten and copper. Both tran-
sient and steady-state conditions were considered. Thus, the problem was a bi-objective
optimization problem. They optimized the volumetric fraction only at eight nodes and for
adjacent points it was obtained using a range-restricted piecewise bi-cubic interpolation.

In [69], teeth made of HAP/Col (ceramic) and titanium under applied chewing forces
were considered. The goals were to maximize cortical and cancellous bone densities while
minimizing the vertical displacement. The material gradient was only in vertical direction
and governed by a power law, Vc = (y/h)m. There was only a single real-value parameter
(m) to be optimized and a simple optimization algorithm was utilized as follows. All three
objective functions were approximated by polynomials in “m” and a least square method
was applied to determine the unknown coefficients of the polynomials. In addition, the
weighted average method was used to solve the multi-objective optimization problem.
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Cheng and Batra [70] presented a 3D analytical closed-form solution for the thermo-
mechanical deformations of an isotropic, FG elliptic plate. The through-thickness variation
of the volume fraction of the ceramic phase in a metal-ceramic plate was assumed to be
given by a power-law function, while the effective material properties were obtained by the
Mori-Tanaka [71] approach. Praveen and Reddy [72] investigated the transient nonlinear
thermoelastic behavior of an FG ceramic/metal plate, applying the von Karman plate theory
and the Finite Element Method (FEM). It was found that the general response of a plate with
material properties between those of ceramic and metal is not intermediate to the responses
of ceramic and metal plates. A 3D analytical solution for the thermo-mechanical response
of simply supported FG rectangular plates was given by Reddy and Cheng [73], using an
asymptotic expansion method. The locally effective material properties were estimated
by the Mori-Tanaka scheme. In this paper, temperature, displacements and stresses of the
plate were computed for different volume fractions of the ceramic and metallic constituents.
Turteltaub [62] formulated the temperature optimization problem as finding a distribution
of material properties (volume fraction of the constituent phases) that minimizes the
difference between the target and actual temperature distributions. The other paper by
the same author illustrated that the loading history is important in optimization problems,
even if the material remains in the elastic range [61]. Carrera et al. [74] addressed the
static response of FG plates subjected to transverse mechanical loads. Applying Carrera’s
Unified Formulation (CUF) [75], originally developed for multilayered structures and for
the principle of virtual displacements (PVD), closed form and FE solutions were derived.

2.3. 2010–2015

Most researchers have employed linear shape functions for capturing the material
gradations inside elements in the graded finite element context in optimization problems,
even though the solution is approximated by higher order shape functions. For the topology
optimization of FG beams subjected to thermal and mechanical loads, Almeida et al. [76]
used the Continuous Approximation of Material Distribution (CAMD) approach. Their
goal was to identify the best material distribution for such materials that would result
in the beams having the least amount of compliance. To deal with uncertainty in the
manufacturing process, a reliability-based design optimization for FGMs was proposed
by Noh et al. [77]. They considered a finite number of volume fractions of homogenized
FGM layers and material properties as random variables, with statistical information such
as mean, standard deviation, and statistical distributions. They assumed a gradient from
metal to ceramic in four layers as shown in Figure 3. This technique simplifies the FEA to a
great extent as there is no need to model an FG part, but only a few homogeneous materials
need to be modeled and assembled.
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Nabian and Ahmadian [78] used a GA-based optimization strategy to concurrently
minimize the mass and maximize the first natural frequency of a FG hollow cylinder.
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They assumed that the material properties vary continuously through the thickness of the
cylinder (one-dimensional gradient in the radial direction) and formulated the first natural
frequency as well as its mass in terms of the volume fraction of the constituents. Nouri
and Astaraki [79] optimized the volume fraction distribution of materials and geometry
of FG cylindrical shells via GA to maximize the sound transmission loss based on the
first resonant frequency. Constraints included the weight, frequency range, and thickness
of the shell structure. In this study, they looked at a variety of materials and discovered
that the combination of nickel-aluminum and steel-aluminum provided the best sound
transmission loss and the lightest weight.

Xu et al. [80] minimized the thermal residual stresses induced in C/SiC FG coating of
carbon/carbon (C/C) composites when cooling down from the processing temperature
by controlling the thicknesses and compositional distribution of the C/SiC FGM. They
implemented a one-dimensional analytical model based on force and moment balances
to determine the thermal residual stresses and found an optimal design using a particle
swarm optimization (PSO) algorithm. Figure 4 gives a schematic description of the C/SiC
FGM system, where N coating layers are deposited on the substrate. Kou et al. [81] utilized
Particle Swarm Optimization (PSO) to optimize one-dimensional and two-dimensional
material distribution of parts exposed to temperature variations. The objective of optimiza-
tion for the main example problem was to simultaneously minimize the von Mises stress
and the mass of a plane made of zirconia (ZrO2) and titanium alloy (Ti-6Al-4V). The major
novelty of this paper is to use an advanced representation model for heterogeneous parts
which is a feature tree-based procedural model.
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Optimization of material composition of FGMs based on multiscale analysis method
that can efficiently predict the microscopic stress state (namely, the asymptotic expansion
homogenization (AEH) method) was conducted by Chiba and Sugano [82]. They optimized
the material composition of an infinite FG plate made of Ti and ZrO2 in only one direc-
tion using a genetic algorithm. The AEH method has the advantages that the equivalent
macroscopic material properties for composite materials with an arbitrary complicated mi-
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crostructure can be calculated exactly and the distribution of stresses in the microstructure
can also be evaluated.

Ghazanfari and Leu [83] used a sequential approximate optimization method to maxi-
mize the stiffness of beams with two-dimensional material distribution. The optimization
constraint was the total mass of the beam predetermined by the user. They used the
linear rule of mixture [84] to estimate all material properties and developed their own
finite element code to the strain analysis. Although their results showed a considerable
increase in the stiffness of the beams after optimization as compared to the beams with
uniformly distributed materials, it was infeasible to employ their technique for other
objective functions.

FGMs have a number of features that have enticed researchers to use them in biomedi-
cal applications. Bahraminasab et al. [85] carried out a multi-objective design optimization
of an FG femoral component using FEA and response surface methodology. Their objective
was to extend the lifespan of femoral component of a total knee replacement. The perfor-
mance measures of the FGM design included: (1) the stress distribution on the distal femur
to avoid stress shielding effect, (2) the contact characteristics of tibia insert (contact area
and pressure) to avoid wear and (3) micro-motion at the implant/bone interface to avoid
instability. The results of using optimized FGM were compared with the use of standard
Co–Cr alloy in a femoral component to demonstrate relative performance.

2.4. 2016–2022

Many researchers carried out extensive studies relating to thermal stress analyses
and heat transfer problems in FGMs during past decades. However, in recent years, the
thermo-mechanical response of FGM structures has gained more attention due to the recent
developments and emerging new applications of FGMs. Some works on optimization of
FGM structures under thermo-mechanical loadings are mentioned herein. Lieu and Lee [86]
developed a novel metaheuristic algorithm known as adaptive hybrid evolutionary firefly
algorithm (AHEFA) to optimize the material distribution of aluminum and zirconia FG
plate under thermo-mechanical loads. The objective was to minimize the compliance under
ceramic volume constraints. The static analysis of FG plates was carried out using a non-
uniform rational B-splines (NURBS) based isogeometric finite element model in conjunction
with the third-order shear deformation theory (TSDT). The material distribution via the
B-spline basis functions was represented using Greville abscissae to define the coordinates
of the specified ceramic volume fractions along the plate thickness at a set of control points.

A work by Correia et al. [87] focused on the optimization study of FG plates consider-
ing several objectives, such as the mass and material cost minimization, natural frequency
maximization, and minimization of stress. The design variables were the index of the
power-law distribution in the metal-ceramic graded material, the thicknesses of the FGM
layer, and the face sheets while manufacturing limitations were also taken into account.
Most importantly, the multi-objective optimization problems were solved by a rather effi-
cient Direct Multi-Search (DMS) derivative-free method. A multi-objective optimization
procedure based on DMS was also adopted in Moleiro et al. [88] work for the design
optimization of FG plates under thermo-mechanical loadings. The objective functions
were to minimize mass, deformation, and stress altogether. They used the layer-wise
mixed model for the thermo-mechanical analysis of multi-layered FG plates and Tsai-Hill
failure criterion. Most recently, Qu et al. [89] developed a new FG magneto-electro-elastic
composite microbeam model using a general higher-order deformation theory (GHDT) to
account for the symmetric thickness-shear and thickness-stretch deformations of a beam
and a modified couple stress theory to describe the microstructure-dependent size effect.

The advances in manufacturing processes inspired the researchers to consider the
development of porous biomaterials with a functional gradient and optimizing the porosity
pattern in these materials. Implementing an optimization algorithm based on mechanobio-
logical criteria, Boccaccio et al. [90,91] developed FE models for FG scaffolds. The finite
element model of FG scaffold is shown in Figure 5. They used a sequential quadratic
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programming method to maximize the percentage of scaffold volume occupied by bone.
The simulation results revealed that rectangular and elliptic pores could facilitate a large
number of tissue growth compared to circular pores, and the fastest-growing bone tissue
was found at the location of largest curvature. These studies proved to be an efficient way
for the optimization of FG scaffolds, when biological loading condition is considered.

Metals 2022, 12, x FOR PEER REVIEW 8 of 40 
 

 

under ceramic volume constraints. The static analysis of FG plates was carried out using 
a non-uniform rational B-splines (NURBS) based isogeometric finite element model in 
conjunction with the third-order shear deformation theory (TSDT). The material distribu-
tion via the B-spline basis functions was represented using Greville abscissae to define the 
coordinates of the specified ceramic volume fractions along the plate thickness at a set of 
control points.  

A work by Correia et al. [87] focused on the optimization study of FG plates consid-
ering several objectives, such as the mass and material cost minimization, natural fre-
quency maximization, and minimization of stress. The design variables were the index of 
the power-law distribution in the metal-ceramic graded material, the thicknesses of the 
FGM layer, and the face sheets while manufacturing limitations were also taken into ac-
count. Most importantly, the multi-objective optimization problems were solved by a ra-
ther efficient Direct Multi-Search (DMS) derivative-free method. A multi-objective opti-
mization procedure based on DMS was also adopted in Moleiro et al. [88] work for the 
design optimization of FG plates under thermo-mechanical loadings. The objective func-
tions were to minimize mass, deformation, and stress altogether. They used the layer-wise 
mixed model for the thermo-mechanical analysis of multi-layered FG plates and Tsai-Hill 
failure criterion. Most recently, Qu et al. [89] developed a new FG magneto-electro-elastic 
composite microbeam model using a general higher-order deformation theory (GHDT) to 
account for the symmetric thickness-shear and thickness-stretch deformations of a beam 
and a modified couple stress theory to describe the microstructure-dependent size effect. 

The advances in manufacturing processes inspired the researchers to consider the 
development of porous biomaterials with a functional gradient and optimizing the poros-
ity pattern in these materials. Implementing an optimization algorithm based on mecha-
nobiological criteria, Boccaccio et al. [90,91] developed FE models for FG scaffolds. The 
finite element model of FG scaffold is shown in Figure 5. They used a sequential quadratic 
programming method to maximize the percentage of scaffold volume occupied by bone. 
The simulation results revealed that rectangular and elliptic pores could facilitate a large 
number of tissue growth compared to circular pores, and the fastest-growing bone tissue 
was found at the location of largest curvature. These studies proved to be an efficient way 
for the optimization of FG scaffolds, when biological loading condition is considered. 

 
Figure 5. Parametric finite element model of the FG scaffold. “Reprinted with permission from [90].” 
CAD model (a,b) and finite element mesh (c,d) of the scaffold (a,c) and granulation tissue (b,d). The 

Figure 5. Parametric finite element model of the FG scaffold. “Reprinted with permission from [90].”
CAD model (a,b) and finite element mesh (c,d) of the scaffold (a,c) and granulation tissue (b,d). The
nodes of the bottom surface of the model were clamped (e–g) while those of the upper surface were
tied to a rigid plate (represented in blue).

Topology optimization has been a popular method to design mechanically efficient
cellular materials. A multi-physics topology optimization of FG controllable porous struc-
tures, while improving heat dissipation at the same time, was carried out by Das and
Sutradhar [92]. Porous cells (random architecture) were employed instead of lattices (or-
dered architecture) in this approach, with pore size and relative density as design variables.
A sensitivity-based controlling scheme was presented, which can offer graded porous
structures with variation in member and pore size in different sensitive zones. The re-
search based on multi-objective topology optimization can impart improved functionality
in the creation of bio-scaffolds for hip implants (Wang et al. [93]), the design of aerospace
structures (Aage et al. [94]), on improving the contour of the blades in the field of turboma-
chinery (Lee et al. [95]). Some studies have tried to improve the material layout or reduce
the mass of turbine blades (Magerramova et al. [96]).

3. Homogenization Approaches

The constituent phases of FGMs (e.g., ceramic and metal particles) are of arbitrary
shapes and mixed up in arbitrary dispersions. Therefore, prediction of their effective
material properties at a point by knowing the volume fractions of the constituents is
not generally a simple task. Different strategies have been proposed for this purpose
thus far, each of which may work well for a certain type of problems depending on the
fabrication process and shapes of the constituent particles. Generally, FGMs are designed
to suit high-temperature conditions because the ceramic constituent provides high thermal
resistance and hence most of the commonly-used FGMs are made of ceramic and metal.
Homogenization techniques are essentially required to derive the effective properties
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of macroscopic homogeneous composite materials from the microscopic heterogeneous
material structures.

Some researchers did not use any homogenization approach. Instead, they directly
optimized the distribution of material properties, not material composition. For example,
Zhang et al. [97] found the optimal distribution of the Young’s modulus across the part.
The advantage of this approach is its simplicity, but it cannot be used if more than one
material property is needed. For instance, if the Young’s modulus and the coefficient of
thermal expansion are needed to solve a problem, this approach cannot be implemented. In
addition, if the final part is to be fabricated via any manufacturing technique, the optimal
material property distribution needs to be converted to material composition distribution
and a homogenization method must be implemented.

Several homogenization models, viz. rule of mixtures (Voigt Scheme), Mori-Tanaka
method, Levin’s model, effective medium theory, Maxwell model, reciprocity model,
Tamura model, and finite element-based models are available in literatures [3] to compute
the effective material properties. There are many homogenization methods in general, but
the present paper focuses on the homogenization methods used in the material distribution
optimization studies. For evaluating FG structures, researchers recommend the Voigt
and Mori–Tanaka models among the homogenization models. It is simple to compute
the upper and lower bounds of effective material properties of a heterogeneous material
using the Voigt model. It is also computationally more efficient compared to Mori–Tanaka
method [98]. Several such models based on the micromechanics method and effective
medium approximation have been developed and reported in the literature over the years
and are presented in this section.

3.1. Rule of Mixture

The most popular homogenization approach is the rule-of-mixture in which a material
property at a point is estimated by the volume weighted average of the properties of its
constituents. In this method, each effective material property is only dependent on the
corresponding material property of the metal and ceramic phases and the volume fractions.
The advantage of this method is that it is easy to calculate and can be considered as the
upper and lower bounds for the effective elastic properties of a heterogeneous material [99].

The effective material properties P (e.g., Young’s modulus E, Poisson’ ratio ν, coeffi-
cient of thermal expansion α, and thermal conductivity k) may be expressed as

P = P1V1+P2V2 (1)

where, Pi and Vi are material properties and volume fraction of phase i, respectively. Thus,
having properties of each material, one could calculate the effective properties for any
composition (clearly, at each point, V1 + V2 = 1).

The rule of mixture is simple and widely used to characterize the effective material
properties of FGMs [88,100,101]. Although this simple rule is accurate for a fiber reinforced
composite that is aligned in the loading direction and deformed under iso-strain conditions,
the reliability of this method has been known to be highly questionable, because it does
not include the details on particles and dispersion layout as well as the interaction effect
between the constituents [102]. As a result, designers are looking for more precise estimates
of the Young’s modulus and thermal expansion coefficients, which are the most important
factors in the thermoelastic response of FGMs.

3.2. Mori-Tanaka Scheme

Mori–Tanaka [71] scheme is also widely employed in the literature and is believed to
yield promising estimations of effective material properties in typical realistic problems. In
Mori–Tanaka scheme, extracting the effective material properties is based on the distributed
small spherical particles (metal phase) into matrix (ceramic phase). According to the Mori-
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Tanaka method, the effective bulk modulus (K), and the effective shear modulus (µ) of a
mixture of two constituents is given by:

K− K1

K2 − K1
=

V2

1 + (1−V2)[3(K2 − K1)/(3K1 + 4µ1)]
(2)

µ− µ1

µ2 − µ1
=

V2

1 + (1−V2)(µ2 − µ1)[µ1 + µ1(9K1 + 8µ1)/6(K1 + 2µ1)]
(3)

where Ki, and µi are bulk Modulus and shear Modulus of phase i, respectively. Sub-
sequently, the effective Young’s modulus (E) and Poisson’s ratio (ν) are obtained as
E = 9Kµ/(3K + µ) and ν = (3K− 2µ)/(6K + 2µ), respectively.

This model has been applied to many cases in literature, Hirshikesh et al. [103] pre-
sented a phase field modeling for crack propagation in FGMs. They have used the Mori–
Tanaka homogenization theory to calculate the Young’s modulus and Poisson’s ratio and
the rule of mixtures to compute the energy release rate. Srividhya et al. [104] compared
Mori–Tanaka and Voigt model through the static analysis of FGM plates. They have ob-
served that the effective elastic properties estimated by the Voigt model are larger than
those obtained with the Mori–Tanaka scheme. The difference varies with the change in
power-law index n and is seen to be the highest for n = 0.5 to the tune of 11.5%. It has been
also observed that the rule of mixtures gives a better estimate of the elastic properties for
values of n = 0–2.0, whereas Mori–Tanaka method predicts the elastic properties quite accu-
rately for values above n = 2.0. For a two phase composite, the predictions by Mori–Tanaka
scheme lies in between the Hashin-Shtrikman bounds [105], but for the case of multi-phase
composites the Mori–Tanaka scheme seems to violate the bounds and thus it is not always
practicable for multi-phase composites [106]. Although Mori–Tanaka approach takes into
account the stress perturbation inside the matrix due to the presence of other inclusions, it
is not able to account for the spatial distribution. So, recently, numerical homogenizations
such as finite element approach has been applied for composite system having higher
geometric complexities [107], discussed later in this section.

3.3. Levin’s Model

Because of the variable thermal fields often found in functionally graded material
applications, it is important to also consider estimates of the coefficient of thermal expansion.
For a two-phase composite, Levin [108] gives relations for the effective coefficient of thermal
expansion (α) in terms of constituent properties, and the effective bulk modulus (K) as

α = V1α1 + V2α2 +
α2 − α1
1

K2
− 1

K1

(
1
K
−
(

V1

K1
+

V2

K2

))
(4)

where αi is the coefficient of thermal expansion of ith phase. Thus, having coefficients
of thermal expansion of each material, one could implement K from Equation (3) into
Equation (4) and calculate the effective thermal expansion coefficient for any composition.
So, the availability of an efficient elastic homogenization model is a key requirement for
a successful evaluation of the effective coefficients of thermal expansion of composites.
Recently, Lages and Marques [109] presented a study about thermoelastic homogenization
of two-phase periodic composite materials using an elastic micromechanical model based
on the equivalent inclusion approach [110], together with the Levin’s formula for evaluation
of overall thermal expansion coefficients.

3.4. Maxwell Scheme

To predict the effective thermal conductivities of composite materials, the factors,
including the thermal conductivity, size, and distribution of the inclusion, that may affect
the effective thermal conductivities should be considered [111]. The effective medium
theory [112] is one of the traditional methods to predict the effective thermal conductivities
of composite materials. The effective medium theory provides simple analytical models



Metals 2022, 12, 1335 11 of 37

that can quickly estimate the effective thermal conductivities of the composite materi-
als, knowing the properties and volume fractions of the inclusions [113]. For example,
Maxwell [114] was the first person to give analytical expressions for effective thermal
conductivities of composite materials. Maxwell scheme appears to be one of the best
homogenization techniques in terms of its applicability to cases of anisotropic multiphase
composites and accuracy. In his original work, Maxwell calculated effective conductivity
of a composite consisting of a matrix material with conductivity k0 and isolated spherical
inhomogeneities of conductivity k1 and volume fraction V. For this aim, he considered a
large sphere of unknown effective conductivity ke f f and calculated the far-field asymptotics
of the perturbation of the externally applied electric field in two different ways: as (1) a
sum of far-fields generated by the small spheres, and (2) the far-field generated by the large
sphere. Equating the two, yields the effective conductivity in the following form: equation:

ke f f = k0
1 + 2VΨ
1−VΨ

(5)

where, Ψ = (k1 − k0)/(k1 + 2k0).
This approach is probably the oldest homogenization technique. Interestingly, over

one-and-a-half century from its publication, the Maxwell’s scheme continues to give rise to
intensive discussions in literature. In a recent work, Sevostianov and Bruno [115] adopted
Maxwell homogenization scheme to evaluate residual stresses in multi-phase (and even-
tually anisotropic) materials. They concluded that Maxwell scheme, being applied to the
calculation of the residual stresses in composites, showed good agreement with the experi-
mental results. Simplicity of the Maxwell scheme seemed to be attractive for many authors,
and in a number of works the method was applied to calculation of effective conductive
and elastic properties of composites with ellipsoidal inclusions and even hybrid compos-
ites containing different families of ellipsoidal inclusions [116]. The Maxwell technique
produces the same equations for the effective elastic constants as previous homogenization
approaches that appear to take into account interactions between inclusions in elastic
composites with spherical inclusions (e.g., the effective field method and Mori–Tanaka
method [117]). As a result, there was a belief that the Maxwell scheme’s conclusions may
be extended to the region of large volume fractions of inclusions. Maxwell’s approach
can also be generalized to other physical properties such as piezoelectricity [118]. The
drawbacks of the Maxwell scheme is that it does not allow describing influence of structure
in the inclusion positions on the effective properties. Its results are very dependent on the
form of the composite volume examined in the Maxwell scheme (the approach predicts
different effective properties of the composite for spherical and non-spherical (ellipsoidal)
geometries of this volume [119]).

3.5. Temperature-Dependent Properties

FGMs are also suitable for space applications where high temperature gradients are
encountered within a very short time span. Therefore, proper gradation scheme and temper-
ature distributions in FG structures have been active areas of research during last few years
in the analysis of such FG structures. In evaluating the behavior of FGMs, Touloukian [120]
proposed temperature dependency of material properties P(T) as a nonlinear function of
temperature by the following expression:

P(T) = P0

(
P−1T−1 + 1 + P1T + P2T2 + P3T3

)
(6)

where P0, P−1, P1, P2 and P3 are coefficients of temperature T (in K), unique to each con-
stituent materials and determined by experiment [84]. In literature, the multiobjective opti-
mization research related to thermo-mechanical loading of FG plates are carried out [86,87].
They estimated the temperature-dependent effective material properties by either the
rule of mixture or the Mori-Tanaka scheme. Similarly, the temperature effect also can be
included in the other laws of gradation.
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3.6. Finite Element Model

The main purpose behind finite element modeling is to accurately capture the field
distribution and use these field data to compute the effective properties. Representative
volume element (RVE) model is the most popular homogenization-based multi-scale consti-
tutive method used in the finite element method to investigate the effect of microstructures
on mechanical and thermal properties of composites [121]. Numerical study of composite
materials involves generation of RVE on which periodic boundary conditions are imposed
to predict the overall response of composite material [122–124]. A survey of the existing
micromechanical models has been carried out by Raju et al. [125]. They presented that
various complex cases incorporating discontinuous fibers, micro-scale voids or pores etc.
can be modeled in a super-cell assembly of RVEs with non-periodic random distribution
of relevant parameters, based on the geometric complexity of the microstructures. For
finite element-based simulation, the case of continuous fiber composite material which is
modeled as an RVE with single fiber embedded in the matrix is shown in Figure 6 [125].
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Several papers exist in the literature where RVE is analyzed to determine composite
moduli. When doing such analysis, there are a few problems that must be carefully
considered. The correct boundary conditions need to be applied to the chosen RVE to
model different loading situations. When determining the correct boundary conditions,
the periodicity and symmetry of the model must be taken into account. A typical RVE
can deform in such a way that it retains a right parallelepiped under longitudinal and
transverse normal loading.; i.e., plane sections remain plane [126]. Another important issue
is the relationship between the actual non-homogeneous stress and strain fields within the
RVE and the average stress and strain for the composite. The relationship between the two
and the procedure for determining the average quantities are discussed in [121].

3.7. Tamura-Tomota-Ozawa Model

While the classical Hooke’s law describes the linear-elastic response of FGMs with the
elastic properties evaluated approximately by micromechanics models for conventional
composites, determination of the elastic–plastic behavior of FGMs remains a challenging
task. The compositional profile and effective mechanical characteristics of FGMs are critical
in confirming the manufacturing process and calculating residual stresses and failure
strengths. Due to additional material factors, measuring non-linear or elastic-plastic FGMs
is more difficult. Unlike elastic FGMs, non-elastic FGMs need identification of not only the
Young’s modulus but also the yield strength and tangent modulus, which vary spatially.
The volume fraction-based model proposed by Tamura et al. [127] is one of the most widely
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used models (TTO model). The yield strength of FGMs, as well as Young’s modulus and
tangent modulus, are calculated using this model. The FGM’s compositional profile and
the stress-strain transfer parameter that characterizes the effective properties of elastic-
plastic FGMs are estimated using an inverse analytical process based on the Kalman filter
technique proposed by Nakamura et al. [128]. The TTO model links the uniaxial stress and
strain of a two-phase composite (σ, ε) to the average uniaxial stresses and strains of each
constituent phase (σ1, σ2, ε1, ε2) and their volume fractions (V1, V2).

σ = σ1V1 + σ2V2, ε = ε1V1 + ε2V2 (7)

TTO model introduces an additional parameter q that indicates the ratio of stress to
strain transfer as follows:

q =
σ1 − σ2

|ε1 − ε2|
, 0 ≤ q ≤ ∞. (8)

In general, the parameter q is influenced by a number of things (e.g., loading condition,
material microstructure and mechanical characteristics of each constituent, etc.). Due to a
lack of experimental data, q is presumed constant in most applications even beyond the
elastic range [128]. It’s worth noting that q = 0 denotes that once the metallic elements
reach their yield limit, FGMs flow plastically. The effective Young’s modulus, E, may be
obtained from Equations (6) and (7) [129]:

E =

[
V2E2

(
q + E1

q + E2

)
+ V1E1

]/[
V2

(
q + E1

q + E2

)
+ V1

]
. (9)

For applications involving plastic deformation of ceramic/metal (brittle/ductile) com-
posites, the TTO model assumes that the composite yields once the metal constituent yields.
The effective yield strength, Sy expressed as (Huang et al. [130]):

sy = sy2

[
V2 +

(
q + E2

q + E1

)
E1

E2
V1

]
(10)

where sy2 signifies the metal phase’s yield strength. The yield strength of the composite is
determined by the yield strength of the metal, the volume fraction of the metal, the Young’s
moduli of the constituent phases, and the parameter q, as shown in the equation above.
Figure 7 shows the yield strength fluctuation of a FGM made up of metal (ductile phase)
and ceramic (brittle phase).
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For an idealized bilinear model of the metal with a tangent modulus Et2 the TTO model
predicts that the composite also follows a bilinear response with the tangent modulus Et
given by [129]:

Et =

[
V2Et2

(
q + E1

q + Et2

)
+ V1E1

]/[
V2

(
q + E1

q + Et2

)
+ V1

]
. (11)

The subscripts 1 and 2 in Equations (7)–(11) stand for ceramic and metallic parts,
respectively. For many structural metals, the simplistic bilinear model does not capture
adequately the variation in strain hardening rate under increased plastic flow [130]. TTO
scheme was used by Nikbakht et al. [132] and Komarsofla et al. [133] to acquire the yielding
commencement of FG plates and shells, respectively. Recently, TTO model is implemented
to describe the elasto-plastic material behavior of FGM disks by Nayak et al. [131]. The
above-mentioned references include more thorough information on this model.

4. Representation Techniques

The material properties of FG structures are graded by gradually changing the volume
fraction of constituent phases with respect to spatial coordinates in a continuous manner.
Therefore, determination of the volume fraction distribution of material constituents of
these structures are of prime importance. To represent various types of FGM objects,
a variety of theoretical representations, material function derivations, and optimization
strategies have been examined. According to model exactness and compactness, Kou
and Tan [18] divided heterogeneous object representations into two categories: evaluated
and unevaluated models. Evaluated models, such as voxel and volume mesh-based
models, can depict heterogeneous material distributions in an inexact and discrete form.
Models that have not been evaluated, such as the explicit function model, control feature
model, control point model, and implicit function model, do not require extensive spatial
decompositions/subdivisions or discretization, and can theoretically provide sufficient
fidelity in geometries and material distributions. In terms of representational complexity,
another type of heterogeneous object, termed as the composite model, can be identified. The
modeling of FGM objects was split into three categories by Zhang et al. [134]: traditional
geometrical representation-based FGM modeling, geometry independent FGM object
modeling, and a new FGM modeling approach that uses simple material primitives. In the
latter category, points, one-dimensional curves (straight lines or splines), and planes are
used to build sophisticated material distributions. Recently, Li et al. [135] published a review
paper on the developments in heterogeneous object modeling. Their main concentration
was on general problems and prevalent solutions along with different design paradigms of
the modeling of heterogeneous objects. Each study’s disadvantages and advantages were
discussed, as well as possible future research projects, in their article. This section aims to
review and classify existing FGM object modeling techniques used in studies of material
distribution optimization.

4.1. Voxel-Based Models

A heterogeneous object with a collection of voxels is represented by voxel-based
models. Each voxel is a tiny cube in space with a specified material distribution (homoge-
neous or interpolated). Medical data obtained from Computerized Tomography (CT) and
Magnetic Resonance Imaging (MRI) scanners are two common examples.

The voxel-based design method, unlike the surface representation method used in
most mesh-based CAD applications, can tolerate heterogeneous material qualities in order
to modify designs of graded structures. Material distribution in traditional CAD systems
is based on pre-existing geometries, but voxel-based approaches can develop material
compositions and geometrical coordinates separately. In complicated three-dimensional
structures, voxel representation systems can be utilized to embed a wide range of lattice
topologies [17]. Because the material composition interrogations are simple, it can be
considered a computation-efficient representation [136]. Aremu et al. [137] introduced a
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novel voxel-based approach for representing lattice structures with any lattice cell and
any exterior geometry. Furthermore, by overlaying a greyscale image onto a pre-designed
voxelized domain, voxel-based approaches have been used to build FG structures. It’s also
worth noting that the rise of voxel design has been strongly linked to the rise of 4D printing.
Piezoelectric, electrical, magnetic, and photostrictive materials, as well as transformer
hydrogels, have already been used [138].

FGMs are very interested in voxel-based models, but there are still certain obstacles to
overcome. The resolution of the voxel has a direct relationship with the model’s accuracy.
Huge storage spaces are usually required to obtain an accurate heterogeneous model.
A database for material distribution should be established ahead of time, which will
necessitate considerable testing. Designers must master both the geometrical modeling
process and the materials science features of the pieces that will be printed (e.g., material
compositions, structures, properties, and performance).

4.2. Volume-Mesh Models

Volume mesh-based models are similar to voxel-based models. The only difference
is that they use a collection of polyhedrons instead of spatial grids to represent three-
dimensional models [139]. The mesh nodal vertices are similarly defined as voxels; how-
ever, the material distributions at other locations inside a polyhedron are not explicitly
evaluated and preserved in datasets; instead, they are represented by a function through
interpolations. This representation alleviates the huge storage problem in the voxel model
and is more compact in data structures. In addition, volume mesh-based representations
are able to represent complex/highly heterogeneous material distributions [140]. In a
very recent paper by Saini et al. [141], heat conduction of heterogeneous materials with
varying volume fraction, shape and size of fillers was evaluated using adaptive mesh
generation method.

Despite these advantages, mesh-based representations also suffer from a few limita-
tions. As reported by Sharma and Gurumoorthy [142], evaluated models use a mesh or
voxel representation to approximate the geometry. It is difficult to prescribe the material
distribution using geometric form features (like holes), or user-defined material reference
entities, as the geometric information about the features is lost after discretization. Further-
more, the depiction of material composition using these models is dependent on the mesh
resolution or voxels, which may or may not conform to the material distribution, resulting
in discretization inaccuracy. In addition, any change in material function would lead to
re-discretization of the whole geometry to reapproximate the new material distribution.

4.3. Explicit Function-Based Models

Analytical functional representations apply explicit functions to manipulate the mate-
rial composition at each point inside the FGM model [143]. One advantage of the explicit
functional models is that the material interrogation can be extremely fast and efficient, be-
cause evaluations of analytic functions are rather trivial for modern computers. In addition,
explicit functional models are simple to comprehend and formulate. Linear, exponential,
parabolic and power function based material distributions have been widely used in mod-
eling heterogeneous material distributions [18]. For instance, Srividhya et al. [104] modeled
a unidirectional FGM plate with power-law functions. This approach is very easy to use
and greatly simplifies the optimization step (because only a few parameters need to be
optimized). Very similar equations were used by Arslan et al. [64].

The modeled material distributions are usually of simple shapes when using explicit
functions (e.g., unidirectional or one-dimensional material gradations). For objects with
complex heterogeneities, it is usually difficult to model the entire material distributions with
an explicit, analytic function. Another drawback of this model is related to its dependence
of specific coordinate systems and certain geometrical transformations.
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4.4. Control Point-Based Models

Traditional modeling methods for heterogeneous structures, such as boundary repre-
sentation (B-rep) and Constructive Solid Geometry (CSG), are not the best. This is because
they do not allow representation of the inside of the object precisely. Control point-based
models can be regarded as direct extension of parametric curves, surfaces and volumes,
with additional material information assigned to each of the control points. The detailed
implementation of B-splines basis function to obtain the volume fraction distribution of
FGM is provided by Nayak and Armani [144]. In order to reduce the mass and deflection
of FGS plates subjected to mechanical stresses, Ashjari and Khoshravan [145] provided an
optimization method based on NSGA-II with the stress field as the constraint. A piece-
wise cubic interpolation function was used to calculate the distribution of the material
volume fraction after it had been defined at some control points. The design factors for this
study were these control points, the volume fraction distribution, and the thickness of the
face sheets.

Based on the stochastic Voronoi diagram and B-spline representation, Kou et al. [146]
proposed a novel digital model to design generic porous structures with graded porosities
and irregular pore distributions. They proposed a new method to model the microstructures
with FGM distributions. As the extension of [146], this approach does not require expensive
imaging equipment during the design process, and digital models can be constructed at
interactive or quasi-interactive rate.

With the advent of isogeometric analysis (IGA), the modeling of spline solids became
an important topic. IGA was first developed by Hughes et al. [147] towards the integration
of CAD and FEA into a single model. Geometric domains in the CAD environment and
FEA solutions are uniformly modeled and estimated in this technique, which is based on
B-splines or NURBS functions. In a paper by Do et al. [148], IGA was used to integrate CAD
and FEA to analyze the behavior of FG plates. Yavari and Abolbashari [149] analyzed the
thermoelastic waves propagation in non-uniform rational B-spline rods under quadratic
thermal shock loading using IGA approach. A recent paper [150] presents computational
optimization for porosity-dependent isogeometric analysis of FG sandwich nanoplates. The
ceramic volume fraction distribution was approximated by using the multi-patch B-spline
basis functions through the thickness direction.

Control point-based models are compact in both geometry and material representa-
tions. In addition, this model can effectively represent complex (two- or three-dimensional
dependent) material distributions. The limitation of this model is that it relies heavily on
spatial parameterizations and for arbitrary three-dimensional objects such parameteriza-
tions remain a rather non-trivial task [134].

4.5. Implicit Function-Based Models

Implicit function based models use the functional representation (F-Rep) as the basic
model for both the point set geometry and the material distribution [151]. The F-rep for the
material attribute can be symbolically described as:

G =
{

X = (x, y, z) ∈ E3| f (X) ≥ 0
}

(12)

where F : E3 → RN is a material distribution function defined in the three-dimensional
Euclidean space [134]. In this representation scheme, the geometry of the object is described
in the form of functions f (x, y, z) ≥ 0. The surface/boundary of the object would be the
vertices satisfying f (x, y, z) = 0, and the interior points are expressed as f (x, y, z) > 0.

The implicit functional models are also highly efficient, since the point membership
classification (PMC) is based on evaluation of real-valued functions, and the material
composition can be also easily interrogated using a lookup table (in the case of multi-
material objects) or evaluated directly from explicit functions. More importantly, F-Rep
facilitates constructive modeling of complex objects from simple primitives in a similar
fashion as the classical CSG representation [151].
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4.6. Composite Models

When modeling generic objects with complex material distributions, two or more
different types of material distributions might occur in different portions of the same
object. Hybrid homogeneous, unidirectional, or tri-variate FGM distributions, for example,
may arise in different parts of the same component. In theory, a composite model is a
collection of sub-objects, each of which belongs to a specific material domain [152]. There
are various representation approaches for spatial decompositions, for example, assembly
representation and cellular representation [18].

The assembly representation partitions the objects into several parts through direct
decomposition or constructive approach. While in cellular decomposition representation,
the geometry might be expressed with non-manifold boundaries due to the material
distribution. By introducing the concepts of co-boundaries, the cellular model has better
data storage efficiency than the assembly model [18]. Figure 8a shows an object with
complex material distributions, and Figure 8b,c are the assembly representation and cellular
model, respectively. Recently, the cellular representation approach was successfully applied
in bio-modeling of heterogeneous bones [153].

Hybrid composite models can describe structures with more intricate material dis-
tributions by incorporating both assembly and cellular models, and the strengths of each
representation can be fully exploited, as demonstrated in Figure 8. In a manner similar to
the volume mesh-based representation, a hybrid cellular functional model was proposed
to represent complex heterogeneous objects [154]. The hybrid composite models utilize
different types of material representations in the same composite model. Therefore, the
representational capacity is generally large and can be used to model a variety of hetero-
geneous objects. Other properties of hybrid composite models are mostly case-specific:
the compactness, efficiency and accuracy are all dependent on the characteristics of the
involved component models [135].
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4.7. Material Primitive-Based Models

As discussed in previous sections, a number of representation schemes are available
for FGM representation. The material information is represented either by extending
existing geometric representation or based on the coordinate systems. For conventional
geometric representation-based FGM modeling, the material distribution is confined by
the geometric structure of the objects. This limits the freedom of modeling irregular
and compound material variations. For geometry-independent FGM object modeling,
the material configuration has a strong dependence on the coordinate system. From the
users’ perspective, this may not be favorable in capturing their intentions. Numerous new
material primitive-based frameworks have been explored in the literature for a systematic
and generic modeling of FGM objects.

The material convolution surfaces-based approach is presented by Gupta and Tan-
don [155] for modeling FGM with material primitives (Figure 9). Various material distri-
butions can be efficiently modeled with the material primitives. By adjusting the char-
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acteristics of the convolution surface-based material primitives, the material distribution
in the object can be improvised correspondingly. Although the material convolution
surface-based scheme is potent for modeling FGM objects, it has the glitches of high data
redundancy resulting from unnecessary memory occupation. Besides, it faces the data
inconsistency between material and geometry models near boundaries, particularly in the
case of spline primitives.
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Figure 9. Material modeling with convolution surface-based material primitives: (a) point; (b) straight
line; (c) spline; (d) plane; (e) two-dimensional material distribution in an object obtained by merging
three one-dimensional material distributions; and (f) three-dimensional material distribution in an
object. “Reprinted with permission from [155]. Copyright 2015 Elsevier”.

To model complex heterogeneous object with complex geometries efficiently, Sharma
and Gurumoorthy [142] proposed a hybrid representation to capture arbitrary material
distribution using mixed-dimensional entities and represent it even when these entities
are not part of the shape parameters or topological entities of the solid model of the part.
They used medial axis transform (MAT) to define the domain of effect of each material
reference entity, where the material distribution can be intuitively prescribed, starting
from the material reference entity and terminating at the medial axis segment bounding
the corresponding domain. Recently, Sharma and Gurumoorthy [156] implemented an
iso-material contour representation to generate the process plan for additive manufacturing
given a smooth representation of heterogeneous object model. By interpolating material
composition along the lines linking the places on the source to the appropriate target
entities, iso-material contours are recovered between source and target reference entities.
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The hybrid representation also allows the construction of such contours on demand at any
specified resolution/accuracy. In addition, this method possesses all the advantages of
hybrid representation that include adaptive discretion based on the material distribution,
efficient material interrogation for numerical analysis and manufacturing planning.

4.8. Comparison

The above classifications and evaluations are aimed at providing a rough idea of
different models and their characteristics. Table 1 outlines the above discussed models and
their properties.

Table 1. Comparisons of different heterogeneous object models. Material capability A: multiple and
B: multiple with gradient functions. I I I I: very good, I I I: good, I I: average, I: poor, /:
uncertain or case-specific.

Representations Material
Capability

Representational
Capacity

Accuracy or
Exactness

Compactness Overhead
and Efficiency

Voxel model A I I I I I I I I I

Volume mesh model A I I I I I I I I

Explicit function model B I I I I I I I I I I

Control point based model B I I I I I I I I I I

Implicit function model B I I I I I I I I I I I

Hybrid composite model B I I I I / /

5. Finite Element Analysis Approaches

The complexity and cost associated with the manufacture and testing of FG specimens
has intensified the use of numerical tools to analyze their mechanical response. Although
a variety of numerical techniques have been used, including mesh-free methods and en-
riched formulations, the finite element method is by far the most popular approach [157].
The finite element method as an efficient numerical tool has been used for the simulation
of FGMs due to its ability to handle complex geometry, loading, material and boundary
conditions. Since there is currently no commercial software capable of analyzing FGMs,
researchers have either modified existing software, or developed their own codes. The first
option enables solving problems with complex geometries and physics, and implementing
complex material composition distributions. On the other hand, indigenously-developed
codes have more flexibility in implanting different homogenization approaches and repre-
sentation techniques, but it is not feasible to do multi-physics analysis of three-dimensional
parts using them. Here, we have first explained FEA for the optimization of FGMs using
commercial software and then provide a few examples of indigenously-developed codes.

5.1. Commercial Software

Zhang et al. [97] modeled FG parts in Abaqus using a USDFLD subroutine. This
subroutine allows users to define material properties as functions of field variables in-
cluding location. Abaqus was used by Bahraminasab et al. [85] to improve the femoral
component of FGM knee implants. The goal of this optimization study was to minimize the
problem of knee implants loosening. Multi-layered configurations were used to model the
FG structure and each layer was assumed to behave as a homogeneous isotropic linearly
elastic material, except for ultrahigh molecular weight polyethylene, which was modeled
as an elastic-plastic material. The topology optimization was carried out by Ramírez-Gil
et al. [158] for cylindrical steel plates in ANSYS APDL. The optimization problem required
an FEA at each iteration and used the equivalent static load method to convert the dynamic
loads to static loads. For the three-dimensional optimal design of FGMs, Ghazanfari [159]
developed a Fortran code written using USDFLD function to enable implementation of
FGM in Abaqus. In a paper by Zhou et al. [160], finite-element (FE) modeling was used to
investigate the thermodynamic behavior of the Thermal Protection System (TPS) utilizing
bolted joints made up of porous ZrO2/(ZrO2 + Ni) FGMs. The transient response of the
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porous ZrO2/(ZrO2 + Ni) functionally graded bolted joint was obtained by thermodynamic
simulations. The effects of the preload on the thermomechanical behavior and service
reliability of the bolted joint were numerically analyzed in detail by ABAQUS codes. In a
subsequent paper, Zhou et al. [161] investigated the load distribution in threads of the TPS
utilizing bolted joints made up of porous ZrO2/(ZrO2 + Ni) FGMs by ABAQUS codes.

A software package, MicroFEA 1.0, for finite element analysis of FGMs has recently
been developed by Medeiros and Parente [162]. The software package can be used for
the material optimization of heterogeneous materials. The package included MATLAB
scripts and Fortran subroutines for use with Abaqus for Finite Element Analysis (FEA). At
the integration point level, the Abaqus user-material subroutines (UMATs) were built to
operate with heterogeneous materials. In addition to UMAT, the analysis of FGM structures
subjected to thermomechanical loading required the use of UTEMP subroutines to define
the temperature field. More recently, Nayak and Armani [144] analyzed the optimal
distribution of FG parts in ANSYS APDL using a USERFLD subroutine. The USERFLD
function in ANSYS provides users with the capability of defining field variables as functions
of time or other quantities. Node-based initial state helps initialize the user-defined field
variables that are then used by the TB database to evaluate the material properties at an
integration point.

FEA has been frequently utilized to improve the strength-to-weight ratio of FG
scaffolds by optimizing the distribution of graded cellular lattice structures [163–165].
Kladovasilakis et al. [166] recently published a paper on orthopedic hip implant with FG
bioinspired lattice structures through FEA under in vivo loading. ANSYS was used for the
finite element analysis and in particular, the static structural module was used to simulate
the quasi-static loading.

COMSOL Multiphysics can also define the material properties of FGM through ana-
lytic functions to analyze the mechanical behavior of FGM structures. Based on the first
order shear deformation theory (FSDT), Kolahi et al. [167] developed an analytical frame-
work for mechanical study of thick, shrink-fitted FG cylinders (FSDT). Additionally, they
used COMSOL Multiphysics to perform a finite element simulation, which has the benefit
of defining material properties as analytical functions. Sharma et al. [168] investigated the
modal analysis of an axially functionally graded material beam under hygrothermal effect.
The material constants of the beam were supposed to be graded smoothly along the axial
direction under both power law and sigmoid law distribution. COMSOL Multiphysics (ver-
sion 5.2) package was used to find the Eigen frequencies of the beam. Meshless weighted
least-square (MWLS) method was extended by Zhou et al. [169] to solve the thermoelastic
problems of FGM beam with interior heat source, and verified by comparing results with
the solution computed from the commercial COMSOL Multiphysics software.

5.2. Indigenously-Developed Codes

When developing finite element codes for material optimization of FG structures, it
is important to seek a balance between accuracy and computational efficiency. The finite
element method based on Vlasov’s thin-walled theory was developed by researchers [170].
They developed finite element formulation for geometric and material optimization of
thin-walled FG beams for buckling problems. Hussein and Mulani [171] optimized the
volume fraction of thin plates subjected to buckling constraints using classical plate theory
and finite element approach.

The use of finite element models based on appropriated shear deformation theories is
important for the design optimization of FG plate structures [87,172]. The FSDT is the most
popular one because it provides both adequate accuracy and efficiency. Compared to the
first-order shear deformation theory, the higher-order shear deformation theories (HSDTs)
offer a slight improvement in accuracy but at the expense of an increase in computation
effort. An FEM based on HSDT was applied to develop a discrete model for the structural
and sensitivity analyses allowing for the material distribution and sizing optimization
of FGM structures [173]. Correia et al. [174] considered the material optimization of FG
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plates subjected to thermomechanical loading using finite element models based on appro-
priated shear deformation theories. A nine-nodes Lagrangian finite element plate model
based on HSDT, considering the transverse shear and transverse normal deformations
and accounting for the temperature dependency of the material properties, was used in
the work.

5.3. FEM Integrated with CAD

As mentioned in Section 4.4, researchers developed IGA towards the integration
of CAD and FEA into a single model. The IGA method has several advantages over
conventional FEA such as being capable of refining mesh via re-indexing parametric space
with no interaction with CAD system. Furthermore, even at the coarsest discretization
level, the precise geometric is preserved. Furthermore, the method is effective in lowering
the number of degrees of freedom (DOFs) for higher-order elements. C1-continuity of the
generalized displacement field is required for HSDTs, which leads to the second-order
derivative of the stiffness formulation. This makes standard finite element formulations
difficult. To address this flaw, extra C0 continuous elements were added, or a Hermite
interpolation function with the C1-continuity was added for the precise approximation of
transverse displacements. These methods can generate additional unknown variables, such
as deflection derivatives, resulting in high computing expenses. While the displacement
fields in the HSDT were created using NURBS basis functions, which may provide higher
order continuity and hence easily meet the requirement of C1 transverse displacement
continuity. This is a benefit compared to the finite element method. Furthermore, when
employing the same high-order elements, the IGA requires a substantially less number of
DOFs than the traditional FEM.

Taheri et al. [175] developed a methodology in the framework of IGA for optimization
of thermo-elastic material distribution of functionally graded structures. In this approach,
variations of the material constituents’ volume fractions were constructed by imaginary
NURBS surfaces in a fully isogeometric formulation using the same basis functions em-
ployed for construction of the geometry and approximation of the solution. The modeling
and optimization of the ceramic volume fraction distribution of FG plates in the framework
of the IGA was conducted in a paper by Lieu and Lee [86]. Optimal material distributions
of tri-directional FG plates under free vibration or compression in various volume fraction
constraints were found by an isogeometric multi-mesh design (IMD) technique in [148].

6. Optimization Algorithms

The optimum response of a part to an actual environment is the main objective in
the design of FGMs. Many strategies have been proposed for the optimization of material
distribution in FGMs, thus far. Sequential quadratic programming (SQP) method [41]
has received considerable attention in material distribution optimization of FG structures
(e.g., [77,90,171,175–177]). Gradient-based approaches, including SQP, rapidly converge to
optimal solution, but are often trapped at local optimal solutions. Furthermore, sensitivity
analysis of the fitness and constraint functions are always required, and performing such
analyses is both difficult and expensive. To avoid these shortcomings, derivative-free algo-
rithms, also known as metaheuristic approaches, such as differential evolution (DE) [178],
particle swarm optimization (PSO) [179], genetic algorithm (GA) [57], simulated annealing
(SA) [180], and symbiotic organism search (SOS) [181] have been developed. Since stochas-
tic searching techniques are employed to randomly choose potential candidates in a given
space, sensitivity analyses are avoided. Consequently, a global optimal solution can be
obtained without requiring a rigorous mathematical analysis. Their disadvantage is the
high computational cost, especially for optimization problems with many design variables.

Among derivative-free methods, DE is a simple population-based stochastic algorithm
that may be initialized by sampling the objective function at multiple randomly-chosen
initial points. DE has shown its effectiveness in numerous engineering applications [182].
Tsiatas and Charalampakis [183] utilized the DE algorithm for optimizing the material
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distribution of axially FG beams and arches, which led to the maximum first fundamental
frequency of these structures. More recently, Truong et al. [184] introduced a novel and
effective approach as an integration of artificial neural network (ANN) into DE to the
material distribution optimization of bidirectional functionally graded (BFG) beams under
free vibrations.

Another derivative-free optimization approach is PSO, which was originally proposed
and developed by Kennedy and Eberhart [185]. PSO has several advantages, including
excellent robustness, simple implementation, and well-adapted handling of non-linear
non-convex design spaces with discontinuities. These advantages make it ideal for use
in many applications. It can also easily handle continuous, discrete, and integer variable
types. PSO is more efficient, requiring fewer number of function evaluations compared
to other robust design optimization methods, while achieving better or the same quality
of results [186–188]. Recently, PSO has been proved to be useful on material distribution
optimization of FGM structures [144,188,189].

Genetic algorithm is a non-gradient stochastic optimization algorithm, which has
been widely used in finding global optimality. The application of genetic algorithms to
solving composite optimization problems is increasing, especially over the last few years. A
relatively recent review of GA use in composite structures optimization was published by
Wang and Sobey [190]. GAs are inherently easy to parallelize since the fitness evaluation for
each member of the current population can be evaluated simultaneously in parallel, thus
reducing the optimization time [41]. With regard to the optimization of material distribution
of FG structures involving GA, the following publications can be mentioned: [41,170,191].
Nikbakht et al. [192] published a review paper on optimization of FG structures. The most
common optimization design variable in the evaluated works is the material distribution
pattern, according to this review, which addressed numerous types of structures made
from FGM. In addition, it was noted that the methodologies based on GA and PSO are, so
far, the most frequently-used algorithms.

The SOS algorithm is simple and effective, and it was inspired by natural symbiotic
relationships between species. Moreover, it requires no specific algorithm parameters. The
implementation of SOS is seen in large number of researches [193–196]. Nevertheless, a
noticeable restriction of SOS is computational cost, comparable to other derivative-free
algorithms. Therefore, SOS is modified by the authors [197] to decrease computational
cost but still ensure solution precision. The new algorithm is called modified symbiotic
organisms search (mSOS). The effectiveness and robustness of mSOS have been demon-
strated through pin-jointed structures and unidirectional FG plates in terms of convergence
speed and solution accuracy [197]. The application of mSOS for optimizing the material
distribution of the FG structures has been addressed in the literature [148,198].

Yang [199–201] resented another optimization strategy, the so-called firefly algorithm,
as a generalization of the PSO, SA, and DE algorithms (FA). This algorithm combines
the benefits of the previous three and can be used in a variety of situations [202]. Both
techniques’ convergence rate and solution correctness, however, still need to be improved.
The adaptive hybrid evolutionary firefly algorithm was developed by Lieu et al. [203] as a
hybridization of the DE method and the FA method (AHEFA). In comparison to many other
approaches, this approach has been successfully applied to shape and size optimization
problems of truss structures with multiple frequency constraints, demonstrating its effec-
tiveness and robustness in improving the convergence speed and accuracy of the obtained
optimal solution. Recently, it has been applied to material distribution optimization of
multidirectional FG structures [86,150,204,205].

To find the direction vector of design variables for volume-fraction optimization, a
sensitivity analysis of the related objective function should be done. The direct analytical
method, however, becomes unavailable in almost all circumstances due to the intricate
and implicit relationships of temperature and stress fields to the volume fraction. As a
result, various available and efficient approaches are used, such as the finite difference
method (FDM), semi-analytic method, and objective function approximation method using
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a neural network [40]. Aside from material property estimation and sensitivity analysis,
the approximation of the volume-fraction field should be considered since it affects the
volume-fraction distribution’s flexibility and inherent continuity, as well as the number of
design variables. As a remedy for suppressing the CPU time increase, the approximation
of the design space is widely being adopted by the employment of artificial neural network
(ANN) [206]. Accordingly, the ANN significantly reduces the computational cost, yet still
achieving a high-quality global solution. There have been several works (e.g., [148,184,198])
reported to optimize the material distribution of FGMs using ANN.

7. Most Advanced Design Methods

Most research papers in this area are proposing a new design method. Some of these
methods are capable of handling only simple problems (e.g., one-dimensional material
distribution with one-dimensional geometry and simple loads), while some can tackle
more sophisticated problems (e.g., three-dimensional material distribution with three-
dimensional geometry and multiple types of loads). Thus, the powerfulness of a method
could be judged based on its capabilities. In this section, the most advanced design methods
are identified, explained, and analyzed in terms of their advantages and disadvantages.

As described in Section 5.3, IGA was used in some studies as an alternative to standard
FEM because it requires far fewer DOFs with same high-order elements. In this method,
most common B-splines/NURBS functions in the CAD environment are utilized to exactly
model geometric domains as well as approximate unknown solution fields in the analysis.
These functions can naturally fulfill any desired high-order derivatives and continuity by
choosing a suitable order corresponding to its knot vector. Due to the above-mentioned
properties, IGA has been broadly applied to various problems, especially for material
distribution optimization of FG plates in recent years.

As shown in Figure 10, 2D-FG plates have a volume fraction of each constituent
material that varies in both directions through the plane. This type of FGM is most
commonly used in cutout designs, where the two-dimensional variety of materials results
in improved stress distribution or high temperature resistance. The multi-directional
material dispersion around these holes is responsible for these notable characteristics.
Lieu and Lee [86] used Greville abscissae to estimate the volume percentage of ceramic
in a FG plate at certain grid points along the thickness and a B-spline basis function to
approximate material distribution along the thickness. Temperature dependence was
postulated for the basic materials. The plates were exposed to thermomechanical loads,
and IGA and AHEFA were used to identify the optimal material distribution that resulted
in the lowest compliance. Their algorithm produced more precise findings and improved
the convergence speed. In addition, AHEFA is very promising in providing an effective
optimization tool for various real problems. Subsequently, to maximize the fundamental
frequency of multi-directional FG plates, Lieu and Lee [204] used AHEFA in the context of
isogeometric multi-mesh design (IMD). The material inhomogeneity as well as the thickness
variation profile were used as design variables in their investigation of several plates with
constant and varying thicknesses.
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Do et al. [198] used two optimization tests on two-dimensional FG plates to show
that the mSOS approach outperforms the DE and SOS methods. By getting the optimal
material gradation through these structures, the fundamental frequency and buckling
load were maximized. These researchers also demonstrated that integrating mSOS with
the Deep Neural Network (DNN) approach considerably reduced processing time and
outperformed mSOS in the context of isogeometric analysis. In a subsequent paper, Do
et al. [148] optimized the material distribution of tri-directional FG plates using DNN
and IMD approach. They used DNN to supplant FEA to reduce computational cost
and to predict directly the behavior of multi-directional FG plates from those material
distributions. Furthermore, the researchers were able to construct NURBS surfaces using
the aforementioned method, resulting in significantly cheaper computational costs during
the optimization process.

Nayak and Armani [144] recently suggested a new methodology for optimizing mate-
rial distribution for three-dimensional FG parts in order to take advantage of the capabilities
of AM techniques in manufacturing FGMs with complicated material distributions. To
establish a strong and versatile “foundation” for optimal design of FG three-dimensional
parts, appropriate material models, FEA technique, and optimization algorithm were
selected, applied, updated, and combined. Furthermore, the proposed method is more
effective at dealing with complex material composition constraints and complex geometries.

Going beyond structural mechanics, design of multi-scale structures involving other
physics and even multi-physics is another important venue to explore. Some of the works
along this direction have been mentioned in previous sections when specific multi-scale
approaches were introduced. Porous materials that enable light-weight designs with su-
perior performance are now widely used in a variety of industries. Engineers have been
inspired by natural porous bones and have succeeded in further altering the properties
of porous materials by establishing the FG porosity concept and optimizing the porosity
pattern in these materials. For instance, Das and Sutradhar [92] presented a multi-physics
topology optimization of FG controllable porous structures to optimize heat-dissipating
structures considering structural and thermal performance. The control over porous geom-
etry (functional gradation of porosity, pore size, and sensitivity-based porosity control) to
design FG porous structures may satisfy multi-functional requirements in many engineer-
ing applications.

Recent years have seen a rapid development in topology optimization approaches
for designing multi-scale structures involving improved stiffness, different modes of heat
transfer (e.g., convection) and fluid flow can provide promising optimized porous structures
with enhanced multi-physics performance for thermal management of power electronics
package, electric vehicle battery cooling, heat transfer in extreme environments, energy
absorption devices, and nuclear reactors. Jamshidi and Arghavani [207] used a multi-
objective optimization approach based on NSGA-II to maximize the porosity distribution
of 2-D FG porous beams. An FG porous beam with a rectangular cross-section of unit
width, thickness h and length l, is shown in Figure 11a and a quarter of the beam as
optimization domain as shown in Figure 11b. The goal was to maximize the buckling
load while minimizing the weight. Several examples with various symmetrical clamped
and hinged border conditions were presented by the researchers. They reported that in
most of the ideal designs, porosity was concentrated in the centre of the beams rather
than the outer corners. Furthermore, boundary conditions were discovered to have an
impact on the final outcomes and the best porosity distribution. Banh et al. [208] presented
an effective non–homogeneous multi-material topology optimization paradigm for FG
structures, considering both cracked and non-cracked cases. They employed an enrichment
finite element concept known as the extended finite element method (X-FEM) to analyze
strong discontinuity states critical mechanical behavior. In addition, a block Gauss–Seidel-
based alternating active-phase algorithm is utilized to convert a multiphase topology
optimization problem subjected to multiple constraints to many binary phase topology
optimization sub-problems with only one constraint. The comparison for most advanced
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design methods of FGMs of few published research works are listed in Table 2, briefly
and specifically.
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8. Manufacturing Techniques

Manufacturing procedures are important in producing the desired compositional and
microstructural distribution, as well as the characteristics of FGMs. Several conventional
manufacturing techniques are capable of manufacturing FGMs [8], but they have apparent
limitations as they can only create simple FG objects with simple gradients [134]. The
advent of additive manufacturing processes has opened up new possibilities for designers
and engineers to produce FGMs. In addition, AM offers the benefit of enabling for flexible
designs that can be optimized for specific geometrical requirements or applications where
complex procedures or geometries are too time-consuming, expensive, or impossible to
manufacture using traditional methods. AM can use three types of materials: (a) single-
phase materials with gradual density variations (e.g., cellular structures); (b) two or multi-
phase materials with gradual material composition variations; and (c) a mixture of these
(i.e., with gradual density and material composition variations). Many AM processes can
produce multi-material and FG structures [14,15,209], but only a few AM processes are
able to build FGMs with complex distribution of material composition. Here, we focus on
providing a brief explanation of these AM techniques.
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8.1. Direct Energy Deposition

By melting metallic wires or powders with a focused electron or laser beam, direct
energy deposition (DED) technologies can repair, reinforce, or clad components. Direct
laser metal deposition (DLMD) is a typical DED process that is separated into two groups
based on the materials used: wire arc additive manufacturing (WAAM) and laser metal
deposition (LMD). The WAAM technique (Figure 12a) can use wires derived from different
metals such as pure titanium and 1080 pure aluminum to manufacture components with
a chemical composition gradient by adjusting the individual wire feeding speed [210].
Similarly, by altering the volume of particles supplied into a melt pool under a moving
laser, a metallic graded object can be created by LMD (Figure 12b) [211]. Because DED
procedures rely on fusion, the formation of intermetallic phases in the gradient zone might
cause undesired characteristics during solidification. Carroll et al. [212] looked at the
characterization and thermodynamic modeling of FG 304L stainless steel/Inconel 625 to
see if it was feasible. In the graded zone, there were approximately 24 layers, and the
volumetric concentration of each powder changed by 1 vol percent (Figure 13a). The same
deposition approach was used by Qian et al. [213] to alter the mass fractions in an airplane
beam (Figure 13b). The highly loaded exterior of the beam was made of high strength
TA15 (Ti-6.5Al-2Zr-1Mo-1 V), while the less loaded interior was made of high ductility TA2
(Grade 3 CP-Ti).
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8.2. Material Extrusion

Material extrusion methods use multiple extruders, each extruding a paste or fila-
ment at a different flowrate, to produce FGM. Extrusion-based additive manufacturing
of FGM (e.g., ceramic on-demand extrusion [214,215]) involves computer-control of flows
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of each material, the mixing of these materials, and the extrusion of the mixed material
to fabricate a three-dimensional part layer-by-layer. Two or more materials are extruded
simultaneously by a multi-extruder mechanism. During the component fabrication process,
continuous control of the material compositions and gradients can be achieved by planning
(considering time delay) and controlling the relative flowrates of the various materials.

Bakarich et al. [216] succeeded in fabricating an artificial tendon-muscle-tendon system
with spatially linear changing colors using soft hydrogel and rigid UV-curable acrylate
urethanes. The advancement of current equipment and technology has also enabled the
production of nonlinear gradient materials. Ren et al. [217] created a three-axis motion
gantry, an active mixing device, and a digital material feeding mechanism for a 3D printer.
Mathematical functions were employed to represent the graded distribution of material
attributes during the printing process. The nano-sized Al2O3 particles were then digitally
fed into the printer to manufacture one-, two-, and three-dimensional graded objects using
gray-scale representation and regulating code generation.

Material extrusion processes are lower-cost AM methods that use less expensive
materials and pose no risk of toxic gases and chemical contamination. However, after
printing, the surface is rough and may require additional steps. Additionally, its limited
printing precision makes it difficult to generate precise gradients.

8.3. Material Jetting

UV radiation is used to cure and smooth objects created by applying a liquid pho-
topolymer in material jetting process. Several inject heads can be used in this procedure to
deposit multiple materials at once to manufacture FGMs with different graded properties
including stiffness, transparency and color [218]. As shown in Figure 14a, an array of
print-heads moves along the X and Y directions and spray photopolymerizable material
onto a table. The roller smoothens the surface of the sprayed materials, and the UV lamp
cures the material. After the jet printing and curing of one layer is completed, the table
drops by the thickness with a high degree of accuracy. These steps are repeated until the
entire part is built. In Figure 14b, TiC/steel FGMs processed by material jetting technique
is shown [219]. To create circular and rectangular graded zones, Salcedo et al. [220] em-
ployed Tango Black+ (TB+, a rubber-based substance) and Vero White (VW+, an ABS-based
material). With very small changes, the strain patterns predicted by FEA matched those
obtained from the experimental tensile test. Although commercial software such as Grab
CAD is available for material jetting to achieve some basic physical property variations
(e.g., graded color, transparency, and stiffness), there are only a few materials that can be
utilized in the fabrication of FGM, and they are rather expensive.
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9. Conclusions and Future Directions

Recent progress in the homogenization methods, representation techniques, modeling,
analysis, optimization, and manufacturing of FGM with complex material composition
distributions has been reviewed in this paper. Because FGM is such a large and fast
evolving field, these findings will not be able to cover all important directions, trends, and
needs. Some of the current issues and future developments in FGM structure design are
recognized and included by the authors based on the published research and their own
analysis of the subject.

1. With the advent of AM, FGM with a complex geometry and material distribution can
be fabricated. To get the most out of this, we need advanced methodologies to design
and fabricate parts with optimal material distributions and/or geometries.

2. The development of a data-driven strategy to complement designers’ creativity and
knowledge would be a fascinating area of future work. The first step in establishing a
data-driven approach would be to build a massive database of material models and
their attributes. The physical and mechanical properties of various combinations of
materials in various compositions should be tested and maintained in the database.
The database could be used to generate automated suggestions pertaining to the
materials to be used for different portions of the designs, the composition of materials
to be used, and other topological and geometrical changes to the design using sug-
gestive techniques developed with machine learning and probabilistic models for the
CAD domain.

3. To analyze and simulate the behavior of more complicated FGM objects, advanced
and resilient numerical approaches as well as a representation scheme that facilitates
analytical calculations must be devised. Furthermore, having a system that can
optimize and recommend relevant adjustments in the design to satisfy and meet
the designers’ needs would be quite advantageous. The recommended alterations
could take the form of changes to the design’s geometrical characteristics, topology,
or material distribution over crucial sections.

4. Because the progressive and smooth changing of material constituents is a major
aspect of FGMs, the most common design variable in the examined studies was
the material distribution pattern. The manufacturability of the FG structure was
taken into consideration in a few optimization experiments. It’s a good idea to
include manufacturability in the optimization studies because it leads to more practical
designs with a better chance of being mass produced.

5. So far, several AM technologies have been proposed to manufacture FGMs. Real-
world industrial applications, on the other hand, are still few and far between, ne-
cessitating major and thorough research efforts to address the vast array of concerns
and obstacles involved. As new functional materials with complicated compositions
arise, new sophisticated manufacturing technologies, including new procedures for
the fabrication of FGMs, must be developed. Micro-nano additive manufacturing
(sometimes referred to as micro-nano scale 3D printing) is a new processing technique
for producing sophisticated micro-nano structures. High aspect ratio micro-nano
structures, multi-lateral micro-nano structures, macro/micro-composite structures,
and embedded hetero-structures are all possible using FGAM.

In closing, despite the challenges that remain, it is evident that the field of AM and
more specifically as applied to FGMs, offers huge potential. Through precise control of com-
positions, components, and structures at different length-scales, as well as the integration
of numerous gradients, FGM is opening up new pathways for manufacturing innovative
functional materials with intricate gradients and highly specialized characteristics. Such
advanced multi-materials are predicted to be utilized in the construction of innovative
three-dimensional structures and FG devices in the not-too-distant future. However, it is
evident that there is still a significant amount of research to be done.
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Nomenclature

DED direct energy deposition
DLMD direct laser metal deposition

Symbols DMSh direct multi-search
E Young’s modulus DNN deep neural network
Et tangent modulus EFG element-free Galerkin
K bulk modulus FA firefly algorithm
k thermal conductivity FDM finite difference method
P material properties FEA finite element analysis
q ratio of stress to strain transfer FEM finite element method
sy yield strength FG functionally graded
T temperature FGM functionally graded materials
V volume fraction FGS functionally graded sandwich

FSDT first-order shear deformation theory
Greek letters GA genetic algorithm
α coefficient of thermal expansion HAP hydroxyapatite
µ shear modulus HSDT higher-order shear deformation

theory
ν Poisson’s ratio IGA isogeometric analysis
ε strain IMD isogeometric multi-mesh design
σ stress LMD laser metal deposition

MAT medial axis transform
Abbreviations mSOS modified symbiotic organisms search
AEH asymptotic expansion NSGA non-dominated sorting genetic

homogenization algorithm
AHEFA adaptive hybrid evolutionary NURBS non-uniform rational B-splines

firefly algorithm
AM additive manufacturing PSO particle swarm optimization
ANN artificial neural network RVE representative volume element
BFG bidirectional functionally graded SA simulated annealing
CAMD continuous approximation of SOS symbiotic organism search

material distribution
CPU central processing unit SQP sequential quadratic programming
CSG constructive solid geometry TSDT third-order shear deformation theory
CT computerized tomography X-FEM extended finite element method
CUF Carrera’s unified formulation
DE differential evolution
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