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Abstract: This paper seeks to predict the average waiting time, defined as the time spent moving
at 1 ms−1 or less, of urban bicyclists during rush hours while performing different maneuvers
at intersections. Individual predictive models are built for the three cyclist typologies previously
identified on a large database of GPS traces recorded in the city of Bologna, Italy. Individual models
are built for the three cyclist typologies and bootstrapping has confirmed the validity and robustness
of the results. The results allow the integration of waiting times in route choice models for cyclists,
thus improving the rational bases by which cyclists makes their decisions. Moreover, the modeling
allows transportation engineers to understand how different cyclist typologies perceive different
variables that affect their waiting times. Future work should focus on testing the model transferability
to other case studies.

Keywords: waiting time; maneuver; GPS trace; cyclist; regression

1. Introduction

Recently cycling has received increasing attention in urban planning as it is considered
a solution to combat traffic congestion, air pollution, greenhouse gas emission, fossil
fuel dependency and physical inactivity [1]. Cyclist route choice models are essential
for simulating large-scale traffic scenarios (or digital twins) that include soft mobility.
Some articles on cyclist route choice exist, [2–7]; however, the influence of cyclist waiting
times on route choice models has not yet been studied extensively, despite the fact that
it constitutes a significant share of the overall travel time of urban trips (see discussion
below). For example, Broach et al. (2012) calibrated a route choice model for cyclists to
better understand their preferences for facility typologies without considering waiting
times. The authors used GPS units to observe the behavior of 164 cyclists in Portland,
Oregon, USA [2]. Ehrgott et al. (2012) proposed a novel model to determine the route-set
for the choice of commuter cyclists by formulating a bi-objective routing problem. The two
objectives considered are the suitability of a route for cycling and total travel time, without
considering that the waiting time is perceived differently with respect to travel time [3].
The lack of studies related to the quantification of cyclist waiting times is mostly due to the
lack of waiting time evaluators or estimators for cyclists, as well as the absence of on-site
surveys which address this type of problem [8]. However, the impact of stops and delays
during bicycle trips has been analyzed in several studies. Börjesson and Eliasson (2012)
found that the perception of a 1 minute stop at a traffic light corresponds to 3.1 min of
cycling [9]. More recently, Fioreze et al. (2019) have shown that most cyclists considerably
overestimate their waiting time: cyclists’ perceived waiting time was approximately five
times higher than their actual waiting time [10]. Rupi et al. (2020) have shown that on
average waiting time accounts for 15% of total trip duration, based on the analysis of a
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large data sample of GPS traces [11]. These studies underpin the importance of analyzing a
cyclist’s waiting time.

In general, waiting times can be estimated from the cyclist’s speed profile. Different
approaches have been taken to calculate the most likely speed profile [12–15] and to estimate
the trend of motion. For example, Strauss and Miranda-Moreno (2017) = approximated
the speed profile by averaging over three, four, and seven GPS points before estimating
the cyclist’s speed and time-delay at intersections, which is different from waiting time.
They consider time loss at intersections as the time difference between the time to cross the
intersection while keeping the average speed on the incoming link and the effective time to
cross the intersection [12]. For this reason, Rupi et al. (2020) proposed a new tool to estimate
the waiting times of cyclists from a large database of GPS traces [11] and confirmed its
validity through manual surveys [16,17].

The difference between effective and perceived waiting times is not the same for
all the cyclists. Distinct typologies of cyclists show differences in perceiving and value
this difference. This is why it is important for route choice models to first identify the
typology of cyclists. Poliziani et al. (2021) identified three different typologies of cyclists
during rush hour traffic in Bologna, Italy [18]. This was accomplished using a data set
constituted by 16,168 GPS traces from 2135 cyclists whose trips were recorded from 7 a.m.
to 10 a.m. between April and September 2017. The different typologies of cyclists were
identified using a statistical approach called cluster analysis. Given the characteristic of the
data, the authors applied a flexible, highly parameterized clustering technique known as a
mixture of coalesced generalized hyperbolic distributions (CGHD) proposed by Tortora
et al. (2019). In the used model, each typology of cyclists or cluster is assumed to follow a
multidimensional coalesced generalized hyperbolic distribution [19], i.e., a more flexible
distribution compared to the well-known normal or Student-t distributions. Subsequent
analysis of the differences in features between the three clusters revealed three behavioral
typologies: RHC (risky and hasty), IIC (inexperienced and inefficient), and SIC (sly and
informed) cyclists. Poliziani et al. (2021) revealed key behavioral differences between the
aforementioned typologies obtained using cluster analysis. Risky and hasty cyclists tend
to choose the shortest path through the use of unsafe roads with vehicle traffic and are
hindered by many traffic lights. Sly and informed cyclists prefer longer yet less congested
paths with designated cycle-ways to avoid traffic lights. Inexperienced and inefficient
cyclists are characterized by low speeds and spend much more time waiting [18]. Having
clarified the behavioral differences between the three cyclist typologies, it is likely that
cyclists from each typology will exhibit different waiting times while performing the same
maneuver.

As such, the goal of the present work is to build individual models for each of these
three typologies using the same GPS database to predict a cyclist’s average waiting time
while performing a maneuver. These predictions can be part of a cyclist route choice model
that includes the impact of waiting times.

Section 2 explains the methodology and the model selection procedures and shows
the data used, as well as their elaboration for the specific study. Section 3 illustrates and
discusses the results. The final conclusions and future work are presented in Section 4.

2. Methodology and Model

This paper seeks to predict the average waiting times of urban cyclists during rush
hours while performing different maneuvers at road intersections. The methodology used
allows us to identify individual predictive models for the three cyclist typologies previously
identified [18]. The maneuver database is processed in two main steps: (1) a subgroup of
60 high-traveled maneuvers by cyclists are selected, along with 60 maneuver attributes
that are thought to predict the average waiting time. The GPS traces are aggregated to
obtain the average waiting time for the three cyclist typologies on each selected maneuver,
and data cleaning and feature selection are then implemented to progressively reduce
model complexity by deleting dependent and irrelevant attributes. (2) The non-parametric
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kernel regression has been identified as the optimal predictive model among random
forest regression and Gaussian kernel SVM and has been implemented to predict average
waiting times.

2.1. Data
2.1.1. Cyclists’ GPS Traces

The GPS traces of cyclists were collected during the “Bella Mossa” initiative funded
by the EU and the city of Bologna, Italy, which took place from 1 April to 30 September
2017 in the city of Bologna, Italy. The initiative’s objective was to promote sustainable
mobility by rewarding people (with coupons for local shops) for recording their GPS traces
of sustainable trips (meaning trips made via transit, bike, or walking). The smartphone
application “Betterpoints” [20] was used to record and collect the data.

The full data-set contains approximately 270,000 bike GPS traces, composed of more
than 62 million points—see Figure 1; the smartphone application records 1 GPS point every
5 s when the bike is in motion. When the bike stops (for example, at intersections), the
recording stops, thus saving the smartphone’s battery. The present study focuses only on
bike GPS traces recorded during the period of peak travel during the morning on weekdays,
from 7 a.m. to 10 a.m., as used by Poliziani et al. (2021), to identify the cyclist typologies [18].
GPS traces are not linked to a specific trip purpose. However, during early morning hours
the vast majority are work trips; in this way, it is possible to emphasize the differences in
the decisions of cyclists that have to primarily balance security with travel time but are also
trying either to arrive punctually or avoid traffic congestion: In fact, daily travel behavior
and trip patterns are impacted by travel security [21]. With this analysis, one can also try to
eclipse the share of hedonic cyclists, who are less significant from a transportation study
point of view.

Figure 1. On the left, a graphical representation of the used GPS traces from Bella Mossa campaign
(in yellow) overlapped with the SUMO network of the city of Bologna, Italy (in blue); on the right,
the relative open street map of Bologna.

The following data-processing steps have been implemented using the SUMOPy
environment [22]. In the first step, the open-street-map (OSM) network covering the urban
area of Bologna [23] has been imported into SUMO. This SUMO network is attribute-rich
and contains information on road width, road access (e.g., reserved bikeways, shared
access, presence of pedestrians, etc.) and speed limits. From these basic attributes, SUMO
derives a road priority (1–14), in which low-priority roads are assigned values from 1 to 7.
The network has been manually improved over years to both eliminate errors due to an
imperfect OSM representation and conversion errors and reproduce the road infrastructure
in 2017, the same year of the GPS traces data set.

Next, unrealistic GPS traces, defined as trips outside the study area and traces that
were probably not recorded while riding a bike, were deleted. In particular, valid traces
must satisfy the following criteria: (1) total trip length lower and higher than the maximum
(25,000 m) and the minimum (100 m) distance, respectively; (2) total duration lower and
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higher than the maximum (7200 s) and the minimum (30 s) duration, respectively; (3) dis-
tance between successive points lower and higher than the maximum (1000 m) and the
minimum (2 m) distance, respectively; (4) duration between successive points lower than
the maximum duration (300 s); (5) average speed lower and higher than the maximum
(14 ms−1) and the minimum (1 ms−1) average speed, respectively; (6) GPS trace at least
partially included in the study area. This trace-filtering step ensures that the GPS traces
can be successfully matched to the road network by the map-matching process. During the
map-matching, the most likely route (as a sequence of network links) can be identified for
each GPS trace [24].

The cyclists’ waiting times have been successively evaluated with a recent algorithm
developed on the SUMOPy software [11]. A first check eliminates traces that are not
accurate enough to perform this specific analysis.

Successively, the hourly speed profile is extracted for all remaining trips and associated
to the matched route. This is conducted in such a way that it is possible not only to
estimate travel waiting times, total travel times, and speed but also to associate them
to specific network elements: edges (or links), connections (or maneuvers), and nodes
(or intersections). In particular, a waiting time is recorded every time the cyclists move
slower than the average speed of 1 ms−1 between two successive GPS points, considered
as pedestrian speed [11].

2.1.2. Maneuvers Dataset

A maneuver is defined as the unique identifier created by the combination of an
incoming and outgoing road lane at a road intersection; a maneuver can be generally
classified as heading straight, turning right, turning left, or a u-turn. Generally, turning
left is subject to more conflicts with traffic, generating higher waiting times; contrarily,
turning right generally does not conflict with traffic. The data used consist of 60 maneuvers
selected from the road network of the city of Bologna with 2 main criteria: The first one is
to consider only high-traveled maneuvers by cyclists who recorded the GPS traces showed
on Section 2.1.1; in this way, the average waiting times evaluated for these maneuvers and
for the three cyclist typologies will be more representative of the population. In particular,
Rupi et al. (2020) showed that only measuring the waiting time of at least 100 cyclists will
accurately reproduce the average of the population, since values are well distributed due
to several reasons: cyclists who pass with red at traffic light [25], presence of opposite
flow, cyclist physical attributes [26], prudence and dynamic behavior [27], and so on. The
second criterion consists of having heterogeneous maneuvers from both the space—spread
throughout the study area—and typology—typology of maneuver and presence of traffic
light—sides. For each maneuver, 60 attributes have been assigned through different data
sources related to the maneuver itself, the crossed maneuvers, and the incoming and
outgoing link: maneuver typology, length and rank, presence of cycleway, number of
link lanes, link priority, widths and flows, presence of traffic light, traffic light attributes,
interaction with pedestrian crossing and other maneuvers, opposite PCE (passenger Car
Equivalent) flow, presence of bus lines, and intersection complexity in terms of number
of maneuvers allowed. The database is composed by 17 left turns, 24 straight crossings,
and 19 right turns; 29 of these had a traffic light, contrary to the other 31. After the GPS
trace analysis reported in Section 2.1.1, the following features have been attached to each
maneuver for all cyclists and for each of the three cyclist typologies—RHC (risky and hasty),
IIC (inexperienced and inefficient), and SIC (sly and informed)—identified by Poliziani
et al. (2021) [18]: number of cyclists that used this maneuver, number of occurred waiting
times, average waiting time, and list of waiting times. On average, each maneuver has been
used by 219 cyclists, and an average of 24 cyclists recorded a waiting time. The average
waiting time on the considered maneuvers was 1.94 s considering also the zero waiting
times and 17.7 s considering only positive waiting times. The three cyclist typologies, RHG,
IIC, and SIC, recorded on average on the considered maneuvers a waiting time every 10,
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every 7, and every 11 passages, respectively, with average waiting times of 2.59, 4.82, and
3.05 s considering also zero waiting times.

2.1.3. Data Cleaning and Feature Selection

Data cleaning was accomplished by first performing feature aggregation then feature
selection using both domain knowledge and mathematical methods. The original data
frame contained two columns for several features, one column corresponding to maneuvers
with a traffic light and the other to maneuvers without. As such, the two columns for each
feature had blank cells where the other column had an entry and were simply merged into
a single column for downstream analysis. In addition, only considering filtering significant
predictors of average waiting time from a transportation engineering point-of-view gener-
ated an initial set of 19 features. Forwards and backwards stepwise linear regression was
initially attempted for naive feature selection, the idea being that significant predictors will
be left in the final model while insignificant ones will not. However, the attempts indicated
a high degree of multicollinearity among the 19 features. To eliminate redundancy, nine
variables that had a clear correlation with others were first removed, and then the remain-
ing categorical and continuous features were considered separately. A simple correlation
matrix for the three continuous features (see Table 1) did not suggest high correlation,
indicating the issue lay among the categorical ones. The three continuous features are:
(1) critical volume, which represents the amount of opposite flow at intersection [28]; (2) the
average PCE flow at intersection, based on PCE flows measured on all links entering the
intersection: these values have been extracted from the city’s digital records [29]; (3) the
length of the maneuver in meters.

Table 1. Continuous features correlation matrix.

Feature Critical Volume Average PCE Flow Length

Critical Volume 1.000 0.074 0.433
Average PCE Flow 0.074 1.000 −0.188

Length 0.433 −0.188 1.000

Categorical association detection was conducted with the phi-squared effect size

test, defined as φ2 =
√

χ2

n , where the χ2 value is the test statistic from the χ2 test of
independence—see Table 2.

Table 2. φ2 statistic table.

Feature Number 1 2 3 4 5 6 7

1 0.47 0.03 0.56 0.73 0.68 0.67
2 0.24 0.38 0.42 0.31 0.92
3 0.23 0.25 0.15 0.63
4 1.33 1.08 0.75
5 1.55 0.98
6 0.84
7

The threshold value of φ2 to conclude that two categorical features are dependent was
empirically decided to be 1.00. This yielded three pairs of dependent features: features
4 and 5, 4 and 6, and 5 and 6. Features 4 and 6 were chosen to be eliminated based
on a transportation significance, leaving 8 final predictors. In particular, the remaining
categorical variables are in order: (1) Maneuver typology (left turn, right turn, straight);
(2) Lanes edge to (number of lanes on road which maneuver is directed to); (3) Traffic
light (true or false); (4) Number maneuvers crossed (number of intermediate maneuver
crossed at intersection); (5) Connections node (total number of maneuvers at geographic
intersection). The feature called number maneuvers crossed was then modified according
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to Figure 2. To reduce model complexity, values of 1 and 2 were merged and coded as 1,
while values of 3 and higher were merged and coded as 2. Table 3 provides a description of
the final 8 features that will be used for model fitting.

Figure 2. Histogram of the feature ‘number maneuver crossed’.

Table 3. Selected feature descriptions.

Feature Name Description

Maneuver typology (1) Nominal; left turn, right turn, straight

Lanes Edge to (2) Ordinal; number of lanes on road which
maneuver is directed to

Traffic Light (3) Nominal; presence of traffic light

Number Maneuvers Crossed (4) Ordinal; number of intermediate
maneuvers crossed

Connections Node (5) Ordinal; total number of maneuvers at
geographic intersection

Critical Volume (6) Continuous; amount of opposing traffic
Average PCE Flow (7) Continuous; amount of passenger car traffic

Length (8) Continuous; length of maneuver in meters

2.2. Model Selection

Random forest regression and Gaussian kernel support vector machine (SVM) clas-
sification methods were initially attempted before settling on nonparametric regression.
Model selection was performed only on cyclist typology RHC as all three typologies will
use the same model architecture. All computations were performed with the computational
software R [30].

2.2.1. Random Forest Regression

Random forest regression [31] is an extension of random forest classification to handle
a continuous response which uses an ensemble of regression trees. A single regression
tree partitions the feature space through a series of feature binary splits that minimize the
residual sum of squares, defined as:

∑
le f t

(yi − ȳle f t)
2 + ∑

right
(yi − ȳright)

2 (1)

where ȳle f t and ȳright are the response averages to the left and right of a binary split. Splits
are made until a stopping criterion is satisfied, which, for this implementation, is the
minimum number of observations in a group to be designated a terminal node. Random
forest improves on a single regression tree by training T individual trees on bootstrap
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replications of the original data and using a random subset of b
√

n featuresc features to
train each tree. Each of the T trees generates a prediction for the ith observation denoted ŷi,
and the model’s final prediction is the average of all predictions, or ŷ f inal =

1
T ∑T

i=1 ŷi. The
parameters T and the minimum observations in a terminal node were tuned for optimality
with the R package randomForest [32]; models built for T values between 10 and 400
in increments of 10 showed 60 trees minimized mean squared error (MSE) and model
complexity, and varying the minimum terminal node value between 1 and 10 identified 1
as MSE-optimal with a value of 1.96. However, by-hand examination of the 60 predicted
average waiting times showed large deviations from the actual times, so a more accurate
model was desired.

2.2.2. Gaussian Kernel SVM

SVM [33] is a binary classification method that seeks to find the normal vector w and
offset b of hyperplane w · x+ b = 0 that best separates the two classes. This is accomplished
with optimization through quadratic programming, which identifies each class’ boundary
points, known as support vectors, to establish said plane. Gaussian kernel SVM improves

upon the standard SVM by utilizing the Gaussian kernel function κ(xi, xj) = e
−||xi−xj ||

2
2

2σ2 to
project the data from the original space to the higher-dimensional feature space for better
separability. Finding the optimal hyperplane then reduces down to solving the following
quadratic program:

max
λ1,...,λn

∑
i

λi −
1
2 ∑

i,j
λiλjyiyjκ

(
xi, xj

)
(2)

subject to 0 ≤ λi ≤ C and ∑ λiyi = 0, where C is the regularization parameter and
yi = ±1, which codes for the two classes. A new observation x can be classified with the
decision rule y = sign(∑ λiyiκ(xi, x) + b), where b can be determined with the equation
b = y0 − ∑ λiyiκ(xi, x0), where x0 is any support vector. To implement Gaussian kernel
SVM for classification, the continuous response was first discretized into 3 classes according
to Table 4.

Table 4. SVM response discretization.

Lower Bound Upper Bound n

Class 1 0.00 0.75 20
Class 2 0.75 2.50 19
Class 3 2.50 N/A 21

The goal of the discretization scheme was to preserve balance, which was accom-
plished. A 48-to-12 train/test split was then selected with a seed and the regularization
and gamma parameters tuned for optimality with the R package e1071 [34], which yielded
perfect accuracy for that specific train/test split. In order to assess the model’s sensitivity
to the split, 100 iterations were run without a seed for the splitting, which yielded accuracy
values ranging from 0.75 to a perfect 1.00, indicating a degree of sensitivity likely due to
the small number of data points. Furthermore, discretizing the average waiting time to
preserve balance lead to a large information loss as the response had values as high as 17.

2.3. Nonparametric Kernel Regression

Nonparametric kernel regression [35] provided a way to preserve the average waiting
time’s continuous nature while maintaining the flexibility necessary when dealing with
limited observations. The goal of kernel regression is to estimate the empirical relation
between X and Y, where X = [X1, X2, . . . , Xp]T , with p number of variables, is a random
vector of the features, and Y is the average waiting time [36]. This was accomplished
through the use of the Nadaraya–Watson estimator, which is implemented in R in the np
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package [37]. The multivariate estimator of the waiting time about a vector-valued location
x, m(x) = E[Y | X = x], is defined as:

m̂(x, H) =
n

∑
i=1

KH(x− Xi)

∑n
j=1 KH(x− Xj)

Yi. (3)

The Nadaraya–Watson estimator can only be used with continuous variables; however,
the features are of mixed typology. Therefore, the problem requires a generalization
of this estimator. Different kind of kernels can be used for the different typology of
variables. The kernel used for the continuous features is the Gaussian kernel with formula
KH(x) = (2π)

−p
2 e−

1
2

x2
H for univariate data. The continuous multivariate kernel density

estimator is:

f̂ (x; H) =
1

n|H|1/2

n

∑
i=1

K
(

H−1/2(x− Xi)
)

. (4)

The data’s multivariate nature requires a matrix-valued data structure of bandwidths
denoted H, which has a similar interpretation as the covariance matrix in the multi-
variate Gaussian distribution when the Gaussian kernel is used. The density estimate
can be simplified by substituting the kernel function with the bandwidth-scaled ker-
nel denoted as KH(x) = |H|−1/2K

(
H−1/2x

)
to yield f̂ (x; h) = 1

n ∑n
i=1 Kh1(x1 − Xi,1) ×

· · · × Khpc

(
xpc − Xi,pc

)
, with pc numbers of continuous variables. Each scalar bandwidth

h1, h2, · · · , hpc denotes the bandwidth of each continuous feature. For computational sim-
plicity, H is assumed to be diagonal; that is, each feature is assumed to be independent
when calculating bandwidths, so pairwise bandwidths are zero.

The Aitchison and Aitken kernel [38] was used for the pu nominal variables with ud
levels and is defined as:

lu(xd, Xd; λ) :=

{
1− λ, if xd = Xd

λ
ud−1 , if xd 6= Xd

(5)

where λ ∈ [0, (ud − 1)/ud] is the bandwidth. The po ordinal features were handled with Li
and Racine’s kernel [39] are defined as:

lo(xd, Xd; η) := η|xd−Xd | (6)

where η ∈ [0, 1] is the bandwidth. With kernel weighing functions defined for continuous,
nominal, and ordinal features, the generalized Nadaraya–Watson estimator for mixed data
can be expressed as:

m̂(x; (hc, λu, ηo)) :=
n

∑
i=1

W0
i (x)Yi with W0

i (x) =
LΠ(x− Xi)

∑n
j=1 LΠ

(
x− Xj

) (7)

based on the mixed product kernel:

LΠ(x− Xi) :=
pc

∏
j=1

Khj

(
xj − Xij

) pu

∏
k=1

lu(xk, Xik; λk)
po

∏
`=1

lo(x`, Xi`; η`). (8)

2.4. Bandwidth Selection

Bandwidth selection was performed according to the method of leave-one-out least
squares cross validation [40], created to address the issues that arise with bandwidth
selection through a simple minimization of the residual sum of squares. The least squares
cross-validation error is defined as:

CV(h) :=
1
n

n

∑
i=1

(Yi − m̂−i(x; h))2 (9)
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where the subscript −i denotes the ith value is the one being left out, and the optimal
bandwidths are values that minimize the error, or ĥCV := arg minh1,...,hp>0 CV(h). R’s np
package implements this method with a brute-force grid search in conjunction with five
different initializations, and returns the result with the lowest cross-validation error.

2.5. Bootstrapping

Bootstrapping was used to measure the estimator’s variability, for which closed-form
solutions like the Nadaraya–Watson estimator do not exist. Furthermore, bootstrapping
can be thought of as cross-validation in the sense that it automatically breaks the data into
a training and test set and provides a way to examine a model’s predictive power when
certain observations are left out of the training phase.

Formally, bootstrapping is a resampling method in which data points are sampled
from the original data set to generate a bootstrap replication [41]; i.e., with original data
matrix X comprised of p-dimensional vector observations X1, X2, . . . , Xn ∈ Rp, sample
among X1, X2, . . . , Xn with replacement n times to obtain a bootstrap replication denoted
as X? = [X?

1 , X?
2 , . . . , X?

n], where X?
i denotes the ith sample. The statistic of interest is then

calculated from X?, and the whole process is repeated to generate new bootstrap replica-
tions and corresponding statistics. Appropriate inference can then be drawn using the
statistic’s replications. With this project’s n = 60 observations, there are nn = 4.48 ∗ 10106

possible bootstrap replications, so a complete bootstrap in which all possible replications
are considered is computationally infeasible. As such, a random subset of 1000 repli-
cations was used, which is known as a Monte Carlo bootstrap. The fact that bootstrap
replications are generated through sampling with replacement means that each of the n
observations has a 1

n chance of being selected at every sampling step, so each sampling
step is independent of other steps. This allows the percent of observations left out of
each replication to be quantified. Consider a single bootstrap replication which consists of
sampling from n observations n times. The probability of an arbitrary observation i being
left out is P(observation i left out) = ∏n

j=1 P(observation i left out of draw j) = (1− 1
n )

n.

As such, an average of (1 − 1
60 )

60, or 36.48 percent, of all observations are left out of
any given bootstrap replication, effectively partitioning the original data into training
(included observations) and testing (excluded observations) sets. Therefore, bootstrapping
the Nadaraya–Watson estimator allows its variation and robustness to be examined.

3. Results

Table 5 summaries the three models, each corresponding to a typology of cyclist.

Table 5. Feature bandwidths by model typology and feature number.

Feature
Number 1 2 3 4 5 6 7 8

RHC 0.1946 1.0000 0.5000 0.0006 0.0305 194.0834 292.8674 2.2087
IIC 0.6667 0.7447 0.0134 0.0297 0.0322 0.0000 49.5347 4.0687
SIC 0.3364 0.1337 0.5000 0.0686 0.0454 250.8760 45.8320 3.0427

Table 5 contains the optimal cross-validated bandwidths for each feature previously
identified in Table 3. Feature 3, the presence of a traffic light, is nominal with 2 levels,
which means its bandwidth range is [0, (ud − 1)/ud] = [0, 1

2 ], where ud denotes the number
of levels. The fact that the models for cyclist typologies 1 and 3 have a bandwidth of
0.5 means the Aitchison and Aitken kernel for nominal features assigns the same weight
of 1

ud
= 1

2 regardless of level. Therefore, the presence of a traffic light does not provide
any information when predicting the average waiting time for typologies 1 and 3. The
same observation can be made with feature 1, maneuver typology, and the model for
IIC. Maneuver typology has three levels and a bandwidth range [0, (ud − 1)/ud] = [0, 2

3 ]
and consequently does not help predict the average waiting time for IIC. Feature 2, lanes
edge to, has a bandwidth equal to 1 for the RHC model, which is the upper bound of an
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ordinal feature’s bandwidth range of [0, 1]. This means that Li and Racine’s kernel for
ordinal features assigns a weight of one regardless of level, which can also be interpreted
to mean lanes edge to contain no information that helps predict average waiting time. All
other categorical features have a bandwidth somewhere in their respective ranges, the
magnitude of which determines the weight an observation carries when predicting the
average waiting time at any given point. Features 6, 7, and 8 are continuous in nature and
have slightly different bandwidth interpretations. Bandwidths are akin to the parameter σ

in the Gaussian distribution formula 1√
2πσ

exp−
(x−µ)2

2σ2 because it controls the distribution’s
spread and, consequently, the weights assigned to observations; a small bandwidth will
assign large weights to observations near the point of estimation and small weights to
observations far away, while a large bandwidth will place more emphasis on points far away.
It should be noted that the Gaussian kernel will still assign heavier weights to nearby points
even with a large bandwidth. The bandwidth for feature 6 (critical volume) in the IIC model
is much larger than all the others, which can be interpreted to say that critical volume does
not contribute much to predicting average waiting time, as the huge bandwidth assigns
similar weights to all observations regardless of distance. Table 6 contains each model’s R2

and
√

MSE. Each model has a high R2 and low
√

MSE, indicating that the nonparametric
regression curve fits the data well. The strength of the selected model is further exemplified
when compared to random forest regression with 60 trees, which has an

√
MSE of 1.40

and a mean average deviation between predicted and actual values of 0.9977. Kernel
regression is also superior to Gaussian kernel SVM, which demonstrated sensitivity to the
the train/test split and caused large information loss through the required discretization of
the average waiting time. Furthermore, examining the bootstrapped standard errors reveals
that nonparametric regression’s predictive power is robust for the majority of observations
even when left out of the fitting phase. Most maneuvers with predicted average waiting
times significantly greater than zero have relatively small standard errors, indicating that
the models built from the bootstrap replications were reasonably accurate across the board
for all 1000 replications.

Table 6. Model summaries.

R2 √
MSE Mean Average Deviation

RHC 0.9944 0.2550 0.1019
IIC 0.9901 0.5942 0.2408
SIC 0.9955 0.2721 0.0718

The Nadaraya–Watson estimate for each typology and each maneuver is tabulated in
the appendix (see Tables A1 and A2) with bootstrapped standard errors in parentheses.

There are significant differences among the predicted average waiting times for each
typology (see Tables A1 and A2). These results are consistent with Poliziani et al. (2021) [18]:
IIC (inexperienced and inefficient) cyclists spend significantly more time waiting, which
hints at their inexperience. Waiting times for RHC (risky and hasty) and SIC (sly and
informed) are comparable, but the risky behaviors exhibited by RHC may explain the
slightly lower values. Feature selection indicated that eight features are necessary and
sufficient predictors of average waiting time. Almost all the variables can be easily identified
for all maneuvers, apart from the PCE flow and critical volume, which require expensive
on-site surveys if not known.

Despite the model’s general robustness, it does struggle with maneuvers whose
waiting times are near-zero. The most glaring issue here is with maneuvers such as
maneuver 26 (see Table A1), where the bootstrapped standard error is larger than the
predicted waiting time, indicating that certain models built with bootstrap replications
predicted a negative waiting time. This issue can be addressed by setting a lower bound
for the average waiting time at 0, which will reduce variation and improve robustness.
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4. Conclusions

A new model has been calibrated which allows us to estimate the waiting times of
cyclists on different street maneuvers at intersections for three different cyclist typologies
previously identified [18]: The average waiting times of the three cyclist typologies have
been found to be consistent with their characterization. Some recent studies have high-
lighted that the time attribute is dominant for work and study trips of cyclists: Although
the trip time of cyclists is not particularly affected by congestion, the waiting times at
intersections along the path does significantly impact travel time [1,10]. This research
provides a practical contribution to the evaluation of waiting times, concluding that they
are essential for the design and management of cycle networks. In fact, the estimated
waiting times could be a valid attribute in a route choice model for cyclists, as waiting
time accounts for a significant share of trip time in urban settings. In addition, the present
study shows how different cyclist typologies differently perceive all significant attributes
that affect their waiting time. This information may also contribute to improve path choice
models of cyclists.

More work needs to be conducted on extrapolating this model to other cities where
cyclists may exhibit different tendencies and to test the predictors with other data. In
general, future studies should also design a new route choice model for cyclists including
the waiting time influence, as well as the typology of cyclist, for example, using the
estimators presented in this paper.
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Appendix A

Table A1. Nadaraya–Watson estimates (bootstrapped standard error). From maneuver number 1
to 30.

Maneuver Number RHC IIC SIC

1 0.01 (0.15) 1.03 (0.11) 0.15 (0.08)
2 0.07 (0.49) 0.11 (0.52) 0.08 (0.26)
3 0.84 (0.19) 0.00 (0.10) 0.00 (0.06)
4 0.69 (1.84) 0.46 (2.21) 0.00 (2.75)
5 0.71 (0.33) 0.15 (0.15) 0.00 (0.18)
6 2.43 (0.18) 5.00 (0.13) 3.23 (0.15)
7 2.68 (0.96) 3.76 (0.98) 1.29 (0.81)
8 0.76 (0.07) 1.85 (0.06) 1.02 (0.06)
9 1.09 (0.36) 1.38 (0.34) 3.28 (0.43)
10 1.71 (1.89) 2.13 (2.30) 2.00 (2.70)
11 0.23 (0.59) 2.07 (0.62) 2.23 (0.48)



ISPRS Int. J. Geo-Inf. 2022, 11, 169 12 of 14

Table A1. Cont.

Maneuver Number RHC IIC SIC

12 0.75 (0.22) 0.36 (0.10) 0.09 (0.10)
13 1.11 (0.28) 2.16 (0.28) 2.82 (0.36)
14 2.28 (1.97) 9.97 (1.93) 6.16 (1.85)
15 2.08 (0.13) 4.80 (0.17) 3.30 (0.20)
16 6.56 (0.29) 4.73 (0.09) 2.75 (0.17)
17 0.93 (0.35) 2.67 (0.31) 1.77 (0.18)
18 2.13 (0.47) 6.05 (0.48) 1.74 (0.53)
19 1.67 (0.66) 3.99 (0.65) 3.73 (0.75)
20 0.13 (1.21) 0.39 (0.93) 0.13 (0.85)
21 1.52 (0.03) 2.40 (0.03) 0.34 (0.03)
22 7.90 (0.91) 16.31 (0.89) 8.19 (0.66)
23 2.84 (1.64) 3.62 (0.80) 5.11 (0.96)
24 8.50 (0.12) 5.62 (0.06) 4.00 (0.07)
25 0.82 (2.61) 2.55 (2.94) 0.77 (2.89)
26 0.01 (0.06) 0.10 (0.07) 0.04 (0.12)
27 2.75 (0.60) 9.94 (1.24) 14.99 (1.20)
28 3.37 (0.49) 0.02 (0.47) 0.28 (0.50)
29 0.06 (1.67) 0.02 (1.38) 0.30 (1.44)
30 0.16 (1.80) 3.85 (2.28) 10.81 (2.72)

Table A2. Nadaraya–Watson estimates (bootstrapped standard error). From maneuver number 31
to 60.

Maneuver Number RHC IIC SIC

31 0.01 (0.50) 0.82 (0.43) 0.02 (0.47)
32 5.81 (0.65) 8.41 (0.24) 3.63 (0.31)
33 3.37 (1.86) 9.55 (1.92) 2.14 (2.03)
34 0.54 (0.12) 0.79 (0.10) 0.91 (0.05)
35 6.69 (0.61) 12.14 (0.55) 4.80 (0.50)
36 5.20 (0.03) 18.61 (0.06) 4.50 (0.02)
37 0.00 (0.13) 0.81 (0.07) 0.40 (0.03)
38 1.47 (2.05) 9.18 (2.28) 0.15 (2.79)
39 1.99 (1.18) 2.31 (1.32) 1.85 (2.01)
40 9.04 (4.53) 31.59 (6.18) 14.21 (5.43)
41 1.41 (0.34) 0.17 (0.45) 0.12 (0.49)
42 0.81 (0.32) 5.41 (0.16) 0.51 (0.14)
43 1.41 (0.38) 0.45 (0.19) 0.00 (0.10)
44 0.60 (0.45) 2.69 (0.15) 2.09 (0.17)
45 15.63 (2.20) 7.84 (2.56) 12.75 (2.69)
46 3.20 (0.49) 13.02 (0.16) 9.23 (0.24)
47 2.21 (1.70) 2.78 (1.86) 0.47 (1.42)
48 0.00 (0.79) 0.42 (0.69) 0.22 (0.52)
49 6.07 (0.47) 1.82 (0.34) 2.08 (0.38)
50 0.98 (2.44) 0.14 (1.66) 0.54 (1.59)
51 1.06 (0.56) 11.19 (0.61) 1.78 (0.54)
52 0.21 (0.15) 0.94 (0.06) 0.00 (0.10)
53 0.00 (1.85) 1.93 (1.64) 1.12 (1.68)
54 0.00 (0.10) 0.42 (0.17) 0.00 (0.22)
55 3.16 (0.25) 3.50 (0.24) 0.94 (0.28)
56 4.30 (2.41) 6.44 (2.17) 9.45 (2.30)
57 1.53 (2.88) 3.18 (2.54) 3.00 (2.45)
58 4.19 (0.67) 16.60 (0.34) 16.40 (0.27)
59 16.76 (1.07) 13.56 (1.18) 7.75 (0.95)
60 0.83 (0.38) 5.35 (0.17) 1.66 (0.17)
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