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Abstract: Cluster analysis seeks to assign objects with similar characteristics into groups called
clusters so that objects within a group are similar to each other and dissimilar to objects in other
groups. Spectral clustering has been shown to perform well in different scenarios on continuous data:
it can detect convex and non-convex clusters, and can detect overlapping clusters. However, the
constraint on continuous data can be limiting in real applications where data are often of mixed-type,
i.e., data that contains both continuous and categorical features. This paper looks at extending
spectral clustering to mixed-type data. The new method replaces the Euclidean-based similarity
distance used in conventional spectral clustering with different dissimilarity measures for continuous
and categorical variables. A global dissimilarity measure is than computed using a weighted sum,
and a Gaussian kernel is used to convert the dissimilarity matrix into a similarity matrix. The new
method includes an automatic tuning of the variable weight and kernel parameter. The performance
of spectral clustering in different scenarios is compared with that of two state-of-the-art mixed-type
data clustering methods, k-prototypes and KAMILA, using several simulated and real data sets.

Keywords: cluster analysis; spectral clustering; mixed-type data

1. Introduction

Clustering or cluster analysis seeks to assign objects with similar characteristics into
groups called clusters such that objects within a group are similar to each other and
dissimilar to objects in other groups. Different definitions of similarity and dissimilarity can
be used, and each definition can lead to a different clustering technique. In this paper, we
focus on partitioning clustering techniques, i.e., the algorithm finds an optimal partition of
the n units in k clusters. Clustering partitioning techniques include model-based clustering
(e.g., Gaussian mixture models [1]), partition-based clustering (e.g., k-means clustering [2]),
graph-based clustering (e.g., spectral clustering [3]), and density-based clustering (e.g.,
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) [4]). Although
there is not a single clustering technique that is always preferred to the others, spectral
clustering has the advantage of detecting clusters of arbitrary shapes, such as non-convex
clusters, and of giving good results when clusters overlap. Spectral clustering does not
always give the best performance but it is always among the better techniques [5]. One
of the main limitations of spectral clustering in practical applications is that it requires
continuous data, whereas many data sets have mixed-type data, i.e., continuous and
categorical variables. SpectralCaT [6] was proposed to deal with this problem, it first
automatically transforms the data into categorical values and then applies a dimension
reduction version of spectral clustering. Another strategy to cluster mixed-type data is to
use a specific distance measure for mixed-type data, for example, Gower’s dissimilarity [7].
Gower’s dissimilarity is a weighted sum of individual dissimilarities for continuous and
categorical variables. For categorical variables, the simple matching coefficient is often
used: assigning a value of 1 when the two objects being compared have the same value
and 0 otherwise. For continuous variables, the Manhattan distance is often used. Several
dissimilarity measures exist [8], and several mixed-type data clustering algorithms have
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been developed using the idea of a different dissimilarity measure for each type of variable.
One of the most used is k-prototypes [9], that extends k-means clustering for mixed-type
data. KAy-means for MIxed LArge data (KAMILA) [10] is a further semi-parametric
extension of k-means. Many other algorithms exist, see for example [11]. For a review of
mixed-type data clustering techniques, see [12–14]. In this paper we propose an extension
of spectral clustering for mixed-type data based on different dissimilarity measures per
type of variable. We also introduce an automatic tool to tune the weight of the continuous
vs. categorical variables. The method is compared with KAMILA and k-prototypes on
simulated and real data.

2. Background: Spectral Clustering

Spectral clustering frames the clustering problem as one of partitioning a graph [15].
The n× p data matrix X is first used to construct a similarity graph G(V, E) of the data
where the vertices/nodes V represent the n objects to be clustered and the edges E connect
the vertices based on some measure of similarity between the n points. The clustering
problem is then seen as finding a partition of the graph such that the edges between
different groups have very low weights and edges within a group have high weights. The
most intuitive cut, i.e. the cut that minimizes the sum of the edges, leads to isolate points.
Two commonly used criteria are called RatioCut [16] and the normalized cut Ncut [17].
The approximate solution can be obtained by doing an eigendecomposition of a graph
Laplatian matrix L. The solution obtained is a real valued solution matrix, see Figure 1,
that can be converted into a discrete partition using a standard clustering method, such as
k-means clustering, on the normalized eigenvectors.

To built the graph G(V, E) starting from the data matrix X with p continuous columns,
it is common to first calculate pairwise dissimilarities/distances and then use these to
calculate similarities. On the similarity matrix, several spectral clustering algorithms
can be used and each of them has some advantages [18]. A commonly used one is the
NJW algorithm by Ng, Jordan and Weiss [19]. The first step of the NJW algorithm is the
calculation of all pairwise squared Euclidean distances between the n objects. The distances
can be conveniently represented in a symmetric n× n matrix S whose diagonal entries Sii
are all zero and the entries Sij = Sji are the pairwise distances between objects i and j. The
affinity matrix A is then obtained as a weighted negative exponential of S after which the
diagonal entries Aii are set to zero. The affinity matrix A is, therefore, a similarity matrix as
required by all spectral clustering algorithms.

Figure 1. Simulated bivariate data set in the original space (a) and space obtained with the eigende-
composition of L (b), colors and shapes represent the partition obtained with spectral clustering.

The next matrix to construct is the diagonal matrix D with Dii equal to the sum of the
elements of row i of A. The graph Laplacian matrix L can then be calculated from A and D
as L = D−1/2 AD−1/2. Spectral decomposition of L gives its eigenvalues and corresponding
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eigenvectors. The eigenvectors corresponding to the k largest eigenvalues are stacked as
columns to form the n× k matrix Y′. Each row of Y′ is re-normalized to unit length to
give Y. The matrix Y is a real valued solution of the clustering problem, the number of
columns of Y, k, is equal to the number of clusters. A simple clustering algorithm can now
be used to detect the clusters. Figure 1 shows a data set in the original space and in the
space obtained with the eigendecomposition of L where k-means clustering is performed,
colors and shapes represent the partition. Commonly, Y and k are the inputs for k-means
clustering [20]. The cluster assignments for the n rows of Y are the cluster assignments for
the original corresponding n objects. Figure 2 shows examples of challenging data sets
on which spectral clustering is able to detect the correct clustering structure. For more
examples and comparisons, see [5].
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Figure 2. Simulated bivariate data sets, colors, and shapes represent the partition obtained with
spectral clustering.

3. Spectral Clustering for Mixed Type Data

We extended the technique discussed in Section 2 for data of mixed-type. To apply
spectral clustering we need to compute the affinity matrix A, whose entries are the pairwise
similarities between the n objects. The original data matrix needs to be separated in two
matrices: matrix Z containing all the continuous columns of X, and the matrix Y containing
all the categorical columns of X. Both Z and Y have the same number n of rows as X.
Binary variables are considered a special case of categorical variables.

From the matrix Z containing the continuous variables of X, the n× n data matrix Ẑ
is calculated, where the entries of Ẑ are all the pairwise Euclidean distances between the
n rows. The matrix Ẑ is then scaled to be between 0 and 1 by dividing each entry by the
largest entry of Ẑ.

From Y, the n× n data matrix Ŷ is obtained, where the entries of Ŷ are all the pairwise
Hamming distances between the n rows of Y scaled to be between 0 and 1. An entry is 0
only if the two rows being compared take on the same value for all categorical variables.
An entry is 1 only if the two rows being compared never take the same value for any
categorical variable. When the two rows being compared take on the same value for some
categorical variables but not others, the corresponding Ŷ entry will be greater than 0 but
less than 1.

Both Ẑ and Ŷ are, therefore, n × n matrices of pairwise dissimilarities with 0 on
the diagonal and all other entries between 0 and 1. A single dissimilarity matrix J is then
calculated as a simple weighted sum J = (1−w)Ẑ +wŶ, with the weight w being a tunable
parameter between 0 and 1. Having w equal 1 is equivalent to ignoring the contribution of
the continuous variables and having w equal 0 is equivalent to ignoring the contribution of
the categorical variables.

The affinity matrix A is then calculated from J as A = exp(−J2/(2σ2)) where σ is a
tunable parameter. Roughly speaking, smaller values of σ correspond to each object being
connected to only closer nearest neighbors in the graph. Once σ is small enough, the objects
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are no longer connected to each other. Conversely, increasing σ connects each object to
further and further neighbors until eventually for large enough σ, each object is connected
to all n− 1 other objects. Notice that we started with a dissimilarity matrix J and ended up
with a similarity matrix A because of the negative exponential.

The NJW algorithm then changes the diagonal of A from all 1 to all 0. The next step
of our mixed-data spectral clustering algorithm then forms the graph Laplacian matrix L
from A and D as L = D−1/2 AD−1/2. Recall from Section 2 that D is the diagonal matrix
with Dii equal to the sum of the elements of row i of A.

We then calculate the k eigenvectors corresponding to the k largest eigenvalues of
L, with k being the number of desired clusters. These eigenvectors are then stacked as
columns to form the n× k matrix V′. Each row of V′ is re-normalized to unit length to give
V, which is then used as the input for k-means clustering. The cluster assignments for the n
rows of V are the cluster assignments for the original corresponding n objects.

We implemented the spectral clustering algorithm for mixed-type data as a function
in R [21]. The function takes as input the n× p data matrix X, where the rows are the n
objects to be clustered and the p columns are the continuous and categorical attributes to
be used for clustering; for instance n patients with p observations/measurements on them
such as age, height, weight, gender, pre-existing conditions, etc.

The daisy command in the cluster package [22] is used to calculate the matrix Ŷ
whereas the function dist is used to compute Ẑ.

The eigs_sym function from the RSpectra package [23] is used for the spectral decom-
position of L to give its k largest eigenvalues and the corresponding eigenvectors. The
function kmeans, part of the stats package is used to perform k-means clustering. Values
for the two free parameters w and σ are chosen by running the algorithm over a grid of
w-σ values and picking the value pair that gives the highest ratio of between-to-within
sum-of-squares at the k-means step. The tuning is obtained at the k-means step in the
space obtained with an eigendecomposition of L; in this space, clusters are spherical, as
shown in Figure 1, and, therefore, a ratio based on the between-to-within sum-of-squares
is appropriate.

4. Application
4.1. Competitors

Several methods for clustering mixed-type data sets exist [13]. In our study, we com-
pare spectral clustering of mixed-type data to two particular methods: k-prototypes [9,24]
and KAMILA [4,10]. Those techniques are among the most commonly-used techniques for
clustering mixed-type data and that have shown good performance [25]. The k-prototypes
algorithm is an adaptation of the k-means algorithm to mixed-type data. The differences are
that the ‘distances’ used for cluster assignments are no longer Euclidean since each object
to be clustered has continuous as well as categorical attributes. Instead, a dissimilarity
measure that is the weighted sum of the squared Euclidean distance for the continuous
variables and the simple matching coefficient for the categorical variables is used. There is
no universal method of determining the ‘correct’ value of the weights. The second differ-
ence is that the centroids (known as prototypes) are the means for the continuous variables
data, and modes for categorical variables data. KAMILA is a hybrid of the non-parametric
k-means clustering and the parametric model-based Gaussian-multinomial mixture models.
It has the advantage of the user not having to specify the weight for the continuous variables
with respect to the categorical variables, similar to Gaussian-multinomial mixture models.

4.2. Simulation Design

The simulation design is divided in two parts: two-cluster data sets and four-cluster
data sets. For two-clusters, a full-factorial approach was used for the simulation. Data were
simulated in two clusters looking at the effect of four factors on the performance of three
mixed-type data clustering algorithms: k-prototypes, KAMILA and spectral clustering. The
four factors are:
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1. The degree of overlap in the variables: high–high, high–low, low–high and low–low
(continuous-categorical);

2. The number of continuous-categorical variables: 2-2, 1-3, and 3-1;
3. The number of levels in the categorical variables: 3 and 5;
4. Whether or not the clusters were balanced (number of points per cluster): 200-200 vs. 320-80.

This gives 48 unique combinations of the four factors. For each combination, 100 data
sets were generated.

Data were simulated in four clusters looking at the effect of two factors:

1. Cluster shape (convex vs. non-convex);
2. The degree of overlap in the variables.

All data sets had two continuous and two categorical variables. Two of the clusters
had 320 data points each and the other two had 80 data points each.

The continuous variables were simulated from a multivariate normal distribution
using the rmvnorm function of the mvtnorm package [26]. For each of the two clusters, this
required p means and a p× p covariance matrix, where p is the number of continuous
variables desired for the data set. The p means were sampled from random continuous
uniform distributions. The rcorrmatrix function of the clusterGeneration package [27]
was used to generate the two random p × p covariance matrices, one for each cluster.
Overlap between clusters was varied by specifying the width of the random uniform from
which the p means were sampled: selecting a narrow range resulted in higher overlap,
whereas selecting a wide range resulted in low overlap.

The categorical variables were simulated independent of both the continuous variables
and of each other. The starting point was two continuous unit uniform distributions—one
for each cluster. Overlap between clusters was varied by specifying the width of the two
unit uniforms: for instance zero overlap would have the two unit uniforms as (0, 1) and
(1, 2), whereas complete overlap would have the two unit uniforms identical as (0, 1).
Binning the continuous output of the unit uniforms into three or five buckets gave the
desired three-level and five-level categorical variables.

For the four-cluster data sets, for the convex clusters, the continuous data were pseudo-
randomly generated from a multivariate generalized hyperbolic distribution with ω = 1,
λ = 0.5, randomly varying the mean, the covariance matrix, and the skewness. The
random means and random covariance matrices were generated as previously described
and together with ω and λ, used as inputs to the rGHD function of the MixGHD package [28]
to generate the continuous variables.

To obtain non-convex clusters, the continuous variables were generated using bi-
variate Von-Mises distributions varying the θ parameters among clusters. This is carried
out using the rmovMF function in the movMF package [29].

For both the convex and non-convex clusters in the four-cluster data sets, the categori-
cal variables were generated independent of each other and of the continuous variables.
This was carried out by sampling from multinomial distributions with five levels, as all
categorical variables were set to have five levels. Overlap between categorical variables
was controlled by making all five levels equi-probable for maximum overlap, and making
one level more probable in a given cluster than the others to reduce overlap. An example of
continuous variables for the three scenarios with four clusters, i.e., non-convex, convex-low
overlap, and convex-high overlap is displayed in Figure 3.

Clustering performance was measured using the adjusted Rand index (ARI) [30]. The
ARI can be obtained using the ARI function of the MixGHD package [28]. The ARI corrects
the Rand index [31] for chance; it has an expected value equal to zero under random
classification, and is equal to one when there is a perfect class agreement. The ARI of the
clustering output for the three algorithms was calculated along with the median of the
results used to compare performance.
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Figure 3. Example of continuous variables for the three scenarios with four clusters

4.3. Simulation Results
4.3.1. Results for 2-Cluster Data Sets

The results for the four overlap types described in Section 4.2 (low–low, low–high,
high–low and high–high) are presented in Tables 1–4, respectively. For more detailed
results, please see the Supplementary Material. The ‘size’ column refers to whether the
100 data sets had two clusters of equal size (‘eq’) 200 objects each, or non-equal size (‘neq’),
one cluster with 320 objects and the other with 80 objects. The ‘con.’ and ‘cat.’ columns refer
to the number of continuous variables and categorical variables, respectively. The ‘levs’
column refers to the number of levels that the categorical variables had. The ‘KAMILA’,
‘k-proto’ and ‘spectral’ columns are the median ARI for the 100 data sets clustered for the
variable settings of the corresponding row. The 12 rows correspond to the 12 possible
combinations of the levels for the three remaining factors under investigation, i.e., number
of continuous-categorical variables, number of levels in the categorical variables, and
whether or not the clusters were balanced.

Table 1. Median ARI for low overlap in continuous variables and low overlap in categorical variables,
n = 100 two-cluster data sets.

Size Con. Cat. Levs KAMILA k-Proto Spectral

eq 1 3 3 0.980 0.970 0.980
eq 2 2 3 0.931 0.680 0.941
eq 3 1 3 0.359 0.341 0.680
eq 1 3 5 0.970 0.341 0.990
eq 2 2 5 0.921 0.285 0.926
eq 3 1 5 0.365 0.222 0.647

neq 1 3 3 0.108 0.966 0.988
neq 2 2 3 0.102 0.036 0.965
neq 3 1 3 0.082 0.026 0.524
neq 1 3 5 0.110 0.010 1.000
neq 2 2 5 0.078 0.018 0.965
neq 3 1 5 0.062 0.027 −0.018
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Table 2. Median ARI for low overlap in continuous variables and high overlap in categorical variables,
n = 100 two-cluster data sets.

Size Con. Cat. Levs KAMILA k-Proto Spectral

eq 1 3 3 0.931 0.921 0.951
eq 2 2 3 0.860 0.615 0.865
eq 3 1 3 0.358 0.335 0.503
eq 1 3 5 0.931 0.133 0.951
eq 2 2 5 0.765 0.160 0.823
eq 3 1 5 0.238 0.134 0.482

neq 1 3 3 0.108 0.880 0.977
neq 2 2 3 0.101 0.082 0.896
neq 3 1 3 0.047 0.018 0.291
neq 1 3 5 0.087 0.044 0.965
neq 2 2 5 0.042 0.022 0.908
neq 3 1 5 0.056 0.032 0.236

Table 3. Median ARI for high overlap in continuous variables and low overlap in categorical variables,
n = 100 two-cluster data sets.

Size Con. Cat. Levs KAMILA k-Proto Spectral

eq 1 3 3 0.002 0.990 0.990
eq 2 2 3 0.016 0.898 0.931
eq 3 1 3 0.004 0.060 0.639
eq 1 3 5 0.002 0.194 0.990
eq 2 2 5 0.007 0.050 0.921
eq 3 1 5 0.002 0.008 0.301

neq 1 3 3 0.001 0.977 0.988
neq 2 2 3 0.003 −0.001 0.965
neq 3 1 3 0.000 −0.001 0.449
neq 1 3 5 0.000 −0.001 0.988
neq 2 2 5 −0.001 −0.001 0.954
neq 3 1 5 −0.002 −0.002 −0.024

Table 4. Median ARI for high overlap in continuous variables and high overlap in categorical
variables, n = 100 two-cluster data sets.

Size Con. Cat. Levs KAMILA k-Proto Spectral

eq 1 3 3 0.001 0.941 0.941
eq 2 2 3 0.010 0.243 0.828
eq 3 1 3 0.002 0.040 0.499
eq 1 3 5 0.002 0.032 0.941
eq 2 2 5 0.004 0.005 0.828
eq 3 1 5 0.001 0.000 0.005

neq 1 3 3 0.001 0.921 0.965
neq 2 2 3 0.002 −0.001 0.908
neq 3 1 3 0.000 −0.001 0.265
neq 1 3 5 0.000 0.001 0.944
neq 2 2 5 0.003 −0.001 0.885
neq 3 1 5 −0.001 −0.001 0.007

Table 1 has the median ARI results for the data sets with low overlap in both continuous
and categorical variables. Spectral clustering is the best performer for all settings except
the last row where all three clustering methods perform poorly. KAMILA is the second-
best performer for most settings with k-prototypes performing worst. Spectral clustering
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performs similarly for balanced (‘eq’) and unbalanced (‘neq’) clusters. The exception is the
last row where none of the three methods performs well. Spectral clustering especially
outperforms for the data sets with three continuous variables and one categorical variable.
For all three clustering methods, the ARI drops as the number of continuous-categorical
variables goes from 1-3 to 2-2 to 3-1. Spectral clustering performs comparably whether
the categorical variables have three or five levels (again with the exception of the last-row
data sets).

Table 2 has the median ARI results for the data sets with low overlap in the continuous
variables but high overlap in categorical variables. Spectral clustering is the best performer
for all settings. Spectral clustering especially outperforms KAMILA and k-prototypes for
the data sets with three continuous variables and one categorical variable. KAMILA is
the second-best performer for most settings with k-prototypes performing worst. Spectral
clustering performs similarly for balanced (‘eq’) and unbalanced (‘neq’) clusters. For all
three clustering methods, the ARI tends to drop as the number of continuous-categorical
variables goes from 1-3 to 2-2 to 3-1. Spectral clustering performs comparably whether the
categorical variables have three or five levels.

Table 3 has the median ARI results for the data sets with high overlap in the continuous
variables but low overlap in categorical variables. Spectral clustering is the best performer
for all settings except the last row where all three clustering methods perform poorly. For
nine of the eleven settings where it is the best performer, the out-performance is much
larger than previously seen for the low–low and low–high overlap settings. Also in contrast
to observations in Tables 1 and 2, KAMILA tends to perform worse than k-prototypes for
these data sets. Spectral clustering performs similarly for balanced (‘eq’) and unbalanced
(‘neq’) clusters. The exception is the data sets with three continuous variables and one
categorical variable where performance is better for the data sets with balanced clusters.
Similar to low–low and low–high overlap data sets, the ARI tends to drop as the number of
continuous-categorical variables goes from 1-3 to 2-2 to 3-1. Spectral clustering performs
comparably whether the categorical variables have three or five levels, with the exception
of the data sets with three continuous variables and one categorical variable.

Table 4 has the median ARI results for the data sets with high overlap in both the
continuous and the categorical variables. Spectral clustering is the best performer for all
settings, in most cases outperforming KAMILA and k-prototypes by large margins. For
nine of the eleven settings where it is the best performer, the out-performance is much
larger than previously seen for the low–low and low–high overlap settings. Similar to
Table 3, KAMILA tends to perform worse than k-prototypes for these data sets. Spectral
clustering performs similarly for balanced (‘eq’) and unbalanced (‘neq’) clusters. As seen in
previous tables, the ARI tends to drop as the number of continuous-categorical variables
goes from 1-3 to 2-2 to 3-1. Spectral clustering performs comparably whether the categorical
variables have three or five levels, again with the exception of the data sets with three
continuous variables and one categorical variable where performance is better with three
levels than five.

4.3.2. Results for Four-Cluster Data Sets

For the four-cluster data sets, when the clusters are non-convex in the continuous
variables (Table 5), spectral clustering outperforms both k-prototypes and KAMILA by a
large margin when the degree of overlap is either high or low for the categorical variables.
When the overlap is medium, the three methods all perform poorly.

For four-cluster data sets where the clusters are convex in the continuous variables
(Table 6), spectral clustering performs comparably to both k-prototypes and KAMILA
when continuous-categorical overlap is either low–high or high–low. When overlap is
medium–medium, it performs worse than both methods.
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Table 5. Median ARI for different levels of overlap in categorical variables, n = 10 four-cluster data
sets with non-convex clusters for continuous variables.

Categorical k-Prototypes KAMILA Spectral

high 0.017 0.020 0.864
medium 0.098 0.025 0.073

low 0.508 0.151 0.896

Table 6. Median ARI for different levels of overlap in continuous and categorical variables, n = 10
four-cluster data sets with convex clusters for continuous variables.

Continuous Categorical k-Prototypes KAMILA Spectral

low high 0.216 0.330 0.389
medium medium 0.450 0.251 0.208

high low 0.720 0.359 0.778

4.4. Real Data—Diamonds Data Set

The three clustering algorithms (k-prototypes, KAMILA, and spectral clustering) were
tested on the diamonds data set freely available on Kaggle [32]. The data set contains the
prices and other attributes of almost 54,000 diamonds. We used seven of the nine variables
for the cluster analysis. The categorical ones are cut (quality of the cut: Fair, Good, Very
Good, Premium, Ideal), color, and clarity. The continuous variables are table (width of top of
diamond relative to widest point (43–95)), carat (weight of the diamond (0.2–5.01), x length
in mm (0–10.74), and depth (total depth percentage = z/mean(x, y) = 2z/(x + y)(43− 79)).
The price variable was not used in clustering but was used to evaluate the clustering by
converting it into a categorical variable with five levels: ≤1000, 1000–2500, 2500–5000,
5000–10,000, and >10,000.

Five random samples were used to select 800 of the 53,940 instances for clustering by
the three algorithms. The median resulting ARI for each method is 0.337 for k-prototypes,
0.496 for KAMILA, and 0.481 for spectral clustering. Spectral clustering outperforms
k-prototypes and performs comparably to KAMILA. It did, however, take significantly
more time to run spectral clustering than KAMILA (about 10 minutes vs. a few seconds).
Moreover, the best possible ARI with spectral clustering is obtained using a weight for cate-
gorical variables different from the one chosen by our automatic tuning. The best median
ARI is 0.520, making spectral clustering possibly the best performer. This emphasizes the
potential of the method and the need for more research in improving the tuning technique
and in speeding up the algorithm.

5. Conclusions

This paper extends spectral clustering to mixed-type data by replacing the Euclidean-
based similarity distance used in conventional spectral clustering with different dissimi-
larity measures for continuous and categorical variables. A global dissimilarity measure
is than computed using a weighted sum, and a Gaussian kernel is used to convert the
dissimilarity matrix into a similarity matrix. The new method includes an automatic tuning
of the variable weight and kernel parameter. The method is compared with the k-prototype
and KAMILA, two state-of-art clustering techniques for mixed-type data.

For two-cluster simulated data sets, spectral clustering performs better or comparably
to k-prototypes and KAMILA based on ARI. Spectral clustering especially outperforms
when there is high overlap in both continuous and categorical variables

For four-cluster simulated data sets, spectral clustering performs comparably to k-
prototypes and KAMILA when: clusters are convex in the continuous variables, or when
continuous-categorical overlap is either low–high or high–low. When overlap is medium-
medium (convex), spectral clustering under-performs k-prototypes and KAMILA. Spectral
clustering outperforms k-prototypes and KAMILA when: clusters are non-convex in the
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continuous variables, or when degree of overlap is either high or low for the categorical
variables. When overlap is medium (non-convex), all three methods perform poorly.

Tested on the diamonds data set, spectral clustering outperforms k-prototypes and
performs comparably to KAMILA. It did, however, take significantly more time to run
spectral clustering than KAMILA emphasizing the need for computational improvements.
The reduced speed of Spectral clustering is partially due to the grid search for the tuning
parameters, w and σ. Future research will focus on the study of the effect of reducing
the grid size to improve the algorithm running time. However, the main bottleneck is
the decomposition of the n× n graph Laplacian. Our implementation of mixed-type data
spectral clustering using the RSpectra package [23] for the decomposition is a significant
improvement of the native R decomposition using the eigen command. For instance, for
a data set of 3200 objects and three clusters, the run-time is reduced by a factor of 150. A
further improvement to be investigated could be multi-threading the decomposition.

Future research will also include extending the current algorithm for ordinal and
binary data. This can be achieved including specific distances for those kind of variables
and an extra set of weights.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
stats5010001/s1.
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